WorldWideScience

Sample records for isokinetic joint motions

  1. The Effects of Multiple-Joint Isokinetic Resistance Training on Maximal Isokinetic and Dynamic Muscle Strength and Local Muscular Endurance.

    Science.gov (United States)

    Ratamess, Nicholas A; Beller, Noah A; Gonzalez, Adam M; Spatz, Gregory E; Hoffman, Jay R; Ross, Ryan E; Faigenbaum, Avery D; Kang, Jie

    2016-03-01

    The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM) strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT) or a non-exercising control group (CTL). The IRT group underwent 6 weeks of training (2 days per week) consisting of 5 sets of 6-10 repetitions at 75-85% of subjects' peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s(-1) [3-sec concentric (CON) and 3-sec eccentric (ECC) phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey's post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg), 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg), and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions) increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women. Key pointsMultiple-joint isokinetic resistance training increases dynamic maximal muscular strength, local muscular endurance, and maximal isokinetic strength in women.Multiple-joint isokinetic resistance training increased 1RM strength in the bench press (by

  2. The Effects of Multiple-Joint Isokinetic Resistance Training on Maximal Isokinetic and Dynamic Muscle Strength and Local Muscular Endurance

    Science.gov (United States)

    Ratamess, Nicholas A.; Beller, Noah A.; Gonzalez, Adam M.; Spatz, Gregory E.; Hoffman, Jay R.; Ross, Ryan E.; Faigenbaum, Avery D.; Kang, Jie

    2016-01-01

    The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM) strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT) or a non-exercising control group (CTL). The IRT group underwent 6 weeks of training (2 days per week) consisting of 5 sets of 6-10 repetitions at 75-85% of subjects’ peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s-1 [3-sec concentric (CON) and 3-sec eccentric (ECC) phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey’s post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg), 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg), and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions) increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women. Key points Multiple-joint isokinetic resistance training increases dynamic maximal muscular strength, local muscular endurance, and maximal isokinetic strength in women. Multiple-joint isokinetic resistance training increased 1RM strength in the bench press

  3. The Effects of Multiple-Joint Isokinetic Resistance Training on Maximal Isokinetic and Dynamic Muscle Strength and Local Muscular Endurance

    Directory of Open Access Journals (Sweden)

    Nicholas A. Ratamess, Noah A. Beller, Adam M. Gonzalez, Gregory E. Spatz, Jay R. Hoffman, Ryan E. Ross, Avery D. Faigenbaum, Jie Kang

    2016-03-01

    Full Text Available The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT or a non-exercising control group (CTL. The IRT group underwent 6 weeks of training (2 days per week consisting of 5 sets of 6-10 repetitions at 75-85% of subjects’ peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s-1 [3-sec concentric (CON and 3-sec eccentric (ECC phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey’s post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg, 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg, and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women.

  4. Temporomandibular joint motion

    International Nuclear Information System (INIS)

    Maeda, M.; Kawamura, Y.; Matsuda, T.; Itou, S.; Odori, T.; Ishii, Y.; Torizuka, K.

    1990-01-01

    This paper evaluates MR imaging with the therapeutic effect after splint therapy in internal derangement of the temporomandibular joint (TMJ). Fifteen patients (19 TMJs) with internal derangement of the TMJ and five normal volunteers (10 TMJs) were examined with sagittal T1-weighted spin-echo and gradient recalled acquisition in a steady state (GRASS) MR imaging. MR studies of the patients undergoing splint therapy were performed with an without splints. Pseudodynamic images of TMJ motion provide information that was not available from spin-echo T1-weighted images

  5. Patellofemoral joint motion

    International Nuclear Information System (INIS)

    Stanford, W.; Phelan, J.; Albright, J.; Kathol, M.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.

    1988-01-01

    This paper describes the use of ultrafast computed tomography (CT) to obtain dynamic images of the patellofemoral joint during active motion. Thirty-eight patients underwent measurements of tangent offset, bisect offset, congruence angle, patellar tilt angle, lateral patellofemoral angle, sulcus angle, and sulcus depth made during leg movement. Selected parameters were compared with Merchant views. Significant correlations were obtained between Merchant views and comparable ultrafast CT views for all parameters except sulcus angle. Correlations between the other parameters were poor. Cine strips showed two patterns of movement; the patella remained centered either throughout excursion or until the last 20 0 of full extension, when it would sublux laterally

  6. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain.

    Science.gov (United States)

    Ju, Sung-Bum; Park, Gi Duck

    2017-02-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function.

  7. [Progress in isokinetic technology in testing and training for assessment of muscle function].

    Science.gov (United States)

    Huang, Ting-Ting; Fan, Li-Hua; Gao, Dong; Xia, Qing; Zhang, Min

    2013-02-01

    Isokinetic technology in testing and training is the most advanced practical technique in the evaluation of muscle function. This method is a continuous dynamic test in the full range of the joint motion which has strong pertinence at the aspect of assessing muscle strength, and is an objective and quantitative method for reflecting each point's muscle strength in the range of the joint motion. This article reviews the key concepts, brief history of development and influencing factors of isokinetic technology in testing and training, introduces the progress in the field of rehabilitation medicine and sport science, etc., and discusses the future exploration in forensic science.

  8. The Relationship between Isokinetic Relative Torque of Hip, Knee and Ankle Joints and the Height of Guide Leg Jump in Young Men

    Directory of Open Access Journals (Sweden)

    Saeed Nikoukheslat

    2016-06-01

    Full Text Available Objective: The aim of this study was to investigate the relationship between isokinetic relative torques of hip, knee and ankle joints and the height of guide leg jump in young men. Methods: 27 college male athletes with mean age of 25±3.5 years, height 178.5±7.8 cm and weight of 75.7±10.7 kg voluntarily participated in this study. Isokinetic torque of hip, knee and ankle joints and the height of vertical jump were measured using BIODEX SYSTEM PRO 4 and digital vertical jumping tester systems respectively. Pearson correlation test at p<0.05 was used for statistical analysis. Results: Results showed that there were significant correlations between height of jump and hip joint flexion (p= 0.047 & r= 0.39 and extension (p= 0.003 & r= 0.55 torques of guide leg, hip joint extension torque of support leg (p= 0.020 & r=0.45 and knee joint flexion (p= 0.019 & r=0.45 and extension torques of support leg (p=0.006 & r=0.52. Conclusion: The results of this study show that flexion and extension torques of hip joint in guide leg and knee joint in support leg and also extension torque of hip joint in support leg have main effect on height of guide leg jump. Thus, in designing a specific training program for athletes in whom the nature of jump in their sports is guide leg jump, particular attention should be given to hip and knee joints strength.

  9. Joint motion clusters in servomanipulator operation

    International Nuclear Information System (INIS)

    Draper, J.V.; Sundstrom, E.; Herndon, J.N.

    1986-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory is developing advanced teleoperator systems for maintenance of future nuclear fuel reprocessing facilities. Remote maintenance systems developed by the CFRP emphasize man-in-the-loop teleoperation. This paper reports the results of a recent experiment which investigated how users interact with a multi-degree-of-freedom servomanipulator. Principal components analysis performed on data collected during completion of typical remote maintenance tests indicates that joint motions may be summarized by two orthogonal clusters, one which represents fine-adjusting motions and one which represents slewing motions. Implications of these findings for servomanipulator design are discussed. 5 refs., 1 fig., 2 tabs

  10. Exit from Synchrony in Joint Improvised Motion.

    Directory of Open Access Journals (Sweden)

    Assi Dahan

    Full Text Available Motion synchrony correlates with effective and well-rated human interaction. However, people do not remain locked in synchrony; Instead, they repeatedly enter and exit synchrony. In many important interactions, such as therapy, marriage and parent-infant communication, it is the ability to exit and then re-enter synchrony that is thought to build strong relationship. The phenomenon of entry into zero-phase synchrony is well-studied experimentally and in terms of mathematical modeling. In contrast, exit-from-synchrony is under-studied. Here, we focus on human motion coordination, and examine the exit-from-synchrony phenomenon using experimental data from the mirror game paradigm, in which people perform joint improvised motion, and from human tracking of computer-generated stimuli. We present a mathematical mechanism that captures aspects of exit-from-synchrony in human motion. The mechanism adds a random motion component when the accumulated velocity error between the players is small. We introduce this mechanism to several models for human coordinated motion, including the widely studied HKB model, and the predictor-corrector model of Noy, Dekel and Alon. In all models, the new mechanism produces realistic simulated behavior when compared to experimental data from the mirror game and from tracking of computer generated stimuli, including repeated entry and exit from zero-phase synchrony that generates a complexity of motion similar to that of human players. We hope that these results can inform future research on exit-from-synchrony, to better understand the dynamics of coordinated action of people and to enhance human-computer and human-robot interaction.

  11. Knee-joint proprioception during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training

    Science.gov (United States)

    Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.

    1994-01-01

    To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.

  12. Knee-Joint Proprioception During 30-Day 6 deg Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    Science.gov (United States)

    Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.

    1994-01-01

    To determine if daily isotonic exercise or isokinetic exercise training coupled with daily log proprioceptive training, would influence log proprioceptive tracking responses during Bed Rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a NO-Exercise (NOE) training control group (n = 5), and IsoTanic Exercise (ITE, n = 7) and IsoKinetic Exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min period / d, 5 d /week. Only the IKE group performed proprioceptive training using a now isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pro-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p less than 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9 +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.50, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both lsotonic exercise training (without additional propriaceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.

  13. Estimation of Joint types and Joint Limits from Motion capture data

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Erleben, Kenny

    2009-01-01

    It is time-consuming for an animator to explicitly model joint types and joint limits of articulated figures. In this paper we describe a simple and fast approach to automated joint estimation from motion capture data of articulated figures. Our method will make the joint modeling more efficient ...

  14. Augmented reality environment for temporomandibular joint motion analysis.

    Science.gov (United States)

    Wagner, A; Ploder, O; Zuniga, J; Undt, G; Ewers, R

    1996-01-01

    The principles of interventional video tomography were applied for the real-time visualization of temporomandibular joint movements in an augmented reality environment. Anatomic structures were extracted in three dimensions from planar cephalometric radiographic images. The live-image fusion of these graphic anatomic structures with real-time position data of the mandible and the articular fossa was performed with a see-through, head-mounted display and an electromagnetic tracking system. The dynamic fusion of radiographic images of the temporomandibular joint to anatomic temporomandibular joint structures in motion created a new modality for temporomandibular joint motion analysis. The advantages of the method are its ability to accurately examine the motion of the temporomandibular joint in three dimensions without restraining the subject and its ability to simultaneously determine the relationship of the bony temporomandibular joint and supporting structures (ie, occlusion, muscle function, etc) during movement before and after treatment.

  15. The effect of isokinetic and proprioception training on strength, movement and gait parameters after acute supination injury of the ankle ligaments

    Directory of Open Access Journals (Sweden)

    C. Mucha

    2009-01-01

    Full Text Available The effects of a three-week isokinetic training compared to typical proprio -ceptive training on parameters of strength, movement and gait function after acute ankle ligament sprain were investigated. Thirty-nine patients were randomly allocated to two comparison groups. In group 1 (n=20a proprioceptive training and in group 2 (n=19 an isokinetic strength training (Cybex 6000® were administered. Thepatients of both groups underwent training five times a week for three weeks. Before and at the end of the treatmentcourse, in both groups isokinetic strength was tested, the range of motion in the ankle joint was recorded and gait wasanalyzed (multicomponent strength measurement platform, Henschel-System®. The maximum isokinetic torque(60°/s [Nm] and the contact time (monopedal support time of the injured leg during gait cycle were the basis for evaluation.The data obtained show that in group 2 a significantly greater increase of the maximum isokinetic torque wasattained in almost all range of motion of the ankle joint in the course of treatment. A t the same time, in group 2 theshortening of the contact time in the stance phase of the injured leg could be compensated. The active range of motionin the ankle joint was less at the end of treatment in group 2 than in group 1. The isokinetic training obviously did notonly lead to better strength regeneration, but also to a functionally more stable ankle joint with a rhythmically moreevenly balanced stance phase of the gait cycle.  These results suggest that the used isokinetic training had positive effects on functional stability after acute ankle sprain.

  16. Joint model of motion and anatomy for PET image reconstruction

    International Nuclear Information System (INIS)

    Qiao Feng; Pan Tinsu; Clark, John W. Jr.; Mawlawi, Osama

    2007-01-01

    Anatomy-based positron emission tomography (PET) image enhancement techniques have been shown to have the potential for improving PET image quality. However, these techniques assume an accurate alignment between the anatomical and the functional images, which is not always valid when imaging the chest due to respiratory motion. In this article, we present a joint model of both motion and anatomical information by integrating a motion-incorporated PET imaging system model with an anatomy-based maximum a posteriori image reconstruction algorithm. The mismatched anatomical information due to motion can thus be effectively utilized through this joint model. A computer simulation and a phantom study were conducted to assess the efficacy of the joint model, whereby motion and anatomical information were either modeled separately or combined. The reconstructed images in each case were compared to corresponding reference images obtained using a quadratic image prior based maximum a posteriori reconstruction algorithm for quantitative accuracy. Results of these studies indicated that while modeling anatomical information or motion alone improved the PET image quantitation accuracy, a larger improvement in accuracy was achieved when using the joint model. In the computer simulation study and using similar image noise levels, the improvement in quantitation accuracy compared to the reference images was 5.3% and 19.8% when using anatomical or motion information alone, respectively, and 35.5% when using the joint model. In the phantom study, these results were 5.6%, 5.8%, and 19.8%, respectively. These results suggest that motion compensation is important in order to effectively utilize anatomical information in chest imaging using PET. The joint motion-anatomy model presented in this paper provides a promising solution to this problem

  17. Individuality and togetherness in joint improvised motion.

    Directory of Open Access Journals (Sweden)

    Yuval Hart

    Full Text Available Actors, dancers and musicians that improvise together report special moments of togetherness: high performance and synchrony, seemingly without a leader and a follower. Togetherness seems to conflict with individuality- the idiosyncratic character of each person's performance. To understand the relation of individuality and togetherness, we employed the mirror game paradigm in which two players are asked to mirror each other and create interesting synchronized motion, with and without a designated leader. The mirror game enables quantitative characterization of moments of togetherness in which complex motion is generated with high synchrony. We find that each person as a leader does basic strokes of motion with a characteristic signature, in terms of the shape of their velocity profile between two stopping events. In moments of togetherness both players change their signature to a universal stroke shape. This universal velocity profile resembles a half-period of a sine wave, and is therefore symmetric and maximally smooth. Thus, instead of converging to an intermediate motion signature, or having one player dominate, players seem to shift their basic motion signatures to a shape that is altogether different from their individually preferred shapes; the resulting motion may be easier to predict and to agree on. The players then build complex motion by using such smooth elementary strokes.

  18. Individuality and togetherness in joint improvised motion.

    Science.gov (United States)

    Hart, Yuval; Noy, Lior; Feniger-Schaal, Rinat; Mayo, Avraham E; Alon, Uri

    2014-01-01

    Actors, dancers and musicians that improvise together report special moments of togetherness: high performance and synchrony, seemingly without a leader and a follower. Togetherness seems to conflict with individuality- the idiosyncratic character of each person's performance. To understand the relation of individuality and togetherness, we employed the mirror game paradigm in which two players are asked to mirror each other and create interesting synchronized motion, with and without a designated leader. The mirror game enables quantitative characterization of moments of togetherness in which complex motion is generated with high synchrony. We find that each person as a leader does basic strokes of motion with a characteristic signature, in terms of the shape of their velocity profile between two stopping events. In moments of togetherness both players change their signature to a universal stroke shape. This universal velocity profile resembles a half-period of a sine wave, and is therefore symmetric and maximally smooth. Thus, instead of converging to an intermediate motion signature, or having one player dominate, players seem to shift their basic motion signatures to a shape that is altogether different from their individually preferred shapes; the resulting motion may be easier to predict and to agree on. The players then build complex motion by using such smooth elementary strokes.

  19. Effects of isokinetic calf muscle exercise program on muscle strength and venous function in patients with chronic venous insufficiency.

    Science.gov (United States)

    Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B

    2018-05-01

    Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.

  20. Action Recognition by Joint Spatial-Temporal Motion Feature

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2013-01-01

    Full Text Available This paper introduces a method for human action recognition based on optical flow motion features extraction. Automatic spatial and temporal alignments are combined together in order to encourage the temporal consistence on each action by an enhanced dynamic time warping (DTW algorithm. At the same time, a fast method based on coarse-to-fine DTW constraint to improve computational performance without reducing accuracy is induced. The main contributions of this study include (1 a joint spatial-temporal multiresolution optical flow computation method which can keep encoding more informative motion information than recent proposed methods, (2 an enhanced DTW method to improve temporal consistence of motion in action recognition, and (3 coarse-to-fine DTW constraint on motion features pyramids to speed up recognition performance. Using this method, high recognition accuracy is achieved on different action databases like Weizmann database and KTH database.

  1. Estimating anatomical wrist joint motion with a robotic exoskeleton.

    Science.gov (United States)

    Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.

  2. Representation of planar motion of complex joints by means of rolling pairs. Application to neck motion.

    Science.gov (United States)

    Page, Alvaro; de Rosario, Helios; Gálvez, José A; Mata, Vicente

    2011-02-24

    We propose to model planar movements between two human segments by means of rolling-without-slipping kinematic pairs. We compute the path traced by the instantaneous center of rotation (ICR) as seen from the proximal and distal segments, thus obtaining the fixed and moving centrodes, respectively. The joint motion is then represented by the rolling-without-slipping of one centrode on the other. The resulting joint kinematic model is based on the real movement and accounts for nonfixed axes of rotation; therefore it could improve current models based on revolute pairs in those cases where joint movement implies displacement of the ICR. Previous authors have used the ICR to characterize human joint motion, but they only considered the fixed centrode. Such an approach is not adequate for reproducing motion because the fixed centrode by itself does not convey information about body position. The combination of the fixed and moving centrodes gathers the kinematic information needed to reproduce the position and velocities of moving bodies. To illustrate our method, we applied it to the flexion-extension movement of the head relative to the thorax. The model provides a good estimation of motion both for position variables (mean R(pos)=0.995) and for velocities (mean R(vel)=0.958). This approach is more realistic than other models of neck motion based on revolute pairs, such as the dual-pivot model. The geometry of the centrodes can provide some information about the nature of the movement. For instance, the ascending and descending curves of the fixed centrode suggest a sequential movement of the cervical vertebrae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Isokinetic Testing in Evaluation Rehabilitation Outcome After ACL Reconstruction

    OpenAIRE

    Cvjetkovic, Dragana Dragicevic; Bijeljac, Sinisa; Palija, Stanislav; Talic, Goran; Radulovic, Tatjana Nozica; Kosanovic, Milkica Glogovac; Manojlovic, Slavko

    2015-01-01

    Introduction: Numerous rehab protocols have been used in rehabilitation after ACL reconstruction. Isokinetic testing is an objective way to evaluate dynamic stability of the knee joint that estimates the quality of rehabilitation outcome after ACL reconstruction. Our investigation goal was to show importance of isokinetic testing in evaluation thigh muscle strength in patients which underwent ACL reconstruction and rehabilitation protocol. Subjects and methods: In prospective study, we evalua...

  4. Patellofemoral joint motion: Evaluation by ultrafast computed tomography

    International Nuclear Information System (INIS)

    Stanford, W.; Phelan, J.; Kathol, M.H.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.; Albright, J.P.

    1988-01-01

    Patellofemoral maltracking is a recognized cause of peripatellar pain. Clinicians currently rely on observation, palpation, and static radiographic images to evaluate the symptomatic patient. Ultrafast computed tomography (ultrafast CT) offers objective observations of the dynamic influences of muscle contraction on the patellofemoral joint as the knee is actively moved through a range of motion from 90 0 C flexion of full extension. This study reports our initial observations and establishes a range of normal values so that patients with a clinical suspicion of patellar maltracking may be evaluated. (orig./GDG)

  5. Patellofemoral joint motion: Evaluation by ultrafast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, W.; Phelan, J.; Kathol, M.H.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.; Albright, J.P.

    1988-10-01

    Patellofemoral maltracking is a recognized cause of peripatellar pain. Clinicians currently rely on observation, palpation, and static radiographic images to evaluate the symptomatic patient. Ultrafast computed tomography (ultrafast CT) offers objective observations of the dynamic influences of muscle contraction on the patellofemoral joint as the knee is actively moved through a range of motion from 90/sup 0/C flexion of full extension. This study reports our initial observations and establishes a range of normal values so that patients with a clinical suspicion of patellar maltracking may be evaluated. (orig./GDG).

  6. Isokinetic sampler; Amostrador isocinetico

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luis Cesar C. de; Santos, Antonio Carlos dos [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Barrio, Lara B.A. del [AZ Armaturen do Brasil Ltda., Itatiba, SP (Brazil); Silva, Claudio B. da C. e; Silva, Ricardo R. da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    The Center of Research Leopoldo A. Miguez de Melo - CENPES - in association with AZ Armaturen Company do Brasil and TRANSPETRO developed and tested an Isokinetic sampler. This work presents the sampling principles and the results and performance of the tests realized in the 'Sitio de Testes de Atalaia' and in one of the terminals of bunker transfer of TRANSPETRO - 'Terminal Aquaviario da Baia de Guanabara'. In the 'Sitio de Testes' the products used were oil and water with BSW from 5% to 97% and in the terminal were tested samplings of bunker with ranges viscosities between (MF 180 to 380). (author)

  7. Isokinetic Testing in Evaluation Rehabilitation Outcome After ACL Reconstruction.

    Science.gov (United States)

    Cvjetkovic, Dragana Dragicevic; Bijeljac, Sinisa; Palija, Stanislav; Talic, Goran; Radulovic, Tatjana Nozica; Kosanovic, Milkica Glogovac; Manojlovic, Slavko

    2015-02-01

    Numerous rehab protocols have been used in rehabilitation after ACL reconstruction. Isokinetic testing is an objective way to evaluate dynamic stability of the knee joint that estimates the quality of rehabilitation outcome after ACL reconstruction. Our investigation goal was to show importance of isokinetic testing in evaluation thigh muscle strength in patients which underwent ACL reconstruction and rehabilitation protocol. In prospective study, we evaluated 40 subjects which were divided into two groups. Experimental group consisted of 20 recreational males which underwent ACL reconstruction with hamstring tendon and rehabilitation protocol 6 months before isokinetic testing. Control group (20 subjects) consisted of healthy recreational males. In all subjects knee muscle testing was performed on a Biodex System 4 Pro isokinetic dynamo-meter et velocities of 60°/s and 180°/s. We followed average peak torque to body weight (PT/BW) and classic H/Q ratio. In statistical analysis Student's T test was used. There were statistically significant differences between groups in all evaluated parameters except of the mean value of PT/BW of the quadriceps et velocity of 60°/s (p>0.05). Isokinetic testing of dynamic stabilizers of the knee is need in diagnostic and treatment thigh muscle imbalance. We believe that isokinetic testing is an objective parameter for return to sport activities after ACL reconstruction.

  8. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study.

    Science.gov (United States)

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2015-01-01

    Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (sacroiliac joint fusion, the long-term clinical results remain to be investigated.

  9. The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks.

    Science.gov (United States)

    Suydam, Stephen M; Manal, Kurt; Buchanan, Thomas S

    2017-07-01

    Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.

  10. Three-dimensional motion of the uncovertebral joint during head rotation.

    Science.gov (United States)

    Nagamoto, Yukitaka; Ishii, Takahiro; Iwasaki, Motoki; Sakaura, Hironobu; Moritomo, Hisao; Fujimori, Takahito; Kashii, Masafumi; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

    2012-10-01

    The uncovertebral joints are peculiar but clinically important anatomical structures of the cervical vertebrae. In the aged or degenerative cervical spine, osteophytes arising from an uncovertebral joint can cause cervical radiculopathy, often necessitating decompression surgery. Although these joints are believed to bear some relationship to head rotation, how the uncovertebral joints work during head rotation remains unclear. The purpose of this study is to elucidate 3D motion of the uncovertebral joints during head rotation. Study participants were 10 healthy volunteers who underwent 3D MRI of the cervical spine in 11 positions during head rotation: neutral (0°) and 15° increments to maximal head rotation on each side (left and right). Relative motions of the cervical spine were calculated by automatically superimposing a segmented 3D MR image of the vertebra in the neutral position over images of each position using the volume registration method. The 3D intervertebral motions of all 10 volunteers were standardized, and the 3D motion of uncovertebral joints was visualized on animations using data for the standardized motion. Inferred contact areas of uncovertebral joints were also calculated using a proximity mapping technique. The 3D animation of uncovertebral joints during head rotation showed that the joints alternate between contact and separation. Inferred contact areas of uncovertebral joints were situated directly lateral at the middle cervical spine and dorsolateral at the lower cervical spine. With increasing angle of rotation, inferred contact areas increased in the middle cervical spine, whereas areas in the lower cervical spine slightly decreased. In this study, the 3D motions of uncovertebral joints during head rotation were depicted precisely for the first time.

  11. In vivo analysis of trapeziometacarpal joint arthrokinematics during multi-directional thumb motions.

    Science.gov (United States)

    Su, Fong-Chin; Lin, Chien-Ju; Wang, Chien-Kuo; Chen, Guan-Po; Sun, Yung-Nien; Chuang, Alan K; Kuo, Li-Chieh

    2014-11-01

    The investigation of the joint arthrokinematics of the trapeziometacarpal joint is critical to comprehend the causative mechanism underlying this common form of osteoarthritis. Therefore, the purpose of this study is to evaluate the arthrokinematics of the trapeziometacarpal joint during thumb postures in vivo. Fifteen healthy participants were enrolled in this study. Static computed tomography images of the 1st metacarpal bone and trapezium were taken at specific thumb postures during thumb flexion-extension, abduction-adduction, and circumduction motions. Images were analyzed to examine the joint gliding, expressed as displacement of the centroid of the articular surface of the 1st metacarpal bone, relative to the trapezium. The gliding ratio, defined as joint gliding in each direction normalized to the dimension of the trapezium joint surface in the given direction, was computed and compared between different thumb motions. The results indicate that thumb motions influenced joint gliding. The centroids of the articular surface of the 1st metacarpal bone were primarily located at the central and dorsal-radial regions while executing these motions. The maximum joint gliding of the 1st metacarpal bone occurred in the radial-ulnar direction when performing abduction-adduction, and in the dorsal-volar direction while performing flexion-extension and circumduction, with the gliding ratio values of 42.35%, 51.65%, and 51.85%, respectively. Activities that involved abduction-adduction in the trapeziometacarpal joint caused greater joint gliding in the ulnar-radial direction, while flexion-extension resulted in greater joint gliding in the dorsal-volar and distal-proximal directions. Understanding normal joint kinematics in vivo may provide insights into the possible mechanism leading to osteoarthritis of the trapeziometacarpal joint, and help to improve the design of implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Motion correction improves image quality of dGEMRIC in finger joints

    International Nuclear Information System (INIS)

    Miese, Falk; Kröpil, Patric; Ostendorf, Benedikt; Scherer, Axel; Buchbender, Christian; Quentin, Michael; Lanzman, Rotem S.; Blondin, Dirk; Schneider, Matthias; Bittersohl, Bernd; Zilkens, Christoph; Jellus, Vladimir; Mamisch, Tallal Ch.; Wittsack, Hans-Jörg

    2011-01-01

    Purpose: To assess motion artifacts in dGEMRIC of finger joints and to evaluate the effectiveness of motion correction. Materials and methods: In 40 subjects (26 patients with finger arthritis and 14 healthy volunteers) dGEMRIC of metacarpophalangeal joint II was performed. Imaging used a dual flip angle approach (TE 3.72 ms, TR 15 ms, flip angles 5° and 26°). Two sets of T1 maps were calculated for dGEMRIC analysis from the imaging data for each subject: one with and one without motion correction. To compare image quality, visual grading analysis and precision of dGEMRIC measurement of both dGEMRIC maps for each case were evaluated. Results: Motion artifacts were present in 82% (33/40) of uncorrected dGEMRIC maps. Motion artifacts were graded as severe or as rendering evaluation impossible in 43% (17/40) of uncorrected dGEMRIC maps. Motion corrected maps showed significantly less motion artifacts (P < 0.001) and were graded as evaluable in 97% (39/40) of cases. Precision was significantly higher in motion corrected images (coefficient of variation (CV = .176 ± .077), compared to uncorrected images (CV .445 ± .347) (P < .001). Motion corrected dGERMIC was different in volunteers and patients (P = .044), whereas uncorrected dGEMRIC was not (P = .234). Conclusion: Motion correction improves image quality, dGEMRIC measurement precision and diagnostic performance in dGEMRIC of finger joints.

  13. Pathological Knee Joint Motion Analysis By High Speed Cinephotography

    Science.gov (United States)

    Baumann, Jurg U.

    1985-02-01

    The use of cinephotography for evaluation of disturbed knee joint function was compared in three groups of patients. While a sampling rate of 50 images per second was adequate for patients with neuromuscular disorders, a higher frequency of around 300 i.p.s. is necessary in osteoarthritis and ligamentous knee joint injuries, but the task of digitizing is prohibitive unless automated.

  14. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.

    Science.gov (United States)

    Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen

    2017-11-23

    Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.

  15. Electrical Properties of PPy-Coated Conductive Fabrics for Human Joint Motion Monitoring

    Directory of Open Access Journals (Sweden)

    Jiyong Hu

    2016-03-01

    Full Text Available Body motion signals indicate several pathological features of the human body, and a wearable human motion monitoring system can respond to human joint motion signal in real time, thereby enabling the prevention and treatment of some diseases. Because conductive fabrics can be well integrated with the garment, they are ideal as a sensing element of wearable human motion monitoring systems. This study prepared polypyrrole conductive fabric by in situ polymerization, and the anisotropic property of the conductive fabric resistance, resistance–strain relationship, and the relationship between resistance and the human knee and elbow movements are discussed preliminarily.

  16. Differences in kinematic control of ankle joint motions in people with chronic ankle instability.

    Science.gov (United States)

    Kipp, Kristof; Palmieri-Smith, Riann M

    2013-06-01

    People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. One-degree-of-freedom spherical model for the passive motion of the human ankle joint.

    Science.gov (United States)

    Sancisi, Nicola; Baldisserri, Benedetta; Parenti-Castelli, Vincenzo; Belvedere, Claudio; Leardini, Alberto

    2014-04-01

    Mathematical modelling of mobility at the human ankle joint is essential for prosthetics and orthotic design. The scope of this study is to show that the ankle joint passive motion can be represented by a one-degree-of-freedom spherical motion. Moreover, this motion is modelled by a one-degree-of-freedom spherical parallel mechanism model, and the optimal pivot-point position is determined. Passive motion and anatomical data were taken from in vitro experiments in nine lower limb specimens. For each of these, a spherical mechanism, including the tibiofibular and talocalcaneal segments connected by a spherical pair and by the calcaneofibular and tibiocalcaneal ligament links, was defined from the corresponding experimental kinematics and geometry. An iterative procedure was used to optimize the geometry of the model, able to predict original experimental motion. The results of the simulations showed a good replication of the original natural motion, despite the numerous model assumptions and simplifications, with mean differences between experiments and predictions smaller than 1.3 mm (average 0.33 mm) for the three joint position components and smaller than 0.7° (average 0.32°) for the two out-of-sagittal plane rotations, once plotted versus the full flexion arc. The relevant pivot-point position after model optimization was found within the tibial mortise, but not exactly in a central location. The present combined experimental and modelling analysis of passive motion at the human ankle joint shows that a one degree-of-freedom spherical mechanism predicts well what is observed in real joints, although its computational complexity is comparable to the standard hinge joint model.

  18. Isokinetic strength and endurance after percutaneous and open surgical repair of Achilles tendon ruptures.

    Science.gov (United States)

    Goren, David; Ayalon, Moshe; Nyska, Meir

    2005-04-01

    Reports on complete spontaneous Achilles tendon ruptures and associated treatment have become more frequent in the literature in the past two decades, as has the request for treatments that enable the finest possible functional recovery. The best available treatment is a matter of considerable controversy in the literature. The purpose of this study was to compare the isokinetic strength and endurance of the plantarflexor muscle-tendon unit in subjects who sustained rupture of the Achilles tendon and underwent either open surgery or closed percutaneous repair of the Achilles tendon. Twenty patients (18 males, 2 females) with spontaneous ruptures of the Achilles tendon were included in this study. Ten patients were treated by open surgery, and 10 patients were treated percutaneously. All patients had ruptured their Achilles tendon more than 6 months before the study, and all of the ruptures occurred 3.5 years or less before the day of the testing. All patients underwent an oriented physical examination. An isokinetic Biodex dynamometer (Biodex Medical System, Shirley, NY) was used to measure ankle joint angle, and in plantarflexion to calculate the torque at the ankle joint (Newton/meter), and the average work (jouls) for both maximal power and endurance. Each measurement was compared to the normal ankle. Biodex dynamometer evaluations at 90 deg/sec demonstrated a significant difference of maximal voluntary plantarflexor torque, endurance performance and range of motion at the ankle joint between the involved and uninvolved sides in patients treated by either mode of treatment. Yet, no statistically significant differences were revealed for the parameters mentioned above between the subjects that were treated either percutaneously or by an open surgery. In functional terms, the biomechanical outcomes of open surgery and percutaneous repair for acute ruptures of the Achilles tendon are both effective.

  19. Análise isocinética da articulação do cotovelo em crianças com paralisia cerebral Isokinetic analysis of the elbow joint in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Patrícia Martins Franciulli

    2012-03-01

    Full Text Available A quantidade de torque aplicado na articulação é uma medida de aptidão física importante para crianças com paralisia cerebral. O presente estudo analisou parâmetros cinéticos na articulação do cotovelo em crianças saudáveis e com paralisia cerebral. Participaram 10 crianças com paralisia cerebral e 10 crianças sem comprometimento neurológico. Avaliou-se a média do pico de torque, média do ângulo do pico de torque, coeficiente de variação do torque e aceleração angular do movimento de flexo-extensão do cotovelo nas velocidades com um dinamômetro isocinético. A média de pico de torque (extensão, aceleração (flexão e coeficiente de variação (flexão e extensão são diferentes entre grupos. Conclui-se que o torque e aceleração sofreram interferências no movimento de flexo-extensão; as principais diferenças encontradas foram entre os extremos das velocidades; não houve diferenças no ângulo do pico de torque. A espasticidade não interferiu na força dos músculos agonistas do movimento de flexão da articulação do cotovelo.The joint torque is an important variable related to children with cerebral palsy. The present study analyzed kinetic parameters during elbow flexion and extension movements in healthy and cerebral palsy children. Ten healthy and 10 cerebral palsy children participated of the study. An isokinetic dynamometer was used to measure the elbow mean peak torque, mean angle peak torque, coefficient of variation and acceleration during flexion and extension movements at different angular speeds. The mean peak torque on extension movement in healthy children group was significant higher compared to the cerebral palsy group. The coefficient of variation on both flexion and extension movements was significantly higher in cerebral palsy group. However there were significantly difference on both groups compared the lowest and highest velocities. Although the results showed no difference in flexor peak

  20. Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.

    Science.gov (United States)

    Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien

    2017-01-01

    Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.

  1. 4D rotational x-ray imaging of wrist joint dynamic motion

    International Nuclear Information System (INIS)

    Carelsen, Bart; Bakker, Niels H.; Strackee, Simon D.; Boon, Sjirk N.; Maas, Mario; Sabczynski, Joerg; Grimbergen, Cornelis A.; Streekstra, Geert J.

    2005-01-01

    Current methods for imaging joint motion are limited to either two-dimensional (2D) video fluoroscopy, or to animated motions from a series of static three-dimensional (3D) images. 3D movement patterns can be detected from biplane fluoroscopy images matched with computed tomography images. This involves several x-ray modalities and sophisticated 2D to 3D matching for the complex wrist joint. We present a method for the acquisition of dynamic 3D images of a moving joint. In our method a 3D-rotational x-ray (3D-RX) system is used to image a cyclically moving joint. The cyclic motion is synchronized to the x-ray acquisition to yield multiple sets of projection images, which are reconstructed to a series of time resolved 3D images, i.e., four-dimensional rotational x ray (4D-RX). To investigate the obtained image quality parameters the full width at half maximum (FWHM) of the point spread function (PSF) via the edge spread function and the contrast to noise ratio between air and phantom were determined on reconstructions of a bullet and rod phantom, using 4D-RX as well as stationary 3D-RX images. The CNR in volume reconstructions based on 251 projection images in the static situation and on 41 and 34 projection images of a moving phantom were 6.9, 3.0, and 2.9, respectively. The average FWHM of the PSF of these same images was, respectively, 1.1, 1.7, and 2.2 mm orthogonal to the motion and parallel to direction of motion 0.6, 0.7, and 1.0 mm. The main deterioration of 4D-RX images compared to 3D-RX images is due to the low number of projection images used and not to the motion of the object. Using 41 projection images seems the best setting for the current system. Experiments on a postmortem wrist show the feasibility of the method for imaging 3D dynamic joint motion. We expect that 4D-RX will pave the way to improved assessment of joint disorders by detection of 3D dynamic motion patterns in joints

  2. Capturing Revolute Motion and Revolute Joint Parameters with Optical Tracking

    Science.gov (United States)

    Antonya, C.

    2017-12-01

    Optical tracking of users and various technical systems are becoming more and more popular. It consists of analysing sequence of recorded images using video capturing devices and image processing algorithms. The returned data contains mainly point-clouds, coordinates of markers or coordinates of point of interest. These data can be used for retrieving information related to the geometry of the objects, but also to extract parameters for the analytical model of the system useful in a variety of computer aided engineering simulations. The parameter identification of joints deals with extraction of physical parameters (mainly geometric parameters) for the purpose of constructing accurate kinematic and dynamic models. The input data are the time-series of the marker’s position. The least square method was used for fitting the data into different geometrical shapes (ellipse, circle, plane) and for obtaining the position and orientation of revolute joins.

  3. The reliabilty of isokinetic strength measurement

    OpenAIRE

    Kadlec, Miroslav

    2011-01-01

    Title: Reliability of isometric and isokinetic strength testing in the knee flexion and extension Objectives: To compare the reliability of isometric and isokinetic testing of the knee strength in flexion and extension Methods: I used intraclass correlation coefficient and Pearson's correlation coefficient. Results: I have discovered that the reliability measured on isokinetic and isometric dynamometer is high. Furthermore the reliability of the maximum strength measurement was higher with-us...

  4. Helical axes of skeletal knee joint motion during running.

    Science.gov (United States)

    van den Bogert, A J; Reinschmidt, C; Lundberg, A

    2008-01-01

    The purpose of this study was to determine the changes in the axis of rotation of the knee that occur during the stance phase of running. Using intracortical pins, the three-dimensional skeletal kinematics of three subjects were measured during the stance phase of five running trials. The stance phase was divided into equal motion increments for which the position and orientation of the finite helical axes (FHA) were calculated relative to a tibial reference frame. Results were consistent within and between subjects. At the beginning of stance, the FHA was located at the midepicondylar point and during the flexion phase moved 20mm posteriorly and 10mm distally. At the time of peak flexion, the FHA shifted rapidly by about 10-20mm in proximal and posterior direction. The angle between the FHA and the tibial transverse plane increased gradually during flexion, to about 15 degrees of medial inclination, and then returned to zero at the start of the extension phase. These changes in position and orientation of FHA in the knee should be considered in analyses of muscle function during human movement, which require moment arms to be defined relative to a functional rotation axis. The finding that substantial changes in axis of rotation occurred independent of flexion angle suggests that musculoskeletal models must have more than one kinematic degree-of-freedom at the knee. The same applies to the design of knee prostheses, if the goal is to restore normal muscle function.

  5. [Range of Hip Joint Motion and Weight of Lower Limb Function under 3D Dynamic Marker].

    Science.gov (United States)

    Xia, Q; Zhang, M; Gao, D; Xia, W T

    2017-12-01

    To explore the range of reasonable weight coefficient of hip joint in lower limb function. When the hip joints of healthy volunteers under normal conditions or fixed at three different positions including functional, flexed and extension positions, the movements of lower limbs were recorded by LUKOtronic motion capture and analysis system. The degree of lower limb function loss was calculated using Fugl-Meyer lower limb function assessment form when the hip joints were fixed at the aforementioned positions. One-way analysis of variance and Tamhane's T2 method were used to proceed statistics analysis and calculate the range of reasonable weight coefficient of hip joint. There were significant differences between the degree of lower limb function loss when the hip joints fixed at flexed and extension positions and at functional position. While the differences between the degree of lower limb function loss when the hip joints fixed at flexed position and extension position had no statistical significance. In 95% confidence interval, the reasonable weight coefficient of hip joint in lower limb function was between 61.05% and 73.34%. Expect confirming the reasonable weight coefficient, the effects of functional and non-functional positions on the degree of lower limb function loss should also be considered for the assessment of hip joint function loss. Copyright© by the Editorial Department of Journal of Forensic Medicine

  6. Elbow helical axes of motion are not the same in physiologic and kinetic joint simulators.

    Science.gov (United States)

    Muriuki, Muturi G; Mohagheh-Motlagh, Amin; Smolinski, Patrick J; Miller, Mark Carl

    2012-08-31

    Physiologic and kinetic joint simulators have been widely used for investigations of joint mechanics. The two types of simulator differ in the way joint motion is achieved; through prescribed motions and/or forces in kinetic joint simulators and by tendon loads in physiologic joint simulators. These two testing modalities have produced important insights, as in elucidating the importance of soft tissue structures to joint stability. However, the equivalence of the modalities has not been tested. This study sequentially tested five cadaveric elbows using both a physiologic simulator and a robot/6DOF system. Using position data from markers on the humerus and ulna, we calculated and compared the helical axes of motion of the specimens as the elbows were flexed from full extension. Six step size increments were used in the helical axis calculation. Marker position data at each test's full extension and full flexion point were also used to calculate a datum (overall) helical axis. The angles between the datum axis and step-wise movements were computed and stored. Increasing step size monotonically decreased the variability and the average conical angle encompassing the helical axes; a repeated measures ANOVA using test type (robot or physiologic simulator) and step size found that both type and step caused statistically significant differences (p<0.001). The large changes in helical axis angle observed for small changes in elbow flexion angle, especially in the robot tests, are a caveat for investigators using similar control algorithms. Controllers may need to include increased joint compliance and/or C(1) continuity to reduce variability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Changes in ankle joint motion after Supramalleolar osteotomy: a cadaveric model.

    Science.gov (United States)

    Kim, Hak Jun; Yeo, Eui Dong; Rhyu, Im Joo; Lee, Soon-Hyuck; Lee, Yeon Soo; Lee, Young Koo

    2017-09-09

    Malalignment of the ankle joint has been found after trauma, by neurological disorders, genetic predisposition and other unidentified factors, and results in asymmetrical joint loading. For a medial open wedge supramalleolar osteotomy(SMO), there are some debates as to whether concurrent fibular osteotomy should be performed. We assessed the changes in motion of ankle joint and plantar pressure after supramalleolar osteotomy without fibular osteotomy. Ten lower leg specimens below the knee were prepared from fresh-frozen human cadavers. They were harvested from five males (10 ankles)whose average age was 70 years. We assessed the motion of ankle joint as well as plantar pressure for SS(supra-syndesmotic) SMO and IS(intra-syndesmotic) SMO. After the osteotomy, each specimen was subjected to axial compression from 20 N preload to 350 N representing half-body weight. For the measurement of the motion of ankle joint, the changes in gap and point, angles in ankle joint were measured. The plantar pressure were also recorded using TekScan sensors. The changes in the various gap, point, and angles movements on SS-SMO and IS-SMO showed no statistically significant differences between the two groups. Regarding the shift of plantar center of force (COF) were noted in the anterolateral direction, but not statistically significant. SS-SMO and IS-SMO with intact fibula showed similar biomechanical effect on the ankle joint. We propose that IS-SMO should be considered carefully for the treatment of osteoarthrosis when fibular osteotomy is not performed because lateral cortex fracture was less likely using the intrasyndesmosis plane because of soft tissue support.

  8. POD evaluation for joint angles from inertial and optical motion capturing system

    International Nuclear Information System (INIS)

    Shimizu, Kai; Kobayashi, Futoshi; Nakamoto, Hiroyuki; Kojima, Fumio

    2016-01-01

    It has been recognized that advances in preventive maintenance can improve the sustainment of systems, facilities, and infrastructure. Robot technologies have also received attention for maintenance applications. In order to operate delicate tasks, multi-fingered robot hands have been proposed in cases where human capability is deficient. This paper deals with motion capturing systems for controlling the hand/arm robot remotely. Several types of motion capturing systems have been developed so far. However, it is difficult for individual motion capturing systems to measure precise joint angles of a human arm. Therefore, in this paper, we integrate the inertial motion capturing system with the optical motion capturing system to capture a human arm posture. By evaluating the reliability of each motion capturing system, the integration is carried out. The probability of detection (POD) is applied to evaluate and compare the reliability of datasets measured by each motion capturing system. POD is one of the widely used statistical techniques to determine reliability. We apply the â analysis to determine the POD(a) function from the data set. Based on the POD evaluation, two motion capturing systems are integrated. (author)

  9. Association between composites of selected motion palpation and pain provocation tests for sacroiliac joint disorders.

    Science.gov (United States)

    Soleimanifar, Manijeh; Karimi, Noureddin; Arab, Amir Massoud

    2017-04-01

    The sacroiliac joint (SIJ) has been implicated as a potential source of low back and buttock pain. Several types of motion palpation and pain provocation tests are used to evaluate SIJ dysfunction. The purpose of this study was to investigate the relationship between motion palpation and pain provocation tests in assessment of SIJ problems. This study is Descriptive Correlation. 50 patients between the ages of 20 and 65 participated. Four motion palpation tests (Sitting flexion, Standing flexion, Prone knee flexion, Gillet test) and three pain provocation tests (FABER, Posterior shear, Resisted abduction test) were examined. Chi-square analysis was used to assess the relationship between results of the individuals and composites of these two groups of tests. No significant relationship was found between these two groups of tests. It seems that motion palpation tests assess SIJ dysfunction and provocative tests assessed SIJ pain which do not appear to be related. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparative study of joint range of motion in children between 7 and 12 years of age from different gender

    Directory of Open Access Journals (Sweden)

    S.I.L. Melo

    2011-01-01

    Full Text Available The aim of the study was to evaluate and compare active and passive joint range of motion in children in relation to gender and age. This study involved 103 children (43 boys and 60 girls categorized into two groups: G1 (7 to 9 years old and G2 (10 to 12 years old. The flexitest protocol, active and passive, and the SAPO® were used to evaluate joint range of motion. A paired t test was applied to compare active and passive joint range of motion and an independent t test (p < .05 was used to compare active and passive range of motion between gender and age. Results showed that the passive joint ranges of motion of the lower limbs are higher than active motion (p < .001. Girls presented greater passive ankle flexion than boys did (p = .002. Children between 7 and 12 years of age presented similar standards of joint range of motion of low limb. Significant differences were found between passive and active angular range of motion in the hip, knee and ankle. There were no differences between boys and girls in the joint range of motion as well as among age groups.

  11. Joint Motion Quality in Chondromalacia Progression Assessed by Vibroacoustic Signal Analysis.

    Science.gov (United States)

    Bączkowicz, Dawid; Majorczyk, Edyta

    2016-11-01

    Because of the specific biomechanical environment of the patellofemoral joint, chondral disorders, including chondromalacia, often are observed in this articulation. Chondromalacia via pathologic changes in cartilage may lead to qualitative impairment of knee joint motion. To determine the patellofemoral joint motion quality in particular chondromalacia stages and to compare with controls. Retrospective, comparative study. Voivodship hospitals, university biomechanical laboratory. A total of 89 knees with chondromalacia (25 with stage I; 30 with stage II and 34 with stage III) from 50 patients and 64 control healthy knees (from 32 individuals). Vibroacoustic signal pattern analysis of joint motion quality. For all knees vibroacoustic signals were recorded. Each obtained signal was described by variation of mean square, mean range (R4), and power spectral density for frequency of 50-250 Hz (P1) and 250-450 Hz (P2) parameters. Differences between healthy controls and all chondromalacic knees as well as chondromalacia patellae groups were observed as an increase of analyzed parameters (P chondromalacia patellae was found. All chondromalacia groups were differentiated by the use of all analyzed parameters (P chondromalacia. Chondromalacia generates abnormal vibroacoustic signals, and there seems to be a relationship between the level of signal amplitude as well as frequency and cartilage destruction from the superficial layer to the subchondral bone. IV. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  12. Frequency-Domain Joint Motion and Disparity Estimation Using Steerable Filters

    Directory of Open Access Journals (Sweden)

    Dimitrios Alexiadis

    2018-02-01

    Full Text Available In this paper, the problem of joint disparity and motion estimation from stereo image sequences is formulated in the spatiotemporal frequency domain, and a novel steerable filter-based approach is proposed. Our rationale behind coupling the two problems is that according to experimental evidence in the literature, the biological visual mechanisms for depth and motion are not independent of each other. Furthermore, our motivation to study the problem in the frequency domain and search for a filter-based solution is based on the fact that, according to early experimental studies, the biological visual mechanisms can be modelled based on frequency-domain or filter-based considerations, for both the perception of depth and the perception of motion. The proposed framework constitutes the first attempt to solve the joint estimation problem through a filter-based solution, based on frequency-domain considerations. Thus, the presented ideas provide a new direction of work and could be the basis for further developments. From an algorithmic point of view, we additionally extend state-of-the-art ideas from the disparity estimation literature to handle the joint disparity-motion estimation problem and formulate an algorithm that is evaluated through a number of experimental results. Comparisons with state-of-the-art-methods demonstrate the accuracy of the proposed approach.

  13. Effect of isokinetic training on strength, functionality and proprioception in athletes with functional ankle instability.

    Science.gov (United States)

    Sekir, Ufuk; Yildiz, Yavuz; Hazneci, Bulent; Ors, Fatih; Aydin, Taner

    2007-05-01

    The purpose of this study was to investigate the effects of isokinetic exercise on strength, joint position sense and functionality in recreational athletes with functional ankle instability (FAI). Strength, proprioception and balance of 24 recreational athletes with unilateral FAI were evaluated by using isokinetic muscle strength measurement, ankle joint position sense and one leg standing test. The functional ability was evaluated using five different tests. These were; single limb hopping course (SLHC), one legged and triple legged hop for distance (OLHD-TLHD), and six and cross six meter hop for time (SMHT-CSMHT). Isokinetic peak torque of the ankle invertor and evertor muscles were assessed eccentrically and concentrically at test speeds of 120 degrees /s. Isokinetic exercise protocol was carried out at an angular velocity of 120 degrees /s. The exercise session was repeated three times a week and lasted after 6 weeks. At baseline, concentric invertor strength was found to be significantly lower in the functionally unstable ankles compared to the opposite healthy ankles (p 0.05). Ankle joint position sense in the injured ankles declined significantly from 2.35 +/- 1.16 to 1.33 +/- 0.62 degrees for 10 degrees of inversion angle (p isokinetic exercise. One leg standing test score decreased significantly from 15.17 +/- 8.50 to 11.79 +/- 7.81 in the injured ankles (p isokinetic exercise protocol, all of the worsened functional test scores in the injured ankles as compared to the opposite healthy ankles displayed a significant improvement (p isokinetic exercise program used in this study had a positive effect on these parameters.

  14. Assessment of Relationships Between Joint Motion Quality and Postural Control in Patients With Chronic Ankle Joint Instability.

    Science.gov (United States)

    Bączkowicz, Dawid; Falkowski, Krzysztof; Majorczyk, Edyta

    2017-08-01

    Study Design Controlled laboratory study, cross-sectional. Background Lateral ankle sprains are among the most common injuries encountered during athletic participation. Following the initial injury, there is an alarmingly high risk of reinjury and development of chronic ankle instability (CAI), which is dependent on a combination of factors, including sensorimotor deficits and changes in the biomechanical environment of the ankle joint. Objective To evaluate CAI-related disturbances in arthrokinematic motion quality and postural control and the relationships between them. Methods Sixty-three male subjects (31 with CAI and 32 healthy controls) were enrolled in the study. For arthrokinematic motion quality analysis, the vibroarthrographic signals were collected during ankle flexion/extension motion using an acceleration sensor and described by variability (variance of mean squares [VMS]), amplitude (mean of 4 maximal and 4 minimal values [R4]), and frequency (vibroarthrographic signal bands of 50 to 250 Hz [P1] and 250 to 450 Hz [P2]) parameters. Using the Biodex Balance System, single-leg dynamic balance was measured by overall, anteroposterior, and mediolateral stability indices. Results Values of vibroarthrographic parameters (VMS, R4, P1 and P2) were significantly higher in the CAI group than those in the control group (Pankle arthrokinematic motion and postural control were present. Therefore, physical therapy interventions focused on improving ankle neuromuscular control and arthrokinematic function are necessary in CAI patient care. J Orthop Sports Phys Ther 2017;47(8):570-577. Epub 4 Nov 2016. doi:10.2519/jospt.2017.6836.

  15. Enhancing the smoothness of joint motion induced by functional electrical stimulation using co-activation strategies

    Directory of Open Access Journals (Sweden)

    Ruppel Mirjana

    2017-09-01

    Full Text Available The motor precision of today’s neuroprosthetic devices that use artificial generation of limb motion using Functional Electrical Stimulation (FES is generally low. We investigate the adoption of natural co-activation strategies as present in antagonistic muscle pairs aiming to improve motor precision produced by FES. In a test in which artificial knee-joint movements were generated, we could improve the smoothness of FES-induced motion by 513% when applying co-activation during the phases in which torque production is switched between muscles – compared to no co-activation. We further demonstrated how the co-activation level influences the joint stiffness in a pendulum test.

  16. Glenoid labrum ossification and mechanical restriction of joint motion: extraosseous manifestations of melorheostosis

    International Nuclear Information System (INIS)

    Subhas, N.; Sundaram, M.; Recht, M.P.; Bauer, T.W.; Seitz, W.H.

    2008-01-01

    We report a case of a 47-year-old man who presented with progressive loss of motion and pain in the right shoulder. Radiographs of the shoulder demonstrated dense ossification in the glenoid and humeral head with extension into the periarticular soft tissues. CT and MRI scans confirmed the radiographic findings and also revealed ossification of the glenoid labrum. A radiographic diagnosis of melorheostosis, an uncommon benign sclerosing bone dysplasia, was made. Because of the patient's severe symptomatology, he underwent total shoulder arthroplasty. Histological analysis of the resected masses was consistent with melorheostosis with a few areas covered by a cartilage cap. This case illustrates several uncommon but important features of melorheostosis, including mechanical obstruction of joint motion requiring joint replacement, ossification of the glenoid labrum, and cartilage-covering portions of the intra-articular masses, not to be confused with cartilage-producing tumors. (orig.)

  17. Glenoid labrum ossification and mechanical restriction of joint motion: extraosseous manifestations of melorheostosis

    Energy Technology Data Exchange (ETDEWEB)

    Subhas, N.; Sundaram, M.; Recht, M.P. [Cleveland Clinic, Department of Diagnostic Radiology, Cleveland, OH (United States); Bauer, T.W. [Cleveland Clinic, Department of Anatomic Pathology, Cleveland, OH (United States); Seitz, W.H. [Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, OH (United States)

    2008-02-15

    We report a case of a 47-year-old man who presented with progressive loss of motion and pain in the right shoulder. Radiographs of the shoulder demonstrated dense ossification in the glenoid and humeral head with extension into the periarticular soft tissues. CT and MRI scans confirmed the radiographic findings and also revealed ossification of the glenoid labrum. A radiographic diagnosis of melorheostosis, an uncommon benign sclerosing bone dysplasia, was made. Because of the patient's severe symptomatology, he underwent total shoulder arthroplasty. Histological analysis of the resected masses was consistent with melorheostosis with a few areas covered by a cartilage cap. This case illustrates several uncommon but important features of melorheostosis, including mechanical obstruction of joint motion requiring joint replacement, ossification of the glenoid labrum, and cartilage-covering portions of the intra-articular masses, not to be confused with cartilage-producing tumors. (orig.)

  18. Glenoid labrum ossification and mechanical restriction of joint motion: extraosseous manifestations of melorheostosis.

    Science.gov (United States)

    Subhas, N; Sundaram, M; Bauer, T W; Seitz, W H; Recht, M P

    2008-02-01

    We report a case of a 47-year-old man who presented with progressive loss of motion and pain in the right shoulder. Radiographs of the shoulder demonstrated dense ossification in the glenoid and humeral head with extension into the periarticular soft tissues. CT and MRI scans confirmed the radiographic findings and also revealed ossification of the glenoid labrum. A radiographic diagnosis of melorheostosis, an uncommon benign sclerosing bone dysplasia, was made. Because of the patient's severe symptomatology, he underwent total shoulder arthroplasty. Histological analysis of the resected masses was consistent with melorheostosis with a few areas covered by a cartilage cap. This case illustrates several uncommon but important features of melorheostosis, including mechanical obstruction of joint motion requiring joint replacement, ossification of the glenoid labrum, and cartilage-covering portions of the intra-articular masses, not to be confused with cartilage-producing tumors.

  19. Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements

    Science.gov (United States)

    Aitchison, Lindsway; Ross, Amy; Matty, Jennifer

    2009-01-01

    Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.

  20. Haptic control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise; part II: control development and testing.

    Science.gov (United States)

    Hall, Kara L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Neidhard-Doll, Amy T

    2015-01-01

    Pneumatic muscle actuators (PMAs) have a high power to weight ratio and possess unique characteristics which make them ideal actuators for applications involving human interaction. PMAs are difficult to control due to nonlinear dynamics, presenting challenges in system implementation. Despite these challenges, PMAs have great potential as a source of resistance for strength training and rehabilitation. The objective of this work was to control a PMA for use in isokinetic exercise, potentially benefiting anyone in need of optimal strength training through a joint's range of motion. The controller, based on an inverse three-element phenomenological model and adaptive nonlinear control, allows the system to operate as a type of haptic device. A human quadriceps dynamic simulator was developed (as described in Part I of this work) so that control effectiveness and accommodation could be tested prior to human implementation. Tracking error results indicate that the control system is effective at producing PMA displacement and resistance necessary for a scaled, simulated neuromuscular actuator to maintain low-velocity isokinetic movement during simulated concentric and eccentric knee extension.

  1. Models of Postural Control: Shared Variance in Joint and COM Motions.

    Directory of Open Access Journals (Sweden)

    Melissa C Kilby

    Full Text Available This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM motions was analyzed using multivariate canonical correlation analysis (CCA. The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF, namely, an inverted pendulum ankle model (2DOF, ankle-hip model (4DOF, ankle-knee-hip model (5DOF, and ankle-knee-hip-neck model (7DOF. Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.

  2. Muscle imbalance and reduced ankle joint motion in people with hammer toe deformity.

    Science.gov (United States)

    Kwon, O Y; Tuttle, L J; Johnson, J E; Mueller, M J

    2009-10-01

    Multiple factors may contribute to hammer toe deformity at the metatarsophalangeal joint. The purposes of this study were to (1) compare the ratio of toe extensor/flexor muscle strength in toes 2-4 among groups with and without hammer toe deformity, (2) to determine correlations between the ratio of toe extensor/flexor muscle strength in toes 2-4, and metatarsophalangeal joint deformity (3) to determine if other clinical measures differ between groups and if these measures are correlated with metatarsophalangeal joint angle. Twenty-seven feet with visible hammer toe deformity and 31 age matched feet without hammer toe deformity were tested. Toe muscle strength was measured using a dynamometer and the ratio of toe extensor muscle strength to flexor muscle strength was calculated. Metatarsophalangeal joint angle was measured from a computerized tomography image. Ankle and subtalar joint range of motion, and tibial torsion were measured using goniometry. Extensor/flexor toe muscle strength ratio was 2.3-3.0 times higher in the hammer toe group compared to the non-hammer toe group, in toes 2-4. The ratios of extensor/flexor toe muscle strength for toes 2-4 and metatarsophalangeal joint angle were highly correlated (r=0.69-0.80). Ankle dorsiflexion and metatarsophalangeal joint angle were negatively correlated for toes 2-4 (r=-0.38 to -0.56) as were eversion and metatarsophalangeal joint angle. These results provide insight into potential risk factors for the development of hammer toe deformity. Additional research is needed to determine the causal relationship between hammer toe deformity and the ratio of toe extensor/flexor muscle strength in toes 2-4.

  3. Comparison of isokinetic and isometric strength training effects on hamstring and quadriceps torques and physical function in knee pain

    International Nuclear Information System (INIS)

    Masood, T.; Khan, H.M.M.H.

    2017-01-01

    To compare the effects of isokinetic and isometric strength trainings on hamstring and quadriceps average-peak-torques, physical performance, and pain. Methodology: Twenty athletes with knee pain were randomly assigned to two equal groups: Isokinetic training and isometric training. Both groups were trained on Biodex System 3 Pro for 10 sessions. Isokinetic-group received isokinetic training on 5 different velocities while isometric-group performed isometric contractions at 3 knee joint angles. Results: Hamstring isokinetic average-peak-torque was significantly higher at all velocities without significant improvement in quadriceps average-peak-torque except for at the slowest velocity. Isometric training did not cause significant change in isometric average-peak-torque at any knee angle for either hamstring or quadriceps. Agility, elastic leg strength, and pain improved significantly in both groups with no significant between-group differences. No significant statistical correlation was observed between pain and any other parameter after either type of training. Conclusions: Athletes participating in sports requiring dynamic hamstring strength should prefer isokinetic strength training for physical rehabilitation of knee pain. However, physical performance and pain can be improved with both isometric and isokinetic strength training. (author)

  4. INTERSESSION RELIABILITY OF UPPER EXTREMITY ISOKINETIC PUSH-PULL TESTING.

    Science.gov (United States)

    Riemann, Bryan L; Davis, Sarah E; Huet, Kevin; Davies, George J

    2016-02-01

    Based on the frequency pushing and pulling patterns are used in functional activities, there is a need to establish an objective method of quantifying the muscle performance characteristics associated with these motions, particularly during the later stages of rehabilitation as criteria for discharge. While isokinetic assessment offers an approach to quantifying muscle performance, little is known about closed kinetic chain (CKC) isokinetic testing of the upper extremity (UE). To determine the intersession reliability of isokinetic upper extremity measurement of pushing and pulling peak force and average power at slow (0.24 m/s), medium (0.43 m/s) and fast (0.61 m/s) velocities in healthy young adults. The secondary purpose was to compare pushing and pulling peak force (PF) and average power (AP) between the upper extremity limbs (dominant, non-dominant) across the three velocities. Twenty-four physically active men and women completed a test-retest (>96 hours) protocol in order to establish isokinetic UE CKC reliability of PF and AP during five maximal push and pull repetitions at three velocities. Both limb and speed orders were randomized between subjects. High test-retest relative reliability using intraclass correlation coefficients (ICC2, 1) were revealed for PF (.91-.97) and AP (.85-.95) across velocities, limbs and directions. PF typical error (% coefficient of variation) ranged from 6.1% to 11.3% while AP ranged from 9.9% to 26.7%. PF decreased significantly (p pushing were significantly greater than pulling at all velocities, however the push-pull differences in PF became less as velocity increased. There were no significant differences identified between the dominant and nondominant limbs. Isokinetically derived UE CKC push-pull PF and AP are reliable measures. The lack of limb differences in healthy normal participants suggests that clinicians can consider bilateral comparisons when interpreting test performance. The increase in pushing PF and

  5. Motion coordination affects movement parameters in a joint pick-and-place task

    DEFF Research Database (Denmark)

    Vesper, Cordula; Soutschek, Alexander; Schubö, Anna

    2009-01-01

    This study examined influences of social context on movement parameters in a pick-and-place task. Participants’ motion trajectories were recorded while they performed sequences of natural movements either working side-by-side with a partner or alone. It was expected that movement parameters would...... person performed the task while being observed by the partner. Results indicate that participants adapted their movements temporally and spatially to the joint action situation: Overall movement duration was shorter, and mean and maximum velocity was higher when actually working together than when...... action tasks....

  6. Effects of Motor Learning on Clinical Isokinetic Test Performance in Knee Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    José Messias Rodrigues-da-Silva

    Full Text Available OBJECTIVES: To analyze the effects of motor learning on knee extension-flexion isokinetic performance in knee osteoarthritis patients. METHODS: One hundred and thirty-six middle-aged and older sedentary individuals (111 women, 64.3±9.9 years with knee osteoarthritis (130 patients with bilateral and who had never performed isokinetic testing underwent two bilateral knee extension-flexion (concentric-concentric isokinetic evaluations (5 repetitions at 60°/sec. The tests were first performed on the dominant leg with 2 min of recovery between test, and following a standardized warm-up that included 3 submaximal isokinetic repetitions. The same procedure was repeated on the non-dominant leg. The peak torque, peak torque adjusted for the body weight, total work, coefficient of variation and agonist/antagonist ratio were compared between tests. RESULTS: Patients showed significant improvements in test 2 compared to test 1, including higher levels of peak torque, peak torque adjusted for body weight and total work, as well as lower coefficients of variation. The agonist/antagonist relationship did not significantly change between tests. No significant differences were found between the right and left legs for all variables. CONCLUSION: The results suggest that performing two tests with a short recovery (2 min between them could be used to reduce motor learning effects on clinical isokinetic testing of the knee joint in knee osteoarthritis patients.

  7. Cinematic study of temporomandibular joint motion using ultra-fast magnetic resonance imaging.

    Science.gov (United States)

    Manière-Ezvan, A; Havet, T; Franconi, J M; Quémar, J C; de Certaines, J D

    1999-10-01

    Magnetic Resonance Images (MRI) of the temporomandibular joint (TMJ) are usually performed to study the opening/closing movements of the mandible and have up to now been pseudodynamic step-by-step images simulating condylar motion by post-processing reconstruction. The aim of this study was: 1. to optimize a TMJ cine-imaging method to give a better clinical result than the step-by-step methods; 2. to develop an ultra-fast MRI Gradient Echo (GE) sequence for this purpose; and 3. to analyze condylar movements in the sagittal, coronal and para-axial planes during border mandibular displacements and chewing. Both TM joints were studied in six asymptomatic volunteers. The method involved a compromise between in-plane resolution, slice thickness, signal-to-noise ratio and time resolution. Routine clinical use was found to be a GE pulse sequence providing three images per second with an isometric voxel resolution of approximately two millimeters in ridge. This did not allow visualization of the disk. Using this sequence enabled real and simultaneous condylar displacement observation in the three planes of space and therefore contributed to a better functional diagnosis of pathologic TMJ motions.

  8. Whole-body patterns of the range of joint motion in young adults: masculine type and feminine type.

    Science.gov (United States)

    Moromizato, Keiichi; Kimura, Ryosuke; Fukase, Hitoshi; Yamaguchi, Kyoko; Ishida, Hajime

    2016-10-01

    Understanding the whole-body patterns of joint flexibility and their related biological and physical factors contributes not only to clinical assessments but also to the fields of human factors and ergonomics. In this study, ranges of motion (ROMs) at limb and trunk joints of young adults were analysed to understand covariation patterns of different joint motions and to identify factors associated with the variation in ROM. Seventy-eight healthy volunteers (42 males and 36 females) living on Okinawa Island, Japan, were recruited. Passive ROM was measured at multiple joints through the whole body (31 measurements) including the left and right side limbs and trunk. Comparisons between males and females, dominant and non-dominant sides, and antagonistic motions indicated that body structures influence ROMs. In principal component analysis (PCA) on the ROM data, the first principal component (PC1) represented the sex difference and a similar covariation pattern appeared in the analysis within each sex. Multiple regression analysis showed that this component was associated with sex, age, body fat %, iliospinale height, and leg extension strength. The present study identified that there is a spectrum of "masculine" and "feminine" types in the whole-body patterns of joint flexibility. This study also suggested that body proportion and composition, muscle mass and strength, and possibly skeletal structures partly explain such patterns. These results would be important to understand individual variation in susceptibility to joint injuries and diseases and in one's suitable and effective postures and motions.

  9. Intravoxel incoherent motion magnetic resonance imaging of the knee joint in children with juvenile idiopathic arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Sauer, Alexander; Koestler, Herbert [University Hospital Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); Holl-Wieden, Annette [University Hospital Wuerzburg, Department of Paediatrics, Wuerzburg (Germany); Neubauer, Henning [University Hospital Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); University Hospital Ulm, Department of Diagnostic and Interventional Radiology, Ulm (Germany)

    2017-05-15

    MRI of synovitis relies on use of a gadolinium-based contrast agent. Diffusion-weighted MRI (DWI) visualises thickened synovium but is of limited use in the presence of joint effusion. To investigate the feasibility and diagnostic accuracy of diffusion-weighted MRI with intravoxel incoherent motion (IVIM) for diagnosing synovitis in the knee joint of children with juvenile idiopathic arthritis. Twelve consecutive children with confirmed or suspected juvenile idiopathic arthritis (10 girls, median age 11 years) underwent MRI with contrast-enhanced T1-weighted imaging and DWI at 1.5 T. Read-out segmented multi-shot DWI was acquired at b values of 0 s/mm{sup 2}, 200 s/mm{sup 2}, 400 s/mm{sup 2} and 800 s/mm{sup 2}. We calculated the IVIM parameters perfusion fraction (f) and tissue diffusion coefficient (D). Diffusion-weighted images at b=800 s/mm{sup 2}, f parameter maps and post-contrast T1-weighted images were retrospectively assessed by two independent readers for synovitis using the Juvenile Arthritis MRI Scoring system. Seven (58%) children showed synovial hypertrophy on contrast-enhanced imaging. Diagnostic ratings for synovitis on DWI and on f maps were fully consistent with contrast-enhanced imaging, the diagnostic reference. Two children had equivocal low-confidence assessments on DWI. Median f was 6.7±2.0% for synovitis, 2.1±1.2% for effusion, 5.0±1.0% for muscle and 10.6±5.7% for popliteal lymph nodes. Diagnostic confidence was higher based on f maps in three (25%) children and lower in one child (8%), as compared to DWI. DWI with IVIM reliably visualises synovitis of the knee joint. Perfusion fraction maps differentiate thickened synovium from joint effusion and hence increase diagnostic confidence. (orig.)

  10. Reliability and concurrent validity of a Smartphone, bubble inclinometer and motion analysis system for measurement of hip joint range of motion.

    Science.gov (United States)

    Charlton, Paula C; Mentiplay, Benjamin F; Pua, Yong-Hao; Clark, Ross A

    2015-05-01

    Traditional methods of assessing joint range of motion (ROM) involve specialized tools that may not be widely available to clinicians. This study assesses the reliability and validity of a custom Smartphone application for assessing hip joint range of motion. Intra-tester reliability with concurrent validity. Passive hip joint range of motion was recorded for seven different movements in 20 males on two separate occasions. Data from a Smartphone, bubble inclinometer and a three dimensional motion analysis (3DMA) system were collected simultaneously. Intraclass correlation coefficients (ICCs), coefficients of variation (CV) and standard error of measurement (SEM) were used to assess reliability. To assess validity of the Smartphone application and the bubble inclinometer against the three dimensional motion analysis system, intraclass correlation coefficients and fixed and proportional biases were used. The Smartphone demonstrated good to excellent reliability (ICCs>0.75) for four out of the seven movements, and moderate to good reliability for the remaining three movements (ICC=0.63-0.68). Additionally, the Smartphone application displayed comparable reliability to the bubble inclinometer. The Smartphone application displayed excellent validity when compared to the three dimensional motion analysis system for all movements (ICCs>0.88) except one, which displayed moderate to good validity (ICC=0.71). Smartphones are portable and widely available tools that are mostly reliable and valid for assessing passive hip range of motion, with potential for large-scale use when a bubble inclinometer is not available. However, caution must be taken in its implementation as some movement axes demonstrated only moderate reliability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Computed tomographic method for measurement of inclination angles and motion of the sacroiliac joints in German Shepherd Dogs and Greyhounds.

    Science.gov (United States)

    Saunders, Fritha C; Cave, Nick J; Hartman, Karl M; Gee, Erica K; Worth, Andrew J; Bridges, Janis P; Hartman, Angela C

    2013-09-01

    To develop an in vivo CT method to measure inclination angles and motion of the sacroiliac joints in dogs of performance breeds. 10 German Shepherd Dogs and 12 Greyhounds without signs of lumbosacral region pain or neurologic problems. CT of the ilium and sacrum was performed in flexed, neutral, and extended hind limb positions. Lines were drawn on volume-rendered images acquired in the flexed and extended positions to measure motion of the ilia relative to the sacra. Inclination angles of the synovial and ligamentous components of the sacroiliac joints were measured on transverse-plane CT images acquired at cranial and caudal locations. Coefficients of variance of measurements were calculated to determine intraobserver variability. Coefficients of variance of measurements ranged from 0.17% to 2.45%. A significantly higher amount of sacroiliac joint rotational motion was detected for German Shepherd Dogs versus Greyhounds. The cranial synovial joint component had a significantly more sagittal orientation in German Shepherd Dogs versus Greyhounds. No significant differences were detected between breeds for x- or y-axis translational motion or caudal synovial or ligamentous joint component inclination angles. The small amounts of sacroiliac joint motion detected in this study may buffer high-frequency vibrations during movement of dogs. Differences detected between breeds may be associated with the predisposition of German Shepherd Dogs to develop lumbosacral region signs of pain, although the biological importance of this finding was not determined. Future studies are warranted to compare sacroiliac joint variables between German Shepherd Dogs with and without lumbosacral region signs of pain.

  12. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    Science.gov (United States)

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P torque (P torque when the cervical and thoracic spines were flexed (P torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Haptic control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise: Part I--dynamic test station and human quadriceps dynamic simulator.

    Science.gov (United States)

    Hall, Kara L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Neidhard-Doll, Amy T

    2014-01-01

    Pneumatic muscle actuators (PMAs) have a high power to weight ratio and possess unique characteristics which make them ideal actuators for applications involving human interaction. PMAs are difficult to control due to nonlinear dynamics, presenting challenges in system implementation. Despite these challenges, PMAs have great potential as a source of resistance for strength training and rehabilitation. The objective of this work was to control a PMA for use in isokinetic exercise, potentially benefiting anyone in need of optimal strength training through a joint's range of motion. A human quadriceps dynamic simulator (HQDS) was developed so that control effectiveness and accommodation could be tested prior to human implementation. The experimental set-up and HQDS are discussed in Part I of this work. The development of a PMA haptic controller and its interaction with the HQDS are discussed in Part II.

  14. Smartphone and Universal Goniometer for Measurement of Elbow Joint Motions: A Comparative Study

    Science.gov (United States)

    Behnoush, Behnam; Tavakoli, Nasim; Bazmi, Elham; Nateghi Fard, Fariborz; Pourgharib Shahi, Mohammad Hossein; Okazi, Arash; Mokhtari, Tahmineh

    2016-01-01

    Background Universal goniometer (UG) is commonly used as a standard method to evaluate range of motion (ROM) as part of joint motions. It has some restrictions, such as involvement of both hands of the physician, leads to instability of hands and error. Nowadays smartphones usage has been increasing due to its easy application. Objectives The study was designed to compare the smartphone inclinometer-based app and UG in evaluation of ROM of elbow. Materials and Methods The maximum ROM of elbow in position of flexion and pronation and supination of forearm were examined in 60 healthy volunteers with UG and smartphone. Data were analyzed using SPSS (ver. 16) software and appropriate statistical tests were applied, such as paired t-test, ICC and Bland Altman curves. Results The results of this study showed high reliability and validity of smartphone in regarding UG with ICC > 0.95. The highest reliability for both methods was in elbow supination and the lowest was in the elbow flexion (0.84). Conclusions Smartphones due to ease of access and usage for the physician and the patient, may be good alternatives for UG. PMID:27625754

  15. The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion.

    Science.gov (United States)

    Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A

    2015-06-01

    Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P  .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P  .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Continuous Wavelet Transform Analysis of Surface Electromyography for Muscle Fatigue Assessment on the Elbow Joint Motion

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available Studying muscle fatigue plays an important role in preventing the risks associated with musculoskeletal disorders. The effect of elbow-joint angle on time-frequency parameters during a repetitive motion provides valuable information in finding the most accurate position of the angle causing muscle fatigue. Therefore, the purpose of this study is to analyze the effect of muscle fatigue on the spectral and time-frequency domain parameters derived from electromyography (EMG signals using the Continuous Wavelet Transform (CWT. Four male participants were recruited to perform a repetitive motion (flexion and extension movements from a non-fatigue to fatigue condition. EMG signals were recorded from the biceps muscle. The recorded EMG signals were then analyzed offline using the complex Morlet wavelet. The time-frequency domain data were analyzed using the time-averaged wavelet spectrum (TAWS and the Scale-Average Wavelet Power (SAWP parameters. The spectral domain data were analyzed using the Instantaneous Mean Frequency (IMNF and the Instantaneous Mean Power Spectrum (IMNP parameters. The index of muscle fatigue was observed by calculating the increase of the IMNP and the decrease of the IMNF parameters. After performing a repetitive motion from non-fatigue to fatigue condition, the average of the IMNF value decreased by 15.69% and the average of the IMNP values increased by 84%, respectively. This study suggests that the reliable frequency band to detect muscle fatigue is 31.10-36.19Hz with linear regression parameters of 0.979mV^2Hz^(-1 and 0.0095mV^2Hz^(-1 for R^2 and slope, respectively.

  17. Decreased Temporomandibular Joint Range of Motion in a Model of Early Osteoarthritis in the Rabbit

    Science.gov (United States)

    Henderson, Sarah E.; Tudares, Mauro A.; Tashman, Scott; Almarza, Alejandro J.

    2015-01-01

    Purpose Analysis of mandibular biomechanics could help with understanding the mechanisms of temporomandibular joint (TMJ) disorders (TMJDs), such as osteoarthritis (TMJ-OA), by investigating the effects of injury or disease on TMJ movement. The objective of the present study was to determine the functional kinematic implications of mild TMJ-OA degeneration caused by altered occlusion from unilateral splints in the rabbit. Materials and Methods Altered occlusion of the TMJ was mechanically induced in rabbits by way of a unilateral molar dental splint (n = 3). TMJ motion was assessed using 3-dimensional (3D) skeletal kinematics twice, once before and once after 6 weeks of splint placement with the splints removed, after allowing 3 days of recovery. The relative motion of the condyle to the fossa and the distance between the incisors were tracked. Results An overall decrease in the range of joint movement was observed at the incisors and in the joint space between the condyle and fossa. The incisor movement decreased from 7.0 ± 0.5 mm to 6.2 ± 0.5 mm right to left, from 5.5 ± 2.2 mm to 4.6 ± 0.8 mm anterior to posterior, and from 13.3 ± 1.8 mm to 11.6 ± 1.4 mm superior to inferior (P < .05). The total magnitude of the maximum distance between the points on the condyle and fossa decreased from 3.6 ± 0.8 mm to 3.1 ± 0.6 mm for the working condyle and 2.8 ± 0.4 mm to 2.5 ± 0.4 mm for the balancing condyle (P < .05). The largest decreases were seen in the anteroposterior direction for both condyles. Conclusion Determining the changes in condylar movement might lead to a better understanding of the early predictors in the development of TMJ-OA and determining when the symptoms become a chronic, irreversible problem. PMID:25889371

  18. Muscle recruitment patterns of the subscapularis, serratus anterior and other shoulder girdle muscles during isokinetic internal and external rotations.

    Science.gov (United States)

    Gaudet, Sylvain; Tremblay, Jonathan; Begon, Mickael

    2018-05-01

    The aims of this study were to investigate the differences in peak muscle activity and recruitment patterns during high- and low-velocity, concentric and eccentric, internal and external isokinetic shoulder rotations. Electromyographic activity of the rotator cuff and eight superficial muscles of the shoulder girdle was recorded on 25 healthy adults during isokinetic internal and external shoulder rotation at 60°/s and 240°/s. Peak muscle activity, electromyographic envelopes and peak isokinetic moments were analyzed using three-factor ANOVA and statistical parametric mapping. The subscapularis and serratus anterior showed moderate to high peak activity levels during each conditions, while the middle and posterior deltoids, upper, middle and lower trapezius, infraspinatus and supraspinatus showed higher peak activity levels during external rotations (+36.5% of maximum voluntary activation (MVA)). The pectoralis major and latissimus dorsi were more active during internal rotations (+40% of MVA). Only middle trapezius and pectoralis major electromyographic activity decreased with increasing velocity. Peak muscle activity was similar or lower during eccentric contractions, although the peak isokinetic moment increased by 35% on average. The subscapularis and serratus anterior appear to be important stabilizers of the glenohumeral joint and scapula. Isokinetic eccentric training at high velocities may allow for faster recruitment of the shoulder girdle muscles, which could improve joint stability during shoulder internal and external rotations.

  19. Role and reliability of passive joint motion assessment: Towards multivariable diagnostics and decision-making in manual therapy

    NARCIS (Netherlands)

    van Trijffel, E.

    2015-01-01

    Manual therapists strongly rely on passive intervertebral motion (PIVM) assessment for making decisions about spinal joint mobilisation and thrust manipulation in patients with neck or low-back pain. However, uncertainty exists about the use and the value of this physical examination procedure

  20. Assessment of congruence and impingement of the hip joint in professional ballet dancers: a motion capture study.

    Science.gov (United States)

    Charbonnier, Caecilia; Kolo, Frank C; Duthon, Victoria B; Magnenat-Thalmann, Nadia; Becker, Christoph D; Hoffmeyer, Pierre; Menetrey, Jacques

    2011-03-01

    Early hip osteoarthritis in dancers could be explained by femoroacetabular impingements. However, there is a lack of validated noninvasive methods and dynamic studies to ascertain impingement during motion. Moreover, it is unknown whether the femoral head and acetabulum are congruent in typical dancing positions. The practice of some dancing movements could cause a loss of hip joint congruence and recurrent impingements, which could lead to early osteoarthritis. Descriptive laboratory study. Eleven pairs of female dancer's hips were motion captured with an optical tracking system while performing 6 different dancing movements. The resulting computed motions were applied to patient-specific hip joint 3-dimensional models based on magnetic resonance images. While visualizing the dancer's hip in motion, the authors detected impingements using computer-assisted techniques. The range of motion and congruence of the hip joint were also quantified in those 6 recorded dancing movements. The frequency of impingement and subluxation varied with the type of movement. Four dancing movements (développé à la seconde, grand écart facial, grand écart latéral, and grand plié) seem to induce significant stress in the hip joint, according to the observed high frequency of impingement and amount of subluxation. The femoroacetabular translations were high (range, 0.93 to 6.35 mm). For almost all movements, the computed zones of impingement were mainly located in the superior or posterosuperior quadrant of the acetabulum, which was relevant with respect to radiologically diagnosed damaged zones in the labrum. All dancers' hips were morphologically normal. Impingements and subluxations are frequently observed in typical ballet movements, causing cartilage hypercompression. These movements should be limited in frequency. The present study indicates that some dancing movements could damage the hip joint, which could lead to early osteoarthritis.

  1. The effect of warm-ups with stretching on the isokinetic moments of collegiate men.

    Science.gov (United States)

    Park, Hyoung-Kil; Jung, Min-Kyung; Park, Eunkyung; Lee, Chang-Young; Jee, Yong-Seok; Eun, Denny; Cha, Jun-Youl; Yoo, Jaehyun

    2018-02-01

    Performing warm-ups increases muscle temperature and blood flow, which contributes to improved exercise performance and reduced risk of injuries to muscles and tendons. Stretching increases the range of motion of the joints and is effective for the maintenance and enhancement of exercise performance and flexibility, as well as for injury prevention. However, stretching as a warm-up activity may temporarily decrease muscle strength, muscle power, and exercise performance. This study aimed to clarify the effect of stretching during warm-ups on muscle strength, muscle power, and muscle endurance in a nonathletic population. The subjects of this study consisted of 13 physically active male collegiate students with no medical conditions. A self-assessment questionnaire regarding how well the subjects felt about their physical abilities was administered to measure psychological readiness before and after the warm-up. Subjects performed a non-warm-up, warm-up, or warm-up regimen with stretching prior to the assessment of the isokinetic moments of knee joints. After the measurements, the respective variables were analyzed using nonparametric tests. First, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 60°/sec, which were assessed to measure muscle strength. Second, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 180°/sec, which were assessed to measure muscle power. Third, the total work of the knee joints at 240°/sec, intended to measure muscle endurance, was highest in the aerobic-stretch-warm-ups (ASW) group, but no statistically significant differences were found among the groups. Finally, the psychological readiness for physical activity according to the type of warm-up was significantly higher in ASW. Simple stretching during warm-ups appears to have no effect on variables of exercise physiology in nonathletes

  2. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    Science.gov (United States)

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  3. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Brossmann, J. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Melchert, U.H. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Schroeder, C. [Radiologische Abt., Universitaets-Kinderklinik, Christian-Albrechts-Universitaet, Kiel (Germany); Boer, R. de [Philips Medical Systems, Best (Netherlands); Spielmann, R.P. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Heller, M. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany)

    1995-12-31

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  4. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Melchert, U.H.; Schroeder, C.; Boer, R. de; Spielmann, R.P.; Heller, M.

    1995-01-01

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  5. The Effect of Ankle, Knee and Hip Isokinetic Fatigue on Shock Absorption and Rate of Loading during Pair-leg Landing

    Directory of Open Access Journals (Sweden)

    Hamideh Khodaveisi

    2016-12-01

    Conclusion: Findings of this study indicate that the fatigue protocol using Isokinetic devices with uniform speed, increases muscle strength due to generating stress at all the joints, thereby, compensating the active and passive joints for shock absorption, and load distribution on the lower extremities. 

  6. Selected isokinetic tests in knee injury prevention

    Directory of Open Access Journals (Sweden)

    W Pilis

    2010-03-01

    Full Text Available Ensuing from isokinetic measurements, the conventional Hcon/Qcon ratio of muscle balance is used as an index for comparing proper relations between the values of strength of knee flexors and extensor muscle. Its abnormal values might indicate pathology of the musculotendinous complex. The aim of the study was to present the possibility of using this ratio as one of the objective identifiers enabling the assessment of knee injury risk in sports. All participants (n=48 were divided into 3 groups: group A (n=16, healthy competitors, group B (n=16, athletes with minor injuries, group C (n=16, competitors with serious injuries, depending on the degree of knee injury. All subjects performed an isokinetic test for knee extensors and flexors at angular velocities of 60°/s and 120°/s. Average peak torque (APT value of knee flexors and extensors, and the value of Hcon/Qcon ratio was analyzed. Both values were calculated in relation to body mass (Nm/kg. Bilateral comparison of isokinetic test parameters confirmed the decrease of quadriceps muscle strength values for the injured extremity in groups B and C. Statistically significant difference was noted for Hcon/Qcon ratio between group A and C, as well as B and C. Hence, the value of conventional Hcon/Qcon ratio can be used for the prevention of sports related injuries.

  7. Isokinetic Strength Profile of Elite Female Handball Players

    Directory of Open Access Journals (Sweden)

    Xaverova Zuzana

    2015-12-01

    Full Text Available Systematic assessment of muscle strength of the lower extremities throughout the annual training cycle in athletes is crucial from a performance perspective for the optimization of the training process, as well as a health perspective with regard to injury prevention. The main aim of the present study was to determine isokinetic muscle strength of the knee flexors and extensors in female handball players at the beginning of a preparatory period and to assess whether there were any differences between players of different performance levels. The performance level was expressed by means of membership of the Women’s Junior National Handball Team (JNT, n=8 or the Women’s National Handball Team (NT, n=9. The isokinetic peak torque during concentric and eccentric single-joint knee flexion and extension was measured at angular velocities of 60, 180, 240°/s (concentric and 60°/s (eccentric. The Mann- Whitney test showed no significant differences in the peak torques or ipsilateral ratios between the two groups. The bilateral force deficit (BFD for concentric extension at 240°/s was significantly higher in the JNT compared with the NT (p=0.04; d=1.02. However, the results of individual evaluation show that the BFD was more frequent in the NT in most measurements. A high BFD was evident in the eccentric mode in both groups highlighting a need for particular strengthening. With regard to low strength ratios a prevention programme should be suggested for both observed groups of professional female handball players to reduce the risk of injury.

  8. Isokinetic Strength Profile of Elite Female Handball Players.

    Science.gov (United States)

    Xaverova, Zuzana; Dirnberger, Johannes; Lehnert, Michal; Belka, Jan; Wagner, Herbert; Orechovska, Karolina

    2015-12-22

    Systematic assessment of muscle strength of the lower extremities throughout the annual training cycle in athletes is crucial from a performance perspective for the optimization of the training process, as well as a health perspective with regard to injury prevention. The main aim of the present study was to determine isokinetic muscle strength of the knee flexors and extensors in female handball players at the beginning of a preparatory period and to assess whether there were any differences between players of different performance levels. The performance level was expressed by means of membership of the Women's Junior National Handball Team (JNT, n=8) or the Women's National Handball Team (NT, n=9). The isokinetic peak torque during concentric and eccentric single-joint knee flexion and extension was measured at angular velocities of 60, 180, 240°/s (concentric) and 60°/s (eccentric). The Mann-Whitney test showed no significant differences in the peak torques or ipsilateral ratios between the two groups. The bilateral force deficit (BFD) for concentric extension at 240°/s was significantly higher in the JNT compared with the NT (p=0.04; d=1.02). However, the results of individual evaluation show that the BFD was more frequent in the NT in most measurements. A high BFD was evident in the eccentric mode in both groups highlighting a need for particular strengthening. With regard to low strength ratios a prevention programme should be suggested for both observed groups of professional female handball players to reduce the risk of injury.

  9. Shoulder rotator isokinetic strength profile in young swimmers

    Directory of Open Access Journals (Sweden)

    Nuno Miguel Prazeres Batalha

    2012-08-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n5p545  Considering that some studies suggest that shoulder rotators muscle imbal­ances are related to joint pain and injury, and that there are no normative data for young swimmers, the aim of this study was: i to describe the muscle balance, fatigue and isokinetic strength profile of the shoulder rotators in young swimmers; ii to compare the results between swimmers and a group of young non-practitioners; iii to contribute to the acquisition of normative data of unilateral ratios of shoulder rotators. We evaluated the shoulder rotators concentric strength and unilateral ratios (ratio between torque of external and internal rotators of 60 swimmers (age: 14.55 ± 0.5 years old; body mass: 61.16 ± 7.08 kg and 60 non-practitioners (age: 14.62 ± 0.49 years old; body mass: 60.22 ± 10.01 kg. The evaluation was performed in the sitting position (90° abduction and elbow flexion at 60º.s-1 and 180º.s-1 angular speeds using an isokinetic dynamometer (Biodex System 3. The results of the fatigue ratios revealed no differences between the groups. Swimmers showed unilateral ratios of 73.39 ± 17.26% in the dominant limb (DL and 77.89 ± 15,23% in the non-dominant limb (NDL for assessments at 60º.s-1. At 180º.s-1, ratios were 74.77± 13.99% for DL and 70.11 ± 14.57% for NDL. Swimmers presented greater muscle imbalance, and differed from non-practitioners in the ability to produce power with the internal rotators, which was significantly higher in the former group.

  10. Association of knee confidence with pain, knee instability, muscle strength, and dynamic varus-valgus joint motion in knee osteoarthritis.

    Science.gov (United States)

    Skou, Søren T; Wrigley, Tim V; Metcalf, Ben R; Hinman, Rana S; Bennell, Kim L

    2014-05-01

    To investigate associations between self-reported knee confidence and pain, self-reported knee instability, muscle strength, and dynamic varus-valgus joint motion during walking. We performed a cross-sectional analysis of baseline data from 100 participants with symptomatic and radiographic medial tibiofemoral compartment osteoarthritis (OA) and varus malalignment recruited for a randomized controlled trial. The extent of knee confidence, assessed using a 5-point Likert scale item from the Knee Injury and Osteoarthritis Outcome Score, was set as the dependent variable in univariable and multivariable ordinal regression, with pain during walking, self-reported knee instability, quadriceps strength, and dynamic varus-valgus joint motion during walking as independent variables. One percent of the participants were not troubled with lack of knee confidence, 17% were mildly troubled, 50% were moderately troubled, 26% were severely troubled, and 6% were extremely troubled. Significant associations were found between worse knee confidence and higher pain intensity, worse self-reported knee instability, lower quadriceps strength, and greater dynamic varus-valgus joint motion. The multivariable model consisting of the same variables significantly accounted for 24% of the variance in knee confidence (P knee confidence is associated with higher pain, worse self-reported knee instability, lower quadriceps muscle strength, and greater dynamic varus-valgus joint motion during walking. Since previous research has shown that worse knee confidence is predictive of functional decline in knee OA, addressing lack of knee confidence by treating these modifiable impairments could represent a new therapeutic target. Copyright © 2014 by the American College of Rheumatology.

  11. Isokinetic and isometric strength in osteoarthrosis of the knee. A comparative study with healthy women.

    Science.gov (United States)

    Tan, J; Balci, N; Sepici, V; Gener, F A

    1995-01-01

    Dynamic stability of the knee joint depends on the appropriate strength ratio of quadriceps and hamstring muscles. The purpose of this investigation was to determine the maximum peak torque (MPT) and MPT ratios of hamstrings to quadriceps (H/Q) muscles in patients with knee osteoarthritis (OA). Two groups of patients were included in the study. The first group consisted of 30 patients (Group A) with the clinical and radiologic findings of knee OA. The second group consisted of 30 patients (Group B) exhibiting knee joint pain without roentgenologic findings of knee OA. The findings of two patient groups were compared with each other and also with 30 healthy subjects (Group C). Isokinetic (at 60 degrees/s and at 180 degrees/s) and isometric (at 30 degrees and at 60 degrees of knee flexion) tests were performed by the rate-limiting isokinetic dynamometer system. Isokinetic and isometric MPT loss of knee flexors and extensors was found in both patient groups with respect to controls, but MPT ratios of H/Q muscles did not show a statistically significant difference compared with the control group. This may be related to the equal strength loss of knee flexors and knee extensors in patients with knee OA. It is concluded that strengthening exercises of hamstring muscles is as important as quadriceps strengthening in rehabilitation of knee OA.

  12. Reliability of a device for the knee and ankle isometric and isokinetic strength testing in older adults.

    Science.gov (United States)

    Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea

    2017-01-01

    Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (pisometric strength provided reliable test-retest measures in healthy older adults. Ib.

  13. Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities

    Science.gov (United States)

    Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J

    2017-01-01

    Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group. PMID:25570956

  14. Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities.

    Science.gov (United States)

    Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J

    2014-01-01

    Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group.

  15. Combined effects of myofeedback and isokinetic training on hand ...

    African Journals Online (AJOL)

    Combined effects of myofeedback and isokinetic training on hand function in spastic hemiplegic children. ... Both groups received a designed physical therapy program with isokinetic training for the triceps brachii muscle for 60 min, in addition group B received myofeedback training. Results: The post treatment results ...

  16. Isokinetic muscle strength and readiness to return to sport following anterior cruciate ligament reconstruction: is there an association? A systematic review and a protocol recommendation.

    Science.gov (United States)

    Undheim, Marit Baste; Cosgrave, Ciaran; King, Enda; Strike, Siobhán; Marshall, Brendan; Falvey, Éanna; Franklyn-Miller, Andrew

    2015-10-01

    Following anterior cruciate ligament reconstruction (ACLR), strength is a key variable in regaining full function of the knee. Isokinetic strength is commonly used as part of the return to sport (RTS) criteria. We systematically reviewed the isokinetic strength evaluation protocols that are currently being used following ACLR. A secondary aim was to suggest an isokinetic protocol that could meet RTS criteria. Articles were searched using ScienceDirect, PubMed and Sage Journals Online, combined with cross-checked reference lists of the publications. Protocol data and outcome measurements and RTS criteria were extracted from each article included in the review. 39 studies met the inclusion criteria and reported their isokinetic strength evaluation protocol following ACLR. The variables that were most commonly used were concentric/concentric mode of contraction (31 studies), angular velocity of 60°/s (29 studies), 3-5 repetitions (24 studies), range of motion of 0-90° (6 studies), and using gravity correction (9 studies). 8 studies reported strength limb symmetry index scores as part of their RTS criteria. There was no standardised isokinetic protocol following ACLR; isokinetic strength measures have not been validated as useful predictors of successful RTS. We propose a standard protocol to allow consistency of testing and accurate comparison of future research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Why is joint range of motion limited in patients with cerebral palsy?

    NARCIS (Netherlands)

    de Bruin, M.; Smeulders, M. J. C.; Kreulen, M.

    2013-01-01

    Patients with spastic cerebral palsy of the upper limb typically present with various problems including an impaired range of motion that affects the positioning of the upper extremity. This impaired range of motion often develops into contractures that further limit functioning of the spastic hand

  18. Roller-massager application to the quadriceps and knee-joint range of motion and neuromuscular efficiency during a lunge.

    Science.gov (United States)

    Bradbury-Squires, David J; Noftall, Jennifer C; Sullivan, Kathleen M; Behm, David G; Power, Kevin E; Button, Duane C

    2015-02-01

    Roller massagers are used as a recovery and rehabilitative tool to initiate muscle relaxation and improve range of motion (ROM) and muscular performance. However, research demonstrating such effects is lacking. To determine the effects of applying a roller massager for 20 and 60 seconds on knee-joint ROM and dynamic muscular performance. Randomized controlled clinical trial. University laboratory. Ten recreationally active men (age = 26.6 ± 5.2 years, height = 175.3 ± 4.3 cm, mass = 84.4 ± 8.8 kg). Participants performed 3 randomized experimental conditions separated by 24 to 48 hours. In condition 1 (5 repetitions of 20 seconds) and condition 2 (5 repetitions of 60 seconds), they applied a roller massager to the quadriceps muscles. Condition 3 served as a control condition in which participants sat quietly. Visual analog pain scale, electromyography (EMG) of the vastus lateralis (VL) and biceps femoris during roller massage and lunge, and knee-joint ROM. We found no differences in pain between the 20-second and 60-second roller-massager conditions. During 60 seconds of roller massage, pain was 13.5% (5.7 ± 0.70) and 20.6% (6.2 ± 0.70) greater at 40 seconds and 60 seconds, respectively, than at 20 seconds (P joint ROM was 10% and 16% greater in the 20-second and 60-second roller-massager conditions, respectively, than the control condition (P joint ROM and neuromuscular efficiency during a lunge.

  19. Association with isokinetic ankle strength measurements and normal clinical muscle testing in sciatica patients.

    Science.gov (United States)

    Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R

    2013-01-01

    Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.

  20. Isokinetic strength effects of FIFA'a "The 11+" injury prevention training programme

    DEFF Research Database (Denmark)

    Brito, João; Figueiredo, Pedro; Fernandes, Luís

    2010-01-01

    The purpose of this study was to evaluate whether FIFA's Medical Assessment and Research Centre (F-MARC) injury prevention programme, "The 11+", improves isokinetic strength of the knee extensor and flexor muscles in sub-elite soccer players. Twenty players aged 22.3 ± 4.2 yr performed "The 11+" 3...... significantly improved the conventional H/Q ratio at 60°/s by 14.8{\\%} and the DCR by 13.8% in the non-dominant limb (pknee joint....

  1. The effect of peculiar complex core balance training on isokinetic muscle functions of the knee and lumbus

    OpenAIRE

    Lee, Myungsun; Han, Gunsoo

    2016-01-01

    [Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subje...

  2. Comparison of isokinetic muscle strength and muscle power by types of warm-up.

    Science.gov (United States)

    Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun

    2015-05-01

    [Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.

  3. Knee joint contact mechanics during downhill gait and its relationship with varus/valgus motion and muscle strength in patients with knee osteoarthritis.

    Science.gov (United States)

    Farrokhi, Shawn; Voycheck, Carrie A; Gustafson, Jonathan A; Fitzgerald, G Kelley; Tashman, Scott

    2016-01-01

    The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p knee OA compared to their control counterparts (p = 0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p knee OA were linearly associated with greater frontal-plane varus motion excursions (p knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength.

  4. Lower limb joint motion during a cross cutting movement differs in individuals with and without chronic ankle instability.

    Science.gov (United States)

    Koshino, Yuta; Yamanaka, Masanori; Ezawa, Yuya; Ishida, Tomoya; Kobayashi, Takumi; Samukawa, Mina; Saito, Hiroshi; Takeda, Naoki

    2014-11-01

    To compare the kinematics of lower limb joints between individuals with and without chronic ankle instability (CAI) during cross-turn and -cutting movements. Cross-sectional study. Motion analysis laboratory. Twelve subjects with CAI and twelve healthy controls. Hip flexion, adduction, and internal rotation, knee flexion, and ankle dorsiflexion and inversion angles were calculated in the 200 ms before initial ground contact and from initial ground contact to toe-off (stance phase) in a cross-turn movement during gait and a cross-cutting movement from a forward jump, and compared across the two groups. In the cross-cutting movement, the CAI group exhibited greater hip and knee flexion than the control group during the stance phase, and more hip abduction during the period before initial contact and the stance phase. In the cross-turn movement the joint kinematics were similar in the two groups. CAI subjects exhibited an altered pattern of the proximal joint kinematics during a cross-cutting movement. It is important for clinicians to assess the function of the hip and knee as well as the ankle, and to incorporate coordination training for the entire lower limb into rehabilitation after lateral ankle sprains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Quantitative analysis by MRI on condylar motion of the temporomandibular joint in patients applied with occlusal splints

    International Nuclear Information System (INIS)

    Saito, Hiroki

    1999-01-01

    The purpose of this study was to assess the feasibility of a newly developed quantitative motion analysis method for the mandibular condyle before and after application of occlusal splints. The subjects were 50 consecutive patients with internal derangement. Stabilization type splints were applied in 23 cases (46%), anterior repositioning type in 18 cases (36%) and pivot type in 9 cases (18%). All patients underwent MR imaging with a 1.5-T MR unit with a 3-inch dual surface coil. Pseudodynamic MR study of the opening cycle was obtained using multiplanar GRASS sequence (MPGR). Incremental and decremental sagittal MR images before and after splint application were transferred to the workstation. Software originally developed by Nakasato and Katsuragawa was used to analyze the condylar motion and path. After splint application, normalized position of displaced discs was seen in 11 cases (22%), and occurred most frequently with anterior repositioning type splints. In patients with anterior repositioning type splints, improvement in the condylar motion was most significant, In patients with normalized disc position after application of occlusal splints, abnormal figure-eight-shaped'' condylar paths were corrected in 9 of 10 cases. In the case with normalized disc position after application of anterior repositioning splint, the maximum rotational angle before application of the splint is larger than that of the case without normalized disc position. Rotational function of the condyle in the inferior joint space may be associated with disc recapturing. (K.H.)

  6. Joint disparity and motion estimation using optical flow for multiview Distributed Video Coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Raket, Lars Lau; Brites, Catarina

    2014-01-01

    Distributed Video Coding (DVC) is a video coding paradigm where the source statistics are exploited at the decoder based on the availability of Side Information (SI). In a monoview video codec, the SI is generated by exploiting the temporal redundancy of the video, through motion estimation and c...

  7. Wireless wearable range-of-motion sensor system for upper and lower extremity joints: a validation study.

    Science.gov (United States)

    Kumar, Yogaprakash; Yen, Shih-Cheng; Tay, Arthur; Lee, Wangwei; Gao, Fan; Zhao, Ziyi; Li, Jingze; Hon, Benjamin; Tian-Ma Xu, Tim; Cheong, Angela; Koh, Karen; Ng, Yee-Sien; Chew, Effie; Koh, Gerald

    2015-02-01

    Range-of-motion (ROM) assessment is a critical assessment tool during the rehabilitation process. The conventional approach uses the goniometer which remains the most reliable instrument but it is usually time-consuming and subject to both intra- and inter-therapist measurement errors. An automated wireless wearable sensor system for the measurement of ROM has previously been developed by the current authors. Presented is the correlation and accuracy of the automated wireless wearable sensor system against a goniometer in measuring ROM in the major joints of upper (UEs) and lower extremities (LEs) in 19 healthy subjects and 20 newly disabled inpatients through intra (same) subject comparison of ROM assessments between the sensor system against goniometer measurements by physical therapists. In healthy subjects, ROM measurements using the new sensor system were highly correlated with goniometry, with 95% of differences sensor system were also highly correlated with goniometry, with 95% of the differences being < 20° and 25° for most movements in the major joints of UE and LE, respectively.

  8. First metatarsophalangeal joint motion in Homo sapiens: theoretical association of two-axis kinematics and specific morphometrics.

    Science.gov (United States)

    Durrant, Michael N; McElroy, Tucker; Durrant, Lara

    2012-01-01

    The metatarsal head and proximal phalanx exhibit considerable asymmetry in their shape and geometry, but there is little documentation in the literature regarding the prevalence of structural characteristics that occur in a given population. Although there is a considerable volume of in vivo and in vitro experiments demonstrating first metatarsal inversion around its longitudinal axis with dorsiflexion, little is known regarding the applicability of specific morphometrics to these motions. Nine distinctive osseous characteristics in the metatarsal head and phalanx were selected based on their location, geometry, and perceived functional relationship to previous studies describing metatarsal motion as inversion with dorsiflexion. The prevalences of the chosen characteristics were determined in a cohort of 21 randomly selected skeletal specimens, 19 of which were provided by the anatomical preparation office at the University of California, San Diego, and two of which were in the possession of one of us (M.D.). The frequency of occurrence of each selected morphological characteristic in this sample and the relevant summary statistics confirm a strong association between the selected features and a conceptual two-axis kinematic model of the metatarsophalangeal joint. The selected morphometrics are consistent with inversion of the metatarsal around its longitudinal axis as it dorsiflexes.

  9. The effect of peculiar complex core balance training on isokinetic muscle functions of the knee and lumbus.

    Science.gov (United States)

    Lee, Myungsun; Han, Gunsoo

    2016-04-01

    [Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes.

  10. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    Science.gov (United States)

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. On the analysis of condylar path versus real motion of the temporomandibular joint: application for Sicat Function.

    Science.gov (United States)

    Kordaß, Bernd; Ruge, Sebastian

    2015-01-01

    Analysis of temporomandibular joint (TMJ) function using condylar path tracings is a challenge in functionally oriented dentistry. In most cases, reference points on the skin surface over the TMJ region are defined as "arbitrary", "individual" or "kinematic" condylar hinge axis points, which are displayed as "condylar paths" in motion. To what extent these reference points represent the actual condylar paths in each individual patient is ultimately unclear because the geometric relationship of the actual condyle to the selected reference point is usually unknown. Depending on the location of the point on the condyle and the centers of rotation of mandibular movement, these trajectories can vary greatly during combined rotational and sliding movements (eg, opening and closing movements of the mandible); this represents a grid of points located in the vicinity of the TMJ. To record the actual condylar path as the movement trajectory of a given point (eg, the condylar center), technological solutions are needed with which to link the tracing technology with the appropriate imaging technology capable of scanning the condyle, including the points of interest, and displaying them in real dynamic motion. Sicat Function (Sicat, D-Bonn) is such a solution. Sicat Function links cone beam computed tomography (CBCT) scans (made using the Galileos CBCT scanner; Sirona, Bensheim, Germany) with ultrasound-based, three-dimensional (3D) functional jaw movement recordings of the mandible (made using the JMT+ Jaw Motion Tracker; Sicat, Bonn, Germany). Digital images of the dental arches acquired with the intraoral scanner Cerec system (Sirona) can also be superimposed. This results in the generation of a 3D model of the bony mandible, including the TMJ, which reproduces the 3D real dynamic movement of the condyles simultaneously with that of the condylar paths at defined points (with the condylar centers being a particular point of interest). Sicat Function is an integrated, digital

  12. On the joint residence time of N independent two-dimensional Brownian motions

    International Nuclear Information System (INIS)

    Benichou, O; Coppey, M; Klafter, J; Moreau, M; Oshanin, G

    2003-01-01

    We study the behaviour of several joint residence times of N independent Brownian particles in a disc of radius R in two dimensions. We consider: (i) the time T N (t) spent by all N particles simultaneously in the disc within the time interval [0, t], (ii) the time T (m) N (t) which at least m out of N particles spend together in the disc within the time interval [0, t], and (iii) the time T-tilde (m) N (t) which exactly m out of N particles spend together in the disc within the time interval [0, t]. We obtain very simple exact expressions for the expectations of these three residence times in the limit t → ∞

  13. Validation of a photography-based goniometry method for measuring joint range of motion.

    Science.gov (United States)

    Blonna, Davide; Zarkadas, Peter C; Fitzsimmons, James S; O'Driscoll, Shawn W

    2012-01-01

    A critical component of evaluating the outcomes after surgery to restore lost elbow motion is the range of motion (ROM) of the elbow. This study examined if digital photography-based goniometry is as accurate and reliable as clinical goniometry for measuring elbow ROM. Instrument validity and reliability for photography-based goniometry were evaluated for a consecutive series of 50 elbow contractures by 4 observers with different levels of elbow experience. Goniometric ROM measurements were taken with the elbows in full extension and full flexion directly in the clinic (once) and from digital photographs (twice in a blinded random manner). Instrument validity for photography-based goniometry was extremely high (intraclass correlation coefficient: extension = 0.98, flexion = 0.96). For extension and flexion measurements by the expert surgeon, systematic error was negligible (0° and 1°, respectively). Limits of agreement were 7° (95% confidence interval [CI], 5° to 9°) and -7° (95% CI, -5° to -9°) for extension and 8° (95% CI, 6° to 10°) and -7° (95% CI, -5° to -9°) for flexion. Interobserver reliability for photography-based goniometry was better than that for clinical goniometry. The least experienced observer's photographic goniometry measurements were closer to the reference measurements than the clinical goniometry measurements. Photography-based goniometry is accurate and reliable for measuring elbow ROM. The photography-based method relied less on observer expertise than clinical goniometry. This validates an objective measure of patient outcome without requiring doctor-patient contact at a tertiary care center, where most contracture surgeries are done. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  14. Isokinetic strength of shoulder internal and external rotators in cricket bowlers

    Directory of Open Access Journals (Sweden)

    X.M. Mabasa

    2002-02-01

    Full Text Available The strength of the shoulder internal and external rotators incricket bowlers, may not be sufficient to cope with the demands of bowling.As very little research has been done on cricketers, this study was done to establish the isokinetic strength profile of the shoulder internal andexternal rotators in cricket bowlers.Isokinetic, shoulder rotational strength was evaluated in thirty malecricket volunteers with a mean age of 23.9 years and mean body weight of 70.3 kgs. The Cybex 340 dynamometer multi joint system was used to collect data on shoulder rotation strength in a standing neutral position. Data were collected at four different speeds (60,90,180 and 300deg/sec and were computed for peak torque values for internal and external ratios for both dominant and non dominant shoulders.The results showed no statistically significant difference in the mean shoulder rotational torque between the bowlingand non-bowling shoulders for external rotation (p>0.05, and indicated statistically significant differences in themean shoulder rotational torque between the bowling and non-bowling shoulders for internal rotation (p<0.05. Therewas a significant decrease in isokinetic peak torque production for the external/internal rotator muscles as the speedof contraction increased (p<0.05. The peak torque ratio for the external/internal rotator muscles of the bowling armwere significantly less than of the non-bowling arm (p<0.05. These findings suggest that the strength ratios of thebowling arm need to be considered when managing young cricketers and their injuries.

  15. KNEE ISOKINETIC TORQUE IMBALANCE IN FEMALE FUTSAL PLAYERS

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Mello Alves Rodrigues

    Full Text Available ABSTRACT Introduction: The specificity of sports training can lead to muscle specialization with a possible change in the natural hamstring/quadriceps torque ratio (HQ ratio, constituting a risk factor for muscle injury at the joint angles in which muscle imbalance may impair dynamic stability. Objective: The aim was to evaluate the torque distribution of the hamstrings and quadriceps and the HQ ratio throughout the range of motion in order to identify possible muscle imbalances at the knee of female futsal athletes. Methods: Nineteen amateur female futsal athletes had their dominant limb HQ ratio evaluated in a series of five maximum repetitions of flexion/extension of the knee at 180°/second in the total joint range of motion (30° to 80°. The peak flexor and extensor torque and the HQ ratio (% were compared each 5° of knee motion using one-way repeated measures ANOVA and Tukey’s post hoc test (p<0.05 to determine the joint angles that present muscular imbalance. Results: Quadriceps torque was higher than 50° to 60° of knee flexion, while hamstrings torque was higher than 55° to 65°. The HQ ratio presented lower values than 30° to 45° of knee flexion and four athletes presented values lower than 60%, which may represent a risk of injury. However, the HQ ratio calculated by the peak torque showed only one athlete with less than 60%. Conclusion: The HQ ratio analyzed throughout the knee range of motion allowed identifying muscle imbalance at specific joint angles in female futsal players.

  16. Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring

    Science.gov (United States)

    Boyle, Alistair; Wilkinson, Paul B.; Chambers, Jonathan E.; Meldrum, Philip I.; Uhlemann, Sebastian; Adler, Andy

    2018-02-01

    Electrical resistivity tomography (ERT) is increasingly being used to investigate unstable slopes and monitor the hydrogeological processes within. But movement of electrodes or incorrect placement of electrodes with respect to an assumed model can introduce significant resistivity artefacts into the reconstruction. In this work, we demonstrate a joint resistivity and electrode movement reconstruction algorithm within an iterative Gauss-Newton framework. We apply this to ERT monitoring data from an active slow-moving landslide in the UK. Results show fewer resistivity artefacts and suggest that electrode movement and resistivity can be reconstructed at the same time under certain conditions. A new 2.5-D formulation for the electrode position Jacobian is developed and is shown to give accurate numerical solutions when compared to the adjoint method on 3-D models. On large finite element meshes, the calculation time of the newly developed approach was also proven to be orders of magnitude faster than the 3-D adjoint method and addressed modelling errors in the 2-D perturbation and adjoint electrode position Jacobian.

  17. Joint level-set and spatio-temporal motion detection for cell segmentation.

    Science.gov (United States)

    Boukari, Fatima; Makrogiannis, Sokratis

    2016-08-10

    Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images. In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result. We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan

  18. Joint Inversion of 1-Hz GPS Data and Strong Motion Records for the Rupture Process of the 2008 Iwate-Miyagi Nairiku Earthquake: Objectively Determining Relative Weighting

    Science.gov (United States)

    Wang, Z.; Kato, T.; Wang, Y.

    2015-12-01

    The spatiotemporal fault slip history of the 2008 Iwate-Miyagi Nairiku earthquake, Japan, is obtained by the joint inversion of 1-Hz GPS waveforms and near-field strong motion records. 1-Hz GPS data from GEONET is processed by GAMIT/GLOBK and then a low-pass filter of 0.05 Hz is applied. The ground surface strong motion records from stations of K-NET and Kik-Net are band-pass filtered for the range of 0.05 ~ 0.3 Hz and integrated once to obtain velocity. The joint inversion exploits a broader frequency band for near-field ground motions, which provides excellent constraints for both the detailed slip history and slip distribution. A fully Bayesian inversion method is performed to simultaneously and objectively determine the rupture model, the unknown relative weighting of multiple data sets and the unknown smoothing hyperparameters. The preferred rupture model is stable for different choices of velocity structure model and station distribution, with maximum slip of ~ 8.0 m and seismic moment of 2.9 × 1019 Nm (Mw 6.9). By comparison with the single inversion of strong motion records, the cumulative slip distribution of joint inversion shows sparser slip distribution with two slip asperities. One common slip asperity extends from the hypocenter southeastward to the ground surface of breakage; another slip asperity, which is unique for joint inversion contributed by 1-Hz GPS waveforms, appears in the deep part of fault where very few aftershocks are occurring. The differential moment rate function of joint and single inversions obviously indicates that rich high frequency waves are radiated in the first three seconds but few low frequency waves.

  19. Effect of gradual weight-bearing on regenerated articular cartilage after joint distraction and motion in a rabbit model.

    Science.gov (United States)

    Nishino, Tomofumi; Ishii, Tomoo; Chang, Fei; Yanai, Takaji; Watanabe, Arata; Ogawa, Takeshi; Mishima, Hajime; Nakai, Kenjiro; Ochiai, Naoyuki

    2010-05-01

    The purpose of this study was to clarify the effect of gradual weight bearing (GWB) on regenerating cartilage. We developed a novel external fixation device (EFD) with a controllable weight-bearing system and continuous passive motion (CPM). A full-thickness defect was created by resection of the entire articular surface of the tibial plateau after the EFD was fixed in the rabbit's left knee. In the GWB group (n=6), GWB was started 6 weeks after surgery. In the CPM group (n=6), CPM with EFD was applied in the same manner without GWB. The control group (n=5) received only joint distraction. All rabbits were sacrificed 9 weeks after surgery. The central one-third of the regenerated tissue was assessed and scored blindly using a grading scale modified from the International Cartilage Repair Society visual histological assessment scale. The areas stained by Safranin-O and type II collagen antibody were measured, and the percentage of each area was calculated. There was no significant difference in the histological assessment scale among the groups. The percentage of the type II collagen-positive area was significantly larger in the GWB group than in the CPM group. The present study suggests that optimal mechanical stress, such as GWB, may affect regeneration of cartilage, in vivo. Copyright (c) 2009 Orthopaedic Research Society.

  20. EFFECT OF CAFFEINE ON THE AMOUNT OF PERCEIVED PAIN, JOINT RANGE OF MOTION AND EDEMA AFTER DELAYED MUSCLE SORENESS

    Directory of Open Access Journals (Sweden)

    Karabalaeifar Sara

    2013-01-01

    Full Text Available Delayed onset muscle soreness usually occurs after doing a new unusual physical activity, especially when, associated with repeated eccentric contractions and then it gradually disappears. There is not an extensive agreement in the case of treatment method of soreness signs quick reduction. This research was carried out with the aim of investigation caffeine consumption effect to find a good way in order to reduce the signs of delayed onset muscle soreness. In this semi-experimental with Double-blind design, 16 female volleyball player with an age average of 22.5+2.5 in 2 homogeneous 8 subject control and experimental group were studied. In this research, the effect of caffeine existing in coffee in 5 stages (24h before exercise, 12h before, immediately before exercise, after exercise and 12h after it and 1mg per 1kg of body weight on amount of perceived pain and range of motion of the joint and edema due to delay onset muscle soreness because of 50 jumps and lands of a 1 meter stage was investigated. The results showed that caffeine consumption has a meaningful effect on reduction of all the expressed signs after eccentric contractions. So it is recommended that physio thrapysts, doctors and athletes use this method to reduce delayed onset muscle soreness consequences after the injury.

  1. Effects of the Competitive Season on the Isokinetic Muscle Parameters Changes in World-Class Handball Players.

    Science.gov (United States)

    Maurelli, Olivier; Bernard, Pierre L; Dubois, Romain; Ahmaidi, Said; Prioux, Jacques

    2018-05-25

    Maurelli, O, Bernard, PL, Dubois, R, Ahmaidi, S, and Prioux, J. Effects of the competitive season on the isokinetic muscle parameters changes in world-class handball players. J Strength Cond Res XX(X): 000-000, 2018-The aim of this study is to investigate the effects of the competitive season on isokinetic muscular parameters of the lower limbs in world-class handball players. Nineteen, male, world-class, handball players (age, 26.6 ± 5.4 years) participated in the study. Two bilateral isokinetic tests of knee joint flexors (H; hamstring) and extensors (Q; quadriceps) were performed in the beginning and end of the competitive season to determine the peak torque (PT), the mean power, and agonist-antagonist ratio, dominant-nondominant ratio (DNDR), and combined ratio. The results showed a significant decrease in PT values at low angular velocity (60°·s) in concentric mode for Q on dominant leg (p handball players. Accordingly, this study should help trainers to modify their planning to maximize strength and power qualities of the lower limbs of their players in addition to avoiding injuries.

  2. Using the American alligator and a repeated-measures design to place constraints on in vivo shoulder joint range of motion in dinosaurs and other fossil archosaurs.

    Science.gov (United States)

    Hutson, Joel D; Hutson, Kelda N

    2013-01-15

    Using the extant phylogenetic bracket of dinosaurs (crocodylians and birds), recent work has reported that elbow joint range of motion (ROM) studies of fossil dinosaur forearms may be providing conservative underestimates of fully fleshed in vivo ROM. As humeral ROM occupies a more central role in forelimb movements, the placement of quantitative constraints on shoulder joint ROM could improve fossil reconstructions. Here, we investigated whether soft tissues affect the more mobile shoulder joint in the same manner in which they affect elbow joint ROM in an extant archosaur. This test involved separately and repeatedly measuring humeral ROM in Alligator mississippiensis as soft tissues were dissected away in stages to bare bone. Our data show that the ROMs of humeral flexion and extension, as well as abduction and adduction, both show a statistically significant increase as flesh is removed, but then decrease when the bones must be physically articulated and moved until they separate from one another and/or visible joint surfaces. A similar ROM pattern is inferred for humeral pronation and supination. All final skeletonized ROMs were less than initial fully fleshed ROMs. These results are consistent with previously reported elbow joint ROM patterns from the extant phylogenetic bracket of dinosaurs. Thus, studies that avoid separation of complementary articular surfaces may be providing fossil shoulder joint ROMs that underestimate in vivo ROM in dinosaurs, as well as other fossil archosaurs.

  3. Enthalpy-entropy compensation and the isokinetic temperature in ...

    Indian Academy of Sciences (India)

    Enthalpy-entropy compensation supposes that differences in activation enthalpy delta-H-++ for different reactions (or, typically inbiochemistry, the same reaction catalysed by enzymes obtained from different species) may be compensated for bydifferences in activation entropy delta-S-++. At the isokinetic temperature the ...

  4. Isokinetic hamstring and quadriceps muscle strength profiles of elite ...

    African Journals Online (AJOL)

    Football players are at risk of lower limb injuries, specifically hamstring muscle strains and ACL injuries due to muscle imbalances. This was a descriptive study assessing the isokinetic hamstring and quadriceps muscle strength and endurance in 28 elite, male, South African football players. Muscle strength was tested at 60 ...

  5. Combined effects of myofeedback and isokinetic training on hand ...

    African Journals Online (AJOL)

    Khaled A. Olama

    2012-04-25

    Apr 25, 2012 ... Subjects and methods: Thirty spastic hemiplegic children from both sexes ranging in age from ... physical therapy program with isokinetic training for the triceps brachii muscle for 60 min, in ... The Egyptian Journal of Medical Human Genetics ... than a third of all cases of CP, and the resulting impairments.

  6. Thoracic posture, shoulder muscle activation patterns and isokinetic ...

    African Journals Online (AJOL)

    Background. Shoulder injuries are the most severe injuries in rugby union players, accounting for almost 20% of injuries related to the sport and resulting in lost playing hours. Objective. To profile the thoracic posture, scapular muscle activation patterns and rotator cuff muscle isokinetic strength of semi-professional

  7. Posture and isokinetic shoulder strength in female water polo players

    African Journals Online (AJOL)

    Background: Being overhead athletes, water polo players can present with muscular imbalances of the shoulder, between the internal rotators (IR) and external rotators (ER), leading to changes in posture and an increased risk of injury. Objectives: To assess posture and isokinetic shoulder strength of female club-level ...

  8. Influence of visual feedback on knee extensor isokinetic concentric ...

    African Journals Online (AJOL)

    Isokinetic normative data can be invaluable in identifying an individual's strengths and weaknesses, and thus lead to a more effective use of the individual's time to minimise or overcome his weaknesses while maintaining or improving existing strength. However, visual feedback (VF) may significantly affect the result of ...

  9. The reliability of data produced by isokinetic dynamometry (IKD) of ...

    African Journals Online (AJOL)

    To investigate the feasibility of using isolated knee performance to measure the f-v profile of human muscle in vivo, we were using isokinetic dynamometry (IKD) technique that span the entire f-v profile of skeletal muscle. With institutional ethics approval, eleven healthy males (mean ± SD: age, 24.9 ± 3.1 years; body mass, ...

  10. Isokinetic Leg Strength and Power in Elite Handball Players

    Science.gov (United States)

    González-Ravé, José M.; Juárez, Daniel; Rubio-Arias, Jacobo A.; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier

    2014-01-01

    Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players. PMID:25114749

  11. Isokinetic leg strength and power in elite handball players.

    Science.gov (United States)

    González-Ravé, José M; Juárez, Daniel; Rubio-Arias, Jacobo A; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier

    2014-06-28

    Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players.

  12. Coracoclavicular joint

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Sang; Park, Chan Il; Ahn, Jae Doo; Lim, Chong Won [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1970-10-15

    The coracoclvicular joint, a rear abnormality which may be the cause of pain in the shoulder and limitation of motion of the shoulder joint, is discussed. A case of coracoclvicular joint with shoulder pain was observed in 65 yrs old Korean male.

  13. Comparing passive angle-torque curves recorded simultaneously with a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments.

    Science.gov (United States)

    Buckner, Samuel L; Jenkins, Nathaniel D M; Costa, Pablo B; Ryan, Eric D; Herda, Trent J; Cramer, Joel T

    2015-05-01

    The purpose of the present study was to compare the passive angle-torque curves and the passive stiffness (PS, N m °(-)(1)) values recorded simultaneously from a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments in vivo. Nine healthy men (mean ± SD age = 21.4 ± 1.6 years) completed stretch tolerance assessments on a custom-built apparatus where passive torque was measured simultaneously from an isokinetic dynamometer and a load cell. Passive torque values that corresponded with the last 10° of dorsiflexion, verified by surface electromyographic amplitude, were analyzed for each device (θ1, θ2, θ3, …, θ10). Passive torque values measured with the load cell were greater (p ≤ 0.05) than the dynamometer torque values for θ4 through θ10. There were more statistical differentiations among joint angles for passive torque measured by the load cell, and the load cell measured a greater (p ≤ 0.01) increase in passive torque and PS than the isokinetic dynamometer. These findings suggested that when examining the angle-torque curves from passive dorsiflexion stretch tolerance tests, a load cell placed under the distal end of the foot may be more sensitive than the torque recorded from an isokinetic dynamometer. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Contributions of biarticular myogenic components to the limitation of the range of motion after immobilization of rat knee joint

    Science.gov (United States)

    2014-01-01

    Background Muscle atrophy caused by immobilization in the shortened position is characterized by a decrease in the size or cross-sectional area (CSA) of myofibers and decreased muscle length. Few studies have addressed the relationship between limitation of the range of motion (ROM) and the changes in CSA specifically in biarticular muscles after atrophy because of immobilization. We aimed to determine the contribution of 2 distinct muscle groups, the biarticular muscles of the post thigh (PT) and those of the post leg (PL), to the limitation of ROM as well as changes in the myofiber CSAs after joint immobilization surgery. Methods Male Wistar rats (n = 40) were randomly divided into experimental and control groups. In the experimental group, the left knee was surgically immobilized by external fixation for 1, 2, 4, 8, or 16 weeks (n = 5 each) and sham surgery was performed on the right knee. The rats in the control groups (n = 3 per time point) did not undergo surgery. After the indicated immobilization periods, myotomy of the PT or PL biarticular muscles was performed and the ROM was measured. The hamstrings and gastrocnemius muscles from the animals operated for 1 or 16 weeks were subjected to morphological analysis. Results In immobilized knees, the relative contribution of the PT biarticular myogenic components to the total restriction reached 80% throughout the first 4 weeks and decreased thereafter. The relative contribution of the PL biarticular myogenic components remained contracture did not significantly change during the experimental period. However, the ratio of hamstrings CSAs to the sham side was larger than the ratio of medial gastrocnemius CSAs to the sham side after complete atrophy because of immobilization. PMID:25001065

  15. Tennis players show a lower coactivation of the elbow antagonist muscles during isokinetic exercises.

    Science.gov (United States)

    Bazzucchi, Ilenia; Riccio, Maria Elena; Felici, Francesco

    2008-10-01

    Previous studies have suggested that muscle coactivation could be reduced by a recurrent activity (training, daily activities). If this was correct, skilled athletes should show a specific muscle activation pattern with a low level of coactivation of muscles which are typically involved in their discipline. In particular, the aim of this study was to verify the hypothesis that the amount of antagonist activation of biceps brachii (BB) and triceps brachii (TB) is different between tennis players and non-players individuals during maximal isokinetic contractions. Ten young healthy men and eight male tennis players participated in the study. The surface electromyographic signals (sEMG) were recorded from the BB and TB muscles during three maximal voluntary isometric contractions (MVC) of elbow flexors and extensors and a set of three maximal elbow flexions and extensions at 15 degrees , 30 degrees , 60 degrees , 120 degrees , 180 degrees and 240 degrees /s. Normalized root mean square (RMS) of sEMG was calculated as an index of sEMG amplitude. Antagonist activation (%RMSmax) of TB was significantly lower in tennis players (from 14.0+/-7.9% at MVC to 16.3+/-8.9% at 240 degrees /s) with respect to non-players (from 27.7+/-19.7% at MVC to 38.7+/-17.6% at 240 degrees /s) at all angular velocities. Contrary to non-players, tennis players did not show any difference in antagonist activation between BB and TB muscles. Tennis players, with a constant practice in controlling forces around the elbow joint, learn how to reduce coactivation of muscles involved in the control of this joint. This has been shown by the lower antagonist muscular activity of triceps brachii muscle during isokinetic elbow flexion found in tennis players with respect to non-players.

  16. Gender-related differences in lower limb alignment, range of joint motion, and the incidence of sports injuries in Japanese university athletes.

    Science.gov (United States)

    Mitani, Yasuhiro

    2017-01-01

    [Purpose] To investigate the gender-related differences in lower limb alignment, range of joint motion, and history of lower limb sports injuries in Japanese university athletes. [Subjects and Methods] The subjects were 224 Japanese university athletes (154 males and 70 females). The quadriceps angle (Q-angle), arch height index, and ranges of internal and external rotation of the hip joints were measured. History of lower limb sports injury was surveyed using a questionnaire. [Results] Females had a significantly higher Q-angle and hip joint internal rotation angle and a significantly lower arch height index than males. The survey revealed that a significantly higher proportion of females had a history of lower limb sports injuries, and that the proportion of those with a history of foot/ankle injuries was particularly high. [Conclusion] These results suggested that females experience more lower limb sports injuries than males, and that a large proportion of these injuries involve the foot/ankle. Reduced lower limb alignment and increased range of joint motion in females may be risk factors for injury because they lead to increased physical stress being exerted on the lower legs during sporting activities.

  17. Avaliação muscular isocinética da articulação do joelho em atletas das seleções brasileiras infanto e juvenil de voleibol masculino Evaluación muscular isocinetica de la articulación de la rodilla en atletas de las selecciones brasileras infanto y juveniles de voleibol masculino Isokinetic muscle evaluation of the knee joint in athletes of the Under-19 and Under-21 Male Brazilian National Volleyball Team

    Directory of Open Access Journals (Sweden)

    Natalia Franco N. Bittencourt

    2005-12-01

    . El estudio presente puede servir así, como base para las comparaciones de estudios futuros que evalúen la función muscular isocinética en atletas del voleibol.The vertical jump is a basic volleyball practice that demands a high ability to generate strength and work in the muscles involved, mainly in the quadriceps muscle. Due to such demand, muscle imbalances between extensor and flexor muscles may be present, causing an overloading on the muscle-tendinous structures of the knee joint. Thus, the establishment of normal parameters for the muscle function related to that joint in volleyball athletes is necessary. Therefore, the purpose of this study was to assess through isokinetic dynamometry the peak torque, work peak, agonist/antagonist ratio, and fatigue index of the flexor and extensor of the knee among both volleyball athlete population. The isokinetic flexion and extension tests of the knees were performed in the concentric-concentric seat mode at 60 and 300º/sec. velocity in thirty-six athletes (20 under 19-under 21, and 16 under 21. The data allowed to set the parameters for the muscle function of the knee joint among athletes of the 2003 Under 19-Under 21 and Under 21 Brazilian National Team Selection of Male Volleyball. Athletes presented peak torque and work peak values normalized by the body mass to the upper quadriceps to the mean normal values for the athletes and non-athletes populations. Compared to other categories, the under 21 athletes presented significantly higher values for the agonist/antagonist ratio, and peak work ratio of the knee flexors at 60º/sec. velocity. Furthermore, the agonist/antagonist ratio was lower than the reference value expected for both categories, thus characterizing predominance in the extensor musculature over the flexor musculature. The fatigue index was close to what would be expected for the majority of athletes. The present study may be useful as comparison basis for future studies aiming evaluate the isokinetic

  18. Correlations among visual analogue scale, neck disability index, shoulder joint range of motion, and muscle strength in young women with forward head posture.

    Science.gov (United States)

    Shin, Young Jun; Kim, Won Hyo; Kim, Seong Gil

    2017-08-01

    This study investigated the correlation between the neck disability index (NDI) and visual analogue scale (VAS), which are indicators of neck pain, shoulder joint range of motion (ROM), and muscle strength in women with a slight forward head posture. This study was carried out on 42 female college students attending Uiduk University in Gyeongju, Korea. The neck pain and disability index for each subject was measured using VAS and NDI, respectively. Two physiotherapists measured the shoulder joint ROM and muscle strengths of the subjects using a goniometer and a dynamometer, respectively. External rotation, internal rotation, and abduction of the shoulder joint were measured for each subject. A significant negative correlation between neck pain and shoulder joint ROM in external rotation and the muscle strength of the shoulder joint in abduction was found in the subjects. In addition, a significant positive correlation was observed between ROM in external rotation and muscle strength in abduction. This study showed a significant negative correlation between neck pain and ROM in external rotation as well as between neck pain and the muscle strength in abduction.

  19. Isokinetic evaluation of knee muscles in soccer players: discriminant analysis

    Directory of Open Access Journals (Sweden)

    Bruno Fles Mazuquin

    2015-10-01

    Full Text Available ABSTRACTIntroduction:Muscle activity in soccer players can be measured by isokinetic dynamometer, which is a reliable tool for assessing human performance.Objectives:To perform isokinetic analyses and to determine which variables differentiate the under-17 (U17 soccer category from the professional (PRO.Methods:Thirty four players were assessed (n=17 for each category. The isokinetic variables used for the knee extension-flexion analysis were: peak torque (Nm, total work (J, average power (W, angle of peak torque (deg., agonist/ antagonist ratio (%, measured for three velocities (60°/s, 120°/s and 300°/s, with each series containing five repetitions. Three Wilks' Lambda discriminant analyses were performed, to identify which variables were more significant for the definition of each of the categories.Results:The discriminative variables at 60°/s in the PRO category were: extension peak torque, flexion total work, extension average power and agonist/antagonist ratio; and for the U17s were: extension total work, flexion peak torque and flexion average power. At 120°/s for the PRO category the discriminant variables were: flexion peak torque and extension average power; for the U17s they were: extension total work and flexion average power. Finally at 300°/s, the variables found in the PRO and U17 categories respectively were: extension average power and extension total work.Conclusion:Isokinetic variables for flexion and extension knee muscles were able to significantly discriminate between PRO and U17 soccer players.

  20. Protocol optimization of sacroiliac joint MR Imaging at 3 Tesla: Impact of coil design and motion resistant sequences on image quality.

    Science.gov (United States)

    Gondim Teixeira, P A; Bravetti, M; Hossu, G; Lecocq, S; Petit, D; Loeuille, D; Blum, A

    2017-12-01

    To evaluate the impact of coil design and motion-resistant sequences on the quality of sacroiliac magnetic resonance imaging (MRI) examination in patients with spondyloarthropathy. One hundred and twenty-one patients with suspected sacroiliitis and referred for MRI of the sacroiliac joints were retrospectively evaluated with MRI at 3-Tesla. There were 78 women and 43 men with a mean age of 36.7±11.5 (SD) years (range: 15.8-78.4 years). Conventional and motion-resistant fat-saturated fast-spin echo T2-weighted sequences were performed with two different coils. Image quality was subjectively evaluated by two independent readers (R1 and R2) using a four-point scale. Confidence in the identification of bone marrow edema pattern (BMEP) was also evaluated subjectively using a three-point scale. Phased array body coil yielded improved image quality compared to surface coil (14.1 to 30.4% for R1 and 14.6 to 25.7% for R2; Pcoil with motion-resistant T2-weighted sequence (kappa 0.990). The smallest number of indeterminate BMEP zones was seen on MRI set acquired with the phased-array body coil and motion-resistant T2-weighted sequence. Phased array body coil and motion-resistant T2-weighted sequences perform better than surface coil and conventional T2-weighted sequences for the evaluation of sacroiliac joints, increasing confidence in the identification of BMEP. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  1. Relationship Between the Range of Motion and Isometric Strength of Elbow and Shoulder Joints and Ball Velocity in Women Team Handball Players.

    Science.gov (United States)

    Schwesig, René; Hermassi, Souhail; Wagner, Herbert; Fischer, David; Fieseler, Georg; Molitor, Thomas; Delank, Karl-Stefan

    2016-12-01

    Schwesig, R, Hermassi, S, Wagner, H, Fischer, D, Fieseler, G, Molitor, T, and Delank, K-S. Relationship between the range of motion and isometric strength of elbow and shoulder joints and ball velocity in women team handball players. J Strength Cond Res 30(12): 3428-3435, 2016-The aims of this study were to investigate relationships between isometric strength and range of motion (ROM) of shoulder and elbow joints and compare 2 different team handball throwing techniques in women team handball. Twenty highly experienced women team handball players (age: 20.7 ± 2.9 years; body mass: 68.4 ± 6.0 kg; and height: 1.74 ± 0.06 m) participated in this study. The isometric strength (hand-held dynamometer) and ROM (goniometer) of shoulder and elbow joints were measured at the beginning of the preseasonal training. After clinical examination, the subjects performed 3 standing throws with run-up (10 m) and 3 jump throws over a hurdle (0.20 m). The mean ball velocity was calculated from 3 attempts and measured using a radar gun. The results showed that the ball velocity of the standing throw with run-up (vST) was significantly higher than that of the jump throw (vJT) (25.5 ± 1.56 vs. 23.2 ± 1.31 m·s; p handball players.

  2. Comparison of 3D Joint Angles Measured With the Kinect 2.0 Skeletal Tracker Versus a Marker-Based Motion Capture System.

    Science.gov (United States)

    Guess, Trent M; Razu, Swithin; Jahandar, Amirhossein; Skubic, Marjorie; Huo, Zhiyu

    2017-04-01

    The Microsoft Kinect is becoming a widely used tool for inexpensive, portable measurement of human motion, with the potential to support clinical assessments of performance and function. In this study, the relative osteokinematic Cardan joint angles of the hip and knee were calculated using the Kinect 2.0 skeletal tracker. The pelvis segments of the default skeletal model were reoriented and 3-dimensional joint angles were compared with a marker-based system during a drop vertical jump and a hip abduction motion. Good agreement between the Kinect and marker-based system were found for knee (correlation coefficient = 0.96, cycle RMS error = 11°, peak flexion difference = 3°) and hip (correlation coefficient = 0.97, cycle RMS = 12°, peak flexion difference = 12°) flexion during the landing phase of the drop vertical jump and for hip abduction/adduction (correlation coefficient = 0.99, cycle RMS error = 7°, peak flexion difference = 8°) during isolated hip motion. Nonsagittal hip and knee angles did not correlate well for the drop vertical jump. When limited to activities in the optimal capture volume and with simple modifications to the skeletal model, the Kinect 2.0 skeletal tracker can provide limited 3-dimensional kinematic information of the lower limbs that may be useful for functional movement assessment.

  3. A Comparison of Isokinetic Knee Strength and Power Output Ratios Between Female Basketball and Volleyball Players

    Directory of Open Access Journals (Sweden)

    Kabaciński Jarosław

    2017-09-01

    Full Text Available Purpose. Tests such as the counter movement jump (CMJ and squat jump (SJ allow for determining the ratio of maximal power output generated during SJ to CMJ (S/C. The isokinetic peak torque ratio of the hamstrings contracting eccentrically to the quadriceps contracting concentrically (H/Q is defined as functional H/Q. The purpose of this study was to compare the S/C and functional H/Q between female basketball and volleyball players. Methods. The total of 14 female basketball players (age, 19.8 ± 1.4 years and 12 female volleyball players (age, 22.3 ± 4.2 years participated in the study. A piezoelectric force platform was used for the CMJ and SJ. Moreover, isokinetic tests of the hamstrings and quadriceps muscle torque during eccentric and concentric contraction were performed. Results. The results of the S/C and functional H/Q at 90 deg · s-1/60 deg · s-1 velocities were higher in basketball players (87.3 ± 9.1% and 91.4 ± 9.3%, respectively than in volleyball players (83.1 ± 9.8% and 83.6 ± 16.5%, respectively. No significant differences in S/C or functional H/Q values between the two groups were found (p > 0.05. Conclusions. Decreasing the S/C may result from an improvement in the power output during CMJ and a better utilization of the stretch-shortening cycle effect. Balancing the functional H/Q through increasing the eccentric hamstrings strength can provide dynamic knee joint stabilization.

  4. Mechanical Simulation of the Extension and Flexion of the Elbow Joint in Rehabilitation

    Directory of Open Access Journals (Sweden)

    Iman Vahdat

    2013-01-01

    Full Text Available Objective: The goal of the present study was to improve the extension and flexion of the elbow joint for rehabilitation purposes, in terms of energy dissipation and of injuries caused by stress imposed on connective tissue by exercise equipments during force transfer , by investigation of viscoelastic property variations during change in speed of motion. Materials & Methods: A sample of five men without any previous neuromuscular impairment of the elbow joint was chosen by the BMI factor. The passive continuous motion test (CPM was performed by the CYBEX isokinetic system in the extension and flexion movements of the elbow joint of the left hand, at 4 different speeds (15, 45, 75 and120 Deg/s during 5 consecutive cycles at the range of motion of about 0 to 130 degrees. The experimental data was exported to the MATLAB software for analysis. In order to determine viscoelastic property effects and biomechanical parameters, we used a passive viscoelastic mechanical model constructed by 3 elements for simulation, and also we used the curve fitting method to derive the elastic and viscose coefficients for the model.,. Results: Results of experiments showed that by increasing the speed of motion, the value of work done, hysteresis and elastic coefficient increased and the value of viscose coefficient decreased. Also, it appeared that by increasing the speed of motion, the effect of viscose resistance on the passive torque curves increased. In addition, there was significant correlation between the action of the mechanical model and the action of the concerned limbs, during the movement. Conclusion: It was concluded that in order to improve motion and to reduce imposed risks and injuries to joints and limbs, rehabilitation exercises better be performed at lower speeds and with rehabilitation equipments supported by viscoelastic resistant force.

  5. Evaluating the Effects of local Injections of Bupivacaine and Triamcinolone Acetate on Shoulder Joint Pain and Restricted Range of Motion Following Cerebrovascular Accidents

    Directory of Open Access Journals (Sweden)

    Asadollah Saadat Niaki M.D.

    2011-06-01

    Full Text Available Background: Shoulder pain is a common complication of cerebrovascular accidents. This study was conducted to assess the effects of local injections of bupivacaine and triamcinolone acetate on shoulder joint pain and on restricted range of motion following brain events. Methods: This single-blind clinical trial study included 35 patients with chronic shoulder pain (the controls and 35 patients with chronic shoulder pain due to brain events (the case group. The study was done at Imam Hossein Hospital & Gandhi Day Clinic during the year 2008-2010. The patients in the two groups received bupivacaine and triamcinolone acetate for subacromial bursa injection and suprascapular nerve block by following the protocol described by Dangoisse et al. The patients were followed up for 12 weeks and they were evaluated for pain and range of motion 1, 6, and 12 weeks after the injections.Results: The mean age of the patients was 60.9±9.07 years. Statistically significant improvements in pain score (P=0.001 and shoulder joint range of motion (P=0.001 were observed in patients with chronic shoulder pain versus patients with brain events 12 weeks after suprascapulare nerve block and subacromial bours injections by bupivacaine and triamcinolone acetate.Conclusion: Suprascapular nerve block and subacromial bursa injections of bupivacaine and triamcinolone acetate is a safe and efficacious treatment for the treatment of chronic shoulder pain and restricted range of motion but it is not efficacious or of significant value for the treatment of shoulder pain in patients with brain events.

  6. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    Science.gov (United States)

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  7. THE EFFECT OF CREATINE SUPPLEMENTATION ON ATHLETE ISOKINETIC PERFORMANCE

    OpenAIRE

    Erkan Faruk ŞİRİN; Suzan YALÇIN

    2009-01-01

    The purpose of this study is to find the effects of Creatin Monohydrate (CrH2O) on athlete performance (isokinetic power measured as a total workout) used as an ergojenic aid in long-term (6 weeks) supplementation. There are 38 participants willing to join to the study. Their ages are between 20 and 27. All of them are choosed from active athletes. From the findings of this study; all the participants’ in the creatin group have increased the total workout production in all cycles of isokineti...

  8. Joint input shaping and feedforward for point-to-point motion : automated tuning for an industrial nanopositioning system

    NARCIS (Netherlands)

    Boeren, F.A.J.; Bruijnen, D.J.H.; Dijk, van N.J.M.; Oomen, T.A.E.

    2014-01-01

    Feedforward control can effectively compensate for the servo error induced by the reference signal if it is tuned appropriately. This paper aims to introduce a new joint input shaping and feedforward parametrization in iterative feedforward control. Such a parametrization has the potential to

  9. Reliability of knee joint range of motion and circumference measurements after total knee arthroplasty: does tester experience matter?

    DEFF Research Database (Denmark)

    Jakobsen, Thomas Linding; Christensen, Malene; Christensen, Stine Sommer

    2010-01-01

    : The design was an intra-tester, inter-tester and intra-day reliability study. Nineteen outpatients (10 females) having received a TKA were examined by an inexperienced and an experienced physiotherapist. Following a standardized protocol, active and passive knee joint ROM and circumference measurements were...

  10. Range of motion and isometric strength of shoulder joints of team handball athletes during the playing season, Part II: changes after midseason.

    Science.gov (United States)

    Fieseler, Georg; Jungermann, Philipp; Koke, Alexander; Irlenbusch, Lars; Delank, Karl-Stefan; Schwesig, Rene

    2015-03-01

    Our objective was to investigate the influence of workload and consecutive changes on active range of motion and isometric strength of team handball athletes' throwing shoulders (TSs) because the available data are insufficient. In a longitudinal investigation, 31 professional male handball athletes underwent a clinical shoulder examination. Athletes were examined at the beginning (week 0), at the end (week 6) of the preseasonal training, and at the end of the half-season (week 22) on both shoulders to determine isometric rotational strength (hand held dynamometer) and active range of motion (goniometer). This analysis demonstrates the results subsequently from week 6 to week 22 and from week 0 to week 22. The glenohumeral internal rotation (IR) deficit (GIRD), external rotation (ER) gain, and ER at the TS increased significantly (P 0.10, d > 0.30) in the first sequence (week 6 to week 22) but not significantly from week 0 to week 22. The total range of motion remained stable, and IR changed but not significantly. There was no influence on IR, ER, and total range of motion at the non-TS. The isometric strength of the TS and non-TS IR did not change. The isometric strength in ER significantly increased bilaterally during the investigation period. Our data verify changes and influences, such as an increasing GIRD, at the overhead TS joint in accordance with the workload during team handball season. ER gain did improve after the half-season period but did not fully compensate the GIRD at the TS. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. Knee joint motion and muscle activation patterns are altered during gait in individuals with moderate hip osteoarthritis compared to asymptomatic cohort.

    Science.gov (United States)

    Rutherford, Derek; Moreside, Janice; Wong, Ivan

    2015-07-01

    Knee replacements are common after hip replacement for end stage osteoarthritis. Whether abnormal knee mechanics exist in moderate hip osteoarthritis remains undetermined and has implications for understanding early osteoarthritis joint mechanics. The purpose of this study was to determine whether three-dimensional (3D) knee motion and muscle activation patterns in individuals with moderate hip osteoarthritis differ from an asymptomatic cohort and whether these features differ between contra- and ipsilateral knees. 3D motions and medial and lateral quadriceps and hamstring surface electromyography were recorded on 20 asymptomatic individuals and 20 individuals with moderate hip osteoarthritis during treadmill walking, using standardized collection and processing procedures. Principal component analysis was used to derive electromyographic amplitude and temporal waveform features. 3D stance-phase range of motion was calculated. A 2-factor repeated analysis of variance determined significant within-group leg and muscle differences. Student's t-tests identified between group differences, with Bonferroni corrections where applicable (α=0.05). Lower sagittal plane motion between early and mid/late stance (5°, P=0.004, effect size: 0.96) and greater mid-stance quadriceps activity was found in the osteoarthritis group (P=0.01). Compared to the ipsilateral knee, a borderline significant increase in mid-stance hamstring activity was found in the contra-lateral knee of the hip osteoarthritis group (P=0.018). Bilateral knee mechanics were altered, suggesting potentially increased loads and knee muscle fatigue. There was no indication that one knee is more susceptible to osteoarthritis than the other, thus clinicians should include bilateral knee analysis when treating patients with hip osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The importance of position and path repeatability on force at the knee during six-DOF joint motion.

    Science.gov (United States)

    Darcy, Shon P; Gil, Jorge E; Woo, Savio L-Y; Debski, Richard E

    2009-06-01

    Mechanical devices, such as robotic manipulators have been designed to measure joint and ligament function because of their ability to position a diarthrodial joint in six degrees-of-freedom with fidelity. However, the precision and performance of these testing devices vary. Therefore, the objective of this study was to determine the effect of systematic errors in position and path repeatability of two high-payload robotic manipulators (Manipulators 1 and 2) on the resultant forces at the knee. Using a porcine knee, the position and path repeatability of these manipulators were determined during passive flexion-extension with a coordinate measuring machine. The position repeatability of Manipulator 1 was 0.3 mm in position and 0.2 degrees in orientation while Manipulator 2 had a better position repeatability of 0.1 mm in position and 0.1 degrees in orientation throughout the range of positions examined. The corresponding variability in the resultant force at the knee for these assigned positions was 32+/-33 N for Manipulator 1 and 4+/-1 N for Manipulator 2. Furthermore, the repeatability of the trajectory of each manipulator while moving between assigned positions (path repeatability) was 0.8 mm for Manipulator 1 while the path repeatability for Manipulator 2 was improved (0.1 mm). These path discrepancies produced variability in the resultant force at the knee of 44+/-24 and 21+/-8 N, respectively, for Manipulators 1 and 2 primarily due to contact between the articular surfaces of the tibia and femur. Therefore, improved position and path repeatability yields lower variability in the resultant forces at the knee. Although position repeatability has been the most common criteria for evaluating biomechanical testing devices, the current study has clearly demonstrated that path repeatability can have an even larger effect on the variability in resultant force at the knee. Consequently, the repeatability of the path followed by the joint throughout its prescribed

  13. Improved finite-source inversion through joint measurements of rotational and translational ground motions: a numerical study

    Science.gov (United States)

    Reinwald, Michael; Bernauer, Moritz; Igel, Heiner; Donner, Stefanie

    2016-10-01

    With the prospects of seismic equipment being able to measure rotational ground motions in a wide frequency and amplitude range in the near future, we engage in the question of how this type of ground motion observation can be used to solve the seismic source inverse problem. In this paper, we focus on the question of whether finite-source inversion can benefit from additional observations of rotational motion. Keeping the overall number of traces constant, we compare observations from a surface seismic network with 44 three-component translational sensors (classic seismometers) with those obtained with 22 six-component sensors (with additional three-component rotational motions). Synthetic seismograms are calculated for known finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content to measure how the observations constrain the seismic source properties. We minimize the influence of the source receiver geometry around the fault by statistically analyzing six-component inversions with a random distribution of receivers. Since our previous results are achieved with a regular spacing of the receivers, we try to answer the question of whether the results are dependent on the spatial distribution of the receivers. The results show that with the six-component subnetworks, kinematic source inversions for source properties (such as rupture velocity, rise time, and slip amplitudes) are not only equally successful (even that would be beneficial because of the substantially reduced logistics installing half the sensors) but also statistically inversions for some source properties are almost always improved. This can be attributed to the fact that the (in particular vertical) gradient information is contained in the additional motion components. We compare these effects for strike-slip and normal-faulting type sources and confirm that the increase in inversion quality for kinematic source parameters is

  14. The Effect of 2 Forms of Talocrural Joint Traction on Dorsiflexion Range of Motion and Postural Control in Those With Chronic Ankle Instability.

    Science.gov (United States)

    Powden, Cameron J; Hogan, Kathleen K; Wikstrom, Erik A; Hoch, Matthew C

    2017-05-01

    Talocrural joint mobilizations are commonly used to address deficits associated with chronic ankle instability (CAI). Examine the immediate effects of talocrural joint traction in those with CAI. Blinded, crossover. Laboratory. Twenty adults (14 females; age = 23.80 ± 4.02 y; height = 169.55 ± 12.38 cm; weight = 78.34 ± 16.32 kg) with self-reported CAI participated. Inclusion criteria consisted of a history of ≥1 ankle sprain, ≥2 episodes of giving way in the previous 3 mo, answering "yes" to ≥4 questions on the Ankle Instability Instrument, and ≤24 on the Cumberland Ankle Instability Tool. Subjects participated in 3 sessions in which they received a single treatment session of sustained traction (ST), oscillatory traction (OT), or a sham condition in a randomized order. Interventions consisted of four 30-s sets of traction with 1 min of rest between sets. During ST and OT, the talus was distracted distally from the ankle mortise to the end-range of accessory motion. ST consisted of continuous distraction and OT involved 1-s oscillations between the mid and end-range of accessory motion. The sham condition consisted of physical contact without force application. Preintervention and postintervention measurements of weight-bearing dorsiflexion, dynamic balance, and static single-limb balance were collected. The independent variable was treatment (ST, OT, sham). The dependent variables included pre-to-posttreatment change scores for the WBLT (cm), normalized SEBTAR (%), and time-to-boundary (TTB) variables(s). Separate 1-way ANOVAs examined differences between treatments for each dependent variable. Alpha was set a priori at P manual therapies.

  15. The Effect of Ratio of Contraction to Relaxation Durations in PNF Exercises on the Muscle Strength and Range of Motion of Hip Joint

    Directory of Open Access Journals (Sweden)

    Hossein Rashedi

    2015-09-01

    Full Text Available Objective: The aim of the present study was to compare the effect of ratios of contraction- Relaxation on the muscle strength and range of motion of hip joint in PNF exercises. Methods: Thirty nine nonathletic male students (Mean±SD; age, 13±1.2 years; body mass, 55±9.8 kg were assigned .Three groups designated as I, II and III groups. The ratios of contraction to relaxation periods for groups were 1, 2 and 3 respectively. Training program included three sessions per week (CR-PNF for 6 weeks. Measurements of hip extensors muscles stretch and strength were performed at the beginning and at the end of training using an inclinometer (during leg raise test and dynamometer. Data were analyzed using dependent samples t-test and one-way ANOVA. Results: The results of the present study showed significant increases in hip extensor muscles flexibility and strength for three groups. This increase the in the strength in group I equaled 6 kg, in group II 4 kg and in group III 7 kg. The amount of increase in the hip extensor muscles flexibility in group I, II and II were 15, 8 and 12 degrees, respectively. The increase in these two variables was significant and similar in all three groups. Conclusion: Different contraction to relaxation ratio normally, 0.5, 1 and 2, did not show any meaningful differences on hip extensor muscular strength and hip range of motion.

  16. Seasonal variation in isokinetic strength of knee flexors and extensors in soccer players

    Directory of Open Access Journals (Sweden)

    Michal Lehnert

    2015-06-01

    Full Text Available BACKGROUND: Muscle strength is an important factor in soccer from the performance and health perspective. There is a lack of knowledge about changes in muscle strength of the knee flexors and extensors and their ratios during annual training cycle. OBJECTIVES: The aim of this study was to evaluate the seasonal variability of the observed parameters of isokinetic strength of the knee flexors and extensors in soccer players, U19, from the performance and health perspective. METHODS: The strength of the knee flexors and extensors was measured in players U19 category (n = 9; the average age 18.5 ±0.4 years on the isokinetic dynamometer IsoMed 2000 in angular velocity 60° × s-1. Measurement was performed in concentric/concentric and excentric/excentric mode of muscle action at the beginning of the winter preparatory period, at the end of the preparatory period and at the end of the spring competitive period. Monitored parameters were absolute peak torque (PT, conventional H/Q ratio (H/QCON, functional H/Q ratio (H/QFUN and functional H/Q ratio in range 10-30° of knee flexion (H/QFUN_10-30. RESULTS: Significant change in PT (p < .05 was noted only in cases of the knee extensors of the nondominant leg in the concentric mode. The evaluation of imbalance of the knee flexors and extensors by H/QCON and H/QFUN ratios did not show any significant changes, but there was found a significant decrease of the H/QFUN_10-30 ratio in the dominant leg between measurements at the beginning and at the end of the winter preparatory period. CONCLUSIONS: The results of the current study indicate that throughout the monitored periods of the annual training cycle desirable changes in knee flexors and extensors strength did not occur. The values suggest the disruption of the dynamic stabilization of the knee joint and increase in injury risk. Different dynamics of the three observed ratios confirmed that they provide different information about the physical fitness of

  17. Influence of Passive Joint Stiffness on Proprioceptive Acuity in Individuals With Functional Instability of the Ankle.

    Science.gov (United States)

    Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira

    2017-12-01

    Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.

  18. Neural and morphological adaptations of vastus lateralis and vastus medialis muscles to isokinetic eccentric training

    Directory of Open Access Journals (Sweden)

    Rodrigo de Azevedo Franke

    2014-09-01

    Full Text Available Vastus lateralis (VL and vastus medialis (VM are frequently targeted in conditioning/rehabilitation programs due to their role in patellar stabilization during knee extension. This study assessed neural and muscular adaptations in these two muscles after an isokinetic eccentric training program. Twenty healthy men underwent a four-week control period followed by a 12-week period of isokinetic eccentric training. Ultrasound evaluations of VL and VM muscle thickness at rest and electromyographic evaluations during maximal isometric tests were used to assess the morphological and neural properties, respectively. No morphological and neural changes were found throughout the control period, whereas both muscles showed significant increases in thickness (VL = 6.9%; p .05 post-training. Isokinetic eccentric training produces neural and greater morphological adaptations in VM compared to VL, which shows that synergistic muscles respond differently to an eccentric isokinetic strength training program

  19. The Effects of Isokinetic Strength Training on Strength at Different Angular Velocities: a Pilot Study

    Directory of Open Access Journals (Sweden)

    Tuğba Kocahan

    2017-09-01

    Conclusion: It was shown that angular velocity is important in isokinetic training, and that training at high angular velocities provides strength increases at lower angular velocities, but would not increase strength at angular velocities above the training level. For this reason, it is thought that in the preparation of an isokinetic strength training protocol, angular velocities need to be taken into account. For any athlete, the force at the angular velocity required in her/his sports branch needs to be considered.

  20. In vivo analysis of acromioclavicular joint motion after hook plate fixation using three-dimensional computed tomography.

    Science.gov (United States)

    Kim, Yoon Sang; Yoo, Yon-Sik; Jang, Seong Wook; Nair, Ayyappan Vijayachandran; Jin, Hyonki; Song, Hyun-Seok

    2015-07-01

    The clavicle hook plate can be used to treat acromioclavicular and coracoclavicular ligament injury or distal clavicular fracture with comminution. However, the hook plate can induce subacromial impingement, resulting in discomfort from the hardware. Our inclusion criteria were (1) men and women aged older than 20 years and (2) the presence of comminuted distal clavicular fractures (Neer type IIB) fixed with a hook plate (Synthes, Oberdorf, Switzerland). Three-dimensional computed tomography was obtained before removal of the hook plate. Seven patients were enrolled prospectively. The mean age was 42 years (range, 24-60 years). Zero degree images and abduction images were obtained. The sagittal cut surface was obtained 5 mm medial from the distal clavicle. The equator of the cut surface of the clavicle was compared with the full abduction model to analyze rotation. The center of the cut surface of the clavicle was compared with the full abduction model to analyze translation. The average difference in rotation of the distal clavicle between both shoulders was 16° (range, 3°-22°; P = .001). The mean difference in anterior translation of the distal clavicle was 2.2 mm (range, -0.7 to 5.6 mm; P = .030). Hook plate fixation at the acromioclavicular joint causes decreased internal rotation and increased anterior translation of the distal clavicle with respect to the medial acromion, indicating that the scapula relative to the thorax has decreased posterior tilting and increased external rotation in shoulders fixed using a hook plate. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Effects of the bilateral isokinetic strengthening training on functional parameters, gait, and the quality of life in patients with stroke

    OpenAIRE

    Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe

    2015-01-01

    Objective: To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Methods: Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening traini...

  2. The LISST-SL streamlined isokinetic suspended-sediment profiler

    Science.gov (United States)

    Gray, John R.; Agrawal, Yogesh C.; Pottsmith, H. Charles

    2004-01-01

    The new manually deployed Laser In Situ Scattering Transmissometer-StreamLined profiler (LISST-SL) represents a major technological advance for suspended-sediment measurements in rivers. The LISST-SL is being designed to provide real-time data on sediment concentrations and particle-size distributions. A pressure sensor and current meter provide real-time depth and ambient velocity data, respectively. The velocity data are also used to control pumpage across an internal laser so that the intake velocity is constantly adjusted to match the ambient stream velocity. Such isokinetic withdrawal is necessary for obtaining representative sedimentary measurements in streamflow, and ensures compliance with established practices. The velocity and sediment-concentration data are used to compute fluxes for up to 32 particle-size classes at points, verticals, or in the entire stream cross section. All data are stored internally, as well as transmitted via a 2-wire conductor to the operator using a specially developed communication protocol. The LISST-SL's performance will be measured and compared to published sedimentological accuracy criteria, and a performance summary will be placed on-line.

  3. Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique

    Science.gov (United States)

    Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke

    2013-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

  4. Range of motion exercise of temporo-mandibular joint with hot pack increases occlusal force in patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Nozaki, S; Kawai, M; Shimoyama, R; Futamura, N; Matsumura, T; Adachi, K; Kikuchi, Y

    2010-12-01

    The purpose of this study is to evaluate whether the range of motion exercise of the temporo-mandibular joint (jaw ROM exercise) with a hot pack and massage of the masseter muscle improve biting disorder in Duchenne muscular dystrophy (DMD). The subjects were 18 DMD patients (21.3+/- 4.1 years old). The jaw ROM exercise consisted of therapist-assisted training (2 times a week) and self-training (before each meal every day). The therapist-assisted training consisted of the application of a hot pack on the cheek of the masseter muscle region (15 minutes), the massage of the masseter (10 minutes), and jaw ROM exercise (5 minutes). The self-training involved jaw ROM exercise by opening the mouth to the maximum degree, ten times. These trainings continued for six months. Outcomes were evaluated by measuring the greatest occlusal force and the distance at the maximum degree of mouth opening between an incisor of the top and that of the bottom. Six months later, the greatest occlusal force had increased significantly compared with that at the start of jaw ROM exercise (intermediate values: from 73.8N to 97.3N) (p = 0.005) as determined by the Friedman test and Scheffi's nonparametric test. The patients' satisfaction with meals increased. However, the maximum degree of mouth opening did not change after six months of jaw ROM exercise. Jaw ROM exercise in DMD is effective for increasing the greatest occlusal force.

  5. Quadriceps Strength in Patients With Isolated Cartilage Defects of the Knee: Results of Isokinetic Strength Measurements and Their Correlation With Clinical and Functional Results.

    Science.gov (United States)

    Hirschmüller, Anja; Andres, Tasja; Schoch, Wolfgang; Baur, Heiner; Konstantinidis, Lukas; Südkamp, Norbert P; Niemeyer, Philipp

    2017-05-01

    Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment. To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results. Cross-sectional study; Level of evidence, 3. To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m 2 ) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm 2 ). Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3.13 cm 2 ) were of no importance regarding the

  6. Isokinetic and isometric strength-endurance after 6 hours of immersion and 6 degrees head-down tilt in men

    Science.gov (United States)

    Shaffer-Bailey, M.; Greenleaf, J. E.; Hutchinson, T. M.

    1996-01-01

    PURPOSE: To determine weight (water) loss levels for onset of muscular strength and endurance changes during deconditioning. METHODS: Seven men (27-40 yr) performed maximal shoulder-, knee-, and ankle-joint isometric (0 degree.s(-1) load) and isokinetic (60 degrees, 120 degrees, 180 degrees.s(-1) velocity) exercise tests during ambulatory control (AC), after 6 h of 6 degrees head-down tilt (HDT; dry-bulb temp. = 23.2 +/- SD 0.6 degrees C, relative humidity = 31.1+/- 11.1%) and after 6 h of 80 degrees foot-down head-out water immersion (WI; water temp. = 35.0 +/- SD 0.1 degree C) treatments. RESULTS: Weight (water) loss after HDT (1.10 +/- SE 0.14 kg, 1.4 +/- 0.2% body wt) and WI (1.54+/- 0.19 kg, 2.0 +/- 0.2% body wt) were not different, but urinary excretion with WI (1,354 +/- 142 ml.6 h(-1)) was 28% greater (p strength was unchanged except for three knee-joint peak torques: AC torque (120 degrees.s(-1), 285 +/- 20 Nm) decreased to 268 +/- 21 Nm (delta = -6%, p strength and endurance decrements is more than 2% body weight (water) loss, while significant reduction in knee-joint muscular strength-endurance occurred only at moderate (120 degrees.s(-1) and lighter (180 degrees.s(-1)) loads with body weight loss of 1.4-2.0% following WI or HDT, respectively. These weight (water) losses and knee-joint strength decrements are somewhat less than the mean weight loss of 2.6% and knee-joint strength decrements of 6-20% of American astronauts after Skylab flights to 84 d.

  7. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.

    Science.gov (United States)

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-11-01

    Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P jump height (beta = 0.49, P jump height having the strongest impact (beta = 0.49, P jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.

  8. Isokinetic Strength and Endurance Tests used Pre- and Post-Spaceflight: Test-Retest Reliability

    Science.gov (United States)

    Laughlin, Mitzi S.; Lee, Stuart M. C.; Loehr, James A.; Amonette, William E.

    2009-01-01

    To assess changes in muscular strength and endurance after microgravity exposure, NASA measures isokinetic strength and endurance across multiple sessions before and after long-duration space flight. Accurate interpretation of pre- and post-flight measures depends upon the reliability of each measure. The purpose of this study was to evaluate the test-retest reliability of the NASA International Space Station (ISS) isokinetic protocol. Twenty-four healthy subjects (12 M/12 F, 32.0 +/- 5.6 years) volunteered to participate. Isokinetic knee, ankle, and trunk flexion and extension strength as well as endurance of the knee flexors and extensors were measured using a Cybex NORM isokinetic dynamometer. The first weekly session was considered a familiarization session. Data were collected and analyzed for weeks 2-4. Repeated measures analysis of variance (alpha=0.05) was used to identify weekly differences in isokinetic measures. Test-retest reliability was evaluated by intraclass correlation coefficients (ICC) (3,1). No significant differences were found between weeks in any of the strength measures and the reliability of the strength measures were all considered excellent (ICC greater than 0.9), except for concentric ankle dorsi-flexion (ICC=0.67). Although a significant difference was noted in weekly endurance measures of knee extension (p less than 0.01), the reliability of endurance measure by week were considered excellent for knee flexion (ICC=0.97) and knee extension (ICC=0.96). Except for concentric ankle dorsi-flexion, the isokinetic strength and endurance measures are highly reliable when following the NASA ISS protocol. This protocol should allow accurate interpretation isokinetic data even with a small number of crew members.

  9. Interseason variability in isokinetic strength and poor correlation with Nordic hamstring eccentric strength in football players.

    Science.gov (United States)

    van Dyk, N; Witvrouw, E; Bahr, R

    2018-04-25

    In elite sport, the use of strength testing to establish muscle function and performance is common. Traditionally, isokinetic strength tests have been used, measuring torque during concentric and eccentric muscle action. A device that measures eccentric hamstring muscle strength while performing the Nordic hamstring exercise is now also frequently used. The study aimed to investigate the variability of isokinetic muscle strength over time, for example, between seasons, and the relationship between isokinetic testing and the new Nordic hamstring exercise device. All teams (n = 18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Qatar. Isokinetic strength was investigated for measurement error, and correlated to Nordic hamstring exercise strength. Of the 529 players included, 288 players had repeated tests with 1/2 seasons between test occasions. Variability (measurement error) between test occasions was substantial, as demonstrated by the measurement error (approximately 25 Nm, 15%), whether separated by 1 or 2 seasons. Considering hamstring injuries, the same pattern was observed among injured (n = 60) and uninjured (n = 228) players. A poor correlation (r = .35) was observed between peak isokinetic hamstring eccentric torque and Nordic hamstring exercise peak force. The strength imbalance between limbs calculated for both test modes was not correlated (r = .037). There is substantial intraindividual variability in all isokinetic test measures, whether separated by 1 or 2 seasons, irrespective of injury. Also, eccentric hamstring strength and limb-to-limb imbalance were poorly correlated between the isokinetic and Nordic hamstring exercise tests. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Relation between isokinetic muscle strength and functional capacity in recreational athletes with chondromalacia patellae.

    Science.gov (United States)

    Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp Kalyon, T

    2003-12-01

    To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60 degrees /s (25-90 degrees range of flexion) and 180 degrees /s (full range). These sessions were repeated three times a week for six weeks. Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters.

  11. Efficacy of isokinetic exercise on functional capacity and pain in patellofemoral pain syndrome.

    Science.gov (United States)

    Alaca, Ridvan; Yilmaz, Bilge; Goktepe, A Salim; Mohur, Haydar; Kalyon, Tunc Alp

    2002-11-01

    To assess the effect of an isokinetic exercise program on symptoms and functions of patients with patellofemoral pain syndrome. A total of 22 consecutive patients with the complaint of anterior knee pain who met the inclusion criteria were recruited to assess the efficacy of isokinetic exercise on functional capacity, isokinetic parameters, and pain scores in patients with patellofemoral pain syndrome. A total of 37 knees were examined. Six-meter hopping, three-step hopping, and single-limb hopping course tests were performed for each patient with the measurements of the Lysholm scale and visual analog scale. Tested parameters were peak torque, total work, average power, and endurance ratios. Statistical analyses revealed that at the end of the 6-wk treatment period, functional and isokinetic parameters improved significantly, as did pain scores. There was not statistically significant correlation between different groups of parameters. The isokinetic exercise treatment program used in this study prevented the extensor power loss due to patellofemoral pain syndrome, but the improvement in the functional capacity was not correlated with the gained power.

  12. Isokinetic peak torque and flexibility changes of the hamstring muscles after eccentric training: Trained versus untrained subjects.

    Science.gov (United States)

    Abdel-Aziem, Amr Almaz; Soliman, Elsadat Saad; Abdelraouf, Osama Ragaa

    2018-05-23

    The aim of this study was to examine the effect of eccentric isotonic training on hamstring flexibility and eccentric and concentric isokinetic peak torque in trained and untrained subjects. Sixty healthy subjects (mean age: 21.66 ± 2.64) were divided into three equal groups, each with 20 voluntary participants. Two experimental groups (untrained and trained groups) participated in a hamstring eccentric isotonic strengthening program (five days/week) for a six-week period and one control group that was not involved in the training program. The passive knee extension range of motion and hamstring eccentric and concentric isokinetic peak torque were measured at angular velocities 60° and 120°/s for all groups before and after the training period. Two-way analysis of variance showed that there was a significant increase in the hamstring flexibility of the untrained and trained groups (25.65 ± 6.32°, 26.55 ± 5.99°, respectively), (p  0.05). Moreover, there was a significant increase in eccentric isokinetic peak torque of both the untrained and trained groups (127.25 ± 22.60Nm, 139.65 ± 19.15Nm, 125.40 ± 21.61Nm, 130.90 ± 18.71Nm, respectively), (p  0.05) at both angular velocities. On the other hand, there was no significant increase in the concentric isokinetic peak torque of the three groups (92.50 ± 20.50Nm, 79.05 ± 18.95Nm, 92.20 ± 21.96Nm, 79.85 ± 18.97Nm, 100.45 ± 25.78Nm, 83.40 ± 23.73Nm, respectively), (p > 0.05) at both angular velocities. The change scores in the hamstring flexibility (06.25 ± 1.86°) and eccentric peak torque of the untrained group (16.60 ± 4.81Nm, 17.45 ± 5.40Nm, respectively) were significantly higher (p  0.05). After a six-week period of eccentric isotonic training, the hamstring eccentric peak torque and flexibility of trained and untrained groups improved without changes in the concentric peak torque. Moreover, the improvement of untrained subjects was higher than trained

  13. Reliability of Concentric, Eccentric and Isometric Knee Extension and Flexion when using the REV9000 Isokinetic Dynamometer

    DEFF Research Database (Denmark)

    de Carvalho Froufe Andrade, Alberto César Pereira; Caserotti, Paolo; de Carvalho, Carlos Manuel Pereira

    2013-01-01

    The aim of this study was to assess the reliability of isokinetic and ISO knee extensor and flexor muscle strength when using the REV9000 (Technogym) isokinetic dynamometer. Moreover, the reliability of several strength imbalance indices and bilateral ratios were also examined. Twenty-four physic...

  14. Effects of the bilateral isokinetic strengthening training on functional parameters, gait, and the quality of life in patients with stroke.

    Science.gov (United States)

    Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe

    2015-01-01

    To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (Pisokinetic group (Pisokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality.

  15. Isokinetic Evaluation of the Hip Flexor and Extensor Muscles: A Systematic Review.

    Science.gov (United States)

    Zapparoli, Fabricio Yuri; Riberto, Marcelo

    2017-11-01

    Isokinetic dynamometry testing is a safe and reliable method accepted as the "gold standard" in the evaluation of muscle strength in the open kinetic chain. Isokinetic hip examinations face problems in the standardization of the position of the equipment axis, in the individual being examined, and in the adjustment of the lever arm and in stabilization strategies for the patients during the tests. Identification of the methodologic procedures with best reproducibility is also needed. To review the literature to evaluate the parameters used for the isokinetic evaluation of the hip flexor and extensor muscles and its reproducibility. This is a systematic literature review of the Cochrane, LILACS, PEDro, PubMed, and SciELO databases. The inclusion criteria were articles on the evaluation of hip flexor and/or extensor muscular strength with an isokinetic dynamometer and articles that analyzed the ICC or Pearson's reproducibility. The information extracted was positioning of the patient; positioning of the dynamometer axis; positioning of the lever arm; angular speed; sample size, pathology; type of contraction; and ICC and Pearson's results. 204 articles were found, from which 14 were selected that evaluated hip flexor and extensor muscles, involving 550 individuals who were submitted to an isokinetic hip evaluation. Five articles obtained the best result in reproducibility and had their methodology analyzed. To obtain better reproducibility of the isokinetic evaluation of the hip flexor and extensor muscles, the following recommendations must be followed: the individual must be positioned in the supine position and the dynamometer axis must be aligned with the greater trochanter of the femur. The positioning of the lever arm must be in the most distal region of the thigh possible. The angular speed used to analyze torque peak and muscle work was 60°/s, and to evaluate the muscle power it was 180°/s, with concentric and eccentric contractions being analyzed.

  16. THE EFFECTS OF ISOKINETIC KNEE STRENGTH ON THE PROMPTNESS OF SOCCER PLAYERS

    OpenAIRE

    Ali Kerim Yilmaz; Menderes Kabadayi; Muhammet Hakan Mayda; Murşit Ceyhun Birinci; Mustafa Özdal

    2017-01-01

    The purpose of this study is to examine the effects of isokinetic knee strength on promptness. 15 soccer players with an average age of 22,80±2,14 years and 15 controls with an average age of 21,60±1,40 years participated in the study. Body composition, isokinetic knee strength measurement at angular speeds of 60o, 180o, 240o and 10 m sprint test were conducted respectively in the study. General warm-up procedure was carried out on the groups before measurements. In statistical analyses, Shap...

  17. Isokinetic and isometric muscle strength combined with transcutaneous electrical muscle stimulation in primary fibromyalgia syndrome

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Wildschiødtz, Gordon; Danneskiold-Samsøe, B

    1991-01-01

    Twenty women with primary fibromyalgia syndrome and 20 age matched healthy women were investigated. The subjects performed maximum voluntary isokinetic contractions of the right quadriceps in an isokinetic dynamometer. Maximum voluntary isometric contractions of the right quadriceps were performed...... of superimposed twitches was 65% in the patient group and 15% in the control group (p = 0.003). Patients with primary fibromyalgia have a lower maximum voluntary muscle strength than expected. The increased presence of superimposed electrically elicited twitches during maximum voluntary contraction indicates...... submaximal force application in primary fibromyalgia syndrome....

  18. A Comparison of Isotonic, Isokinetic, and Plyometric Training Methods for Vertical Jump Improvement.

    Science.gov (United States)

    Miller, Christine D.

    This annotated bibliography documents three training methods used to develop vertical jumping ability and power: isotonic, isokinetics, and plyometric training. Research findings on all three forms of training are summarized and compared. A synthesis of conclusions drawn from the annotated writings is presented. The report includes a glossary of…

  19. Use of isokinetic muscle strength as a measure of severity of rheumatoid arthritis

    DEFF Research Database (Denmark)

    Schiøttz-Christensen, Berit; Lyngberg, K; Keiding, N

    2001-01-01

    The aim of this study was to study the association between isokinetic muscle strength (IMS) and other clinical indicators of disability and disease activity in patients with rheumatoid arthritis (RA). A cohort of 36 RA patients was followed over a 1-year period with five measurements of disease...

  20. Relative differences in strength and power from slow to fast isokinetic velocities may reflect dynapenia.

    Science.gov (United States)

    Jenkins, Nathaniel D M; Housh, Terry J; Palmer, Ty B; Cochrane, Kristen C; Bergstrom, Haley C; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T

    2015-07-01

    We compared absolute and normalized values for peak torque (PT), mean power (MP), rate of velocity development, and electromyography (EMG) amplitude during maximal isometric and concentric isokinetic leg extension muscle actions, as well as the %decrease in PT and %increase in MP from 1.05 to 3.14 rad·s(-1) in younger versus older men. Measurements were performed twice for reliability. Isokinetic measurements were normalized to the isometric muscle actions. Absolute isometric PT, isokinetic PT and MP, and EMG amplitudes at 1.05 and 3.14 rad·s(-1) were greater in the younger men, although normalizing to isometric PT eliminated the age differences. The older men exhibited greater %decrease in PT (37.2% vs. 31.3%) and lower %increase in MP (87.6% vs. 126.4%) regardless of normalization. Normalization eliminated absolute differences in isokinetic strength and power, but the relative differences from slow to fast velocities may reflect dynapenia characterized by age-related decreases in fast-twitch fiber function. © 2014 Wiley Periodicals, Inc.

  1. Identification of cardiac repercussions after intense and prolonged concentric isokinetic exercise in young sedentary people.

    Science.gov (United States)

    Le Goff, Caroline; Kaux, Jean-François; Couffignal, Vincent; Coubard, Romain; Mélon, Pierre; Cavalier, Etienne; Croisier, Jean-Louis

    2015-09-01

    Cardiopathies are the world's leading cause of mortality and morbidity. Although rare, cardiovascular accidents can occur during intense and infrequent sporting activity, particularly among those who are unaware of their heart condition. The development of cardiospecific biochemical markers has led to a reconsideration of the role of biology in the diagnosis of cardiovascular illnesses. The aim of this study therefore was, through the use of cardiac biomarker assays, to highlight the impact of sustained physical effort in the form of intense and prolonged concentric isokinetic exercise and to research potential cardiovascular risks. Eighteen subjects participated in a maximal concentric isokinetic exercise involving 30 knee flexion-extensions for each leg. Five blood tests were taken to study the kinetics of the cardiac biomarkers. Haemodynamic parameters were measured continuously using a Portapres, and respiratory parameters were measured using a Sensormedics Vmax 29C. The results showed significant increases in the creatine kinase, myoglobin, homocysteine and haemoglobin cardiac markers. Evolutionary trends were also observed for the following biomarkers: NT-proBNP, myeloperoxydase and C-reactive protein. All the physiological parameters measured presented statistically significant changes. Isokinetic effort leads to the release of cardiac markers in the blood, but these do not exceed the reference values in healthy subjects. Maximal concentric isokinetic exercise does not, therefore, lead to an increased risk of cardiovascular pathologies. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. Assessment of isokinetic knee strength in elite young female basketball players: correlation with vertical jump.

    Science.gov (United States)

    Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T

    2015-12-01

    To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (Pvertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, Pvertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.

  3. [Correlations Between Joint Proprioception, Muscle Strength, and Functional Ability in Patients with Knee Osteoarthritis].

    Science.gov (United States)

    Chen, Yoa; Yu, Yong; He, Cheng-qi

    2015-11-01

    To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (Pcoefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.

  4. Thoracic posture, shoulder muscle activation patterns and isokinetic ...

    African Journals Online (AJOL)

    Poor posture, scapular dyskinesia, altered scapular muscle recruitment patterns and ... postural deviation and incorrect shoulder kinematics.[5]. Knowledge of the .... the contra-lateral hand was placed as far down the spinal column as possible, and the ... produced by muscle contraction for rotation around a joint.[12] During.

  5. Isokinetic trunk muscle performance in pre-teens and teens with and without back pain.

    Science.gov (United States)

    Bernard, J-C; Boudokhane, S; Pujol, A; Chaléat-Valayer, E; Le Blay, G; Deceuninck, J

    2014-02-01

    To assess with an isokinetic dynamometer the force and endurance of the spinal flexor and extensor muscles in pre-teens or teens aged 11 to 13 and 14 to 16 years with and without low back pain (LBP). The control group and the LBP group were homogeneous in terms of age, weight, height and Body Mass Index (BMI). Assessment was carried out with the isokinetic dynamometer Cybex Norm®. The spinal flexors and extensors were explored concentrically at speeds of 60°, 90° and 120°/sec. The parameters chosen were: maximal moment of force (MMF), mean power (MP), total work (TW), F/E ratios (between the flexors and the extensors for the aforesaid parameters). In the LBP groups, clinical information (pain, extensibility of the spinal and sub-pelvic muscles, sports practice) and sagittal radiological data were all measured. While no significant difference in isokinetic performance was found between asymptomatic and LBP children in the 11-to-13-year-old group, the isokinetic performances of the LBP children were influenced positively by BMI value, number of hours of physical activity and radiologic value of the lumbar lordosis. As regards these pre-teens, assessment with an isokinetic dynamometer does not highlight muscle characteristics that might explain LBP occurrence. As regards the 14-to-16-year-old group, muscle strength has been found to be correlated with age. LBP teens were showed to have weaker extensors and stronger flexors than the healthy teens. It is with regard to this age group that assessment with an isokinetic dynamometer clearly yields interesting results. Since we have yet to standardize our evaluation criteria (working speed, number of trials…), it is difficult to compare our results with those reported in the literature. This is a preliminary study involving a relatively low number of patients. That said, given the fact that numerous parameters are connected with the age and height of the subjects, assessment with an isokinetic dynamometer can be

  6. Displacement of the medial meniscus within the passive motion characteristics of the human knee joint: an RSA study in human cadaver knees.

    NARCIS (Netherlands)

    Tienen, T. van; Buma, P.; Scholten, J.G.; Kampen, A. van; Veth, R.P.H.; Verdonschot, N.J.J.

    2005-01-01

    The objective of this study was to validate an in vitro human cadaver knee-joint model for the evaluation of the meniscal movement during knee-joint flexion. The question was whether our model showed comparable meniscal displacements to those found in earlier meniscal movement studies in vivo.

  7. RELATIONSHIP BETWEEN ISOKINETIC KNEE STRENGTH AND JUMP CHARACTERISTICS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    Science.gov (United States)

    Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith

    2015-06-01

    Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (pjump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to isokinetic knee strength measures. 2b.

  8. The isokinetic strength profile of elite soccer players according to playing position.

    Directory of Open Access Journals (Sweden)

    Robert Śliwowski

    Full Text Available The aim of this study was to compare isokinetic strength performance profiles in elite soccer players across different field positions. A total of 111 elite international players of Polish Ekstraklasa (the top division in Poland were examined during the 2010-2015 seasons. The players were classified into six positional roles: central defenders (CD, external defenders (ED, central midfielders (CM, external midfielders (EM, forwards (F, and goalkeepers (G. The concentric isokinetic strength (peak torque [PT] of quadriceps and hamstrings, H/Q ratios was calculated for the dominant leg and the non-dominant leg at angular velocity of 1.05 rad ·s-1, whereas to assess isokinetic muscle endurance, the total work [TW] at angular velocity of 4.19 rad ·s-1, was taken into consideration. The results showed that isokinetic strength performance varies significantly among players in different playing positions. The analysis of PT for quadriceps (PT-Q and hamstrings (PT-H generally showed that the goalkeepers and central midfielders had lower strength levels compared to other playing positions. In the case of PT-H and hamstring/quadricep (H/Q peak torque ratios, statistically significant differences were also noted for the legs, where mean values noted for the dominant leg were higher than for the non-dominant leg. For TW for quadriceps (TW-Q and hamstrings (TW-H, statistically significant differences were noted only between playing positions. TW-Q values for goalkeepers were lower than for central defenders and external midfielders. TW-H values for goalkeepers were lower than for central midfielders, central defenders and external midfielders. This study showed that specific functional activity of players in individual positions on the field influences the varied profile of isokinetic strength performance.

  9. Isometric and isokinetic hip strength and agonist/antagonist ratios in symptomatic femoroacetabular impingement.

    Science.gov (United States)

    Diamond, Laura E; Wrigley, Tim V; Hinman, Rana S; Hodges, Paul W; O'Donnell, John; Takla, Amir; Bennell, Kim L

    2016-09-01

    This study investigated isometric and isokinetic hip strength in individuals with and without symptomatic femoroacetabular impingement (FAI). The specific aims were to: (i) determine whether differences exist in isometric and isokinetic hip strength measures between groups; (ii) compare hip strength agonist/antagonist ratios between groups; and (iii) examine relationships between hip strength and self-reported measures of either hip pain or function in those with FAI. Cross-sectional. Fifteen individuals (11 males; 25±5 years) with symptomatic FAI (clinical examination and imaging (alpha angle >55° (cam FAI), and lateral centre edge angle >39° and/or positive crossover sign (combined FAI))) and 14 age- and sex-matched disease-free controls (no morphological FAI on magnetic resonance imaging) underwent strength testing. Maximal voluntary isometric contraction strength of hip muscle groups and isokinetic hip internal (IR) and external rotation (ER) strength (20°/s) were measured. Groups were compared with independent t-tests and Mann-Whitney U tests. Participants with FAI had 20% lower isometric abduction strength than controls (p=0.04). There were no significant differences in isometric strength for other muscle groups or peak isokinetic ER or IR strength. The ratio of isometric, but not isokinetic, ER/IR strength was significantly higher in the FAI group (p=0.01). There were no differences in ratios for other muscle groups. Angle of peak IR torque was the only feature correlated with symptoms. Individuals with symptomatic FAI demonstrate isometric hip abductor muscle weakness and strength imbalance in the hip rotators. Strength measurement, including agonist/antagonist ratios, may be relevant for clinical management of FAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Soft tissue influence on ex vivo mobility in the hip of Iguana: comparison with in vivo movement and its bearing on joint motion of fossil sprawling tetrapods.

    Science.gov (United States)

    Arnold, Patrick; Fischer, Martin S; Nyakatura, John A

    2014-07-01

    The reconstruction of a joint's maximum range of mobility (ROM) often is a first step when trying to understand the locomotion of fossil tetrapods. But previous studies suggest that the ROM of a joint is restricted by soft tissues surrounding the joint. To expand the limited informative value of ROM studies for the reconstruction of a fossil species' locomotor characteristics, it is moreover necessary to better understand the relationship of ex vivo ROM with the actual in vivo joint movement. To gain insight into the relationship between ex vivo mobility and in vivo movement, we systematically tested for the influence of soft tissues on joint ROM in the hip of the modern lizard Iguana iguana. Then, we compared the ex vivo mobility to in vivo kinematics of the hip joint in the same specimens using X-ray sequences of steady-state treadmill locomotion previously recorded. With stepwise removal of soft tissues and a repeated-measurement protocol, we show that soft tissues surrounding the hip joint considerably limit ROM, highlighting the problems when joint ROM is deduced from bare bones only. We found the integument to have the largest effect on the range of long-axis rotation, pro- and retraction. Importantly, during locomotion the iguana used only a fragment of the ROM that was measured in our least restrictive dissection situation (i.e. pelvis and femur only conjoined by ligaments), demonstrating the discrepancy between hip joint ROM and actual in vivo movement. Our study emphasizes the necessity for caution when attempting to reconstruct joint ROM or even locomotor kinematics from fossil bones only, as actual in vivo movement cannot be deduced directly from any condition of cadaver mobility in Iguana and likely in other tetrapods. © 2014 Anatomical Society.

  11. Human motion simulation predictive dynamics

    CERN Document Server

    Abdel-Malek, Karim

    2013-01-01

    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  12. Wrist range of motion and motion frequency during toy and game play with a joint-specific controller specially designed to provide neuromuscular therapy: A proof of concept study in typically developing children.

    Science.gov (United States)

    Crisco, Joseph J; Schwartz, Joel B; Wilcox, Bethany; Brideau, Holly; Basseches, Benjamin; Kerman, Karen

    2015-08-20

    Upper extremities affected by hemiplegic cerebral palsy (CP) and other neuromuscular disorders have been demonstrated to benefit from therapy, and the greater the duration of the therapy, the greater the benefit. A great motivator for participating in and extending the duration of therapy with children is play. Our focus is on active motion therapy of the wrist and forearm. In this study we examine the wrist motions associated with playing with two toys and three computer games controlled by a specially-designed play controller. Twenty children (ages 5-11) with no diagnosis of a muscular disorder were recruited. The play controller was fitted to the wrist and forearm of each child and used to measure and log wrist flexion and extension. Play activity and enjoyment were quantified by average wrist range of motion (ROM), motion frequency measures, and a discrete visual scale. We found significant differences in the average wrist ROM and motion frequency among the toys and games, yet there were no differences in the level of enjoyment across all toys and games, which was high. These findings indicate which toys and games may elicit the greater number of goal-directed movements, and lay the foundation for our long-term goal to develop and evaluate innovative motion-specific play controllers that are engaging rehabilitative devices for enhancing therapy and promoting neural plasticity and functional recovery in children with CP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Development of a new modeling technique of 3D S-wave velocity structure for strong ground motion evaluation - Integration of various geophysical and geological data using joint inversion

    International Nuclear Information System (INIS)

    Sugimoto, Yoshihiro

    2014-01-01

    A restricted stripe-like zone suffered major damage due to the 1995 Hyogo-ken Nanbu earthquake, and ground motion of the south side of the Kashiwazaki NPP site was much greater than that of the north side in the 2007 Niigata-ken Chuetsu-oki earthquake. One reason for these phenomena is thought to be the focusing effect due to irregularly shaped sedimentary basins (e.g., basin-edge structure, fold structure, etc.) This indicates that precise evaluation of S-wave velocity structure is important. A calculation program that was developed to make S-wave velocity models using the joint inversion method was presented. This program unifies various geophysical and geological data and can make a complex structure model for evaluating strong ground motion with high precision. (author)

  14. Isometric and isokinetic muscle strength in patients with fibrositis syndrome. New characteristics for a difficult definable category of patients

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Danneskiold-Samsøe, B

    1987-01-01

    A common complaint among patients with fibrositis syndrome is exhaustion and fatique. It was therefore felt desirable to evaluate the muscle strength of these patients compared with normal subjects. Maximum isometric and isokinetic strength of knee extension was measured in 15 patients and 15...... healthy matched subjects, using an isokinetic dynamometer (Cybex II). Maximum isometric strength at various knee extension angles (90 degrees, 60 degrees and 30 degrees degrees) was significantly (p less than 0.001) lower in the fibrositis group than in controls, a reduction of approximately 58......-66%. Maximum isokinetic strength at various knee extension velocities (30-240 degrees per second) was also significantly (p less than 0.01) lower in the fibrositis group than in controls, the reduction being approximately 41-51%. In conclusion, isometric and isokinetic muscle strength is found to be lower...

  15. ANALYSIS OF ISOKINETIC KNEE EXTENSION / FLEXION IN MALE ELITE ADOLESCENT WRESTLERS

    Directory of Open Access Journals (Sweden)

    Sanli Sadi Kurdak

    2005-12-01

    Full Text Available Wrestling requires strength of the upper and lower body musculature which is critical for the athletic performance. Evaluation of the adolescent's skeletal muscle is important to understand body movement, especially including those involved in sports. Strength, power and endurance capacity are defined as parameters of skeletal muscle biomechanical properties. The isokinetic dynamometer is an important toll for making this type of evaluation. However, load range phase of range of motion has to be considered to interpret the data correctly. With this in mind we aimed to investigate the lover body musculature contractile characteristics of adolescent wrestlers together with detailed analyses of load range phase of motion. Thirteen boys aged 12 - 14 years participated to this study. Concentric load range torque, work and power of knee extension and flexion were measured by a Cybex Norm dynamometer at angular velocities from 450°/sec to 30°/sec with 30°/sec decrements for each set. None of the wrestlers were able to attain load range for angular velocities above 390°/sec and 420°/sec for extension and flexion respectively. Detailed analyses of the load range resulted in statistically significant differences in the normalized load range peak torque for extension at 270°/sec (1.44 ± 0.28 Nm·kg-1 and 1.14 ± 0.28 Nm·kg-1 for total and load range peak torque respectively, p < 0.05, and for flexion at 300°/sec (1.26 ± 0.28 Nm·kg-1 and 1.03 ± 0.23 Nm·kg-1 for total and load range peak torque respectively, p < 0.05, compared to total peak torque data. Similarly, the significant difference was found for the work values at 90°/sec (1.91 ± 0.23 Nm·kg-1 and 1.59 ± 0.24 Nm·kg-1 for total and load range work respectively for extension and 1.73 ± 0.21 Nm·kg-1 and 1.49 ± 0.19 Nm·kg-1 for total and load range work respectively for flexion, p < 0.05, and was evident at higher angular velocities (p < 0.001 for both extension and flexion. At

  16. Incidence of motion loss of the stifle joint in dogs with naturally occurring cranial cruciate ligament rupture surgically treated with tibial plateau leveling osteotomy: longitudinal clinical study of 412 cases.

    Science.gov (United States)

    Jandi, Avtar S; Schulman, Alan J

    2007-02-01

    To report the incidence of loss of stifle extension or flexion and its relationship with clinical lameness after tibial plateau leveling osteotomy (TPLO) for treatment of cranial cruciate ligament (CCL) rupture. Longitudinal study. Dogs (n=280) with CCL rupture (n=412). TPLO was performed without meniscal release or arthrotomy. Angles of extension and flexion of the stifle were measured by goniometry to determine range of motion. Based upon motion loss, stifles were divided in 3 groups: no loss of extension or flexion (n=322), or =10 degrees loss of extension or flexion (n=12). Loss of extension or flexion > or =10 degrees was associated with significantly (P=.001) higher clinical lameness scores in comparison with no loss, or loss of extension or flexion or =10 degrees was less tolerable and less amenable to physical rehabilitation than flexion loss. Loss of extension or flexion > or =10 degrees was responsible for higher clinical lameness scores. Osteoarthrosis in the cranial femorotibial joint led to extension loss. Loss of extension or flexion should be assessed in dogs with persistent clinical lameness after TPLO so that early intervention can occur. Our study provides guidelines to define clinically relevant loss of extension or flexion of stifle joint after TPLO.

  17. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study

    Directory of Open Access Journals (Sweden)

    Sara J. Hussain

    2016-11-01

    Full Text Available Abstract Background The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF and dorsiflexion (DF ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Methods Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (−10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF] and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s in 53 healthy adults. These data were used to generate 3D plots, or “strength surfaces”, for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Results Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. Conclusions The 3D strength data and surface models provide a more comprehensive dataset

  18. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study.

    Science.gov (United States)

    Hussain, Sara J; Frey-Law, Laura

    2016-01-01

    The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF) and dorsiflexion (DF) ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (-10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF]) and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s) in 53 healthy adults. These data were used to generate 3D plots, or "strength surfaces", for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. The 3D strength data and surface models provide a more comprehensive dataset of ankle strength in healthy adults than previously reported. These

  19. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2009-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  20. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  1. Test-Retest Reliability of Isokinetic Knee Strength Measurements in Children Aged 8 to 10 Years.

    Science.gov (United States)

    Fagher, Kristina; Fritzson, Annelie; Drake, Anna Maria

    Isokinetic dynamometry is a useful tool to objectively assess muscle strength of children and adults in athletic and rehabilitative settings. This study examined test-retest reliability of isokinetic knee strength measurements in children aged 8 to 10 years and defined limits for the minimum difference (MD) in strength that indicates a clinically important change. Isokinetic knee strength measurements (using the Biodex System 4) in children will provide reliable results. Descriptive laboratory study. In 22 healthy children, 5 maximal concentric (CON) knee extensor (KE) and knee flexor (KF) contractions at 2 angular velocities (60 deg/s and 180 deg/s) and 5 maximal eccentric (ECC) KE/KF contractions at 60 deg/s were assessed 7 days apart. The intraclass correlation coefficient (ICC 2.1 ) was used to examine relative reliability, and the MD was calculated on the basis of standard error of measurement. ICCs for CON KE/KF peak torque measurements were fair to excellent (range, 0.49-0.81). The MD% values for CON KE and KF ranged from 31% to 37% at 60 deg/s and from 34% to 39% at 180 deg/s. ICCs in the ECC mode were good (range, 0.60-0.70), but associated MD% values were high (>50%). There was no systematic error for CON KE/KF and ECC KE strength measurements at 60 deg/s, but systematic error was found for all other measurements. The dynamometer provides a reliable analysis of isokinetic CON knee strength measurements at 60 deg/s in children aged 8 to 10 years. Measurements at 180 deg/s and in the ECC mode were not reliable, indicating a need for more familiarization prior to testing. The MD values may help clinicians to determine whether a change in knee strength is due to error or intervention.

  2. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers

    OpenAIRE

    Bennell, K.; Wajswelner, H.; Lew, P.; Schall-Riaucour, A.; Leslie, S.; Plant, D.; Cirone, J.

    1998-01-01

    OBJECTIVE: To determine the relation of hamstring and quadriceps muscle strength and imbalance to hamstring injury using a prospective observational cohort study METHOD: A total of 102 senior male Australian Rules footballers aged 22.2 (3.6) years were tested at the start of a football season. Maximum voluntary concentric and eccentric torque of the hamstring and quadriceps muscles of both legs was assessed using a Kin-Com isokinetic dynamometer at angular velocities of 60 and 180 degre...

  3. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    Science.gov (United States)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  4. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.

    Science.gov (United States)

    Guilhem, G; Cornu, C; Guével, A

    2010-06-01

    To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.

  5. Isokinetic analysis of ankle and ground reaction forces in runners and triathletes

    Directory of Open Access Journals (Sweden)

    Natália Mariana Silva Luna

    2012-09-01

    Full Text Available OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and nonathletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5 years were divided into three groups: a triathlete group (n=26, a long-distance runner group (n = 23, and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180º/s was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60º/s was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners.

  6. [CPM--Continuous Passive Motion: treatment of injured or operated knee-joints using passive movement. A meta-analysis of current literature].

    Science.gov (United States)

    Kirschner, P

    2004-04-01

    There is still a controversial discussion in literature about the use of motor driven splints in knee surgery--as the principle of continuous passive motion, CPM. For this reason it seemed useful for an evaluation to look through the papers which were published since 1990. It was obvious, that negative results were published often before this year, but this papers are still quoted standard works. In medical data bases subito-doc.de, medscape.com, medica.de and zbmed.de 230 papers were found by search CPM, continuous passive motion and arthromot. Coincidentally there was a search for authors who were already quoted in other papers. 36 papers concerning CPM after knee surgery were utilized. The role of CPM regarding the range of motion, swelling, duration of hospital stay, use of analgesics, costs, postoperative manipulations, wound healing and thrombo embolic complications was evaluated. Although the results of this partial retrospective, partial prospective, sometimes randomized or double blinded studies are in contradiction, there can only be found a trend to better results. New clinical studies for evidence based guidelines in the handling of continuous passive motion after knee surgery are necessary.

  7. Relationship between quadriceps strength and patellofemoral joint chondral lesions after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Wang, Hai-Jun; Ao, Ying-Fang; Jiang, Dong; Gong, Xi; Wang, Yong-Jian; Wang, Jian; Yu, Jia-Kuo

    2015-09-01

    The incidence of the patellofemoral joint chondral lesions after anterior cruciate ligament reconstruction (ACLR) is disturbingly high. Few studies have assessed the factors affecting patellofemoral joint chondral lesions postoperatively. The recovery of quadriceps strength after ACLR could be associated with patellofemoral joint cartilage damage. Cohort study; Level of evidence, 3. A total of 88 patients who underwent arthroscopic anatomic double-bundle ACLR with hamstring autografts received second-look arthroscopy at the time of metal staple removal at an average of 24.1 months (range, 12-51 months) postoperatively. All patients underwent standardized isokinetic strength testing for bilateral quadriceps and hamstrings 1 to 2 days before second-look arthroscopy. The patients were divided into 2 groups: Patients in group 1 had a ≥20% deficit on the peak torque measures for quadriceps compared with that of the contralateral knee, whereas those in group 2 had a patellofemoral joint and tibiofemoral joint were evaluated by second-look arthroscopy and the Outerbridge classification. Other assessments included the International Knee Documentation Committee (IKDC) score, Tegner and Lysholm scores, side-to-side difference on KT-2000 arthrometer, and range of motion. There were 42 patients included in group 1 and 46 patients in group 2. The mean postoperative quadriceps peak torque of the involved knee compared with the contralateral knee was 70% (range, 57%-80%) in group 1 and 95% (range, 81%-116%) in group 2. For all patients, a significant worsening was seen in the patellar and trochlear cartilage (P = .030 and <.001, respectively) but not at the medial or lateral tibiofemoral joint after ACLR. A significant worsening in the status of both patellar and trochlear cartilage was seen after ACLR in group 1 (P = .013 and =.011, respectively) and of trochlear cartilage in group 2 (P = .006). Significantly fewer severe chondral lesions of the patella were found in group 2

  8. The initial safe range of motion of the ankle joint after three methods of internal fixation of simulated fractures of the medial malleolus.

    Science.gov (United States)

    Shimamura, Yoshio; Kaneko, Kazuo; Kume, Kazuhiko; Maeda, Mutsuhiro; Iwase, Hideaki

    2006-07-01

    Previous studies have demonstrated the safe passive range of ankle motion for inter-bone stiffness after internal fixation under load but there is a lack of information about the safe range of ankle motion for early rehabilitation in the absence of loading. The present study was designed to assess the effect of ankle movement on inter-bone displacement characteristics of medial malleolus fractures following three types of internal fixation to determine the safe range of motion. Five lower legs obtained during autopsy were used to assess three types of internal fixation (two with Kirschner-wires alone; two with Kirschner-wires plus tension band wiring; and, one with an AO/ASIF malleolar screw alone). Following a simulated fracture by sawing through the medial malleolus the displacement between the fractured bone ends was measured during a passive range of movement with continuous monitoring using omega (Omega) shaped transducers and a biaxial flexible goniometer. Statistical analysis was performed with repeated measures analysis of variance. Inter-bone displacement was not proportional to the magnitude of movement throughout the range of ankle motion as, when separation exceeded 25 microm, there was increasingly wide separation as plantar-flexion or dorsal-flexion was increased. There was no statistical significant difference between the small amount of inter-bone displacement observed with three types of fixation within the safe range of dorsal-flexion and plantar-flexion for early rehabilitation. However the inter-bone separation when fixation utilized two Kirschner-wires alone tended to be greater than when using the other two types of fixation during dorsal-flexion and eversion. The present study revealed a reproducible range of ankle motion for early rehabilitation which was estimated to be within the range of 20 degrees of dorsal-flexion and 10 degrees of plantar-flexion without eversion. Also, internal fixation with two Kirschner-wires alone does not seem to

  9. Shoulder rotator isokinetic strength profile in young swimmers. DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n5p545

    Directory of Open Access Journals (Sweden)

    Pablo Tomas-Carus

    2012-09-01

    Full Text Available Considering that some studies suggest that shoulder rotators muscle imbal­ances are related to joint pain and injury, and that there are no normative data for young swimmers, the aim of this study was: i to describe the muscle balance, fatigue and isokinetic strength profile of the shoulder rotators in young swimmers; ii to compare the results between swimmers and a group of young non-practitioners; iii to contribute to the acquisition of normative data of unilateral ratios of shoulder rotators. We evaluated the shoulder rotators concentric strength and unilateral ratios (ratio between torque of external and internal rotators of 60 swimmers (age: 14.55 ± 0.5 years old; body mass: 61.16 ± 7.08 kg and 60 non-practitioners (age: 14.62 ± 0.49 years old; body mass: 60.22 ± 10.01 kg. The evaluation was performed in the sitting position (90° abduction and elbow flexion at 60º.s-1 and 180º.s-1 angular speeds using an isokinetic dynamometer (Biodex System 3. The results of the fatigue ratios revealed no differences between the groups. Swimmers showed unilateral ratios of 73.39 ± 17.26% in the dominant limb (DL and 77.89 ± 15,23% in the non-dominant limb (NDL for assessments at 60º.s-1. At 180º.s-1, ratios were 74.77± 13.99% for DL and 70.11 ± 14.57% for NDL. Swimmers presented greater muscle imbalance, and differed from non-practitioners in the ability to produce power with the internal rotators, which was significantly higher in the former group.

  10. EFFECTS OF KINESIOTAPING ALONG WITH QUADRICEPS STRENGTHENING EXERCISES ON PAIN, JOINT RANGE OF MOTION AND FUNCTIONAL ACTIVITIES OF KNEE IN SUBJECTS WITH PATELLOFEMORAL OSTEOARTHRITIS

    OpenAIRE

    M. Harshitha; K. Senthil kumar; K. Madhavi

    2014-01-01

    Background: Patello femoral Osteoarthritis is the most common degenerative disease in older age group, causing pain, physical disability, and decreased quality of life.As many treatment options available, kinesiotaping is an efficacious treatment for management of pain & disability in patellofemoral joint osteoarthritis. Previous studies have shown that kinesiotaping as well as quadriceps strengthening significantly yields functional benefits. But there is lack of evidence revealing combined ...

  11. TU-AB-BRA-06: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An MRI Compatible Externally and Internally Deformable Lung Motion Phantom for Multi-Modality IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Sabouri, P; Sawant, A [University of Texas Southwestern Medical Center, Dallas, TX (United States); Arai, T [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: MRI has become an attractive tool for tumor motion management. Current MR-compatible phantoms are only capable of reproducing translational motion. This study describes the construction and validation of a more realistic, MRI-compatible lung phantom that is deformable internally as well as externally. We demonstrate a radiotherapy application of this phantom by validating the geometric accuracy of the open-source deformable image registration software NiftyReg (UCL, UK). Methods: The outer shell of a commercially-available dynamic breathing torso phantom was filled with natural latex foam with eleven water tubes. A rigid foam cut-out served as the diaphragm. A high-precision programmable, in-house, MRI-compatible motion platform was used to drive the diaphragm. The phantom was imaged on a 3T scanner (Philips, Ingenia). Twenty seven tumor traces previously recorded from lung cancer patients were programmed into the phantom and 2D+t image sequences were acquired using a sparse-sampling sequence k-t BLAST (accn=3, resolution=0.66×0.66×5mm3; acquisition-time=110ms/slice). The geometric fidelity of the MRI-derived trajectories was validated against those obtained via fluoroscopy using the on board kV imager on a Truebeam linac. NiftyReg was used to perform frame by frame deformable image registration. The location of each marker predicted by using NiftyReg was compared with the values calculated by intensity-based segmentation on each frame. Results: In all cases, MR trajectories were within 1 mm of corresponding fluoroscopy trajectories. RMSE between centroid positions obtained from segmentation with those obtained by NiftyReg varies from 0.1 to 0.21 mm in the SI direction and 0.08 to 0.13 mm in the LR direction showing the high accuracy of deformable registration. Conclusion: We have successfully designed and demonstrated a phantom that can accurately reproduce deformable motion under a variety of imaging modalities including MRI, CT and x-ray fluodoscopy

  12. ISOKINETIC COMPARISON OF THE ROTATOR CUFF BETWEEN WATERPOLO AND TENNIS PLAYERS/ COMPARAREA ISOKINETICĂ A COIFULUI ROTATORILOR ÎNTRE JUCĂTORII DE POLLO ŞI CEI DE TENIS

    Directory of Open Access Journals (Sweden)

    Linde FJ

    Full Text Available Isokinetic evaluation is an objective method that allows rapid and reliable comparison of the relationship between the muscle groups of the rotator cuff, during dynamic exercise. At shoulder level, balance between the rotator cuff muscle groups is essential for keeping joint stability. The purpose of this study is to detect significant differences in muscular performance strength values of the muscles of the rotator cuff by isokinetic tests, in two overhead sport specialities: water polo and tennis. Comparison could be realized analyzing various parameters derivate of the test. Material and methods. We undertook an isokinetic study in a group of 36 high-level athletes: 30 water polo players (12 women and 18 men and 6 tennis players (2 women and 4 men. The parameters analyzed were: peak torque (PT, maximal repetition work (MRW, muscle asymmetry between dominant and no dominant shoulder, and ratio between external and internal rotators. Results. For all tested values of PT, the dominant limb has always been stronger than the no dominant in both sports, but differences in tennis players were much higher in favor of the dominant than water polo players with specific reference to IR. With regard to MRW, water polo players had values higher than tennis players in ER of both sides, but the IR of the dominant limb is greater in tennis players. Conclusions. In water polo players, due to the environment in which specific work is developed and the symmetrical content of simming, the ratios in both extremities were very symmetrical (related to PT; in tennis players, the dominant limb had more normal ratio values but this doesn’t happen in the no dominant possibly because it comes into play shortly.

  13. Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data

    Science.gov (United States)

    Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter

    2013-01-01

    An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.

  14. TU-F-17A-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - An Automatic Toolkit for Efficient and Robust Analysis of 4D Respiratory Motion

    International Nuclear Information System (INIS)

    Wei, J; Yuan, A; Li, G

    2014-01-01

    Purpose: To provide an automatic image analysis toolkit to process thoracic 4-dimensional computed tomography (4DCT) and extract patient-specific motion information to facilitate investigational or clinical use of 4DCT. Methods: We developed an automatic toolkit in MATLAB to overcome the extra workload from the time dimension in 4DCT. This toolkit employs image/signal processing, computer vision, and machine learning methods to visualize, segment, register, and characterize lung 4DCT automatically or interactively. A fully-automated 3D lung segmentation algorithm was designed and 4D lung segmentation was achieved in batch mode. Voxel counting was used to calculate volume variations of the torso, lung and its air component, and local volume changes at the diaphragm and chest wall to characterize breathing pattern. Segmented lung volumes in 12 patients are compared with those from a treatment planning system (TPS). Voxel conversion was introduced from CT# to other physical parameters, such as gravity-induced pressure, to create a secondary 4D image. A demon algorithm was applied in deformable image registration and motion trajectories were extracted automatically. Calculated motion parameters were plotted with various templates. Machine learning algorithms, such as Naive Bayes and random forests, were implemented to study respiratory motion. This toolkit is complementary to and will be integrated with the Computational Environment for Radiotherapy Research (CERR). Results: The automatic 4D image/data processing toolkit provides a platform for analysis of 4D images and datasets. It processes 4D data automatically in batch mode and provides interactive visual verification for manual adjustments. The discrepancy in lung volume calculation between this and the TPS is <±2% and the time saving is by 1–2 orders of magnitude. Conclusion: A framework of 4D toolkit has been developed to analyze thoracic 4DCT automatically or interactively, facilitating both investigational

  15. TU-F-17A-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - An Automatic Toolkit for Efficient and Robust Analysis of 4D Respiratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J [City College of New York, New York, NY (United States); Yuan, A; Li, G [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: To provide an automatic image analysis toolkit to process thoracic 4-dimensional computed tomography (4DCT) and extract patient-specific motion information to facilitate investigational or clinical use of 4DCT. Methods: We developed an automatic toolkit in MATLAB to overcome the extra workload from the time dimension in 4DCT. This toolkit employs image/signal processing, computer vision, and machine learning methods to visualize, segment, register, and characterize lung 4DCT automatically or interactively. A fully-automated 3D lung segmentation algorithm was designed and 4D lung segmentation was achieved in batch mode. Voxel counting was used to calculate volume variations of the torso, lung and its air component, and local volume changes at the diaphragm and chest wall to characterize breathing pattern. Segmented lung volumes in 12 patients are compared with those from a treatment planning system (TPS). Voxel conversion was introduced from CT# to other physical parameters, such as gravity-induced pressure, to create a secondary 4D image. A demon algorithm was applied in deformable image registration and motion trajectories were extracted automatically. Calculated motion parameters were plotted with various templates. Machine learning algorithms, such as Naive Bayes and random forests, were implemented to study respiratory motion. This toolkit is complementary to and will be integrated with the Computational Environment for Radiotherapy Research (CERR). Results: The automatic 4D image/data processing toolkit provides a platform for analysis of 4D images and datasets. It processes 4D data automatically in batch mode and provides interactive visual verification for manual adjustments. The discrepancy in lung volume calculation between this and the TPS is <±2% and the time saving is by 1–2 orders of magnitude. Conclusion: A framework of 4D toolkit has been developed to analyze thoracic 4DCT automatically or interactively, facilitating both investigational

  16. EFFECTS OF KINESIOTAPING ALONG WITH QUADRICEPS STRENGTHENING EXERCISES ON PAIN, JOINT RANGE OF MOTION AND FUNCTIONAL ACTIVITIES OF KNEE IN SUBJECTS WITH PATELLOFEMORAL OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    M. Harshitha

    2014-08-01

    Full Text Available Background: Patello femoral Osteoarthritis is the most common degenerative disease in older age group, causing pain, physical disability, and decreased quality of life.As many treatment options available, kinesiotaping is an efficacious treatment for management of pain & disability in patellofemoral joint osteoarthritis. Previous studies have shown that kinesiotaping as well as quadriceps strengthening significantly yields functional benefits. But there is lack of evidence revealing combined effectiveness & effects of kinesiotaping along with quadriceps strengthening in subjects with patellofemoral joint osteoarthritis. Methods: 30 subjects with symptoms of patellofemoral osteoarthritis fulfilled the inclusion criteria were randomly assigned into 2 groups of 15 in each group. Taping along with quadriceps strengthening program is compared to the quadriceps strengthening program alone. Pain were measured by Visual Analogue Scale (VAS, knee ROM were measured by Goniometer, Functional status were measured by Western Ontario McMaster Universities index (WOMAC, score. Measurements were taken pre & post intervention. Results: The results indicated that kinesiotaping along with quadriceps strengthening exercises showed there was statistically significant improvement in pain (<0.05, knee ROM (<0.05 and functional activities (<0.05 after 6 weeks compared to quadriceps strengthening alone. Conclusion: Subjects with kinesiotaping along with quadriceps strengthening showed significant improvement in reducing pain, in improving ROM & functional activities at the end of 6th week treatment when compared to subjects with patellofemoral osteoarthritis underwent quadriceps strengthening exercises alone.

  17. Joint analysis of ESR lineshapes and 1H NMRD profiles of DOTA-Gd derivatives by means of the slow motion theory

    Science.gov (United States)

    Kruk, D.; Kowalewski, J.; Tipikin, D. S.; Freed, J. H.; Mościcki, M.; Mielczarek, A.; Port, M.

    2011-01-01

    The "Swedish slow motion theory" [Nilsson and Kowalewski, J. Magn. Reson. 146, 345 (2000)] applied so far to Nuclear Magnetic Relaxation Dispersion (NMRD) profiles for solutions of transition metal ion complexes has been extended to ESR spectral analysis, including in addition g-tensor anisotropy effects. The extended theory has been applied to interpret in a consistent way (within one set of parameters) NMRD profiles and ESR spectra at 95 and 237 GHz for two Gd(III) complexes denoted as P760 and P792 (hydrophilic derivatives of DOTA-Gd, with molecular masses of 5.6 and 6.5 kDa, respectively). The goal is to verify the applicability of the commonly used pseudorotational model of the transient zero field splitting (ZFS). According to this model the transient ZFS is described by a tensor of a constant amplitude, defined in its own principal axes system, which changes its orientation with respect to the laboratory frame according to the isotropic diffusion equation with a characteristic time constant (correlation time) reflecting the time scale of the distortional motion. This unified interpretation of the ESR and NMRD leads to reasonable agreement with the experimental data, indicating that the pseudorotational model indeed captures the essential features of the electron spin dynamics.

  18. Dynamics of muscle strength improvement during isokinetic rehabilitation of athletes with ACL rupture and chondromalacia patellae.

    Science.gov (United States)

    Desnica Bakrac, N

    2003-03-01

    To assess quantitatively dynamics and extent of the increase in muscle strength during isokinetic rehabilitation. daily measurements of muscle strength; detailed testing at the beginning and at the end of rehabilitation. Cybex Rehabilitation Center, Zagreb. 44 athletes (31 m, 13 F, age 16-35), 3 injury-defined groups: athletes with ACL rupture (non-reconstructed and reconstructed) and chondromalacia patellae. all subjects underwent isokinetic rehabilitation on Cybex Orthotron KT2 device, using individually designed protocols (extension and flexion exercises, concentric muscle contractions, 15 treatments). monitoring of daily progress on rehabilitation device and detailed testing on diagnostic device. All patients showed considerable improvement. Muscle strength improved on average 141% (SD=110) in ACL-reconstructed group, 144% (SD=130) for chondromalacia patellae group and 150% (SD=74) for ACL-non-reconstructed group, comparing to initial strength. Dynamic status tested on Cybex Otrhotron diagnostic device prior and after rehabilitation strongly correlated with final progress monitored on the rehabilitation device. Isokinetic rehabilitation is a quick and effective method in treating knee injuries in athletes. Both types of objective criteria have shown significant increase in muscle strength. The improvement of muscle strength was on the average 149% (SD=101), which is about 10% daily for 15 treatments. The greatest progress, 19% per day, occurred during first five days. The athletes were able to resume their sport activities as follows: patients from chondromalacia patellae group, and most of them from the non-reconstructed ACL group were back in competition within a month, while 75% from the ACL reconstructed group came back within 3 months, and the rest of them within 5 months.

  19. Shoulder isokinetic profile of male handball players of the Brazilian National Team

    Science.gov (United States)

    Andrade, Marília S.; Vancini, Rodrigo L.; de Lira, Claudio A. B.; Mascarin, Naryana C.; Fachina, Rafael J. F. G.; da Silva, Antonio C.

    2013-01-01

    Background Data obtained on an isokinetic dynamometer are useful to characterize muscle status and have been reported in muscle imbalance studies in different types of sport. However, few studies have assessed elite handball players to establish reference values. Objective The purpose of this study was to compare, for the dominant (D) and non-dominant (ND) side, the isokinetic profile of shoulder rotator muscle strength between male handball players (H) and asymptomatic non-athletes (NA). Method Isokinetic concentric and eccentric strength tests for D upper limbs were performed by the H group (n=20) and the NA group (n=12). Internal and external rotator muscle peak torque in concentric action was assessed at 60°/s and 300°/s and in eccentric action at 300°/s. We also calculated conventional balance (the ratio of external rotator peak torque to internal rotator peak torque in concentric action) and functional balance (the ratio of external rotator peak torque in eccentric action to internal rotator peak torque in concentric action). Results In the H group, dominant limbs were stronger in concentric action for external rotation at 60 and 300°/s. The conventional balance ratio for the D side was significantly lower at 60 and 300°/s for H compared to NA. The functional ratio for the D side was significantly lower at 300º/s for H compared to NA. Conclusions Compared to asymptomatic non-athletes, handball players presented significant muscular imbalance resulting from daily sports practice, a known risk factor for shoulder injuries. PMID:24271090

  20. Isokinetic muscle performance of the hip and ankle muscles in women with fibromyalgia.

    Science.gov (United States)

    Yetişgin, Alparslan; Tiftik, Tülay; Kara, Murat; Karabay, İlkay; Akkuş, Selami; Ersöz, Murat

    2016-06-01

    To compare isokinetic muscle performances of a proximal (hip) and a distal (ankle) muscle of fibromyalgia syndrome (FMS) patients with those of age- and body mass index (BMI)-matched healthy subjects. Thirty female patients with FMS (mean age: 41.5 ± 6.7 years [range, 27-54]) and 30 age- (mean age: 40.6 ± 6.0 years [range, 27-54]) and BMI-matched female healthy controls were consecutively enrolled. Demographic and clinical characteristics of the subjects were recorded. Isokinetic measurements of hip and ankle flexion and extension at angular velocities of 60°/s and 180°/s, peak torques, flexor-extensor torque ratios, muscle fatigue resistance values and average power were obtained. Mean disease duration of FMS patients was 2.4 ± 1.9 years. Mean weight, height and BMI values were 70.4 ± 12.5 kg, 159.5 ± 6.0 cm and 27.7 ± 4.7 kg/m² (FMS patients) and 69.3 ± 10.1 kg, 161.7 ± 6.2 cm and 26.6 ± 4.3 kg/m² (control subjects), respectively (all P > 0.05). All isokinetic values were statistically decreased in the FMS group when compared with the control group, except for the peak torques at angular velocity of 180°/s on flexion of the hip and extension of the ankle and the total work and average power on extension of the ankle. We did not find any correlation between isokinetic values and disease related parameters of FMS patients. In the light of our results, we may conclude that muscle strength and muscle fatigue seem to decrease in FMS patients' both proximal and distal lower extremity muscles. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  1. TH-AB-202-05: BEST IN PHYSICS (JOINT IMAGING-THERAPY): First Online Ultrasound-Guided MLC Tracking for Real-Time Motion Compensation in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S; Bruder, R; Schweikard, A [University of Luebeck, Luebeck, DE (United States); O’Brien, R; Keall, P [University of Sydney, Sydney (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark)

    2016-06-15

    Purpose: While MLC tracking has been successfully used for motion compensation of moving targets, current real-time target localization methods rely on correlation models with x-ray imaging or implanted electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging yields volumetric data in real-time (4D) without ionizing radiation. We report the first results of online 4D ultrasound-guided MLC tracking in a phantom. Methods: A real-time tracking framework was installed on a 4D ultrasound station (Vivid7 dimension, GE) and used to detect a 2mm spherical lead marker inside a water tank. The volumetric frame rate was 21.3Hz (47ms). The marker was rigidly attached to a motion stage programmed to reproduce nine tumor trajectories (five prostate, four lung). The 3D marker position from ultrasound was used for real-time MLC aperture adaption. The tracking system latency was measured and compensated by prediction for lung trajectories. To measure geometric accuracy, anterior and lateral conformal fields with 10cm circular aperture were delivered for each trajectory. The tracking error was measured as the difference between marker position and MLC aperture in continuous portal imaging. For dosimetric evaluation, 358° VMAT fields were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using a 3%/3 mm γ-test. Results: The tracking system latency was 170ms. The mean root-mean-square tracking error was 1.01mm (0.75mm prostate, 1.33mm lung). Tracking reduced the mean γ-failure rate from 13.9% to 4.6% for prostate and from 21.8% to 0.6% for lung with high-modulation VMAT plans and from 5% (prostate) and 18% (lung) to 0% with low modulation. Conclusion: Real-time ultrasound tracking was successfully integrated with MLC tracking for the first time and showed similar accuracy and latency as other methods while holding the

  2. Isokinetic knee strength qualities as predictors of jumping performance in high-level volleyball athletes: multiple regression approach.

    Science.gov (United States)

    Sattler, Tine; Sekulic, Damir; Spasic, Miodrag; Osmankac, Nedzad; Vicente João, Paulo; Dervisevic, Edvin; Hadzic, Vedran

    2016-01-01

    Previous investigations noted potential importance of isokinetic strength in rapid muscular performances, such as jumping. This study aimed to identify the influence of isokinetic-knee-strength on specific jumping performance in volleyball. The secondary aim of the study was to evaluate reliability and validity of the two volleyball-specific jumping tests. The sample comprised 67 female (21.96±3.79 years; 68.26±8.52 kg; 174.43±6.85 cm) and 99 male (23.62±5.27 years; 84.83±10.37 kg; 189.01±7.21 cm) high- volleyball players who competed in 1st and 2nd National Division. Subjects were randomly divided into validation (N.=55 and 33 for males and females, respectively) and cross-validation subsamples (N.=54 and 34 for males and females, respectively). Set of predictors included isokinetic tests, to evaluate the eccentric and concentric strength capacities of the knee extensors, and flexors for dominant and non-dominant leg. The main outcome measure for the isokinetic testing was peak torque (PT) which was later normalized for body mass and expressed as PT/Kg. Block-jump and spike-jump performances were measured over three trials, and observed as criteria. Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between and t-test differences between observed and predicted scores; and Bland Altman graphics. Jumping tests were found to be reliable (spike jump: ICC of 0.79 and 0.86; block-jump: ICC of 0.86 and 0.90; for males and females, respectively), and their validity was confirmed by significant t-test differences between 1st vs. 2nd division players. Isokinetic variables were found to be significant predictors of jumping performance in females, but not among males. In females, the isokinetic-knee measures were shown to be stronger and more valid predictors of the block-jump (42% and 64% of the explained variance for validation and cross-validation subsample, respectively

  3. Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry.

    Science.gov (United States)

    Guilhem, Gaël; Giroux, Caroline; Couturier, Antoine; Maffiuletti, Nicola A

    2014-12-01

    This study aimed to evaluate the validity and test-retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r=0.74-0.85; Ptorque (r ⩾ 0.99; Ptorque between test and retest ranged from -3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test-retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    Science.gov (United States)

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Investigating source directivity for the 2012 Ml5.9 Emilia (Northern Italy) earthquake by jointly using High-rate GPS and Strong motion data

    Science.gov (United States)

    Avallone, A.; Herrero, A.; Latorre, D.; Rovelli, A.; D'Anastasio, E.

    2012-12-01

    On May, 20th 2012, the Ferrara and Modena provinces (Emilia Romagna, Northern Italy) were struck by a moderate magnitude earthquake (Ml 5.9). The focal mechanism is consistent with a ~E-W-striking thrust fault. The mainshock was recorded by 29 high-rate sampling (1-Hz) continuous GPS (HRGPS) stations belonging to scientific or commercial networks and by 55 strong motion (SM) stations belonging to INGV (Istituto Nazionale di Geofisica e Vulcanologia) and RAN (Rete Accelerometrica Nazionale) networks, respectively. The spatial distribution of both HRGPS and SM stations with respect to the mainshock location allows a satisfactory azimuthal coverage of the area. To investigate directivity effects during the mainshock occurrence, we analyze the spatial variation of the peak ground displacement (PGD) measured either for HRGPS or SM sites, using different methods. For each HRGPS and SM site, we rotated the horizontal time series to the azimuth direction and we estimated the GPS-related and the SM-related peak ground displacement (G-PGD and S-PGD, respectively) retrieved by transverse component. However, in contrast to GPS displacements, the double integration of the SM data can be affected by the presence of drifts and, thus, they have to be corrected by quasi-manual procedures. To more properly compare the G-PGDs to the S-PGDs, we used the response spectrum. A response spectrum is simply the response of a series of oscillators of varying natural frequency, that are forced into motion by the same input. The asymptotic value of the displacement response spectrum is the peak ground displacement. Thus, for each HRGPS and SM site, we computed the value of this asymptotic trend (G-PGDrs and S-PGDrs, respectively). This method allows simple automatic procedures. The consistency of the PGDs derived from HRGPS and SM is also evaluated for sites where the two instruments are collocated. The PGDs obtained by the two different methods and the two different data types suggest a

  6. Morphological study in internal derangement of the temporomandibular joint with MRI. The relationships between the state of the articular disc and limitation of motion of the mandibular head

    International Nuclear Information System (INIS)

    Miyazu, Hiroko; Sakurai, Takashi; Numayama, Sukenao; Furuya, Nobuaki; Kashima, Isamu

    1997-01-01

    In this study, we used MRI to investigate the relationships between these factors in temporomandibular joint (TMJ) patients, especially with regard to the range of condylar movement. Bone configurations and articular disc conditions were analyzed in a total of 367 TMJ of 255 internal derangement patients using MRI. We examined the influence of articular disc condition on functional disorder and identified the tendencies of the pathology of patients with internal derangements. Anterolateral displacement was more frequent than anteromedial displacement, and lateral rotary displacement was more frequent than medial rotary displacement. Therefore, the articular disc displaced more readily laterally, rather than medially. With regard to the relationship between the articular disc configuration and reduction, enlargement of the posterior band and biconvex discs showed a tendency for articular disc displacement that did not reduce, while discs with even thickness showed a tendency of articular disc displacement which would reduce. Folding and biconvexity tended to limit condylar movement while less limitation occurred with discs of even thickness. In cases of disc displacement without reduction, there was a significantly higher percentage of cases with limited condylar movement than in cases of displacement with reduction. (K.H.)

  7. Predicting articulated human motion from spatial processes

    DEFF Research Database (Denmark)

    Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    recent work where prior models are derived in terms of joint angles. This approach has several advantages. First of all, it allows us to construct motion models in low dimensional spaces, which makes motion estimation more robust. Secondly, as many types of motion are easily expressed in spatial...

  8. Effects of basketball training on maximal oxygen uptake, muscle strength, and joint mobility in young basketball players.

    Science.gov (United States)

    Vamvakoudis, Efstratios; Vrabas, Ioannis S; Galazoulas, Christos; Stefanidis, Panagiotis; Metaxas, Thomas I; Mandroukas, Konstantinos

    2007-08-01

    The purpose of this study was to examine the effects of prolonged basketball skills training on maximal aerobic power, isokinetic strength, joint mobility, and body fat percentage, in young basketball players, and controls of the same age. Twenty basketball players and 18 control boys participated in the study. Basketball players participated both in their school's physical education program and in a children's basketball team training program. Controls participated only in their school's physical education program. All subjects were tested every 6 months (18 months total, 11(1/2), 12, 12(1/2), 13 years old) for VO(2)max, peak torque values of the quadriceps and hamstrings at 180 and 300 degrees x s(-1) and range of motion of the knee and hip joints. Body fat percentage was assessed at the beginning and the end of the experimental period. Results showed that the basketball group had lower heart rate values in all ages and higher VO(2) values in the initial test compared with the control in submaximal intensity. The VO(2)max was altered in both groups on the final test, when compared to the initial test. However, the basketball group had a higher VO(2)max on each of the 6-month follow-up measurements, compared to the control group (p trained group had significantly lower percentage body fat values, compared to controls. In conclusion, regular basketball training increased aerobic power and decreased body fat percentage of prepubescent boys, while it did not affect muscle strength and joint mobility of the lower limbs. The major implication suggested by the findings of the present study is that, in order to improve the basic physical components, specific training procedures should be incorporated during the basketball training sessions. It is recommended that all children should be involved in some type of cardiovascular and resistance training program.

  9. Joint proprioception, muscle strength, and functional ability in patients with osteoarthritis of the knee.

    Science.gov (United States)

    van der Esch, M; Steultjens, M; Harlaar, J; Knol, D; Lems, W; Dekker, J

    2007-06-15

    To test the hypotheses that poor knee joint proprioception is related to limitations in functional ability, and poor proprioception aggravates the impact of muscle weakness on limitations in functional ability in osteoarthritis (OA) of the knee. Sixty-three patients with symptomatic OA of the knee were tested. Proprioceptive acuity was assessed by establishing the joint motion detection threshold (JMDT) in the anteroposterior direction. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by the 100-meter walking test, the Get Up and Go (GUG) test, and the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlation analyses were performed to assess the relationship between proprioception, muscle strength, and functional ability. Regression analyses were performed to assess the impact of proprioception on the relationship between muscle strength and functional ability. Poor proprioception (high JMDT) was related to more limitation in functional ability (walking time r = 0.30, P < 0.05; GUG time r = 0.30, P < 0.05; WOMAC-PF r = 0.26, P <0.05). In regression analyses, the interaction between proprioception and muscle strength was significantly related to functional ability (walking time, P < 0.001 and GUG time, P < 0.001) but not to WOMAC-PF score (P = 0.625). In patients with poor proprioception, reduction of muscle strength was associated with more severe deterioration of functional ability than in patients with accurate proprioception. Patients with poor proprioception show more limitation in functional ability, but this relationship is rather weak. In patients with poor proprioception, muscle weakness has a stronger impact on limitations in functional ability than in patients with accurate proprioception.

  10. Learning effect of isokinetic measurements in healthy subjects, and reliability and comparability of Biodex and Lido dynamometers

    DEFF Research Database (Denmark)

    Lund, Hans; Søndergaard, K; Zachariassen, T

    2005-01-01

    The aim of this study was to examine the learning effect during a set of isokinetic measurements, to evaluate the reliability of the Biodex System 3 PRO dynamometer, and to compare the Biodex System 3 PRO and the Lido Active dynamometers on both extension and flexion over the elbow and the knee a...

  11. Efficacy of kinesio taping on isokinetic quadriceps torque in knee osteoarthritis: a double blinded randomized controlled study.

    Science.gov (United States)

    Anandkumar, Sudarshan; Sudarshan, Shobhalakshmi; Nagpal, Pratima

    2014-08-01

    Double blind pre-test post-test control group design. To compare the isokinetic quadriceps torque, standardized stair-climbing task (SSCT) and pain during SSCT between subjects diagnosed with knee osteoarthritis pre and post kinesio tape (KT) application with and without tension. Strength of the quadriceps and torque producing capability is frequently found to be compromised in knee osteoarthritis. The efficacy of KT in improving isokinetic quadriceps torque in knee osteoarthritis is unknown, forming the basis for this study. Forty subjects were randomly allocated to either the experimental (therapeutic KT with tension) or control group (sham KT without tension) with the allocation being concealed. Pre and post test measurements of isokinetic quadriceps torque, SSCT and pain during SSCT were carried out by a blinded assessor. A large effect size with significant improvements in the peak quadriceps torque (concentric and eccentric at angular velocities of 90° per second and 120° per second), SSCT and pain were obtained in the experimental group when compared to the control group. Application of therapeutic KT is effective in improving isokinetic quadriceps torque, SSCT and reducing pain in knee osteoarthritis.

  12. Absolute and relative reliability of isokinetic and isometric trunk strength testing using the IsoMed-2000 dynamometer.

    Science.gov (United States)

    Roth, Ralf; Donath, Lars; Kurz, Eduard; Zahner, Lukas; Faude, Oliver

    2017-03-01

    The present study aimed to assess the between day reliability of isokinetic and isometric peak torque (PT) during trunk measurement on an isokinetic device (IsoMed 2000). Test-retest-protocol on five separate days. Fifteen healthy sport students (8 female and 7 male) aged 21 to 26. PT was assessed in isometric back extension and flexion as well as right and left rotation. Isokinetic strength was captured at a speed of 60°/s and 150°/s for all tasks. For none of the assessed parameters a meaningful variation in PT during test days was observed. Relative reliability (ICC = 0.85-0.96) was excellent for all tasks. Estimates of absolute reliability as Coefficient of Variation (CoV) and Standard Error of Measurement (SEM in Nm/kg lean body mass) remained stable for isometric (6.9% strength measurement in flexion and extension or trunk rotation in either isometric or isokinetic condition is highly reliable. Therefore, it seems possible to elucidate changes which are smaller than 10% due to intervention programs when a preceding familiarization condition was applied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Hamstring and Quadriceps Isokinetic Strength Deficits Are Weak Risk Factors for Hamstring Strain Injuries: A 4-Year Cohort Study

    NARCIS (Netherlands)

    van Dyk, Nicol; Bahr, Roald; Whiteley, Rodney; Tol, Johannes L.; Kumar, Bhavesh D.; Hamilton, Bruce; Farooq, Abdulaziz; Witvrouw, Erik

    2016-01-01

    A hamstring strain injury (HSI) has become the most common noncontact injury in soccer. Isokinetic muscle strength deficits are considered a risk factor for HSIs. However, underpowered studies with small sample sizes unable to determine small associations have led to inconclusive results regarding

  14. At return to play following hamstring injury the majority of professional football players have residual isokinetic deficits

    NARCIS (Netherlands)

    Tol, Johannes L.; Hamilton, Bruce; Eirale, Cristiano; Muxart, Patrice; Jacobsen, Philipp; Whiteley, Rod

    2014-01-01

    There is an ongoing debate regarding the optimal criteria for return to sport after an acute hamstring injury. Less than 10% isokinetic strength deficit is generally recommended but this has never been documented in professional football players after rehabilitation. Our aim was to evaluate

  15. Isometric and isokinetic muscle strength in the upper extremity can be reliably measured in persons with chronic stroke.

    Science.gov (United States)

    Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina

    2015-09-01

    To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.

  16. Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-Wave Particle Motion and Vertical- and Radial-Component Velocity Spectra

    Science.gov (United States)

    Dal Moro, Giancarlo; Moustafa, Sayed S. R.; Al-Arifi, Nassir S.

    2018-01-01

    Rayleigh waves often propagate according to complex mode excitation so that the proper identification and separation of specific modes can be quite difficult or, in some cases, just impossible. Furthermore, the analysis of a single component (i.e., an inversion procedure based on just one objective function) necessarily prevents solving the problems related to the non-uniqueness of the solution. To overcome these issues and define a holistic analysis of Rayleigh waves, we implemented a procedure to acquire data that are useful to define and efficiently invert the three objective functions defined from the three following "objects": the velocity spectra of the vertical- and radial-components and the Rayleigh-wave particle motion (RPM) frequency-offset data. Two possible implementations are presented. In the first case we consider classical multi-offset (and multi-component) data, while in a second possible approach we exploit the data recorded by a single three-component geophone at a fixed offset from the source. Given the simple field procedures, the method could be particularly useful for the unambiguous geotechnical exploration of large areas, where more complex acquisition procedures, based on the joint acquisition of Rayleigh and Love waves, would not be economically viable. After illustrating the different kinds of data acquisition and the data processing, the results of the proposed methodology are illustrated in a case study. Finally, a series of theoretical and practical aspects are discussed to clarify some issues involved in the overall procedure (data acquisition and processing).

  17. Isokinetic eccentric resistance training prevents loss in mechanical muscle function after running

    DEFF Research Database (Denmark)

    Oliveira, Anderson S. C.; Caputo, Fabrizio; Aagaard, Per

    2013-01-01

    session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180° s(-1), or served as controls (n...... damages. However, IERT may not avoid reductions in explosive muscle actions. In turn, this may allow more intense training sessions to be performed, facilitating the adaptive response to running training.......The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective...

  18. Analysis of isokinetic muscle function and postural control in individuals with intermittent claudication

    Directory of Open Access Journals (Sweden)

    Morgan Lanzarin

    2016-02-01

    Full Text Available BACKGROUND: Intermittent claudication (IC is a debilitating condition that mostly affects elderly people. IC is manifested by a decrease in ambulatory function. Individuals with IC present with motor and sensory nerve dysfunction in the lower extremities, which may lead to deficits in balance. OBJECTIVE: This study aimed to measure postural control and isokinetic muscle function in individuals with intermittent claudication. METHOD: The study included 32 participants of both genders, 16 IC participants (mean age: 64 years, SD=6 and 16 healthy controls (mean age: 67 years, SD=5, which were allocated into two groups: intermittent claudication group (ICG and control group (CG. Postural control was assessed using the displacement and velocity of the center of pressure (COP during the sensory organization test (SOT and the motor control test (MCT. Muscle function of the flexor and extensor muscles of the knee and ankle was measured by an isokinetic dynamometer. Independent t tests were used to calculate the between-group differences. RESULTS: The ICG presented greater displacement (p =0.027 and speed (p =0.033 of the COP in the anteroposterior direction (COPap during the MCT, as well as longer latency (p =0.004. There were no between-group differences during the SOT. The ICG showed decreased muscle strength and power in the plantar flexors compared to the CG. CONCLUSION: Subjects with IC have lower values of strength and muscle power of plantiflexores, as well as changes in postural control in dynamic conditions. These individuals may be more vulnerable to falls than healthy subjects.

  19. Effects of photobiomodulation on the fatigue level in elderly women: an isokinetic dynamometry evaluation.

    Science.gov (United States)

    Vassão, P G; Toma, R L; Antunes, H K M; Tucci, H T; Renno, A C M

    2016-02-01

    Aging is responsible by a series of morphological and functional modifications that lead to a decline of muscle function, particularly in females. Muscle tissue in elderly people is more susceptible to fatigue and, consequently, to an increased inability to maintain strength and motor control. In this context, therapeutic approaches able of attenuating muscle fatigue have been investigated. Among these, the photobiomodulation demonstrate positive results to interacts with biological tissues, promoting the increase in cell energy production. Thus, the aim of this study was to investigate the effects of photobiomodulation (808 nm, 250 J/cm(2), 100 mW, 7 J each point) in the fatigue level and muscle performance in elderly women. Thirty subjects entered a crossover randomized double-blinded placebo-controlled trial. Photobiomodulation was delivered on the rectus femoris muscle of the dominant limb immediately before the fatigue protocol. In both sessions, peripheral muscle fatigue was analyzed by surface electromyography (EMG) and blood lactate analysis. Muscle performance was evaluated using an isokinetic dynamometer. The results showed that photobiomodulation was able of reducing muscle fatigue by a significant increase of electromyographic fatigue index (EFI) (p = 0.047) and decreasing significantly lactate concentration 6 min after the performance of the fatigue protocol (p = 0. 0006) compared the placebo laser session. However, the photobiomodulation was not able of increasing muscle performance measured by the isokinetic dynamometer. Thus, it can be conclude that the photobiomodulation was effective in reducing fatigue levels. However, no effects of photobiomodulation on muscle performance was observed.

  20. Hyperventilation-induced respiratory alkalosis falls short of countering fatigue during repeated maximal isokinetic contractions.

    Science.gov (United States)

    Sakamoto, Akihiro; Naito, Hisashi; Chow, Chin Moi

    2015-07-01

    Hyperventilation, implemented during recovery of repeated maximal sprints, has been shown to attenuate performance decrement. This study evaluated the effects of hyperventilation, using strength exercises, on muscle torque output and EMG amplitude. Fifteen power-trained athletes underwent maximal isokinetic knee extensions consisting of 12 repetitions × 8 sets at 60°/s and 25 repetitions × 8 sets at 300°/s. The inter-set interval was 40 s for both speeds. For the control condition, subjects breathed spontaneously during the interval period. For the hyperventilation condition, subjects hyperventilated for 30 s before each exercise set (50 breaths/min, PETCO2: 20-25 mmHg). EMG was recorded from the vastus medialis and lateralis muscles to calculate the mean amplitude for each contraction. Hyperventilation increased blood pH by 0.065-0.081 and lowered PCO2 by 8.3-10.3 mmHg from the control values (P < 0.001). Peak torque declined with repetition and set numbers for both speeds (P < 0.001), but the declining patterns were similar between conditions. A significant, but small enhancement in peak torque was observed with hyperventilation at 60°/s during the initial repetition phase of the first (P = 0.032) and fourth sets (P = 0.040). EMG amplitude also declined with set number (P < 0.001) for both speeds and muscles, which was, however, not attenuated by hyperventilation. Despite a minor ergogenic effect in peak torque at 60°/s, hyperventilation was not effective in attenuating the decrement in torque output at 300°/s and decrement in EMG amplitude at both speeds during repeated sets of maximal isokinetic knee extensions.

  1. Qualitative and quantitative descriptions of glenohumeral motion.

    Science.gov (United States)

    Hill, A M; Bull, A M J; Wallace, A L; Johnson, G R

    2008-02-01

    Joint modelling plays an important role in qualitative and quantitative descriptions of both normal and abnormal joints, as well as predicting outcomes of alterations to joints in orthopaedic practice and research. Contemporary efforts in modelling have focussed upon the major articulations of the lower limb. Well-constrained arthrokinematics can form the basis of manageable kinetic and dynamic mathematical predictions. In order to contain computation of shoulder complex modelling, glenohumeral joint representations in both limited and complete shoulder girdle models have undergone a generic simplification. As such, glenohumeral joint models are often based upon kinematic descriptions of inadequate degrees of freedom (DOF) for clinical purposes and applications. Qualitative descriptions of glenohumeral motion range from the parody of a hinge joint to the complex realism of a spatial joint. In developing a model, a clear idea of intention is required in order to achieve a required application. Clinical applicability of a model requires both descriptive and predictive output potentials, and as such, a high level of validation is required. Without sufficient appreciation of the clinical intention of the arthrokinematic foundation to a model, error is all too easily introduced. Mathematical description of joint motion serves to quantify all relevant clinical parameters. Commonly, both the Euler angle and helical (screw) axis methods have been applied to the glenohumeral joint, although concordance between these methods and classical anatomical appreciation of joint motion is limited, resulting in miscommunication between clinician and engineer. Compounding these inconsistencies in motion quantification is gimbal lock and sequence dependency.

  2. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects: a randomized controlled trial.

    Science.gov (United States)

    Sørensen, T J; Langberg, H; Hodges, P W; Bliddal, H; Henriksen, M

    2012-01-01

    Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals. Twenty-seven healthy untrained volunteers participated in a randomized controlled trial of quadriceps strengthening (3 times per week for 8 weeks). Participants were randomized to perform resistance training either during pain induced by injections of painful hypertonic saline (pain group, n = 13) or during a nonpainful control condition with injection of isotonic saline (control group, n = 14) into the infrapatellar fat pad. The primary outcome measure was change in maximal isokinetic muscle strength in knee extension/flexion (60, 120, and 180 degrees/second). The group who exercised with pain had a significantly larger improvement in isokinetic muscle strength at all angular velocities of knee extension compared to the control group. In knee flexion there were improvements in isokinetic muscle strength in both groups with no between-group differences. Experimental knee joint pain improved the training-induced gain in muscle strength following 8 weeks of quadriceps training. It remains to be studied whether knee joint pain has a positive effect on strength gain in patients with knee pathology. Copyright © 2012 by the American College of Rheumatology.

  3. A Study on Special Characteristics of Sports Aerobics Competitor : The Capacity of Aerobic Power and Isokinetic Strength of Knee Joint

    OpenAIRE

    菊地, はるひ; 佐々木, 浩子

    2004-01-01

    Sports Aerobics is the competitive sports including the complex aerobic step combination and difficulty elements. The competition time is 1 minute and 45±5 seconds. Sports Aerobics requires mainly anaerobic energy for competitive performance. But also it is very important to get the high capacity of aerobic power for performing the perfect execution. In this study, we tried to find out the characteristics for aerobic capacity and leg muscle strength in Sports Aerobics world champions (2 males...

  4. Single-Leg Hop Test Performance and Isokinetic Knee Strength After Anterior Cruciate Ligament Reconstruction in Athletes.

    Science.gov (United States)

    Sueyoshi, Ted; Nakahata, Akihiro; Emoto, Gen; Yuasa, Tomoki

    2017-11-01

    Isokinetic strength and hop tests are commonly used to assess athletes' readiness to return to sport after knee surgery. The purpose of this study was to investigate the results of single-leg hop and isokinetic knee strength testing in athletes who underwent anterior cruciate ligament reconstruction (ACLR) upon returning to sport participation as well as to study the correlation between these 2 test batteries. The secondary purpose was to compare the test results by graft type (patellar tendon or hamstring). It was hypothesized that there would be no statistically significant limb difference in either isokinetic knee strength or single-leg hop tests, that there would be a moderate to strong correlation between the 2 test batteries, and that there would be no significant difference between graft types. Cross-sectional study; Level of evidence, 3. Twenty-nine high school and collegiate athletes who underwent ACLR participated in this study. At the time of return to full sport participation, a series of hop tests and knee extension/flexion isokinetic strength measurements were conducted. The results were analyzed using analysis of variance and Pearson correlation ( r ). The timed 6-m hop test was the only hop test that showed a significant difference between the involved and uninvolved limbs (2.3 and 2.2 seconds, respectively; P = .02). A significant difference between limbs in knee strength was found for flexion peak torque/body weight at 180 deg/s ( P = .03), flexion total work/body weight at 180 deg/s ( P = .04), and flexion peak torque/body weight at 300 deg/s ( P = .03). The strongest correlation between the hop tests and knee strength was found between the total distance of the hop tests and flexion total work/body weight at 300 deg/s ( r = 0.69) and between the timed 6-m hop test and flexion peak torque/body weight at 300 deg/s ( r = -0.54). There was no statistically significant difference in hop test performance or isokinetic knee strength between graft types

  5. Isokinetic force of under-twenties soccer players: comparison of players in different field positions

    Directory of Open Access Journals (Sweden)

    Raphael Mendes Ritti Dias

    2007-06-01

    Full Text Available During a soccer match, countless movements involving muscular force are performed. While some studies have analyzed the force exerted by soccer players, their results have been divergent, particularly when force has been analyzed with respect to fi eld positions. The objective of this study was to compare peak torque, total muscular work, maximum power and isokinetic fatigue index of the knee fl exor and extensor muscles of soccer players in a variety of fi eld positions. Seventy-eight under-twenty soccer players were classifi ed according to the position they play: goalkeepers (n=7, full backs (n=14, wingers (n=16, defensive midfi elders (n=11, center midfi elders (n=14 and forwards (n=16. The concentric isokinetic force of knee fl exor and extensor muscles was evaluated using an isokinetic dynamometer, Cybex® brand Norm™ 6000 model (CSMI, USA. Data was analyzed in terms of non-parametric statistics and results expressed in medians and semi-interquartile range. The Kruskal-Wallis test was applied and when results were signifi cant to pRESUMO Durante uma partida de futebol são realizados inúmeros movimentos que envolvem a força muscular. Embora alguns estudos tenham analisado a força de jogadores de futebol, os resultados encontrados têm sido controversos, principalmente quando analisada a força em função da posição de jogo. O objetivo deste estudo foi comparar o pico de torque, trabalho muscular total, potência máxima e índice de fadiga isocinético dos músculos fl exores e extensores de joelho de jogadores de futebol que atuam em diferentes posições de jogo. Foram incluídos 78 atletas de futebol, pertencentes à categoria Sub-20, foram agrupados de acordo com a posição em campo de jogo: goleiros (n=7, zagueiros (n=14, laterais (n=16, volantes (n=11, meio campo (n=14 e atacantes (n=16. Foi realizada avaliação da força isocinética concêntrica dos músculos fl exores e extensores de joelho em dinamômetro isocin

  6. BMD in elite female triathletes is related to isokinetic peak torque without any association to sex hormone concentrations

    DEFF Research Database (Denmark)

    Helge, Eva Wulff; Melin, Anna; Waaddegaard, Mette

    2012-01-01

    Female endurance athletes suffering from low energy availability and reproductive hormonal disorders are at risk of low BMD. Muscle forces acting on bone may have a reverse site-specific effect. Therefore we wanted to test how BMD in female elite triathletes was associated to isokinetic peak torque...... (IPT) and reproductive hormone concentrations (RHC). A possible effect of oral contraceptives (OCON's) is taken into consideration....

  7. Myocellular enzyme leakage, polymorphonuclear neutrophil activation and delayed onset muscle soreness induced by isokinetic eccentric exercise.

    Science.gov (United States)

    Croisier, J L; Camus, G; Deby-Dupont, G; Bertrand, F; Lhermerout, C; Crielaard, J M; Juchmès-Ferir, A; Deby, C; Albert, A; Lamy, M

    1996-01-01

    To address the question of whether delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of the arachidonic acid derived product prostaglandin E2 (PGE2). 10 healthy male subjects were submitted to eccentric and concentric isokinetic exercises on a Kin Trex device at 60 degrees/s angular velocity. Exercise consisted of 8 stages of 5 maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases. There was an interval of at least 30 days between eccentric and concentric testing, and the order of the two exercise sessions was randomly assigned. The subjective presence and intensity of DOMS was evaluated using a visual analogue scale, immediately, following 24 h and 48 h after each test. Five blood samples were drawn from an antecubital vein: at rest before exercise, immediately after, after 30 min recovery, 24 h and 48 h after the tests. The magnitude of the acute inflammatory response to exercise was assessed by measuring plasma levels of polymorphonuclear elastase ([EL]), myeloperoxidase ([MPO]) and PGE2 ([PGE2]). Using two way analysis of variance, it appeared that only eccentric exercise significantly increased [EL] and DOMS, especially of the hamstring muscles. Furthermore, a significant decrease in eccentric peak torque of this muscle group only was observed on day 2 after eccentric work (- 21%; P < 0.002). Serum activity of creatine kinase and serum concentration of myoglobin increased significantly 24 and 48 h after both exercise tests. However, these variables reached significantly higher values following eccentric contractions 48 h after exercise. Mean [PGE2] in the two exercise modes remained unchanged over time and were practically equal at each time point. On the basis of these findings, we conclude that the magnitude of polymorphonuclear (PMN) activation, muscle damage, and DOMS are greater after eccentric than after concentric muscle

  8. Gender Differences in Isokinetic Strength after 60 and 90 d Bed Rest

    Science.gov (United States)

    English, K. L.; Ploutz-Snyder, R. J.; Cromwell, R. L.; Ploutz-Snyder, L. L.

    2010-01-01

    Recent reports suggest that changes in muscle strength following disuse may differ between males and females. PURPOSE: To examine potential gender differences in strength changes following 60 and 90 d of experimental bed rest. METHODS: Isokinetic extensor and flexor strength of the knee (60deg and 180deg/s, concentric only), ankle (30deg/s, concentric and eccentric), and trunk (60deg/s, concentric only) were measured following 60 d (males: n=4, 34.5+/-9.6 y; females: n=4, 35.5+/-8.2 y) and 90 d (males: n=10, 31.4+/-4.8 y; females: n=5, 37.6+/-9.9 y) of 6-degree head-down-tilt bed rest (BR; N=23). Subjects were fed a controlled diet (55%/15%/ 30%, CHO/PRO/FAT) that maintained body weight within 3% of the weight recorded on Day 3 of bed rest. After a familiarization session, testing was conducted 6 d before BR and 2 d after BR completion. Peak torque and total work were calculated for the tests performed. To allow us to combine data from both 60- and 90-d subjects, we used a mixed-model statistical analysis in which time and gender were fixed effects and bed rest duration was a random effect. Log-transformations of strength measures were utilized when necessary in order to meet statistical assumptions. RESULTS: Main effects were seen for both time and gender (p<0.05), showing decreased strength in response to bed rest for both males and females, and males stronger than females for most strength measures. Only one interaction effect was observed: females exhibited a greater loss of trunk extensor peak torque at 60 d versus pre-BR, relative to males (p=0.004). CONCLUSION: Sixty and 90 d of BR induced significant losses in isokinetic muscle strength of the locomotor and postural muscles of the knee, ankle, and trunk. Although males were stronger than females for most of the strength measures that we examined, only changes in trunk extensor peak torque were greater for females than males at day 60 of bed rest

  9. [Chronic chondromalacia of the patella: comparison of morphological (magnetic resonance) and functional findings (isokinetic parameters) after rehabilitation].

    Science.gov (United States)

    Felicetti, G; Avanza, F; Fiori, M; Brignoli, E; Rovescala, R

    1996-01-01

    The knee is a common site for injuries of the cartilage, capsule and ligament, which calls for the use of noninvasive techniques to assess injury severity properly and to plan adequate rehabilitation. Our study was aimed at comparing MR with isokinetic findings. To this purpose, 40 patients were examined; they were all affected with chondromalacia patellae, grades I-III, previously diagnosed at arthroscopy. Namely, 8 patients had grade I and 32 grades II and III chondromalacia. After MR and isokinetic exams, all patients were submitted to a standardized rehabilitation program. Our results indicate a marked decrease in quadriceps strength, especially in the most severe cases; in less severe cases, recovery was complete at 6 months, while the deficit remained in grades II and III injuries. MR yield was not relevant in 4 of 8 cases, while isokinetic findings were negative in one case. Both methods were positive in the most severe cases. At 6 months, both functional and MR findings were normal in grade I injuries, while some alterations remained in the others.

  10. Poor correlation between handgrip strength and isokinetic performance of knee flexor and extensor muscles in community-dwelling elderly women.

    Science.gov (United States)

    Felicio, Diogo Carvalho; Pereira, Daniele Sirineu; Assumpção, Alexandra Miranda; de Jesus-Moraleida, Fabianna Resende; de Queiroz, Barbara Zille; da Silva, Juscelio Pereira; de Brito Rosa, Naysa Maciel; Dias, João Marcos Domingues; Pereira, Leani Souza Máximo

    2014-01-01

    To investigate the correlation between handgrip strength and performance of knee flexor and extensor muscles determined using an isokinetic dynamometer in community-dwelling elderly women. This was a cross-sectional study. Sample selection for the study was made by convenience, and 221 (71.07 ± 4.93 years) community-dwelling elderly women were included. Knee flexor and extensor muscle performance was measured using an isokinetic dynamometer Biodex System 3 Pro. The isokinetic variables chosen for analysis were peak torque, peak torque/bodyweight, total work/bodyweight, total work, average power, and agonist/antagonist ratio at the angular velocities of 60°/s and 180°/s. Assessment of handgrip strength was carried out using the Jamar dynamometer. Spearman's correlation coefficient was calculated to identify intervariable correlations. Only knee flexor peak torque (60°/s) and average power (60°/s), and knee extensor peak torque (180°/s) and total work (180°/s) were significantly (P women. © 2013 Japan Geriatrics Society.

  11. Cervical spine motion: radiographic study

    International Nuclear Information System (INIS)

    Morgan, J.P.; Miyabayashi, T.; Choy, S.

    1986-01-01

    Knowledge of the acceptable range of motion of the cervical spine of the dog is used in the radiographic diagnosis of both developmental and degenerative diseases. A series of radiographs of mature Beagle dogs was used to identify motion within sagittal and transverse planes. Positioning of the dog's head and neck was standardized, using a restraining board, and mimicked those thought to be of value in diagnostic radiology. The range of motion was greatest between C2 and C5. Reports of severe disk degeneration in the cervical spine of the Beagle describe the most severely involved disks to be C4 through C7. Thus, a high range of motion between vertebral segments does not seem to be the cause for the severe degenerative disk disease. Dorsoventral slippage between vertebral segments was seen, but was not accurately measured. Wedging of disks was clearly identified. At the atlantoaxio-occipital region, there was a high degree of motion within the sagittal plane at the atlantoaxial and atlanto-occipital joints; the measurement can be a guideline in the radiographic diagnosis of instability due to developmental anomalies in this region. Lateral motion within the transverse plane was detected at the 2 joints; however, motion was minimal, and the measurements seemed to be less accurate because of rotation of the cervical spine. Height of the vertebral canal was consistently noted to be greater at the caudal orifice, giving some warning to the possibility of overdiagnosis in suspected instances of cervical spondylopathy

  12. Hamstring and Quadriceps Isokinetic Strength Deficits Are Weak Risk Factors for Hamstring Strain Injuries: A 4-Year Cohort Study.

    Science.gov (United States)

    van Dyk, Nicol; Bahr, Roald; Whiteley, Rodney; Tol, Johannes L; Kumar, Bhavesh D; Hamilton, Bruce; Farooq, Abdulaziz; Witvrouw, Erik

    2016-07-01

    A hamstring strain injury (HSI) has become the most common noncontact injury in soccer. Isokinetic muscle strength deficits are considered a risk factor for HSIs. However, underpowered studies with small sample sizes unable to determine small associations have led to inconclusive results regarding the role of isokinetic strength and strength testing in HSIs. To examine whether differences in isokinetic strength measures of knee flexion and extension represent risk factors for hamstring injuries in a large cohort of professional soccer players in an adequately powered study design. Cohort study; Level of evidence, 2. A total of 614 professional soccer players from 14 teams underwent isokinetic strength testing during preseason screening. Testing consisted of concentric knee flexion and extension at 60 deg/s and 300 deg/s and eccentric knee extension at 60 deg/s. A clustered multiple logistic regression analysis was used to identify variables associated with the risk of HSIs. Receiver operating characteristic (ROC) curves were calculated to determine sensitivity and specificity. Of the 614 players, 190 suffered an HSI during the 4 seasons. Quadriceps concentric strength at 60 deg/s (odds ratio [OR], 1.41; 95% CI, 1.03-1.92; P = .03) and hamstring eccentric strength at 60 deg/s (OR, 1.37; 95% CI, 1.01-1.85; P = .04) adjusted for bodyweight were independently associated with the risk of injuries. The absolute differences between the injured and uninjured players were 6.9 N·m and 9.1 N·m, with small effect sizes (d hamstring eccentric strength, respectively, indicating a failed combined sensitivity and specificity of the 2 strength variables identified in the logistic regression models. This study identified small absolute strength differences and a wide overlap of the absolute strength measurements at the group level. The small associations between lower hamstring eccentric strength and lower quadriceps concentric strength with HSIs can only be considered as weak

  13. Predictors of chronic ankle instability: Analysis of peroneal reaction time, dynamic balance and isokinetic strength.

    Science.gov (United States)

    Sierra-Guzmán, Rafael; Jiménez, Fernando; Abián-Vicén, Javier

    2018-05-01

    Previous studies have reported the factors contributing to chronic ankle instability, which could lead to more effective treatments. However, factors such as the reflex response and ankle muscle strength have not been taken into account in previous investigations. Fifty recreational athletes with chronic ankle instability and 55 healthy controls were recruited. Peroneal reaction time in response to sudden inversion, isokinetic evertor muscle strength and dynamic balance with the Star Excursion Balance Test and the Biodex Stability System were measured. The relationship between the Cumberland Ankle Instability Tool score and performance on each test was assessed and a backward multiple linear regression analysis was conducted. Participants with chronic ankle instability showed prolonged peroneal reaction time, poor performance in the Biodex Stability System and decreased reach distance in the Star Excursion Balance Test. No significant differences were found in eversion and inversion peak torque. Moderate correlations were found between the Cumberland Ankle Instability Tool score and the peroneal reaction time and performance on the Star Excursion Balance Test. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test accounted for 36% of the variance in the Cumberland Ankle Instability Tool. Dynamic balance deficits and delayed peroneal reaction time are present in participants with chronic ankle instability. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test were the main contributing factors to the Cumberland Ankle Instability Tool score. No clear strength impairments were reported in unstable ankles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Isokinetic profile of elbow flexion and extension strength in elite junior tennis players.

    Science.gov (United States)

    Ellenbecker, Todd S; Roetert, E Paul

    2003-02-01

    Descriptive study. To determine whether bilateral differences exist in concentric elbow flexion and extension strength in elite junior tennis players. The repetitive nature of tennis frequently produces upper extremity overuse injuries. Prior research has identified tennis-specific strength adaptation in the dominant shoulder and distal upper extremity musculature of elite players. No previous study has addressed elbow flexion and extension strength. Thirty-eight elite junior tennis players were bilaterally tested for concentric elbow flexion and extension muscle performance on a Cybex 6000 isokinetic dynamometer at 90 degrees/s, 210 degrees/s, and 300 degrees/s. Repeated-measures ANOVAs were used to test for differences between extremities, muscle groups, and speed. Significantly greater (Pelbow extension peak torque values were measured at 90 degrees/s, 210 degrees/s, and 300 degrees/s for males. Significantly greater (Pelbow flexion muscular performance in males and for elbow flexion or extension peak torque and single-repetition work values in females. No significant difference between extremities was measured in elbow flexion/extension strength ratios in females and significant differences between extremities in this ratio were only present at 210 degrees/s in males (Pelbow in male elite junior tennis players but not females. These data have ramifications for clinicians rehabilitating upper extremity injuries in patients from this population.

  15. Adaptation of the DP 50 dust meter for measuring dust content under isokinetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J.; Novak, L.

    1985-03-01

    The DP 50 dust meter, developed by the Scientific Coal Research Institute Ostrava-Radvanice, is used for measuring dust content in the air in underground coal mines. Two versions of the system are used: a type developed in 1970 which is placed in a vertical position and used to measure the content of respirable coal particles in the air; and a type developed in 1983 for isokinetic measurement of dust content in the air. The latter is equipped with 8 cone-shaped adapters (with differing size and dimensions of the cone inlet adjusted to air flow rates from 0.25 to 8.00 m/s). Specifications of the 8 adapters are given in a table. The 1983 version of the DP 50 is placed in a horizontal position with the dust meter axis parallel to the direction of air flow ventilating a mine working. Recommendations for installation of dust meters in underground workings and effects of installation on measurement accuracy are discussed. 16 references.

  16. Benign joint hypermobility syndrome

    Directory of Open Access Journals (Sweden)

    Iwona Słowińska

    2014-11-01

    Full Text Available Benign joint hypermobility syndrome (BJHS, commonly known as loose ligament syndrome, is a non-inflammatory rheumatic condition. It is characterised by a greater than normal range of motion of the joints of the limbs and spine. The prevalence of the syndrome in preschool-age children is estimated to be between 2% and 30%, depending on ethnic background (with higher prevalence in Asian and African populations, occurring most often in families with a history of the condition and more frequently in girls. This paper presents a case report of a 12-year-old girl. A broad differential diagnostic approach to recurrent joint inflammation with joint effusion and pain made it possible to establish a diagnosis of benign joint hypermobility syndrome. The child met the Brighton criteria; her Beighton score was 7 out of 9. Patient education aimed at eliminating abnormal joint movement and an appropriate rehabilitation programme play key roles in the treatment of BJHS.

  17. Joint ventures

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret......Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret...

  18. Avaliação isocinética em atletas paraolímpicos Isokinetic evaluation in paralympic athletes

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Silva

    2002-06-01

    Full Text Available O equilíbrio dos parâmetros de força muscular nas articulações é de grande relevância, tanto no aspecto clínico como para o desempenho atlético. Informações sobre os valores desses parâmetros em atletas olímpicos e principalmente nos paraolímpicos são raras. Neste trabalho apresentamos os resultados da avaliação muscular isocinética (Cybex 6000 realizada na equipe brasileira que participou dos Jogos Paraolímpicos de Sidney 2000. Foram avaliados os músculos flexores e extensores dos joelhos de 11 jogadores de futebol (paralisia cerebral, idade 24,6 ± 4,8 anos; peso 67 ± 5,5kg; altura 177,7 ± 3,8cm e 12 de basquetebol (deficientes mentais, idade 24,7 ± 4,4 anos; peso 76,6 ± 13,4kg; altura 184,4 ± 10cm, e os músculos rotadores internos e rotadores externos de ombros de seis judocas (deficientes visuais, idade 29,8 ± 5,6 anos; peso 87 ± 21,6kg; altura 171,5 ± 6,9cm. Os jogadores de futebol apresentaram relação de equilíbrio muscular entre flexores e extensores de joelhos dentro dos parâmetros de normalidade apesar da fraqueza muscular imposta pela paralisia cerebral. Nos judocas o equilíbrio muscular entre rotadores externos e rotadores internos mostrou-se dentro dos limites de normalidade. A principal característica dos jogadores de basquetebol foi o valor de pico de torque próximo do esperado para indivíduos hígidos não atletas. Os valores numéricos estão apresentados no texto para serem usados como referência para profissionais da área.The balance between agonist and antagonist muscles in the joints is of great relevance to clinical practice and to sports performance. Information about these parameters amongst Olympic and especially Paralympic athletes is scarce. The purpose of this study was to present the results of the isokinetic evaluation (Cybex 6000 of the Brazilian team that participated in the Sydney Paralympic Games. The flexor and extensor muscles of the knee were evaluated in 11 soccer

  19. Analysis of the association between isokinetic knee strength with offensive and defensive jumping capacity in high-level female volleyball athletes.

    Science.gov (United States)

    Sattler, Tine; Sekulic, Damir; Esco, Michael R; Mahmutovic, Ifet; Hadzic, Vedran

    2015-09-01

    Isokinetic-knee-strength was hypothesized to be an important factor related to jumping performance. However, studies examining this relation among elite female athletes and sport-specific jumps are lacking. This investigation determined the influence of isokinetic-knee flexor/extensor strength measures on spike-jump (offensive) and block-jump (defensive) performance among high-level female volleyball players. Cross-sectional laboratory study. Eighty-two female volleyball athletes (age = 21.3 ± 3.8 years, height = 175.4 ± 6.76 cm, and weight = 68.29 ± 8.53 kg) volunteered to participate in this study. The studied variables included spike-jump and block-jump performance and a set of isokinetic tests to evaluate the eccentric and concentric strength capacities of the knee extensors (quadriceps - Q), and flexors (hamstring - H) for both legs. Both jumping tests showed high intra-session reliability (ICC of 0.87 and 0.95 for spike-jump and block-jump, respectively). The athletes were clustered into three achievement-groups based on their spike-jump and block-jump performances. For the block-jump, ANOVA identified significant differences between achievement-groups for all isokinetic variables except the Right-Q-Eccentric-Strength. When observed for spike-jump, achievement-groups differed significantly in all tests but Right-H-Concentric-Strength. Discriminant canonical analysis showed that the isokinetic-strength variables were more associated with block-jump then spike-jump-performance. The eccentric isokinetic measures were relatively less important determinants of block-jump than for the spike-jump performance. Data support the hypothesis of the importance of isokinetic strength measures for the expression of rapid muscular performance in volleyball. The results point to the necessity of the differential approach in sport training for defensive and offensive duties. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Acromioclavicular joint separation

    Directory of Open Access Journals (Sweden)

    Devan Pandya, BS

    2018-04-01

    Full Text Available History of present illness: A 30-year-old male was brought in by ambulance to the emergency department as a trauma activation after a motorcycle accident. The patient was the helmeted rider of a motorcycle traveling at an unknown speed when he lost control and was thrown off his vehicle. He denied loss of consciousness, nausea, or vomiting. The patient’s vital signs were stable and his only complaint was pain around his left shoulder. On exam, the patient had a prominent left clavicle without skin compromise. He had adequate range of motion in the left shoulder with moderate pain, and his left upper extremity was neurovascularly intact. Significant findings: Plain films of the left shoulder showed elevation of the left clavicle above the acromion. There was an increase in the acromioclavicular (AC and coracoclavicular (CC distances (increased joint distances marked with red and blue arrows, respectively. A normal AC joint measures 1-3 mm whereas a normal CC distance measures 11-13 mm.1 The injury was classified as a Rockwood type III AC joint separation. Discussion: The AC joint is a synovial joint between an oval facet on the acromion and a similar facet on the distal end of the clavicle. Horizontal stability is provided by the AC joint while axial stability is provided by the CC joint.2,3 AC joint injuries account for about 9%-12% of shoulder girdle injuries, and the most common mechanism is direct trauma.4,5 Initial evaluation with imaging includes plain films with three views: the anterior-posterior (AP view with the shoulder in internal and external rotation as well as an axillary, or scapula-Y view (sensitivity 40%, specificity 90% for all films.6,7 AC joint injuries are classified by the Rockwood system.8 Type I involves a sprain or incomplete tear of the AC ligaments with an intact CC ligament. The AC joint appears normal on X-ray, but can become widened with stress, achieved by having the patient hold a 10-15 pound weight from each

  1. Isokinetic hamstrings-to-quadriceps peak torque ratio: the influence of sport modality, gender, and angular velocity.

    Science.gov (United States)

    Andrade, Marilia Dos Santos; De Lira, Claudio Andre Barbosa; Koffes, Fabiana De Carvalho; Mascarin, Naryana Cristina; Benedito-Silva, Ana Amélia; Da Silva, Antonio Carlos

    2012-01-01

    The purpose of this study was to determine differences in hamstrings-to-quadriceps (H/Q) peak torque ratios evaluated at different angular velocities between men and women who participate in judo, handball or soccer. A total of 166 athletes, including 58 judokas (26 females and 32 males), 39 handball players (22 females and 17 males), and 69 soccer players (17 females and 52 males), were evaluated using an isokinetic dynamometer. The H/Q isokinetic peak torque ratios were calculated at angular velocities of 1.05 rad · s⁻¹ and 5.23 rad · s⁻¹. In the analysis by gender, female soccer players produced lower H/Q peak torque ratios at 1.05 rad · s⁻¹ than males involved in the same sport. However, when H/Q peak torque ratio was assessed at 5.23 rad · s⁻¹, there were no significant differences between the sexes. In the analysis by sport, there were no differences among females at 1.05 rad · s⁻¹. In contrast, male soccer players had significantly higher H/Q peak torque ratios than judokas (66 ± 12% vs. 57 ± 14%, respectively). Female handball players produced significantly lower peak torque ratios at 5.23 rad · s⁻¹ than judokas or soccer players, whereas males presented no ratio differences among sports At 5.23 rad · s⁻¹. In the analysis by velocity, women's muscular ratios assessed at 1.05 rad · s⁻¹ were significantly lower than at 5.23 rad · s⁻¹ for all sports; among men, only judokas presented lower ratios at 1.05 rad · s⁻¹ than at 5.23 rad · s⁻¹. The present results suggest that sport modality and angular velocity influence the isokinetic strength profiles of men and women.

  2. Effect of eccentric isokinetic strengthening in the rehabilitation of patients with knee osteoarthritis: Isogo, a randomized trial

    Science.gov (United States)

    2014-01-01

    Background Femorotibial knee osteoarthritis is associated with muscle weakness in the lower limbs, particularly in the quadriceps, which results in disease progression. The interest of having muscular strengthening as part of the therapeutic arsenal for the medical treatment of knee osteoarthritis is now well established. The functional disability induced by knee osteoarthritis manifests itself principally when walking, notably downhill, during which the muscles are called upon to contract eccentrically. We can therefore think that eccentric muscular strengthening could bring a functional benefit that is superior to concentric muscular strengthening. Methods/Design This is a prospective, randomized, bicenter, parallel-group, international study. Eighty patients aged from 40 to 75 years old, suffering from medical-stage knee osteoarthritis, will undertake 6 weeks of isokinetic muscular strengthening. Randomization determines the mode of muscular strengthening: either exclusively eccentric or exclusively concentric. The principal objective is to demonstrate the superiority of the improvement in the quadriceps isokinetic torque after isokinetic muscular strengthening by the eccentric mode compared to the concentric mode. The following parameters are also evaluated: the variations in the level of pain, the parameters of walking (maximum speed over 10 and 200 meters, analysis on a computerized Gaitrite™ treadmill), static equilibrium (on a FUSYO™ force platform), and the functional status of the patient using the Western Ontario and MacMaster Universities osteoarthritis index (WOMAC) questionnaire after the strengthening period and at 6 months. Discussion A better knowledge of the most effective mode of muscular strengthening is needed to optimize the functional benefits to the patients. In case of superiority in terms of efficacy of the eccentric mode, the latter could be given priority in the rehabilitation treatment of knee osteoarthritis patients. Trial

  3. ACL deficient potential copers and non-copers reveal different isokinetic quadriceps strength profiles in the early stage after injury

    Science.gov (United States)

    Eitzen, I; Eitzen, TJ; Holm, I; Snyder-Mackler, L; Risberg, MA

    2011-01-01

    Background Isokinetic muscle strength tests using the peak torque value is the most frequently included quadriceps muscle strength measurement for anterior cruciate ligament (ACL) injured subjects. Aims The purpose of this study was to investigate quadriceps muscle performance during the whole isokinetic curve in ACL deficient subjects classified as potential copers or non-copers, and investigate whether these curve profiles were associated with single-leg hop performance. We hypothesized that quadriceps muscle torque at other knee flexion angles than peak torque would give more information about quadriceps muscle strength deficits. Furthermore, we hypothesized that there would be significant torque differences between potential copers and non-copers, and a significant relationship between angle specific torque values and single-leg hop performance. Study Design Cross-sectional study; Level of evidence, 2 Methods Seventy-six individuals with a complete unilateral ACL rupture within the last 3 months were included. The subjects were classified into potential copers and non-copers according to the criteria from Fitzgerald et al12. Isokinetic quadriceps muscle tests were performed at 60°/sec (Biodex 6000). Mean torque values were calculated for peak torque as well as for specific knee flexion angles. The one-leg hop and the 6 meter timed hop tests were included and symmetry indices were used. Results The peak torque value did not identify the largest quadriceps muscle strength deficit. Rather, these were established at knee flexion angles of less than 40°. There were significant differences in angle specific torque values between potential copers and non-copers (p<0.05). Moderate to strong associations were disclosed between angle specific torque values and single-leg hop performance, but only for non-copers (r≥0.32– 0.58). Conclusions Angle specific quadriceps muscle torque values of less than 40° of knee flexion provide more information on the quadriceps

  4. Influence of functional knee bracing on the isokinetic and functional tests of anterior cruciate ligament deficient patients.

    Directory of Open Access Journals (Sweden)

    Niyousha Mortaza

    Full Text Available Use of functional knee braces has been suggested to provide protection and to improve kinetic performance of the knee in Anterior cruciate ligament(ACL-injured patients. However, many athletes might refrain from wearing the braces because of the fear of performance hindrance in the playing field. The aim of this study was to examine the effect of three functional knee brace/sleeves upon the isokinetic and functional performance of ACL-deficient and healthy subjects. Six anterior cruciate ligament deficient (29.0 ± 5.3 yrs., 175.2 ± 5.4 cm, and 73.0 ± 10.0 kg and six healthy male subjects (27.2 ± 3.7 yrs., 176.4 ± 6.4 cm, and 70.3 ± 6.9 kg were selected. The effect of a custom-made functional knee brace, and two neoprene knee sleeves, one with four metal supports and one without support were examined via the use of isokinetic and functional tests in four sets (non-braced,wearing functional knee brace,and wearing the sleeves. Cross-over hop and single leg vertical jump test were performed and jump height, and hop distance were recorded. Peak torque to body weight ratio and average power in two isokinetic velocities(60°.s(-1,180°.s(-1 were recorded and the brace/sleeves effect was calculated as the changes in peak torque measured in the brace/sleeves conditions, expressed as a percentage of peak torque measured in non-braced condition. Frequency content of the isokinetic torque-time curves was also analyzed. Wilcoxon signed rank test was used to compare the measured values in four test conditions within each control and ACL-deficient group,and Mann-Whitney U test was used for the comparison between the two groups. No significant differences in peak torque, average power, torque-time curve frequency content, vertical-jump and hop measurements were found within the experimental and the non-braced conditions (p>0.05. Although the examined functional knee brace/sleeves had no significant effect on the knee muscle performance, there have been

  5. Relation of 25-meter Swimming Performance with Physical Properties and Isokinetic Knee Strength in Amateur Young Swimmers

    OpenAIRE

    DOKUMACI, Bircan; AYGÜN, Cihan; ÇAKIR ATABEK, Hayriye

    2017-01-01

    The purpose of this study was to investigate the relationship between physical properties,isokinetic knee strength and swimming performance in young amateur athletes. Seventeen 18-24 year old amateur swimmers (n=13 males, mean age=20.0 ± 2.1 years; n=4 females, meanage=21.5 ± 1.7 years) volunteered to participate in this study. All athletes were member of thesame team who were engaged to the swim training at least for 4 years. Following the 5-minwarm up session, each participant performed thr...

  6. Coupled motions in human and porcine thoracic and lumbar spines

    NARCIS (Netherlands)

    Kingma, Idsart; Busscher, Iris; van der Veen, Albert J.; Verkerke, Gijsbertus J.; Veldhuizen, Albert G.; Homminga, Jasper; van Dieën, Jaap H.

    2018-01-01

    Coupled motions, i.e., motions along axes other than the loaded axis, have been reported to occur in the human spine, and are likely to be influenced by inclined local axes due to the sagittal plane spine curvature. Furthermore, the role of facet joints in such motions is as yet unclear. Therefore,

  7. Coupled motions in human and porcine thoracic and lumbar spines

    NARCIS (Netherlands)

    Kingma, Idsart; Busscher, Iris; van der Veen, Albert J.; Verkerke, Gijsbertus J.; Veldhuizen, Albert G.; Homminga, Jasper; van Dieën, Jaap H.

    2017-01-01

    Coupled motions, i.e., motions along axes other than the loaded axis, have been reported to occur in the human spine, and are likely to be influenced by inclined local axes due to the sagittal plane spine curvature. Furthermore, the role of facet joints in such motions is as yet unclear. Therefore,

  8. Recruitment of knee joint ligaments

    NARCIS (Netherlands)

    Blankevoort, L.; Huiskes, H.W.J.; Lange, de A.

    1991-01-01

    On the basis of earlier reported data on the in vitro kinematics of passive knee-joint motions of four knee specimens, the length changes of ligament fiber bundles were determined by using the points of insertion on the tibia and femur. The kinematic data and the insertions of the ligaments were

  9. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Directory of Open Access Journals (Sweden)

    Valeriya Gritsenko

    Full Text Available To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery.Descriptive study of motion measured via 2 methods.Academic cancer center oncology clinic.20 women (mean age = 60 yrs were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery following mastectomy (n = 4 or lumpectomy (n = 16 for breast cancer.Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle.Correlation of motion capture with goniometry and detection of motion limitation.Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80, while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more.Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  10. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Science.gov (United States)

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K

    2015-01-01

    To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  11. Exoskeleton Motion Control for Children Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    Cristina Ploscaru

    2016-06-01

    Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.

  12. Temporomandibular joint

    International Nuclear Information System (INIS)

    Westesson, P.L.; Hatala, M.; Tallents, R.H.; Katzberg, R.W.; Musgrave, M.; Levitt, S.

    1990-01-01

    This paper determines the frequency of MR signs of abnormal temporomandibular joints (TMJs) in asymptomatic volunteers. Forty-two volunteers with 84 clinically normal TMJs were imaged in the sagittal and coronal planes with surface coil MR imaging. Sagittal closed and open and coronal closed views were obtained bilaterally in all volunteers. The images were classified as normal (superior disk position) or abnormal (disk displacement of degenerative joint disease). Eighteen joints in 11 volunteers were abnormal; 12 had disk displacement with reduction and six had disk displacement without reduction, with associated degenerative joint disease in three of the six. Asymptomatic internal derangement and degenerative joint disease occur in about one-fourth of asymptomatic volunteers

  13. Functional MR imaging of the patellofemoral joint

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Heller, M.

    1995-01-01

    Conventional X-ray examinations of the patellofemoral joint in 30 , 60 and 90 of knee flexion demonstrate the position of the patella. On the other hand, they have been shown to be insufficient for the diagnosis of patellofemoral maltracking in the critical range between 30 of flexion and full extension. Motion-triggered and ultrafast MRI offer new possibilities for functional diagnosis of the patellofemoral joint under active knee motion. Functional MRI of the patellofemoral joint is suggested as an alternative to arthroscopy, particularly in patients with anterior knee pain or suspected patellar maltracking. (orig.) [de

  14. Effects of fatiguing isometric and isokinetic ankle exercises on postural control while standing on firm and compliant surfaces.

    Science.gov (United States)

    Bisson, Etienne J; Remaud, Anthony; Boyas, Sébastien; Lajoie, Yves; Bilodeau, Martin

    2012-06-14

    Fatiguing exercises used across studies to induce alterations in postural control are diverse and may explain the different findings reported. This study aimed to compare the effects of two types of fatiguing plantarflexion exercises on postural control on a firm and a compliant surface. Ten healthy young men (29 ± 4 years) were asked to stand as steadily as possible for 30 s, blindfolded with feet together, on a firm and a compliant surface before and immediately after an isometric and an isokinetic fatiguing exercise. Maximal force reduction due to fatigue was found significant but similar between exercises. No significant difference was found between the fatiguing exercises on all Center of Pressure (CoP) parameters. Both fatiguing exercises induced increases in CoP excursion area, CoP variability and CoP velocity in both planes (antero-posterior, mediolateral) on the compliant surface. On the firm surface, both fatiguing exercises only induced increases in CoP variability and CoP velocity in the fatigued plane (antero-posterior). Isometric and isokinetic fatiguing exercises, when producing a similar level of force reduction, induce similar decreases in postural control. The effects of fatigue on postural control in healthy young men are more pronounced when standing on a compliant surface, i.e. when proprioceptive information at the ankle is altered.

  15. Intrarater reliability of the Humac NORM isokinetic dynamometer for strength measurements of the knee and shoulder muscles.

    Science.gov (United States)

    Habets, Bas; Staal, J Bart; Tijssen, Marsha; van Cingel, Robert

    2018-01-10

    To determine the intrarater reliability of the Humac NORM isokinetic dynamometer for concentric and eccentric strength tests of knee and shoulder muscles. 54 participants (50% female, average age 20.9 ± 3.1 years) performed concentric and eccentric strength measures of the knee extensors and flexors, and the shoulder internal and external rotators on two different Humac NORM isokinetic dynamometers, which were situated at two different centers. The knee extensors and flexors were tested concentrically at 60° and 180°/s, and eccentrically at 60° s. Concentric strength of the shoulder internal and external rotators, and eccentric strength of the external rotators were measured at 60° and 120°/s. We calculated intraclass correlation coefficients (ICCs), standard error of measurement, standard error of measurement expressed as a %, and the smallest detectable change to determine reliability and measurement error. ICCs for the knee tests ranged from 0.74 to 0.89, whereas ICC values for the shoulder tests ranged from 0.72 to 0.94. Measurement error was highest for the concentric test of the knee extensors and lowest for the concentric test of shoulder external rotators.

  16. Profile of isokinetic eccentric-to-concentric strength ratios of shoulder rotator muscles in elite female team handball players.

    Science.gov (United States)

    Andrade, Marilia Dos Santos; Fleury, Anna Maria; de Lira, Claudio Andre Barbosia; Dubas, Joao Paulo; da Silva, Antonio Carlos

    2010-05-01

    The purpose of this study was to establish the isokinetic profile of shoulder rotator muscles strength in female handball players. Twenty-seven handball players performed concentric and eccentric strength tests of both dominant and non-dominant upper limbs on an isokinetic dynamometer. Internal and external rotator muscles peak torque was assessed at 1.05, 3.14, and 5.23 rad . s(-1) in concentric mode and at 3.14 and 5.23 rad . s(-1) in eccentric mode. Concentric balance ratio and functional ratio were obtained. Bi-lateral deficiency was compared. Concentric strength for internal and external rotation was significantly greater for the dominant than for the non-dominant limb for all speeds (P muscles were stronger in the dominant than the non-dominant limb (P stronger than the non-dominant side, balance concentric ratios remained the same, with only the functional strength ratio different at 5.23 rad . s(-1). Our results suggest that concentric strength exercises be used for internal and external rotators on the non-dominant side, and functional exercise that improves eccentric rotation strength for prevention programmes.

  17. Joint diseases

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    The authors discuss how x-ray examination is essential in the diagnosis and evaluation of the arthritides. Most arthritides are first suspected by the clinician, and x-ray evaluation of these entities along with laboratory testing is important for confirmation of the clinical diagnosis and in staging of the disease process. Several arthritides are often diagnosed first by the podiatrist on x-ray evaluation, including pseudogout, ankylosing spondylitis, early rheumatoid arthritis, degenerative joint disease, and tuberculosis of bone. The joint responds to insult in only a limited number of ways that become apparent on x-ray. The soft tissues surrounding the joint, the articulating bones, and alignment of the joint space may all be involved by the arthritic process. On roentgenographic examination, the soft tissues must be examined for edema, masses, calcifications, and atrophy. The articulating bones must be examined for demineralization, erosions, osteophytes, periosteal reaction, cysts and sclerosis

  18. Joint pain

    Science.gov (United States)

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: Gout (especially ...

  19. Joint Commission

    Science.gov (United States)

    ... for the latest publication of The Joint Commission Journal on Quality and Patient Safety (JQPS). . How We Work Process improvement program breeds quality culture, empowers staff An article in Quality Progress, June ...

  20. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males.

    Science.gov (United States)

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.

  1. A method to reduce the number of measured parameters when using isokinetic muscle strength as a clinical indicator in rheumatoid arthritis patients

    DEFF Research Database (Denmark)

    Schiøttz-Christensen, Berit; Theil Skovgaard, Lene; Danneskiold-Samsøe, B

    2001-01-01

    The aim of the study was to present a method enabling a reduction of the number of measurements when quantifying isokinetic muscle strength (IMS), and to describe an expression for IMS which is independent of measuring conditions. IMS is a measure of muscle strength used to categorise patients...

  2. Validity and reliability of isometric, isokinetic and isoinertial modalities for the assessment of quadriceps muscle strength in patients with total knee arthroplasty.

    Science.gov (United States)

    Lienhard, K; Lauermann, S P; Schneider, D; Item-Glatthorn, J F; Casartelli, N C; Maffiuletti, N A

    2013-12-01

    Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947-0.966; standard error of measurement range: 5.1-9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641-0.710), step length (r range: 0.685-0.820) and WOMAC function (r range: 0.575-0.663), independent from the modality (P strength was also significantly correlated to walking speed (r range: 0.413-0.539), step length (r range: 0.514-0.608) and WOMAC function (r range: 0.374-0.554) (P 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Effect of Eight Weeks Plyometric Training on Anaerobic Power, Counter Movement Jumping and Isokinetic Strength in 15-18 Years Basketball Players

    Science.gov (United States)

    Adigüzel, Niyazi Sidki; Günay, Mehmet

    2016-01-01

    The purpose of this study was to investigate the effect of eight weeks plyometric training on anaerobic power, counter movement jumping and isokinetic strength in 15-18 years aged basketball players. This study was including 30 male Basketball players. The subjects were divided into two groups as: the experimental group (n = 15) and the control…

  4. Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-Wave Particle Motion and Vertical- and Radial-Component Velocity Spectra

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Moustafa, S.S.R.; Al-Arifi, N.

    2018-01-01

    Roč. 175, č. 1 (2018), s. 67-88 ISSN 0033-4553 Institutional support: RVO:67985891 Keywords : surface wave dispersion * joint inversion of seismic data * Rayleigh waves * holistic analysis of surface waves Impact factor: 1.591, year: 2016

  5. WE-G-BRD-04: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An Integrated Model-Based Intrafractional Organ Motion Tracking Approach with Dynamic MRI in Head and Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Dolly, S; Anastasio, M; Li, H; Wooten, H; Gay, H; Mutic, S; Thorstad, W; Li, H [Washington University School of Medicine, Saint Louis, MO (United States); Victoria, J; Dempsey, J [ViewRay incorporated, Oakwood Village, Ohio (United States); Ruan, S [University of Rouen, QuantIF - EA 4108 LITIS, Rouen (France); Low, D [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2015-06-15

    Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) was first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first

  6. WE-G-BRD-04: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An Integrated Model-Based Intrafractional Organ Motion Tracking Approach with Dynamic MRI in Head and Neck Radiotherapy

    International Nuclear Information System (INIS)

    Chen, H; Dolly, S; Anastasio, M; Li, H; Wooten, H; Gay, H; Mutic, S; Thorstad, W; Li, H; Victoria, J; Dempsey, J; Ruan, S; Low, D

    2015-01-01

    Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) was first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first

  7. A joint-constraint model for human joints using signed distance-fields

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Abel, Sarah Maria Niebe; Erleben, Kenny

    2012-01-01

    We present a local joint-constraint model for a single joint which is based on distance fields. Our model is fast, general, and well suited for modeling human joints. In this work, we take a geometric approach and model the geometry of the boundary of the feasible region, i.e., the boundary of all...... allowed poses. A region of feasible poses can be built by embedding motion captured data points in a signed distance field. The only assumption is that the feasible poses form a single connected set of angular values. We show how signed distance fields can be used to generate fast and general joint......-joint dependencies, or joints with more than three degrees of freedom. The resolution of the joint-constraints can be tweaked individually for each degree of freedom, which can be used to optimize memory usage. We perform a comparative study of the key-properties of various joint-constraint models, as well...

  8. Isokinetic dynamometry of knee flexors and extensors: comparative study among non-athletes, jumper athletes and runner athletes

    Directory of Open Access Journals (Sweden)

    Siqueira Cássio Marinho

    2002-01-01

    Full Text Available Participation in intensive sports activities leads to muscular specializations that may generate alterations in involved articular forces and cause static (posture and dynamic changes (alterations of articular stability, coordination, etc.. Prevention of injury requires specific functional muscular evaluation in all athletes and for any kind of sport. OBJECTIVE: To dynamically evaluate, through isokinetic tests, the peak torque, total work, and average power of the knee flexor and extensor muscles of jumper and runner athletes and compare them to those of a non-athletic population, evaluating dominance and balance between agonistic and antagonistic muscle groups. RESULTS: In the non-athlete group, we noted a higher asymmetry between the dominant and nondominant members. The jumpers had the highest values of the evaluated parameters of all groups, whereas parameters for the runners were intermediate between non-athletes and jumpers.

  9. Avaliação isocinética no joelho do atleta Isokinetic evaluation of athletes' knee

    Directory of Open Access Journals (Sweden)

    Antonio Sérgio A.P. Terreri

    2001-10-01

    Full Text Available A avaliação isocinética tem sido usada nas últimas três décadas como método para se determinar o padrão funcional da força e do equilíbrio muscular. No nosso meio cresceu nos últimos 10 anos. É possível quantificar valores absolutos do torque, do trabalho e da potência de grupos musculares, bem como valores relativos, ou seja, da proporção agonista/antagonista de tais grupos. Outro recurso valioso consiste como método auxiliar na reabilitação das lesões esportivas. O exame é realizado com velocidade angular constante e predeterminada, seja lenta, intermediária e/ou rápida. O joelho é a articulação em que se observa maior aplicação e estudos isocinéticos. Na prática esportiva, temos por um lado a importância da proporção do equilíbrio muscular agonista/antagonista, ou seja, do equilíbrio flexor/extensor representado, respectivamente, pelos isquiotibiais/quadríceps. De outro, a comparação dos valores absolutos da função muscular entre os lados direito e esquerdo, quer seja para o quadríceps, ou para os isquiotibiais. Resultados alterados estão relacionados, geralmente, às lesões esportivas ou suas seqüelas. De interesse para o atleta e para a equipe multidisciplinar é poder dispor de um método de avaliação funcional muscular objetivo e seguro, que forneça dados confiáveis e reprodutíveis. Aspecto relevante reside no fato do resultado do teste isocinético poder ser útil nos critérios de retorno a atividade esportiva pós-lesão. Este artigo de revisão consiste em abordar alguns aspectos práticos da avaliação isocinética no joelho e sua utilização para os indivíduos que realizam atividade física.The isokinetic evaluation has been used in the last three decades as a method to determine both the strength functional pattern and the muscle balance. In our environment, this evaluation has been spread over the last 10 years. It is possible to quantify absolute values of torque, effort, and

  10. Measurement and Quantification of Gross Human Shoulder Motion

    Directory of Open Access Journals (Sweden)

    Jeremy T. Newkirk

    2013-01-01

    Full Text Available The shoulder girdle plays an important role in the large pointing workspace that humans enjoy. The goal of this work was to characterize the human shoulder girdle motion in relation to the arm. The overall motion of the human shoulder girdle was characterized based on motion studies completed on test subjects during voluntary (natural/unforced motion. The collected data from the experiments were used to develop surface fit equations that represent the position and orientation of the glenohumeral joint for a given humeral pointing direction. These equations completely quantify gross human shoulder girdle motion relative to the humerus. The equations are presented along with goodness-of-fit results that indicate the equations well approximate the motion of the human glenohumeral joint. This is the first time the motion has been quantified for the entire workspace, and the equations provide a reference against which to compare future work.

  11. A Ground-Based Comparison of the Muscle Atrophy Research and Exercise System (MARES) and a Standard Isokinetic Dynamometer

    Science.gov (United States)

    Hackney, K. J.; English, K. L.; Redd, E.; DeWitt, J. K.; Ploutz-Snyder, R.; Ploutz-Snyder, L. L.

    2010-01-01

    PURPOSE: 1) To compare the test-to-test reliability of Muscle Atrophy Research and Exercise System (MARES) with a standard laboratory isokinetic dynamometer (ISOK DYN) and; 2) to determine if measures of peak torque and total work differ between devices. METHODS: Ten subjects (6M, 4F) completed two trials on both MARES and an ISOK DYN in a counterbalanced order. Peak torque values at 60 deg & 180 deg / s were obtained from five maximal repetitions of knee extension (KE) and knee flexion (KF). Total work at 180 deg / s was determined from the area under the torque vs. displacement curve during twenty maximal repetitions of KE and KF. Reliability of measures within devices was interpreted from the intraclass correlation coefficient (ICC) and compared between devices using the ratio of the within-device standard deviations. Indicators of agreement for the two devices were evaluated from: 1) a calculation of concordance (rho) and; 2) the correlation between the mean of measures versus the delta difference between measures (m u vs delta). RESULTS: For all outcome measures ICCs were high for both the ISOK DYN (0.95-0.99) and MARES (0.90-0.99). However, ratios of the within-device standard deviation were 1.3 to 4.3 times higher on MARES. On average, a wide range (3.3 to 1054 Nm) of differences existed between the values obtained. Only KE peak torque measured at 60 deg & 180 deg / s showed similarities between devices (rho = 0.91 & 0.87; Pearson's r for m u vs delta = -0.22 & -0.37, respectively). CONCLUSION: Although MARES was designed for use in microgravity it was quite reliable during ground-based testing. However, MARES was consistently more variable than an ISOK DYN. Future longitudinal studies evaluating a change in isokinetic peak torque or total work should be limited within one device.

  12. The Total Work Measured During a High Intensity Isokinetic Fatigue Test Is Associated With Anaerobic Work Capacity

    Directory of Open Access Journals (Sweden)

    Laurent Bosquet, Kenan Gouadec, Nicolas Berryman, Cyril Duclos, Vincent Gremeaux, Jean Louis Croisier

    2016-03-01

    Full Text Available The purpose of the study was to determine whether total work measured during a high intensity isokinetic fatigue test (TWFAT could be considered as a valid measure of anaerobic work capacity (AWC, such as determined by total work measured during a Wingate Anaerobic Test (TWWAnT. Twenty well-trained cyclists performed 2 randomly ordered sessions involving a high intensity isokinetic fatigue test consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°·s-1, and a Wingate Anaerobic Test. We found that TWFAT of knee extensors was largely lower than TWWAnT (4151 ± 691 vs 22313 ± 2901 J, respectively, p < 0.05, Hedge’s g = 4.27. Both measures were highly associated (r = 0.83, and the 95% limits of agreement (LoA represented 24.5% of TWWAnT. TWFAT of knee flexors (2151 ± 540 J was largely lower than TWWAnT (p < 0.05, g = 9.52. By contrast, both measures were not associated (r = 0.09, and the 95% LoA represented 31.1% of TWWAnT. Combining TWFAT of knee flexors and knee extensors into a single measure (6302 ± 818 J did not changed neither improved these observations. We still found a large difference with TWWAnT (p < 0.05, g = 5.26, a moderate association (r = 0.65 and 95% LoA representing 25.5% of TWWAnT. We concluded that TWFAT of knee extensors could be considered as a valid measure of AWC, since both measure were highly associated. However, the mean difference between both measures and their 95% LoA were too large to warrant interchangeability.

  13. Design and Performance Analysis of a new Rotary Hydraulic Joint

    Science.gov (United States)

    Feng, Yong; Yang, Junhong; Shang, Jianzhong; Wang, Zhuo; Fang, Delei

    2017-07-01

    To improve the driving torque of the robots joint, a wobble plate hydraulic joint is proposed, and the structure and working principle are described. Then mathematical models of kinematics and dynamics was established. On the basis of this, dynamic simulation and characteristic analysis are carried out. Results show that the motion curve of the joint is continuous and the impact is small. Moreover the output torque of the joint characterized by simple structure and easy processing is large and can be rotated continuously.

  14. Joint Intentionality

    Directory of Open Access Journals (Sweden)

    Koreň Ladislav

    2016-03-01

    Full Text Available According to the shared intentionality hypothesis proposed by Michael Tomasello, two cognitive upgrades – joint and collective intentionality, respectively – make human thinking unique. Joint intentionality, in particular, is a mindset supposed to account for our early, species-specific capacity to participate in collaborative activities involving two (or a few agents. In order to elucidate such activities and their proximate cognitive-motivational mechanism, Tomasello draws on philosophical accounts of shared intentionality. I argue that his deference to such cognitively demanding accounts of shared intentional activities is problematic if his theoretical ambition is in part to show that and how early (prelinguistic and precultural capacities for joint action contribute to the development of higher cognitive capacities.

  15. Management of acromioclavicular joint injuries.

    Science.gov (United States)

    Li, Xinning; Ma, Richard; Bedi, Asheesh; Dines, David M; Altchek, David W; Dines, Joshua S

    2014-01-01

    Acromioclavicular joint injuries are among the most common shoulder girdle injuries in athletes and most commonly result from a direct force to the acromion with the arm in an adducted position. Acromioclavicular joint injuries often present with associated injuries to the glenohumeral joint, including an increased incidence of superior labrum anterior posterior (SLAP) tears that may warrant further evaluation and treatment. Anteroposterior stability of the acromioclavicular joint is conferred by the capsule and acromioclavicular ligaments, of which the posterior and superior ligaments are the strongest. Superior-inferior stability is maintained by the coracoclavicular (conoid and trapezoid) ligaments. Type-I or type-II acromioclavicular joint injuries have been treated with sling immobilization, early shoulder motion, and physical therapy, with favorable outcomes. Return to activity can occur when normal shoulder motion and strength are obtained and the shoulder is asymptomatic as compared with the contralateral normal extremity. The management of type-III injuries remains controversial and is individualized. While a return to the previous level of functional activity with nonsurgical treatment has been documented in a number of case series, surgical reduction and coracoclavicular ligament reconstruction has been associated with a favorable outcome and can be considered in patients who place high functional demands on their shoulders or in athletes who participate in overhead sports. Surgical management is indicated for high-grade (≥type IV) acromioclavicular joint injuries to achieve anatomic reduction of the acromioclavicular joint, reconstruction of the coracoclavicular ligaments, and repair of the deltotrapezial fascia. Outcomes after surgical reconstruction of the coracoclavicular ligaments have been satisfactory with regard to achieving pain relief and return to functional activities, but further improvements in the biomechanical strength of these

  16. Joint imaging

    International Nuclear Information System (INIS)

    Hengst, W.

    1984-01-01

    Joint imaging is a proven diagnostic procedure which has become indispensable to the detection and treatment of different joint diseases in almost all disciplines. The method is suited for early diagnosis of joint affections both in soft tissue and bone which cannot be detected by X-ray or other procedures. The local activity accumulation depends on the rate of metabolism and is visualized in the scan, which in turn enables the extension and floridity of focal lesions to be evaluated and followed-up. Although joint scans may often give hints to probabilities relevant to differential diagnosis, the method is non-specific and only useful if based on the underlying clinical picture and X-ray finding, if possible. The radiation exposure is very low and does not represent a hazard in cases of adequate assessment of indication. In pregnant women and children the assessment of indication has to be based on very strict principles. The method is suited for out-patient diagnosis and can be applied in all installations equipped with a gamma camera and a technetium generator. (orig.) [de

  17. Joint purpose?

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    2013-01-01

    Starting from Crenshaw´s point that antiracism often fails to interrogate patriarchy and that feminism often reproduces racist practices (1991: 1252), this paper asks: What are the theoretical reasons for believing that feminism and anti-racism can be regarded as fighting for the joint purpose...

  18. Programmable motion of DNA origami mechanisms.

    Science.gov (United States)

    Marras, Alexander E; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E

    2015-01-20

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼ minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.

  19. Programmable motion of DNA origami mechanisms

    Science.gov (United States)

    Marras, Alexander E.; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E.

    2015-01-01

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach. PMID:25561550

  20. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  1. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  2. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  3. Motion Analysis of Thumb in Cellular Phone Use

    Directory of Open Access Journals (Sweden)

    Naotaka Sakai

    2010-01-01

    Full Text Available The thumb motion of 10 normal subjects during cellular phone use was measured using a reflective marker detection system to compare the maximum, minimum and range of flexion angles of the interphalangeal (IP, metacarpophalangeal (MP and carpometacarpal (CM joints. Two micro-reflective markers 3 mm in diameter were each placed on the dorsal surface of the distal phalanx, basal phalanx and metacarpal bone of the thumb. Three markers were placed on the dorsal hand in order to define the dorsal hand plane. Each subject pushed the 12 keys of a folding cellular phone with an 85-mm-long and 40-mm-wide keypad, sequentially from ‘1’ to ‘#’, and the pushing motion was recorded by six infrared video cameras for 12 seconds, using the VICON 612 system. The mean maximum flexion angle of the MP joint was significantly (p < .05 larger than the CM joint, and the mean minimum flexion angle of the CM joint was significantly (p < .01 smaller than the IP and MP joints. The mean range of motion of the IP joint was significantly (p < .05 larger than the MP and the CM joints. In a comparison of different key-pushing motions, only the CM joint was significantly (p < .05 larger in its range of motion. In conclusion, thumb motion on pushing the keys of the cellular phone was produced mainly by the MP and the CM joints. In addition, the ability to reach keys in different areas of the cellular phone keypad is regulated by changing the flexion angle of the CM joint.

  4. MO-G-BRF-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - Sensitivity of PET-Based Texture Features to Respiratory Motion in Non-Small Cell Lung Cancer (NSCLC)

    International Nuclear Information System (INIS)

    Yip, S; Aerts, H; Berbeco, R; McCall, K; Aristophanous, M; Chen, A

    2014-01-01

    Purpose: PET-based texture features are used to quantify tumor heterogeneity due to their predictive power in treatment outcome. We investigated the sensitivity of texture features to tumor motion by comparing whole body (3D) and respiratory-gated (4D) PET imaging. Methods: Twenty-six patients (34 lesions) received 3D and 4D [F-18]FDG-PET scans before chemo-radiotherapy. The acquired 4D data were retrospectively binned into five breathing phases to create the 4D image sequence. Four texture features (Coarseness, Contrast, Busyness, and Complexity) were computed within the the physician-defined tumor volume. The relative difference (δ) in each measure between the 3D- and 4D-PET imaging was calculated. Wilcoxon signed-rank test (p<0.01) was used to determine if δ was significantly different from zero. Coefficient of variation (CV) was used to determine the variability in the texture features between all 4D-PET phases. Pearson correlation coefficient was used to investigate the impact of tumor size and motion amplitude on δ. Results: Significant differences (p<<0.01) between 3D and 4D imaging were found for Coarseness, Busyness, and Complexity. The difference for Contrast was not significant (p>0.24). 4D-PET increased Busyness (∼20%) and Complexity (∼20%), and decreased Coarseness (∼10%) and Contrast (∼5%) compared to 3D-PET. Nearly negligible variability (CV=3.9%) was found between the 4D phase bins for Coarseness and Complexity. Moderate variability was found for Contrast and Busyness (CV∼10%). Poor correlation was found between the tumor volume and δ for the texture features (R=−0.34−0.34). Motion amplitude had moderate impact on δ for Contrast and Busyness (R=−0.64− 0.54) and no impact for Coarseness and Complexity (R=−0.29−0.17). Conclusion: Substantial differences in textures were found between 3D and 4D-PET imaging. Moreover, the variability between phase bins for Coarseness and Complexity was negligible, suggesting that similar

  5. MO-G-BRF-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - Sensitivity of PET-Based Texture Features to Respiratory Motion in Non-Small Cell Lung Cancer (NSCLC)

    Energy Technology Data Exchange (ETDEWEB)

    Yip, S; Aerts, H; Berbeco, R [Brigham and Womens Hospital, Boston, MA (United States); Farber Cancer Institute, Boston, MA (United States); McCall, K [Brigham and Womens Hospital, Boston, MA (United States); Aristophanous, M [Farber Cancer Institute, Boston, MA (United States); Chen, A [UT MD Anderson Cancer Center, Houston, TX, (United States)

    2014-06-15

    Purpose: PET-based texture features are used to quantify tumor heterogeneity due to their predictive power in treatment outcome. We investigated the sensitivity of texture features to tumor motion by comparing whole body (3D) and respiratory-gated (4D) PET imaging. Methods: Twenty-six patients (34 lesions) received 3D and 4D [F-18]FDG-PET scans before chemo-radiotherapy. The acquired 4D data were retrospectively binned into five breathing phases to create the 4D image sequence. Four texture features (Coarseness, Contrast, Busyness, and Complexity) were computed within the the physician-defined tumor volume. The relative difference (δ) in each measure between the 3D- and 4D-PET imaging was calculated. Wilcoxon signed-rank test (p<0.01) was used to determine if δ was significantly different from zero. Coefficient of variation (CV) was used to determine the variability in the texture features between all 4D-PET phases. Pearson correlation coefficient was used to investigate the impact of tumor size and motion amplitude on δ. Results: Significant differences (p<<0.01) between 3D and 4D imaging were found for Coarseness, Busyness, and Complexity. The difference for Contrast was not significant (p>0.24). 4D-PET increased Busyness (∼20%) and Complexity (∼20%), and decreased Coarseness (∼10%) and Contrast (∼5%) compared to 3D-PET. Nearly negligible variability (CV=3.9%) was found between the 4D phase bins for Coarseness and Complexity. Moderate variability was found for Contrast and Busyness (CV∼10%). Poor correlation was found between the tumor volume and δ for the texture features (R=−0.34−0.34). Motion amplitude had moderate impact on δ for Contrast and Busyness (R=−0.64− 0.54) and no impact for Coarseness and Complexity (R=−0.29−0.17). Conclusion: Substantial differences in textures were found between 3D and 4D-PET imaging. Moreover, the variability between phase bins for Coarseness and Complexity was negligible, suggesting that similar

  6. Modelling of the Human Knee Joint Supported by Active Orthosis

    Science.gov (United States)

    Musalimov, V.; Monahov, Y.; Tamre, M.; Rõbak, D.; Sivitski, A.; Aryassov, G.; Penkov, I.

    2018-02-01

    The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  7. Modelling of the Human Knee Joint Supported by Active Orthosis

    Directory of Open Access Journals (Sweden)

    Musalimov V.

    2018-02-01

    Full Text Available The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC. The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  8. 38 CFR 4.59 - Painful motion.

    Science.gov (United States)

    2010-07-01

    ..., painful motion is an important factor of disability, the facial expression, wincing, etc., on pressure or... assist the identification. Sciatic neuritis is not uncommonly caused by arthritis of the spine. The... to healed injury, as entitled to at least the minimum compensable rating for the joint. Crepitation...

  9. Kinematics of Hooke universal joint robot wrists

    Science.gov (United States)

    Mckinney, William S., Jr.

    1988-01-01

    The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.

  10. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  11. Video super-resolution using simultaneous motion and intensity calculations

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    for the joint estimation of a super-resolution sequence and its flow field. Via the calculus of variations, this leads to a coupled system of partial differential equations for image sequence and motion estimation. We solve a simplified form of this system and as a by-product we indeed provide a motion field...

  12. The association of trunk muscle cross-sectional area and magnetic resonance image parameters with isokinetic and psychophysical lifting strength and static back muscle endurance in men.

    Science.gov (United States)

    Gibbons, L E; Latikka, P; Videman, T; Manninen, H; Battié, M C

    1997-10-01

    The relationship between trunk muscle morphology as measured on transverse magnetic resonance images and isokinetic lifting, psychophysical lifting, and static back muscle endurance testing was examined in 110 men, ages 35-67 years (mean, 48 years), who had been chosen based on their exposure to a wide variety of occupational and leisure-time physical activities. The computed T2-relaxation times and the T2-weighted and proton density-weighted signal intensities of the erector spinae, quadratus lumborum, and psoas major muscles had almost no association with any of the strength tests. The cross-sectional areas of the muscles had good correlations with isokinetic lifting strength (r = 0.46-0.53). They did not correlate well with psychophysical lifting and static back muscle endurance. Other characteristics or neurological or psychological factors may have more influence on those tests.

  13. Hip joint mobility in dancers: preliminary report.

    Science.gov (United States)

    Drężewska, Marlena; Gałuszka, Renata; Sliwiński, Zbigniew

    2012-01-01

    The aim of this study was to evaluate the impact of dancing on hip joint mobility and to assess the relationship between active movements of the hips and injuries among dancers, which may be important in planning rehabilitation in this group. The sample comprised 49 dancers (37 women and 12 men) aged 15 to 32 years. The participants were the professional dancers of the Kielce Dance Theatre and members of two youth jazz dance teams from the Kielce Dance Theatre. The active range of motion of the hips was measured in three planes using a goniometer in order to assess the influence of dance training on hip joint mobility. A questionnaire-based survey was also conducted. The range of flexion, extension and external rotation was significantly greater in the group of long-time dancers (p <0.05). There was a significantly greater range of flexion, abduction and external rotation in previously injured hip joints (p<0.05). 1. Injuries to hip joints in dancers may result in increased ranges of motion, which may lead to disturbances of joint stability. 2. Being a long-time dancer and the female gender were associated with an increased range of hip joint motion.

  14. Joint Operation Planning

    National Research Council Canada - National Science Library

    2006-01-01

    .... It sets forth joint doctrine to govern the joint operation planning activities and performance of the Armed Forces of the United States in joint operations, and provides the joint doctrinal basis...

  15. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: a systematic review and meta-analysis.

    Science.gov (United States)

    Green, Brady; Bourne, Matthew N; Pizzari, Tania

    2018-03-01

    To examine the value of isokinetic strength assessment for predicting risk of hamstring strain injury, and to direct future research into hamstring strain injuries. Systematic review. Database searches for Medline, CINAHL, Embase, AMED, AUSPORT, SPORTDiscus, PEDro and Cochrane Library from inception to April 2017. Manual reference checks, ahead-of-press and citation tracking. Prospective studies evaluating isokinetic hamstrings, quadriceps and hip extensor strength testing as a risk factor for occurrence of hamstring muscle strain. Independent search result screening. Risk of bias assessment by independent reviewers using Quality in Prognosis Studies tool. Best evidence synthesis and meta-analyses of standardised mean difference (SMD). Twelve studies were included, capturing 508 hamstring strain injuries in 2912 athletes. Isokinetic knee flexor, knee extensor and hip extensor outputs were examined at angular velocities ranging 30-300°/s, concentric or eccentric, and relative (Nm/kg) or absolute (Nm) measures. Strength ratios ranged between 30°/s and 300°/s. Meta-analyses revealed a small, significant predictive effect for absolute (SMD=-0.16, P=0.04, 95% CI -0.31 to -0.01) and relative (SMD=-0.17, P=0.03, 95% CI -0.33 to -0.014) eccentric knee flexor strength (60°/s). No other testing speed or strength ratio showed statistical association. Best evidence synthesis found over half of all variables had moderate or strong evidence for no association with future hamstring injury. Despite an isolated finding for eccentric knee flexor strength at slow speeds, the role and application of isokinetic assessment for predicting hamstring strain risk should be reconsidered, particularly given costs and specialised training required. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players

    OpenAIRE

    Kim, Yong-Youn; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks o...

  17. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis

    OpenAIRE

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rota...

  18. Temporomandibular joint arthrography

    International Nuclear Information System (INIS)

    Choi, Hyung Sik; Lee, Kyung Soo; Kim, Myoung Joon; Jun, Young Hwan; Chang, Duk Soo; Jung, Don Young; Jung, In Won

    1988-01-01

    The stress and occlusion disturbance are very important etiologic factors in the temporomandibular joint (TMJ) pain dysfunction syndromes. Authors performed TMJ arthrograms in the patients with TMJ problem such as pain, click sound, limited motion and locking, etc. The following results noted: 1. The arthrographic findings of 22 TMJ were analyzed. a) Normal: 6 cases b) Anterior disc displacement with rediction: 6 cases · Early reduction: 2 cases · Intermediate reduction: 3 cases · Late reduction: 1 case c) Anterior disc displacement without reduction: 6 cases · Two cases had adhesion between the posterior portion of disc and the posterior surfaces of the articular eminence. 2. Among 22 cases, the clinical findings of 16 cases (73%) were compatible with arthrographic findings. 6 cases showed disparity between them.

  19. A 3D motion planning framework for snake robots

    OpenAIRE

    Liljebäck, Pål; Pettersen, Kristin Ytterstad; Stavdahl, Øyvind; Gravdahl, Jan Tommy

    2014-01-01

    - Author's postprint This paper presents a motion planning framework for three-dimensional body shape control of snake robots. Whereas conventional motion planning approaches define the body shape of snake robots in terms of their individual joint angles, the proposed framework allows the body shape to be specified in terms of Cartesian coordinates in the environment of the robot. This approach simplifies motion planning since Cartesian coordinates are more intuitively mapped to the overal...

  20. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players.

    Science.gov (United States)

    Kim, Yong-Youn; Park, Si-Eun

    2016-11-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players.

  1. Determination of concentric and eccentric peak moment values for trunk flexion and extension in sedentary asymptomatic individuals by isokinetic dynamometry: a pilot study

    Directory of Open Access Journals (Sweden)

    Rafaella Stradiotto Bernardelli

    2017-11-01

    Full Text Available The spine has a direct influence on postural alignment and movement of the whole body. Lumbar muscles constitute a critical element in trunk performance while weakness of these muscles has been associated with low back pain. Hence, strength profiling of trunk muscles is clinically significant. The objective of this research was to determine, by means of isokinetic dynamometry, peak moment (PM values during isokinetic concentric and eccentric efforts of trunk flexion and extension in sedentary asymptomatic individuals. The sample consisted of 100 asymptomatic sedentary volunteers, fifty from each sex, aging 22.2 ± 3.3 years old. The sample underwent concentric and eccentric isokinetic assessment of the trunk flexor and extensor muscles at an angular velocity of 60 degrees/sec for each mode of contraction. The mean concentric PM for trunk flexion and extension were 139.5 and 166.6 Nm, respectively, while the respective values for the eccentric efforts were 188.8 and 221.2 Nm. The PM flexion/extension ratio was 0.87 and 0.89 for the concentric and eccentric efforts, respectively. These values of concentric and eccentric PM and PM ratio will serve as comparison parameters for future research, as well as for the assessment of symptomatic patients, and to help in the creation of the trunk muscle rebalance protocols.

  2. Smartphone-based accelerometry is a valid tool for measuring dynamic changes in knee extension range of motion

    DEFF Research Database (Denmark)

    Støve, Morten Pallisgaard; Palsson, Thorvaldur Skuli; Hirata, Rogerio Pessoto

    2018-01-01

    Introduction: Measurement of static joint range of motion is used extensively in orthopaedic and rehabilitative communities to benchmark treatment efficacy. Static measures are, however, insufficient in providing detailed information about patient impairments. Dynamic range of motion measures cou...

  3. Customizing Extensor Reconstruction in Vascularized Toe Joint Transfers to Finger Proximal Interphalangeal Joints: A Strategic Approach for Correcting Extensor Lag.

    Science.gov (United States)

    Loh, Charles Yuen Yung; Hsu, Chung-Chen; Lin, Cheng-Hung; Chen, Shih-Heng; Lien, Shwu-Huei; Lin, Chih-Hung; Wei, Fu-Chan; Lin, Yu-Te

    2017-04-01

    Vascularized toe proximal interphalangeal joint transfer allows the restoration of damaged joints. However, extensor lag and poor arc of motion have been reported. The authors present their outcomes of treatment according to a novel reconstructive algorithm that addresses extensor lag and allows for consistent results postoperatively. Vascularized toe joint transfers were performed in a consecutive series of 26 digits in 25 patients. The average age was 30.5 years, with 14 right and 12 left hands. Reconstructed digits included eight index, 10 middle, and eight ring fingers. Simultaneous extensor reconstructions were performed and eight were centralization of lateral bands, five were direct extensor digitorum longus-to-extensor digitorum communis repairs, and 13 were central slip reconstructions. The average length of follow-up was 16.7 months. The average extension lag was 17.9 degrees. The arc of motion was 57.7 degrees (81.7 percent functional use of pretransfer toe proximal interphalangeal joint arc of motion). There was no significant difference in the reconstructed proximal interphalangeal joint arc of motion for the handedness (p = 0.23), recipient digits (p = 0.37), or surgical experience in vascularized toe joint transfer (p = 0.25). The outcomes of different techniques of extensor mechanism reconstruction were similar in terms of extensor lag, arc of motion, and reconstructed finger arc of motion compared with the pretransfer toe proximal interphalangeal joint arc of motion. With this treatment algorithm, consistent outcomes can be produced with minimal extensor lag and maximum use of potential toe proximal interphalangeal joint arc of motion. Therapeutic, IV.

  4. Anthropometric, biomechanical, and isokinetic strength predictors of ball release speed in high-performance cricket fast bowlers.

    Science.gov (United States)

    Wormgoor, Shohn; Harden, Lois; Mckinon, Warrick

    2010-07-01

    Fast bowling is fundamental to all forms of cricket. The purpose of this study was to identify parameters that contribute to high ball release speeds in cricket fast bowlers. We assessed anthropometric dimensions, concentric and eccentric isokinetic strength of selected knee and shoulder muscle groups, and specific aspects of technique from a single delivery in 28 high-performance fast bowlers (age 22.0 +/- 3.0 years, ball release speed 34.0 +/- 1.3 m s(-1)). Six 50-Hz cameras and the Ariel Performance Analysis System software were used to analyse the fast and accurate deliveries. Using Pearson's correlation, parameters that showed significant associations with ball release speed were identified. The findings suggest that greater front leg knee extension at ball release (r=0.52), shoulder alignment in the transverse plane rotated further away from the batsman at front foot strike (r=0.47), greater ankle height during the delivery stride (r=0.44), and greater shoulder extension strength (r=0.39) contribute significantly to higher ball release speeds. Predictor variables failed to allow their incorporation into a multivariate model, which is known to exist in less accomplished bowlers, suggesting that factors that determine ball release speed found in other groups may not apply to high-performance fast bowlers.

  5. The relationship between previous hamstring injury and the concentric isokinetic knee muscle strength of irish gaelic footballers

    Directory of Open Access Journals (Sweden)

    O'Ceallaigh Brian

    2008-03-01

    Full Text Available Abstract Background Hamstring injury is one of the most common injuries affecting gaelic footballers, similar to other field sports. Research in other sports on whether residual hamstring weakness is present after hamstring injury is inconsistent, and no study has examined this factor in irish gaelic footballers. The aim of this study was to examine whether significant knee muscle weakness is present in male Irish gaelic footballers who have returned to full activity after hamstring injury. Methods The concentric isokinetic knee flexion and extension strength of 44 members of a university gaelic football team was assessed at 60, 180 and 300 degrees per second using a Contrex dynamometer. Results Fifteen players (34% reported a history of hamstring strain, with 68% of injuries affecting the dominant (kicking limb. The hamstrings were significantly stronger (p 0.05 using this comparison. The previously unilaterally injured hamstrings were significantly weaker (p Conclusion Hamstring muscle weakness was observed in male Irish gaelic footballers with a history of hamstring injury. This weakness is most evident when comparisons are made to multiple control populations, both within and between subjects. The increased strength of the dominant limb should be considered as a potential confounding variable in future trials. The study design does not allow interpretation of whether these changes in strength were present before or after injury.

  6. Isokinetic imbalance of adductor-abductor hip muscles in professional soccer players with chronic adductor-related groin pain.

    Science.gov (United States)

    Belhaj, K; Meftah, S; Mahir, L; Lmidmani, F; Elfatimi, A

    2016-11-01

    This study aims to compare the isokinetic profile of hip abductor and adductor muscle groups between soccer players suffering from chronic adductor-related groin pain (ARGP), soccer players without ARGP and healthy volunteers from general population. Study included 36 male professional soccer players, who were randomly selected and followed-up over two years. Of the 21 soccer players eligible to participate in the study, 9 players went on to develop chronic ARGP and 12 players did not. Ten healthy male volunteers were randomly selected from the general population as a control group. Comparison between the abductor and adductor muscle peak torques for players with and without chronic ARGP found a statistically significant difference on the dominant and non-dominant sides (p muscle significantly stronger than the adductor muscle. In the group of healthy volunteers, the adductor muscle groups were significantly stronger than the abductor muscle groups on both dominant and non-dominant sides (p muscle strength was also significantly decreased on the affected side. This imbalance appears to be a risk factor for adductor-related groin injury. Therefore, restoring the correct relationship between these two agonist and antagonist hip muscles may be an important preventative measure that should be a primary concern of training and rehabilitation programmes.

  7. A comparison of muscle stiffness and musculoarticular stiffness of the knee joint in young athletic males and females.

    Science.gov (United States)

    Wang, Dan; De Vito, Giuseppe; Ditroilo, Massimiliano; Fong, Daniel T P; Delahunt, Eamonn

    2015-06-01

    The objective of this study was to investigate the gender-specific differences in peak torque (PT), muscle stiffness (MS) and musculoarticular stiffness (MAS) of the knee joints in a young active population. Twenty-two male and twenty-two female recreational athletes participated. PT of the knee joint extensor musculature was assessed on an isokinetic dynamometer, MS of the vastus lateralis (VL) muscle was measured in both relaxed and contracted conditions, and knee joint MAS was quantified using the free oscillation technique. Significant gender differences were observed for all dependent variables. Females demonstrated less normalized PT (mean difference (MD)=0.4Nm/kg, p=0.005, η(2)=0.17), relaxed MS (MD=94.2N/m, pjoint injury incidence and prevalence in females when compared to males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Phalangeal joints kinematics during ostrich (Struthio camelus locomotion

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2017-01-01

    Full Text Available The ostrich is a highly cursorial bipedal land animal with a permanently elevated metatarsophalangeal joint supported by only two toes. Although locomotor kinematics in walking and running ostriches have been examined, these studies have been largely limited to above the metatarsophalangeal joint. In this study, kinematic data of all major toe joints were collected from gaits with double support (slow walking to running during stance period in a semi-natural setup with two selected cooperative ostriches. Statistical analyses were conducted to investigate the effect of locomotor gait on toe joint kinematics. The MTP3 and MTP4 joints exhibit the largest range of motion whereas the first phalangeal joint of the 4th toe shows the largest motion variability. The interphalangeal joints of the 3rd and 4th toes present very similar motion patterns over stance phases of slow walking and running. However, the motion patterns of the MTP3 and MTP4 joints and the vertical displacement of the metatarsophalangeal joint are significantly different during running and slow walking. Because of the biomechanical requirements, osctriches are likely to select the inverted pendulum gait at low speeds and the bouncing gait at high speeds to improve movement performance and energy economy. Interestingly, the motions of the MTP3 and MTP4 joints are highly synchronized from slow to fast locomotion. This strongly suggests that the 3rd and 4th toes really work as an “integrated system” with the 3rd toe as the main load bearing element whilst the 4th toe as the complementary load sharing element with a primary role to ensure the lateral stability of the permanently elevated metatarsophalangeal joint.

  9. Neuromuscular properties of different spastic human joints vary systematically.

    Science.gov (United States)

    Mirbagheri, M M; Settle, K

    2010-01-01

    We quantified the mechanical abnormalities of the spastic wrist in chronic stroke survivors, and determined whether these findings were representative of those recorded at the elbow and ankle joints. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joints at different joint angles over the range of motion. Age-matched healthy subjects were used as control.

  10. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation

    OpenAIRE

    Eric Frick; Salam Rahmatalla

    2018-01-01

    The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential applic...

  11. Dynamic response of tunnels in jointed rocks

    International Nuclear Information System (INIS)

    Heuze, F.E.; Shaffer, R.J.; Walton, O.R.; Maddix, D.M.

    1992-03-01

    We describe the application of the Discrete Element Method (DEM) to the dynamic analysis of the response of tunnels in jointed rocks to earthquake loading. In situations where large motions of many blocks and collapse occur, the discontinuum-based DEM approach appears superior to other methods of analysis

  12. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps.

    Science.gov (United States)

    Coratella, Giuseppe; Bellin, Giuseppe; Beato, Marco; Schena, Federico

    2015-01-01

    Primary aim of this study was to investigate peak joint torque angle (i.e. the angle of peak torque) changes recorded during an isokinetic test before and after a fatiguing soccer match simulation. Secondarily we want to investigate functional Hecc:Qconc and conventional Hconc:Qconc ratio changes due to fatigue. Before and after a standardised soccer match simulation, twenty-two healthy male amateur soccer players performed maximal isokinetic strength tests both for hamstrings and for quadriceps muscles at 1.05 rad · s(‒1), 3.14 rad · s(‒1) and 5.24 rad · s(‒1). Peak joint torque angle, peak torque and both functional Hecc:Qconc and conventional Hconc:Qconc ratios were examined. Both dominant and non-dominant limbs were tested. Peak joint torque angle significantly increased only in knee flexors. Both eccentric and concentric contractions resulted in such increment, which occurred in both limbs. No changes were found in quadriceps peak joint torque angle. Participants experienced a significant decrease in torque both in hamstrings and in quadriceps. Functional Hecc:Qconc ratio was lower only in dominant limb at higher velocities, while Hconc:Qconc did not change. This study showed after specific fatiguing task changes in hamstrings only torque/angle relationship. Hamstrings injury risk could depend on altered torque when knee is close to extension, coupled with a greater peak torque decrement compared to quadriceps. These results suggest the use eccentric based training to prevent hamstrings shift towards shorter length.

  13. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  14. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Armour, Tanya; Forwell, Lorie; Litchfield, Robert; Kirkley, Alexandra; Amendola, Ned; Fowler, Peter J

    2004-01-01

    Evaluation of the knee after an anterior cruciate ligament reconstruction with the use of the semitendinosus and gracilis (hamstring) autografts has primarily focused on flexion and extension strength. The semitendinosus and gracilis muscles contribute to internal tibial rotation, and it has been suggested that harvest of these tendons for the purpose of an anterior cruciate ligament reconstruction contributes to internal tibial rotation weakness. Internal tibial rotation strength may be affected by the semitendinosus and gracilis harvest after anterior cruciate ligament reconstruction. Prospective evaluation of internal and external tibial rotation strength. Inclusion criteria for subjects (N = 30): unilateral anterior cruciate ligament reconstruction at least 2 years previously, a stable anterior cruciate ligament (problems after initial knee reconstruction, a normal contralateral knee, and the ability to comply with the testing protocol. In an attempt to minimize unwanted subtalar joint motion, subjects were immobilized using an ankle brace and tested at angular velocities of 60 degrees /s, 120 degrees /s, and 180 degrees /s at a knee flexion angle of 90 degrees . The mean peak torque measurements for internal rotation strength of the operative limb (60 degrees /s, 17.4 +/- 4.5 ft-lb; 120 degrees /s, 13.9 +/- 3.3 ft-lb; 180 degrees /s, 11.6 +/- 3.0 ft-lb) were statistically different compared to the nonoperated limb (60 degrees /s, 20.5 +/- 4.7 ft-lb; 120 degrees /s, 15.9 +/- 3.8 ft-lb; 180 degrees /s, 13.4 +/- 3.8 ft-lb) at 60 degrees /s (P = .012), 120 degrees /s (P = .036), and 180 degrees /s (P = .045). The nonoperative limb demonstrated greater strength at all speeds. The mean torque measurements for external rotation were statistically similar when compared to the nonoperated limb at all angular velocities. We have shown through our study that patients who undergo surgical intervention to repair a torn anterior cruciate ligament with the use of autogenous

  15. Kinematic Rupture Process of the 2015 Gorkha (Nepal) Earthquake Sequence from Joint Inversion of Teleseismic, hr-GPS, Strong-Ground Motion, InSAR interferograms and pixel offsets

    Science.gov (United States)

    Yue, H.; Simons, M.; Jiang, J.; Fielding, E. J.; Owen, S. E.; Moore, A. W.; Riel, B. V.; Polet, J.; Duputel, Z.; Samsonov, S. V.; Avouac, J. P.

    2015-12-01

    The April 2015 Gorkha, Nepal (Mw 7.8) earthquake ruptured the front of Himalaya thrust belt, causing more than 9,000 fatalities. 17 days after the main event, a large aftershock (Mw 7.2) ruptured to down-dip and east of the main rupture area. To investigate the kinematic rupture process of this earthquake sequence, we explored linear and non-linear inversion techniques using a variety of datasets including teleseismic, high rate and conventional GPS, InSAR interferograms and pixel-offsets. InSAR interferograms from ALOS-2, RADARSAT-2 and Sentinel-1a satellites are used in the joint inversion. The main event is characterized by unilateral rupture extending along strike approximately 70 km to the southeast and 40 km along dip direction. The rupture velocity is well resolved to be lie between 2.8 and 3.0 km/s, which is consistent with back-projection results. An emergent initial phase is observed in teleseismic body wave records, which is consistent with a narrow area of rupture initiation near the hypocenter. The rupture mode of the main event is pulse like. The aftershock ruptured down-dip to the northeast of the main event rupture area. The aftershock rupture area is compact and contained within 40 km of its hypocenter. In contrast to the main event, teleseismic body wave records of the aftershock suggest an abrupt initial phase, which is consistent with a crack like rupture mode. The locations of most of the aftershocks (small and large) surround the rupture area of the main shock with little, if any, spatial overlap.

  16. The influence of variable range of motion training on neuromuscular performance and control of external loads.

    Science.gov (United States)

    Clark, Ross A; Humphries, Brendan; Hohmann, Erik; Bryant, Adam L

    2011-03-01

    Resistance training programs that emphasize high force production in different regions of the range of motion (ROM) may provide performance benefits. This study examined whether variable ROM (VROM) training, which consists of partial ROM training with countermovements performed in a different phase of the ROM for each set, results in improved functional performance. Twenty-two athletes (age 22.7 ± 2.4 years, height 1.81 ± 0.07 m, and body mass 94.6 ± 14.5 kg) with extensive resistance training backgrounds performed either a VROM or full ROM control (CON) 5-week, concentric work-matched training program. The participants were assigned to a group based on stratified randomization incorporating their strength levels and performance gains in preceding training microcycles. Testing consisted of assessing the force-ROM relationship during isokinetic and isometric bench press and ballistic bench throws, with normalized electromyography amplitude assessed during the isometric tests. Repeated-measure analyses of variance revealed that the VROM intervention significantly (p force (+15.7%), in addition to isokinetic peak force in the terminal ROM (13.5% increase). No significant differences were observed in the CON group or between groups for any other outcome measures. Analysis of the force-ROM relationship revealed that that the VROM intervention enhanced performance at shorter muscle lengths. These findings suggest that VROM training improves terminal and midrange performance gains, resulting in the athlete possessing an improved ability to control external loading and produce dynamic force.

  17. Prevention of the Post-traumatic Fibrotic Response in Joints

    Science.gov (United States)

    2014-10-01

    The American journal of forensic medicine and pathology . 1988; 9(4):310-2. 14 APPENDICES: An abstract submitted for the ORS conference...clinical problem of posttraumatic joint stiffness, a pathology that reduces the range of motion (ROM) of injured joints and contributes to the...development of osteoarthritis. The fundamental hypothesis that drives the current study is that pathological fibrotic response of injured joint tissues

  18. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis.

    Science.gov (United States)

    Creaby, Mark W; Wrigley, Tim V; Lim, Boon-Whatt; Hinman, Rana S; Bryant, Adam L; Bennell, Kim L

    2013-11-20

    Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P 0.05). Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability.

  19. [Compensatory joints at the pelvis (author's transl)].

    Science.gov (United States)

    Schumacher, G; Weber, M

    1980-10-01

    An osteochondrosis ischio-pubica represents a "testing site" for the integrity of the pelvis not only during child age but in adults as well. If all naturally available compensatory mechanisms have been exhausted especially following a change of range of motion in the pelvis ring structure, fatigue fractures or zones in transformation in the area typical of osteochondrosis ischio-pubica may appear. These fractures or transformation zones respectively to our mind have joint character, because they are capable of temporarily replacing lost mobility of physiological joints. Healing is achieved through rest, muscular balance and a specific physiotherapy. The purpose of this muscular training is to cushion all unphysiological motions in the pelvis and to support and boost the function of those joints still well preserved.

  20. [Restricted motion after total knee arthroplasty].

    Science.gov (United States)

    Kucera, T; Urban, K; Karpas, K; Sponer, P

    2007-10-01

    The aim of the study was to ascertain what proportion of patients undergoing total knee arthroplasty (TKA) complain of restricted knee joint motion, and to investigate options for improvement of this situation. Our evaluation included a group of 796 patients treated with TKA at our department in the period from January 1, 1990, to December 31, 2004. In all cases, a condylar implant with preservation of the posterior cruciate ligaments was used. In addition to medical history, the range of motion, knee joint malalignment and radiological findings were assessed before surgery. After THA, the type of implant and complications, if any, were recorded, and improvement in joint motion was followed up. Based on the results of Kim et al., flexion contracture equal to or higher than 15 degrees and/or flexion less than 75 degrees were made the criteria of stiffness after THA. Patients with restricted THA motion who had aseptic or septic implant loosening were not included. Of the 796 evaluated patients, 32 (4.14 %) showed restricted motion after total knee arthroplasty, as assessed by the established criteria. In 16 patients, stiffness defined by these criteria had existed before surgery, and three patients showed an excessive production of adhesions and heterotopic ossifications. In three patients, the implantation procedure resulted in an elevated level of the original joint line and subsequent development of patella infera and increased tension of the posterior cruciate ligament. Four patients declined physical therapy and, in six, the main cause of stiffness could not be found. Seventeen patients did not require surgical therapy for restricted motion; TKA provided significant pain relief and they considered the range of motion achieved to be sufficient. One patient underwent redress 3 months after surgery, but with no success. Repeated releases of adhesions, replacement of a polyethylene liner and revision surgery of the extensor knee structures were performed in 15

  1. Motion Transplantation Techniques: A Survey

    NARCIS (Netherlands)

    van Basten, Ben; Egges, Arjan

    2012-01-01

    During the past decade, researchers have developed several techniques for transplanting motions. These techniques transplant a partial auxiliary motion, possibly defined for a small set of degrees of freedom, on a base motion. Motion transplantation improves motion databases' expressiveness and

  2. Biological inspiration used for robots motion synthesis.

    Science.gov (United States)

    Zielińska, Teresa

    2009-01-01

    This work presents a biologically inspired method of gait generation. Bipedal gait pattern (for hip and knee joints) was taken into account giving the reference trajectories in a learning task. The four coupled oscillators were taught to generate the outputs similar to those in a human gait. After applying the correction functions the obtained generation method was validated using ZMP criterion. The formula suitable for real-time motion generation taking into account the positioning errors was also formulated. The small real robot prototype was tested to be able walk successfully following the elaborated motion pattern.

  3. THE EFFICACY OF ANGLE-MATCHED ISOKINETIC KNEE FLEXOR AND EXTENSOR STRENGTH PARAMETERS IN PREDICTING AGILITY TEST PERFORMANCE.

    Science.gov (United States)

    Greig, Matt; Naylor, James

    2017-10-01

    Agility is a fundamental performance element in many sports, but poses a high risk of injury. Hierarchical modelling has shown that eccentric hamstring strength is the primary determinant of agility performance. The purpose of this study was to investigate the relationship between knee flexor and extensor strength parameters and a battery of agility tests. Controlled laboratory study. Nineteen recreational intermittent games players completed an agility battery and isokinetic testing of the eccentric knee flexors (eccH) and concentric knee extensors (conQ) at 60, 180 and 300°·s -1 . Peak torque and the angle at which peak torque occurred were calculated for eccH and conQ at each speed. Dynamic control ratios (eccH:conQ) and fast:slow ratios (300:60) were calculated using peak torque values, and again using angle-matched data, for eccH and conQ. The agility test battery differentiated linear vs directional changes and prescriptive vs reactive tasks. Linear regression showed that eccH parameters were generally a better predictor of agility performance than conQ parameters. Stepwise regression showed that only angle-matched strength ratios contributed to the prediction of each agility test. Trdaitionally calculated strength ratios using peak torque values failed to predict performance. Angle-matched strength parameters were able to account for 80% of the variation in T-test performance, 70% of deceleration distance, 55% of 10m sprint performance, and 44% of reactive change of direction speed. Traditionally calculated strength ratios failed to predict agility performance, whereas angle-matched strength ratios had better predictive ability and featured in a predictive stepwise model for each agility task. 2c.

  4. Joint Instability and Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Darryl Blalock

    2015-01-01

    Full Text Available Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA. Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  5. Joint instability and osteoarthritis.

    Science.gov (United States)

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  6. Anatomy and Biomechanics of the Finger Proximal Interphalangeal Joint.

    Science.gov (United States)

    Pang, Eric Quan; Yao, Jeffrey

    2018-05-01

    A complete understanding of the normal anatomy and biomechanics of the proximal interphalangeal joint is critical when treating pathology of the joint as well as in the design of new reconstructive treatments. The osseous anatomy dictates the principles of motion at the proximal interphalangeal joint. Subsequently, the joint is stabilized throughout its motion by the surrounding proximal collateral ligament, accessory collateral ligament, and volar plate. The goal of this article is to review the normal anatomy and biomechanics of the proximal interphalangeal joint and its associated structures, most importantly the proper collateral ligament, accessory collateral ligament, and volar plate. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Knee Motion Generation Method for Transfemoral Prosthesis Based on Kinematic Synergy and Inertial Motion.

    Science.gov (United States)

    Sano, Hiroshi; Wada, Takahiro

    2017-12-01

    Previous research has shown that the effective use of inertial motion (i.e., less or no torque input at the knee joint) plays an important role in achieving a smooth gait of transfemoral prostheses in the swing phase. In our previous research, a method for generating a timed knee trajectory close to able-bodied individuals, which leads to sufficient clearance between the foot and the floor and the knee extension, was proposed using the inertial motion. Limb motions are known to correlate with each other during walking. This phenomenon is called kinematic synergy. In this paper, we measure gaits in level walking of able-bodied individuals with a wide range of walking velocities. We show that this kinematic synergy also exists between the motions of the intact limbs and those of the knee as determined by the inertial motion technique. We then propose a new method for generating the motion of the knee joint using its inertial motion close to the able-bodied individuals in mid-swing based on its kinematic synergy, such that the method can adapt to the changes in the motion velocity. The numerical simulation results show that the proposed method achieves prosthetic walking similar to that of able-bodied individuals with a wide range of constant walking velocities and termination of walking from steady-state walking. Further investigations have found that a kinematic synergy also exists at the start of walking. Overall, our method successfully achieves knee motion generation from the initiation of walking through steady-state walking with different velocities until termination of walking.

  8. Age, weight, and the front abdominal power test as predictors of isokinetic trunk strength and work in young men and women.

    Science.gov (United States)

    Cowley, Patrick M; Fitzgerald, Sharon; Sottung, Kyle; Swensen, Thomas

    2009-05-01

    First we tested the reliability of two new field tests of core stability (plank to fatigue test [PFT] and front abdominal power test [FAPT]), as well as established measures of core stability (isokinetic trunk extension and flexion strength [TES and TFS] and work [TEW and TFW]) over 3 days in 8 young men and women (24.0 +/- 3.1 years). The TES, TFS, TFW, and FAPT were highly reliable, TEW was moderately reliable, and PFT were unreliable for use during a single testing session. Next, we determined if age, weight, and the data from the reliable field test (FAPT) were predictive of TES, TEW, TFS, and TFW in 50 young men and women (19.0 +/- 1.2 years). The FAPT was the only significant predictor of TES and TEW in young women, explaining 16 and 15% of the variance in trunk performance, respectively. Weight was the only significant predictor of TFS and TFW in young women, explaining 28 and 14% of the variance in trunk performance, respectively. In young men, weight was the only significant predictor of TES, TEW, TFS, and TFW, and explained 27, 35, 42, and 33%, respectively, of the variance in trunk performance. In conclusion, the ability of weight and the FAPT to predict TES, TEW, TFS, and TFW was more frequent in young men than women. Additionally, because the FAPT requires few pieces of equipment, is fast to administer, and predicts isokinetic TES and TEW in young women, it can be used to provide a field-based estimate of isokinetic TES and TEW in women without history of back or lower-extremity injury.

  9. The relation between geometry and function of the ankle joint complex: a biomechanical review.

    Science.gov (United States)

    Kleipool, Roeland P; Blankevoort, Leendert

    2010-05-01

    This review deals with the relation between the anatomy and function of the ankle joint complex. The questions addressed are how high do the forces in the ankle joint get, where can the joints go (range of motion) and where do they go during walking and running. Finally the role of the ligaments and the articular surfaces is discussed, i.e. how does it happen. The magnitude of the loads on the ankle joint complex are primarily determined by muscle activity and can be as high as four times the body weight during walking. For the maximal range of motion, plantar and dorsiflexion occurs in the talocrural joint and marginally at the subtalar joint. In-eversion takes place at both levels. The functional range of motion is well within the limits of the maximal range of motion. The ligaments do not contribute to the forces for the functional range of motion but determine the maximal range of motion together with the articular surfaces. The geometry of the articular surfaces primarily determines the kinematics. Clinical studies must include these anatomical aspects to better understand the mechanism of injury, recovery, and interventions. Models can elucidate the mechanism by which the anatomy relates to the function. The relation between the anatomy and mechanical properties of the joint structures and joint function should be considered for diagnosis and treatment of ankle joint pathology.

  10. Attention and apparent motion.

    Science.gov (United States)

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  11. Control of compliant anthropomimetic robot joint

    Directory of Open Access Journals (Sweden)

    Svetozarević Bratislav

    2011-01-01

    Full Text Available In this paper we propose a control strategy for a robot joint which fully mimics the typical human joint structure. The joint drive is based on two actuators (dc motors, agonist and antagonist, acting through compliant tendons and forming a nonlinear multi-input multi-output (MIMO system. At any time, we consider one actuator, the puller, as being responsible for motion control, while the role of the other is to keep its tendon force at some appropriate low level. This human-like and energetically efficient approach requires the control of 'switching', or exchanging roles between actuators. Moreover, an algorithm based on adaptive force reference is used to solve a problem of slacken tendons during the switching and to increase the energy efficiency. This approach was developed and evaluated on increasingly complex robot joint configurations, starting with simple and noncompliant system, and finishing with nonlinear and compliant system.

  12. Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations.

    Science.gov (United States)

    Alexander, Nathalie; Strutzenberger, Gerda; Ameshofer, Lisa Maria; Schwameder, Hermann

    2017-08-16

    Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0±4.7yrs, 1.80±0.05m, 74.5±8.2kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint's contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biomechanics of the natural, arthritic, and replaced human ankle joint

    Science.gov (United States)

    2014-01-01

    The human ankle joint complex plays a fundamental role in gait and other activities of daily living. At the same time, it is a very complicated anatomical system but the large literature of experimental and modelling studies has not fully described the coupled joint motion, position and orientation of the joint axis of rotation, stress and strain in the ligaments and their role in guiding and stabilizing joint motion, conformity and congruence of the articular surfaces, patterns of contact at the articular surfaces, patterns of rolling and sliding at the joint surfaces, and muscle lever arm lengths. The present review article addresses these issues as described in the literature, reporting the most recent relevant findings. PMID:24499639

  14. Joint laxity and the relationship between muscle strength and functional ability in patients with osteoarthritis of the knee.

    Science.gov (United States)

    van der Esch, M; Steultjens, M; Knol, D L; Dinant, H; Dekker, J

    2006-12-15

    To establish the impact of knee joint laxity on the relationship between muscle strength and functional ability in osteoarthritis (OA) of the knee. A cross-sectional study of 86 patients with OA of the knee was conducted. Tests were performed to determine varus-valgus laxity, muscle strength, and functional ability. Laxity was assessed using a device that measures the angular deviation of the knee in the frontal plane. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by observation (100-meter walking test) and self report (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]). Regression analyses were performed to assess the impact of joint laxity on the relationship between muscle strength and functional ability. In regression analyses, the interaction between muscle strength and joint laxity contributed to the variance in both walking time (P = 0.002) and WOMAC score (P = 0.080). The slope of the regression lines indicated that the relationship between muscle strength and functional ability (walking time, WOMAC) was stronger in patients with high knee joint laxity. Patients with knee OA and high knee joint laxity show a stronger relationship between muscle strength and functional ability than patients with OA and low knee joint laxity. Patients with OA, high knee joint laxity, and low muscle strength are most at risk of being disabled.

  15. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  16. Motion compensated digital tomosynthesis

    NARCIS (Netherlands)

    van der Reijden, Anneke; van Herk, Marcel; Sonke, Jan-Jakob

    2013-01-01

    Digital tomosynthesis (DTS) is a limited angle image reconstruction method for cone beam projections that offers patient surveillance capabilities during VMAT based SBRT delivery. Motion compensation (MC) has the potential to mitigate motion artifacts caused by respiratory motion, such as blur. The

  17. AMUC: Associated Motion capture User Categories.

    Science.gov (United States)

    Norman, Sally Jane; Lawson, Sian E M; Olivier, Patrick; Watson, Paul; Chan, Anita M-A; Dade-Robertson, Martyn; Dunphy, Paul; Green, Dave; Hiden, Hugo; Hook, Jonathan; Jackson, Daniel G

    2009-07-13

    The AMUC (Associated Motion capture User Categories) project consisted of building a prototype sketch retrieval client for exploring motion capture archives. High-dimensional datasets reflect the dynamic process of motion capture and comprise high-rate sampled data of a performer's joint angles; in response to multiple query criteria, these data can potentially yield different kinds of information. The AMUC prototype harnesses graphic input via an electronic tablet as a query mechanism, time and position signals obtained from the sketch being mapped to the properties of data streams stored in the motion capture repository. As well as proposing a pragmatic solution for exploring motion capture datasets, the project demonstrates the conceptual value of iterative prototyping in innovative interdisciplinary design. The AMUC team was composed of live performance practitioners and theorists conversant with a variety of movement techniques, bioengineers who recorded and processed motion data for integration into the retrieval tool, and computer scientists who designed and implemented the retrieval system and server architecture, scoped for Grid-based applications. Creative input on information system design and navigation, and digital image processing, underpinned implementation of the prototype, which has undergone preliminary trials with diverse users, allowing identification of rich potential development areas.

  18. Synovial Osteochondromatosis at the Carpometacarpal Joint of the Thumb

    Directory of Open Access Journals (Sweden)

    Satoru Yonekura

    2017-01-01

    Full Text Available Synovial osteochondromatosis (SOC is a benign tumor characterized by synovial connective tissue metaplasia. SOC commonly affects major joints including the knee followed by the hip, elbow, and wrist. SOC cases in the hand are not reported as often as SOC of major joints. Particularly SOC of the carpometacarpal joint of the thumb is rare. We report on a 57-year-old female with primary SOC of the carpometacarpal joint of her left thumb. Surgical excision was performed and the patient had no symptoms with full range of motion of her left thumb. At 3 years of follow-up, there was no recurrence.

  19. International joint ventures

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    2001-01-01

    The article analysis problems connected with corporate joint ventures. Among others the possible conflicts between the joint venture agreement and the statutes of the companies is examined, as well as certain problems connected to the fact that the joint venture partners have created commen control...... over their joint company....

  20. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  1. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  2. Curves from Motion, Motion from Curves

    Science.gov (United States)

    2000-01-01

    De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a

  3. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  4. Digital ranges of motion: normal values in young adults.

    Science.gov (United States)

    Mallon, W J; Brown, H R; Nunley, J A

    1991-09-01

    Analysis of the range of motion of fingers was done in young (eighteen to thirty-five year old) adult volunteers with no history of previous injury to their hands. The data show that there are slight differences between the individual digits. Notably, metacarpophalangeal flexion and total active motion increase linearly in proceeding from the index to the small finger. There were also minor differences in comparing sexes. Women have greater extension at the metacarpophalangeal joint in both active and passive motion and have a greater total active motion at all digits as a result. A significant tenodesis effect was found at the distal interphalangeal joint in normal subjects. No differences were found that could be attributable to handedness.

  5. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Science.gov (United States)

    Demming, Anna

    2012-02-01

    development of the electron microscope, which aimed to exceed the resolving power of diffraction-limited optical microscopes. Since the diffraction limit is proportional to the incident wavelength, the shorter wavelength electron beam allows smaller features to be resolved than optical light. Ernst Ruska shared the Nobel Prize for Physics in 1986 for his work in developing the transmission electron microscope [5]. The technique continues to provide an invaluable tool in nanotechnology studies, as demonstrated recently by a collaboration of researchers in the US, Singapore and Korea used electron and atomic force microscopy in their investigation of the deposition of gold nanoparticles on graphene and the enhanced conductivity of the doped film [6]. The other half of the 1986 Nobel Prize was awarded jointly to Gerd Binnig and Heinrich Rohrer 'for their design of the scanning tunnelling microscope'. The scanning tunnelling microscope offered the first glimpses of atomic scale features, galvanizing research in nanoscale science and technology into a burst of fruitful activity that persists to this day. Instead of using the diffraction and scattering of beams to 'see' nanoscale structures, the atomic force microscope developed by Binnig, Quate and Gerber in the 1980s [1] determines the surface topology 'by touch'. The device uses nanoscale changes in the forces exerted on a tip as it scans the sample surface to generate an image. As might be expected, innovations on the original atomic force microscope have now been developed achieving ever greater sensitivities for imaging soft matter without destroying it. Recent work by collaborators at the University of Bristol and the University of Glasgow used a cigar-shaped nanoparticle held in optical tweezers as the scanning tip. The technique is not diffraction limited, imparts less force on samples than contact scanning probe microscopy techniques, and allows highly curved and strongly scattering samples to be imaged [7]. In this issue

  6. Motion Simulation of a New Ankle Rehabilitation Device

    Directory of Open Access Journals (Sweden)

    Cristina Racu (Cazacu

    2016-06-01

    Full Text Available The ankle structure holds one of the most important role in the human biomechanics. Due to complexity of everyday activities this joint is the most prone to be injured part of the lower limb. For a complete recovery of the locomotion function, recovery exercises are mandatory. The introduction of robotic physical recovery systems represents a modern alternative to traditional recovery. Based on the 3D virtual model and a previous dimensional synthesis of a new ankle rehabilitation device, its motion simulation is presented in this paper, to prove that it may fully recover the range of motion required for this joint.

  7. Kinematic control of redundant robots and the motion optimizability measure.

    Science.gov (United States)

    Li, L; Gruver, W A; Zhang, Q; Yang, Z

    2001-01-01

    This paper treats the kinematic control of manipulators with redundant degrees of freedom. We derive an analytical solution for the inverse kinematics that provides a means for accommodating joint velocity constraints in real time. We define the motion optimizability measure and use it to develop an efficient method for the optimization of joint trajectories subject to multiple criteria. An implementation of the method for a 7-dof experimental redundant robot is present.

  8. Sensing human hand motions for controlling dexterous robots

    Science.gov (United States)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  9. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Science.gov (United States)

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  10. Coordinated joint motion control system with position error correction

    Science.gov (United States)

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  11. Altered joint moment strategy during stair walking in diabetes patients with and without peripheral neuropathy.

    Science.gov (United States)

    Brown, Steven J; Handsaker, Joseph C; Maganaris, Constantinos N; Bowling, Frank L; Boulton, Andrew J M; Reeves, Neil D

    2016-05-01

    To investigate lower limb biomechanical strategy during stair walking in patients with diabetes and patients with diabetic peripheral neuropathy, a population known to exhibit lower limb muscular weakness. The peak lower limb joint moments of twenty-two patients with diabetic peripheral neuropathy and thirty-nine patients with diabetes and no neuropathy were compared during ascent and descent of a staircase to thirty-two healthy controls. Fifty-nine of the ninety-four participants also performed assessment of their maximum isokinetic ankle and knee joint moment (muscle strength) to assess the level of peak joint moments during the stair task relative to their maximal joint moment-generating capabilities (operating strengths). Both patient groups ascended and descended stairs slower than controls (pperipheral neuropathy were lower (pperipheral neuropathy compared to controls, and lower at knee only in patients without neuropathy. Operating strengths were higher (pneuropathy during stair descent compared to the controls, but not during stair ascent. Patients with diabetic peripheral neuropathy walk slower to alter gait strategy during stair walking and account for lower-limb muscular weakness, but still exhibit heightened operating strengths during stair descent, which may impact upon fatigue and the ability to recover a safe stance following postural instability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Motion and relativity

    CERN Document Server

    Infeld, Leopold

    1960-01-01

    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  13. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  14. Joint Replacement (Finger and Wrist Joints)

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Joint Replacement Email to a friend * required fields ...

  15. Stroboscopic Goggles for Reduction of Motion Sickness

    Science.gov (United States)

    Reschke, M. F.; Somers, Jeffrey T.

    2005-01-01

    A device built around a pair of electronic shutters has been demonstrated to be effective as a prototype of stroboscopic goggles or eyeglasses for preventing or reducing motion sickness. The momentary opening of the shutters helps to suppress a phenomenon that is known in the art as retinal slip and is described more fully below. While a number of different environmental factors can induce motion sickness, a common factor associated with every known motion environment is sensory confusion or sensory mismatch. Motion sickness is a product of misinformation arriving at a central point in the nervous system from the senses from which one determines one s spatial orientation. When information from the eyes, ears, joints, and pressure receptors are all in agreement as to one s orientation, there is no motion sickness. When one or more sensory input(s) to the brain is not expected, or conflicts with what is anticipated, the end product is motion sickness. Normally, an observer s eye moves, compensating for the anticipated effect of motion, in such a manner that the image of an object moving relatively to an observer is held stationary on the retina. In almost every known environment that induces motion sickness, a change in the gain (in the signal-processing sense of gain ) of the vestibular system causes the motion of the eye to fail to hold images stationary on the retina, and the resulting motion of the images is termed retinal slip. The present concept of stroboscopic goggles or eyeglasses (see figure) is based on the proposition that prevention of retinal slip, and hence, the prevention of sensory mismatch, can be expected to reduce the tendency toward motion sickness. A device according to this concept helps to prevent retinal slip by providing snapshots of the visual environment through electronic shutters that are brief enough that each snapshot freezes the image on each retina. The exposure time for each snapshot is less than 5 ms. In the event that a higher

  16. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.

    Science.gov (United States)

    Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David

    2012-01-01

    Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P push-off in different ways, depending on the phase of stance considered.

  17. [Isokinetic assessment with two years follow-up of anterior cruciate ligament reconstruction with patellar tendon or hamstring tendons].

    Science.gov (United States)

    Condouret, J; Cohn, J; Ferret, J-M; Lemonsu, A; Vasconcelos, W; Dejour, D; Potel, J-F

    2008-12-01

    This retrospective multicentric study was designed to assess the outcome of quadriceps and hamstrings muscles two years after Anterior Cruciate Ligament (ACL) reconstruction and compare muscles recovery depending on the type of graft and individual variables like age, gender, level of sport, but also in terms of discomfort, pain and functional score. The results focused on the subjective and objective IKDC scores, SF36, the existence or not of subjective disorders and their location. The review included isokinetic muscle tests concentric and eccentric extensors/flexors but also internal rotators/external rotators with analysis of mean work and mean power. One hundred and twenty-seven patients were included with an average age 29 years (+/-10). They all had an ACL reconstruction with patellar tendon or hamstring tendon with single or double bundles. In the serie, the average muscles deficit at two years was 10% for the flexors and extensors but with a significant dispersion. Significant differences were not noted in the mean values of all parameters in term of sex or age (over 30 years or not), neither the type of sport, nor of clinical assessment (Class A and B of objective IKDC score), nor the existence of anterior knee pain. There was a relationship between the level of extensor or flexor recovery and the quality of functional results with minimal muscle deficits close to 5% if the IKDC score was over 90 and deficits falling to 15% in the group with IKDC score less than 90. The type of reconstruction (patellar tendon versus hamstrings) had an influence on the muscle deficit. For extensors, the recovery was the same in the two groups, more than 90% at two years and the distribution of these two populations by level of deficit was quite the same. For flexors, residual deficits were significantly higher in the hamstrings group on the three studied parameters whatever the speed and the type of contraction (concentric or eccentric) with an average deficit of 14 to 18

  18. Dinamometria isocinética de tronco em nadadores de diferentes estilos Isokinetic trunk dynamometry in diferent swimming strokes

    Directory of Open Access Journals (Sweden)

    Leonardo Luiz Barretti Secchi

    2010-01-01

    Full Text Available OBJETIVOS: Comparar a atividade muscular dos músculos flexores e extensores de tronco entre estilos de nado assimétrico e nado simétrico. MÉTODO: Catorze nadadores da elite, velocistas e especialistas em um dos quatro estilos da natação sem história prévia de lesões.. Divididos em dois grupos de sete atletas: 1. Grupo nado assimétrico (GNA: constituído por cinco atletas que nadam o estilo crawl e dois atletas que nadam o estilo costas. 2. Grupo nado simétrico (GNS formado por sete atletas: quatro atletas nadadores no estilo peito e três nadadores no estilo borboleta. Todos foram avaliados no dinamômetro isocinético Cybex 6000. RESULTADOS: O tempo de aceleração na velocidade de 120º/ s do grupo flexor do tronco foi maior no GNS (p=0,054. A potência do grupo extensor nas velocidades de 90 e 120º/ segundo foi maior no GNA que no GNS (p=0,053 e 0,052 respectivamente. Não houve diferença estatística significante nas demais variáveis analisadas. CONCLUSÃO: Os nados assimétricos (crawl e costas proporcionam uma resposta muscular (recrutamento mais eficiente nos grupo dos flexores do tronco, possivelmente pela manutenção constante da contração isométrica dos músculos abdominais.OBJECTIVE: To compare the effect of asymmetric and symmetric swimming strokes on muscle activity of the trunk flexor and extensor muscles. METHODS: Fourteen elite speed swimmers, specialists in one of four swimming styles, all without any history of spinal cord injury, were divided in two groups: 1 asymmetric group, consisting of five athletes specializing in the freestyle stroke and three in the backstroke; and 2 symmetric group, consisting of four athletes specializing in the butterfly stroke and three in the breaststroke. All the swimmers were assessed using a Cybex 6000 isokinetic dynamometer. RESULTS: The acceleration time for the trunk flexor group at a speed of 120º per second was greater in the symmetric group (p=0.054. The power of the

  19. Hybrid FSWeld-bonded joint fatigue behaviour

    Science.gov (United States)

    Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla; Pizzorni, Marco

    2018-05-01

    Aluminium alloys, widely used in aeronautics, are increasingly involved in the automotive industry due to the good relationship between mechanical strength and specific weight. The lightening of the structures is the first objective, which allows the decreasing in the weight in motion. The use of aluminium alloys has also seen the introduction of the Friction Stir Welding (FSW) technique for the production of structural overlapping joints. FSW allows us to weld overlap joints free from defects, but with the presence of a structural notch further aggravated by the presence of a "hook" defect near the edge of the weld. Furthermore, FSW presents a weld penetration area connected to the tool geometry and penetration. The experimental activity will be focused on the combination of two different joining techniques, which can synergistically improve the final joint resistance. In particular, the welding and bonding process most commonly known as weld-bonding is defined as a hybrid process, as it combines two different junction processes. In this paper we analyse FSWelded AA6082 aluminium alloy overlapped joint with the aim of quantitatively evaluating the improvement provided by the presence of an epoxy adhesive between the plates. After optimising the weld-bonding process, the mechanical behaviour of welded joints will be analysed by static and dynamic tests. The presence of the adhesive should limit the negative effect of the structural notch inevitable in a FSW overlapped joint.

  20. Joint hypermobility syndrome and related pain

    Directory of Open Access Journals (Sweden)

    Nilay Sahin

    2016-06-01

    Full Text Available Hypermobility is defined as an abnormally increased range of motion of a joint resulting from the excessive laxity of the soft tissues. This paper is focused on this commonly forgotten cause of several morbidities. The etiology of hypermobility is not very well known. One decade ago, joint hypermobility syndrome was considered as a benign condition, but now it is recognized as a significant contributor to chronic musculoskeletal pain, besides impacting on other organs. Patients with joint hypermobility syndrome often have diffuse, chronic complaints that are inconsistent with the musculoskeletal system. Chronic pain may cause loss of proprioception and so increased sensitivity to microtrauma, premature osteoarthritis de- velopment, soft tissue problems, psychosocial disorders, and neurophysiological deficiencies. Osteoarthritis, pes planus, mechanical low back pain, and soft tissue rheumatisms are frequent musculoskeletal findings as well as subluxations, thoracic outlet syndrome, rectal and uterine prolapses, hernias, and stress incontinence. Joint hypermobility syndrome's treatment is not easy, and nonsteroidal anti-inflammatory drugs are not usually effective or adequate. Proprioceptive and strengthening exercises have been reported to have supportive and therapeutic effects, but we have limited data on this issue. Joint hypermobility syndrome must be accepted as a multisystem connective tissue disorder rather than just joint laxities. As a result; clinicians must be aware of complexities of connective tissue disorders and comorbidities. [Arch Clin Exp Surg 2016; 5(2.000: 105-112

  1. Subtalar joint stress imaging with tomosynthesis.

    Science.gov (United States)

    Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko

    2014-06-01

    The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.

  2. Hip joint injection

    Science.gov (United States)

    ... medicine into the joint. The provider uses a real-time x-ray (fluoroscopy) to see where to place ... Wakefield RJ. Arthrocentesis and injection of joints and soft tissue. In: Firestein GS, Budd RC, Gabriel SE, ...

  3. Sacroiliac joint pain - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe ...

  4. Reliability of Tubular Joints

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    In this paper the preliminary results obtained by tests on tubular joints are presented. The joints are T-joints and the loading is static. It is the intention in continuation of these tests to perform tests on other types of joints (e.g. Y-joints) and also with dynamic loading. The purpose...... of the test is partly to obtain empirical data for the ultimate load-carrying capacity of tubular T-joints and partly to obtain some experience in performing tests with tubular joints. It is well known that tubular joints are usually designed in offshore engineering on the basis of empirical formulas obtained...... by experimental test results. Therefore, there is a need for performing experimental tests in this area....

  5. Hip joint replacement - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100006.htm Hip joint replacement - series—Normal anatomy To use the ... to slide 5 out of 5 Overview The hip joint is made up of two major parts: ...

  6. Are the Kinematics of the Knee Joint Altered during the Loading Response Phase of Gait in Individuals with Concurrent Knee Osteoarthritis and Complaints of Joint Instability? A Dynamic Stereo X-ray Study

    Science.gov (United States)

    Farrokhi, Shawn; Tashman, Scott; Gil, Alexandra B.; Klatt, Brian A.; Fitzgerald, G. Kelley

    2011-01-01

    Background Joint instability has been suggested as a risk factor for knee osteoarthritis and a cause of significant functional declines in those with symptomatic disease. However, the relationship between altered knee joint mechanics and self-reports of instability in individuals with knee osteoarthritis remains unclear. Methods Fourteen subjects with knee osteoarthritis and complaints of joint instability and 12 control volunteers with no history of knee disease were recruited for this study. Dynamic stereo X-ray technology was used to assess the three-dimensional kinematics of the knee joint during the loading response phase of gait. Findings Individuals with concurrent knee osteoarthritis and joint instability demonstrated significantly reduced flexion and internal/external rotation knee motion excursions during the loading response phase of gait (P knee joint at initial contact was significantly different (P knee osteoarthritis and joint instability. However, the anteroposterior and mediolateral tibiofemoral joint positions at initial contact and the corresponding total joint translations were similar between groups during the loading phase of gait. Interpretations The rotational patterns of tibiofemoral joint motion and joint alignments reported for individuals with concurrent knee osteoarthritis and joint instability are consistent with those previously established for individuals with knee osteoarthritis. Furthermore, the findings of similar translatory tibiofemoral motion between groups suggest that self-reports of episodic joint instability in individuals with knee osteoarthritis may not necessarily be associated with adaptive alterations in joint arthrokinematics. PMID:22071429

  7. Are the kinematics of the knee joint altered during the loading response phase of gait in individuals with concurrent knee osteoarthritis and complaints of joint instability? A dynamic stereo X-ray study.

    Science.gov (United States)

    Farrokhi, Shawn; Tashman, Scott; Gil, Alexandra B; Klatt, Brian A; Fitzgerald, G Kelley

    2012-05-01

    Joint instability has been suggested as a risk factor for knee osteoarthritis and a cause of significant functional decline in those with symptomatic disease. However, the relationship between altered knee joint mechanics and self-reports of instability in individuals with knee osteoarthritis remains unclear. Fourteen subjects with knee osteoarthritis and complaints of joint instability and 12 control volunteers with no history of knee disease were recruited for this study. Dynamic stereo X-ray technology was used to assess the three-dimensional kinematics of the knee joint during the loading response phase of gait. Individuals with concurrent knee osteoarthritis and joint instability demonstrated significantly reduced flexion and internal/external rotation knee motion excursions during the loading response phase of gait (Pknee joint at initial contact was significantly different (Pknee osteoarthritis and joint instability. However, the anteroposterior and mediolateral tibiofemoral joint positions at initial contact and the corresponding total joint translations were similar between groups during the loading phase of gait. The rotational patterns of tibiofemoral joint motion and joint alignments reported for individuals with concurrent knee osteoarthritis and joint instability are consistent with those previously established for individuals with knee osteoarthritis. Furthermore, the findings of similar translatory tibiofemoral motion between groups suggest that self-reports of episodic joint instability in individuals with knee osteoarthritis may not necessarily be associated with adaptive alterations in joint arthrokinematics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Design of mechanical joints

    CERN Document Server

    Blake, Alexander

    2018-01-01

    A cornerstone publication that covers the basic principles and practical considerations of design methodology for joints held by rivets, bolts, weld seams, and adhesive materials, Design of Mechanical Joints gives engineers the practical results and formulas they need for the preliminary design of mechanical joints, combining the essential topics of joint mechanics...strength of materials...and fracture control to provide a complete treatment of problems pertinent to the field of mechanical connections.

  9. Managing Joint Production Motivation

    DEFF Research Database (Denmark)

    Lindenberg, Siegwart; Foss, Nicolai Juul

    2011-01-01

    We contribute to the microfoundations of organizational performance by proffering the construct of joint production motivation. Under such motivational conditions individuals see themselves as part of a joint endeavor, each with his or her own roles and responsibilities; generate shared...... representations of actions and tasks; cognitively coordinate cooperation; and choose their own behaviors in terms of joint goals. Using goal-framing theory, we explain how motivation for joint production can be managed by cognitive/symbolic management and organizational design....

  10. Joint multifractal analysis based on wavelet leaders

    Science.gov (United States)

    Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing

    2017-12-01

    Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.

  11. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    Science.gov (United States)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  12. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  13. Temporal logic motion planning

    CSIR Research Space (South Africa)

    Seotsanyana, M

    2010-01-01

    Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...

  14. Aristotle, Motion, and Rhetoric.

    Science.gov (United States)

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of…

  15. Anatomical kinematic constraints: consequences on muscular forces and joint reactions

    OpenAIRE

    MOISSENET, F; CHEZE, L; DUMAS, R

    2011-01-01

    This paper presents a method to determine musculo-tendon forces and joint reactions during gait, using a 3D right leg model with 5 DoFs: spherical joint at the hip and parallel mechanisms at both knee and ankle. A typical set of natural coordinates is used to obtain the dynamic equations. First, using a global optimization method, "anatomical" kinematic constraints (i.e., parallel mechanisms) are applied on the kinematics obtained from motion capture data. Consistent derivatives are computed ...

  16. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  17. The effect of postoperative passive motion on rotator cuff healing in a rat model.

    Science.gov (United States)

    Peltz, Cathryn D; Dourte, Leann M; Kuntz, Andrew F; Sarver, Joseph J; Kim, Soung-Yon; Williams, Gerald R; Soslowsky, Louis J

    2009-10-01

    Surgical repairs of torn rotator cuff tendons frequently fail. Immobilization has been shown to improve tissue mechanical properties in an animal model of rotator cuff repair, and passive motion has been shown to improve joint mechanics in animal models of flexor tendon repair. Our objective was to determine if daily passive motion would improve joint mechanics in comparison with continuous immobilization in a rat rotator cuff repair model. We hypothesized that daily passive motion would result in improved passive shoulder joint mechanics in comparison with continuous immobilization initially and that there would be no differences in passive joint mechanics or insertion site mechanical properties after four weeks of remobilization. A supraspinatus injury was created and was surgically repaired in sixty-five Sprague-Dawley rats. Rats were separated into three postoperative groups (continuous immobilization, passive motion protocol 1, and passive motion protocol 2) for two weeks before all underwent a remobilization protocol for four weeks. Serial measurements of passive shoulder mechanics (internal and external range of motion and joint stiffness) were made before surgery and at two and six weeks after surgery. After the animals were killed, collagen organization and mechanical properties of the tendon-to-bone insertion site were determined. Total range of motion for both passive motion groups (49% and 45% of the pre-injury values) was less than that for the continuous immobilization group (59% of the pre-injury value) at two weeks and remained significantly less following four weeks of remobilization exercise. Joint stiffness at two weeks was increased for both passive motion groups in comparison with the continuous immobilization group. At both two and six weeks after repair, internal range of motion was significantly decreased whereas external range of motion was not. There were no differences between the groups in terms of collagen organization or mechanical

  18. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    Science.gov (United States)

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  19. Occupation times distribution for Brownian motion on graphs

    CERN Document Server

    Desbois, J

    2002-01-01

    Considering a Brownian motion on a general graph, we study the joint law for the occupation times on all the bonds. In particular, we show that the Laplace transform of this distribution can be expressed as the ratio of two determinants. We give two formulations, with arc or vertex matrices, for this result and discuss a simple example. (letter to the editor)

  20. Using Motion Tracking to Detect Spontaneous Movements in Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2015-01-01

    We study the characteristics of infants’ spontaneous movements, based on data obtained from a markerless motion tracking system. From the pose data, the set of features are generated from the raw joint-angles of the infants and different classifiers are trained and evaluated using annotated data...

  1. Predicting kinetics using musculoskeletal modeling and inertial motion capture

    NARCIS (Netherlands)

    Karatsidis, Angelos; Jung, Moonki; Schepers, H. Martin; Bellusci, Giovanni; de Zee, Mark; Veltink, Peter H.; Andersen, Michael Skipper

    2018-01-01

    Inverse dynamic analysis using musculoskeletal modeling is a powerful tool, which is utilized in a range of applications to estimate forces in ligaments, muscles, and joints, non-invasively. To date, the conventional input used in this analysis is derived from optical motion capture (OMC) and force

  2. Self-aligning exoskeleton hip joint: Kinematic design with five revolute, three prismatic and one ball joint.

    Science.gov (United States)

    Beil, Jonas; Marquardt, Charlotte; Asfour, Tamim

    2017-07-01

    Kinematic compatibility is of paramount importance in wearable robotic and exoskeleton design. Misalignments between exoskeletons and anatomical joints of the human body result in interaction forces which make wearing the exoskeleton uncomfortable and even dangerous for the human. In this paper we present a kinematically compatible design of an exoskeleton hip to reduce kinematic incompatibilities, so called macro- and micro-misalignments, between the human's and exoskeleton's joint axes, which are caused by inter-subject variability and articulation. The resulting design consists of five revolute, three prismatic and one ball joint. Design parameters such as range of motion and joint velocities are calculated based on the analysis of human motion data acquired by motion capture systems. We show that the resulting design is capable of self-aligning to the human hip joint in all three anatomical planes during operation and can be adapted along the dorsoventral and mediolateral axis prior to operation. Calculation of the forward kinematics and FEM-simulation considering kinematic and musculoskeletal constraints proved sufficient mobility and stiffness of the system regarding the range of motion, angular velocity and torque admissibility needed to provide 50 % assistance for an 80 kg person.

  3. Effect of range of motion in heavy load squatting on muscle and tendon adaptations

    DEFF Research Database (Denmark)

    Bloomquist, K; Langberg, Henning; Karlsen, Stine

    2013-01-01

    Manipulating joint range of motion during squat training may have differential effects on adaptations to strength training with implications for sports and rehabilitation. Consequently, the purpose of this study was to compare the effects of squat training with a short vs. a long range of motion...

  4. System analysis of sagittal plane human motion wearing an exoskeleton using marker technology

    Directory of Open Access Journals (Sweden)

    Jatsun Sergey

    2016-01-01

    Full Text Available This paper discusses various methods of obtaining time functions for joint angle that describe a exoskeleton’s motion during sit-to-stand motion. This article demonstrates that functions obtained by solving the inverse kinematics problem can be effectively used as inputs to the control system of the robot. Comparison with experimentally data obtained using marker technology is done.

  5. Peak torque and knee kinematics during gait after eccentric isokinetic training of quadriceps in healthy subjects O pico de torque e a cinemática do joelho durante a marcha após treino isocinético excêntrico do quadríceps em sujeitos saudáveis

    Directory of Open Access Journals (Sweden)

    PR Poletto

    2008-08-01

    Full Text Available OBJECTIVE: To evaluate the effects of eccentric isokinetic training on knee range of motion (ROM of healthy subjects. METHODS: The knee extensor and flexor isokinetic peak torques and ROM of flexion/extension and varus/valgus knee movements during gait of 18 healthy men (21.7±2.2 years; 1.73±0.10m; 68.7±9.4kg; body mass index: 22.6±2kg/m² were analyzed, before and after six weeks of bilateral eccentric isokinetic training of the knee extensors at 30º/s. RESULTS: The knee extensor torque increased in both limbs (right, from 229±54 to 304±53Nm; pOBJETIVO: Avaliar os efeitos do treino isocinético excêntrico sobre a amplitude de movimento (ADM do joelho em sujeitos saudáveis. MÉTODOS: Foram analisados os picos de torque isocinético dos extensores e flexores do joelho e a ADM de flexo/extensão e valgo/varo, durante a marcha, de 18 homens saudáveis (21,7±2,2 anos; 1,73±0,10m; 68,7±9,4kg; índice de massa corpórea: 22,6±2kg/m² antes e após seis semanas de treino isocinético excêntrico bilateral dos extensores do joelho a 30º/s. RESULTADOS: O torque extensor do joelho aumentou em ambos os membros, direito (de 229±54 para 304±53Nm; p<0,01 e esquerdo (de 228±59 para 311±63Nm; p<0,01 sem diferença de ganho de torque entre eles. O pico de torque flexor aumentou (de 114±30 para 123±22Nm; p<0,05, mas a razão isquiotibiais/quadríceps (I/Q diminuiu (de 0,5±0,08 para 0,39±0,07; p<0,01 após o treino. Não houve diferença para os movimentos de flexo/extensão e valgo/varo após o treino, exceto uma pequena mudança (4° no valgo para o joelho esquerdo. CONCLUSÕES: O treino isocinético excêntrico dos extensores do joelho aumentou o torque extensor e diminuiu a razão I/Q, entretanto o efeito sobre o padrão da marcha parece desprezível em sujeitos saudáveis. Um treino associado dos flexores, complementar ao treino dos extensores parece ser necessário para o equilíbrio entre agonistas e antagonistas do joelho.

  6. Motion Segments Decomposition of RGB-D Sequences for Human Behavior Understanding

    OpenAIRE

    Devanne , Maxime; Berretti , Stefano; Pala , Pietro; Wannous , Hazem; Daoudi , Mohamed; Bimbo , Alberto ,

    2017-01-01

    International audience; In this paper, we propose a framework for analyzing and understanding human behavior from depth videos. The proposed solution first employs shape analysis of the human pose across time to decompose the full motion into short temporal segments representing elementary motions. Then, each segment is characterized by human motion and depth appearance around hand joints to describe the change in pose of the body and the interaction with objects. Finally , the sequence of te...

  7. [Short-term effectiveness of Swanson artificial joint replacement in treating posttraumatic metacarpophalangeal joint stiffness].

    Science.gov (United States)

    Lu, Hui; Shen, Xiangqian; Xu, Jihua; Huang, Xin; Ye, Po; Wu, Shoucheng

    2011-11-01

    To investigate the short-term effectiveness of Swanson artificial joint replacement in treating post-traumatic metacarpophalangeal joint stiffness. Between August 2007 and May 2010, 11 cases (13 fingers) of metacarpophalangeal joint stiffness with soft tissue defects underwent Swanson artificial joint replacement. There were 7 males (9 fingers) and 4 females (4 fingers), aged 43 to 65 years with an average of 49 years. The involved fingers included 4 thumbs, 4 index fingers, 3 middle fingers, and 2 ring fingers. The types of injury included open and crush injury in 8 fingers, fracture of the metacarpophalangeal joint in 3 fingers, metacarpophalangeal joint severing in 2 fingers. The time from joint stiffness to hospitalization was 12 to 48 weeks (mean, 24 weeks). The joint activity was (136.82 +/- 28.96) degrees. According to total active motion (TAM) assessment, included good in 1 finger, fair in 6 fingers, and poor in 6 fingers before operation. The activities of daily living were assessed by Sollerman score, which was 45.64 +/- 11.04. The X-ray films and CT scan showed traumatic arthritis of the metacarpophalangeal joint. The incision healed by first intention. All patients were followed up 12 to 34 months (mean, 24.1 months). At last follow-up, the joint activity was (194.64 +/- 28.86) degrees, showing significant difference when compared with preoperative value (t = 25.214, P = 0.000). According to TAM assessment, including excellent in 1 finger, good in 4 fingers, fair in 7 fingers, and poor in 1 finger. The Sollerman score was 67.45 +/- 8.20 postoperatively, showing significant difference when compared with the preoperative score (t = -10.470, P = 0.000). X-ray examination showed no prosthesis fracture, periprosthetic fracture, or joint dislocation occurred at last follow-up. Swanson artificial joint replacement can be applied to treat post-traumatic metacarpophalangeal joint stiffness, which can improve the joint activity and has satisfactory short

  8. Muscle Synergy-Driven Robust Motion Control.

    Science.gov (United States)

    Min, Kyuengbo; Iwamoto, Masami; Kakei, Shinji; Kimpara, Hideyuki

    2018-04-01

    Humans are able to robustly maintain desired motion and posture under dynamically changing circumstances, including novel conditions. To accomplish this, the brain needs to optimize the synergistic control between muscles against external dynamic factors. However, previous related studies have usually simplified the control of multiple muscles using two opposing muscles, which are minimum actuators to simulate linear feedback control. As a result, they have been unable to analyze how muscle synergy contributes to motion control robustness in a biological system. To address this issue, we considered a new muscle synergy concept used to optimize the synergy between muscle units against external dynamic conditions, including novel conditions. We propose that two main muscle control policies synergistically control muscle units to maintain the desired motion against external dynamic conditions. Our assumption is based on biological evidence regarding the control of multiple muscles via the corticospinal tract. One of the policies is the group control policy (GCP), which is used to control muscle group units classified based on functional similarities in joint control. This policy is used to effectively resist external dynamic circumstances, such as disturbances. The individual control policy (ICP) assists the GCP in precisely controlling motion by controlling individual muscle units. To validate this hypothesis, we simulated the reinforcement of the synergistic actions of the two control policies during the reinforcement learning of feedback motion control. Using this learning paradigm, the two control policies were synergistically combined to result in robust feedback control under novel transient and sustained disturbances that did not involve learning. Further, by comparing our data to experimental data generated by human subjects under the same conditions as those of the simulation, we showed that the proposed synergy concept may be used to analyze muscle synergy

  9. Toying with Motion.

    Science.gov (United States)

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  10. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  11. Travelers' Health: Motion Sickness

    Science.gov (United States)

    ... sickness, especially when pregnant, menstruating, or on hormones. Race/ethnicity—Asians may be more susceptible to motion ... it, sitting in the front seat of a car or bus, sitting over the wing of an ...

  12. Dizziness and Motion Sickness

    Science.gov (United States)

    ... that extends into the inner ear can completely destroy both the hearing and equilibrium function of that ... motion sickness: •Do not read while traveling •Avoid sitting in the rear seat •Do not sit in ...

  13. Motion Sickness: First Aid

    Science.gov (United States)

    ... com. Accessed July 29, 2017. Priesol AJ. Motion sickness. https://www.uptodate.com/content/search. Accessed July 29, 2017. Brunette GW, et al. CDC Health Information for International Travel 2018. New York, N. ...

  14. Visual Motion Perception

    Science.gov (United States)

    1991-08-15

    displace- ment limit for motion in random dots," Vision Res., 24, 293-300. Pantie , A. & K. Turano (1986) "Direct comparisons of apparent motions...Hicks & AJ, Pantie (1978) "Apparent movement of successively generated subjec. uve figures," Perception, 7, 371-383. Ramachandran. V.S. & S.M. Anstis...thanks think deaf girl until world uncle flag home talk finish short thee our screwdiver sonry flower wrCstlir~g plan week wait accident guilty tree

  15. Coupled transverse motion

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs

  16. Effects of hand grip exercise on shoulder joint internal rotation and external rotation peak torque.

    Science.gov (United States)

    Lee, Dong-Rour; Jong-Soon Kim, Laurentius

    2016-08-10

    The goal of this study is to analyze the effects of hand grip training on shoulder joint internal rotation (IR)/external rotation (ER) peak torque for healthy people. The research was conducted on 23 healthy adults in their 20 s-30 s who volunteered to participate in the experiment. Hand grip power test was performed on both hands of the research subjects before/after the test to study changes in hand grip power. Isokinetic machine was used to measure the concentric IRPT (internal rotation peak torque) and concentric ERPT (external rotation peak torque) at the velocity of 60°/sec, 90°/sec, and 180°/sec before/after the test. Hand grip training was performed daily on the subject's right hand only for four weeks according to exercise program. Finally, hand grip power of both hands and the maximum torque values of shoulder joint IR/ER were measured before/after the test and analyzed. There was a statistically significant difference in the hand grip power of the right hand, which was subject to hand grip training, after the experiment. Also, statistically significant difference for shoulder ERPT was found at 60°/sec. Hand grip training has a positive effect on shoulder joint IRPT/ERPT and therefore can help strengthen muscles around the shoulder without using weight on the shoulder. Consequently, hand grip training would help maintain strengthen the muscles around the shoulder in the early phase of rehabilitation process after shoulder surgery.

  17. Motion of a Rigid Body Supported at One Point by a Rotating Arm

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Stoen

    1993-01-01

    Full Text Available This article details a scheme for evaluating the stability of motions of a system consisting of a rigid body connected at one point to a rotating arm. The nonlinear equations of motion for the system are formulated, and a method for finding exact solutions representing motions that resemble a state of rest is presented. The equations are then linearized and roots of the eigensystem are classified and used to construct stability diagrams that facilitate the assessment of effects of varying the body's mass properties and system geometry, changing the position of the attachment joint, and adding energy dissipation in the joint.

  18. 3D Analysis of the Proximal Interphalangeal Joint Kinematics during Flexion

    Directory of Open Access Journals (Sweden)

    Florian Hess

    2013-01-01

    Full Text Available Background. Dynamic joint motion recording combined with CT-based 3D bone and joint surface data is accepted as a helpful and precise tool to analyse joint. The purpose of this study is to demonstrate the feasibility of these techniques for quantitative motion analysis of the interphalangeal joint in 3D. Materials and Method. High resolution motion data was combined with an accurate 3D model of a cadaveric index finger. Three light-emitting diodes (LEDs were used to record dynamic data, and a CT scan of the finger was done for 3D joint surface geometry. The data allowed performing quantitative evaluations such as finite helical axis (FHA analysis, coordinate system optimization, and measurement of the joint distances in 3D. Results. The FHA varies by 4.9±1.7° on average. On average, the rotation in adduction/abduction and internal/external rotation were 0.3±0.91° and 0.1±0.97°, respectively. During flexion, a translational motion between 0.06 mm and 0.73 mm was observed. Conclusions. The proposed technique and methods appear to be feasible for the accurate assessment and evaluation of the PIP joint motion in 3D. The presented method may help to gain additional insights for the design of prosthetic implants, rehabilitation, and new orthotic devices.

  19. Demonstration of movement in the sacroiliac joint using ultrasound

    Science.gov (United States)

    Krupinski, Elizabeth A.; Brooks, William J.; Lund, Pamela J.

    1995-05-01

    The goal of this study was to demonstrate quantitatively, using ultrasound (US) recording techniques, the extent of motion of the sacroiliac joint achieved using manual medicine techniques. Initial judgements of perceived (i.e., felt) SI mobility during manual examination were made on 22 subjects. Baseline no movement ultrasound images (static) were obtained of the left and right SI joints at two levels-- posterior-superior-iliac-spine and inferior (PSIS, INF)--and two projections (AP and LAT). Manual medicine spring testing of the SI joint was then performed while ultrasound recordings (on video) were made. The differences between baseline separation of the SI joint and displacement distance during spring testing were measured by six radiologists who typically read US images. Significant movement of at least one SI joint was demonstrated in 91% of the subjects using ultrasound recordings. The extent of movement appeared to corroborate the experience of manual medicine practitioners.

  20. Principles of human joint replacement design and clinical application

    CERN Document Server

    Buechel, Frederick F

    2015-01-01

    This book is written for the users and designers of joint replacements. In its second extended edition it conveys to the reader the knowledge accumulated by the authors during their forty year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter describes the design methodology now required for joint replacement in the USA and EU countries. The remaining chapters provide a history of joint replacement, an evaluation of earlier and current devices and sample case hist...

  1. Biochemical and biomechanical characterisation of equine cervical facet joint cartilage.

    Science.gov (United States)

    O'Leary, S A; White, J L; Hu, J C; Athanasiou, K A

    2018-04-15

    The equine cervical facet joint is a site of significant pathology. Located bilaterally on the dorsal spine, these diarthrodial joints work in conjunction with the intervertebral disc to facilitate appropriate spinal motion. Despite the high prevalence of pathology in this joint, the facet joint is understudied and thus lacking in viable treatment options. The goal of this study was to characterise equine facet joint cartilage and provide a comprehensive database describing the morphological, histological, biochemical and biomechanical properties of this tissue. Descriptive cadaver studies. A total of 132 facet joint surfaces were harvested from the cervical spines of six skeletally mature horses (11 surfaces per animal) for compiling biomechanical and biochemical properties of hyaline cartilage of the equine cervical facet joints. Gross morphometric measurements and histological staining were performed on facet joint cartilage. Creep indentation and uniaxial strain-to-failure testing were used to determine the biomechanical compressive and tensile properties. Biochemical assays included quantification of total collagen, sulfated glycosaminoglycan and DNA content. The facet joint surfaces were ovoid in shape with a flat articular surface. Histological analyses highlighted structures akin to articular cartilage of other synovial joints. In general, biomechanical and biochemical properties did not differ significantly between the inferior and superior joint surfaces as well as among spinal levels. Interestingly, compressive and tensile properties of cervical facet articular cartilage were lower than those of articular cartilage from other previously characterised equine joints. Removal of the superficial zone reduced the tissue's tensile strength, suggesting that this zone is important for the tensile integrity of the tissue. Facet surfaces were sampled at a single, central location and do not capture the potential topographic variation in cartilage properties. This

  2. Mechanics of Suture Joints

    Science.gov (United States)

    Li, Yaning; Song, Juha; Ortiz, Christine; Boyce, Mary; Ortiz Group/DMSE/MIT Team; Boyce Group/ME/MIT Team

    2011-03-01

    Biological sutures are joints which connect two stiff skeletal or skeletal-like components. These joints possess a wavy geometry with a thin organic layer providing adhesion. Examples of biological sutures include mammalian skulls, the pelvic assembly of the armored fish Gasterosteus aculeatus (the three-spined stickleback), and the suture joints in the shell of the red-eared slider turtle. Biological sutures allow for movement and compliance, control stress concentrations, transmit loads, reduce fatigue stress and absorb energy. In this investigation, the mechanics of the role of suture geometry in providing a naturally optimized joint is explored. In particular, analytical and numerical micromechanical models of the suture joint are constructed. The anisotropic mechanical stiffness and strength are studied as a function of suture wavelength, amplitude and the material properties of the skeletal and organic components, revealing key insights into the optimized nature of these ubiquitous natural joints.

  3. Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics.

    Science.gov (United States)

    Rubenson, Jonas; Lloyd, David G; Besier, Thor F; Heliams, Denham B; Fournier, Paul A

    2007-07-01

    Although locomotor kinematics in walking and running birds have been examined in studies exploring many biological aspects of bipedalism, these studies have been largely limited to two-dimensional analyses. Incorporating a five-segment, 17 degree-of-freedom (d.f.) kinematic model of the ostrich hind limb developed from anatomical specimens, we quantified the three-dimensional (3-D) joint axis alignment and joint kinematics during running (at approximately 3.3 m s(-1)) in the largest avian biped, the ostrich. Our analysis revealed that the majority of the segment motion during running in the ostrich occurs in flexion/extension. Importantly, however, the alignment of the average flexion/extension helical axes of the knee and ankle are rotated externally to the direction of travel (37 degrees and 21 degrees , respectively) so that pure flexion and extension at the knee will act to adduct and adbuct the tibiotarsus relative to the plane of movement, and pure flexion and extension at the ankle will act to abduct and adduct the tarsometatarsus relative to the plane of movement. This feature of the limb anatomy appears to provide the major lateral (non-sagittal) displacement of the lower limb necessary for steering the swinging limb clear of the stance limb and replaces what would otherwise require greater adduction/abduction and/or internal/external rotation, allowing for less complex joints, musculoskeletal geometry and neuromuscular control. Significant rotation about the joints' non-flexion/extension axes nevertheless occurs over the running stride. In particular, hip abduction and knee internal/external and varus/valgus motion may further facilitate limb clearance during the swing phase, and substantial non-flexion/extension movement at the knee is also observed during stance. Measurement of 3-D segment and joint motion in birds will be aided by the use of functionally determined axes of rotation rather than assumed axes, proving important when interpreting the

  4. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  5. Immediate Effects of Anterior-to-Posterior Talocrural Joint Mobilization after Prolonged Ankle Immobilization: A Preliminary Study

    OpenAIRE

    Landrum, Elizabeth L.; Kelln, Cdr. Brent M.; Parente, William R.; Ingersoll, Christopher D.; Hertel, Jay

    2008-01-01

    Ankle dorsiflexion range of motion (ROM) typically decreases after prolonged immobilization. Anterior-to-posterior talocrural joint mobilizations are purported to increase dorsiflexion ROM and decrease joint stiffness after immobilization. The purpose of this study was to determine if a single bout of Grade III anterior-to-posterior talocrural joint mobilizations immediately affected measures of dorsiflexion ROM, posterior ankle joint stiffness, and posterior talar translation in ankles of pa...

  6. Lower limb joint moment during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2003-11-04

    Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.

  7. Interpersonal movement coordination in jointly moving a rocking board

    NARCIS (Netherlands)

    Bosga, J.; Meulenbroek, R.G.J.; Cuijpers, R.H.

    2010-01-01

    In this study, we investigate how two persons (dyads) coordinate their movements when performing cyclical motion patterns on a rocking board. In keeping with the Leading Joint Hypothesis (Dounskaia, 2005), the movement dynamics of the collaborating participants were expected to display features of a

  8. A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations.

    Science.gov (United States)

    Gaziv, Guy; Noy, Lior; Liron, Yuvalal; Alon, Uri

    2017-01-01

    Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available.

  9. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  10. Subtalar joint kinematics and arthroscopy: insight in the subtalar joint range of motion and aspects of subtalar joint arthroscopy

    NARCIS (Netherlands)

    Beimers, L.

    2012-01-01

    Lijkele Beimers ontwikkelde een nieuwe techniek om de beweeglijkheid van botten te meten op basis van herkenning van botcontouren in computertomografie-data (CT-BCM). De verplaatsing en draaiing van het ene bot ten opzichte van het andere bot kan met behulp van CT-BCM nauwkeurig worden bepaald. Bij

  11. Biomechanics of unilateral and bilateral sacroiliac joint stabilization: laboratory investigation.

    Science.gov (United States)

    Lindsey, Derek P; Parrish, Robin; Gundanna, Mukund; Leasure, Jeremi; Yerby, Scott A; Kondrashov, Dimitriy

    2018-03-01

    OBJECTIVE Bilateral symptoms have been reported in 8%-35% of patients with sacroiliac (SI) joint dysfunction. Stabilization of a single SI joint may significantly alter the stresses on the contralateral SI joint. If the contralateral SI joint stresses are significantly increased, degeneration may occur; alternatively, if the stresses are significantly reduced, bilateral stabilization may be unnecessary for patients with bilateral symptoms. The biomechanical effects of 1) unilateral stabilization on the contralateral SI joint and 2) bilateral stabilization on both SI joints are currently unknown. The objectives of this study were to characterize bilateral SI joint range of motion (ROM) and evaluate and compare the biomechanical effects of unilateral and bilateral implant placement for SI joint fusion. METHODS A lumbopelvic model (L5-pelvis) was used to test the ROM of both SI joints in 8 cadavers. A single-leg stance setup was used to load the lumbar spine and measure the ROM of each SI joint in flexion-extension, lateral bending, and axial rotation. Both joints were tested 1) while intact, 2) after unilateral stabilization, and 3) after bilateral stabilization. Stabilization consisted of lateral transiliac placement of 3 triangular titanium plasma-sprayed (TPS) implants. RESULTS Intact testing showed that during single-leg stance the contralateral SI joint had less ROM in flexion-extension (27%), lateral bending (32%), and axial rotation (69%) than the loaded joint. Unilateral stabilization resulted in significant reduction of flexion-extension ROM (46%) on the treated side; no significant ROM changes were observed for the nontreated side. Bilateral stabilization resulted in significant reduction of flexion-extension ROM of the primary (45%) and secondary (75%) SI joints. CONCLUSIONS This study demonstrated that during single-leg loading the ROMs for the stance (loaded) and swing (unloaded) SI joints are significantly different. Unilateral stabilization for SI

  12. Elbow joint rehabilitation equipment actuated by pneumatic muscles

    Directory of Open Access Journals (Sweden)

    Vetrice Georgiana

    2017-01-01

    Full Text Available The mobility of the limbs is an essential prerequisite for the individual’s physical autonomy. For persons suffering from post-traumatic affections of the elbow joint such limited mobility results in barriers in fulfilling personal or professional tasks. Passive motion has certain specific advantages and beneficial effects, thus being highly recommended for the recovery of injured joints. The paper presents a model of rehabilitation equipment that induces continuous passive motion of the elbow, as part of a recovery programme. The equipment is actuated by pneumatic muscles, using compressed air as the source of energy that generates force and motion. The main benefits of the pneumatic actuation system compared to other driving systems are its low cost, simple and robust construction and swift response to commands. Its constructive simplicity and reduced cost adds to the system’s eligibility for deployment in medical units.

  13. Kinematics Simulation Analysis of Packaging Robot with Joint Clearance

    Science.gov (United States)

    Zhang, Y. W.; Meng, W. J.; Wang, L. Q.; Cui, G. H.

    2018-03-01

    Considering the influence of joint clearance on the motion error, repeated positioning accuracy and overall position of the machine, this paper presents simulation analysis of a packaging robot — 2 degrees of freedom(DOF) planar parallel robot based on the characteristics of high precision and fast speed of packaging equipment. The motion constraint equation of the mechanism is established, and the analysis and simulation of the motion error are carried out in the case of turning the revolute clearance. The simulation results show that the size of the joint clearance will affect the movement accuracy and packaging efficiency of the packaging robot. The analysis provides a reference point of view for the packaging equipment design and selection criteria and has a great significance on the packaging industry automation.

  14. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1987-03-01

    The paper presents the progress report of the Joint European Torus (JET) Joint Undertaking, 1986. The report contains a survey of the scientific and technical achievements on JET during 1986; the more important articles referred to in this survey are reproduced as appendices to this Report. The last section discusses developments which might improve the overall performance of the machine. (U.K.)

  15. 13. Sacroiliac joint pain

    NARCIS (Netherlands)

    Vanelderen, P.; Szadek, K.M.; Cohen, S.P.; Witte, J.; Lataster, A.; Patijn, J.; Mekhail, N.; van Kleef, M.; van Zundert, J.

    2010-01-01

    The sacroiliac joint accounts for approximately 16% to 30% of cases of chronic mechanical low back pain. Pain originating in the sacroiliac joint is predominantly perceived in the gluteal region, although pain is often referred into the lower and upper lumbar region, groin, abdomen, and/ or lower

  16. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...

  17. Joint Newspaper Operating Agreements.

    Science.gov (United States)

    Parsons, Marie

    The number of competing daily newspapers in American cities has dwindled until only about 50 cities boast two papers. Of the newspapers in those cities, 23 now maintain separate editorial operations but have joint printing, advertising, and circulation departments. The concept of joint operation is 50 years old, dating from the Depression years…

  18. Joint Hub Network Development

    NARCIS (Netherlands)

    Cruijssen, F.C.A.M.; Borm, P.E.M.; Dullaert, W.; Hamers, H.J.M.

    2007-01-01

    This paper introduces a framework for joint hub network development. Building a joint physical hub for transhipment of goods is expensive and therefore involves considerable risks for the cooperating companies. In a practical setting, it is unlikely that an entire network will be built at once.

  19. Elbow joint instability

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Henriksen, M G; Søjbjerg, Jens Ole

    1994-01-01

    The effect of simultaneous ulnar and radial collateral ligament division on the kinematics of the elbow joint is studied in a cadaveric model. Severance of the anterior part of the ulnar collateral ligament and the annular ligament led to significant elbow joint instability in valgus and varus...

  20. Bistable Articulated Joint

    Science.gov (United States)

    Graighead, Norwood D., II; Preliasco, R. J.; Hult, T. D.

    1986-01-01

    Joint with four-bar-linkage geometry has following attributes: Springs to fully extended fully folded positions. Automatically locks in its extended position. Joint combines zero backlash, positive locking, and centerline pivoting. Used in folding tool handles, portable antenna booms, and many other deployable structures.

  1. MP Joint Arthritis

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy MP Joint Arthritis Email to a friend * required ...

  2. Creep of timber joints

    NARCIS (Netherlands)

    Van de Kuilen, J.W.G.

    2008-01-01

    A creep analysis has been performed on nailed, toothed-plates and split-ring joints in a varying uncontrolled climate. The load levels varied between 30% and 50% of the average ultimate short term strength of these joints, tested in accordance with ISO 6891. The climate in which the tests were

  3. Efficacy of pre-exercise low-level laser therapy on isokinetic muscle performance in individuals with type 2 diabetes mellitus: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Gomes, Cid André Fidelis de Paula; Leal-Junior, Ernesto Cesar Pinto; Biasotto-Gonzalez, Daniela Aparecida; El-Hage, Yasmin; Politti, Fabiano; Gonzalez, Tabajara de Oliveira; Dibai-Filho, Almir Vieira; de Oliveira, Adriano Rodrigues; Frigero, Marcelo; Antonialli, Fernanda Colella; Vanin, Adriane Aver; de Tarso Camillo de Carvalho, Paulo

    2014-04-09

    Type 2 diabetes, also known non-insulin-dependent diabetes, is the most prevalent type of the disease and involves defects in the secretion and action of insulin. The aim of the proposed study is to evaluate the efficacy of pre-exercise low-level laser therapy (LLLT) on muscle performance of the quadriceps femoris in individuals with type 2 diabetes. A double-blind, randomized, controlled clinical trial will be carried out in two treatment phases. In the first phase, quadriceps muscle performance will be evaluated using an isokinetic dynamometer and the levels of creatine kinase and lactate dehydrogenase (biochemical markers of muscle damage) will be determined. The participants will then be allocated to four LLLT groups through a randomization process using opaque envelopes: Group A (4 Joules), Group B (6 Joules), Group C (8 Joules) and Group D (0 Joules; placebo). Following the administration of LLLT, the participants will be submitted to an isokinetic eccentric muscle fatigue protocol involving the quadriceps muscle bilaterally. Muscle performance and biochemical markers of muscle damage will be evaluated again immediately after as well as 24 and 48 hours after the experimental protocol. One week after the last evaluation the second phase will begin, during which Groups A, B and C will receive the LLLT protocol that achieved the best muscle performance in phase 1 for a period of 4 weeks. At the end of this period, muscle performance will be evaluated again. The protocol for this study is registered with the World Health Organization under Universal Trial Number U1111-1146-7109. The purpose of this randomized clinical trial is to evaluate the efficacy of pre-exercise LLLT on the performance of the quadriceps muscle (peak torque, total muscle work, maximum power and fatigue index - normalized by body mass) in individuals with DM-2. The study will support the practice of evidence-based to the use of LLLT in improving muscle performance in Individuals with DM-2

  4. Movement coordination patterns between the foot joints during walking

    Directory of Open Access Journals (Sweden)

    John B. Arnold

    2017-10-01

    Full Text Available Abstract Background In 3D gait analysis, kinematics of the foot joints are usually reported via isolated time histories of joint rotations and no information is provided on the relationship between rotations at different joints. The aim of this study was to identify movement coordination patterns in the foot during walking by expanding an existing vector coding technique according to an established multi-segment foot and ankle model. A graphical representation is also described to summarise the coordination patterns of joint rotations across multiple patients. Methods Three-dimensional multi-segment foot kinematics were recorded in 13 adults during walking. A modified vector coding technique was used to identify coordination patterns between foot joints involving calcaneus, midfoot, metatarsus and hallux segments. According to the type and direction of joints rotations, these were classified as in-phase (same direction, anti-phase (opposite directions, proximal or distal joint dominant. Results In early stance, 51 to 75% of walking trials showed proximal-phase coordination between foot joints comprising the calcaneus, midfoot and metatarsus. In-phase coordination was more prominent in late stance, reflecting synergy in the simultaneous inversion occurring at multiple foot joints. Conversely, a distal-phase coordination pattern was identified for sagittal plane motion of the ankle relative to the midtarsal joint, highlighting the critical role of arch shortening to locomotor function in push-off. Conclusions This study has identified coordination patterns between movement of the calcaneus, midfoot, metatarsus and hallux by expanding an existing vector cording technique for assessing and classifying coordination patterns of foot joints rotations during walking. This approach provides a different perspective in the analysis of multi-segment foot kinematics, and may be used for the objective quantification of the alterations in foot joint

  5. MR diagnosis of temporomandibular joint. A study of joint effusion

    International Nuclear Information System (INIS)

    Kaneda, Takashi; Yamashiro, Mitsuaki; Ozawa, Kaoru; Suzuki, Hiromi; Okada, Hiroyuki; Yamamoto, Hirotsugu

    1998-01-01

    The purposes of this study were to evaluate the relationship between correlation of MR joint effusion of the temporomandibular joint and disk position, to evaluate the relationship between joint effusion and aging, and to assess the frequency of MR joint effusion of bilateral temporomandibular joints. The temporomandibular joints of 192 patients with clinical symptoms of temporomandibular joint disorders were imaged bilaterally using high field, surface-coil MR imaging. Oblique sagittal and coronal proton density-weighted and T2-weighted images were obtained. Imaging findings of joint effusion were correlated with disk position, aging, and bilateral temporomandibular joints. MR showed effusion in 4% of the joints with normal superior disk position, 36% of the joints with disk displacement with reduction, and 45% of the joints with disk displacement without reduction. There were significant differences in the incidence of joint effusion between normal disk position and anterior disk displacement with or without reduction. Younger patients less than 40 years were significant higher the incidence of joint effusion than those of older patients. A significant association was seen between joint effusion and aging. MR showed effusion in 17% of the unilateral temporomandibular joint, 24% of the bilateral temporomandibular joints. There was no significant difference between unilateral and bilateral case. These results indicated that joint effusion using MR imaging was associated with varied temporomandibular joint pathologic states. (author)

  6. Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links

    International Nuclear Information System (INIS)

    Zhang Xuping; Mills, James K.; Cleghorn, William L.

    2009-01-01

    Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links

  7. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    International Nuclear Information System (INIS)

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-01-01

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V s30 , etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  8. Ground motion predictions

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)

    1969-07-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  9. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...... context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model...

  10. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  11. Influência do volume de alongamento estático dos músculos isquiotibiais nas variavéis isocinéticas Influence of static stretching volume in isokinetic variables of harmstrings

    Directory of Open Access Journals (Sweden)

    Anselmo Grego Neto

    2009-04-01

    trabalho ao longo de algumas repetições não é.Stretching exercises are commonly prescribed before training sessions and competitions aiming at performance improvement and reduction of injury risk. However, many studies have shown that muscular torque production capacity may be reduced just after stretching. Therefore, the stretching duration necessary to produce these acute force deficits, as well as the physiological mechanisms responsible for them are relevant issues. The aim of this work was to investigate the acute effects of static stretching protocols with different durations on the isokinetic hamstrings performance. Thirty-six young male volunteers took part in this study and were evenly distributed in three groups: E1, E2 and C. All of them performed a systemic warm-up for five minutes and went through active range of motion (AROM of hip flexion and isokinetic assessment. The participants of groups E1 and E2 performed static stretching protocols of 180s (4 x 45s and 360s (8 x 45s respectively, and were evaluated again. The participants of group C (control remained at rest for a period of 270s and were evaluated again. The variables considered were AROM, peak torque, maximum work and total work. Both stretching protocols were able to produce increase in AROM; however, only the longest protocol produced deficits on peak torque and maximum work. Total work was not affected by any of the stretching protocols, though. Therefore, these results suggest that changes in muscular stiffness, that caused AROM gain, would not be responsible alone for the force deficits. Moreover, one can conclude that the maximum muscular strength depends on the stretching duration, but the muscular work along some repetitions of an exercise does not.

  12. Generalised joint hypermobility and knee joint hypermobility

    DEFF Research Database (Denmark)

    Junge, Tina; Henriksen, Peter; Hansen, Sebrina

    2018-01-01

    . Respondents with GJHk and KJH reported lower HRQoL. CONCLUSION: GJHk and KJH were frequently reported in the Danish adult population, mostly in women. Respondents with GJHk and KJH were two times more likely to report knee joint-related symptoms such as pain, reduced performance of usual activity and lower...

  13. Leap Motion development essentials

    CERN Document Server

    Spiegelmock, Mischa

    2013-01-01

    This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.

  14. Reoperations following proximal interphalangeal joint nonconstrained arthroplasties.

    Science.gov (United States)

    Pritsch, Tamir; Rizzo, Marco

    2011-09-01

    To retrospectively analyze the reasons for reoperations following primary nonconstrained proximal interphalangeal (PIP) joint arthroplasty and review clinical outcomes in this group of patients with 1 or more reoperations. Between 2001 and 2009, 294 nonconstrained (203 pyrocarbon and 91 metal-plastic) PIP joint replacements were performed in our institution. A total of 76 fingers (59 patients) required reoperation (50 pyrocarbon and 26 metal-plastic). There were 40 women and 19 men with an average age of 51 years (range, 19-83 y). Primary diagnoses included osteoarthritis in 35, posttraumatic arthritis in 24, and inflammatory arthritis in 17 patients. There were 21 index, 27 middle, 18 ring, and 10 small fingers. The average number of reoperations per PIP joint was 1.6 (range, 1-4). A total of 45 joints had 1 reoperation, 19 had 2, 11 had 3, and 1 had 4. Extensor mechanism dysfunction was the most common reason for reoperation; it involved 51 of 76 fingers and was associated with Chamay or tendon-reflecting surgical approaches. Additional etiologies included component loosening in 17, collateral ligament failure in 10, and volar plate contracture in 8 cases. Inflammatory arthritis was associated with collateral ligament failure. Six fingers were eventually amputated, 9 had PIP joint arthrodeses, and 2 had resection arthroplasties. The arthrodesis and amputation rates correlated with the increased number of reoperations per finger. Clinically, most patients had no or mild pain at the most recent follow-up, and the PIP joint range-of-motion was not significantly different from preoperative values. Pain levels improved with longer follow-up. Reoperations following primary nonconstrained PIP joint arthroplasties are common. Extensor mechanism dysfunction was the most common reason for reoperation. The average reoperation rate was 1.6, and arthrodesis and amputation are associated with an increasing number of operations. Overall clinical outcomes demonstrated no

  15. Autonomous Quality Control of Joint Orientation Measured with Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Karina Lebel

    2016-07-01

    Full Text Available Clinical mobility assessment is traditionally performed in laboratories using complex and expensive equipment. The low accessibility to such equipment, combined with the emerging trend to assess mobility in a free-living environment, creates a need for body-worn sensors (e.g., inertial measurement units—IMUs that are capable of measuring the complexity in motor performance using meaningful measurements, such as joint orientation. However, accuracy of joint orientation estimates using IMUs may be affected by environment, the joint tracked, type of motion performed and velocity. This study investigates a quality control (QC process to assess the quality of orientation data based on features extracted from the raw inertial sensors’ signals. Joint orientation (trunk, hip, knee, ankle of twenty participants was acquired by an optical motion capture system and IMUs during a variety of tasks (sit, sit-to-stand transition, walking, turning performed under varying conditions (speed, environment. An artificial neural network was used to classify good and bad sequences of joint orientation with a sensitivity and a specificity above 83%. This study confirms the possibility to perform QC on IMU joint orientation data based on raw signal features. This innovative QC approach may be of particular interest in a big data context, such as for remote-monitoring of patients’ mobility.

  16. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  17. Effects of Fatigue on Frontal Plane Knee Motion, Muscle Activity, and Ground Reaction Forces In Men and Women During Landing

    OpenAIRE

    Smith, Michael P.; Sizer, Phillip S.; James, C. Roger

    2009-01-01

    Women tear their Anterior Cruciate Ligament (ACL) 2-8 times more frequently than men. Frontal plane knee motion can produce a pathological load in the ACL. During a state of fatigue the muscles surrounding the knee joint may lose the ability to protect the joint during sudden deceleration while landing. The purpose of this study was to investigate the effects of fatigue and gender on frontal plane knee motion, EMG amplitudes, and GRF magnitudes during drop- jump landing. Pretest-posttest comp...

  18. Managing Knee Osteoarthritis: The Effects of Body Weight Supported Physical Activity on Joint Pain, Function, and Thigh Muscle Strength.

    Science.gov (United States)

    Peeler, Jason; Christian, Mathew; Cooper, Juliette; Leiter, Jeffrey; MacDonald, Peter

    2015-11-01

    To determine the effect of a 12-week lower body positive pressure (LBPP)-supported low-load treadmill walking program on knee joint pain, function, and thigh muscle strength in overweight patients with knee osteoarthritis (OA). Prospective, observational, repeated measures investigation. Community-based, multidisciplinary sports medicine clinic. Thirty-one patients aged between 55 and 75 years, with a body mass index ≥25 kg/m and mild-to-moderate knee OA. Twelve-week LBPP-supported low-load treadmill walking regimen. Acute knee joint pain (visual analog scale) during full weight bearing treadmill walking, chronic knee pain, and joint function [Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire] during normal activities of daily living, and thigh muscle strength (isokinetic testing). Appropriate methods of statistical analysis were used to compare data from baseline and follow-up evaluation. Participants reported significant improvements in knee joint pain and function and demonstrated significant increases in thigh muscle strength about the degenerative knee. Participants also experienced significant reductions in acute knee pain during full weight bearing treadmill walking and required dramatically less LBPP support to walk pain free on the treadmill. Data suggest that an LBPP-supported low-load exercise regimen can be used to significantly diminish knee pain, enhance joint function, and increase thigh muscle strength, while safely promoting pain-free walking exercise in overweight patients with knee OA. These findings have important implications for the development of nonoperative treatment strategies that can be used in the management of joint symptoms associated with progressive knee OA in at-risk patient populations. This research suggests that LBPP-supported low-load walking is a safe user-friendly mode of exercise that can be successfully used in the management of day-to-day joint symptoms associated with knee OA, helping to improve the

  19. In Vivo Measurement of Glenohumeral Joint Contact Patterns

    Directory of Open Access Journals (Sweden)

    Bey MichaelJ

    2010-01-01

    Full Text Available The objectives of this study were to describe a technique for measuring in-vivo glenohumeral joint contact patterns during dynamic activities and to demonstrate application of this technique. The experimental technique calculated joint contact patterns by combining CT-based 3D bone models with joint motion data that were accurately measured from biplane x-ray images. Joint contact patterns were calculated for the repaired and contralateral shoulders of 20 patients who had undergone rotator cuff repair. Significant differences in joint contact patterns were detected due to abduction angle and shoulder condition (i.e., repaired versus contralateral. Abduction angle had a significant effect on the superior/inferior contact center position, with the average joint contact center of the repaired shoulder 12.1% higher on the glenoid than the contralateral shoulder. This technique provides clinically relevant information by calculating in-vivo joint contact patterns during dynamic conditions and overcomes many limitations associated with conventional techniques for quantifying joint mechanics.

  20. Nonsurgical Management of Pediatric Temporomandibular Joint Dysfunction.

    Science.gov (United States)

    Scrivani, Steven John; Khawaja, Shehryar Nasir; Bavia, Paula Furlan

    2018-02-01

    Temporomandibular disorders (TMD) are a subgroup of craniofacial pain problems involving the temporomandibular joint (TMJ), masticatory muscles, and associated head and neck musculoskeletal structures. These disorders are subclassified into TMJ articular disorders and masticatory muscle disorders. Patients with TMD most commonly present with pain, restricted or asymmetric mandibular motion, and TMJ sounds during mandibular movements. The prevalence tends to increase with age. Management of TMJ articular disorders consists of a combination of patient education, home-care plan, biobehavioral therapy, physical therapy, orthotic jaw appliance therapy, pharmacotherapy, and/or surgery. The goal is to increase function, reduce pain, and improve quality of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Time-frequency analysis of human motion during rhythmic exercises.

    Science.gov (United States)

    Omkar, S N; Vyas, Khushi; Vikranth, H N

    2011-01-01

    Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

  2. Evaluation of feature detection algorithms for structure from motion

    CSIR Research Space (South Africa)

    Govender, N

    2009-11-01

    Full Text Available technique with an application to stereo vision,” in International Joint Conference on Artificial Intelligence, April 1981. [17] C.Tomasi and T.Kanade, “Detection and tracking of point fetaures,” Carnegie Mellon, Tech. Rep., April 1991. [18] P. Torr... Algorithms for Structure from Motion Natasha Govender Mobile Intelligent Autonomous Systems CSIR Pretoria Email: ngovender@csir.co.za Abstract—Structure from motion is a widely-used technique in computer vision to perform 3D reconstruction. The 3D...

  3. Wiimote Experiments: Circular Motion

    Science.gov (United States)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  4. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    . This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  5. Motion of magnetotactic microorganisms

    International Nuclear Information System (INIS)

    Esquivel, D.M.S.; Barros, H.G. de P.L. de.

    1985-01-01

    Magnetic moments for different magnetotactic microorganisms are obtained by electron microscopy analyses and studies of motion by optical microscopy. The results are analysed in terms of a model due to C.Bean. The considerations presented suggest that magnetotaxy is an efficient mechanism for orientation only if the time for reorientation is smaller than the cycles of environmental perturbations. (Author) [pt

  6. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei; Gregson, James; Heide, Felix; Heidrich, Wolfgang

    2015-01-01

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non

  7. Markerless Motion Tracking

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis; Czarowicz, Alex

    2012-01-01

    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360 ...

  8. Motion sensing energy controller

    International Nuclear Information System (INIS)

    Saphir, M.E.; Reed, M.A.

    1984-01-01

    A moving object sensing processor responsive to slowly varying motions of a human being or other moving object in a zone of interest employs high frequency pulse modulated non-visible radiation generated by a radiation generating source, such as an LED, and detected by a detector sensitive to radiation of a preselected wavelength which generates electrical signals representative of the reflected radiation received from the zone of interest. The detectorsignals are processed to normalize the base level and remove variations due to background level changes, and slowly varying changes in the signals are detected by a bi-polar threshold detector. The control signals generated by the threshold detector in response to slowly varying motion are used to control the application of power to a utilization device, such as a set of fluoroescent lights in a room, the power being applied in response to detection of such motion and being automatically terminated in the absence of such motion after a predetermined time period established by a settable incrementable counter

  9. Algebraic Description of Motion

    Science.gov (United States)

    Davidon, William C.

    1974-01-01

    An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)

  10. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  11. Motion Control with Vision

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir Peter Boots

    2001-01-01

    This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with

  12. Superluminal motion (review)

    Science.gov (United States)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  13. A Harmonic Motion Experiment

    Science.gov (United States)

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  14. Choosing a Motion Detector.

    Science.gov (United States)

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  15. Effects of Six Weeks of Medicine Ball Training on Throwing Velocity, Throwing Precision, and Isokinetic Strength of Shoulder Rotators in Female Handball Players.

    Science.gov (United States)

    Raeder, Christian; Fernandez-Fernandez, Jaime; Ferrauti, Alexander

    2015-07-01

    The aim of this study was to investigate the effects of 6 weeks of medicine ball training (MBT) on throwing velocity, throwing precision, and isokinetic strength of shoulder rotators in competitive female handball players. Twenty-eight players (mean ± SD; age: 20.8 ± 3.3 years, height: 170.5 ± 5.6 cm, body mass: 65.2 ± 8.0 kg) were randomly assigned to an MBT group (TG; n = 15) and a control group (CG; n = 13). TG performed a supervised MBT program, 3 times a week for a total of 6 weeks, focusing on handball-specific movement patterns. Both groups, TG and CG, also conducted a supervised shoulder injury prevention program with elastic tubes, as part of the warm-up, finishing with regular handball throws. Results showed a significant group × time interaction in throwing velocity (p handball players, whereas throwing precision remained unaffected. Medicine ball training exercises seem to be a useful and inexpensive strength training strategy in enhancing functional performance by closely mimicking sport-specific movement activities.

  16. Comparison of knee flexion isokinetic deficits between seated and prone positions after ACL reconstruction with hamstrings graft: Implications for rehabilitation and return to sports decisions.

    Science.gov (United States)

    Koutras, Georgios; Bernard, Manfred; Terzidis, Ioannis P; Papadopoulos, Pericles; Georgoulis, Anastasios; Pappas, Evangelos

    2016-07-01

    Hamstrings grafts are commonly used in ACL reconstruction, however, the effect of graft harvesting on knee flexion strength has not been longitudinally evaluated in functional positions. We hypothesized that greater deficits in knee flexion strength exist in the prone compared to the seated position and these deficits remain as rehabilitation progresses. Case series. Forty-two consecutive patients who underwent ACL reconstruction with a hamstrings graft were followed prospectively for 9 months. Isokinetic knee flexion strength at a slow and a fast speed were collected at 3, 4, 6, and 9 months in two different positions: conventional (seated) and functional (0° of hip flexion). Peak torque knee flexion deficits were higher in the prone position compared to the seated position by an average of 6.5% at 60°/s and 9.1% at 180°/s (p<0.001). Measuring knee flexion strength in prone demonstrates higher deficits than in the conventional seated position. Most athletes would not be cleared to return to sports even at 9 months after surgery with this method. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Early postoperative repair status after rotator cuff repair cannot be accurately classified using questionnaires of patient function and isokinetic strength evaluation.

    Science.gov (United States)

    Colliver, Jessica; Wang, Allan; Joss, Brendan; Ebert, Jay; Koh, Eamon; Breidahl, William; Ackland, Timothy

    2016-04-01

    This study investigated if patients with an intact tendon repair or partial-thickness retear early after rotator cuff repair display differences in clinical evaluations and whether early tendon healing can be predicted using these assessments. We prospectively evaluated 60 patients at 16 weeks after arthroscopic supraspinatus repair. Evaluation included the Oxford Shoulder Score, 11-item version of the Disabilities of the Arm, Shoulder and Hand, visual analog scale for pain, 12-item Short Form Health Survey, isokinetic strength, and magnetic resonance imaging (MRI). Independent t tests investigated clinical differences in patients based on the Sugaya MRI rotator cuff classification system (grades 1, 2, or 3). Discriminant analysis determined whether intact repairs (Sugaya grade 1) and partial-thickness retears (Sugaya grades 2 and 3) could be predicted. No differences (P repair was intact. The ability to discriminate between groups was enhanced with up to 5 variables entered; however, only 87% of the partial-retear group and 36% of the intact-repair group were correctly classified. No differences in clinical scores existed between patients stratified by the Sugaya MRI classification system at 16 weeks. An intact repair or partial-thickness retear could not be accurately predicted. Our results suggest that correct classification of healing in the early postoperative stages should involve imaging. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Joint Electromagnetic Spectrum Management Operations

    Science.gov (United States)

    2012-03-20

    promulgate command-specific policy and guidance for EMS use, the joint restricted frequency list (JRFL) process, the joint communications–electronics...joint communications–electronics operating instructions (JCEOI) and joint restricted frequency list (JRFL). Examples of FM include providing the...joint restricted frequency list Figure III-4. Joint Frequency Management Office Spectrum Management Process Chapter III III-10 JP 6-01 assignments

  19. Indirect wrist MR arthrography: the effects of passive motion versus active exercise

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, M.E.; Natale, P.; Winalski, C.S.; Culp, R. [Thomas Jefferson University Hospital, Department of Radiology, Philadelphia, PA (United States)

    2000-01-01

    Purpose. In the wrist, to determine whether passive motion or active exercise yields a better indirect MR arthrographic effect following intravenous gadolinium administration.Design and patients. Twenty-six consecutive patients were studied by indirect wrist MR arthrography. In half active exercise and in half passive motion was performed. Four regions of interest were studied including the distal radioulnar joint, the radiocarpal joint, the midcarpal joint, and the triangular fibrocartilage. Ranges and means of signal intensity were calculated. Surgical follow-up was performed in 22 patients.Results. The joint fluid intensity was greatest in the distal radioulnar joint. Fluid signal intensity was greater and more consistent in the passive motion group although the results did not achieve statistical significance. Imaging accuracy appeared similar in the two groups and was excellent for the triangular fibrocartilage (100%) and scapholunate ligaments (96%).Conclusion. Active exercise and passive motion yield similar degrees of wrist arthrographic effect, but the effect of passive motion is somewhat more consistent. Preliminary data show good accuracy for internal derangements. (orig.)

  20. Sacroiliac joint stability: Finite element analysis of implant number, orientation, and superior implant length.

    Science.gov (United States)

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2018-03-18

    To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System ® ). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.

  1. The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis.

    Science.gov (United States)

    Sekiguchi, Yusuke; Muraki, Takayuki; Kuramatsu, Yuko; Furusawa, Yoshihito; Izumi, Shin-Ichi

    2012-06-01

    The role of ankle joint stiffness during gait in patients with hemiparesis has not been clarified. The purpose of this study was to determine the contribution of quasi-joint stiffness of the ankle joint to spatiotemporal and kinetic parameters regarding gait in patients with hemiparesis due to brain tumor or stroke and healthy individuals. Spatiotemporal and kinetic parameters regarding gait in twelve patients with hemiparesis due to brain tumor or stroke and nine healthy individuals were measured with a 3-dimensional motion analysis system. Quasi-joint stiffness was calculated from the slope of the linear regression of the moment-angle curve of the ankle joint during the second rocker. There was no significant difference in quasi-joint stiffness among both sides of patients and the right side of controls. Quasi-joint stiffness on the paretic side of patients with hemiparesis positively correlated with maximal ankle power (r=0.73, Phemiparesis. In contrast, healthy individuals might decrease quasi-joint stiffness to avoid deceleration of forward tilt of the tibia. Our findings might be useful for selecting treatment for increased ankle stiffness due to contracture and spasticity in patients with hemiparesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Influence of Different Hip Joint Centre Locations on Hip and Knee Joint Kinetics and Kinematics During the Squat

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2014-12-01

    Full Text Available Identification of the hip joint centre (HJC is important in the biomechanical examination of human movement. However, there is yet to be any published information regarding the influence of different HJC locations on hip and knee joint kinetics during functional tasks. This study aimed to examine the influence of four different HJC techniques on 3- D hip and knee joint kinetics/kinematics during the squat. Hip and knee joint kinetics/kinematics of the squat were obtained from fifteen male participants using an eight camera motion capture system. The 3-D kinetics/kinematics of the squat were quantified using four hip joint centre estimation techniques. Repeated measures ANOVAs were used to compare the discrete parameters as a function of each HJC location. The results show that significant differences in joint angles and moment parameters were evident at both the hip and knee joint in the coronal and transverse planes. These observations indicate that when calculating non-sagittal joint kinetics/kinematics during the squat, researchers should carefully consider their HJC method as it may significantly affect the interpretation of their data.

  3. Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor System during Trunk Motion

    Directory of Open Access Journals (Sweden)

    Apoorva Gaidhani

    2017-12-01

    Full Text Available Respiratory activity is an essential vital sign of life that can indicate changes in typical breathing patterns and irregular body functions such as asthma and panic attacks. Many times, there is a need to monitor breathing activity while performing day-to-day functions such as standing, bending, trunk stretching or during yoga exercises. A single IMU (inertial measurement unit can be used in measuring respiratory motion; however, breathing motion data may be influenced by a body trunk movement that occurs while recording respiratory activity. This research employs a pair of wireless, wearable IMU sensors custom-made by the Department of Electrical Engineering at San Diego State University. After appropriate sensor placement for data collection, this research applies principles of robotics, using the Denavit-Hartenberg convention, to extract relative angular motion between the two sensors. One of the obtained relative joint angles in the “Sagittal” plane predominantly yields respiratory activity. An improvised version of the proposed method and wearable, wireless sensors can be suitable to extract respiratory information while performing sports or exercises, as they do not restrict body motion or the choice of location to gather data.

  4. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  5. PET motion correction using PRESTO with ITK motion estimation

    International Nuclear Information System (INIS)

    Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon

    2014-01-01

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  6. Effect of boot shaft stiffness on stability joint energy and muscular co-contraction during walking on uneven surface.

    Science.gov (United States)

    Böhm, Harald; Hösl, Matthias

    2010-09-17

    Increased boot shaft stiffness may have a noticeable impact on the range of motion of the ankle joint. Therefore, the ability of the ankle joint to generate power for propulsion might be impaired. This might result in compensatory changes at the knee and hip joint. Besides, adaptability of the subtalar joint to uneven surface might be reduced, which could in turn affect stability. The aim of the study was therefore to investigate the influence of boot shaft stiffness on biomechanical gait parameters. Fifteen healthy young adults walked over coarse gravel wearing two different hiking boots that differed by 50% in passive shaft stiffness. Leg kinematics, kinetics and electromyography were measured. Gait velocity and indicators for stability were not different when walking with the hard and soft boot shaft over the gravel surface. However, the hard boot shaft decreased the ankle range of motion as well as the eccentric energy absorbed at the ankle joint. As a consequence, compensatory changes at the knee joint were observed. Co-contraction was increased, and greater eccentric energy was absorbed. Therefore, the efficiency of gait with hard boots might be decreased and joint loading at the knee might be increased, which might cause early fatigue of knee muscles during walking or hiking. The results of this study suggest that stiffness and blocking of joint motion at the ankle should not be equated with safety. A trade-off between lateral stiffness and free natural motion of the ankle joint complex might be preferable.

  7. [Advances on biomechanics and kinematics of sprain of ankle joint].

    Science.gov (United States)

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  8. Principles of Human Joint Replacement Design and Clinical Application

    CERN Document Server

    Buechel, Frederick F

    2012-01-01

    Drs. Buechel, an orthopaedic surgeon, and Pappas, a professor of Mechanical Engineering, are the designers of several successful joint replacement systems. The most well-known of these is the pioneering LCS knee replacement. They have written this book for the users and designers of joint replacements. It is an attempt to convey to the reader the knowledge accumulated by the authors during their thirty five year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter de...

  9. Joint Quantum Institute

    Data.gov (United States)

    Federal Laboratory Consortium — The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland...

  10. Temporomandibular Joint Disorder

    Science.gov (United States)

    ... Baby Bottle Tooth Decay? Pacifiers Have Negative and Positive Effects What is Dental Amalgam (Silver Filling)? Check Menstrual Calendar for Tooth Extraction Temporomandibular Joint Disorder Learn what those dental words mean. Check out how your teeth and mouth ...

  11. Hip joint replacement

    Science.gov (United States)

    Hip arthroplasty; Total hip replacement; Hip hemiarthroplasty; Arthritis - hip replacement; Osteoarthritis - hip replacement ... Your hip joint is made up of 2 major parts. One or both parts may be replaced during surgery: ...

  12. Knee joint replacement

    Science.gov (United States)

    ... to make everyday tasks easier. Practice using a cane, walker , crutches , or a wheelchair correctly. On the ... ask your doctor Knee joint replacement - discharge Preventing falls Preventing falls - what to ask your doctor Surgical ...

  13. Concrete pavement joint deterioration.

    Science.gov (United States)

    2015-12-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in IN...

  14. Sacroiliac joint dysfunction.

    Science.gov (United States)

    Ilaslan, Hakan; Arslan, Ahmet; Koç, Omer Nadir; Dalkiliç, Turker; Naderi, Sait

    2010-07-01

    Sacroiliac joint dysfunction is a disorder presenting with low back and groin pain. It should be taken into consideration during the preoperative differential diagnosis of lumbar disc herniation, lumbar spinal stenosis and facet syndrome. Four cases with sacroiliac dysfunction are presented. The clinical and radiological signs supported the evidence of sacroiliac dysfunction, and exact diagnosis was made after positive response to sacroiliac joint block. A percutaneous sacroiliac fixation provided pain relief in all cases. The mean VAS scores reduced from 8.2 to 2.2. It is concluded that sacroiliac joint dysfunction diagnosis requires a careful physical examination of the sacroiliac joints in all cases with low back and groin pain. The diagnosis is made based on positive response to the sacroiliac block. Sacroiliac fixation was found to be effective in carefully selected cases.

  15. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.

    Science.gov (United States)

    Frick, Eric; Rahmatalla, Salam

    2018-04-04

    The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.

  16. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Eric Frick

    2018-04-01

    Full Text Available The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA. This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO. First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated (r > 0.82 with the true, time-varying joint center solution.

  17. Effect of the walking speed to the lower limb joint angular displacements, joint moments and ground reaction forces during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-ichiro; Nakazawa, Kimitaka; Akai, Masami

    2004-06-17

    The purpose of this study was to compare the changes in ground reaction forces (GRF), joint angular displacements (JAD), joint moments (JM) and electromyographic (EMG) activities that occur during walking at various speeds in water and on land. Fifteen healthy adults participated in this study. In the water experiments, the water depth was adjusted so that body weight was reduced by 80%. A video-motion analysis system and waterproof force platform was used to obtain kinematics and kinetics data and to calculate the JMs. Results revealed that (1) the anterior-posterior GRF patterns differed between walking in water and walking on land, whereas the medio-lateral GRF patterns were similar, (2) the JAD patterns of the hip and ankle were similar between water- and land-walking, whereas the range of motion at the knee joint was lower in water than on land, (3) the JMs in all three joints were lower in water than on land throughout the stance phase, and (4) the hip joint extension moment and hip extensor muscle EMG activity were increased as walking speed increase during walking in water. Rehabilitative water-walking exercise could be designed to incorporate large-muscle activities, especially of the lower-limb extensor muscles, through full joint range of motion and minimization of joint moments.

  18. Knee motion variability in patients with knee osteoarthritis: the effect of self-reported instability

    Science.gov (United States)

    Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn

    2015-01-01

    Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (pknee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536

  19. The Immediate Effect of Neuromuscular Joint Facilitation (NJF) Treatment on Hip Muscle Strength.

    Science.gov (United States)

    Wang, Hongdan; Huo, Ming; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi

    2013-11-01

    [Purpose] This study investigated the change in hip muscle strength of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 45 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 21 subjects (11 males, 10 females), and the PNF group consisted of 24 subjects (11 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the maximal flexor strength and the maximal extensor strength during isokinetic movement of the hip joint before and after intervention in both groups. The angular velocities used were 60°/sec and 180°/sec. [Results] The NJF group showed significant increases in the maximal flexor strength and the maximal extensor strength after the intervention at each angular velocity. In the PNF group, the maximal flexor strength of 60°/sec and the maximal extensor strength of 180°/sec were significant increases. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on hip muscle strength.

  20. Joint Hub Network Development

    OpenAIRE

    Cruijssen, F.C.A.M.; Borm, P.E.M.; Dullaert, W.; Hamers, H.J.M.

    2007-01-01

    This paper introduces a framework for joint hub network development. Building a joint physical hub for transhipment of goods is expensive and therefore involves considerable risks for the cooperating companies. In a practical setting, it is unlikely that an entire network will be built at once. Rather, the partners will have a more cautious attitude and build the hub facilities one-by-one. In the proposed framework, every time a new hub is introduced, partners will have the opportunity to dec...