WorldWideScience

Sample records for isoforms couple distinct

  1. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  2. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Goodman, M W; Burstein, E S

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinct...... receptor isoforms, of which isoforms 1, 2, and 4, encode functional proteins. Detailed pharmacology on isoforms 1 (unspliced receptor), and 2 (which has an 80 amino acid deletion within the third intracellular loop of the protein) revealed that both isoforms displayed robust responses to a series of known...... revealed a rank order of potency at both isoforms of clobenpropit>iodophenpropit>thioperamide, and these drugs are fivefold less potent at isoform 2 than isoform 1. To further explore the pharmacology of H(3) receptor function, we screened 150 clinically relevant neuropsychiatric drugs for H(3) receptor...

  3. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  4. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    Directory of Open Access Journals (Sweden)

    Evgeny Bychkov

    Full Text Available G protein-coupled receptor kinases (GRKs and arrestins mediate desensitization of G protein-coupled receptors (GPCR. Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  5. Tumour cells expressing single VEGF isoforms display distinct growth, survival and migration characteristics.

    Directory of Open Access Journals (Sweden)

    Chryso Kanthou

    Full Text Available Vascular endothelial growth factor-A (VEGF is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120 on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188 or wild type controls (fswt were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine

  6. Two Distinct Isoforms of Matrix Metalloproteinase-2 Are Associated with Human Delayed Kidney Graft Function.

    Directory of Open Access Journals (Sweden)

    Shaynah Wanga

    Full Text Available Delayed graft function (DGF is a frequent complication of renal transplantation, particularly in the setting of transplantation of kidneys derived from deceased donors and expanded-criteria donors. DGF results from tubular epithelial cell injury and has immediate and long term consequences. These include requirement for post-transplantation dialysis, increased incidence of acute rejection, and poorer long-term outcomes. DGF represents one of the clearest clinical examples of renal acute ischemia/reperfusion injury. Experimental studies have demonstrated that ischemia/reperfusion injury induces the synthesis of the full length secreted isoform of matrix metalloproteinase-2 (FL-MMP-2, as well as an intracellular N-terminal truncated MMP-2 isoform (NTT-MMP-2 that initiates an innate immune response. We hypothesized that the two MMP-2 isoforms mediate tubular epithelial cell injury in DGF. Archival renal biopsy sections from 10 protocol biopsy controls and 41 cases with a clinical diagnosis of DGF were analyzed for the extent of tubular injury, expression of the FL-MMP-2 and NTT-MMP-2 isoforms by immunohistochemistry (IHC, in situ hybridization, and qPCR to determine isoform abundance. Differences in transcript abundance were related to tubular injury score. Markers of MMP-2-mediated injury included TUNEL staining and assessment of peritubular capillary density. There was a clear relationship between tubular epithelial cell expression of both FL-MMP-2 and NTT-MMP-2 IHC with the extent of tubular injury. The MMP-2 isoforms were detected in the same tubular segments and were present at sites of tubular injury. qPCR demonstrated highly significant increases in both the FL-MMP-2 and NTT-MMP-2 transcripts. Statistical analysis revealed highly significant associations between FL-MMP-2 and NTT-MMP-2 transcript abundance and the extent of tubular injury, with NTT-MMP-2 having the strongest association. We conclude that two distinct MMP-2 isoforms are

  7. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms.

    Science.gov (United States)

    Halling Linder, Cecilia; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per

    2009-11-01

    Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD(10), a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PP(i)), pyridoxal 5'-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The k(cat)/K(M) was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD(10) was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP

  8. The two different isoforms of the RSC chromatin remodeling complex play distinct roles in DNA damage responses.

    Directory of Open Access Journals (Sweden)

    Anna L Chambers

    Full Text Available The RSC chromatin remodeling complex has been implicated in contributing to DNA double-strand break (DSB repair in a number of studies. Both survival and levels of H2A phosphorylation in response to damage are reduced in the absence of RSC. Importantly, there is evidence for two isoforms of this complex, defined by the presence of either Rsc1 or Rsc2. Here, we investigated whether the two isoforms of RSC provide distinct contributions to DNA damage responses. First, we established that the two isoforms of RSC differ in the presence of Rsc1 or Rsc2 but otherwise have the same subunit composition. We found that both rsc1 and rsc2 mutant strains have intact DNA damage-induced checkpoint activity and transcriptional induction. In addition, both strains show reduced non-homologous end joining activity and have a similar spectrum of DSB repair junctions, suggesting perhaps that the two complexes provide the same functions. However, the hypersensitivity of a rsc1 strain cannot be complemented with an extra copy of RSC2, and likewise, the hypersensitivity of the rsc2 strain remains unchanged when an additional copy of RSC1 is present, indicating that the two proteins are unable to functionally compensate for one another in DNA damage responses. Rsc1, but not Rsc2, is required for nucleosome sliding flanking a DNA DSB. Interestingly, while swapping the domains from Rsc1 into the Rsc2 protein does not compromise hypersensitivity to DNA damage suggesting they are functionally interchangeable, the BAH domain from Rsc1 confers upon Rsc2 the ability to remodel chromatin at a DNA break. These data demonstrate that, despite the similarity between Rsc1 and Rsc2, the two different isoforms of RSC provide distinct functions in DNA damage responses, and that at least part of the functional specificity is dictated by the BAH domains.

  9. Deconstruction of O-glycosylation-GalNAc-T isoforms direct distinct subsets of the O-glycoproteome

    DEFF Research Database (Denmark)

    Schjoldager, Katrine T; Joshi, Hiren J; Kong, Yun

    2015-01-01

    GalNAc-type O-glycosylation is found on most proteins trafficking through the secretory pathway in metazoan cells. The O-glycoproteome is regulated by up to 20 polypeptide GalNAc-Ts and the contributions and biological functions of individual GalNAc-Ts are poorly understood. Here, we used a zinc......-finger nuclease (ZFN)-directed knockout strategy to probe the contributions of the major GalNAc-Ts (GalNAc-T1 and GalNAc-T2) in liver cells and explore how the GalNAc-T repertoire quantitatively affects the O-glycoproteome. We demonstrate that the majority of the O-glycoproteome is covered by redundancy, whereas...... distinct subsets of substrates are modified by non-redundant functions of GalNAc-T1 and GalNAc-T2. The non-redundant O-glycoproteome subsets and specific transcriptional responses for each isoform are related to different cellular processes; for the GalNAc-T2 isoform, these support a role in lipid...

  10. Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon

    Science.gov (United States)

    McCormick, Stephen D.; Regish, A.M.; Christensen, A.K.

    2009-01-01

    Gill Na(+)/K(+)-ATPase (NKA) in teleost fishes is involved in ion regulation in both freshwater and seawater. We have developed and validated rabbit polyclonal antibodies specific to the NKA alpha1a and alpha1b protein isoforms of Atlantic salmon (Salmo salar Linnaeus), and used western blots and immunohistochemistry to characterize their size, abundance and localization. The relative molecular mass of NKA alpha1a is slightly less than that for NKA beta1b. The abundance of gill NKA alpha1a was high in freshwater and became nearly undetectable after seawater acclimation. NKA alpha1b was present in small amounts in freshwater and increased 13-fold after seawater acclimation. Both NKA isoforms were detected only in chloride cells. NKA alpha1a was located in both filamental and lamellar chloride cells in freshwater, whereas in seawater it was present only as a faint background in filamental chloride cells. In freshwater, NKA alpha1b was found in a small number of filamental chloride cells, and after seawater acclimation it was found in all chloride cells on the filament and lamellae. Double simultaneous immunofluorescence indicated that NKA alpha1a and alpha1b are located in different chloride cells in freshwater. In many chloride cells in seawater, NKA alpha1b was present in greater amounts in the subapical region than elsewhere in the cell. The combined patterns in abundance and immunolocalization of these two isoforms can explain the salinity-related changes in total NKA and chloride cell abundance. The results indicate that there is a freshwater and a seawater isoform of NKA alpha-subunit in the gills of Atlantic salmon and that they are present in distinct chloride cells.

  11. Distinct collective states due to trade-off between attractive and repulsive couplings

    Science.gov (United States)

    Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.

    2018-03-01

    We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.

  12. Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects

    Directory of Open Access Journals (Sweden)

    Kubo Takeo

    2010-02-01

    Full Text Available Abstract Background The ecdysone receptor (EcR regulates various cellular responses to ecdysteroids during insect development. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform-specific activation function (AF-1 region. Although distinct physiologic functions of the EcR isoforms have been characterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in which only A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, we performed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms in insects. Results The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, including direct-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealed that the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures and insect subgroup-specific structural modifications. The A isoform-specific region generally contained four conserved microdomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specific region contained three conserved microdomains, including an acidic activator domain-like motif. In addition, the EcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end. Conclusions Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptional regulation, the microdomain structures identified in the isoform-specific A/B domains might function as signature motifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions. Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoform suggests that the holometabolous insect EcR-B1 acquired additional transcriptional

  13. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2.

    Science.gov (United States)

    Peach, Chloe J; Mignone, Viviane W; Arruda, Maria Augusta; Alcobia, Diana C; Hill, Stephen J; Kilpatrick, Laura E; Woolard, Jeanette

    2018-04-23

    Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGF xxx a or VEGF xxx b isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF 165 a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.

  14. Identification and characterization of novel NuMA isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin, E-mail: petersdu2112@hotmail.com [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: guantlv@126.com [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  15. Characterisation of Cdkl5 transcript isoforms in rat.

    Science.gov (United States)

    Hector, Ralph D; Dando, Owen; Ritakari, Tuula E; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2017-03-01

    CDKL5 deficiency is a severe neurological disorder caused by mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5). The predominant human CDKL5 brain isoform is a 9.7kb transcript comprised of 18 exons with a large 6.6kb 3'-untranslated region (UTR). Mammalian models of CDKL5 disorder are currently limited to mouse, and little is known about Cdkl5 in other organisms used to model neurodevelopmental disorders, such as rat. In this study we characterise, both bioinformatically and experimentally, the rat Cdkl5 gene structure and its associated transcript isoforms. New exonic regions, splice sites and UTRs are described, confirming the presence of four distinct transcript isoforms. The predominant isoform in the brain, which we name rCdkl5_1, is orthologous to the human hCDKL5_1 and mouse mCdkl5_1 isoforms and is the most highly expressed isoform across all brain regions tested. This updated gene model of Cdkl5 in rat provides a framework for studies into its protein products and provides a reference for the development of molecular therapies for testing in rat models of CDKL5 disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Analysis of Distinct Roles of CaMKK Isoforms Using STO-609-Resistant Mutants in Living Cells.

    Science.gov (United States)

    Fujiwara, Yuya; Hiraoka, Yuri; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2015-06-30

    To assess the isoform specificity of the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK)-mediated signaling pathway using a CaMKK inhibitor (STO-609) in living cells, we have established A549 cell lines expressing STO-609-resistant mutants of CaMKK isoforms. Following serial mutagenesis studies, we have succeeded in obtaining an STO-609-resistant CaMKKα mutant (Ala292Thr/Leu233Phe) and a CaMKKβ mutant (Ala328Thr/Val269Phe), which showed sensitivity to STO-609 that was 2-3 orders of magnitude lower without an appreciable effect on kinase activity or CaM requirement. These results are consistent with the results obtained for CaMKK activities in the extracts of A549 cells stably expressing the mutants of CaMKK isoforms. Ionomycin-induced 5'-AMP-activated protein kinase (AMPK) phosphorylation at Thr172 in A549 cells expressing either the wild-type or the STO-609-resistant mutant of CaMKKα was completely suppressed by STO-609 treatment but resistant to the inhibitor in the presence of the CaMKKβ mutant (Ala328Thr/Val269Phe). This result strongly suggested that CaMKKβ is responsible for ionomycin-induced AMPK activation, which supported previous reports. In contrast, ionomycin-induced CaMKIV phosphorylation at Thr196 was resistant to STO-609 treatment in A549 cells expressing STO-609-resistant mutants of both CaMKK isoforms, indicating that both CaMKK isoforms are capable of phosphorylating and activating CaMKIV in living cells. Considering these results together, STO-609-resistant CaMKK mutants developed in this study may be useful for distinguishing CaMKK isoform-mediated signaling pathways in combination with the use of an inhibitor compound.

  17. N Termini of apPDE4 Isoforms Are Responsible for Targeting the Isoforms to Different Cellular Membranes

    Science.gov (United States)

    Jang, Deok-Jin; Park, Soo-Won; Lee, Jin-A; Lee, Changhoon; Chae, Yeon-Su; Park, Hyungju; Kim, Min-Jeong; Choi, Sun-Lim; Lee, Nuribalhae; Kim, Hyoung; Kaang, Bong-Kiun

    2010-01-01

    Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the…

  18. Non-secreted clusterin isoforms are translated in rare amounts from distinct human mRNA variants and do not affect Bax-mediated apoptosis or the NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hans Prochnow

    Full Text Available Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU, which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity. Quantitative PCR-analyses revealed the expression of four different stress-inducible CLU mRNA variants in non-cancer and cancer cell lines. In all cell lines variant 1 represents the most abundant mRNA, whereas all other variants collectively account for no more than 0.34% of total CLU mRNA, even under stressed conditions. Overexpression of CLU cDNAs combined with in vitro mutagenesis revealed distinct translational start sites including a so far uncharacterized non-canonical CUG start codon. We show that all exon 2-containing mRNAs encode sCLU and at least three non-glycosylated intracellular isoforms, CLU1‑449, CLU21‑449 and CLU34‑449, which all reside in the cytosol of unstressed and stressed HEK‑293 cells. The latter is the only form expressed from an alternatively spliced mRNA variant lacking exon 2. Functional analysis revealed that none of these cytosolic CLU forms modulate caspase-mediated intrinsic apoptosis or significantly affects TNF-α-induced NF-κB-activity. Therefore our data challenge some of the current ideas regarding the physiological functions of CLU isoforms in pathologies.

  19. Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells

    International Nuclear Information System (INIS)

    Turck, Natacha; Gross, Isabelle; Gendry, Patrick; Stutzmann, Jeanne; Freund, Jean-Noel; Kedinger, Michele; Simon-Assmann, Patricia; Launay, Jean-Francois

    2005-01-01

    Laminins are structurally and functionally major components of the extracellular matrix. Four isoforms of laminins (laminin-1, -2, -5 and -10) are expressed in a specific pattern along the crypt-villus axis of the intestine. Previous works indicated that expression of these isoforms is developmentally regulated and that laminins could modulate the behaviour of intestinal cells, but the exact role of each isoform remained unclear. Here, we report the first systematic analysis of the cellular functions of the four isoforms using the human colon adenocarcinoma Caco2/TC7 cell line as a model. We compared the respective abilities of each isoform to modulate adhesion, proliferation and differentiation of intestinal epithelial cells. We found that the isoforms were functionally distinct, with laminin-10 being the most adhesive substratum, laminin-2, laminin-5 and laminin-10 enhancing cellular proliferation and at the opposite, laminin-1 stimulating intestinal cell differentiation. To begin to characterise the molecular events induced by the different isoforms, we examined by immunofluorescence the intracellular distribution of several nuclear proteins, recently highlighted by a nuclear proteomic approach. We observed clear nucleocytoplasmic redistribution of these proteins, which depended on the laminin isoform. These results provide evidence for a distinct functional role of laminins in intestinal cell functions characterised by specific localisation of nuclear proteins

  20. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes.

    Science.gov (United States)

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K

    2015-01-01

    Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level by determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two GP isoforms expressed in astrocytes respond to different physiological triggers, therefore conferring distinct metabolic functions of brain glycogen. © 2014 Wiley Periodicals, Inc.

  1. Distinct transthyretin oxidation isoform profile in spinal fluid from patients with Alzheimer’s disease and mild cognitive impairment

    DEFF Research Database (Denmark)

    Poulsen, Keld; Bahl, Justyna Mc; Simonsen, Anja H

    2014-01-01

    BACKGROUND: Transthyretin (TTR), an abundant protein in cerebrospinal fluid (CSF), contains a free, oxidation-prone cysteine residue that gives rise to TTR isoforms. These isoforms may reflect conditions in vivo. Since increased oxidative stress has been linked to neurodegenerative disorders such...

  2. Plectin isoforms as organizers of intermediate filament cytoarchitecture.

    Science.gov (United States)

    Wiche, Gerhard; Winter, Lilli

    2011-01-01

    Intermediate filaments (IFs) form cytoplamic and nuclear networks that provide cells with mechanical strength. Perturbation of this structural support causes cell and tissue fragility and accounts for a number of human genetic diseases. In recent years, important additional roles, nonmechanical in nature, were ascribed to IFs, including regulation of signaling pathways that control survival and growth of the cells, and vectorial processes such as protein targeting in polarized cellular settings. The cytolinker protein plectin anchors IF networks to junctional complexes, the nuclear envelope and cytoplasmic organelles and it mediates their cross talk with the actin and tubulin cytoskeleton. These functions empower plectin to wield significant influence over IF network cytoarchitecture. Moreover, the unusual diversity of plectin isoforms with different N termini and a common IF-binding (C-terminal) domain enables these isoforms to specifically associate with and thereby bridge IF networks to distinct cellular structures. Here we review the evidence for IF cytoarchitecture being controlled by specific plectin isoforms in different cell systems, including fibroblasts, endothelial cells, lens fibers, lymphocytes, myocytes, keratinocytes, neurons and astrocytes, and discuss what impact the absence of these isoforms has on IF cytoarchitecture-dependent cellular functions.

  3. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States); Hofmann, Wilma A., E-mail: whofmann@buffalo.edu [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States)

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.

  4. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    Science.gov (United States)

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  5. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  6. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  7. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen.

    Science.gov (United States)

    Gilio, Karen; Harper, Matthew T; Cosemans, Judith M E M; Konopatskaya, Olga; Munnix, Imke C A; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D; Heemskerk, Johan W M; Poole, Alastair W

    2010-07-23

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.

  8. Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen*

    Science.gov (United States)

    Gilio, Karen; Harper, Matthew T.; Cosemans, Judith M. E. M.; Konopatskaya, Olga; Munnix, Imke C. A.; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D.; Heemskerk, Johan W. M.; Poole, Alastair W.

    2010-01-01

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen. PMID:20479008

  9. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.

    Directory of Open Access Journals (Sweden)

    Thomas L Prince

    Full Text Available The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.

  10. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Science.gov (United States)

    Béziau, Delphine M; Toussaint, Fanny; Blanchette, Alexandre; Dayeh, Nour R; Charbel, Chimène; Tardif, Jean-Claude; Dupuis, Jocelyn; Ledoux, Jonathan

    2015-01-01

    Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the

  11. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  12. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Directory of Open Access Journals (Sweden)

    Wouter Eilers

    2014-01-01

    Full Text Available We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis and slow-type muscle (soleus for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02. In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.

  13. The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease.

    Science.gov (United States)

    Clausen, Michael V; Hilbers, Florian; Poulsen, Hanne

    2017-01-01

    The sodium and potassium gradients across the plasma membrane are used by animal cells for numerous processes, and the range of demands requires that the responsible ion pump, the Na,K-ATPase, can be fine-tuned to the different cellular needs. Therefore, several isoforms are expressed of each of the three subunits that make a Na,K-ATPase, the alpha, beta and FXYD subunits. This review summarizes the various roles and expression patterns of the Na,K-ATPase subunit isoforms and maps the sequence variations to compare the differences structurally. Mutations in the Na,K-ATPase genes encoding alpha subunit isoforms have severe physiological consequences, causing very distinct, often neurological diseases. The differences in the pathophysiological effects of mutations further underline how the kinetic parameters, regulation and proteomic interactions of the Na,K-ATPase isoforms are optimized for the individual cellular needs.

  14. SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box

    International Nuclear Information System (INIS)

    Short, Stephen; Malartre, Marianne; Sharpe, Colin

    2005-01-01

    SMRT acts as a corepressor for a range of transcription factors. The amino-terminal part of the protein includes domains that mainly mediate transcriptional repression whilst the carboxy-terminal part includes domains that interact with nuclear receptors using up to three motifs called CoRNR boxes. The region of the SMRT primary transcript encoding the interaction domains is subject to alternative splicing that varies the inclusion of the third CoRNR box. The profile in mice includes an abundant, novel SMRT isoform that possesses just one CoRNR box. Mouse tissues therefore express SMRT isoforms containing one, two or three CoRNR boxes. In frogs, the SMRT isoform profile is tissue-specific. The mouse also shows distinct profiles generated by differential expression levels of the SMRT transcript isoforms. The formation of multiple SMRT isoforms and their tissue-specific regulation indicates a mechanism, whereby cells can define the repertoire of transcription factors regulated by SMRT

  15. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  16. Alternatively spliced CD44 isoforms containing exon v10 promote cellular adhesion through the recognition of chondroitin sulfate-modified CD44

    NARCIS (Netherlands)

    Chiu, R K; Droll, A; Dougherty, S T; Carpenito, C; Cooper, D L; Dougherty, G J

    1999-01-01

    Correlations have been noted between the expression of certain alternatively spliced CD44 isoforms and the metastatic propensity of various histologically distinct tumor cell types. The precise mechanism by which particular CD44 isoforms contribute to the metastatic process is, however, unclear. In

  17. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    Science.gov (United States)

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  18. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    Science.gov (United States)

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  19. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    NARCIS (Netherlands)

    Eilers, W.; Gevers, W.; van Overbeek, D.; de Haan, A.; Jaspers, R.T.; Hilbers, P.A.; van Riel, A.C.R.; Flueck, M.

    2014-01-01

    We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII) contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its

  20. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B. Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A. (Novartis)

    2017-03-01

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 “regulatory segment,” which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  1. Increased dysbindin-1B isoform expression in schizophrenia and its propensity in aggresome formation

    Science.gov (United States)

    Xu, Yiliang; Sun, Yuhui; Ye, Haihong; Zhu, Li; Liu, Jianghong; Wu, Xiaofeng; Wang, Le; He, Tingting; Shen, Yan; Wu, Jane Y; Xu, Qi

    2015-01-01

    Genetic variations in the human dysbindin-1 gene (DTNBP1) have been associated with schizophrenia. As a result of alternative splicing, the human DTNBP1 gene generates at least three distinct protein isoforms, dysbindin-1A, -1B and -1C. Significant effort has focused on dysbindin-1A, an important player in multiple steps of neurodevelopment. However, the other isoforms, dysbindin-1B and dysbindin-1C have not been well characterized. Nor have been associated with human diseases. Here we report an increase in expression of DTNBP1b mRNA in patients with paranoid schizophrenia as compared with healthy controls. A single-nucleotide polymorphism located in intron 9, rs117610176, has been identified and associated with paranoid schizophrenia, and its C allele leads to an increase of DTNBP1b mRNA splicing. Our data show that different dysbindin splicing isoforms exhibit distinct subcellular distribution, suggesting their distinct functional activities. Dysbindin-1B forms aggresomes at the perinuclear region, whereas dysbindin-1A and -1C proteins exhibit diffused patterns in the cytoplasm. Dysbindin-1A interacts with dysbindin-1B, getting recruited to the aggresome structure when co-expressed with dysbindin-1B. Moreover, cortical neurons over-expressing dysbindin-1B show reduction in neurite outgrowth, suggesting that dysbindin-1B may interfere with dysbindin-1A function in a dominant-negative manner. Taken together, our study uncovers a previously unknown association of DTNBP1b expression with schizophrenia in addition to its distinct biochemical and functional properties. PMID:27462430

  2. The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease

    Directory of Open Access Journals (Sweden)

    Michael V. Clausen

    2017-06-01

    Full Text Available The sodium and potassium gradients across the plasma membrane are used by animal cells for numerous processes, and the range of demands requires that the responsible ion pump, the Na,K-ATPase, can be fine-tuned to the different cellular needs. Therefore, several isoforms are expressed of each of the three subunits that make a Na,K-ATPase, the alpha, beta and FXYD subunits. This review summarizes the various roles and expression patterns of the Na,K-ATPase subunit isoforms and maps the sequence variations to compare the differences structurally. Mutations in the Na,K-ATPase genes encoding alpha subunit isoforms have severe physiological consequences, causing very distinct, often neurological diseases. The differences in the pathophysiological effects of mutations further underline how the kinetic parameters, regulation and proteomic interactions of the Na,K-ATPase isoforms are optimized for the individual cellular needs.

  3. Differential expression of syndecan isoforms during mouse incisor amelogenesis.

    Science.gov (United States)

    Muto, Taro; Miyoshi, Keiko; Munesue, Seiichi; Nakada, Hiroshi; Okayama, Minoru; Matsuo, Takashi; Noma, Takafumi

    2007-08-01

    Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.

  4. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression.

    Directory of Open Access Journals (Sweden)

    Thomas P Stricker

    2017-03-01

    Full Text Available Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+ subtype and fourteen triple negative (TN subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3'UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors.

  5. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.

    Science.gov (United States)

    Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona

    2016-04-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.

  6. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction.

    Science.gov (United States)

    Obis, Teresa; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Priego, Mercedes; Simon, Anna; Garcia, Neus; Santafe, Manel M; Lanuza, Maria A; Tomàs, Josep

    2015-12-01

    Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca(2+), stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3',5'-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.

  7. tBuLi-Mediated One-Pot Direct Highly Selective Cross-Coupling of Two Distinct Aryl Bromides

    NARCIS (Netherlands)

    Vila, Carlos; Cembellin, Sara; Hornillos, Valentin; Giannerini, Massimo; Fananas-Mastral, Martin; Feringa, Ben L.

    2015-01-01

    A Pd-catalyzed direct cross-coupling of two distinct aryl bromides mediated by tBuLi is described. The use of [Pd-PEPPSI-IPr] or [Pd-PEPPSI-IPent] as catalyst allows for the efficient one-pot synthesis of unsymmetrical biaryls at room temperature. The key for this selective cross-coupling is the use

  8. P120-catenin isoforms 1A and 3A differently affect invasion and proliferation of lung cancer cells

    International Nuclear Information System (INIS)

    Liu Yang; Dong Qianze; Zhao Yue; Dong Xinjun; Miao Yuan; Dai Shundong; Yang Zhiqiang; Zhang Di; Wang Yan; Li Qingchang; Zhao Chen; Wang Enhua

    2009-01-01

    Different isoforms of p120-catenin (p120ctn), a member of the Armadillo gene family, are variably expressed in different tissues as a result of alternative splicing and the use of multiple translation initiation codons. When expressed in cancer cells, these isoforms may confer different properties with respect to cell adhesion and invasion. We have previously reported that the p120ctn isoforms 1 and 3 were the most highly expressed isoforms in normal lung tissues, and their expression level was reduced in lung tumor cells. To precisely define their biological roles, we transfected p120ctn isoforms 1A and 3A into the lung cancer cell lines A549 and NCI-H460. Enhanced expression of p120ctn isoform 1A not only upregulated E-cadherin and β-catenin, but also downregulated the Rac1 activity, and as a result, inhibited the ability of cells to invade. In contrast, overexpression of p120ctn isoform 3A led to the inactivation of Cdc42 and the activation of RhoA, and had a smaller influence on invasion. However, we found that isoform 3A had a greater ability than isoform 1A in both inhibiting the cell cycle and reducing tumor cell proliferation. The present study revealed that p120ctn isoforms 1A and 3A differently regulated the adhesive, proliferative, and invasive properties of lung cancer cells through distinct mechanisms

  9. The three isoforms of the light-harvesting complex II Spectroscopic features, trimer formation, and functional roles

    CERN Document Server

    Standfuss, Jorg

    2004-01-01

    The major light-harvesting complex (LHC-II) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Native LHC-II isolated from plant tissue consists of three isoforms, Lhcb1, Lhcb2, and Lhcb3, which form homo- and heterotrimers. All three isoforms are highly conserved among different species, suggesting distinct functional roles. We produced the three LHC-II isoforms by heterologous expression of the polypeptide in Escherichia coli and in vitro refolding with purified pigments. Although Lhcb1 and Lhcb2 are very similar in polypeptide sequence and pigment content, Lhcb3 is clearly different because it lacks an N-terminal phosphorylation site and has a higher chlorophyll a/b ratio, suggesting the absence of one chlorophyll b. Low temperature absorption and fluorescence emission spectra of the pure isoforms revealed small but significant differences in pigment organization. The oligomeric state of the pure isofo...

  10. Characterization of the expression of the pro-metastatic Mena(INV) isoform during breast tumor progression.

    Science.gov (United States)

    Oudin, Madeleine J; Hughes, Shannon K; Rohani, Nazanin; Moufarrej, Mira N; Jones, Joan G; Condeelis, John S; Lauffenburger, Douglas A; Gertler, Frank B

    2016-03-01

    Several functionally distinct isoforms of the actin regulatory Mena are produced by alternative splicing during tumor progression. Forced expression of the Mena(INV) isoform drives invasion, intravasation and metastasis. However, the abundance and distribution of endogenously expressed Mena(INV) within primary tumors during progression remain unknown, as most studies to date have only assessed relative mRNA levels from dissociated tumor samples. We have developed a Mena(INV) isoform-specific monoclonal antibody and used it to examine Mena(INV) expression patterns in mouse mammary and human breast tumors. Mena(INV) expression increases during tumor progression and to examine the relationship between Mena(INV) expression and markers for epithelial or mesenchymal status, stemness, stromal cell types and hypoxic regions. Further, while Mena(INV) robustly expressed in vascularized areas of the tumor, it is not confined to cells adjacent to blood vessels. Altogether, these data demonstrate the specificity and utility of the anti-Mena(INV)-isoform specific antibody, and provide the first description of endogenous Mena(INV) protein expression in mouse and human tumors.

  11. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH isoforms.

    Directory of Open Access Journals (Sweden)

    Elaine C Thomas

    Full Text Available We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH, a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii communication occurs between the Bateman and catalytic domains and (iii the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.

  12. Kalrn promoter usage and isoform expression respond to chronic cocaine exposure

    Directory of Open Access Journals (Sweden)

    Ma Xin-Ming

    2011-02-01

    Full Text Available Abstract Background The long-term effects of cocaine on behavior are accompanied by structural changes in excitatory glutamatergic synapses onto the medium spiny neurons of the striatum. The Kalrn gene encodes several functionally distinct isoforms; these multidomain guanine nucleotide exchange factors (GEFs contain additional domains known to interact with phosphatidylinositides as well as with a number of different proteins. Through their activation of Rho proteins and their interactions with other proteins, the different Kalirin isoforms affect cytoskeletal organization. Chronic exposure of adult male rodents to cocaine increases levels of Kalirin 7 in the striatum. When exposed chronically to cocaine, mice lacking Kalirin 7, the major adult isoform, fail to show an increase in dendritic spine density in the nucleus accumbens, show diminished place preference for cocaine, and exhibit increased locomotor activity in response to cocaine. Results The use of alternate promoters and 3'-terminal exons of the mouse Kalrn gene were investigated using real-time quantitative polymerase chain reaction. While the two most distal full-length Kalrn promoters are used equally in the prefrontal cortex, the more proximal of these promoters accounts for most of the transcripts expressed in the nucleus accumbens. The 3'-terminal exon unique to the Kalirin 7 isoform accounts for a greater percentage of the Kalrn transcripts in prefrontal cortex than in nucleus accumbens. Western blot analyses confirmed these differences. Chronic cocaine treatment increases usage of the promoter encoding the Δ-Kalirin isoforms but does not alter full-length Kalirin promoter usage. Usage of the 3'-terminal exon unique to Kalirin 7 increases following chronic cocaine exposure. Conclusions Kalrn promoter and 3'-terminal exon utilization are region-specific. In the nucleus accumbens, cocaine-mediated alterations in promoter usage and 3'-terminal exon usage favor expression of

  13. Distinct Functions of Different scl Isoforms in Zebrafish Definitive Hematopoietic Stem Cell Initiation and Maintenance

    Science.gov (United States)

    Lan, Yahui

    2011-07-01

    The establishment of entire blood system relies on the multi-potent hematopoietic stem cells (HSCs), thus identifying the molecular mechanism in HSC generation is of importance for not only complementing the fundamental knowledge in stem cell biology, but also providing insights to the regenerative therapies. Recent researches have documented the formation of nascent HSCs through a direct transition from ventral aortic endothelium, named as endothelial hematopoietic transition (EHT) process. However, the precise genetic program engaged in this process remains largely elusive. The transcription factor scl plays pivotal and conserved roles in embryonic and adult hematopoiesis from teleosts to mammals. Our lab have previously identified a new truncated scl isoform, scl-beta, which is indispensible for the specification of HSCs in the ventral wall of dorsal aorta (VDA), the zebrafish equivalent of mammalian fetal hematopoietic organ. Here we observe that, by combining time-lapse confocal imaging of transgenic zebrafish and genetic epistasis analysis, scl-beta is expressed in a subset of ventral aortic endothelial cells and critical for their forthcoming transformation to hemogenic endothelium; in contrast, runx1 is required downstream to govern the successful egress of the hemogenic endothelial cells to become naive HSCs. In addition, the traditional known full-length scl-alpha isoform is firstly evidenced to be required for the maintenance or survival of newly formed HSCs in VDA. Collectively our data has established the genetic hierarchy controlling discrete steps in the consecutive process of HSC formation from endothelial cells and further development in VDA.

  14. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    Science.gov (United States)

    2011-01-01

    Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA) comprises ~530 residues, the G isoform (MSG) is ~730 residues, and this third isoform (MSH-halophilic) is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH) isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM) barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C-terminal domain of the H

  15. Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles.

    Science.gov (United States)

    Thoresen, Todd; Lenz, Martin; Gardel, Margaret L

    2013-02-05

    Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Cryptocephal, the Drosophila melanogaster ATF4, is a specific coactivator for ecdysone receptor isoform B2.

    Directory of Open Access Journals (Sweden)

    Sebastien A Gauthier

    Full Text Available The ecdysone receptor is a heterodimer of two nuclear receptors, the Ecdysone receptor (EcR and Ultraspiracle (USP. In Drosophila melanogaster, three EcR isoforms share common DNA and ligand-binding domains, but these proteins differ in their most N-terminal regions and, consequently, in the activation domains (AF1s contained therein. The transcriptional coactivators for these domains, which impart unique transcriptional regulatory properties to the EcR isoforms, are unknown. Activating transcription factor 4 (ATF4 is a basic-leucine zipper transcription factor that plays a central role in the stress response of mammals. Here we show that Cryptocephal (CRC, the Drosophila homolog of ATF4, is an ecdysone receptor coactivator that is specific for isoform B2. CRC interacts with EcR-B2 to promote ecdysone-dependent expression of ecdysis-triggering hormone (ETH, an essential regulator of insect molting behavior. We propose that this interaction explains some of the differences in transcriptional properties that are displayed by the EcR isoforms, and similar interactions may underlie the differential activities of other nuclear receptors with distinct AF1-coactivators.

  17. Smoking specifically induces metallothionein-2 isoform in human placenta at term

    International Nuclear Information System (INIS)

    Ronco, Ana Maria; Garrido, Fernando; Llanos, Miguel N.

    2006-01-01

    Recently, we reported the presence of higher levels of metallothionein (MT) in placentas of smokers compared to non-smokers. In the present study, we designed experiments to separate and evaluate two isoforms of MT (MT-1 and MT-2) in placentas of smokers and non-smokers. Metallothionein was extracted and separated by ion-exchange high performance liquid chromatography (HPLC), previous saturation with cadmium chloride. Two peaks eluting at 6 and 12.5 min, corresponding to MT-1 and MT-2, respectively, were obtained. Metallothionein present in both peaks was identified by Western blot analysis using a monoclonal antibody directed against MT-1 and MT-2. Each isoform concentration was calculated after measuring its cadmium content by atomic absorption spectrometry with inductively coupled-plasma. In placentas of smokers, MT-2 levels increased by seven-fold compared to non-smokers, whereas MT-1 was not changed. Total placental cadmium and zinc concentrations, determined by atomic absorption spectrometry and neutron activation analysis, respectively, were higher in smokers. Metallothioneins levels were clearly in excess to bind all cadmium ions present in placentas. However, most of placental zinc remains unbound to MTs, although as much as twice zinc ions could be bound to MT in smokers. In conclusion, MT-2 is the main isoform induced by smoking, suggesting that this isoform could be involved in placental cadmium and zinc retention. This fact, which could contribute to reduce the transference of zinc to the fetus, may be associated to detrimental effects on fetal growth and development

  18. p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin?

    Science.gov (United States)

    Singh, Paramjeet; Dar, Mohd Saleem; Dar, Mohd Jamal

    2016-09-01

    Class-1 phosphatidylinositol-3-kinases (PI3Ks) are activated by a variety of extracellular stimuli and have been implicated in a wide range of cellular processes. p110α and p110β are the two most studied isoforms of the class-1A PI3K signaling pathway. Although these two isoforms are ubiquitously expressed and play multiple redundant roles, they also have distinct functions within the cell. More recently, p110α and p110β isoforms have been shown to translocate into the nucleus and play a role in DNA replication and repair, and in cell cycle progression. In the following Review article, we discuss the overlapping and unique roles of p110α and p110β isoforms with a particular focus on their structure, expression analysis, subcellular localization, and signaling contributions in various cell types and model organisms. © 2016 Federation of European Biochemical Societies.

  19. Selective Assembly of Na,K-ATPase α2β2 Heterodimers in the Heart: DISTINCT FUNCTIONAL PROPERTIES AND ISOFORM-SELECTIVE INHIBITORS.

    Science.gov (United States)

    Habeck, Michael; Tokhtaeva, Elmira; Nadav, Yotam; Ben Zeev, Efrat; Ferris, Sean P; Kaufman, Randal J; Bab-Dinitz, Elizabeta; Kaplan, Jack H; Dada, Laura A; Farfel, Zvi; Tal, Daniel M; Katz, Adriana; Sachs, George; Vagin, Olga; Karlish, Steven J D

    2016-10-28

    The Na,K-ATPase α 2 subunit plays a key role in cardiac muscle contraction by regulating intracellular Ca 2+ , whereas α 1 has a more conventional role of maintaining ion homeostasis. The β subunit differentially regulates maturation, trafficking, and activity of α-β heterodimers. It is not known whether the distinct role of α 2 in the heart is related to selective assembly with a particular one of the three β isoforms. We show here by immunofluorescence and co-immunoprecipitation that α 2 is preferentially expressed with β 2 in T-tubules of cardiac myocytes, forming α 2 β 2 heterodimers. We have expressed human α 1 β 1 , α 2 β 1 , α 2 β 2 , and α 2 β 3 in Pichia pastoris, purified the complexes, and compared their functional properties. α 2 β 2 and α 2 β 3 differ significantly from both α 2 β 1 and α 1 β 1 in having a higher K 0.5 K + and lower K 0.5 Na + for activating Na,K-ATPase. These features are the result of a large reduction in binding affinity for extracellular K + and shift of the E 1 P-E 2 P conformational equilibrium toward E 1 P. A screen of perhydro-1,4-oxazepine derivatives of digoxin identified several derivatives (e.g. cyclobutyl) with strongly increased selectivity for inhibition of α 2 β 2 and α 2 β 3 over α 1 β 1 (range 22-33-fold). Molecular modeling suggests a possible basis for isoform selectivity. The preferential assembly, specific T-tubular localization, and low K + affinity of α 2 β 2 could allow an acute response to raised ambient K + concentrations in physiological conditions and explain the importance of α 2 β 2 for cardiac muscle contractility. The high sensitivity of α 2 β 2 to digoxin derivatives explains beneficial effects of cardiac glycosides for treatment of heart failure and potential of α 2 β 2 -selective digoxin derivatives for reducing cardiotoxicity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Differential regulation of protein phosphatase 1 (PP1) isoforms in human heart failure and atrial fibrillation.

    Science.gov (United States)

    Meyer-Roxlau, Stefanie; Lämmle, Simon; Opitz, Annett; Künzel, Stephan; Joos, Julius P; Neef, Stefan; Sekeres, Karolina; Sossalla, Samuel; Schöndube, Friedrich; Alexiou, Konstantin; Maier, Lars S; Dobrev, Dobromir; Guan, Kaomei; Weber, Silvio; El-Armouche, Ali

    2017-07-01

    Protein phosphatase 1 (PP1) is a key regulator of important cardiac signaling pathways. Dysregulation of PP1 has been heavily implicated in cardiac dysfunctions. Accordingly, pharmacological targeting of PP1 activity is considered for therapeutic intervention in human cardiomyopathies. Recent evidence from animal models implicated previously unrecognized, isoform-specific activities of PP1 in the healthy and diseased heart. Therefore, this study examined the expression of the distinct PP1 isoforms PP1α, β, and γ in human heart failure (HF) and atrial fibrillation (AF) and addressed the consequences of β-adrenoceptor blocker (beta-blocker) therapy for HF patients with reduced ejection fraction on PP1 isoform expression. Using western blot analysis, we found greater abundance of PP1 isoforms α and γ but unaltered PP1β levels in left ventricular myocardial tissues from HF patients as compared to non-failing controls. However, expression of all three PP1 isoforms was higher in atrial appendages from patients with AF compared to patients with sinus rhythm. Moreover, we found that in human failing ventricles, beta-blocker therapy was associated with lower PP1α abundance and activity, as indicated by higher phosphorylation of the PP1α-specific substrate eIF2α. Greater eIF2α phosphorylation is a known repressor of protein translation, and accordingly, we found lower levels of the endoplasmic reticulum (ER) stress marker Grp78 in the very same samples. We propose that isoform-specific targeting of PP1α activity may be a novel and innovative therapeutic strategy for the treatment of human cardiac diseases by reducing ER stress conditions.

  1. The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ mice. Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ mice. CREB(αΔ mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ. CREB(αΔ mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.

  2. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription

    DEFF Research Database (Denmark)

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien

    2012-01-01

    site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial...... diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites...... and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain...

  3. Deep Sequencing Reveals Uncharted Isoform Heterogeneity of the Protein-Coding Transcriptome in Cerebral Ischemia.

    Science.gov (United States)

    Bhattarai, Sunil; Aly, Ahmed; Garcia, Kristy; Ruiz, Diandra; Pontarelli, Fabrizio; Dharap, Ashutosh

    2018-06-03

    Gene expression in cerebral ischemia has been a subject of intense investigations for several years. Studies utilizing probe-based high-throughput methodologies such as microarrays have contributed significantly to our existing knowledge but lacked the capacity to dissect the transcriptome in detail. Genome-wide RNA-sequencing (RNA-seq) enables comprehensive examinations of transcriptomes for attributes such as strandedness, alternative splicing, alternative transcription start/stop sites, and sequence composition, thus providing a very detailed account of gene expression. Leveraging this capability, we conducted an in-depth, genome-wide evaluation of the protein-coding transcriptome of the adult mouse cortex after transient focal ischemia at 6, 12, or 24 h of reperfusion using RNA-seq. We identified a total of 1007 transcripts at 6 h, 1878 transcripts at 12 h, and 1618 transcripts at 24 h of reperfusion that were significantly altered as compared to sham controls. With isoform-level resolution, we identified 23 splice variants arising from 23 genes that were novel mRNA isoforms. For a subset of genes, we detected reperfusion time-point-dependent splice isoform switching, indicating an expression and/or functional switch for these genes. Finally, for 286 genes across all three reperfusion time-points, we discovered multiple, distinct, simultaneously expressed and differentially altered isoforms per gene that were generated via alternative transcription start/stop sites. Of these, 165 isoforms derived from 109 genes were novel mRNAs. Together, our data unravel the protein-coding transcriptome of the cerebral cortex at an unprecedented depth to provide several new insights into the flexibility and complexity of stroke-related gene transcription and transcript organization.

  4. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergey V., E-mail: Sergey.Ivanov@med.nyu.edu [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States); Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I. [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States)

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  5. The human CD8β M-4 isoform dominant in effector memory T cells has distinct cytoplasmic motifs that confer unique properties.

    Directory of Open Access Journals (Sweden)

    Deepshi Thakral

    Full Text Available The CD8 co-receptor influences T cell recognition and responses in both anti-tumor and anti-viral immunity. During evolution in the ancestor of humans and chimpanzees, the CD8B gene acquired two additional exons. As a result, in humans, there are four CD8β splice variants (M1 to M4 that differ in their cytoplasmic tails. The M-1 isoform which is the equivalent of murine CD8β, is predominantly expressed in naïve T cells, whereas, the M-4 isoform is predominantly expressed in effector memory T cells. The characteristics of the M-4 isoform conferred by its unique 36 amino acid cytoplasmic tail are not known. In this study, we identified a dihydrophobic leucine-based receptor internalization motif in the cytoplasmic tail of M-4 that regulated its cell surface expression and downregulation after activation. Further the M-4 cytoplasmic tail was able to associate with ubiquitinated targets in 293T cells and mutations in the amino acids NPW, a potential EH domain binding site, either enhanced or inhibited the interaction. In addition, the M-4 tail was itself mono-ubiquitinated on a lysine residue in both 293T cells and a human T cell line. When peripheral blood human T cells expressed CD8αβ M-4, the frequency of MIP-1β secreting cells responding to antigen presenting cells was two-fold higher as compared to CD8αβ M-1 expressing T cells. Thus, the cytoplasmic tail of the CD8β M-4 isoform has unique characteristics, which likely contributed to its selective expression and function in human effector memory T cells.

  6. Simultaneous Detection of Human C-Terminal p53 Isoforms by Single Template Molecularly Imprinted Polymers (MIPs) Coupled with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Targeted Proteomics.

    Science.gov (United States)

    Jiang, Wenting; Liu, Liang; Chen, Yun

    2018-03-06

    Abnormal expression of C-terminal p53 isoforms α, β, and γ can cause the development of cancers including breast cancer. To date, much evidence has demonstrated that these isoforms can differentially regulate target genes and modulate their expression. Thus, quantification of individual isoforms may help to link clinical outcome to p53 status and to improve cancer patient treatment. However, there are few studies on accurate determination of p53 isoforms, probably due to sequence homology of these isoforms and also their low abundance. In this study, a targeted proteomics assay combining molecularly imprinted polymers (MIPs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous quantification of C-terminal p53 isoforms. Isoform-specific surrogate peptides (i.e., KPLDGEYFTLQIR (peptide-α) for isoform α, KPLDGEYFTLQDQTSFQK (peptide-β) for isoform β, and KPLDGEYFTLQMLLDLR (peptide-γ) for isoform γ) were first selected and used in both MIPs enrichment and mass spectrometric detection. The common sequence KPLDGEYFTLQ of these three surrogate peptides was used as single template in MIPs. In addition to optimization of imprinting conditions and characterization of the prepared MIPs, binding affinity and cross-reactivity of the MIPs for each surrogate peptide were also evaluated. As a result, a LOQ of 5 nM was achieved, which was >15-fold more sensitive than that without MIPs. Finally, the assay was validated and applied to simultaneous quantitative analysis of C-terminal p53 isoforms α, β, and γ in several human breast cell lines (i.e., MCF-10A normal cells, MCF-7 and MDA-MB-231 cancer cells, and drug-resistant MCF-7/ADR cancer cells). This study is among the first to employ single template MIPs and cross-reactivity phenomenon to select isoform-specific surrogate peptides and enable simultaneous quantification of protein isoforms in LC-MS/MS-based targeted proteomics.

  7. APPRIS 2017: principal isoforms for multiple gene sets

    Science.gov (United States)

    Rodriguez-Rivas, Juan; Di Domenico, Tomás; Vázquez, Jesús; Valencia, Alfonso

    2018-01-01

    Abstract The APPRIS database (http://appris-tools.org) uses protein structural and functional features and information from cross-species conservation to annotate splice isoforms in protein-coding genes. APPRIS selects a single protein isoform, the ‘principal’ isoform, as the reference for each gene based on these annotations. A single main splice isoform reflects the biological reality for most protein coding genes and APPRIS principal isoforms are the best predictors of these main proteins isoforms. Here, we present the updates to the database, new developments that include the addition of three new species (chimpanzee, Drosophila melangaster and Caenorhabditis elegans), the expansion of APPRIS to cover the RefSeq gene set and the UniProtKB proteome for six species and refinements in the core methods that make up the annotation pipeline. In addition APPRIS now provides a measure of reliability for individual principal isoforms and updates with each release of the GENCODE/Ensembl and RefSeq reference sets. The individual GENCODE/Ensembl, RefSeq and UniProtKB reference gene sets for six organisms have been merged to produce common sets of splice variants. PMID:29069475

  8. Testis-expressed profilins 3 and 4 show distinct functional characteristics and localize in the acroplaxome-manchette complex in spermatids

    Directory of Open Access Journals (Sweden)

    Rothkegel Martin

    2009-05-01

    Full Text Available Abstract Background Multiple profilin isoforms exist in mammals; at least four are expressed in the mammalian testis. The testis-specific isoforms profilin-3 (PFN3 and profilin-4 (PFN4 may have specialized roles in spermatogenic cells which are distinct from known functions fulfilled by the "somatic" profilins, profilin-1 (PFN1 and profilin-2 (PFN2. Results Ligand interactions and spatial distributions of PFN3 and PFN4 were compared by biochemical, molecular and immunological methods; PFN1 and PFN2 were employed as controls. β-actin, phosphoinositides, poly-L-proline and mDia3, but not VASP, were confirmed as in vitro interaction partners of PFN3. In parallel experiments, PFN4 bound to selected phosphoinositides but not to poly-L-proline, proline-rich proteins, or actin. Immunofluorescence microscopy of PFN3 and PFN4 revealed distinct subcellular locations in differentiating spermatids. Both were associated first with the acroplaxome and later with the transient manchette. Predicted 3D structures indicated that PFN3 has the actin-binding site conserved, but retains only approximately half of the common poly-L-proline binding site. PFN4, in comparison, has lost both, polyproline and actin binding sites completely, which is well in line with the experimental data. Conclusion The testis-specific isoform PFN3 showed major hallmarks of the well characterized "somatic" profilin isoforms, albeit with distinct binding affinities. PFN4, on the other hand, did not interact with actin or polyproline in vitro. Rather, it seemed to be specialized for phospholipid binding, possibly providing cellular functions which are distinct from actin dynamics regulation.

  9. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid.

    Directory of Open Access Journals (Sweden)

    Alexandra Silva

    Full Text Available Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90 chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.

  10. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    Directory of Open Access Journals (Sweden)

    Yan Gong

    Full Text Available β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may

  11. Identification and quantification of metallothionein isoforms and superoxide dismutase in spiked liver extracts using HPLC-ESI-MS offline coupling and HPLC-ICP-MS online coupling.

    Science.gov (United States)

    Nischwitz, V; Michalke, B; Kettrup, A

    2003-01-01

    A two-dimensional chromatographic method for the characterization of metallothionein isoforms (MT) and superoxide dismutase (SOD) in spiked liver extracts was developed for the optimization of extraction procedures from liver samples. Element-specific detection (ICP-MS) and molecule-specific detection (ESI-MS) were applied for maximum species information. A special focus was laid on the quantitative data evaluation (species stoichiometry, calibration with and without matrix, recovery), which is neglected in most MT/SOD publications with hyphenated techniques. Linearity, precision (residual standard deviation of calibration curves <10%), and detection limits (<0.6 mg L(-1) for MT isoforms and 13 mg L(-1) for SOD) prove the suitability of the method for quantification. An alternative quantification is proposed for the extension towards other lesser or even unknown trace element species, especially the native porcine MT and SOD.

  12. A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells.

    Directory of Open Access Journals (Sweden)

    Ioannis Gavvovidis

    Full Text Available Biallelic mutations in MCPH1 cause primary microcephaly (MCPH with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL and a second transcript lacking the six 3' exons (MCPH1Δe9-14. Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9-14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.

  13. Role of voltage-gated L-type Ca2+ channel isoforms for brain function.

    Science.gov (United States)

    Striessnig, J; Koschak, A; Sinnegger-Brauns, M J; Hetzenauer, A; Nguyen, N K; Busquet, P; Pelster, G; Singewald, N

    2006-11-01

    Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.

  14. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    International Nuclear Information System (INIS)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A.

    2013-01-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility

  15. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A., E-mail: roberto.perego@unimib.it

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  16. WT1 isoform expression pattern in acute myeloid leukemia.

    Science.gov (United States)

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Ibañez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Oscar; Dolz, Sandra; Oltra, Silvestre; Alonso, Carmen; Vera, Belén; Lorenzo, Ignacio; Martínez-Cuadrón, David; Montesinos, Pau; Senent, M Leonor; Moscardó, Federico; Bolufer, Pascual; Sanz, Miguel A

    2013-12-01

    WT1 plays a dual role in leukemia development, probably due to an imbalance in the expression of the 4 main WT1 isoforms. We quantify their expression and evaluate them in a series of AML patients. Our data showed a predominant expression of isoform D in AML, although in a lower quantity than in normal CD34+ cells. We found a positive correlation between the total WT1 expression and A, B and C isoforms. The overexpression of WT1 in AML might be due to a relative increase in A, B and C isoforms, together with a relative decrease in isoform D expression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Specific Profile of Tau Isoforms in Argyrophylic Grain Disease

    Directory of Open Access Journals (Sweden)

    Alberto Rábano

    2013-01-01

    Full Text Available Argyrophylic grain disease (AGD is a neurodegenerative condition that has been classified among the sporadic tauopathies. Entities in this group present intracellular aggregates of hyperphosphorylated tau, giving rise to characteristic neuronal and glial inclusions. In different tauopathies, the proportion of several tau isoforms present in the aggregates shows specific patterns. AGD has been tentatively classified in the 4R group (predominance of 4R tau isoforms together with progressive supranuclear palsy and corticobasal degeneration. Pick's disease is included in the 3R group (predominance of 3R isoforms, whereas tau pathology of Alzheimer's disease represents and intermediate group (3 or 4 repeats [3R plus 4R, respectively] isoforms. In this work, we have analyzed tau present in aggregates isolated from brain samples of patients with argyrophylic grain disease. Our results indicate that the main tau isoform present in aggregates obtained from patients with AGD is a hyperphosphorylated isoform containing exons 2 and 10 but lacking exon 3.

  18. Total and isoform-specific quantitative assessment of circulating Fibulin-1 using selected reaction monitoring mass spectrometry and time-resolved immunofluorometry

    DEFF Research Database (Denmark)

    Overgaard, Martin; Cangemi, Claudia; Jensen, Martin L

    2015-01-01

    biomarker fibulin-1 and its circulating isoforms in human plasma. EXPERIMENTAL DESIGN:: We used bioinformatics analysis to predict total and isoform-specific tryptic peptides for absolute quantitation using SRM-MS. Fibulin-1 was quantitated in plasma by nanoflow-LC-SRM-MS in undepleted plasma and time......PURPOSE:: Targeted proteomics using SRM-MS combined with stable isotope dilution has emerged as a promising quantitative technique for the study of circulating protein biomarkers. The purpose of this study was to develop and characterize robust quantitative assays for the emerging cardiovascular......-resolved immunofluorometric assay (TRIFMA). Both methods were validated and compared to a commercial ELISA (CircuLex). Molecular size determination was performed under native conditions by SEC analysis coupled to SRM-MS and TRIFMA. RESULTS:: Absolute quantitation of total fibulin-1, isoforms -1C and -1D was performed by SRM...

  19. IgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology.

    Science.gov (United States)

    Van Vaerenbergh, Matthias; De Smet, Lina; Rafei-Shamsabadi, David; Blank, Simon; Spillner, Edzard; Ebo, Didier G; Devreese, Bart; Jakob, Thilo; de Graaf, Dirk C

    2015-02-01

    Api m 10 has recently been established as novel major allergen that is recognized by more than 60% of honeybee venom (HBV) allergic patients. Previous studies suggest Api m 10 protein heterogeneity which may have implications for diagnosis and immunotherapy of HBV allergy. In the present study, RT-PCR revealed the expression of at least nine additional Api m 10 transcript isoforms by the venom glands. Two distinct mechanisms are responsible for the generation of these isoforms: while the previously known variant 2 is produced by an alternative splicing event, novel identified isoforms are intragenic chimeric transcripts. To the best of our knowledge, this is the first report of the identification of chimeric transcripts generated by the honeybee. By a retrospective proteomic analysis we found evidence for the presence of several of these isoforms in the venom proteome. Additionally, we analyzed IgE reactivity to different isoforms by protein array technology using sera from HBV allergic patients, which revealed that IgE recognition of Api m 10 is both isoform- and patient-specific. While it was previously demonstrated that the majority of HBV allergic patients display IgE reactivity to variant 2, our study also shows that some patients lacking IgE antibodies for variant 2 display IgE reactivity to two of the novel identified Api m 10 variants, i.e. variants 3 and 4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons.

    Science.gov (United States)

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R; Sharma, Esseim; Fukami, Kiyoko; Rohacs, Tibor

    2013-07-10

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.

  1. Isoform-specific regulation of osteogenic factors by polypeptide N-Acetylgalactosaminyltransferases 1 and 4

    International Nuclear Information System (INIS)

    Tang, Juan; Zheng, Hanxi; Chen, Ling; Gao, Shangshang; Shi, Xiaorui; Liu, Jingjing; Xu, Lan

    2017-01-01

    The family of UDP-GalNAc polypeptide: N-Acetylgalactosaminlytransfersases (ppGalNAcTs) catalyzes the initial step of O-linked protein glycosylation. Mucin-type O-glycoproteins are abundant in the bone and may play an important role in osteogenesis. Herein, we examined the effects of ppGalNAc-T isoforms on osteogenesis of MC3T3-E1 pre-osteoblasts. We found that ppGalNAc-T1 and -T4 isoforms were highly expressed during osteogenesis of MC3T3-E1 and their knockdown by short hairpin RNA (shRNA) decreased osteoblast formation and bone mineralization. Knockdown of ppGalNAc-T1 or -T4 decreased mRNA and protein levels of bone sialoprotein (BSP). Knockdown of ppGalNAc-T1decreased mRNA levels of osteocalcin (OC), osteoprotegerin (OPG). Knockdown ofppGalNAc-T4 isoform decreased mRNA levels of OC, OPG and vitamin D receptor (VDR). While knockdown of T1 or T4 isoforms did not change the expression of osteopontin (OPN), COLLI, receptor activator for nuclear factor-κB ligand (RANKL) and transforming growth factor-β (TGF-β). Our results demonstrated that the ppGalNAc-T4 was highly expressed in MC3T3-E1 cells during osteogenesis for the first time. We also found that ppGalNAc-T1 and -T4 affected the expression of different osteogenic factors, suggesting distinct roles ppGalNAc-T isoformsplay in regulating osteogenesis in vitro. - Highlights: • ppGalNAc-T1 and T4 are highly expressed during MC3T3 cell osteogenesis. • Knockdown of ppGalNAc-T1 and -T4 decreases osteogenic differentiation and mineralization. • Expression of osteogenic factors are differentially affected by decreased ppGalNAc-T1 and -T4 expression.

  2. Identification of a novel ZIC3 isoform and mutation screening in patients with heterotaxy and congenital heart disease.

    Directory of Open Access Journals (Sweden)

    James E J Bedard

    Full Text Available Patients with heterotaxy have characteristic cardiovascular malformations, abnormal arrangement of their visceral organs, and midline patterning defects that result from abnormal left-right patterning during embryogenesis. Loss of function of the transcription factor ZIC3 causes X-linked heterotaxy and isolated congenital heart malformations and represents one of the few known monogenic causes of congenital heart disease. The birth incidence of heterotaxy-spectrum malformations is significantly higher in males, but our previous work indicated that mutations within ZIC3 did not account for the male over-representation. Therefore, cross species comparative sequence alignment was used to identify a putative novel fourth exon, and the existence of a novel alternatively spliced transcript was confirmed by amplification from murine embryonic RNA and subsequent sequencing. This transcript, termed Zic3-B, encompasses exons 1, 2, and 4 whereas Zic3-A encompasses exons 1, 2, and 3. The resulting protein isoforms are 466 and 456 amino acid residues respectively, sharing the first 407 residues. Importantly, the last two amino acids in the fifth zinc finger DNA binding domain are altered in the Zic3-B isoform, indicating a potential functional difference that was further evaluated by expression, subcellular localization, and transactivation analyses. The temporo-spatial expression pattern of Zic3-B overlaps with Zic3-A in vivo, and both isoforms are localized to the nucleus in vitro. Both isoforms can transcriptionally activate a Gli binding site reporter, but only ZIC3-A synergistically activates upon co-transfection with Gli3, suggesting that the isoforms are functionally distinct. Screening 109 familial and sporadic male heterotaxy cases did not identify pathogenic mutations in the newly identified fourth exon and larger studies are necessary to establish the importance of the novel isoform in human disease.

  3. Oxygenation properties and isoform diversity of snake hemoglobins

    DEFF Research Database (Denmark)

    Storz, Jay F.; Natarajan, Chandrasekhar; Moriyama, Hideaki

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer- dimer dissociation. However, standardized comparative data are lacking fo...... isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform....

  4. Managing brain extracellular K+ during neuronal activity: The physiological role of the Na+/K+-ATPase subunit isoforms

    Directory of Open Access Journals (Sweden)

    Brian Roland eLarsen

    2016-04-01

    Full Text Available AbstractDuring neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity.Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2 and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood. This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.

  5. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    Science.gov (United States)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  6. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma.

    Science.gov (United States)

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J H; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-06-17

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

  7. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ

    Science.gov (United States)

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J. H.; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-01-01

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110α, p110β, and p110δ) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110α and p110δ to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110γ class IB PI3K lack SH2 domains and instead couple p110γ to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110β and cells derived from a p110β-deficient mouse line, that p110β is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110β and p110γ contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110β but not p110γ, p110β mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110γ in these cells reduced the contribution of p110β to GPCR signaling. Taken together, these data show that p110β and p110γ can couple redundantly to the same GPCR agonists. p110β, which shows a much broader tissue distribution than the leukocyte-restricted p110γ, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110γ expression is low or absent. PMID:18544649

  8. Profound human/mouse differences in alpha-dystrobrevin isoforms: a novel syntrophin-binding site and promoter missing in mouse and rat

    Directory of Open Access Journals (Sweden)

    Jin Hong

    2009-12-01

    Full Text Available Abstract Background The dystrophin glycoprotein complex is disrupted in Duchenne muscular dystrophy and many other neuromuscular diseases. The principal heterodimeric partner of dystrophin at the heart of the dystrophin glycoprotein complex in the main clinically affected tissues (skeletal muscle, heart and brain is its distant relative, α-dystrobrevin. The α-dystrobrevin gene is subject to complex transcriptional and post-transcriptional regulation, generating a substantial range of isoforms by alternative promoter use, alternative polyadenylation and alternative splicing. The choice of isoform is understood, amongst other things, to determine the stoichiometry of syntrophins (and their ligands in the dystrophin glycoprotein complex. Results We show here that, contrary to the literature, most α-dystrobrevin genes, including that of humans, encode three distinct syntrophin-binding sites, rather than two, resulting in a greatly enhanced isoform repertoire. We compare in detail the quantitative tissue-specific expression pattern of human and mouse α-dystrobrevin isoforms, and show that two major gene features (the novel syntrophin-binding site-encoding exon and the internal promoter and first exon of brain-specific isoforms α-dystrobrevin-4 and -5 are present in most mammals but specifically ablated in mouse and rat. Conclusion Lineage-specific mutations in the murids mean that the mouse brain has fewer than half of the α-dystrobrevin isoforms found in the human brain. Our finding that there are likely to be fundamental functional differences between the α-dystrobrevins (and therefore the dystrophin glycoprotein complexes of mice and humans raises questions about the current use of the mouse as the principal model animal for studying Duchenne muscular dystrophy and other related disorders, especially the neurological aspects thereof.

  9. Identification and characterization of novel smoothelin isoforms in vascular smooth muscle.

    Science.gov (United States)

    Krämer, J; Quensel, C; Meding, J; Cardoso, M C; Leonhardt, H

    2001-01-01

    Smoothelin is a cytoskeletal protein specifically expressed in differentiated smooth muscle cells and has been shown to colocalize with smooth muscle alpha actin. In addition to the small smoothelin isoform of 59 kD, we recently identified a large smoothelin isoform of 117 kD. The aim of this study was to identify and characterize novel smoothelin isoforms. The genomic structure and sequence of the smoothelin gene were determined by genomic PCR, RT-PCR and DNA sequencing. Comparison of the cDNA and genomic sequences shows that the small smoothelin isoform is generated by transcription initiation 10 kb downstream of the start site of the large isoform. In addition to the known smoothelin cDNA (c1 isoform) we identified two novel cDNA variants (c2 and c3 isoform) that are generated by alternative splicing within a region, which shows similarity to the spectrin family of F-actin cross-linking proteins. Visceral organs express the c1 form, while the c2 form prevails in well-vascularized tissue as analyzed by RT-PCR. We then generated specific antibodies against the major smoothelin isoforms and could show by Western blotting and immunohistochemistry that the large isoform is specifically expressed in vascular smooth muscle cells, while the small isoform is abundant in visceral smooth muscle. These results strongly suggest that the smoothelin gene contains a vascular and a visceral smooth muscle promoter. The cell-type-specific expression of smoothelin isoforms that are associated with actin filaments may play a role in the modulation of the contractile properties of different smooth muscle cell types. Copyright 2001 S. Karger AG, Basel

  10. Endogenous ovarian hormones affect mitochondrial efficiency in cerebral endothelium via distinct regulation of PGC-1 isoforms.

    Science.gov (United States)

    Kemper, Martin F; Zhao, Yuanzi; Duckles, Sue P; Krause, Diana N

    2013-01-01

    Mitochondria support the energy-intensive functions of brain endothelium but also produce damaging-free radicals that lead to disease. Previously, we found that estrogen treatment protects cerebrovascular mitochondria, increasing capacity for ATP production while decreasing reactive oxygen species (ROS). To determine whether these effects occur specifically in endothelium in vivo and also explore underlying transcriptional mechanisms, we studied freshly isolated brain endothelial preparations from intact and ovariectomized female mice. This preparation reflects physiologic influences of circulating hormones, hemodynamic forces, and cell-cell interactions of the neurovascular unit. Loss of ovarian hormones affected endothelial expression of the key mitochondrial regulator family, peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1), but in a unique way. Ovariectomy increased endothelial PGC-1α mRNA but decreased PGC-1β mRNA. The change in PGC-1β correlated with decreased mRNA for crucial downstream mitochondrial regulators, nuclear respiratory factor 1 and mitochondrial transcription factor A, as well as for ATP synthase and ROS protection enzymes, glutamate-cysteine ligase and manganese superoxide dismutase. Ovariectomy also decreased mitochondrial biogenesis (mitochondrial/nuclear DNA ratio). These results indicate ovarian hormones normally act through a distinctive regulatory pathway involving PGC-1β to support cerebral endothelial mitochondrial content and guide mitochondrial function to favor ATP coupling and ROS protection.

  11. Inulin isoforms differ by repeated additions of one crystal unit cell

    Science.gov (United States)

    Cooper, Peter D.; Barclay, Thomas G.; Ginic-Markovic, Milena; Gerson, Andrea R.; Petrovsky, Nikolai

    2014-01-01

    Inulin isoforms, especially delta inulin, are important biologically as immune activators and clinically as vaccine adjuvants. In exploring action mechanisms, we previously found regular increments in thermal properties of the seven-member inulin isoform series that suggested regular additions of some energetic structural unit. Because the previous isolates carried additional longer chains that masked defining ranges, these were contrasted with new isoform isolates comprising only inulin chain lengths defining that isoform. The new series began with 19 fructose units per chain (alpha-1 inulin), increasing regularly by 6 fructose units per isoform. Thus the ‘energetic unit’ equates to 6 fructose residues per chain. All isoforms showed indistinguishable X-ray diffraction patterns that were also identical with known inulin crystals. We conclude that an ‘energetic unit’ equates to one helix turn of 6 fructose units per chain as found in one unit cell of the inulin crystal. Each isoform chain comprised progressively more helix turns plus one additional fructose and glucose residues per chain. PMID:24528745

  12. Prostaglandin D Synthase Isoforms from Cerebrospinal Fluid Vary with Brain Pathology

    Directory of Open Access Journals (Sweden)

    Michael G. Harrington

    2006-01-01

    Full Text Available Glutathione independent prostaglandin D synthase (Swissprot P41222, PTGDS has been identified in human cerebrospinal fluid and some changes in PTGDS in relation to disease have been reported. However, little is known of the extent that PTGDS isoforms fluctuate across a large range of congenital and acquired diseases. The purpose of this study was to examine changes in PTGDS isoforms in such a population. Spinal fluid from 22 healthy study participants (normal controls with no classifiable neurological or psychiatric diagnosis was obtained and PTGDS isoforms were identified by specific immunostaining and mass spectrometry after denaturing 2D gel electrophoresis. The PTGDS isoforms in controls consisted of five charge isoforms that were always present and a small number of occasional, low abundance isoforms. A qualitative survey of 98 different people with a wide range of congenital and acquired diseases revealed striking changes. Loss of the control isoforms occurred in congenital malformations of the nervous system. Gain of additional isoforms occurred in some degenerative, most demyelinating and vasculitic diseases, as well as in Creutzfeldt-Jakob disease. A retrospective analysis of published data that quantified relative amounts of PTGDS in multiple sclerosis, schizophrenia and Parkinson’s disease compared to controls revealed significant dysregulation. It is concluded that qualitative and quantitative fluctuations of cerebrospinal fluid PTGDS isoforms reflect both major and subtle brain pathophysiology.

  13. The activity of the anti-apoptotic fragment generated by the caspase-3/p120 RasGAP stress-sensing module displays strict Akt isoform specificity.

    Science.gov (United States)

    Vanli, Güliz; Peltzer, Nieves; Dubuis, Gilles; Widmann, Christian

    2014-12-01

    The caspase-3/p120 RasGAP module acts as a stress sensor that promotes pro-survival or pro-death signaling depending on the intensity and the duration of the stressful stimuli. Partial cleavage of p120 RasGAP generates a fragment, called fragment N, which protects stressed cells by activating Akt signaling. Akt family members regulate many cellular processes including proliferation, inhibition of apoptosis and metabolism. These cellular processes are regulated by three distinct Akt isoforms: Akt1, Akt2 and Akt3. However, which of these isoforms are required for fragment N mediated protection have not been defined. In this study, we investigated the individual contribution of each isoform in fragment N-mediated cell protection against Fas ligand induced cell death. To this end, DLD1 and HCT116 isogenic cell lines lacking specific Akt isoforms were used. It was found that fragment N could activate Akt1 and Akt2 but that only the former could mediate the protective activity of the RasGAP-derived fragment. Even overexpression of Akt2 or Akt3 could not rescue the inability of fragment N to protect cells lacking Akt1. These results demonstrate a strict Akt isoform requirement for the anti-apoptotic activity of fragment N. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Differences in wound-induced changes in cell-wall peroxidase activities and isoform patterns between seedlings of Prosopis tamarugo and Prosopis chilensis.

    Science.gov (United States)

    Lehner, Gabriele; Cardemil, Liliana

    2003-05-01

    We determined changes in cell-wall peroxidase activities and isoform patterns in response to wounding in seedlings of Prosopis tamarugo Phil. (an endemic species of the Atacama Desert) and Prosopis chilensis (Mol.) Stuntz (a native species of central Chile), to assess tolerance to predation. In seedlings of both species, the maximal increase in peroxidase activity occurred 48 h after wounding, reaching three times the control value in P. tamarugo and twice the control value in P. chilensis. The activity of ionically bound cell-wall peroxidases increased only locally in wounded embryonic axes, whereas the activity of soluble peroxidases increased systemically in unwounded cotyledons. Analysis of ionic peroxidases by isoelectrofocusing revealed two groups of peroxidases in the cell walls of both species: four distinct acidic isoforms and a group of basic isoforms. In response to wounding, there was a large increase in activity of the acidic isoforms in P. tamarugo, whereas there was an increase in the activity of the basic isoforms in P. chilensis. In P. chilensis, the wound-induced increase in activity of the basic isoforms corresponded with one of the two isoforms detected in P. tamarugo prior to wounding. Experiments with protein and RNA synthesis inhibitors indicated that a preexisting basic peroxidase is activated in P. chilensis after wounding. Assays of ionically bound peroxidase activity with four different substrates corroborated the differences found in isoform patterns between species. In P. tamarugo, the largest increases in activity were found with ortho-phenylenediamine and ferulic acid as substrates, whereas in P. chilensis the largest increase in activity was found with guaiacol as substrate. Because the same basic cell-wall peroxidase that accumulated after wounding in P. chilensis was present in P. tamarugo prior to wounding, and the activity of acidic cell-wall peroxidases increased after wounding in P. tamarugo but not in P. chilensis, we conclude

  15. Modulation of neuronal differentiation by CD40 isoforms

    International Nuclear Information System (INIS)

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-01-01

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40 -/- deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40 -/- mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may represent

  16. Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms

    Directory of Open Access Journals (Sweden)

    Bogdan Iorga

    2018-01-01

    Full Text Available Characterizing the contractile function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs is key for advancing their utility for cellular disease models, promoting cell based heart repair, or developing novel pharmacological interventions targeting cardiac diseases. The aim of the present study was to understand whether steady-state and kinetic force parameters of β-myosin heavy chain (βMyHC isoform-expressing myofibrils within human embryonic stem cell-derived cardiomyocytes (hESC-CMs differentiated in vitro resemble those of human ventricular myofibrils (hvMFs isolated from adult donor hearts. Contractile parameters were determined using the same micromechanical method and experimental conditions for both types of myofibrils. We identified isoforms and phosphorylation of main sarcomeric proteins involved in the modulation of force generation of both, chemically demembranated hESC-CMs (d-hESC-CMs and hvMFs. Our results indicate that at saturating Ca2+ concentration, both human-derived contractile systems developed forces with similar rate constants (0.66 and 0.68 s−1, reaching maximum isometric force that was significantly smaller for d-hESC-CMs (42 kPa than for hvMFs (94 kPa. At submaximal Ca2+-activation, where intact cardiomyocytes normally operate, contractile parameters of d-hESC-CMs and hvMFs exhibited differences. Ca2+ sensitivity of force was higher for d-hESC-CMs (pCa50 = 6.04 than for hvMFs (pCa50 = 5.80. At half-maximum activation, the rate constant for force redevelopment was significantly faster for d-hESC-CMs (0.51 s−1 than for hvMFs (0.28 s−1. During myofibril relaxation, kinetics of the slow force decay phase were significantly faster for d-hESC-CMs (0.26 s−1 than for hvMFs (0.21 s−1, while kinetics of the fast force decay were similar and ~20x faster. Protein analysis revealed that hESC-CMs had essentially no cardiac troponin-I, and partially non-ventricular isoforms of some other sarcomeric proteins

  17. Detection of VEGF-A(xxx)b isoforms in human tissues.

    Science.gov (United States)

    Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.

  18. Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing

    Directory of Open Access Journals (Sweden)

    Theresa L. B. Edelman

    2016-12-01

    Full Text Available The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing.

  19. Isolation and quantitation of metallothionein isoforms using reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Richards, M.P.; Darcey, S.E.; Steele, N.C.

    1986-01-01

    Reversed-phase HPLC (RP-HPLC) was used to isolate and quantify metallothionein (MT) isoforms from a variety of animal species and tissues. Separations were performed on C 18 radially compressed cartridge columns, eluted with a 2-step linear gradient of acetonitrile in 10 mM sodium phosphate, pH 7.0. Isoforms were detected by UV absorbance (214 nm) and by on-line interfacing with an atomic absorption spectrophotometer (HPLC-AA) to determine bound Zn, Cd and Cu. Rabbit liver and horse kidney MT's exhibited 7 distinct peaks on RP-HPLC, 2 of which were predominant (MT1 and 2). Pig liver and kidney MT2 yielded 2 subspecies on RP-HPLC, while MT1 yielded a single peak. Avian liver MT was unique from mammalian MT's in that MT2 was about tenfold more abundant than MT1. RP-HPLC and HPLC-AA were used to isolate and quantitate MT isoforms and their Zn content directly from cytosol. Quantitation was achieved by peak area integration and extrapolation from a standard curve of purified avian liver MT2. Both RP-HPLC and HPLC-AA had a lower detection limit of 1 + g of peptide and .1 μg of Zn. Recoveries (92-98%) were determined with labeled ( 35 S) MT and MT of known Zn content. Cytoplasmic MT-Zn in avian embryo hepatocytes cultured with added Zn was quantitated using HPLC-AA. In conclusion, both RP-HPLC and HPLC-AA are rapid and powerful separation techniques for the isolation, quantitation and characterization of the isoproteins comprising the MT gene family

  20. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  1. Distinct mechanisms underlie adaptation of proximal tubule Na+/H+ exchanger isoform 3 in response to chronic metabolic and respiratory acidosis.

    Science.gov (United States)

    Silva, Pedro Henrique Imenez; Girardi, Adriana Castello Costa; Neri, Elida Adalgisa; Rebouças, Nancy Amaral

    2012-04-01

    The Na(+/)H(+) exchanger isoform 3 (NHE3) is essential for HCO(3)(-) reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO(3)(-) concentration in the cell culture medium and respiratory acidosis by increasing CO(2) tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 ± 0.02) and severe (6.95 ± 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 ± 0.03) and severe (6.86 ± 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

  2. Oxygenation properties and isoform diversity of snake hemoglobins.

    Science.gov (United States)

    Storz, Jay F; Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E

    2015-11-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. Copyright © 2015 the American Physiological Society.

  3. Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse.

    Science.gov (United States)

    Besalduch, Núria; Tomàs, Marta; Santafé, Manel M; Garcia, Neus; Tomàs, Josep; Lanuza, Maria Angel

    2010-01-10

    Protein kinase C (PKC) is essential for signal transduction in a variety of cells, including neurons and myocytes, and is involved in both acetylcholine release and muscle fiber contraction. Here, we demonstrate that the increases in synaptic activity by nerve stimulation couple PKC to transmitter release in the rat neuromuscular junction and increase the level of alpha, betaI, and betaII isoforms in the membrane when muscle contraction follows the stimulation. The phosphorylation activity of these classical PKCs also increases. It seems that the muscle has to contract in order to maintain or increase classical PKCs in the membrane. We use immunohistochemistry to show that PKCalpha and PKCbetaI were located in the nerve terminals, whereas PKCalpha and PKCbetaII were located in the postsynaptic and the Schwann cells. Stimulation and contraction do not change these cellular distributions, but our results show that the localization of classical PKC isoforms in the membrane is affected by synaptic activity.

  4. Non-Muscle Myosin II Isoforms Have Different Functions in Matrix Rearrangement by MDA-MB-231 Cells.

    Directory of Open Access Journals (Sweden)

    Bridget Hindman

    Full Text Available The role of a stiffening extra-cellular matrix (ECM in cancer progression is documented but poorly understood. Here we use a conditioning protocol to test the role of nonmuscle myosin II isoforms in cell mediated ECM arrangement using collagen constructs seeded with breast cancer cells expressing shRNA targeted to either the IIA or IIB heavy chain isoform. While there are several methods available to measure changes in the biophysical characteristics of the ECM, we wanted to use a method which allows for the measurement of global stiffness changes as well as a dynamic response from the sample over time. The conditioning protocol used allows the direct measurement of ECM stiffness. Using various treatments, it is possible to determine the contribution of various construct and cellular components to the overall construct stiffness. Using this assay, we show that both the IIA and IIB isoforms are necessary for efficient matrix remodeling by MDA-MB-231 breast cancer cells, as loss of either isoform changes the stiffness of the collagen constructs as measured using our conditioning protocol. Constructs containing only collagen had an elastic modulus of 0.40 Pascals (Pa, parental MDA-MB-231 constructs had an elastic modulus of 9.22 Pa, while IIA and IIB KD constructs had moduli of 3.42 and 7.20 Pa, respectively. We also calculated the cell and matrix contributions to the overall sample elastic modulus. Loss of either myosin isoform resulted in decreased cell stiffness, as well as a decrease in the stiffness of the cell-altered collagen matrices. While the total construct modulus for the IIB KD cells was lower than that of the parental cells, the IIB KD cell-altered matrices actually had a higher elastic modulus than the parental cell-altered matrices (4.73 versus 4.38 Pa. These results indicate that the IIA and IIB heavy chains play distinct and non-redundant roles in matrix remodeling.

  5. Synaptic dysbindin-1 reductions in schizophrenia occur in an isoform-specific manner indicating their subsynaptic location.

    Directory of Open Access Journals (Sweden)

    Konrad Talbot

    Full Text Available BACKGROUND: An increasing number of studies report associations between variation in DTNBP1, a top candidate gene in schizophrenia, and both the clinical symptoms of the disorder and its cognitive deficits. DTNBP1 encodes dysbindin-1, reduced levels of which have been found in synaptic fields of schizophrenia cases. This study determined whether such synaptic reductions are isoform-specific. METHODOLOGY/PRINCIPAL FINDINGS: Using Western blotting of tissue fractions, we first determined the synaptic localization of the three major dysbindin-1 isoforms (A, B, and C. All three were concentrated in synaptosomes of multiple brain areas, including auditory association cortices in the posterior half of the superior temporal gyrus (pSTG and the hippocampal formation (HF. Tests on the subsynaptic tissue fractions revealed that each isoform is predominantly, if not exclusively, associated with synaptic vesicles (dysbindin-1B or with postsynaptic densities (dysbindin-1A and -1C. Using Western blotting on pSTG (n = 15 and HF (n = 15 synaptosomal fractions from schizophrenia cases and their matched controls, we discovered that synaptic dysbindin-1 is reduced in an isoform-specific manner in schizophrenia without changes in levels of synaptophysin or PSD-95. In pSTG, about 92% of the schizophrenia cases displayed synaptic dysbindin-1A reductions averaging 48% (p = 0.0007 without alterations in other dysbindin-1 isoforms. In the HF, by contrast, schizophrenia cases displayed normal levels of synaptic dysbindin-1A, but 67% showed synaptic reductions in dysbindin-1B averaging 33% (p = 0.0256, while 80% showed synaptic reductions in dysbindin-1C averaging 35% (p = 0.0171. CONCLUSIONS/SIGNIFICANCE: Given the distinctive subsynaptic localization of dysbindin-1A, -1B, and -1C across brain regions, the observed pSTG reductions in dysbindin-1A are postsynaptic and may promote dendritic spine loss with consequent disruption of auditory information

  6. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription.

    Science.gov (United States)

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien; Pira, Dorcas; Angrand, Pierre-Olivier

    2012-05-01

    Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation.

  7. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    M. R. Aquino-Silva

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  8. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva M. R.

    2003-01-01

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  9. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes

    DEFF Research Database (Denmark)

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B

    2015-01-01

    understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each...

  10. Expression of a novel cardiac-specific tropomyosin isoform in humans

    International Nuclear Information System (INIS)

    Denz, Christopher R.; Narshi, Aruna; Zajdel, Robert W.; Dube, Dipak K.

    2004-01-01

    Tropomyosins are a family of actin binding proteins encoded by a group of highly conserved genes. Humans have four tropomyosin-encoding genes: TPM1, TPM2, TPM3, and TPM4, each of which is known to generate multiple isoforms by alternative splicing, promoters, and 3 ' end processing. TPM1 is the most versatile and encodes a variety of tissue specific isoforms. The TPM1 isoform specific to striated muscle, designated TPM1α, consists of 10 exons: 1a, 2b, 3, 4, 5, 6b, 7, 8, and 9a/b. In this study, using RT-PCR with adult and fetal human RNAs, we present evidence for the expression of a novel isoform of the TPM1 gene that is specifically expressed in cardiac tissues. The new isoform is designated TPM1κ and contains exon 2a instead of 2b. Ectopic expression of human GFP.TPM1κ fusion protein can promote myofibrillogenesis in cardiac mutant axolotl hearts that are lacking in tropomyosin

  11. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    Science.gov (United States)

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  12. Functional studies of sodium pump isoforms

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob

    The Na+,K+-ATPase is an essential ion pump found in all animal cells. It uses the energy from ATP hydrolysis to export three Na+ and import two K+, both against their chemical gradients and for Na+ also against the electrical potential. Mammals require four Na+,K+-ATPase isoforms that each have...... unique expression profiles and specialized functional features. We use a Two Electrode Voltage Clamp setup to determine pre-steady-state and steady-state characteristics of each isoform and design chimeras to pin-point the structural elements responsible for observed differences. With this strategy we...

  13. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi

    2011-01-01

    The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can...... be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI...... (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI...

  14. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain

    Directory of Open Access Journals (Sweden)

    Hisayo Sadamoto

    2010-05-01

    Full Text Available Cyclic AMP-responsive element binding protein1 (CREB1 has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1 mRNA isoforms of spliced variants in the central nervous system (CNS of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.

  15. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.

  16. Differential Signature of the Centrosomal MARK4 Isoforms in Glioma

    Directory of Open Access Journals (Sweden)

    Ivana Magnani

    2011-01-01

    Full Text Available Background: MAP/microtubule affinity-regulating kinase 4 (MARK4 is a serine-threonine kinase expressed in two spliced isoforms, MARK4L and MARK4S, of which MARK4L is a candidate for a role in neoplastic transformation. Methods: We performed mutation analysis to identify sequence alterations possibly affecting MARK4 expression. We then investigated the MARK4L and MARK4S expression profile in 21 glioma cell lines and 36 tissues of different malignancy grades, glioblastoma-derived cancer stem cells (GBM CSCs and mouse neural stem cells (NSCs by real-time PCR, immunoblotting and immunohistochemistry. We also analyzed the sub-cellular localisation of MARK4 isoforms in glioma and normal cell lines by immunofluorescence. Results: Mutation analysis rules out sequence variations as the cause of the altered MARK4 expression in glioma. Expression profiling confirms that MARK4L is the predominant isoform, whereas MARK4S levels are significantly decreased in comparison and show an inverse correlation with tumour grade. A high MARK4L/MARK4S ratio also characterizes undifferentiated cells, such as GBM CSCs and NSCs. Accordingly, only MARK4L is expressed in brain neurogenic regions. Moreover, while both MARK4 isoforms are localised to the centrosome and midbody in glioma and normal cells, the L isoform exhibits an additional nucleolar localisation in tumour cells. Conclusions: The observed switch towards MARK4L suggests that the balance between the MARK4 isoforms is carefully guarded during neural differentiation but may be subverted in gliomagenesis. Moreover, the MARK4L nucleolar localisation in tumour cells features this MARK4 isoform as a nucleolus-associated tumour marker.

  17. Finer Distinctions: Variability in Satisfied Older Couples' Problem-Solving Behaviors.

    Science.gov (United States)

    Rauer, Amy; Williams, Leah; Jensen, Jakob

    2017-06-01

    This study utilized observational and self-report data from 64 maritally satisfied and stable older couples to explore if there were meaningful differences in how couples approached marital disagreements. Using a typology approach to classify couples based on their behaviors in a 15-minute problem-solving interaction, findings revealed four types of couples: (1) problem solvers (characterized by both spouses' higher problem-solving skills and warmth), (2) supporters (characterized by both spouses' notable warmth), (3) even couples (characterized by both spouses' moderate problem-solving skills and warmth), and (4) cool couples (characterized by both spouses' greater negativity and lower problem-solving skills and warmth). Despite the differences in these behaviors, all couples had relatively high marital satisfaction and functioning. However, across nearly all indices, spouses in the cool couple cluster reported poorer marital functioning, particularly when compared to the problem solvers and supporters. These findings suggest that even modest doses of negativity (e.g., eye roll) may be problematic for some satisfied couples later in life. The implications of these typologies are discussed as they pertain to practitioners' efforts to tailor their approaches to a wider swath of the population. © 2015 Family Process Institute.

  18. Developmental changes in circulating IL-8/CXCL8 isoforms in neonates.

    Science.gov (United States)

    Maheshwari, Akhil; Voitenok, Nikolai N; Akalovich, Svetlana; Shaik, Sadiq S; Randolph, David A; Sims, Brian; Patel, Rakesh P; Killingsworth, Cheryl R; Fallon, Michael B; Ohls, Robin K

    2009-04-01

    Interleukin-8 (IL-8/CXCL8) is widely expressed in fetal tissues although inflammatory changes are not seen. Circulating IL-8 is comprised of an endothelial-derived [ala-IL-8](77) isoform and another, more potent [ser-IL-8](72) secreted by most other cells; [ala-IL-8](77) can be converted into [ser-IL-8](72) by proteolytic removal of an N-terminal pentapeptide from [ala-IL-8](77). In this study, we show [ala-IL-8](77) is the predominant circulating isoform of IL-8 in premature neonates but not in term neonates/adults, who have [ser-IL-8](72) as the major isoform. This isoform switch from the less potent [ala-IL-8](77) to [ser-IL-8](72) correlates with a maturational increase in the neutrophil chemotactic potency of plasma IL-8. The emergence of [ser-IL-8](72) as the major isoform is likely due to increased plasma [ala-IL-8](77)-convertase activity and/or changes in the cellular sources of IL-8. Developmental changes in IL-8 isoforms may serve to minimize its inflammatory effects in the fetus and also provide a mechanism to restore its full activity after birth.

  19. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor.

    Science.gov (United States)

    Prabha, Swayam; Rao, Desirazu N; Nagaraja, Valakunja

    2011-04-29

    Transcription coupled nucleotide excision repair (TC-NER) is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd) is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd) is 1234 amino-acids long harboring characteristic modules for different activities. Mtbmfd complemented Escherichia coli mfd (Ecomfd) deficient strain, enhanced survival of UV irradiated cells and increased the road-block repression in vivo. The protein exhibited ATPase activity, which was stimulated ∼1.5-fold in the presence of DNA. While the C-terminal domain (CTD) comprising amino acids 630 to 1234 showed ∼2-fold elevated ATPase activity than MtbMfd, the N-terminal domain (NTD) containing the first 433 amino acid residues was able to bind ATP but deficient in hydrolysis. Overexpression of NTD of MtbMfd led to growth defect and hypersensitivity to UV light. Deletion of 184 amino acids from the C-terminal end of MtbMfd (MfdΔC) increased the ATPase activity by ∼10-fold and correspondingly exhibited efficient translocation along DNA as compared to the MtbMfd and CTD. Surprisingly, MtbMfd was found to be distributed in monomer and hexamer forms both in vivo and in vitro and the monomer showed increased susceptibility to proteases compared to the hexamer. MfdΔC, on the other hand, was predominantly monomeric in solution implicating the extreme C-terminal region in oligomerization of the protein. Thus, although the MtbMfd resembles EcoMfd in many of its reaction characteristics, some of its hitherto unknown distinct properties hint at its species specific role in mycobacteria during transcription-coupled repair.

  20. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor.

    Directory of Open Access Journals (Sweden)

    Swayam Prabha

    Full Text Available Transcription coupled nucleotide excision repair (TC-NER is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd is 1234 amino-acids long harboring characteristic modules for different activities. Mtbmfd complemented Escherichia coli mfd (Ecomfd deficient strain, enhanced survival of UV irradiated cells and increased the road-block repression in vivo. The protein exhibited ATPase activity, which was stimulated ∼1.5-fold in the presence of DNA. While the C-terminal domain (CTD comprising amino acids 630 to 1234 showed ∼2-fold elevated ATPase activity than MtbMfd, the N-terminal domain (NTD containing the first 433 amino acid residues was able to bind ATP but deficient in hydrolysis. Overexpression of NTD of MtbMfd led to growth defect and hypersensitivity to UV light. Deletion of 184 amino acids from the C-terminal end of MtbMfd (MfdΔC increased the ATPase activity by ∼10-fold and correspondingly exhibited efficient translocation along DNA as compared to the MtbMfd and CTD. Surprisingly, MtbMfd was found to be distributed in monomer and hexamer forms both in vivo and in vitro and the monomer showed increased susceptibility to proteases compared to the hexamer. MfdΔC, on the other hand, was predominantly monomeric in solution implicating the extreme C-terminal region in oligomerization of the protein. Thus, although the MtbMfd resembles EcoMfd in many of its reaction characteristics, some of its hitherto unknown distinct properties hint at its species specific role in mycobacteria during transcription-coupled repair.

  1. Crystallization and Identification of the Glycosylated Moieties of Two Isoforms of the Main Allergen Hev b 2 and Preliminary X-ray Analysis of Two Polymorphs of Isoform ll

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes-Silva,D.; Mendoza-Hernandez, G.; Stojanoff, V.; Palomares, L.; Zenteno, E.; Torres-Larios, A.; Rodriguez-Romero, A.

    2007-01-01

    Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a {beta}-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content consisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapor-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 {angstrom} were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 {angstrom}, {beta}= 113.6{sup o}. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  2. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes-Silva, D. [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Mendoza-Hernández, G. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Stojanoff, V. [Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY (United States); Palomares, L. A. [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Zenteno, E. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Torres-Larios, A. [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Rodríguez-Romero, A., E-mail: adela@servidor.unam.mx [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico)

    2007-09-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  3. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    International Nuclear Information System (INIS)

    Fuentes-Silva, D.; Mendoza-Hernández, G.; Stojanoff, V.; Palomares, L. A.; Zenteno, E.; Torres-Larios, A.; Rodríguez-Romero, A.

    2007-01-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4 1 with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units

  4. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles

    Directory of Open Access Journals (Sweden)

    Syamalima Dube

    2017-06-01

    Full Text Available In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM, a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4 generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversity in the horse is very limited. Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively. By qRT-PCR using both relative expression and copy number, we have shown that TPM1α expression compared to TPM1κ is very high in heart. On the other hand, the expression of TPM1α is higher in skeletal muscle compared to heart. Further, the expression of TPM2α and TPM3α are higher in skeletal muscle compared to heart. Using western blot analyses with CH1 monoclonal antibody we have shown the high expression levels of sarcomeric TPM proteins in cardiac and skeletal muscle. Due to the paucity of isoform specific antibodies we cannot specifically detect the expression of TPM1κ in horse striated muscle. To the best of our knowledge this is the very first report on the characterization of sarcmeric TPMs in horse striated muscle.

  5. Novel isoforms of Dlg are fundamental for neuronal development in Drosophila.

    Science.gov (United States)

    Mendoza, Carolina; Olguín, Patricio; Lafferte, Gabriela; Thomas, Ulrich; Ebitsch, Susanne; Gundelfinger, Eckart D; Kukuljan, Manuel; Sierralta, Jimena

    2003-03-15

    Drosophila discs-large (dlg) mutants exhibit multiple developmental abnormalities, including severe defects in neuronal differentiation and synaptic structure and function. These defects have been ascribed to the loss of a single gene product, Dlg-A, a scaffold protein thought to be expressed in many cell types. Here, we describe that additional isoforms arise as a consequence of different transcription start points and alternative splicing of dlg. At least five different dlg gene products are predicted. We identified a subset of dlg-derived cDNAs that include novel exons encoding a peptide homologous to the N terminus of the mammalian protein SAP97/hDLG (S97N). Dlg isoforms containing the S97N domain are expressed at larval neuromuscular junctions and within the CNS of both embryos and larvae but are not detectable in epithelial tissues. Strong hypomorphic dlg alleles exhibit decreased expression of S97N, which may account for neural-specific aspects of the pleiomorphic dlg mutant phenotype. Selective inhibition of the expression of S97N-containing proteins in embryos by double-strand RNA leads to severe defects in neuronal differentiation and axon guidance, without overt perturbations in epithelia. These results indicate that the differential expression of dlg products correlates with distinct functions in non-neural and neural cells. During embryonic development, proteins that include the S97N domain are essential for proper neuronal differentiation and organization, acting through mechanisms that may include the adequate localization of cell fate determinants.

  6. Ablation of whirlin long isoform disrupts the USH2 protein complex and causes vision and hearing loss.

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2010-05-01

    Full Text Available Mutations in whirlin cause either Usher syndrome type II (USH2, a deafness-blindness disorder, or nonsyndromic deafness. The molecular basis for the variable disease expression is unknown. We show here that only the whirlin long isoform, distinct from a short isoform by virtue of having two N-terminal PDZ domains, is expressed in the retina. Both long and short isoforms are expressed in the inner ear. The N-terminal PDZ domains of the long whirlin isoform mediates the formation of a multi-protein complex that includes usherin and VLGR1, both of which are also implicated in USH2. We localized this USH2 protein complex to the periciliary membrane complex (PMC in mouse photoreceptors that appears analogous to the frog periciliary ridge complex. The latter is proposed to play a role in photoreceptor protein trafficking through the connecting cilium. Mice carrying a targeted disruption near the N-terminus of whirlin manifest retinal and inner ear defects, reproducing the clinical features of human USH2 disease. This is in contrast to mice with mutations affecting the C-terminal portion of whirlin in which the phenotype is restricted to the inner ear. In mice lacking any one of the USH2 proteins, the normal localization of all USH2 proteins is disrupted, and there is evidence of protein destabilization. Taken together, our findings provide new insights into the pathogenic mechanism of Usher syndrome. First, the three USH2 proteins exist as an obligatory functional complex in vivo, and loss of one USH2 protein is functionally close to loss of all three. Second, defects in the three USH2 proteins share a common pathogenic process, i.e., disruption of the PMC. Third, whirlin mutations that ablate the N-terminal PDZ domains lead to Usher syndrome, but non-syndromic hearing loss will result if they are spared.

  7. The Role of Akt Isoforms in Colorectal Cancer

    Science.gov (United States)

    2015-09-01

    AD_________________ Award Number: W81XWH-13-1-0198 TITLE: The Role of Akt Isoforms in Colorectal Cancer PRINCIPAL INVESTIGATOR: Jatin Roper...CONTRACT NUMBER The Role of Akt Isoforms in Colorectal Cancer 5b. GRANT NUMBER W81XWH-13-1-0198 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...substantially reduces colorectal tumorigenesis in our genetically engineered mouse model. We also successfully ablated novel downstream targets of Akt in our

  8. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells

    OpenAIRE

    Erb, Ulrike; Megaptche, Amelie Pajip; Gu, Xiaoyu; Büchler, Markus W; Zöller, Margot

    2014-01-01

    Background A blockade of CD44 is considered a therapeutic option for the elimination of leukemia initiating cells. However, anti-panCD44 can interfere with hematopoiesis. Therefore we explored, whether a CD44 variant isoform (CD44v)-specific antibody can inhibit leukemia growth without attacking hematopoiesis. As a model we used CD44v10 transfected EL4 thymoma cells (EL4-v10). Methods The therapeutic efficacy of anti-panCD44 and anti-CD44v10 was evaluated after intravenous application of EL4/...

  9. The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release.

    Science.gov (United States)

    Obis, Teresa; Besalduch, Núria; Hurtado, Erica; Nadal, Laura; Santafe, Manel M; Garcia, Neus; Tomàs, Marta; Priego, Mercedes; Lanuza, Maria A; Tomàs, Josep

    2015-02-10

    Protein kinase C (PKC) regulates a variety of neural functions, including neurotransmitter release. Although various PKC isoforms can be expressed at the synaptic sites and specific cell distribution may contribute to their functional diversity, little is known about the isoform-specific functions of PKCs in neuromuscular synapse. The present study is designed to examine the location of the novel isoform nPKCε at the neuromuscular junction (NMJ), their synaptic activity-related expression changes, its regulation by muscle contraction, and their possible involvement in acetylcholine release. We use immunohistochemistry and confocal microscopy to demonstrate that the novel isoform nPKCε is exclusively located in the motor nerve terminals of the adult rat NMJ. We also report that electrical stimulation of synaptic inputs to the skeletal muscle significantly increased the amount of nPKCε isoform as well as its phosphorylated form in the synaptic membrane, and muscle contraction is necessary for these nPKCε expression changes. The results also demonstrate that synaptic activity-induced muscle contraction promotes changes in presynaptic nPKCε through the brain-derived neurotrophic factor (BDNF)-mediated tyrosine kinase receptor B (TrkB) signaling. Moreover, nPKCε activity results in phosphorylation of the substrate MARCKS involved in actin cytoskeleton remodeling and related with neurotransmission. Finally, blocking nPKCε with a nPKCε-specific translocation inhibitor peptide (εV1-2) strongly reduces phorbol ester-induced ACh release potentiation, which further indicates that nPKCε is involved in neurotransmission. Together, these results provide a mechanistic insight into how synaptic activity-induced muscle contraction could regulate the presynaptic action of the nPKCε isoform and suggest that muscle contraction is an important regulatory step in TrkB signaling at the NMJ.

  10. Proteomic Analysis of Parkin Isoforms Expression in Different Rat Brain Areas.

    Science.gov (United States)

    D'Amico, Agata Grazia; Maugeri, Grazia; Reitano, Rita; Cavallaro, Sebastiano; D'Agata, Velia

    2016-10-01

    PARK2 gene's mutations are related to the familial form of juvenile Parkinsonism, also known as the autosomic recessive juvenile Parkinsonism. This gene encodes for parkin, a 465-amino acid protein. To date, a large number of parkin isoforms, generated by an alternative splicing mechanism, have been described. Currently, Gene Bank lists 27 rat PARK2 transcripts, which matches to 20 exclusive parkin alternative splice variants. Despite the existence of these isoforms, most of the studies carried out so far, have been focused only on the originally cloned parkin. In this work we have analyzed the expression profile of parkin isoforms in some rat brain areas including prefrontal cortex, hippocampus, substantia nigra and cerebellum. To discriminate among these isoforms, we detected their localization through the use of two antibodies that are able to identify different domains of the parkin canonical sequence. Our analysis has revealed that at least fourteen parkin isoforms are expressed in rat brain with a various distribution in the regions analyzed. Our study might help to elucidate the pathophysiological role of these proteins in the central nervous system.

  11. Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for Alzheimer disease pathogenesis.

    Science.gov (United States)

    Kyriazis, George A; Wei, Zelan; Vandermey, Miriam; Jo, Dong-Gyu; Xin, Ouyang; Mattson, Mark P; Chan, Sic L

    2008-09-12

    Central to the pathogenesis of Alzheimer disease is the aberrant processing of the amyloid precursor protein (APP) to generate amyloid beta-peptide (Abeta), the principle component of amyloid plaques. The cell fate determinant Numb is a phosphotyrosine binding domain (PTB)-containing endocytic adapter protein that interacts with the carboxyl-terminal domain of APP. The physiological relevance of this interaction is unknown. Mammals produce four alternatively spliced variants of Numb that differ in the length of their PTB and proline-rich region. In the current study, we determined the influence of the four human Numb isoforms on the intracellular trafficking and processing of APP. Stable expression of Numb isoforms that differ in the PTB but not in the proline-rich region results in marked differences in the sorting of APP to the recycling and degradative pathways. Neural cells expressing Numb isoforms that lack the insert in the PTB (short PTB (SPTB)) exhibited marked accumulation of APP in Rab5A-labeled early endosomal and recycling compartments, whereas those expressing isoforms with the insertion in the PTB (long PTB (LPTB)) exhibited reduced amounts of cellular APP and its proteolytic derivatives relative to parental control cells. Neither the activities of the beta- and gamma-secretases nor the expression of APP mRNA were significantly different in the stably transfected cells, suggesting that the differential effects of the Numb proteins on APP metabolism is likely to be secondary to altered APP trafficking. In addition, the expression of SPTB-Numb increases at the expense of LPTB-Numb in neuronal cultures subjected to stress, suggesting a role for Numb in stress-induced Abeta production. Taken together, these results suggest distinct roles for the human Numb isoforms in APP metabolism and may provide a novel potential link between altered Numb isoform expression and increased Abeta generation.

  12. Network-Based Isoform Quantification with RNA-Seq Data for Cancer Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-12-01

    Full Text Available High-throughput mRNA sequencing (RNA-Seq is widely used for transcript quantification of gene isoforms. Since RNA-Seq data alone is often not sufficient to accurately identify the read origins from the isoforms for quantification, we propose to explore protein domain-domain interactions as prior knowledge for integrative analysis with RNA-Seq data. We introduce a Network-based method for RNA-Seq-based Transcript Quantification (Net-RSTQ to integrate protein domain-domain interaction network with short read alignments for transcript abundance estimation. Based on our observation that the abundances of the neighboring isoforms by domain-domain interactions in the network are positively correlated, Net-RSTQ models the expression of the neighboring transcripts as Dirichlet priors on the likelihood of the observed read alignments against the transcripts in one gene. The transcript abundances of all the genes are then jointly estimated with alternating optimization of multiple EM problems. In simulation Net-RSTQ effectively improved isoform transcript quantifications when isoform co-expressions correlate with their interactions. qRT-PCR results on 25 multi-isoform genes in a stem cell line, an ovarian cancer cell line, and a breast cancer cell line also showed that Net-RSTQ estimated more consistent isoform proportions with RNA-Seq data. In the experiments on the RNA-Seq data in The Cancer Genome Atlas (TCGA, the transcript abundances estimated by Net-RSTQ are more informative for patient sample classification of ovarian cancer, breast cancer and lung cancer. All experimental results collectively support that Net-RSTQ is a promising approach for isoform quantification. Net-RSTQ toolbox is available at http://compbio.cs.umn.edu/Net-RSTQ/.

  13. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution

    DEFF Research Database (Denmark)

    Aachmann-Andersen, Niels Jacob; Just Christensen, Søren; Lisbjerg, Kristian

    2014-01-01

    The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross......-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13); high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13); or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N......-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI...

  14. NHS-A isoform of the NHS gene is a novel interactor of ZO-1.

    Science.gov (United States)

    Sharma, Shiwani; Koh, Katrina S Y; Collin, Caitlin; Dave, Alpana; McMellon, Amy; Sugiyama, Yuki; McAvoy, John W; Voss, Anne K; Gécz, Jozef; Craig, Jamie E

    2009-08-15

    Mutations in the NHS (Nance-Horan Syndrome) gene lead to severe congenital cataracts, dental defects and sometimes mental retardation. NHS encodes two protein isoforms, NHS-A and -1A that display cell-type dependent differential expression and localization. Here we demonstrate that of these two isoforms, the NHS-A isoform associates with the cell membrane in the presence of intercellular contacts and it immunoprecipitates with the tight junction protein ZO-1 in MDCK (Madin Darby Canine Kidney) epithelial cells and in neonatal rat lens. The NHS-1A isoform however is a cytoplasmic protein. Both Nhs isoforms are expressed during mouse development. Immunolabelling of developing mouse with the anti-NHS antibody that detects both isoforms revealed the protein in the developing head including the eye and brain. It was primarily expressed in epithelium including neural epithelium and certain vascular endothelium but only weakly expressed in mesenchymal cells. In the epithelium and vascular endothelium the protein associated with the cell membrane and co-localized with ZO-1, which indirectly indicates expression of the Nhs-A isoform in these structures. Membrane localization of the protein in the lens vesicle similarly supports Nhs-A expression. In conclusion, the NHS-A isoform of NHS is a novel interactor of ZO-1 and may have a role at tight junctions. This isoform is important in mammalian development especially of the organs in the head.

  15. Mena invasive (Mena(INV)) and Mena11a isoforms play distinct roles in breast cancer cell cohesion and association with TMEM.

    Science.gov (United States)

    Roussos, Evanthia T; Goswami, Sumanta; Balsamo, Michele; Wang, Yarong; Stobezki, Robert; Adler, Esther; Robinson, Brian D; Jones, Joan G; Gertler, Frank B; Condeelis, John S; Oktay, Maja H

    2011-08-01

    Mena, an actin regulatory protein, functions at the convergence of motility pathways that drive breast cancer cell invasion and migration in vivo. The tumor microenvironment spontaneously induces both increased expression of the Mena invasive (Mena(INV)) and decreased expression of Mena11a isoforms in invasive and migratory tumor cells. Tumor cells with this Mena expression pattern participate with macrophages in migration and intravasation in mouse mammary tumors in vivo. Consistent with these findings, anatomical sites containing tumor cells with high levels of Mena expression associated with perivascular macrophages were identified in human invasive ductal breast carcinomas and called TMEM. The number of TMEM sites positively correlated with the development of distant metastasis in humans. Here we demonstrate that mouse mammary tumors generated from EGFP-Mena(INV) expressing tumor cells are significantly less cohesive and have discontinuous cell-cell contacts compared to Mena11a xenografts. Using the mouse PyMT model we show that metastatic mammary tumors express 8.7 fold more total Mena and 7.5 fold more Mena(INV) mRNA than early non-metastatic ones. Furthermore, Mena(INV) expression in fine needle aspiration biopsy (FNA) samples of human invasive ductal carcinomas correlate with TMEM score while Mena11a does not. These results suggest that Mena(INV) is the isoform associated with breast cancer cell discohesion, invasion and intravasation in mice and in humans. They also imply that Mena(INV) expression and TMEM score measure related aspects of a common tumor cell dissemination mechanism and provide new insight into metastatic risk.

  16. Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform

    Directory of Open Access Journals (Sweden)

    Fahad Benthani

    2015-05-01

    Full Text Available Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.

  17. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase.

    Science.gov (United States)

    Reith, A D; Ellis, C; Lyman, S D; Anderson, D M; Williams, D E; Bernstein, A; Pawson, T

    1991-09-01

    Germline mutations at the Dominant White Spotting (W) and Steel (Sl) loci have provided conclusive genetic evidence that c-kit mediated signal transduction pathways are essential for normal mouse development. We have analysed the interactions of normal and mutant W/c-kit gene products with cytoplasmic signalling proteins, using transient c-kit expression assays in COS cells. In addition to the previously identified c-kit gene product (Kit+), a second normal Kit isoform (KitA+) containing an in-frame insertion, Gly-Asn-Asn-Lys, within the extracellular domain, was detected in murine mast cell cultures and mid-gestation placenta. Both Kit+ and KitA+ isoforms showed increased autophosphorylation and enhanced association with phosphatidylinositol (PI) 3' kinase and PLC gamma 1, when stimulated with recombinant soluble Steel factor. No association or increase in phosphorylation of GAP and two GAP-associated proteins, p62 and p190, was observed. The two isoforms had distinct activities in the absence of exogenous soluble Steel factor; Kit+, but not KitA+, showed constitutive tyrosine phosphorylation that was accompanied by a low constitutive level of association with PI-3' kinase and PLC gamma 1. Introduction of the point substitutions associated with W37 (Glu582----Lys) or W41 (Val831----Met) mutant alleles into c-kit expression constructs abolished (W37) or reduced (W41) the Steel factor-induced association of the Kit receptor with signalling proteins in a manner proportional to the overall severity of the corresponding W mutant phenotype. These data suggest a diversity of normal Kit signalling pathways and indicate that W mutant phenotypes result from primary defects in the Kit receptor that affect its interaction with cytoplasmic signalling proteins.

  18. Skeletal muscle excitation-contraction coupling: who are the dancing partners?

    Science.gov (United States)

    Rebbeck, Robyn T; Karunasekara, Yamuna; Board, Philip G; Beard, Nicole A; Casarotto, Marco G; Dulhunty, Angela F

    2014-03-01

    There is an overwhelming body of work supporting the idea that excitation-contraction coupling in skeletal muscle depends on a physical interaction between the skeletal muscle isoform of the dihydropyridine receptor L-type Ca(2+) channel and the skeletal isoform of the ryanodine receptor Ca(2+) release channel. A general assumption is that this physical interaction is between "critical" residues that have been identified in the II-III loop of the dihydropyridine receptor alpha subunit and the ryanodine receptor. However, despite extensive searches, the complementary "critical" residues in the ryanodine receptor have not been identified. This raises the possibility that the coupling proceeds either through other subunits of the dihydropyridine receptor and/or other co-proteins within the large RyR1 protein complex. There have been some remarkable advances in recent years in identifying proteins in the RyR complex that impact on the coupling process, and these are considered in this review. A major candidate for a role in the coupling mechanism is the beta subunit of the dihydropyridine receptor, because specific residues in both the beta subunit and ryanodine receptor have been identified that facilitate an interaction between the two proteins and these also impact on excitation-contraction coupling. This role of beta subunit remains to be fully investigated as well as the degree to which it may complement any other direct or indirect voltage-dependent coupling interactions between the DHPR alpha II-III loop and the ryanodine receptor. Copyright © 2014. Published by Elsevier Ltd.

  19. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms.

    Directory of Open Access Journals (Sweden)

    Sundarapandian Thangapandian

    Full Text Available Histone deacetylases (HDACs have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively. We have identified the equivalent tunnel forming amino acids in these three isoforms and found that they are very much conserved with subtle differences to be utilized in selective inhibitor development. One amino acid, methionine of HDAC8, among six tunnel forming residues is different in isoforms of other classes (glutamic acid (E in HDAC10 and leucine (L in HDAC 11 based on which mutations were introduced in HDAC11, the less studied HDAC isoform, to observe the effects of this change. The HDAC8-like (L268M mutation in the tunnel forming residues has almost maintained the deep and narrow tunnel as present in HDAC8 whereas HDAC10-like (L268E mutation has changed the tunnel wider and shallow as observed in HDAC10. These results explained the importance of the single change in the tunnel formation in different isoforms. The observations from this study can be utilized in the development of isoform-selective HDAC inhibitors.

  20. An abnormally glycosylated isoform of erythropoietin in hemangioblastoma is associated with polycythemia.

    Science.gov (United States)

    Delanghe, Sigurd E; Dierick, Jan; Maenhout, Thomas M; Zabeau, Lennart; Tavernier, Jan; Claes, Kathleen; Bleyen, Joris; Delanghe, Joris R

    2015-01-01

    Hemangioblastomas express erythropoietin and the patients often present with polycythemia. Serum erythropoietin was measured using a commercial immunoassay, a functional erythropoietin assay and iso-electric focusing. Despite the polycythemia, serum erythropoietin remained low, while a functional erythropoietin-assay showed a 4-5 higher activity in serum compared to the immunoassay. Iso-electric focusing of serum erythropoietin indicated overrepresentation of highly sialylated erythropoietin isoforms produced by the tumor. As a result, altered affinity of the monoclonal antibody used in the immunoassay for the hypersialylated isoforms was suggested. Analysis of erythropoietin isoforms may be helpful in distinguishing the ectopic erythropoietin isoforms from normally glycosylated erythropoietin. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120

    DEFF Research Database (Denmark)

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D

    2016-01-01

    of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment...... activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode...

  2. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism

    Science.gov (United States)

    Gates, Simon; Miners, John O

    1999-01-01

    Aims The plasma clearance of theobromine (TB; 3,7-dimethylxanthine) is known to be induced in cigarette smokers. To determine whether TB may serve as a model substrate for cytochrome P450 (CYP) 1A2, or possibly other isoforms, studies were undertaken to identify the individual human liver microsomal CYP isoforms responsible for the conversion of TB to its primary metabolites. Methods The kinetics of formation of the primary TB metabolites 3-methylxanthine (3-MX), 7-methylxanthine (7-MX) and 3,7-dimethyluric acid (3,7-DMU) by human liver microsomes were characterized using a specific hplc procedure. Effects of CYP isoform-selective xenobiotic inhibitor/substrate probes on each pathway were determined and confirmatory studies with recombinant enzymes were performed to define the contribution of individual isoforms to 3-MX, 7-MX and 3,7-DMU formation. Results The CYP1A2 inhibitor furafylline variably inhibited (0–65%) 7-MX formation, but had no effect on other pathways. Diethyldithiocarbamate and 4-nitrophenol, probes for CYP2E1, inhibited the formation of 3-MX, 7-MX and 3,7-DMU by ≈55–60%, 35–55% and 85%, respectively. Consistent with the microsomal studies, recombinant CYP1A2 and CYP2E1 exhibited similar apparent Km values for 7-MX formation and CYP2E1 was further shown to have the capacity to convert TB to both 3-MX and 3,7-DMU. Conclusions Given the contribution of multiple isoforms to 3-MX and 7-MX formation and the negligible formation of 3,7-DMU in vivo, TB is of little value as a CYP isoform-selective substrate in humans. PMID:10215755

  3. Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies

    Directory of Open Access Journals (Sweden)

    Heger Christopher D

    2010-12-01

    Full Text Available Abstract Background Prolactin is a polypeptide hormone responsible for proliferation and differentiation of the mammary gland. More recently, prolactin's role in mammary carcinogenesis has been studied with greater interest. Studies from our laboratory and from others have demonstrated that three specific isoforms of the prolactin receptor (PRLR are expressed in both normal and cancerous breast cells and tissues. Until now, reliable isoform specific antibodies have been lacking. We have prepared and characterized polyclonal antibodies against each of the human PRLR isoforms that can effectively be used to characterize human breast cancers. Methods Rabbits were immunized with synthetic peptides of isoform unique regions and immune sera affinity purified prior to validation by Western blot and immunohistochemical analyses. Sections of ductal and lobular carcinomas were stained with each affinity purified isoform specific antibody to determine expression patterns in breast cancer subclasses. Results We show that the rabbit antibodies have high titer and could specifically recognize each isoform of PRLR. Differences in PRLR isoform expression levels were observed and quantified using histosections from xenografts of established human breast cancer cells lines, and ductal and lobular carcinoma human biopsy specimens. In addition, these results were verified by real-time PCR with isoform specific primers. While nearly all tumors contained LF and SF1b, the majority (76% of ductal carcinoma biopsies expressed SF1a while the majority of lobular carcinomas lacked SF1a staining (72% and 27% had only low levels of expression. Conclusions Differences in the receptor isoform expression profiles may be critical to understanding the role of PRL in mammary tumorigenesis. Since these antibodies are specifically directed against each PRLR isoform, they are valuable tools for the evaluation of breast cancer PRLR content and have potential clinical importance in

  4. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    Science.gov (United States)

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  5. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity

    DEFF Research Database (Denmark)

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T

    2014-01-01

    sequence influenced their activity and required modification, which we carried out based on previous in vitro work. Significantly, the modified T2 and T3 sensors were activated only in cells lacking their corresponding isozymes. Thus, we have developed T2- and T3-specific sensors that will be valuable......Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms....... Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors. Here we describe the development of T2- and T3-isoform specific fluorescence sensors that traffic in the secretory pathway. Each sensor yielded little signal...

  6. Evolution of the cAMP-dependent protein kinase (PKA catalytic subunit isoforms.

    Directory of Open Access Journals (Sweden)

    Kristoffer Søberg

    Full Text Available The 3',5'-cyclic adenosine monophosphate (cAMP-dependent protein kinase, or protein kinase A (PKA, pathway is one of the most versatile and best studied signaling pathways in eukaryotic cells. The two paralogous PKA catalytic subunits Cα and Cβ, encoded by the genes PRKACA and PRKACB, respectively, are among the best understood model kinases in signal transduction research. In this work, we explore and elucidate the evolution of the alternative 5' exons and the splicing pattern giving rise to the numerous PKA catalytic subunit isoforms. In addition to the universally conserved Cα1/Cβ1 isoforms, we find kinase variants with short N-termini in all main vertebrate classes, including the sperm-specific Cα2 isoform found to be conserved in all mammals. We also describe, for the first time, a PKA Cα isoform with a long N-terminus, paralogous to the PKA Cβ2 N-terminus. An analysis of isoform-specific variation highlights residues and motifs that are likely to be of functional importance.

  7. Novel frataxin isoforms may contribute to the pathological mechanism of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Haiyan Xia

    Full Text Available Friedreich ataxia (FRDA is an inherited neurodegenerative disease caused by frataxin (FXN deficiency. The nervous system and heart are the most severely affected tissues. However, highly mitochondria-dependent tissues, such as kidney and liver, are not obviously affected, although the abundance of FXN is normally high in these tissues. In this study we have revealed two novel FXN isoforms (II and III, which are specifically expressed in affected cerebellum and heart tissues, respectively, and are functional in vitro and in vivo. Increasing the abundance of the heart-specific isoform III significantly increased the mitochondrial aconitase activity, while over-expression of the cerebellum-specific isoform II protected against oxidative damage of Fe-S cluster-containing aconitase. Further, we observed that the protein level of isoform III decreased in FRDA patient heart, while the mRNA level of isoform II decreased more in FRDA patient cerebellum compared to total FXN mRNA. Our novel findings are highly relevant to understanding the mechanism of tissue-specific pathology in FRDA.

  8. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Valeria Hansberg-Pastor

    2015-01-01

    Full Text Available The CCAAT/enhancer-binding protein beta (C/EBPβ is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle.

  9. Determinants of Isoform-Specific Gating Kinetics of hERG1 Channel: Combined Experimental and Simulation Study

    Directory of Open Access Journals (Sweden)

    Laura L. Perissinotti

    2018-04-01

    Full Text Available IKr is the rapidly activating component of the delayed rectifier potassium current, the ion current largely responsible for the repolarization of the cardiac action potential. Inherited forms of long QT syndrome (LQTS (Lees-Miller et al., 1997 in humans are linked to functional modifications in the Kv11.1 (hERG ion channel and potentially life threatening arrhythmias. There is little doubt now that hERG-related component of IKr in the heart depends on the tetrameric (homo- or hetero- channels formed by two alternatively processed isoforms of hERG, termed hERG1a and hERG1b. Isoform composition (hERG1a- vs. the b-isoform has recently been reported to alter pharmacologic responses to some hERG blockers and was proposed to be an essential factor pre-disposing patients for drug-induced QT prolongation. Very little is known about the gating and pharmacological properties of two isoforms in heart membranes. For example, how gating mechanisms of the hERG1a channels differ from that of hERG1b is still unknown. The mechanisms by which hERG 1a/1b hetero-tetramers contribute to function in the heart, or what role hERG1b might play in disease are all questions to be answered. Structurally, the two isoforms differ only in the N-terminal region located in the cytoplasm: hERG1b is 340 residues shorter than hERG1a and the initial 36 residues of hERG1b are unique to this isoform. In this study, we combined electrophysiological measurements for HEK cells, kinetics and structural modeling to tease out the individual contributions of each isoform to Action Potential formation and then make predictions about the effects of having various mixture ratios of the two isoforms. By coupling electrophysiological data with computational kinetic modeling, two proposed mechanisms of hERG gating in two homo-tetramers were examined. Sets of data from various experimental stimulation protocols (HEK cells were analyzed simultaneously and fitted to Markov-chain models (M

  10. Characterization of ß-Galactosidase Isoforms from Bacillus circulans and Their Contribution to GOS Production

    NARCIS (Netherlands)

    Warmerdam, A.; Paudel, E.; Wanqing, J.; Boom, R.M.; Janssen, A.E.M.

    2013-01-01

    A ß-galactosidase preparation from Bacillus circulans consists of four isoforms called ß-gal-A, ß-gal-B, ß-gal-C, and ß-gal-D. These isoforms differ in lactose hydrolysis and galacto-oligosaccharide (GOS) synthesis at low substrate concentrations. For this reason, using a selection of the isoforms

  11. Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms.

    Science.gov (United States)

    Bedinger, Daniel; Lao, Llewelyn; Khan, Shireen; Lee, Steve; Takeuchi, Toshihiko; Mirza, Amer M

    2016-01-01

    Transforming growth factor (TGF)β levels are elevated in, and drive the progression of, numerous disease states such as advanced metastatic cancer and systemic and ocular fibrosis. There are 3 main isoforms, TGFβ1, 2, and 3. As multiple TGFβ isoforms are involved in disease processes, maximal therapeutic efficacy may require neutralization of 2 or more of the TGFβ isoforms. Fully human antibody phage display libraries were used to discover a number of antibodies that bind and neutralize various combinations of TGFβ1, 2 or 3. The primary panning did not yield any uniformly potent pan-isoform neutralizing antibodies; therefore, an antibody that displayed potent TGFβ 1, 2 inhibition, but more modest affinity versus TGFβ3, was affinity matured by shuffling with a light chain sub-library and further screening. This process yielded a high affinity pan-isoform neutralizing clone. Antibodies were analyzed and compared by binding affinity, as well as receptor and epitope competition by surface plasmon resonance methods. The antibodies were also shown to neutralize TGFβ effects in vitro in 3 assays: 1) interleukin (IL)-4 induced HT-2 cell proliferation; 2) TGFβ-mediated IL-11 release by A549 cells; and 3) decreasing SMAD2 phosphorylation in Detroit 562 cells. The antibodies' potency in these in vitro assays correlated well with their isoform-specific affinities. Furthermore, the ability of the affinity-matured clone to decrease tumor burden in a Detroit 562 xenograft study was superior to that of the parent clone. This affinity-matured antibody acts as a very potent inhibitor of all 3 main isoforms of TGFβ and may have utility for therapeutic intervention in human disease.

  12. Functions of PDE3 Isoforms in Cardiac Muscle

    Science.gov (United States)

    Movsesian, Matthew; Ahmad, Faiyaz

    2018-01-01

    Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses. PMID:29415428

  13. Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia.

    Science.gov (United States)

    Radl, Daniela; De Mei, Claudia; Chen, Eric; Lee, Hyuna; Borrelli, Emiliana

    2013-06-01

    Dopamine acting through D2 receptors (D2Rs) controls lactotroph proliferation and prolactin (PRL) levels. Ablation of this receptor in mice results in lactotroph hyperplasia and prolactinomas in aged females. Alternative splicing of the Drd2 gene generates 2 independent isoforms, a long (D2L) and a short (D2S) isoform, which are present in all D2R-expressing cells. Here, we addressed the role of D2L and D2S on lactotroph physiology through the generation and analysis of D2S-null mice and their comparison with D2L-null animals. These mice represent a valuable tool with which to investigate dopamine-dependent isoform-specific signaling in the pituitary gland. We sought to assess the existence of a more prominent role of D2L or D2S in controlling PRL expression and lactotroph hyperplasia. Importantly, we found that D2L and D2S are specifically linked to independent transduction pathways in the pituitary. D2L-mediated signaling inhibits the AKT/protein kinase B kinase activity whereas D2S, in contrast, is required for the activation of the ERK 1/2 pathway. Under normal conditions, presence of only 1 of the 2 D2R isoforms in vivo prevents hyperprolactinemia, formation of lactotroph's hyperplasia, and tumorigenesis that is observed when both isoforms are deleted as in D2R-/- mice. However, the protective function of the single D2R isoforms is overridden when single isoform-knockout mice are challenged by chronic estrogen treatments as they show increased PRL production and lactotroph hyperplasia. Our study indicates that signaling from each of the D2R isoforms is sufficient to maintain lactotroph homeostasis in physiologic conditions; however, signaling from both is necessary in conditions simulating pathologic states.

  14. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution.

    Directory of Open Access Journals (Sweden)

    Niels Jacob Aachmann-Andersen

    Full Text Available The membrane-assisted isoform immunoassay (MAIIA quantitates erythropoietin (EPO isoforms as percentages of migrated isoforms (PMI. We evaluated the effect of recombinant human EPO (rhEPO on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13; high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13; or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3 % (mean (SD. High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2% (p<0.00001 and 45.2 (7.3% (p<0.00001. Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8% (p<0.00001 and 46.1 (10.4% (p<0.00001. In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4% (p=0.029; low-dose Epoetin beta: 73.1 (17.8% (p=0.039. In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal.

  15. Comparison of transferrin isoform analysis by capillary electrophoresis and HPLC for screening congenital disorders of glycosylation.

    Science.gov (United States)

    Dave, Mihika B; Dherai, Alpa J; Udani, Vrajesh P; Hegde, Anaita U; Desai, Neelu A; Ashavaid, Tester F

    2018-01-01

    Transferrin, a major glycoprotein has different isoforms depending on the number of sialic acid residues present on its oligosaccharide chain. Genetic variants of transferrin as well as the primary (CDG) & secondary glycosylation defects lead to an altered transferrin pattern. Isoform analysis methods are based on charge/mass variations. We aimed to compare the performance of commercially available capillary electrophoresis CDT kit for diagnosing congenital disorders of glycosylation with our in-house optimized HPLC method for transferrin isoform analysis. The isoform pattern of 30 healthy controls & 50 CDG-suspected patients was determined by CE using a Carbohydrate-Deficient Transferrin kit. The results were compared with in-house HPLC-based assay for transferrin isoforms. Transferrin isoform pattern for healthy individuals showed a predominant tetrasialo transferrin fraction followed by pentasialo, trisialo, and disialotransferrin. Two of 50 CDG-suspected patients showed the presence of asialylated isoforms. The results were comparable with isoform pattern obtained by HPLC. The commercial controls showed a <20% CV for each isoform. Bland Altman plot showed the difference plot to be within +1.96 with no systemic bias in the test results by HPLC & CE. The CE method is rapid, reproducible and comparable with HPLC and can be used for screening Glycosylation defects. © 2017 Wiley Periodicals, Inc.

  16. In vivo human apolipoprotein E isoform fractional turnover rates in the CNS.

    Directory of Open Access Journals (Sweden)

    Kristin R Wildsmith

    Full Text Available Apolipoprotein E (ApoE is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4 each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD. Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS, we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis.

  17. Proliferation marker pKi-67 occurs in different isoforms with various cellular effects.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Finniss, Susan; Bögler, Oliver; Duchrow, Michael

    2004-04-15

    The Ki-67 antigen, pKi-67, is a commonly used proliferation marker in research and pathology. It has been recognized that the protein exists in two different splice variants that differ in one exon. In the current work, we present three new splice variants of human pKi-67 consisting of two naturally occurring isoforms and one atypical version. Additionally, data is presented indicating that alternative splicing of the pKi-67 N-terminus is common in tumor cell lines. Analyzing 93 tissues mainly consisting of brain tumor specimens, we found evidence that long and short isoform can be expressed independently of each other. Induction of mitosis in human peripheral blood mononuclear cells revealed that short pKi-67 appears earlier in the cell cycle than the long isoform and reaches its expression maximum when transcription of the latter sets in. Finally, transfection of mammalian culture cells with exon 7 (specific for the long pKi-67 isoform and not present in the short isoform) in a tetracycline regulated expression system decreased the rate of cell proliferation without affecting the cell cycle. In summary, we present evidence that the pKi-67 N-terminus is differentially spliced resulting in at least five different isoforms with different functions. Copyright 2004 Wiley-Liss, Inc.

  18. Overexpression of EMMPRIN Isoform 2 Is Associated with Head and Neck Cancer Metastasis

    OpenAIRE

    Huang, Zhiquan; Tan, Ning; Guo, Weijie; Wang, Lili; Li, Haigang; Zhang, Tianyu; Liu, Xiaojia; Xu, Qin; Li, Jinsong; Guo, Zhongmin

    2014-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a plasma membrane protein of the immunoglobulin (Ig) superfamily, has been reported to promote cancer cell invasion and metastasis in several human malignancies. However, the roles of the different EMMPRIN isoforms and their associated mechanisms in head and neck cancer progression remain unknown. Using quantitative real-time PCR, we found that EMMPRIN isoform 2 (EMMPRIN-2) was the only isoform that was overexpressed in both head and n...

  19. Coupled distinct element-finite element numerical modelling of fluid circulation in deforming sedimentary basins.

    Science.gov (United States)

    Hindle, D.; Malz, A.; Donndorf, S.; Kley, J.; Kopp, H.

    2012-04-01

    We develop a coupled numerical model for fluid flow in deforming sedimentary basins. We combine a distinct element method for large deformations of crustal materials, with a finite element method for fluid flow according to a diffusion type equation. The key question in such a model is how to simulate evolving permeabilities due to upper and possibly middle crustal deformation, and the coupled issue of how localisation of deformation in faults and shear zones is itself influenced by fluid flow and fluid pressure and vice versa. Currently our knowledge of these issues is restricted, even sketchy. There are a number of hypotheses, based partly on geological and isotope geochemical observations, such as "seismic pumping" models, and fluid induced weak décollement models for thrust sheet transport which have gained quite wide acceptance. Observations around thrusts at the present day have also often been interpreted as showing deformation induced permeability. However, combining all the physics of these processes into a numerical simulation is a complicated task given the ranges of, in particular time scales of the processes we infer to be operating based on our various observations. We start this task by using an elastic fracture relationship between normal stresses across distinct element contacts (which we consider to be the equivalent of discrete, sliding fractures) and their openness and hence their transmissivity. This relates the mechanical state of the distinct element system to a discrete permeability field. Further than that, the geometry of the mechanical system is used to provide boundary conditions for fluid flow in a diffusion equation which also incorporates the permeability field. The next question we address is how to achieve a feedback between fluid pressures and deformation. We try two approaches: one treats pore space in the DEM as real, and calculates the force exerted locally by fluids and adds this to the force balance of the model; another

  20. Cloning of human basic A1, a distinct 59-kDa dystrophin-associated protein encoded on chromosome 8q23-24

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, A.H. [Harvard Medical School, Boston, MA (United States); Yoshida, Mikiharu; Hagiwara, Yasuko; Ozawa, Eijiro [National Institute of Neuroscience, Ogawa Higashi, Kodaira (Japan); Anderson, M.S.; Feener, C.A.; Selig, S. [Howard Hughes Medical Institute at Children`s Hospital, Boston, MA (United States); Kunkel, L.M. [Harvard Medical School, Boston, MA (United States)]|[Howard Hughes Medical Institute at Children`s Hosptial, Boston, MA (United States)

    1994-05-10

    Duchenne and Becker muscular dystrophies are caused by defects of dystrophin, which forms a part of the membrane cytoskeleton of specialized cells such as muscle. It has been previously shown that the dystrophin-associated protein A1 (59-kDa DAP) is actually a heterogeneous group of phosphorylated proteins consisting of an acidic ({alpha}-A1) and a distinct basic ({beta}-A1) component. Partial peptide sequence of the A1 complex purified from rabbit muscle permitted the design of oligonucleotide probes that were used to isolate a cDNA for one human isoform of A1. This cDNA encodes a basic A1 isoform that is distinct from the recently described syntrophins in Torpedo and mouse and is expressed in many tissues with at least five distinct mRNA species of 5.9, 4.8, 4.3, 3.1, and 1.5 kb. A comparison of the human cDNA sequence with the GenBank expressed sequence tag (EST) data base has identified a relative from human skeletal muscle, EST25263, which is probably a human homologue of the published mouse syntrophin 2. The authors have mapped the human basic component of A1 and EST25263 genes to chromosomes 8q23-24 and 16, respectively.

  1. Insect Ryanodine Receptor: Distinct But Coupled Insecticide Binding Sites for [N-C3H3]Chlorantraniliprole, Flubendiamide, and [3H]Ryanodine

    OpenAIRE

    Isaacs, André K.; Qi, Suzhen; Sarpong, Richmond; Casida, John E.

    2012-01-01

    Radiolabeled anthranilic diamide insecticide [N-C3H3]chlorantraniliprole was synthesized at high specific activity and compared with phthalic diamide insecticide flubendiamide and [3H]ryanodine in radioligand binding studies with house fly muscle membranes to provide the first direct evidence with a native insect ryanodine receptor that the major anthranilic and phthalic diamide insecticides bind at different allosterically coupled sites, i.e. there are three distinct Ca2+-release channel tar...

  2. mRNA Quantification of NIPBL Isoforms A and B in Adult and Fetal Human Tissues, and a Potentially Pathological Variant Affecting Only Isoform A in Two Patients with Cornelia de Lange Syndrome

    Directory of Open Access Journals (Sweden)

    Beatriz Puisac

    2017-02-01

    Full Text Available Cornelia de Lange syndrome (CdLS is a congenital developmental disorder characterized by craniofacial dysmorphia, growth retardation, limb malformations, and intellectual disability. Approximately 60% of patients with CdLS carry a recognizable pathological variant in the NIPBL gene, of which two isoforms, A and B, have been identified, and which only differ in the C-terminal segment. In this work, we describe the distribution pattern of the isoforms A and B mRNAs in tissues of adult and fetal origin, by qPCR (quantitative polymerase chain reaction. Our results show a higher gene expression of the isoform A, even though both seem to have the same tissue distribution. Interestingly, the expression in fetal tissues is higher than that of adults, especially in brain and skeletal muscle. Curiously, the study of fibroblasts of two siblings with a mild CdLS phenotype and a pathological variant specific of the isoform A of NIPBL (c.8387A > G; P.Tyr2796Cys, showed a similar reduction in both isoforms, and a normal sensitivity to DNA damage. Overall, these results suggest that the position of the pathological variant at the 3´ end of the NIPBL gene affecting only isoform A, is likely to be the cause of the atypical mild phenotype of the two brothers.

  3. Alternative NF-κB Isoforms in the Drosophila Neuromuscular Junction and Brain.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    Full Text Available The Drosophila NF-κB protein Dorsal is expressed at the larval neuromuscular junction, where its expression appears unrelated to known Dorsal functions in embryonic patterning and innate immunity. Using confocal microscopy with domain-specific antisera, we demonstrate that larval muscle expresses only the B isoform of Dorsal, which arises by intron retention. We find that Dorsal B interacts with and stabilizes Cactus at the neuromuscular junction, but exhibits Cactus independent localization and an absence of detectable nuclear translocation. We further find that the Dorsal-related immune factor Dif encodes a B isoform, reflecting a conservation of B domains across a range of insect NF-κB proteins. Carrying out mutagenesis of the Dif locus via a site-specific recombineering approach, we demonstrate that Dif B is the major, if not sole, Dif isoform in the mushroom bodies of the larval brain. The Dorsal and Dif B isoforms thus share a specific association with nervous system tissues as well as an alternative protein structure.

  4. Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling.

    Directory of Open Access Journals (Sweden)

    Marina Beltrami-Moreira

    Full Text Available Mice deficient in IL-1 receptor 1 (hence unresponsive to both IL-1 isoforms α and β have impaired expansive arterial remodeling due to diminished expression of matrix-degrading enzymes, especially MMP-3. Emergence of IL-1 as a target in cardiovascular disease prompted the investigation of the redundancy of IL-1α and IL-1β in the induction of MMP-3 and other matrix-remodeling enzymes in human cells.Human primary vascular smooth muscle cells (VSMCs and carotid endarterectomy specimens were stimulated with equimolar concentrations of IL-1α or IL-1β and analyzed protease expression by immunoblot and ELISA. Either IL-1α or IL-1β increased the expression of pro-MMP-3 in VSMCs, facilitated VSMC migration through Matrigel, and induced MMP-3 production in specimens from atheromatous plaques. VSMCs also secreted MMP-1 and Cathepsin S (CatS upon stimulation with IL-1α or IL-1β. IL-1 isoforms similarly increased MMP-1 and MMP-9 expression in carotid endarterectomy specimens. We examined the expression of MMP-3 and IL-1 isoforms by immunostaining of carotid atheromata, calculated the % positive areas, and tested associations by linear regression. MMP-3 colocalized with IL-1 isoforms in atheromata. MMP-3+ area in plaques positively associated with IL-1α+ (R2 = 0.61, P<0.001 and with IL-1β + areas (R2 = 0.68, P<0.001. MMP-3+ area within atheroma also associated with CD68+ area, but not with α-smooth muscle actin area.Either IL-1α or IL-1β can induce the expression of enzymes implicated in remodeling of the arterial extracellular matrix, and facilitate human VSMC migration in vitro. Human atheromata contain both IL-1 isoforms in association with immunoreactive MMP-3. This redundancy of IL-1 isoforms suggests that selective blocking of one IL-1 isoform should not impair expansive arterial remodeling, a finding with important clinical implications for therapeutic targeting of IL-1 in atherosclerosis.

  5. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis.

    Directory of Open Access Journals (Sweden)

    Bo G Lindberg

    2018-03-01

    Full Text Available Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB, JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic

  6. Enhanced expression of two discrete isoforms of matrix metalloproteinase-2 in experimental and human diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    Full Text Available We recently reported on the enhanced expression of two isoforms of matrix metalloproteinase-2 (MMP-2 in human renal transplantation delayed graft function. These consist of the conventional secreted, full length MMP-2 isoform (FL-MMP-2 and a novel intracellular N-Terminal Truncated isoform (NTT-MMP-2 generated by oxidative stress-mediated activation of an alternate promoter in the MMP-2 first intron. Here we evaluated the effect of hyperglycemia and diabetes mellitus on the in vitro and in vivo expression of the two MMP-2 isoforms.We quantified the abundance of the FL-MMP-2 and NTT-MMP-2 transcripts by qPCR in HK2 cells cultured in high glucose or 4-hydroxy-2-hexenal (HHE and tested the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC. The streptozotocin (STZ murine model of Type I diabetes mellitus and renal biopsies of human diabetic nephropathy were used in this study.Both isoforms of MMP-2 in HK2 cells were upregulated by culture in high glucose or with HHE. PDTC treatment did not suppress high glucose-mediated FL-MMP-2 expression but potently inhibited NTT-MMP-2 expression. With STZ-treated mice, renal cortical expression of both isoforms was increased (FL-MMP-2, 1.8-fold; NTT-MMP-2, greater than 7-fold. Isoform-specific immunohistochemical staining revealed low, but detectable levels of the FL-MMP-2 isoform in controls, while NTT-MMP-2 was not detected. While there was a modest increase in tubular epithelial cell staining for FL-MMP-2 in STZ-treated mice, NTT-MMP-2 was intensely expressed in a basolateral pattern. FL-MMP-2 and NTT-MMP-2 isoform expression as quantified by qPCR were both significantly elevated in renal biopsies of human diabetic nephropathy (12-fold and 3-fold, respectively.The expression of both isoforms of MMP-2 was enhanced in an experimental model of diabetic nephropathy and in human diabetic nephropathy. Selective MMP-2 isoform inhibition could offer a novel approach for the treatment of diabetic renal

  7. The polysaccharide inulin is characterized by an extensive series of periodic isoforms with varying biological actions

    Science.gov (United States)

    Cooper, Peter D; Barclay, Thomas G; Ginic-Markovic, Milena; Petrovsky, Nikolai

    2013-01-01

    In studying the molecular basis for the potent immune activity of previously described gamma and delta inulin particles and to assist in production of inulin adjuvants under Good Manufacturing Practice, we identified five new inulin isoforms, bringing the total to seven plus the amorphous form. These isoforms comprise the step-wise inulin developmental series amorphous → alpha-1 (AI-1) → alpha-2 (AI-2) → gamma (GI) → delta (DI) → zeta (ZI) → epsilon (EI) → omega (OI) in which each higher isoform can be made either by precipitating dissolved inulin or by direct conversion from its precursor, both cases using regularly increasing temperatures. At higher temperatures, the shorter inulin polymer chains are released from the particle and so the key difference between isoforms is that each higher isoform comprises longer polymer chains than its precursor. An increasing trend of degree of polymerization is confirmed by end-group analysis using 1H nuclear magnetic resonance spectroscopy. Inulin isoforms were characterized by the critical temperatures of abrupt phase-shifts (solubilizations or precipitations) in water suspensions. Such (aqueous) “melting” or “freezing” points are diagnostic and occur in strikingly periodic steps reflecting quantal increases in noncovalent bonding strength and increments in average polymer lengths. The (dry) melting points as measured by modulated differential scanning calorimetry similarly increase in regular steps. We conclude that the isoforms differ in repeated increments of a precisely repeating structural element. Each isoform has a different spectrum of biological activities and we show the higher inulin isoforms to be more potent alternative complement pathway activators. PMID:23853206

  8. Elevated serum tartrate-resistant acid phosphatase isoform 5a levels in metabolic syndrome.

    Science.gov (United States)

    Huang, Yi-Jhih; Huang, Tsai-Wang; Chao, Tsu-Yi; Sun, Yu-Shan; Chen, Shyi-Jou; Chu, Der-Ming; Chen, Wei-Liang; Wu, Li-Wei

    2017-09-29

    Tartrate-resistant phosphatase isoform 5a is expressed in tumor-associated macrophages and is a biomarker of chronic inflammation. Herein, we correlated serum tartrate-resistant phosphatase isoform 5a levels with metabolic syndrome status and made comparisons with traditional markers of inflammation, including c-reactive protein and interleukin-6. One hundred healthy volunteers were randomly selected, and cut-off points for metabolic syndrome related inflammatory biomarkers were determined using receiver operating characteristic curves. Linear and logistic regression models were subsequently used to correlate inflammatory markers with the risk of metabolic syndrome. Twenty-two participants met the criteria for metabolic syndrome, and serum tartrate-resistant phosphatase isoform 5a levels of >5.8 μg/L were associated with metabolic syndrome (c-statistics, 0.730; p = 0.001; 95% confidence interval, 0.618-0.842). In addition, 1 μg/L increases in tartrate-resistant phosphatase isoform 5a levels were indicative of a 1.860 fold increase in the risk of metabolic syndrome (p = 0.012). Elevated serum tartrate-resistant phosphatase isoform 5a levels are associated with the risk of metabolic syndrome, with a cut-off level of 5.8 μg/L.

  9. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kee K.; Adelstein, Robert S.; Kawamoto, Sachiyo, E-mail: kawamots@mail.nih.gov

    2014-08-08

    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo.

  10. The Р60-S6K1 isoform of ribosomal protein S6 kinase 1 is a product of alternative mRNA translation

    Directory of Open Access Journals (Sweden)

    I. V. Zaiets

    2018-07-01

    Full Text Available Ribosomal protein S6 kinase 1 (S6K1 is a well-known downstream effector of mTORC1 (mechanistic target of rapamycin complex 1 participating primarily in the regulation of cell growth and metabolism. Deregulation of mTOR/S6K1 signaling can promote numerous human pathologies, including cancer, neurodegeneration, cardiovascular disease, and metabolic disorders. As existing data suggest, the S6K1 gene encodes several protein isoforms, including p85-S6K1, p70-S6K1, and p60-S6K1. The two of these isoforms, p85-S6K1 and p70-S6K1, were extensively studied to date. The origin and functional significance of the p60-S6K1 isoform remains a mystery, however, it was suggested that the isoform could be a product of alternative S6K1 mRNA translation. Herein we report the generation of HEK-293 cells exclusively expressing p60-S6K1 as a result of CRISPR/Cas9-mediated inactivation of p85/p70-S6K1 translation. Moreover, the generated modified cells displayed the elevated level of p60-S6K1 expression compared to that in wild-type HEK-293 cells. Our data confirm an assumption that p60-S6K1 is alternatively translated, most probably, from the common for both p70- and p85-S6K1 mRNA transcript and reveal a link between p60-S6K1 expression and such cellular processes as cell proliferation and motility. In addition, our findings indicate that the p60-S6K1 isoform of S6K1 may undergo a mode of regulation distinct from p70- and p85-S6K1 due to the absence of mTOR-regulated p60-S6K1 phosphorylation at T389 that is important for S6K1 activation.

  11. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu

    2012-01-01

    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  12. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    Science.gov (United States)

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. Copyright © 2014 the American Physiological Society.

  13. Expression of Metallothionein and Vascular Endothelial Growth Factor Isoforms in Breast Cancer Cells.

    Science.gov (United States)

    Wierzowiecka, Barbara; Gomulkiewicz, Agnieszka; Cwynar-Zajac, Lucja; Olbromski, Mateusz; Grzegrzolka, Jedrzej; Kobierzycki, Christopher; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2016-01-01

    Metallothioneins (MTs) are low-molecular-weight and cysteine-rich proteins that bind heavy metal ions and oxygen-free radicals. MTs are commonly expressed in various tissues of mammals and are involved in regulation of cell proliferation and differentiation, and may be engaged in angiogenesis. Expression of MTs has been studied in many cancer types, especially breast cancer. The research results indicate that MTs may play important, although not yet fully known, roles in cancer angiogenesis. The aim of this study was to analyze the level of gene expression of selected MT isoforms induced with zinc ions in correlation with vascular endothelial growth factor (VEGF) isoforms in in vitro models of breast cancer. The studies were carried out in three breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231). An epithelial cell line derived from normal breast tissue (Me16c) was used as a control. The levels of expression of selected MT isoforms and selected genes involved in angiogenesis were studied with real-time PCR. Expression of different MT isoforms was induced by zinc ions to differing degrees in individual breast cancer cell lines. An increase in the expression of some MT isoforms was associated with a slight increase in the level of expression of VEGFA. The research results may indicate certain correlation between an increased expression of selected MT isoforms and a pro-angiogenic factor VEGF in specific types of breast cancer cells. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  15. Discovery of novel isoforms of huntingtin reveals a new hominid-specific exon.

    Directory of Open Access Journals (Sweden)

    Albert Ruzo

    Full Text Available Huntington's disease (HD is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT. HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease.

  16. Discovery of Novel Isoforms of Huntingtin Reveals a New Hominid-Specific Exon

    Science.gov (United States)

    Popowski, Melissa; Haremaki, Tomomi; Croft, Gist F.; Deglincerti, Alessia; Brivanlou, Ali H.

    2015-01-01

    Huntington’s disease (HD) is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT). HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC) lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease. PMID:26010866

  17. Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).

    Science.gov (United States)

    Hazimihalis, P J; Gorvet, M A; Butcher, M T

    2013-01-01

    Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function. Copyright © 2012 Wiley Periodicals, Inc.

  18. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  19. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard [Laboratoire de Chimie Nucleaire Analytique et Bioenvironnementale, CNRS UMR5084, Universite Bordeaux 1, Chemin du Solarium, F-33175 Gradignan cedex (France); Solari, Pier Lorenzo [Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, F-91192 Gif-sur-Yvette cedex, Saint-Aubin (France); Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis, E-mail: ortega@cenbg.in2p3.f [FAME, ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble cedex (France)

    2009-11-15

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  20. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Science.gov (United States)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  1. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    International Nuclear Information System (INIS)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard; Solari, Pier Lorenzo; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis

    2009-01-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  2. Differences in sialic acid residues among bone alkaline phosphatase isoforms: a physical, biochemical, and immunological characterization.

    Science.gov (United States)

    Magnusson, P; Farley, J R

    2002-12-01

    High-performance liquid chromatography (HPLC) separates three human bone alkaline phosphatase (BALP) isoforms in serum; two major BALP isoforms, B1 and B2, and a minor fraction, B/I, which is composed on average of 70% bone and 30% intestinal ALP. The current studies were intended to identify an in vitro source of the BALP isoforms for physical, biochemical, and immunological characterizations. The three BALP isoforms were identified in extracts of human osteosarcoma (SaOS-2) cells, by HPLC, after separation by anion-exchange chromatography. All three BALP isoforms were similar with respect to freeze-thaw stability, solubility, heat inactivation, and inhibition by L-phenylalanine, L-homoarginine, and levamisole. The isoforms were also kinetically similar (i.e., maximal velocity and KM at pH 8.8 and pH 10.0). The isoforms differed, however, with respect to sensitivity to precipitation with wheat germ agglutinin (WGA), P acid residues was estimated to be 29 and 45, for each B1 and B2 homodimer, respectively. Apparent discrepancies between these estimates of molecular weight and estimates based on gel filtration chromatography were attributed to nonspecific interactions between carbohydrate residues and the gel filtration beads. All three BALP isoforms showed similar dose-dependent linearity in the commercial Alkphase-B and Tandem-MP Ostase immunoassays, r = 0.944 and r = 0.985, respectively (P acid residues compared with B/I, which mainly explains the apparent differences in molecular weight. Future investigations will focus on the clinical and functional significance of the revealed differences in sialic acid residues.

  3. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle.

    Science.gov (United States)

    Schwarz, Neil A; McKinley-Barnard, Sarah K; Spillane, Mike B; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2016-08-01

    The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin.

  4. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  5. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  6. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  7. Expression and Immunohistochemical Localisation of the G beta gamma activated and Calcineurin-inhibited Adenylyl Cyclase Isoforms in Rat Articular Chondrocytes

    International Nuclear Information System (INIS)

    Memon, I.; Khan, K.M.; Siddiqui, S.; Perveen, S.; Ishaq, M.

    2016-01-01

    Objective: To determine the expression and localisation of the Gβγ-activated adenylyl cyclase (AC) isoforms 2, 4, and 7 and calcineurin-inhibited AC isoform 9 in rat articular chondrocytes. Study Design: Experimental study. Place and Duration of Study: Jumma Research Laboratory and Histology Laboratory, The Aga Khan University, Karachi, from 2009 to 2011. Methodology: Fresh slices of articular cartilage were taken from various synovial joints of rats of different age groups. The expression of AC isoforms was determined by RT-PCR and immunohistochemistry was performed to localise these isoforms in articular chondrocytes. Tissue sections were processed for immunostaining with respective antibodies. The color was developed by diaminobenzidine. Results: All the studied AC isoforms were found to be differentially expressed in different zones of the rat articular cartilage. Generally, expression of all AC isoforms studied increased with age. The expression of the AC isoforms through PCR was almost consistent with the localisation of these isoforms by immunohistochemistry. Conclusion: These data add to the information about signalling cascades possibly involved in articular chondrocytes. Variable expression of AC isoforms 2, 4, 7, and 9 suggest a role for the signalling cascades regulated by the AC isoforms in articular chondrocytes. (author)

  8. BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer

    Science.gov (United States)

    Link, Petra A.; Zhang, Wa; Odunsi, Kunle; Karpf, Adam R.

    2013-01-01

    Cancer germline (CG) genes are normally expressed in germ cells and aberrantly expressed in a variety of cancers; their immunogenicity has led to the widespread development of cancer vaccines targeting these antigens. BORIS/CTCFL is an autosomal CG antigen and promising cancer vaccine target. BORIS is the only known paralog of CTCF, a gene intimately involved in genomic imprinting, chromatin insulation, and nuclear regulation. We have previously shown that BORIS is expressed in epithelial ovarian cancer (EOC) and that its expression coincides with promoter and global DNA hypomethylation. Recently, 23 different BORIS mRNA variants have been described, and have been functionally grouped into six BORIS isoform families (sf1–sf6). In the present study, we have characterized the expression of BORIS isoform families in normal ovary (NO) and EOC, the latter of which were selected to include two groups with widely varying global DNA methylation status. We find selective expression of BORIS isoform families in NO, which becomes altered in EOC, primarily by the activation of BORIS sf1 in EOC. When comparing EOC samples based on methylation status, we find that BORIS sf1 and sf2 isoform families are selectively activated in globally hypomethylated tumors. In contrast, CTCF is downregulated in EOC, and the ratio of BORIS sf1, sf2, and sf6 isoform families as a function of CTCF is elevated in hypomethylated tumors. Finally, the expression of all BORIS isoform families was induced to varying extents by epigenetic modulatory drugs in EOC cell lines, particularly when DNMT and HDAC inhibitors were used in combination. PMID:23390377

  9. Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans).

    Science.gov (United States)

    Morrissette, Jeffery M; Franck, Jens P G; Block, Barbara A

    2003-03-01

    A thermogenic organ is found beneath the brain of billfishes (Istiophoridae), swordfish (Xiphiidae) and the butterfly mackerel (Scombridae). The heater organ has been shown to warm the brain and eyes up to 14 degrees C above ambient water temperature. Heater cells are derived from extraocular muscle fibers and express a modified muscle phenotype with an extensive transverse-tubule (T-tubule) network and sarcoplasmic reticulum (SR) enriched in Ca(2+)-ATPase (SERCA) pumps and ryanodine receptors (RyRs). Heater cells have a high mitochondria content but have lost most of the contractile myofilaments. Thermogenesis has been hypothesized to be associated with release and reuptake of Ca(2+). In this study, Ca(2+) fluxes in heater SR vesicles derived from blue marlin (Makaira nigricans) were measured using fura-2 fluorescence. Upon the addition of MgATP, heater SR vesicles rapidly sequestered Ca(2+). Uptake of Ca(2+) was thapsigargin sensitive, and maximum loading ranged between 0.8 micro mol Ca(2+) mg(-1) protein and 1.0 micro mol Ca(2+) mg(-1) protein. Upon the addition of 10 mmol l(-1) caffeine or 350 micro mol l(-1) ryanodine, heater SR vesicles released only a small fraction of the loaded Ca(2+). However, ryanodine could elicit a much larger Ca(2+) release event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater tissue expresses an RyR isoform that is also expressed in fish slow-twitch skeletal muscle but is distinct from the RyR expressed in fish fast-twitch skeletal muscle. The heater and slow-twitch muscle RyR isoform has unique physiological properties. In the presence of adenine nucleotides, this RyR remains open even though cytoplasmic Ca(2+) is elevated, a condition that normally closes RyRs. The fast Ca(2+) sequestration by the heater SR, coupled with a physiologically unique RyR, is hypothesized to promote Ca(2+) cycling, ATP turnover and heat generation. A branch of the oculomotor nerve innervates heater organs

  10. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  11. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    Science.gov (United States)

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-03

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization.

  12. MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber.

    Science.gov (United States)

    Hoehenwarter, Wolfgang; Larhlimi, Abdelhalim; Hummel, Jan; Egelhofer, Volker; Selbig, Joachim; van Dongen, Joost T; Wienkoop, Stefanie; Weckwerth, Wolfram

    2011-07-01

    Mass Accuracy Precursor Alignment is a fast and flexible method for comparative proteome analysis that allows the comparison of unprecedented numbers of shotgun proteomics analyses on a personal computer in a matter of hours. We compared 183 LC-MS analyses and more than 2 million MS/MS spectra and could define and separate the proteomic phenotypes of field grown tubers of 12 tetraploid cultivars of the crop plant Solanum tuberosum. Protein isoforms of patatin as well as other major gene families such as lipoxygenase and cysteine protease inhibitor that regulate tuber development were found to be the primary source of variability between the cultivars. This suggests that differentially expressed protein isoforms modulate genotype specific tuber development and the plant phenotype. We properly assigned the measured abundance of tryptic peptides to different protein isoforms that share extensive stretches of primary structure and thus inferred their abundance. Peptides unique to different protein isoforms were used to classify the remaining peptides assigned to the entire subset of isoforms based on a common abundance profile using multivariate statistical procedures. We identified nearly 4000 proteins which we used for quantitative functional annotation making this the most extensive study of the tuber proteome to date.

  13. Mechanisms of isoform-specific Na/K pump regulation by short- and long-term adrenergic activation in rat ventricular myocytes.

    Science.gov (United States)

    Yin, Jian; Guo, Hui-Cai; Yu, Ding; Wang, Hui-Ci; Li, Jun-Xia; Wang, Yong-Li

    2014-01-01

    Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH) and low-affinity current (IPL), α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane. © 2014 S. Karger AG, Basel.

  14. Mechanisms of Isoform-Specific Na/K Pump Regulation by Short- and Long-Term Adrenergic Activation in Rat Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2014-05-01

    Full Text Available Background: Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. Methods: After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH and low-affinity current (IPL, α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. Results: After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. Conclusions: These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane.

  15. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2

    Science.gov (United States)

    Guntur, Ananya R.; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-01-01

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response—a function of CC cells—when they encounter strong UV, an aversive stimulus for young larvae. PMID:26443856

  16. Distinct fronto-striatal couplings reveal the double-faced nature of response-outcome relations in instruction-based learning.

    Science.gov (United States)

    Ruge, Hannes; Wolfensteller, Uta

    2015-06-01

    Higher species commonly learn novel behaviors by evaluating retrospectively whether actions have yielded desirable outcomes. By relying on explicit behavioral instructions, only humans can use an acquisition shortcut that prospectively specifies how to yield intended outcomes under the appropriate stimulus conditions. A recent and largely unexplored hypothesis suggests that striatal areas interact with lateral prefrontal cortex (LPFC) when novel behaviors are learned via explicit instruction, and that regional subspecialization exists for the integration of differential response-outcome contingencies into the current task model. Behaviorally, outcome integration during instruction-based learning has been linked to functionally distinct performance indices. This includes (1) compatibility effects, measured in a postlearning test procedure probing the encoding strength of outcome-response (O-R) associations, and (2) increasing response slowing across learning, putatively indicating active usage of O-R associations for the online control of goal-directed action. In the present fMRI study, we examined correlations between these behavioral indices and the dynamics of fronto-striatal couplings in order to mutually constrain and refine the interpretation of neural and behavioral measures in terms of separable subprocesses during outcome integration. We found that O-R encoding strength correlated with LPFC-putamen coupling, suggesting that the putamen is relevant for the formation of both S-R habits and habit-like O-R associations. By contrast, response slowing as a putative index of active usage of O-R associations correlated with LPFC-caudate coupling. This finding highlights the relevance of the caudate for the online control of goal-directed action also under instruction-based learning conditions, and in turn clarifies the functional relevance of the behavioral slowing effect.

  17. Statistical modeling of isoform splicing dynamics from RNA-seq time series data.

    Science.gov (United States)

    Huang, Yuanhua; Sanguinetti, Guido

    2016-10-01

    Isoform quantification is an important goal of RNA-seq experiments, yet it remains problematic for genes with low expression or several isoforms. These difficulties may in principle be ameliorated by exploiting correlated experimental designs, such as time series or dosage response experiments. Time series RNA-seq experiments, in particular, are becoming increasingly popular, yet there are no methods that explicitly leverage the experimental design to improve isoform quantification. Here, we present DICEseq, the first isoform quantification method tailored to correlated RNA-seq experiments. DICEseq explicitly models the correlations between different RNA-seq experiments to aid the quantification of isoforms across experiments. Numerical experiments on simulated datasets show that DICEseq yields more accurate results than state-of-the-art methods, an advantage that can become considerable at low coverage levels. On real datasets, our results show that DICEseq provides substantially more reproducible and robust quantifications, increasing the correlation of estimates from replicate datasets by up to 10% on genes with low or moderate expression levels (bottom third of all genes). Furthermore, DICEseq permits to quantify the trade-off between temporal sampling of RNA and depth of sequencing, frequently an important choice when planning experiments. Our results have strong implications for the design of RNA-seq experiments, and offer a novel tool for improved analysis of such datasets. Python code is freely available at http://diceseq.sf.net G.Sanguinetti@ed.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells.

    Science.gov (United States)

    Babeu, Jean-Philippe; Jones, Christine; Geha, Sameh; Carrier, Julie C; Boudreau, François

    2018-06-13

    HNF4α is a key nuclear receptor for regulating gene expression in the gut. While both P1 and P2 isoform classes of HNF4α are expressed in colonic epithelium, specific inhibition of P1 isoforms is commonly found in colorectal cancer. Previous studies have suggested that P1 and P2 isoforms may regulate different cellular functions. Despite these advances, it remains unclear whether these isoform classes are functionally divergent in the context of human biology. Here, the consequences of specific inhibition of P1 or P2 isoform expression was measured in a human colorectal cancer cell transcriptome. Results indicate that P1 isoforms were specifically associated with the control of cell metabolism while P2 isoforms globally supported aberrant oncogenic signalization, promoting cancer cell survival and progression. P1 promoter-driven isoform expression was found to be repressed by β-catenin, one of the earliest oncogenic pathways to be activated during colon tumorigenesis. These findings identify a novel cascade by which the expression of P1 isoforms are rapidly shut down in the early stages of colon tumorigenesis, allowing a change in HNF4α-dependent transcriptome thereby promoting colorectal cancer progression. © 2018. Published by The Company of Biologists Ltd.

  19. Acidosis-mediated regulation of the NHE1 isoform of the Na⁺/H⁺ exchanger in renal cells.

    Science.gov (United States)

    Odunewu, Ayodeji; Fliegel, Larry

    2013-08-01

    The mammalian Na⁺/H⁺ exchanger isoform 1 (NHE1) is a ubiquitous plasma membrane protein that regulates intracellular pH by removing a proton in exchange for extracellular sodium. Renal tissues are subject to metabolic and respiratory acidosis, and acidosis has been shown to acutely activate NHE1 activity in other cell types. We examined if NHE1 is activated by acute acidosis in HEK293 and Madin-Darby canine kidney (MDCK) cells. Acute sustained intracellular acidosis (SIA) activated NHE1 in both cell types. We expressed wild-type and mutant NHE1 cDNAs in MDCK cells. All the cDNAs had a L163F/G174S mutation, which conferred a 100-fold resistance to EMD87580, an NHE1-specific inhibitor. We assayed exogenous NHE1 activity while inhibiting endogenous activity with EMD87580 and while inhibiting the NHE3 isoform of the Na⁺/H⁺ exchanger using the isoform-specific inhibitor S3226. We examined the activation and phosphorylation of the wild-type and mutant NHE1 proteins in response to SIA. In MDCK cells we demonstrated that the amino acids Ser⁷⁷¹, Ser⁷⁷⁶, Thr⁷⁷⁹, and Ser⁷⁸⁵ are important for NHE1 phosphorylation and activation after acute SIA. SIA activated ERK-dependent pathways in MDCK cells, and this was blocked by treatment with the MEK inhibitor U0126. Treatment with U0126 also blocked activation of NHE1 by SIA. These results suggest that acute acidosis activates NHE1 in mammalian kidney cells and that in MDCK cells this activation occurs through an ERK-dependent pathway affecting phosphorylation of a distinct set of amino acids in the cytosolic regulatory tail of NHE1.

  20. High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal

    Directory of Open Access Journals (Sweden)

    Denis Kole

    2017-05-01

    Full Text Available Basic fibroblast growth factor (FGF2 is a highly pleiotropic member of a large family of growth factors with a broad range of activities, including mitogenesis and angiogenesis (Ornitz et al., 1996; Zhang et al., 2006, and it is known to be essential for maintenance of balance between survival, proliferation, and self-renewal in human pluripotent stem cells (Eiselleova et al., 2009; Zoumaro-Djayoon et al., 2011. A single FGF2 transcript can be translated into five FGF2 protein isoforms, an 18 kDa low molecular weight (LMW isoform and four larger high molecular weight (HMW isoforms (Arese et al., 1999; Arnaud et al., 1999. As they are not generally secreted, high molecular weight (HMW FGF2 isoforms have predominantly been investigated intracellularly; only a very limited number of studies have investigated their activity as extracellular factors. Here we report over-expression, isolation, and biological activity of all recombinant human FGF2 isoforms. We show that HMW FGF2 isoforms can support self-renewal of human embryonic stem cells (hESCs in vitro. Exogenous supplementation with HMW FGF2 isoforms also activates the canonical FGFR/MAPK pathway and induces mitogenic activity in a manner similar to that of the 18 kDa FGF2 isoform. Though all HMW isoforms, when supplemented exogenously, are able to recapitulate LMW FGF2 activity to some degree, it appears that certain isoforms tend to do so more poorly, demonstrating a lesser functional response by several measures. A better understanding of isoform-specific FGF2 effects will lead to a better understanding of developmental and pathological FGF2 signaling.

  1. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation

    Science.gov (United States)

    Seeger, Tanja; Hart, Melanie; Patarroyo, Manuel; Rolauffs, Bernd; Aicher, Wilhelm K.; Klein, Gerd

    2015-01-01

    Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521) showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells. PMID:26406476

  2. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation.

    Directory of Open Access Journals (Sweden)

    Tanja Seeger

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521 showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells.

  3. Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Smith Paula L

    2011-09-01

    Full Text Available Abstract Background Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. Results Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. Conclusions Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

  4. Diagnostic Accuracy of Cerebrospinal Fluid Amyloid-β Isoforms for Early and Differential Dementia Diagnosis.

    Science.gov (United States)

    Struyfs, Hanne; Van Broeck, Bianca; Timmers, Maarten; Fransen, Erik; Sleegers, Kristel; Van Broeckhoven, Christine; De Deyn, Peter P; Streffer, Johannes R; Mercken, Marc; Engelborghs, Sebastiaan

    2015-01-01

    Overlapping cerebrospinal fluid biomarkers (CSF) levels between Alzheimer's disease (AD) and non-AD patients decrease differential diagnostic accuracy of the AD core CSF biomarkers. Amyloid-β (Aβ) isoforms might improve the AD versus non-AD differential diagnosis. To determine the added diagnostic value of Aβ isoforms, Aβ(1-37), Aβ(1-38), and Aβ(1-40), as compared to the AD CSF biomarkers Aβ(1-42), T-tau, and P-tau(181P). CSF from patients with dementia due to AD (n = 50), non-AD dementias (n = 50), mild cognitive impairment due to AD (n = 50) and non-demented controls (n = 50) was analyzed with a prototype multiplex assay using MSD detection technology. The non-AD group consisted of frontotemporal dementia (FTD; n = 17), dementia with Lewy bodies (DLB; n = 17), and vascular dementia (n = 16). Aβ(1-37) and Aβ(1-38) increased accuracy to differentiate AD from FTD or DLB. Aβ(1-37), Aβ(1-38), and Aβ(1-40) levels correlated with Mini-Mental State Examination scores and disease duration in dementia due to AD. The Aβ(1-42)/Aβ(1-40) ratio improved diagnostic performance of Aβ(1-42) in most differential diagnostic situations. Aβ(1-42) levels were lower in APOE ε4 carriers compared to non-carriers. Aβ isoforms help to differentiate AD from FTD and DLB. Aβ isoforms increase diagnostic performance of Aβ(1-42). In contrast to Aβ1-42, Aβ isoforms seem to be correlated with disease severity in AD. Adding the Aβ isoforms to the current biomarker panel could enhance diagnostic accuracy.

  5. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements.

    Directory of Open Access Journals (Sweden)

    Carl O Olson

    Full Text Available MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum, whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute

  6. Branchial Cilia and Sperm Flagella Recruit Distinct Axonemal Components

    Science.gov (United States)

    Konno, Alu; Shiba, Kogiku; Cai, Chunhua; Inaba, Kazuo

    2015-01-01

    Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1) Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2) Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3) Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation. PMID:25962172

  7. Distinct pools of cdc25C are phosphorylated on specific TP sites and differentially localized in human mitotic cells.

    Directory of Open Access Journals (Sweden)

    Celine Franckhauser

    Full Text Available BACKGROUND: The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1. METHODOLOGY/PRINCIPAL FINDINGS: Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis. CONCLUSIONS/SIGNIFICANCE: These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C

  8. Effect of renal replacement therapy on retinol-binding protein 4 isoforms

    DEFF Research Database (Denmark)

    Frey, Simone K; Henze, Andrea; Nagl, Britta

    2009-01-01

    Retinol-binding protein 4 (RBP4) levels are elevated in the serum of patients with kidney dysfunction. We recently showed that RBP4 isoforms including apo-RBP4 (RBP4 not bound to retinol) and RBP4 truncated at the C-terminus (RBP4-L, RBP4-LL) are increased in the serum of patients with kidney dis...... diseases but not in serum of patients with various liver diseases. The aim of this study was to investigate the effect of renal replacement therapy on RBP4 isoforms....

  9. Isoforms of transferrin in psoriasis patients abusing alcohol

    NARCIS (Netherlands)

    P. Hoefkens (Peter); E.M. Higgins; R.J. Ward (Roberta); H.G. van Eijk (Henk)

    1997-01-01

    textabstractThe different isoforms of transferrin have been quantified by isoelectric focusing in the sera of psoriasis patients with and without a history of abusing alcohol. In both male and female psoriasis subjects abusing alcohol, there were significant increases in the

  10. Progesterone receptor isoform A may regulate the effects of neoadjuvant aglepristone in canine mammary carcinoma

    DEFF Research Database (Denmark)

    Guil-Luna, Silvia; Stenvang, Jan; Brünner, Nils

    2014-01-01

    RNA expression of progesterone receptor isoforms A and B in mammary carcinomas in dogs treated with 20 mg/Kg of aglepristone (n¿=¿22) or vehicle (n¿=¿5) twice before surgery.ResultsFormalin-fixed, paraffin-embedded tissue samples taken before and after treatment were used to analyse total progesterone receptor......-receptor positive and isoform-A positive tumours in aglepristone-treated dogs.ConclusionsThese findings suggest that the antiproliferative effects of aglepristone in canine mammary carcinomas are mediated by progesterone receptor isoform A....

  11. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma.

    Science.gov (United States)

    Andreucci, Elena; Bianchini, Francesca; Biagioni, Alessio; Del Rosso, Mario; Papucci, Laura; Schiavone, Nicola; Magnelli, Lucia

    2017-01-01

    Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features. FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW. FGF2 is involved in melanoma development and progression. HMW FGF2 isoforms enhance in vitro motility of melanoma cells. LMW FGF2 confers stem-like features and increases in vivo metastasization. LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.

  12. Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis.

    Science.gov (United States)

    Bégay, Valérie; Smink, Jeske J; Loddenkemper, Christoph; Zimmermann, Karin; Rudolph, Cornelia; Scheller, Marina; Steinemann, Doris; Leser, Ulf; Schlegelberger, Brigitte; Stein, Harald; Leutz, Achim

    2015-01-01

    Two long and one truncated isoforms (termed LAP*, LAP, and LIP, respectively) of the transcription factor CCAAT enhancer binding protein beta (C/EBPβ) are expressed from a single intronless Cebpb gene by alternative translation initiation. Isoform expression is sensitive to mammalian target of rapamycin (mTOR)-mediated activation of the translation initiation machinery and relayed through an upstream open reading frame (uORF) on the C/EBPβ mRNA. The truncated C/EBPβ LIP, initiated by high mTOR activity, has been implied in neoplasia, but it was never shown whether endogenous C/EBPβ LIP may function as an oncogene. In this study, we examined spontaneous tumor formation in C/EBPβ knockin mice that constitutively express only the C/EBPβ LIP isoform from its own locus. Our data show that deregulated C/EBPβ LIP predisposes to oncogenesis in many tissues. Gene expression profiling suggests that C/EBPβ LIP supports a pro-tumorigenic microenvironment, resistance to apoptosis, and alteration of cytokine/chemokine expression. The results imply that enhanced translation reinitiation of C/EBPβ LIP promotes tumorigenesis. Accordingly, pharmacological restriction of mTOR function might be a therapeutic option in tumorigenesis that involves enhanced expression of the truncated C/EBPβ LIP isoform. Elevated C/EBPβ LIP promotes cancer in mice. C/EBPβ LIP is upregulated in B-NHL. Deregulated C/EBPβ LIP alters apoptosis and cytokine/chemokine networks. Deregulated C/EBPβ LIP may support a pro-tumorigenic microenvironment.

  13. Biochemical Characteristics of Three Laccase Isoforms from the Basidiomycete Pleurotus nebrodensis

    Directory of Open Access Journals (Sweden)

    Xianghe Yuan

    2016-02-01

    Full Text Available The characterization of three laccase isoforms from Pleurotus nebrodensis is described. Isoenzymes Lac1, Lac2 and Lac3 were purified to homogeneity using ion exchange chromatography on DEAE-cellulose, CM-cellulose and Q-Sepharose and a gel filtration step on Superdex 75. The molecular weights of the purified laccases were estimated to be 68, 64 and 51 kDa, respectively. The isoenzymes demonstrated the same optimum pH at 3.0 but slightly different temperature optima: 50–60 °C for Lac1 and Lac3 and 60 °C for Lac2. Lac2 was always more stable than the other two isoforms and exposure to 50 °C for 120 min caused 30% loss in activity. Lac2 was relatively less stable than the other two isoforms when exposed to the pH range of 3.0–8.0 for 24 h, but inactivation only occurred initially, with around 70% residual activity being maintained during the whole process. Oxidative ability towards aromatic compounds varied substantially among the isoforms and each of them displayed preference toward some substrates. Kinetic constants (Km, Kcat were determined by using a 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS assay, with Lac3 showing the best affinity and Lac2 displaying the highest catalytic efficiency. Amino acid sequences from peptides derived from digestion of isoenzymes showed great consistency with laccases in the databases.

  14. Differential CARM1 Isoform Expression in Subcellular Compartments and among Malignant and Benign Breast Tumors.

    Directory of Open Access Journals (Sweden)

    David Shlensky

    Full Text Available Coactivator-associated arginine methyltransferase 1 (CARM1 is a coactivator for ERα and cancer-relevant transcription factors, and can methylate diverse cellular targets including histones. CARM1 is expressed in one of two alternative splice isoforms, full-length CARM1 (CARM1FL and truncated CARM1 (CARM1ΔE15. CARM1FL and CARM1ΔE15 function differently in transcriptional regulation, protein methylation, and mediation of pre-mRNA splicing in cellular models.To investigate the functional roles and the prognosis potential of CARM1 alternative spliced isoforms in breast cancer, we used recently developed antibodies to detect differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors.Immunofluorescence in MDA-MB-231 and BG-1 cell lines demonstrated that CARM1ΔE15 is the dominant isoform expressed in the cytoplasm, and CARM1FL is more nuclear localized. CARM1ΔE15 was found to be more sensitive to Hsp90 inhibition than CARM1FL, indicating that the truncated isoform may be the oncogenic form. Clinical cancer samples did not have significantly higher expression of CARM1FL or CARM1ΔE15 than benign breast samples at the level of mRNA or histology. Furthermore neither CARM1FL nor CARM1ΔE15 expression correlated with breast cancer molecular subtypes, tumor size, or lymph node involvement.The analysis presented here lends new insights into the possible oncogenic role of CARM1ΔE15. This study also demonstrates no obvious association of CARM1 isoform expression and clinical correlates in breast cancer. Recent studies, however, have shown that CARM1 expression correlates with poor prognosis, indicating a need for further studies of both CARM1 isoforms in a large cohort of breast cancer specimens.

  15. Distinct Domains of CheA Confer Unique Functions in Chemotaxis and Cell Length in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Gullett, Jessica M; Bible, Amber; Alexandre, Gladys

    2017-07-01

    Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense , Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms. IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular

  16. Analysis of the synaptotagmin family during reconstituted membrane fusion. Uncovering a class of inhibitory isoforms.

    Science.gov (United States)

    Bhalla, Akhil; Chicka, Michael C; Chapman, Edwin R

    2008-08-01

    Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells is regulated by the Ca(2+)-binding protein synaptotagmin (syt) I. Sixteen additional isoforms of syt have been identified, but little is known concerning their biochemical or functional properties. Here, we assessed the abilities of fourteen syt isoforms to directly regulate SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor)-catalyzed membrane fusion. One group of isoforms stimulated neuronal SNARE-mediated fusion in response to Ca(2+), while another set inhibited SNARE catalyzed fusion in both the absence and presence of Ca(2+). Biochemical analysis revealed a strong correlation between the ability of syt isoforms to bind 1,2-dioleoyl phosphatidylserine (PS) and t-SNAREs in a Ca(2+)-promoted manner with their abilities to enhance fusion, further establishing PS and SNAREs as critical effectors for syt action. The ability of syt I to efficiently stimulate fusion was specific for certain SNARE pairs, suggesting that syts might contribute to the specificity of intracellular membrane fusion reactions. Finally, a subset of inhibitory syts down-regulated the ability of syt I to activate fusion, demonstrating that syt isoforms can modulate the function of each other.

  17. The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells

    Science.gov (United States)

    Appukuttan, Binoy; McFarland, Trevor J.; Stempel, Andrew; Kassem, Jean B.; Hartzell, Matthew; Zhang, Yi; Bond, Derek; West, Kelsey; Wilson, Reid; Stout, Andrew; Pan, Yuzhen; Ilias, Hoda; Robertson, Kathryn; Klein, Michael L.; Wilson, David; Smith, Justine R.; Stout, J. Timothy

    2012-01-01

    Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases. PMID:22761647

  18. The landscape of isoform switches in human cancers

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Sandelin, Albin Gustav

    2017-01-01

    highly predictive of patient survival independent of cancer types. Our data constitute an important resource for cancer researchers, available through interactive web tools. Moreover, our methods, available as an R package, enable systematic analysis of isoform switches from other RNA-seq datasets...

  19. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    Science.gov (United States)

    Zhang, L; Liu, X J

    2016-06-03

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.

  20. O-GlcNAcylation modulates PKA-CREB signaling in a manner specific to PKA catalytic subunit isoforms.

    Science.gov (United States)

    Jin, Nana; Ma, Denglei; Gu, Jianlan; Shi, Jianhua; Xu, Xiaotao; Iqbal, Khalid; Gong, Cheng-Xin; Liu, Fei; Chu, Dandan

    2018-02-26

    O-GlcNAcylation is a post-translational modification of proteins. Protein kinase A (PKA)-cAMP response element binding protein (CREB) signaling plays critical roles in multiple biological processes. Isoforms α and β of PKA catalytic subunit (PKAc) and CREB are modified by O-GlcNAcylation. In the present study, we determined the role of O-GlcNAcylation in PKAc isoform-specific CREB signaling. We found that up-regulation of O-GlcNAcylation enhanced CREB phosphorylation, but suppressed CREB expression in exogenous PKAc isoform-unspecific manner. PKAc isoforms affected exogenous expression of OGT or OGA and protein O-GlcNAcylation differently. Up-regulation of O-GlcNAcylation did not significantly affect net PKAcα-CREB signaling, but enhanced PKAcβ-CREB signaling. The role of O-GlcNAcylation in PKA-CREB signaling was desensitized by insulin treatment. This study suggests a role of O-GlcNAcylation in PKA-CREB signaling by affecting phosphorylation of CREB in a PKAc isoform-specific manner. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Lipoprotein lipase isoelectric point isoforms in humans

    DEFF Research Database (Denmark)

    Badia-Villanueva, M.; Carulla, P.; Carrascal, M.

    2014-01-01

    -heparin plasma (PHP), LPL consists of a pattern of more than 8 forms of the same apparent molecular weight, but different isoelectric point (pI). In the present study we describe, for the first time, the existence of at least nine LPL pI isoforms in human PHP, with apparent pI between 6.8 and 8.6. Separation...

  2. Distinct pathways of neural coupling for different basic emotions.

    Science.gov (United States)

    Tettamanti, Marco; Rognoni, Elena; Cafiero, Riccardo; Costa, Tommaso; Galati, Dario; Perani, Daniela

    2012-01-16

    Emotions are complex events recruiting distributed cortical and subcortical cerebral structures, where the functional integration dynamics within the involved neural circuits in relation to the nature of the different emotions are still unknown. Using fMRI, we measured the neural responses elicited by films representing basic emotions (fear, disgust, sadness, happiness). The amygdala and the associative cortex were conjointly activated by all basic emotions. Furthermore, distinct arrays of cortical and subcortical brain regions were additionally activated by each emotion, with the exception of sadness. Such findings informed the definition of three effective connectivity models, testing for the functional integration of visual cortex and amygdala, as regions processing all emotions, with domain-specific regions, namely: i) for fear, the frontoparietal system involved in preparing adaptive motor responses; ii) for disgust, the somatosensory system, reflecting protective responses against contaminating stimuli; iii) for happiness: medial prefrontal and temporoparietal cortices involved in understanding joyful interactions. Consistently with these domain-specific models, the results of the effective connectivity analysis indicate that the amygdala is involved in distinct functional integration effects with cortical networks processing sensorimotor, somatosensory, or cognitive aspects of basic emotions. The resulting effective connectivity networks may serve to regulate motor and cognitive behavior based on the quality of the induced emotional experience. Copyright © 2011. Published by Elsevier Inc.

  3. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells.

    Science.gov (United States)

    Tavazzani, Elisa; Tritto, Simona; Spaiardi, Paolo; Botta, Laura; Manca, Marco; Prigioni, Ivo; Masetto, Sergio; Russo, Giancarlo

    2014-01-01

    The function of the enzyme glutamate decarboxylase (GAD) is to convert glutamate in γ-aminobutyric acid (GABA). Glutamate decarboxylase exists as two major isoforms, termed GAD65 and GAD67, that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  4. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells

    Directory of Open Access Journals (Sweden)

    Giancarlo eRusso

    2014-12-01

    Full Text Available The function of the enzyme glutamate decarboxylase (GAD is to convert glutamate in -aminobutyric acid (GABA.GAD exists as two major isoforms, termed GAD65 and GAD67,.that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  5. Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice.

    Science.gov (United States)

    Orfanos, Zacharias; Sparrow, John C

    2013-01-01

    During muscle development myosin molecules form symmetrical thick filaments, which integrate with the thin filaments to produce the regular sarcomeric lattice. In Drosophila indirect flight muscles (IFMs) the details of this process can be studied using genetic approaches. The weeP26 transgenic line has a GFP-encoding exon inserted into the single Drosophila muscle myosin heavy chain gene, Mhc. The weeP26 IFM sarcomeres have a unique MHC-GFP-labelling pattern restricted to the sarcomere core, explained by non-translation of the GFP exon following alternative splicing. Characterisation of wild-type IFM MHC mRNA confirmed the presence of an alternately spliced isoform, expressed earlier than the major IFM-specific isoform. The two wild-type IFM-specific MHC isoforms differ by the presence of a C-terminal 'tailpiece' in the minor isoform. The sequential expression and assembly of these two MHCs into developing thick filaments suggest a role for the tailpiece in initiating A-band formation. The restriction of the MHC-GFP sarcomeric pattern in weeP26 is lifted when the IFM lack the IFM-specific myosin binding protein flightin, suggesting that it limits myosin dissociation from thick filaments. Studies of flightin binding to developing thick filaments reveal a progressive binding at the growing thick filament tips and in a retrograde direction to earlier assembled, proximal filament regions. We propose that this flightin binding restricts myosin molecule incorporation/dissociation during thick filament assembly and explains the location of the early MHC isoform pattern in the IFM A-band.

  6. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology.

    Science.gov (United States)

    Callaghan, Paul S; Siriwardana, Amila; Hassett, Matthew R; Roepe, Paul D

    2016-03-31

    Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.

  7. GSK3β isoform-selective regulation of depression, memory and hippocampal cell proliferation.

    Science.gov (United States)

    Pardo, M; Abrial, E; Jope, R S; Beurel, E

    2016-03-01

    Abnormally active glycogen synthase kinase-3 (GSK3) contributes to pathological processes in multiple psychiatric and neurological disorders. Modeled in mice, this includes increasing susceptibility to dysregulation of mood-relevant behaviors, impairing performance in several cognitive tasks and impairing adult hippocampal neural precursor cell (NPC) proliferation. These deficits are all evident in GSK3α/β knockin mice, in which serine-to-alanine mutations block the inhibitory serine phosphorylation regulation of both GSK3 isoforms, leaving GSK3 hyperactive. It was unknown if both GSK3 isoforms perform redundant actions in these processes, or if hyperactivity of one GSK3 isoform has a predominant effect. To test this, we examined GSK3α or GSK3β knockin mice in which only one isoform was mutated to a hyperactive form. Only GSK3β, not GSK3α, knockin mice displayed heightened vulnerability to the learned helplessness model of depression-like behavior. Three cognitive measures impaired in GSK3α/β knockin mice showed differential regulation by GSK3 isoforms. Novel object recognition was impaired in GSK3β, not in GSK3α, knockin mice, whereas temporal order memory was not impaired in GSK3α or GSK3β knockin mice, and co-ordinate spatial processing was impaired in both GSK3α and GSK3β knockin mice. Adult hippocampal NPC proliferation was severely impaired in GSK3β knockin mice, but not impaired in GSK3α knockin mice. Increased activity of GSK3β, in the absence of overexpression or disease pathology, is sufficient to impair mood regulation, novel object recognition and hippocampal NPC proliferation, whereas hyperactive GSK3α individually does not impair these processes. These results show that hyperactivity of the two GSK3 isoforms execute non-redundant effects on these processes. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. HPLC separation of human serum albumin isoforms based on their isoelectric points

    Science.gov (United States)

    Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A.; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA–SHg+), HSA with Cys34 oxidized to sulfenic acid (HSA–SOH) and HSA oxidized to sulfinate anion (HSA–SO2−) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3–585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA PMID:24316526

  9. Expression of two isoforms of CD44 in human endometrium.

    Science.gov (United States)

    Behzad, F; Seif, M W; Campbell, S; Aplin, J D

    1994-10-01

    The distribution of the cell-surface adhesion glycoprotein CD44 in human endometrium was examined by immunofluorescence using six monoclonal antibodies to epitopes common to all forms of the molecule, and by reverse transcription-polymerase chain reaction (RT-PCR). Immunoreactivity was observed throughout the menstrual cycle in stroma, vessels, glandular, and luminal epithelium. Variations in staining intensity were observed, especially in the epithelial compartment. CD44 was also expressed strongly by decidualized stromal cells of first-trimester pregnancy. No systematic variation of immunoreactivity was observed with stages of the normal cycle, but a fraction (25%) of the specimens lacked reactivity in the epithelium. To determine the molecular size of the epithelial isoform, an immunoprecipitation technique was developed using surface-radioiodinated, detergent-extracted glands. This indicated the presence at the cell surface of a single dominant CD44E species with an approximate molecular mass of 130 kDa. RT-PCR was used to investigate the isoforms present in whole endometrial tissue, isolated gland fragments, and Ishikawa endometrial carcinoma cells. Complementary DNA produced from total endometrial mRNA was PCR-amplified across the splice junction between exons 5 and 15. Transcripts corresponding to the hyaluronate receptor CD44H as well as a larger isoform were identified. CD44H was absent, or very scarce, in cDNA from purified gland epithelium. In contrast, Ishikawa cells expressed this form abundantly. The glands and Ishikawa cells also expressed CD44E containing sequences encoded by exons 12, 13, and 14. These data demonstrate the presence of CD44 in human endometrium and decidua, and show that different isoforms of CD44 are associated with tissue compartments in which different functional roles can be anticipated.

  10. Analysis of human bone alkaline phosphatase isoforms: comparison of isoelectric focusing and ion-exchange high-performance liquid chromatography.

    Science.gov (United States)

    Sharp, Christopher A; Linder, Cecilia; Magnusson, Per

    2007-04-01

    Several isoforms of alkaline phosphatase (ALP) can be identified in human tissues and serum after separation by anion-exchange HPLC and isoelectric focusing (IEF). We purified four soluble bone ALP (BALP) isoforms (B/I, B1x, B1 and B2) from human SaOS-2 cells, determined their specific pI values by broad range IEF (pH 3.5-9.5), compared these with commercial preparations of bone, intestinal and liver ALPs and established the effects of neuraminidase and wheat germ lectin (WGA) on enzyme activity. Whilst the isoforms B1x (pI=4.48), B1 (pI=4.32) and B2 (pI=4.12) resolved as well-defined bands, B/I resolved as a complex (pI=4.85-6.84). Neuraminidase altered the migration of all BALP isoforms to pI=6.84 and abolished their binding to the anion-exchange matrix, but increased their enzymatic activities by 11-20%. WGA precipitated the BALP isoforms in IEF gels and the HPLC column and attenuated their enzymatic activities by 54-73%. IEF resolved the commercial BALP into 2 major bands (pI=4.41 and 4.55). Migration of BALP isoforms is similar in IEF and anion-exchange HPLC and dependent on sialic acid content. HPLC is preferable in smaller scale research applications where samples containing mixtures of BALP isoforms are analysed. Circulating liver ALP (pI=3.85) can be resolved from BALP by either method. IEF represents a simpler approach for routine purposes even though some overlapping of the isoforms may occur.

  11. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    International Nuclear Information System (INIS)

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.; Morris, Glenn E.

    2011-01-01

    Highlights: → A novel epsilon isoform of nesprin-2 has been discovered. → This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. → It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. → Like other nesprins, it is located at the nuclear envelope. → We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2 teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.

  12. Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation

    Directory of Open Access Journals (Sweden)

    Bensimon-Brito Anabela

    2012-10-01

    Oc signals were clearly produced both by the notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1. Conclusions If notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum formation, possibly contributing to the distinct mineralization patterns of zebrafish vertebral column and caudal fin vertebral fusion.

  13. Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation.

    Science.gov (United States)

    Bensimon-Brito, Anabela; Cardeira, João; Cancela, Maria Leonor; Huysseune, Ann; Witten, Paul Eckhard

    2012-10-09

    notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1). If notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum formation, possibly contributing to the distinct mineralization patterns of zebrafish vertebral column and caudal fin vertebral fusion.

  14. Fermionic bound states in distinct kinklike backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)

    2017-04-15

    This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)

  15. Differential expression of a new isoform of DLG2 in renal oncocytoma

    Directory of Open Access Journals (Sweden)

    Kovacs Gyula

    2006-04-01

    Full Text Available Abstract Background Renal oncocytoma, a benign tumour of the kidney, may pose a differential diagnostic problem due to overlapping phenotype with chromophobe renal cell carcinoma or other types of renal cell tumours. Therefore, identification of molecular markers would be of great value for molecular diagnostics of this tumour type. Methods In the current study we applied various techniques, including Affymetrix microarray hybridization and semiquantitative RT-PCR, to identify genes expressed differentially in renal oncocytomas. Subsequently, we used RACE and Northern blot hybridization to characterize the potential candidates for molecular diagnosis. Results We have identified new isoform of DLG2 gene, which contains 3'-end exons of the known DLG2 gene along with the hypothetical gene FLJ37266. The new isoform is specifically upregulated in renal oncocytoma, whereas the known DLG2 gene is downregulated in this type of kidney tumour. Conclusion The new isoform of DLG2 is the promising candidate gene for molecular differential diagnostics of renal oncocytoma.

  16. Differential expression of a new isoform of DLG2 in renal oncocytoma

    International Nuclear Information System (INIS)

    Zubakov, Dmitry; Stupar, Zorica; Kovacs, Gyula

    2006-01-01

    Renal oncocytoma, a benign tumour of the kidney, may pose a differential diagnostic problem due to overlapping phenotype with chromophobe renal cell carcinoma or other types of renal cell tumours. Therefore, identification of molecular markers would be of great value for molecular diagnostics of this tumour type. In the current study we applied various techniques, including Affymetrix microarray hybridization and semiquantitative RT-PCR, to identify genes expressed differentially in renal oncocytomas. Subsequently, we used RACE and Northern blot hybridization to characterize the potential candidates for molecular diagnosis. We have identified new isoform of DLG2 gene, which contains 3'-end exons of the known DLG2 gene along with the hypothetical gene FLJ37266. The new isoform is specifically upregulated in renal oncocytoma, whereas the known DLG2 gene is downregulated in this type of kidney tumour. The new isoform of DLG2 is the promising candidate gene for molecular differential diagnostics of renal oncocytoma

  17. Structural isoforms of the circadian neuropeptide PDF expressed in the optic lobes of the cricket Gryllus bimaculatus: immunocytochemical evidence from specific monoclonal antibodies.

    Science.gov (United States)

    Honda, Takeshi; Matsushima, Ayami; Sumida, Kazunori; Chuman, Yoshiro; Sakaguchi, Kazuyasu; Onoue, Hitoshi; Meinertzhagen, Ian A; Shimohigashi, Yasuyuki; Shimohigashi, Miki

    2006-11-20

    Pigment-dispersing factor (PDF) is an 18-mer peptide that acts as a principal neurotransmitter of the insect circadian clock. Our previous study, utilizing anti-Uca beta-PDH polyclonal antibody (pAb) to immunolabel the optic lobe of the cricket Gryllus bimaculatus, suggested the existence of an alternative PDF-like peptide in the outer cells of the first neuropile, or lamina (La), which were much less immunoreactive than the inner cells of the second neuropile, the medulla (Me). To obtain structural information about such a PDF-like peptide, we prepared 10 anti-Gryllus PDF monoclonal (mAb) and pAb antibodies and analyzed their detailed epitope specificities. The PDFMe and PDFLa inner cells and their axonal projections were clearly immunoreactive to all these antibodies, revealing the widespread immunocytochemical organization of the PDF system in the optic lobe, as seen previously with anti-Uca beta-PDH pAb and anti-Gryllus PDF mAb, the epitope structures of which were also clarified in this study. The lamina outer cells, which we found lacked a target pdf mRNA, displayed specific immunoreactivities, indicating that the cells contain a distinct PDF-like peptide possessing both N- and C-terminal structures. These cells were not immunolabeled by some other monoclonal antibodies, however, implying that the PDFLa outer cells have a PDF isoform peptide devoid of Asn at positions 6 and 16. This isoform was also identified in a varicose arborization in the lamina. These results suggest not only the structure of the peptide, but also the possibility of additional functions of this novel PDF isoform.

  18. [Characterization of a malic enzyme isoform V from Mucor circinelloides].

    Science.gov (United States)

    Zhang, Yingtong; Chen, Haiqin; Song, Yuanda; Zhang, Hao; Chen, Yongquan; Chen, Wei

    2016-02-04

    We aimed at characterizing a malic enzyme isoform V from Mucor circinelloides. me1 gene encoding malic enzyme isoform V was amplified and cloned into expression vector pET28a. High-purity recombinant protein BLME1 was obtained by affinity chromatography using. Ni-NTA column and characterized subsequently. The optimum conditions were pH at 8.0 and temperature at 33 degrees C. Under optimum conditions, BLME1 activity achieved 92.8 U/mg. The K(m) for L-malate and NADP+ were 0.74960 ± 0.06120 mmol/L and 0.22070 ± 0.01810 mmol/L, the V(max) for L-malate and NADP+ were 72.820 ± 1.077 U/mg and 86.110 ± 1.665 U/mg, respectively. In addition, ions played important roles in BLME1 activity; several ions such as Mn2+, Mg2+, Co2+, Ni2+ could activate BLME1, whereas Ca2+, Cu2+ could be used as inhibitors. Additionally, the metabolic intermediates such as oxaloacetic acid and α-ketoglutaric acid inhibited the activity of BLME1, whereas succinic acid activated it. A malic enzyme isoform V from Mucor circinelloides was characterized, providing the references for further studies on this enzyme.

  19. Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice.

    Directory of Open Access Journals (Sweden)

    Gabor Szalai

    Full Text Available Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1 not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1 develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a in preeclampsia; 2 determine blood pressures in non-stressed conditions; and 3 develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP monitoring.Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11 or green fluorescent protein (GFP; n = 9 on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18. Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3 ± 51.7 μg/mg vs. 19.3 ± 5.6 μg/mg, p = 4.4 x 10(-2; GD18. Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2 x 10(-2. Placental and fetal weights did not differ between the groups

  20. Full-Length Human Placental sFlt-1-e15a Isoform Induces Distinct Maternal Phenotypes of Preeclampsia in Mice

    Science.gov (United States)

    Szalai, Gabor; Romero, Roberto; Chaiworapongsa, Tinnakorn; Xu, Yi; Wang, Bing; Ahn, Hyunyoung; Xu, Zhonghui; Chiang, Po Jen; Sundell, Birgitta; Wang, Rona; Jiang, Yang; Plazyo, Olesya; Olive, Mary; Tarca, Adi L.; Dong, Zhong; Qureshi, Faisal; Papp, Zoltan; Hassan, Sonia S.; Hernandez-Andrade, Edgar; Than, Nandor Gabor

    2015-01-01

    Objective Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring. Methods Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia. Results Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10-2; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10-2). Placental and fetal weights did not differ between the

  1. ADAPTIVE CHANGES OF MYOSIN ISOFORMS IN RESPONSE TO LONG-TERM STRENGTH AND POWER TRAINING IN MIDDLE-AGED MEN

    Directory of Open Access Journals (Sweden)

    Raivo Puhke

    2006-06-01

    Full Text Available The purpose of the study was to examine the adaptive changes in myosin heavy chain (MHC and light chain (MLC isoforms in human vastus lateralis muscle caused by long-term strength and power training (54 weeks, approximately 3 times a week in untrained middle- aged men (16 in the training and 6 in the control group. Muscular MHC and MLC isoforms were determined by means of SDS-PAGE gel electrophoresis. During the training period, maximal anaerobic cycling power increased by 64 W (p < 0.001 and the maximal jumping height by 1.5 cm (p < 0. 05 in the training group, but no significant changes were found in the control group. However, the group by time effect was not significant. In the training group, the increase of the maximal jumping height correlated with the number of strength and power training sessions (r = 0.56; p < 0.05. The change of the proportion of MHC IIa isoform from 52.6 ± 12.2% to 59.4 ± 11.6% did not reach statistical significance (p = 0.070 for group by time; within training group p = 0.061 and neither did the change of the proportion of MHC IIx isoform from 18.1 ± 11.4% to 11.1 ± 9.1% (p = 0.104 for group by time; within training group p=0.032. The degree of change of MHC IIx isoform correlated with the amount of earlier recreational sports activity (r = 0.61; p < 0.05. In the training group, the changes of MLC1s isoform correlated negatively with the changes of MLC1f isoform (r = -0. 79; p < 0.05 as well as with the changes in maximal anaerobic cycling power (r = -0.81; p < 0.05, and positively with those of MHC I isoform (r = 0.81; p < 0.05. In conclusion, the long- term strength and power training ~3 times a week seemed to have only slight effects on fast MHC isoforms in the vastus lateralis muscle of untrained middle-aged men; the proportion of MHC IIa tended to increase and that of MHC IIx tended to decrease. No changes in MLC isoform profile could be shown

  2. Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum.

    Science.gov (United States)

    Bhattacharyya, Dipto; Hazra, Saptarshi; Banerjee, Anindyajit; Datta, Riddhi; Kumar, Deepak; Chakrabarti, Saikat; Chattopadhyay, Sharmila

    2016-09-01

    Podophyllotoxin (ptox) is a therapeutically important lignan derived from Podophyllum hexandrum and is used as a precursor for the synthesis of anticancer drugs etoposide, teniposide and etopophose. In spite of its enormous economic significance, genomic information on this endangered medicinal herb is scarce. We have performed de novo transcriptome analysis of methyl jasmonate (MeJA)-treated P. hexandrum cell cultures exhibiting enhanced ptox accumulation. The results revealed the maximum up-regulation of several isoforms of cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes the synthesis of coniferyl alcohol and sinapyl alcohol from coniferaldehyde (CAld) and sinapaldehyde respectively. Coniferyl alcohol can produce both lignin and lignan while sinapyl alcohol produces only lignin. To isolate the CAD isoforms favoring ptox, we deduced full length cDNA sequences of four CAD isoforms: PhCAD1, PhCAD2, PhCAD3 and PhCAD4 from the contigs of the transcriptome data. In vitro enzyme assays indicated a higher affinity for CAld over sinapaldehyde for each isoform. In silico molecular docking analyses also suggested that PhCAD3 has a higher binding preference with CAld over sinapaldehyde, followed by PhCAD4, PhCAD2, and PhCAD1, respectively. The transgenic cell cultures overexpressing these isoforms independently revealed that PhCAD3 favored the maximum accumulation of ptox as compared to lignin followed by PhCAD4 and PhCAD2, whereas, PhCAD1 favored both equally. Together, our study reveals transcriptome-wide identification and characterization of ptox specific CAD isoforms from P. hexandrum. It provides a useful resource for future research not only on the ptox biosynthetic pathway but on overall P. hexandrum, an endangered medicinal herb with immense therapeutic importance.

  3. The schizophrenia-associated Kv11.1-3.1 isoform results in reduced current accumulation during repetitive brief depolarizations.

    Directory of Open Access Journals (Sweden)

    Juliane Heide

    Full Text Available Recent genome wide association studies identified a brain and primate specific isoform of a voltage-gated potassium channel, referred to as Kv11.1-3.1, which is significantly associated with schizophrenia. The 3.1 isoform replaces the first 102 amino acids of the most abundant isoform (referred to as Kv11.1-1A with six unique amino acids. Here we show that the Kv11.1-3.1 isoform has faster rates of channel deactivation but a slowing of the rates of inactivation compared to the Kv11.1-1A isoform. The Kv11.1-3.1 isoform also has a significant depolarizing shift in the voltage-dependence of steady-state inactivation. The consequence of the altered gating kinetics is that there is lower current accumulation for Kv11.1-3.1 expressing cells during repetitive action potential firing compared to Kv11.1-1A expressing cells, which in turn will result in longer lasting trains of action potentials. Increased expression of Kv11.1-3.1 channels in the brain of schizophrenia patients might therefore contribute to disorganized neuronal firing.

  4. Cooperation between two ClpB isoforms enhances the recovery of the recombinant {beta}-galactosidase from inclusion bodies

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Izabela [Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk (Poland); Zolkiewski, Michal [Department of Biochemistry, Kansas State University, Manhattan, KS 66506 (United States); Kedzierska-Mieszkowska, Sabina, E-mail: kedzie@biotech.ug.gda.pl [Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk (Poland)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer An important role of synergistic cooperation between the two ClpB isoforms. Black-Right-Pointing-Pointer Both ClpB isoforms are associated with IBs of {beta}-galactosidase. Black-Right-Pointing-Pointer ClpB is a key chaperone in IB protein release. -- Abstract: Bacterial ClpB is a molecular chaperone that solubilizes and reactivates aggregated proteins in cooperation with the DnaK chaperone system. The mechanism of protein disaggregation mediated by ClpB is linked to translocation of substrates through the central channel within the ring-hexameric structure of ClpB. Two isoforms of ClpB are produced in vivo: the full-length ClpB95 and the truncated ClpB80 (ClpB{Delta}N), which does not contain the N-terminal domain. The functional specificity of the two ClpB isoforms and the biological role of the N-terminal domain are still not fully understood. Recently, it has been demonstrated that ClpB may achieve its full potential as an aggregate-reactivating chaperone through the functional interaction and synergistic cooperation of its two isoforms. It has been found that the most efficient resolubilization and reactivation of stress-aggregated proteins occurred in the presence of both ClpB95 and ClpB80. In this work, we asked if the two ClpB isoforms functionally cooperate in the solubilization and reactivation of proteins from insoluble inclusion bodies (IBs) in Escherichia coli cells. Using the model {beta}-galactosidase fusion protein (VP1LAC), we found that solubilization and reactivation of enzymes entrapped in IBs occurred more efficiently in the presence of ClpB95 with ClpB80 than with either ClpB95 or ClpB80 alone. The two isoforms of ClpB chaperone acting together enhanced the solubility and enzymatic activity of {beta}-galactosidase sequestered into IBs. Both ClpB isoforms were associated with IBs of {beta}-galactosidase, what demonstrates their affinity to this type of aggregates. These results demonstrate a synergistic

  5. Differential expression of mRNAs for protein kinase inhibitor isoforms in mouse brain.

    OpenAIRE

    Seasholtz, A F; Gamm, D M; Ballestero, R P; Scarpetta, M A; Uhler, M D

    1995-01-01

    Many neurotransmitters are known to regulate neuronal cell function by means of activation of cAMP-dependent protein kinase (PKA) and phosphorylation of neuronal substrate proteins, including transcription factors and ion channels. Here, we have characterized the gene expression of two isoforms of a protein kinase inhibitor (PKI) specific for PKA in mouse brain by RNase protection and in situ hybridization histochemistry. The studies demonstrate that the PKI alpha isoform is abundant in many ...

  6. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis.

    Science.gov (United States)

    Kawai, Yoshikazu; Asai, Kei; Errington, Jeffery

    2009-08-01

    MreB proteins are bacterial actin homologues thought to have a role in cell shape determination by positioning the cell wall synthetic machinery. Many bacteria, particularly Gram-positives, have more than one MreB isoform. Bacillus subtilis has three, MreB, Mbl and MreBH, which colocalize in a single helical structure. We now show that the helical pattern of peptidoglycan (PG) synthesis in the cylindrical part of the rod-shaped cell is governed by the redundant action of the three MreB isoforms. Single mutants for any one of mreB isoforms can still incorporate PG in a helical pattern and generate a rod shape. However, after depletion of MreB in an mbl mutant (or depletion of all three isoforms) lateral wall PG synthesis was impaired and the cells became spherical and lytic. Overexpression of any one of the MreB isoforms overcame the lethality as well as the defects in lateral PG synthesis and cell shape. Furthermore, MreB and Mbl can associate with the peptidoglycan biosynthetic machinery independently. However, no single MreB isoform was able to support normal growth under various stress conditions, suggesting that the multiple isoforms are used to allow cells to maintain proper growth and morphogenesis under changing and sometimes adverse conditions.

  7. Roles of the troponin isoforms during indirect flight muscle ...

    Indian Academy of Sciences (India)

    IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed ...

  8. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    International Nuclear Information System (INIS)

    Kikkawa, Yamato; Yu, Hao; Genersch, Elke; Sanzen, Noriko; Sekiguchi, Kiyotoshi; Faessler, Reinhard; Campbell, Kevin P.; Talts, Jan F.; Ekblom, Peter

    2004-01-01

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  9. The related transcriptional enhancer factor-1 isoform, TEAD4(216, can repress vascular endothelial growth factor expression in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Binoy Appukuttan

    Full Text Available Increased cellular production of vascular endothelial growth factor (VEGF is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4 protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4(216, which represses VEGF promoter activity. The TEAD4(216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE, which is the sequence critical to hypoxia inducible factor (HIF-mediated effects. The TEAD4(216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4(216 isoform can competitively repress the stimulatory activity of the TEAD4(434 and TEAD4(148 enhancers. Synthesis of the native VEGF(165 protein and cellular proliferation is suppressed by the TEAD4(216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4(216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases.

  10. Quantitative evaluation of alternatively spliced mRNA isoforms by label-free real-time plasmonic sensing.

    Science.gov (United States)

    Huertas, César S; Carrascosa, L G; Bonnal, S; Valcárcel, J; Lechuga, L M

    2016-04-15

    Alternative splicing of mRNA precursors enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression. Current methodologies for monitoring alternative splicing demand elaborate procedures and often present difficulties in discerning between closely related isoforms, e.g. due to cross-hybridization during their detection. Herein, we report a general methodology using a Surface Plasmon Resonance (SPR) biosensor for label-free monitoring of alternative splicing events in real-time, without any cDNA synthesis or PCR amplification requirements. We applied this methodology to RNA isolated from HeLa cells for the quantification of alternatively spliced isoforms of the Fas gene, involved in cancer progression through regulation of programmed cell death. We demonstrate that our methodology is isoform-specific, with virtually no cross-hybridization, achieving limits of detection (LODs) in the picoMolar (pM) range. Similar results were obtained for the detection of the BCL-X gene mRNA isoforms. The results were independently validated by RT-qPCR, with excellent concordance in the determination of isoform ratios. The simplicity and robustness of this biosensor technology can greatly facilitate the exploration of alternative splicing biomarkers in disease diagnosis and therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The effect of a period of intensive exercise on the isoform test to detect growth hormone doping in sports.

    Science.gov (United States)

    Voss, S C; Giraud, S; Alsayrafi, M; Bourdon, P C; Schumacher, Y O; Saugy, M; Robinson, N

    2013-08-01

    The major objective of this study was to investigate the effects of several days of intense exercise on growth hormone (hGH) testing using the World Anti-Doping Agencies hGH isoform differential immunoassays. Additionally the effects of circadian variation and exercise type on the isoform ratios were also investigated. 15 male athletes performed a simulated nine day cycling stage race. Blood samples were collected twice daily over a period of 15 days (stage race+three days before and after). hGH isoforms were analysed by the official WADA immunoassays (CMZ Assay GmbH). All measured isoform ratios were far below the WADA decision limits for an adverse analytical finding. Changes in the isoform ratios could not be clearly connected to circadian variation, exercise duration or intensity. The present study demonstrates that the hGH isoform ratios are not significantly affected by exercise or circadian variation. We demonstrated that heavy, long term exercise does not interfere with the decision limits for an adverse analytical finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them.

    Science.gov (United States)

    Cao, Yanyun; Zhao, Luping; Ying, Yusang; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-06-15

    Oil body, an organelle in seed cell (naturally pre-emulsified oil), has great potentials to be used in food, cosmetics, pharmaceutical and other applications requiring stable oil-in-water emulsions. Researchers have tried to extract oil body by alkaline buffers, which are beneficial for removing contaminated proteins. But it is not clear whether alkaline buffers could remove oil body integral proteins (mainly oleosins), which could keep oil body integrity and stability. In this study, seven oleosin isoforms were identified for soybean oil body (three isoforms, 24 kDa; three isoforms, 18 kDa; one isoform, 16kDa). Oleosins were not glycoproteins and 24 kDa oleosin isoforms possessed less thiol groups than 18 kDa ones. It was found that alkaline pH not only removed contaminated proteins but also oleosins, and more and more oleosins were removed with increasing alkaline pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1.

    Directory of Open Access Journals (Sweden)

    Shinobu Tsuzuki

    2007-05-01

    Full Text Available AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo.The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo.These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood

  14. Unsteady interfacial coupling of two-phase flow models

    International Nuclear Information System (INIS)

    Hurisse, O.

    2006-01-01

    The primary coolant circuit in a nuclear power plant contains several distinct components (vessel, core, pipes,...). For all components, specific codes based on the discretization of partial differential equations have already been developed. In order to obtain simulations for the whole circuit, the interfacial coupling of these codes is required. The approach examined within this work consists in coupling codes by providing unsteady information through the coupling interface. The numerical technique relies on the use of an interface model, which is combined with the basic strategy that was introduced by Greenberg and Leroux in order to compute approximations of steady solutions of non-homogeneous hyperbolic systems. Three different coupling cases have been examined: (i) the coupling of a one-dimensional Euler system with a two-dimensional Euler system; (ii) the coupling of two distinct homogeneous two-phase flow models; (iii) the coupling of a four-equation homogeneous model with the standard two-fluid model. (author)

  15. [Changes in titin and myosin heavy chain isoform composition in skeletal muscles of Mongolian gerbil (Meriones unguiculatus) after 12-day spaceflight].

    Science.gov (United States)

    Okuneva, A D; Vikhliantsev, I M; Shpagina, M D; Rogachevskiĭ, V V; Khutsian, S S; Poddubnaia, Z A; Grigor'ev, A I

    2012-01-01

    Changes of titin and myosin heavy chain isoform composition in skeletal muscles (m. soleus, m. gastrocnemius, m. tibialis anterior, m. psoas major) in Mongolian Gerbil (Meriones unguiculatus ) were investigated after 12-day spaceflight on board of Russian space vehicle "Foton-M3". In m. psoas and m. soleus in the gerbils from "Flight" group the expected increase in the content of fast myosin heavy chain isoforms (IIxd and IIa, respectively) were observed. No significant differences were found in the content of IIxd and IIa isoforms of myosin heavy chain in m. tibialis anterior in the gerbils from control group as compared to that in "Flight" group. An unexpected increase in the content of slow myosin heavy chain I isoform and a decrease in the content of fast IIx/d isoform in m. gastrocnemius of the gerbils from "Flight" group were observed. In skeletal muscles of the gerbils from "Flight" group the relative content of titin N2A-isoform was reduced (by 1,2-1,7 times), although the content of its NT-isoform, which was revealed in striated muscles of mammals in our experiments earlier, remained the same. When the content of titin N2A-isoform was decreased, no predictable abnormalities in sarcomeric structure and contractile ability of skeletal muscles in the gerbils from "Flight" group were found. An assumption on the leading role of titin NT-isoform in maintenance of structural and functional properties of striated muscles of mammals was made.

  16. Modified Polyadenylation-Based RT-qPCR Increases Selectivity of Amplification of 3′-MicroRNA Isoforms

    Directory of Open Access Journals (Sweden)

    Charlotte Nejad

    2018-01-01

    Full Text Available MicroRNA (miRNA detection by reverse transcription (RT quantitative real-time PCR (RT-qPCR is the most popular method currently used to measure miRNA expression. Although the majority of miRNA families are constituted of several 3′-end length variants (“isomiRs”, little attention has been paid to their differential detection by RT-qPCR. However, recent evidence indicates that 3′-end miRNA isoforms can exhibit 3′-length specific regulatory functions, underlining the need to develop strategies to differentiate 3′-isomiRs by RT-qPCR approaches. We demonstrate here that polyadenylation-based RT-qPCR strategies targeted to 20–21 nt isoforms amplify entire miRNA families, but that primers targeted to >22 nt isoforms were specific to >21 nt isoforms. Based on this observation, we developed a simple method to increase selectivity of polyadenylation-based RT-qPCR assays toward shorter isoforms, and demonstrate its capacity to help distinguish short RNAs from longer ones, using synthetic RNAs and biological samples with altered isomiR stoichiometry. Our approach can be adapted to many polyadenylation-based RT-qPCR technologies already exiting, providing a convenient way to distinguish long and short 3′-isomiRs.

  17. DMPD: The role of C/EBP isoforms in the control of inflammatory and native immunityfunctions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9792624 The role of C/EBP isoforms in the control of inflammatory and native immunityfunction...f C/EBP isoforms in the control of inflammatory and native immunityfunctions. PubmedID 9792624 Title The rol...e of C/EBP isoforms in the control of inflammatory and native immunityfunctions.

  18. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Science.gov (United States)

    Hector, Ralph D; Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  19. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells.

    Science.gov (United States)

    Erb, Ulrike; Megaptche, Amelie Pajip; Gu, Xiaoyu; Büchler, Markus W; Zöller, Margot

    2014-03-31

    A blockade of CD44 is considered a therapeutic option for the elimination of leukemia initiating cells. However, anti-panCD44 can interfere with hematopoiesis. Therefore we explored, whether a CD44 variant isoform (CD44v)-specific antibody can inhibit leukemia growth without attacking hematopoiesis. As a model we used CD44v10 transfected EL4 thymoma cells (EL4-v10). The therapeutic efficacy of anti-panCD44 and anti-CD44v10 was evaluated after intravenous application of EL4/EL4-v10. Ex vivo and in vitro studies evaluated the impact of anti-panCD44 and anti-CD44v10 as well as of EL4 and EL4-v10 on hematopoietic stem cells (HSC) in cocultures with bone marrow stroma cells with a focus on adhesion, migration, cell cycle progression and apoptosis resistance. Intravenously injected EL4-v10 grow in bone marrow and spleen. Anti-panCD44 and, more pronounced anti-CD44v10 prolong the survival time. The higher efficacy of anti-CD44v10 compared to anti-panCD44 does not rely on stronger antibody-dependent cellular cytotoxicity or on promoting EL4-v10 apoptosis. Instead, EL4 compete with HSC niche embedding. This has consequences on quiescence and apoptosis-protecting signals provided by the stroma. Anti-panCD44, too, more efficiently affected embedding of HSC than of EL4 in the bone marrow stroma. EL4-v10, by catching osteopontin, migrated on bone marrow stroma and did not or weakly interfere with HSC adhesion. Anti-CD44v10, too, did not affect the HSC--bone marrow stroma crosstalk. The therapeutic effect of anti-panCD44 and anti-CD44v10 is based on stimulation of antibody-dependent cellular cytotoxicity. The superiority of anti-CD44v10 is partly due to blocking CD44v10-stimulated osteopontin expression that could drive HSC out of the niche. However, the main reason for the superiority of anti-CD44v10 relies on neither EL4-v10 nor anti-CD44v10 severely interfering with HSC--stroma cell interactions that, on the other hand, are affected by EL4 and anti-panCD44. Anti-panCD44

  20. The selectivity and promiscuity of brain-neuroregenerative inhibitors between ROCK1 and ROCK2 isoforms: An integration of SB-QSSR modelling, QM/MM analysis and in vitro kinase assay.

    Science.gov (United States)

    Zhu, L; Yang, Y; Lu, X

    2016-01-01

    The Rho-associated kinases (ROCKs) have long been recognized as an attractive therapeutic target for various neurological diseases; selective inhibition of ROCK1 and ROCK2 isoforms would result in distinct biological effects on neurogenesis, neuroplasticity and neuroregeneration after brain surgery and traumatic brain injury. However, the discovery and design of isoform-selective inhibitors remain a great challenge due to the high conservation and similarity between the kinase domains of ROCK1 and ROCK2. Here, a structure-based quantitative structure-selectivity relationship (SB-QSSR) approach was used to correlate experimentally measured selectivity with the difference in inhibitor binding to the two kinase isoforms. The resulting regression models were examined rigorously through both internal cross-validation and external blind validation; a nonlinear predictor was found to have high fitting stability and strong generalization ability, which was then employed to perform virtual screening against a structurally diverse, drug-like compound library. Consequently, five and seven hits were identified as promising candidates of 1-o-2 and 2-o-1 selective inhibitors, respectively, from which seven purchasable compounds were tested in vitro using a standard kinase assay protocol to determine their inhibitory activity against and selectivity between ROCK1 and ROCK2. The structural basis, energetic property and biological implication underlying inhibitor selectivity and promiscuity were also investigated systematically using a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme.

  1. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    International Nuclear Information System (INIS)

    Olsson, Eleonor; Lövgren, Kristina; Fernö, Mårten; Grabau, Dorthe; Borg, Åke; Hegardt, Cecilia; Honeth, Gabriella; Bendahl, Pär-Ola; Saal, Lao H; Gruvberger-Saal, Sofia; Ringnér, Markus; Vallon-Christersson, Johan; Jönsson, Göran; Holm, Karolina

    2011-01-01

    The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC) compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes. We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA. Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44 + /CD24 - phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S) isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival. We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in specific oncogenic signaling pathways. Efforts to link CD44 to

  2. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    Directory of Open Access Journals (Sweden)

    Vallon-Christersson Johan

    2011-09-01

    Full Text Available Abstract Background The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes. Methods We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA. Results Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44+/CD24- phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival. Conclusions We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in

  3. Branchial Expression Patterns of Claudin Isoforms in Atlantic Salmon During Seawater Acclimation and Smoltification

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Kiilerich, Pia; Nilsen, Tom O

    2008-01-01

    in epithelia. We identified Atlantic salmon genes belonging to the claudin family by screening expressed sequence tag libraries available at NCBI and classification was performed with aid of maximum likelihood and neighbour-joining analysis. In gill libraries, five isoforms (10e, 27a, 28a, 28b and 30) were...... present and QPCR analysis confirmed tissue-specific expression in gill when compared to kidney, intestine, heart, muscle, brain and liver. Expression patterns during acclimation of freshwater salmon to seawater (SW) and during the smoltification process were examined. Acclimation to SW reduced...... induced no significant changes in expression of the other isoforms. This study demonstrates the expression of an array of salmon claudin isoforms and shows that SW acclimation involves inverse regulation, in the gill, of claudin 10e versus claudin 27a and 30. It is possible, that claudin 10e...

  4. Selectivity analyses of γ-benzylidene digoxin derivatives to different Na,K-ATPase α isoforms: a molecular docking approach.

    Science.gov (United States)

    Pessôa, Marco T C; Alves, Silmara L G; Taranto, Alex G; Villar, José A F P; Blanco, Gustavo; Barbosa, Leandro A

    2018-12-01

    Digoxin and other cardiotonic steroids (CTS) exert their effect by inhibiting Na,K-ATPase (NKA) activity. CTS bind to the various NKA isoforms that are expressed in different cell types, which gives CTS their narrow therapeutic index. We have synthesised a series of digoxin derivatives (γ-Benzylidene digoxin derivatives) with substitutions in the lactone ring (including non-oxygen and ether groups), to obtain CTS with better NKA isoform specificity. Some of these derivatives show some NKA isoform selective effects, with BD-3, BD-8, and BD-13 increasing NKA α2 activity, BD-5 inhibiting NKA α1 and NKA α3, BD-10 reducing NKA α1, but stimulating NKA α2 and α3; and BD-14, BD-15, and BD-16 enhancing NKA α3 activity. A molecular-docking approach favoured NKA isoform specific interactions for the compounds that supported their observed activity. These results show that BD compounds are a new type of CTS with the capacity to target NKA activity in an isoform-specific manner.

  5. Bacterial Production, Characterization and Protein Modeling of a Novel Monofuctional Isoform of FAD Synthase in Humans: An Emergency Protein?

    Directory of Open Access Journals (Sweden)

    Piero Leone

    2018-01-01

    Full Text Available FAD synthase (FADS, EC 2.7.7.2 is the last essential enzyme involved in the pathway of biosynthesis of Flavin cofactors starting from Riboflavin (Rf. Alternative splicing of the human FLAD1 gene generates different isoforms of the enzyme FAD synthase. Besides the well characterized isoform 1 and 2, other FADS isoforms with different catalytic domains have been detected, which are splice variants. We report the characterization of one of these novel isoforms, a 320 amino acid protein, consisting of the sole C-terminal 3′-phosphoadenosine 5′-phosphosulfate (PAPS reductase domain (named FADS6. This isoform has been previously detected in Riboflavin-Responsive (RR-MADD and Non-responsive Multiple Acyl-CoA Dehydrogenase Deficiency (MADD patients with frameshift mutations of FLAD1 gene. To functionally characterize the hFADS6, it has been over-expressed in Escherichia coli and purified with a yield of 25 mg·L−1 of cell culture. The protein has a monomeric form, it binds FAD and is able to catalyze FAD synthesis (kcat about 2.8 min−1, as well as FAD pyrophosphorolysis in a strictly Mg2+-dependent manner. The synthesis of FAD is inhibited by HgCl2. The enzyme lacks the ability to hydrolyze FAD. It behaves similarly to PAPS. Combining threading and ab-initio strategy a 3D structural model for such isoform has been built. The relevance to human physio-pathology of this FADS isoform is discussed.

  6. Different expression patterns of renal Na+/K+-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges.

    Science.gov (United States)

    Yang, Wen-Kai; Chung, Chang-Hung; Cheng, Hui Chen; Tang, Cheng-Hao; Lee, Tsung-Han

    2016-12-01

    Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na + /K + -ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Clinical proteomics

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Frederiksen, Hanne; Johannsen, Trine Holm

    2018-01-01

    Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS)-platforms...... standards and calibrants. The present challenge is to examine if targeted proteomics of IGF-I can truly measure up to the routine performance that must be expected from a clinical testing platform.......Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS......)-platforms already implemented in many clinical laboratories for routine quantitation of small molecules (i.e. uHPLC coupled to triple-quadrupole MS). Progress in targeted proteomics of circulating insulin-like growth factor 1 (IGF-I) have provided valuable insights about tryptic peptides, transitions, internal...

  8. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Directory of Open Access Journals (Sweden)

    Ralph D Hector

    Full Text Available Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5 cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR, which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  9. RON kinase isoforms demonstrate variable cell motility in normal cells.

    Science.gov (United States)

    Greenbaum, Alissa; Rajput, Ashwani; Wan, Guanghua

    2016-09-01

    Aberrant RON (Recepteur d'Origine Nantais) tyrosine kinase activation causes the epithelial cell to evade normal growth pathways, resulting in unregulated cell proliferation, increased cell motility and decreased apoptosis. Wildtype (wt) RON has been shown to play a role in metastasis of epithelial malignancies. It presents an important potential therapeutic target for colorectal, breast, gastric and pancreatic cancer. Little is known about functional differences amongst RON isoforms RON155, RON160 and RON165. The purpose of this study was to determine the effect of various RON kinase isoforms on cell motility. Cell lines with stable expression of wtRON were generated by inserting the coding region of RON in pTagRFP (tagged red fluorescence protein plasmid). The expression constructs of RON variants (RON155, RON160 and RON165) were generated by creating a mutagenesis-based wtRON-pTag RFP plasmid and stably transfected into HEK 293 cells. The wound closure scratch assay was used to investigate the effect on cell migratory capacity of wild type RON and its variants. RON transfected cells demonstrated increased cell motility compared to HEK293 control cells. RON165 cell motility was significantly increased compared to RON160 (mean percentage of wound covered 37.37% vs. 32.40%; p = 0.03). RON tyrosine kinase isoforms have variable cell motility. This may reflect a difference in the behavior of malignant epithelial cells and their capacity for metastasis.

  10. Apolipoprotein (A) Isoform Distribution and Plasma Lipoprotein (a ...

    African Journals Online (AJOL)

    Plasma lipoprotein (a) Concentrations and apo(a) isoforms were determined in 101 healthy Nigerian subjects (M=63), F=38; age range 17-68 years), and coronary heart disease (CHD) patients (M=19, F=17, age range 30-79 years). Median Lp(a) level was 24.4 mg/di in the CHD patients and 22.1 mg/di in the controls.

  11. Multiple isoforms for the catalytic subunit of PKA in the basal fungal lineage Mucor circinelloides.

    Science.gov (United States)

    Fernández Núñez, Lucas; Ocampo, Josefina; Gottlieb, Alexandra M; Rossi, Silvia; Moreno, Silvia

    2016-12-01

    Protein kinase A (PKA) activity is involved in dimorphism of the basal fungal lineage Mucor. From the recently sequenced genome of Mucor circinelloides we could predict ten catalytic subunits of PKA. From sequence alignment and structural prediction we conclude that the catalytic core of the isoforms is conserved, and the difference between them resides in their amino termini. This high number of isoforms is maintained in the subdivision Mucoromycotina. Each paralogue, when compared to the ones form other fungi is more homologous to one of its orthologs than to its paralogs. All of these fungal isoforms cannot be included in the class I or II in which fungal protein kinases have been classified. mRNA levels for each isoform were measured during aerobic and anaerobic growth. The expression of each isoform is differential and associated to a particular growth stage. We reanalyzed the sequence of PKAC (GI 20218944), the only cloned sequence available until now for a catalytic subunit of M. circinelloides. PKAC cannot be classified as a PKA because of its difference in the conserved C-tail; it shares with PKB a conserved C2 domain in the N-terminus. No catalytic activity could be measured for this protein nor predicted bioinformatically. It can thus be classified as a pseudokinase. Its importance can not be underestimated since it is expressed at the mRNA level in different stages of growth, and its deletion is lethal. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Electrophoretic Mobility of Cardiac Myosin Heavy Chain Isoforms Revisited: Application of MALDI TOF/TOF Analysis

    Czech Academy of Sciences Publication Activity Database

    Arnoštová, P.; Jedelsky, P. L.; Soukup, Tomáš; Žurmanová, J.

    2011-01-01

    Roč. 2011, - (2011), e634253 ISSN 1110-7243 R&D Projects: GA AV ČR IAAX01110901; GA ČR(CZ) GA304/08/0256 Institutional research plan: CEZ:AV0Z50110509 Keywords : cardiac MyHC isoforms * MyHC isoform mobility * effect of thyroid hormones * mass spectrometry * SDS-PAGE and western blot Subject RIV: ED - Physiology Impact factor: 2.436, year: 2011

  13. Identification of five novel 14-3-3 isoforms interacting with the GPIb-IX complex in platelets.

    Science.gov (United States)

    Mangin, P H; Receveur, N; Wurtz, V; David, T; Gachet, C; Lanza, F

    2009-09-01

    Binding of von Willebrand factor to the platelet glycoprotein (GP)Ib-IX complex initiates a signaling cascade leading to integrin alpha(IIb)beta(3) activation, a key process in hemostasis and thrombosis. Interaction of 14-3-3zeta with the intracytoplasmic domain of GPIb appears to be a major effector of this activation pathway. The aim of our study was to determine whether other members of the 14-3-3 family bind to GPIb-IX. In this study, western blot analyses showed that platelets also contain the 14-3-3beta, 14-3-3gamma, 14-3-3epsilon, 14-3-3eta and 14-3-3theta isoforms, but lack 14-3-3sigma. Coimmunoprecipitation studies in platelets and CHO transfectants demonstrated that all six 14-3-3 isoforms expressed in platelets, including, as previously reported, 14-3-3zeta, bind to GPIb-IX. In addition, their interaction was found to critically require the same GPIbalpha domains (580-590 and 605-610) already identified as essential for 14-3-3zeta binding, in agreement with the conservation of the sequence of the I-helix among these different isoforms. Pull-down experiments indicated that all six 14-3-3 isoforms present in platelets bind to GPIbbeta. In contrast, deletion or mutation of the GPIbbeta intracytoplasmic tail did not affect the interaction of GPIb-IX with the 14-3-3 isoforms, questioning the importance of this domain. Our study suggests that, to inhibit GPIb-induced integrin alpha(IIb)beta(3) activation, a more appropriate strategy than inhibiting individual 14-3-3 isoforms would be to target the 14-3-3-binding motif on GPIb or, alternatively, the conserved 14-3-3 I-helix.

  14. Immunologic differentiation of two high-affinity neurotensin receptor isoforms in the developing rat brain.

    Science.gov (United States)

    Boudin, H; Lazaroff, B; Bachelet, C M; Pélaprat, D; Rostène, W; Beaudet, A

    2000-09-11

    Earlier studies have demonstrated overexpression of NT1 neurotensin receptors in rat brain during the first 2 weeks of life. To gain insight into this phenomenon, we investigated the identity and distribution of NT1 receptor proteins in the brain of 10-day-old rats by using two different NT1 antibodies: one (Abi3) directed against the third intracellular loop and the other (Abi4) against the C-terminus of the receptor. Immunoblot experiments that used Abi3 revealed the presence of two differentially glycosylated forms of the NT1 receptor in developing rat brain: one migrating at 54 and the other at 52 kDa. Whereas the 54-kDa form was expressed from birth to adulthood, the 52-kDa form was detected only at 10 and 15 days postnatal. Only the 52-kDa isoform was recognized by Abi4. By immunohistochemistry, both forms of the receptor were found to be predominantly expressed in cerebral cortex and dorsal hippocampus, in keeping with earlier radioligand binding and in situ hybridization data. However, whereas Abi4 immunoreactivity was mainly concentrated within nerve cell bodies and extensively colocalized with the Golgi marker alpha-mannosidase II, Abi3 immunoreactivity was predominantly located along neuronal processes. These results suggest that the transitorily expressed 52-kDa protein corresponds to an immature, incompletely glycosylated and largely intracellular form of the NT1 receptor and that the 54-kDa protein corresponds to a mature, fully glycosylated, and largely membrane-associated form. They also indicate that antibodies directed against different sequences of G-protein-coupled receptors may yield isoform-specific immunohistochemical labeling patterns in mammalian brain. Finally, the selective expression of the short form of the NT1 receptor early in development suggests that it may play a specific role in the establishment of neuronal circuitry. Copyright 2000 Wiley-Liss, Inc.

  15. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach.

    Science.gov (United States)

    Peng, Huiming; Peng, Tao; Wen, Jianguo; Engler, David A; Matsunami, Risë K; Su, Jing; Zhang, Le; Chang, Chung-Che Jeff; Zhou, Xiaobo

    2014-07-01

    p38 mitogen-activated protein kinase activation plays an important role in resistance to chemotherapeutic cytotoxic drugs in treating multiple myeloma (MM). However, how the p38 mitogen-activated protein kinase signaling pathway is involved in drug resistance, in particular the roles that the various p38 isoforms play, remains largely unknown. To explore the underlying mechanisms, we developed a novel systems biology approach by integrating liquid chromatography-mass spectrometry and reverse phase protein array data from human MM cell lines with computational pathway models in which the unknown parameters were inferred using a proposed novel algorithm called modularized factor graph. New mechanisms predicted by our models suggest that combined activation of various p38 isoforms may result in drug resistance in MM via regulating the related pathways including extracellular signal-regulated kinase (ERK) pathway and NFкB pathway. ERK pathway regulating cell growth is synergistically regulated by p38δ isoform, whereas nuclear factor kappa B (NFкB) pathway regulating cell apoptosis is synergistically regulated by p38α isoform. This finding that p38δ isoform promotes the phosphorylation of ERK1/2 in MM cells treated with bortezomib was validated by western blotting. Based on the predicted mechanisms, we further screened drug combinations in silico and found that a promising drug combination targeting ERK1/2 and NFκB might reduce the effects of drug resistance in MM cells. This study provides a framework of a systems biology approach to studying drug resistance and drug combination selection. RPPA experimental Data and Matlab source codes of modularized factor graph for parameter estimation are freely available online at http://ctsb.is.wfubmc.edu/publications/modularized-factor-graph.php. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  17. TGF-β's delay skeletal muscle progenitor cell differentiation in an isoform-independent manner

    International Nuclear Information System (INIS)

    Schabort, Elske J.; Merwe, Mathilde van der; Loos, Benjamin; Moore, Frances P.; Niesler, Carola U.

    2009-01-01

    Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-β (TGF-β) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-β on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-β1, -β2 and -β3 on wound repair in other tissues. In the current study we compared the effect of TGF-β1, -β2 and -β3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-β increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-β1, -β2 and -β3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-β promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner

  18. Frataxin mRNA Isoforms in FRDA Patients and Normal Subjects: Effect of Tocotrienol Supplementation

    Directory of Open Access Journals (Sweden)

    Provvidenza Maria Abruzzo

    2013-01-01

    Full Text Available Friedreich’s ataxia (FRDA is caused by deficient expression of the mitochondrial protein frataxin involved in the formation of iron-sulphur complexes and by consequent oxidative stress. We analysed low-dose tocotrienol supplementation effects on the expression of the three splice variant isoforms (FXN-1, FXN-2, and FXN-3 in mononuclear blood cells of FRDA patients and healthy subjects. In FRDA patients, tocotrienol leads to a specific and significant increase of FXN-3 expression while not affecting FXN-1 and FXN-2 expression. Since no structural and functional details were available for FNX-2 and FXN-3, 3D models were built. FXN-1, the canonical isoform, was then docked on the human iron-sulphur complex, and functional interactions were computed; when FXN-1 was replaced by FXN-2 or FNX-3, we found that the interactions were maintained, thus suggesting a possible biological role for both isoforms in human cells. Finally, in order to evaluate whether tocotrienol enhancement of FXN-3 was mediated by an increase in peroxisome proliferator-activated receptor-γ (PPARG, PPARG expression was evaluated. At a low dose of tocotrienol, the increase of FXN-3 expression appeared to be independent of PPARG expression. Our data show that it is possible to modulate the mRNA expression of the minor frataxin isoforms and that they may have a functional role.

  19. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    International Nuclear Information System (INIS)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T.

    2006-01-01

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy β and originally identified CoA synthase, CoASy α. The transcript specific for CoASy β was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy β. In contrast to CoASy α, which shows ubiquitous expression, CoASy β is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation

  20. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Adrian Biddle

    Full Text Available CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that

  1. Kinetics of local and systemic isoforms of serum amyloid A in bovine mastitic milk

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Niewold, T.A.; Kornalijnslijper, E.

    2005-01-01

    The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis.......The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis....

  2. Pre-α-pro-GDNF and Pre-β-pro-GDNF Isoforms Are Neuroprotective in the 6-hydroxydopamine Rat Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Anna-Maija Penttinen

    2018-06-01

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF is one of the most studied neurotrophic factors. GDNF has two splice isoforms, full-length pre-α-pro-GDNF (α-GDNF and pre-β-pro-GDNF (β-GDNF, which has a 26 amino acid deletion in the pro-region. Thus far, studies have focused solely on the α-GDNF isoform, and nothing is known about the in vivo effects of the shorter β-GDNF variant. Here we compare for the first time the effects of overexpressed α-GDNF and β-GDNF in non-lesioned rat striatum and the partial 6-hydroxydopamine lesion model of Parkinson's disease. GDNF isoforms were overexpressed with their native pre-pro-sequences in the striatum using an adeno-associated virus (AAV vector, and the effects on motor performance and dopaminergic phenotype of the nigrostriatal pathway were assessed. In the non-lesioned striatum, both isoforms increased the density of dopamine transporter-positive fibers at 3 weeks after viral vector delivery. Although both isoforms increased the activity of the animals in cylinder assay, only α-GDNF enhanced the use of contralateral paw. Four weeks later, the striatal tyrosine hydroxylase (TH-immunoreactivity was decreased in both α-GDNF and β-GDNF treated animals. In the neuroprotection assay, both GDNF splice isoforms increased the number of TH-immunoreactive cells in the substantia nigra but did not promote behavioral recovery based on amphetamine-induced rotation or cylinder assays. Thus, the shorter GDNF isoform, β-GDNF, and the full-length α-isoform have comparable neuroprotective efficacy on dopamine neurons of the nigrostriatal circuitry.

  3. LC coupled to ESI, MALDI and ICP MS - A multiple hyphenation for metalloproteomic studies.

    Science.gov (United States)

    Coufalíková, Kateřina; Benešová, Iva; Vaculovič, Tomáš; Kanický, Viktor; Preisler, Jan

    2017-05-22

    A new multiple detection arrangement for liquid chromatography (LC) that supplements conventional electrospray ionization (ESI) mass spectrometry (MS) detection with two complementary detection techniques, matrix-assisted laser desorption/ionization (MALDI) MS and substrate-assisted laser desorption inductively coupled plasma (SALD ICP) MS has been developed. The combination of the molecular and elemental detectors in a single separation run is accomplished by utilizing a commercial MALDI target made of conductive plastic. The proposed platform provides a number of benefits in today's metalloproteomic applications, which are demonstrated by analysis of a metallothionein mixture. To maintain metallothionein complexes, separation is carried out at a neutral pH. The effluent is split; a major portion is directed to ESI MS while the remaining 1.8% fraction is deposited onto a plastic MALDI target. Dried droplets are overlaid with MALDI matrix and analysed consecutively by MALDI MS and SALD ICP MS. In the ESI MS spectra, the MT isoform complexes with metals and their stoichiometry are determined; the apoforms are revealed in the MALDI MS spectra. Quantitative determination of metallothionein isoforms is performed via determination of metals in the complexes of the individual protein isoforms using SALD ICP MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Novel isoforms of the TFIID subunit TAF4 modulate nuclear receptor-mediated transcriptional activity

    International Nuclear Information System (INIS)

    Brunkhorst, Adrian; Neuman, Toomas; Hall, Anita; Arenas, Ernest; Bartfai, Tamas; Hermanson, Ola; Metsis, Madis

    2004-01-01

    The transcription factor TFIID consists of TATA-binding protein (TBP) and TBP-associated factors (TAFs). TAFs are essential for modulation of transcriptional activity but the regulation of TAFs is complex and many important aspects remain unclear. In this study, we have identified and characterized five novel truncated forms of the TFIID subunit TAF4 (TAF II 135). Analysis of the mouse gene structure revealed that all truncations were the results of alternative splicing and resulted in the loss of domains or parts of domains implicated in TAF4 functional interactions. Results from transcriptional assays showed that several of the TAF4 isoforms exerted dominant negative effects on TAF4 activity in nuclear receptor-mediated transcriptional activation. In addition, alternative TAF4 isoforms could be detected in specific cell types. Our results indicate an additional level of complexity in TAF4-mediated regulation of transcription and suggest context-specific roles for these new TAF4 isoforms in transcriptional regulation in vivo

  5. Progesterone receptor isoform analysis by quantitative real-time polymerase chain reaction in formalin-fixed, paraffin-embedded canine mammary dysplasias and tumors

    DEFF Research Database (Denmark)

    Guil-Luna, S.; Stenvang, Jan; Brünner, Nils

    2014-01-01

    and its isoforms in formalin-fixed, paraffin-embedded tissue samples from canine mammary lesions (4 dysplasias, 10 benign tumors, and 46 carcinomas) using 1-step SYBR Green quantitative real-time polymerase chain reaction (RT-qPCR). Progesterone receptor was expressed in 75% of dysplasias, all benign...... in the expression of isoform A versus B. Analysis of progesterone receptor mRNA isoforms by RT-qPCR was successful in routinely formalin-fixed, paraffin-embedded tissue samples and enabled the distribution of isoforms A and B to be identified for the first time in dysplasias, benign tumors, and malignant tumors...

  6. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    International Nuclear Information System (INIS)

    Brizio, Carmen; Galluccio, Michele; Wait, Robin; Torchetti, Enza Maria; Bafunno, Valeria; Accardi, Rosita; Gianazza, Elisabetta; Indiveri, Cesare; Barile, Maria

    2006-01-01

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl 2 , as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 ± 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K M value for FMN of 1.5 ± 0.3 μM. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast

  7. Comparison of inhibition capability of scutellarein and scutellarin towards important liver UDP-glucuronosyltransferase (UGT) isoforms.

    Science.gov (United States)

    Ma, Guang-You; Cao, Yun-Feng; Hu, Cui-Min; Fang, Zhong-Ze; Sun, Xiao-Yu; Hong, Mo; Zhu, Zhi-Tu

    2014-03-01

    Scutellarin is an important bioactive flavonoid extracted from Erigeron breviscapus (Vant.) Hand-Mazz, and scutellarein is the corresponding aglycone of scutellarin. The present study aims to compare the inhibition potential of scutellarin and scutellarein towards several important UDP-glucuronosyltransferase (UGT) isoforms, including UGT1A1, UGT1A6, UGT1A9 and UGT2B7. It was demonstrated that scutellarein exerted stronger inhibition towards the tested UGT isoforms than scutellarin. Furthermore, the inhibition kinetic type and parameters (Ki ) were determined for the scutellarein's inhibition towards these UGT isoforms. Competitive inhibition of scutellarein towards all these UGT isoforms was demonstrated, and the Ki values were calculated to be 0.02, 5.0, 5.8 and 35.9 μM for UGT1A1, 1A6, 1A9 and 2B7, respectively. Using in vivo maximum plasma concentration of scutellarein in rat, the in vitro-in vivo extrapolation was performed to predict in vivo situation, indicating the most possible in vivo adverse effects due to the inhibition of scutellarein towards UGT1A1. All these results remind us to monitor the utilization of scutellarin and scutellarein, and the herbs containing these two components. Copyright © 2013 John Wiley & Sons, Ltd.

  8. First Trimester Pregnancy Loss and the Expression of alternatively spliced NKp30 isoforms in Maternal Blood and Placental Tissue

    Directory of Open Access Journals (Sweden)

    Avishai eShemesh

    2015-06-01

    Full Text Available In this study, we aimed to investigate whether first trimester pregnancy loss is associated with differences in expression of NKp30 splice variants (isoforms in maternal peripheral blood or placental tissue. We conducted a prospective case-control study; a total of 33 women undergoing dilation and curettage due to first trimester pregnancy loss were further subdivided into groups with sporadic or recurrent pregnancy loss. The control group was comprised of women undergoing elective termination of pregnancy. The qPCR approach was employed to assess the relative expression of NKp30 isoforms as well as the total expression of NKp30 and NKp46 receptors between the selected groups. Results show that in both PBMC and placental tissue, NKp46 and NKp30 expression was mildly elevated in the pregnancy loss groups compared with the elective group. In particular, NKp46 elevation was significant. Moreover, expression analysis of NKp30 isoforms manifested a different profile between PBMC and the placenta. NKp30-a and NKp30-b isoforms in the placental tissue, but not in PBMC, showed a significant increase in the pregnancy loss groups compared with the elective group. Placental expression of NKp30 activating isoforms -a and -b in the pregnancy loss groups was negatively correlated with PLGF expression. In contrast, placental expression of these isoforms in the elective group was positively correlated with TNFα, IL-10 and VEGF-A expression. The altered expression of NKp30 activating isoforms in placental tissue from patients with pregnancy loss compared to the elective group and the different correlations with cytokine expression point to the involvement of NKp30-mediated function in pregnancy loss.

  9. Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform

    OpenAIRE

    Sharma, Shiwani; Burdon, Kathryn P.; Dave, Alpana; Jamieson, Robyn V.; Yaron, Yuval; Billson, Frank; Van Maldergem, Lionel; Lorenz, Birgit; Gécz, Jozef; Craig, Jamie E.

    2008-01-01

    Purpose Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for this isoform at cell-cell junction...

  10. The prognostic value of Her4 receptor isoform expression in triple-negative and Her2 positive breast cancer patients

    International Nuclear Information System (INIS)

    Machleidt, Anna; Buchholz, Stefan; Diermeier-Daucher, Simone; Zeman, Florian; Ortmann, Olaf; Brockhoff, Gero

    2013-01-01

    Not only four but rather seven different human epidermal growth factor receptor related (Her) receptor tyrosine kinases (RTKs) have been described to be expressed in a variety of normal and neoplastic tissues: Her1, Her2, Her3, and additionally four Her4 isoforms have been identified. A differential expression of Her4 isoforms does not, however, play any role in either the molecular diagnostics or treatment decision for breast cancer patients. The prognostic and predictive impact of Her4 expression in breast cancer is basically unclear. We quantified the Her4 variants JM-a/CYT1, JM-a/CYT2, JM-b/CYT1, and JM-b/CYT2 by isoform-specific polymerase chain reaction (qPCR) in (i) triple-negative, (ii) Her2 positive breast cancer tissues and (iii) in benign breast tissues. In all three tissue collectives we never found the JM-b/CYT1 or the JM-b/CYT2 isoform expressed. In contrast, the two JM-a/CYT1 and JM-a/CYT2 isoforms were always simultaneously expressed but at different ratios. We identified a positive prognostic impact on overall survival (OS) in triple-negative and event-free survival (EFS) in Her2 positive patients. This finding is independent of the absolute JM-a/CYT1 to JM-a/CYT2 expression ratio. In Her2 positive patients, Her4 expression only has a favorable effect in estrogen-receptor (ER)-positive but not in ER-negative individuals. In summary, JM-a/CYT1 and JM-a/CYT2 but not JM-b isoforms of the Her4 receptor are simultaneously expressed in both triple-negative and Her2 positive breast cancer tissues. Although different expression ratios of the two JM-a isoforms did not reveal any additional information, Her4 expression basically indicates a prolonged EFS and OFS. An extended expression analysis that takes all Her receptor homologs, including the Her4 isoforms, into account might render more precisely the molecular diagnostics required for the development of optimized targeted therapies

  11. Synchronization of diffusively coupled oscillators near the homoclinic bifurcation

    International Nuclear Information System (INIS)

    Postnov, D.; Han, Seung Kee; Kook, Hyungtae

    1998-09-01

    It has been known that a diffusive coupling between two limit cycle oscillations typically leads to the inphase synchronization and also that it is the only stable state in the weak coupling limit. Recently, however, it has been shown that the coupling of the same nature can result in the distinctive dephased synchronization when the limit cycles are close to the homoclinic bifurcation, which often occurs especially for the neuronal oscillators. In this paper we propose a simple physical model using the modified van der Pol equation, which unfolds the generic synchronization behaviors of the latter kind and in which one may readily observe changes in the synchronization behaviors between the distinctive regimes as well. The dephasing mechanism is analyzed both qualitatively and quantitatively in the weak coupling limit. A general form of coupling is introduced and the synchronization behaviors over a wide range of the coupling parameters are explored to construct the phase diagram using the bifurcation analysis. (author)

  12. Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining In Vivo AKT Isoform Substrate Specificity

    Directory of Open Access Journals (Sweden)

    Rachel S. Lee

    2011-01-01

    Full Text Available The AKT protooncogene mediates many cellular processes involved in normal development and disease states such as cancer. The three structurally similar isoforms: AKT1, AKT2, and AKT3 exhibit both functional redundancy and isoform-specific functions; however the basis for their differential signalling remains unclear. Here we show that in vitro, purified AKT3 is ∼47-fold more active than AKT1 at phosphorylating peptide and protein substrates. Despite these marked variations in specific activity between the individual isoforms, a comprehensive analysis of phosphorylation of validated AKT substrates indicated only subtle differences in signalling via individual isoforms in vivo. Therefore, we hypothesise, at least in this model system, that relative tissue/cellular abundance, rather than specific activity, plays the dominant role in determining AKT substrate specificity in situ.

  13. Generating Isoform-Specific Antibodies : Lessons from Nucleocytoplasmic Glycoprotein Skp1

    NARCIS (Netherlands)

    West, Christopher M.; Van Der Wel, Hanke; Chinoy, Zoiesha; Boons, Geert Jan; Gauthier, Ted J.; Taylor, Carol M.; Xu, Yuechi

    2015-01-01

    Antibodies that discriminate protein isoforms differing by modifications at specific amino acids have revolutionized studies of their functions. Skp1 is a novel nucleocytoplasmic glycoprotein that is hydroxylated at proline-143 and then O-glycosylated by a pentasaccharide attached via a GlcNAcα1,

  14. Lipoprotein(a) levels, apo(a) isoform size, and coronary heart disease risk in the Framingham Offspring Study

    Science.gov (United States)

    The aim of this study was to assess the independent contributions of plasma levels of lipoprotein(a) [Lp(a)], Lp(a) cholesterol, and of apo(a) isoform size to prospective coronary heart disease (CHD) risk. Plasma Lp(a) and Lp(a) cholesterol levels, and apo(a) isoform size were measured at examinati...

  15. Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1

    Science.gov (United States)

    Inserra, Marco C.; Israel, Mathilde R.; Caldwell, Ashlee; Castro, Joel; Deuis, Jennifer R.; Harrington, Andrea M.; Keramidas, Angelo; Garcia-Caraballo, Sonia; Maddern, Jessica; Erickson, Andelain; Grundy, Luke; Rychkov, Grigori Y.; Zimmermann, Katharina; Lewis, Richard J.; Brierley, Stuart M.; Vetter, Irina

    2017-01-01

    Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1–1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation. PMID:28225079

  16. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia.

    Science.gov (United States)

    Wang, Rong; Feng, Wenli; Yang, Feifei; Yang, Xiao; Wang, Lina; Chen, Chong; Hu, Yuting; Ren, Qian; Zheng, Guoguang

    2018-02-01

    Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy. © 2017 Australasian Society for Immunology Inc.

  17. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Science.gov (United States)

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice1

    Science.gov (United States)

    Jimenez, Tamara; Sanchez, Gladis; McDermott, Jeffrey P.; Nguyen, Anh-Nguyet; Kumar, T. Rajendra; Blanco, Gustavo

    2010-01-01

    The Na,K-ATPase alpha4 (ATP1A4) isoform is specifically expressed in male germ cells and is highly prevalent in spermatozoa. Although selective inhibition of alpha4 activity with ouabain has been shown to affect sperm motility, a more direct analysis of the role of this isoform in sperm movement has not yet been demonstrated. To establish this, we engineered transgenic mice that express the rat alpha4 isoform fused to green fluorescent protein in male germ cells, under the control of the mouse protamine 1 promoter. We showed that the rat Atp1a4 transgene is expressed in mouse spermatozoa and that it is localized to the sperm flagellum. In agreement with increased expression of the alpha4 isoform, sperm from transgenic mice displayed higher alpha4-specific Na,K-ATPase activity and binding of fluorescently labeled ouabain than wild-type mice. In contrast, expression and activity of ATP1A1 (alpha1), the other Na,K-ATPase alpha isoform present in sperm, remained unchanged. Similar to wild-type mice, mice expressing the alpha4 transgene exhibited normal testis and sperm morphology and no differences in fertility. However, compared to wild-type mice, sperm from transgenic mice displayed plasma membrane hyperpolarization and higher total and progressive motility. Other parameters of motility also increased, including straight-line, curvilinear, and average path velocities and amplitude of lateral head displacement. In addition, sperm from the transgenic mice showed enhanced sperm hyperactive motility, but no changes in progesterone-induced acrosome reaction. Altogether, these results provide new genetic evidence for the role of the ATP1A4 isoform in sperm motility, under both noncapacitating and capacitating conditions. PMID:20826726

  19. Isoforms of the major peanut allergen Ara h 2: IgE binding in children with peanut allergy.

    Science.gov (United States)

    Hales, Belinda J; Bosco, Anthony; Mills, Kristina L; Hazell, Lee A; Loh, Richard; Holt, Patrick G; Thomas, Wayne R

    2004-10-01

    The major peanut allergen Ara h 2 consists of two isoforms, namely Ara h 2.0101 and Ara h 2.0201. The recently identified Ara h 2.0201 isoform contains an extra 12 amino acids including an extra copy of the reported immunodominant epitope DPYSPS. This study aimed to evaluate the IgE binding of the two Ara h 2 isoforms. Ten clones of Ara h 2 were sequenced to assess the relative frequency of the Ara h 2 isoforms and to identify whether there was further variation in the Ara h 2 sequence. IgE binding to Ara h 2.0101 and Ara h 2.0201 was measured for 70 peanut-allergic children using an IgE DELFIA assay to quantitate specific IgE binding. A competition assay was used to measure whether Ara h 2.0201 contained IgE epitopes other than those found for Ara h 2.0101. The original Ara h 2.0101 sequence was found for 6/10 clones and Ara h 2.0201 was found for 2/10 clones. Ara h 2.0201 had the expected insertion of 12 amino acids as well as substitutions at positions 40 (40G) and 142 (142E). Two new isoforms were identified as different polymorphisms of position 142. One Ara h 2.01 clone (Ara h 2.0102) contained 142E and one Ara h 2.02 clone (Ara h 2.0202) contained 142D. A polymorphism that was previously identified by other investigators at position 77 (77Q or 77R) was not found for any of the 10 sequences. Although the level of IgE binding to Ara h 2.0201 of individual patients was frequently higher than the binding to Ara h 2.0101 (p originally sequenced Ara h 2.0101 isoform and contains other IgE specificities.

  20. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS.

    Science.gov (United States)

    Zhang, Guigen; Chan, Baca; Samarina, Naira; Abere, Bizunesh; Weidner-Glunde, Magdalena; Buch, Anna; Pich, Andreas; Brinkmann, Melanie M; Schulz, Thomas F

    2016-02-23

    The latency-associated nuclear antigen (LANA) of Kaposi sarcoma herpesvirus (KSHV) is mainly localized and functions in the nucleus of latently infected cells, playing a pivotal role in the replication and maintenance of latent viral episomal DNA. In addition, N-terminally truncated cytoplasmic isoforms of LANA, resulting from internal translation initiation, have been reported, but their function is unknown. Using coimmunoprecipitation and MS, we found the cGMP-AMP synthase (cGAS), an innate immune DNA sensor, to be a cellular interaction partner of cytoplasmic LANA isoforms. By directly binding to cGAS, LANA, and particularly, a cytoplasmic isoform, inhibit the cGAS-STING-dependent phosphorylation of TBK1 and IRF3 and thereby antagonize the cGAS-mediated restriction of KSHV lytic replication. We hypothesize that cytoplasmic forms of LANA, whose expression increases during lytic replication, inhibit cGAS to promote the reactivation of the KSHV from latency. This observation points to a novel function of the cytoplasmic isoforms of LANA during lytic replication and extends the function of LANA from its role during latency to the lytic replication cycle.

  1. Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds.

    Science.gov (United States)

    Troncoso-Ponce, M A; Rivoal, J; Venegas-Calerón, M; Dorion, S; Sánchez, R; Cejudo, F J; Garcés, R; Martínez-Force, E

    2012-07-01

    Three cDNAs encoding different phosphoglycerate kinase (PGK, EC 2.7.2.3) isoforms, two cytosolic (HacPGK1 and HacPGK2) and one plastidic (HapPGK), were cloned and characterized from developing sunflower (Helianthus annuus L.) seeds. The expression profiles of these genes showed differences in heterotrophic tissues, such as developing seeds and roots, where HacPGK1 was predominant, while HapPGK was highly expressed in photosynthetic tissues. The cDNAs were expressed in Escherichia coli, and the corresponding proteins purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Despite the high level of identity between sequences, the HacPGK1 isoform showed strong differences in terms of specific activity, temperature stability and pH sensitivity in comparison to HacPGK2 and HapPGK. A polyclonal immune serum was raised against the purified HacPGK1 isoform, which showed cross-immunoreactivity with the other PGK isoforms. This serum allowed the localization of high expression levels of PGK isozymes in embryo tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+-coupled nutrient carriers coexpressed in the small intestine.

    Science.gov (United States)

    Anderson, Catriona M H; Jevons, Mark; Thangaraju, Muthusamy; Edwards, Noel; Conlon, Nichola J; Woods, Steven; Ganapathy, Vadivel; Thwaites, David T

    2010-01-01

    5-Aminolevulinic acid (ALA) is a prodrug used in photodynamic therapy, fluorescent diagnosis, and fluorescent-guided resection because it leads to accumulation of the photosensitizer protoporphyrin IX (PpIX) in tumor tissues. ALA has good oral bioavailability, but high oral doses are required to obtain selective PpIX accumulation in colonic tumors because accumulation is also observed in normal gut mucosa. Structural similarities between ALA and GABA led us to test the hypothesis that the H(+)-coupled amino acid transporter PAT1 (SLC36A1) will contribute to luminal ALA uptake. Radiolabel uptake and electrophysiological measurements identified PAT1-mediated H(+)-coupled ALA symport after heterologous expression in Xenopus oocytes. The selectivity of the nontransported inhibitors 5-hydroxytryptophan and 4-aminomethylbenzoic acid for, respectively, PAT1 and the H(+)-coupled di/tripeptide transporter PepT1 (SLC15A1) were examined. 5-Hydroxytryptophan selectively inhibited PAT1-mediated amino acid uptake across the brush-border membrane of the human intestinal (Caco-2) epithelium whereas 4-aminomethylbenzoic acid selectively inhibited PepT1-mediated dipeptide uptake. The inhibitory effects of 5-hydroxytryptophan and 4-aminomethylbenzoic acid were additive, demonstrating that both PAT1 and PepT1 contribute to intestinal transport of ALA. This is the first demonstration of overlap in substrate specificity between these distinct transporters for amino acids and dipeptides. PAT1 and PepT1 expression was monitored by reverse transcriptase-polymerase chain reaction using paired samples of normal and cancer tissue from human colon. mRNA for both transporters was detected. PepT1 mRNA was increased 2.3-fold in cancer tissues. Thus, increased PepT1 expression in colonic cancer could contribute to the increased PpIX accumulation observed. Selective inhibition of PAT1 could enhance PpIX loading in tumor tissue relative to that in normal tissue.

  3. Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-06-01

    Full Text Available Abstract Background Interferon (IFN-α is considered a key modulator of immunopathological processes through a signature-specific activation of mononuclear phagocytes (MPs. This study utilized global transcript analysis to characterize the effects of the entire type I IFN family in comparison to a broad panel of other cytokines on MP previously exposed to Lipopolysaccharide (LPS stimulation in vitro. Results Immature peripheral blood CD14+ MPs were stimulated with LPS and 1 hour later with 42 separate soluble factors including cytokines, chemokines, interleukins, growth factors and IFNs. Gene expression profiling of MPs was analyzed 4 and 9 hours after cytokine stimulation. Four hours after stimulation, the transcriptional analysis of MPs revealed two main classes of cytokines: one associated with the alternative and the other with the classical pathway of MP activation without a clear polarization of type I IFNs effects. In contrast, after 9 hours of stimulation most type I IFN isoforms induced a characteristic and unique transcriptional pattern separate from other cytokines. These "signature" IFNs included; IFN-β, IFN-α2b/α2, IFN-αI, IFN-α2, IFN-αC, IFN-αJ1, IFN-αH2, and INF-α4B and induced the over-expression of 44 genes, all of which had known functional relationships with IFN such as myxovirus resistance (Mx-1, Mx-2, and interferon-induced hepatitis C-associated microtubular aggregation protein. A second group of type I IFNs segregated separately and in closer association with the type II IFN-γ. The phylogenetic relationship of amino acid sequences among type I IFNs did not explain their sub-classification, although differences at positions 94 through 109 and 175 through 189 were present between the signature and other IFNs. Conclusion Seven IFN-α isoforms and IFN-β participate in the late phase polarization of MPs conditioned by LPS. This information broadens the previous view of the central role played by IFN-α in

  4. Cardiotonic steroids trigger non-classical testosterone signaling in Sertoli cells via the α4 isoform of the sodium pump.

    Science.gov (United States)

    Konrad, Lutz; Dietze, Raimund; Kirch, Ulrike; Kirch, Herbert; Eva, Alexander; Scheiner-Bobis, Georgios

    2011-12-01

    The α4 isoform of the Na(+),K(+)-ATPase (sodium pump) is known to be expressed in spermatozoa and to be critical for their motility. In the investigation presented here, we find that the rat-derived Sertoli cell line 93RS2 also expresses considerable amounts of the α4 isoform in addition to the α1 isoform. Since Sertoli cells are not motile, one can assume that the function of the α4 isoform in these cells must differ from that in spermatozoa. Thus, we assessed a potential involvement of this isoform in signaling pathways that are activated by the cardiotonic steroid (CTS) ouabain, a highly specific sodium pump ligand. Treatment of 93RS2 cells with ouabain leads to activation of the c-Src/c-Raf/Erk1/2 signaling cascade. Furthermore, we show for the first time that the activation of this cascade by ouabain results in phosphorylation and activation of the transcription factor CREB. This signaling cascade is induced at low nanomolar concentrations of ouabain, consistent with the involvement of the α4 isoform. This is further supported by experiments involving siRNA: silencing of α4 expression entirely blocks ouabain-induced activation of Erk1/2 whereas silencing of α1 has no effect. The findings of this study unveil new aspects in CTS/sodium pump interactions by demonstrating for the first time ouabain-induced signaling through the α4 isoform. The c-Src/c-Raf/Erk1/2/CREB cascade activated by ouabain is identical to the so-called non-classical signaling cascade that is normally triggered in Sertoli cells by testosterone. Taking into consideration that CTS are produced endogenously, our results may help to gain new insights into the physiological mechanisms associated with male fertility and reproduction. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  6. Serum amyloid A isoforms in serum and synovial fluid from spontaneously diseased dogs with joint diseases or other conditions

    DEFF Research Database (Denmark)

    Kjelgaard-Hansen, Mads Jens; Christensen, Michelle B.; Lee, Marcel Huisung

    2007-01-01

    Serum amyloid A (SAA) is a major acute phase protein in dogs. However, knowledge of qualitative properties of canine SAA and extent of its synthesis in extrahepatic tissues is limited. The aim of the study was to investigate expression of different SAA isoforms in serum and synovial fluid...... in samples obtained from dogs (n = 16) suffering from different inflammatory or non-inflammatory conditions, which were either related or unrelated to joints. Expression of SAA isoforms was visualized by denaturing isoelectric focusing and Western blotting. Serum amyloid A was present in serum from all dogs...... with systemic inflammatory activity, and up to four major isoforms with apparent isoelectric points between 6.1 and 7.9 were identified. In synovial fluid from inflamed joints one or more highly alkaline SAA isoforms (with apparent isoelectric points above 9.3) were identified, with data suggesting local...

  7. A Single Aplysia Neurotrophin Mediates Synaptic Facilitation via Differentially Processed Isoforms Secreted as Mature or Precursor Forms

    Science.gov (United States)

    Kassabov, Stefan R.; Choi, Yun-Beom; Karl, Kevin A.; Vishwasrao, Harshad D.; Bailey, Craig H.; Kandel, Eric R.

    2014-01-01

    Summary Neurotrophins control the development and adult plasticity of the vertebrate nervous system. Failure to identify invertebrate neurotrophin orthologs, however, has precluded studies in invertebrate models, limiting understanding of fundamental aspects of neurotrophin biology and function. We identified a neurotrophin (ApNT) and Trk receptor (ApTrk) in the mollusk Aplysia and find they play a central role in learning related synaptic plasticity. ApNT increases the magnitude and lowers the threshold for induction of long-term facilitation and initiates the growth of new synaptic varicosities at the monosynaptic connection between sensory and motor neurons of the gill-withdrawal reflex. Unlike vertebrate neurotrophins, ApNT has multiple coding exons and exerts distinct synaptic effects through differentially processed and secreted splice isoforms. Our findings demonstrate the existence of bona-fide neurotrophin signaling in invertebrates and reveal a novel, post-transcriptional mechanism, regulating neurotrophin processing and the release of pro- and mature neurotrophins which differentially modulate synaptic plasticity. PMID:23562154

  8. Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck

    DEFF Research Database (Denmark)

    Thurfjell, N.; Coates, P.J.; Uusitalo, T.

    2004-01-01

    on the role of p63 expression in human tumours, we used quantitative real-time RT-PCR to study individual p63 isoforms in squamous cell carcinomas of the head and neck (SCCHN). In keeping with previous reports, expression of the deltaN- and p63alpha-isoforms predominated and deltaNp63 mRNA was expressed...

  9. Entropy-based model for miRNA isoform analysis.

    Directory of Open Access Journals (Sweden)

    Shengqin Wang

    Full Text Available MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test, we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.

  10. Heterogeneity of serum gelatinases MMP-2 and MMP-9 isoforms and charge variants

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riviello, Lea; Coniglio, Maria Gabriella; Vandooren, Jennifer; Liuzzi, Grazia Maria; Opdenakker, Ghislain; Riccio, Paolo

    2014-01-01

    The matrix metalloproteinases (MMPs) gelatinase A (MMP-2) and gelatinase B (MMP-9) are mediators of brain injury in multiple sclerosis (MS) and valuable biomarkers of disease activity. We applied bidimensional zymography (2-DZ) as an extension of classic monodimensional zymography (1-DZ) to analyse the complete pattern of isoforms and post-translational modifications of both MMP-9 and MMP-2 present in the sera of MS patients. The enzymes were separated on the basis of their isoelectric points (pI) and apparent molecular weights (Mw) and identified both by comparison with standard enzyme preparations and by Western blot analysis. Two MMP-2 isoforms, and at least three different isoforms and two different states of organization of MMP-9 (the multimeric MMP-9 and the N-GAL-MMP-9 complex) were observed. In addition, 2-DZ revealed for the first time that all MMP-9 and MMP-2 isoforms actually exist in the form of charge variants: four or five variants in the N-GAL complex, more charge variants in the case of MMP-9; and five to seven charge variants for MMP-2. Charge variants were also observed in recombinant enzymes and, after concentration, also in sera from healthy individuals. Sialylation (MMP-9) and phosphorylation (MMP-2) contributed to molecular heterogeneity. The detection of charge variants of MMP-9 and MMP-2 in MS serum samples illustrates the power of 2-DZ and demonstrates that in previous studies MMP mixtures, rather than single molecules, were analysed. These observations open perspectives for better diagnosis and prognosis of many diseases and need to be critically interpreted when applying other methods for MS and other diseases. PMID:24616914

  11. Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Francesca Rappa

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common cancers worldwide. Prevention and risk reduction are important and the identification of specific biomarkers for early diagnosis of HCC represents an active field of research. Increasing evidence indicates that fat accumulation in the liver, defined as hepatosteatosis, is an independent and strong risk factor for developing an HCC. MacroH2A1, a histone protein generally associated with the repressed regions of chromosomes, is involved in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and macroH2A1.2. These isoforms have been shown to predict lung and colon cancer recurrence but to our knowledge, their role in fatty-liver associated HCC has not been investigated previously.We examined macroH2A1.1 and macroH2A1.2 protein expression levels in the liver of two murine models of fat-associated HCC, the high fat diet/diethylnistrosamine (DEN and the phosphatase and tensin homolog (PTEN liver specific knock-out (KO mouse, and in human liver samples of subjects with steatosis or HCC, using immunoblotting and immunohistochemistry.Protein levels for both macroH2A1 isoforms were massively upregulated in HCC, whereas macroH2A1.2 was specifically upregulated in steatosis. In addition, examination of human liver samples showed a significant difference (p<0.01 in number of positive nuclei in HCC (100% of tumor cells positive for either macroH2A1.1 or macroH2A1.2, when compared to steatosis (<2% of hepatocytes positive for either isoform. The steatotic areas flanking the tumors were highly immunopositive for macroH2A1.1 and macroH2A1.2.These data obtained in mice and humans suggest that both macroH2A1 isoforms may play a role in HCC pathogenesis and moreover may be considered as novel diagnostic markers for human HCC.

  12. SSP: an interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads.

    Science.gov (United States)

    Safikhani, Zhaleh; Sadeghi, Mehdi; Pezeshk, Hamid; Eslahchi, Changiz

    2013-01-01

    Recent advances in the sequencing technologies have provided a handful of RNA-seq datasets for transcriptome analysis. However, reconstruction of full-length isoforms and estimation of the expression level of transcripts with a low cost are challenging tasks. We propose a novel de novo method named SSP that incorporates interval integer linear programming to resolve alternatively spliced isoforms and reconstruct the whole transcriptome from short reads. Experimental results show that SSP is fast and precise in determining different alternatively spliced isoforms along with the estimation of reconstructed transcript abundances. The SSP software package is available at http://www.bioinf.cs.ipm.ir/software/ssp. © 2013.

  13. Nitric oxide synthase isoforms in spontaneous and salt hypertension

    Czech Academy of Sciences Publication Activity Database

    Hojná, Silvie; Kuneš, Jaroslav; Zicha, Josef

    2007-01-01

    Roč. 25, Suppl. 2 (2007), S 338-S 338 ISSN 0263-6352. [European Meeting on Hypertension /17./. 15.06.2007-19.06.2007, Milan] R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : nitric oxide synthase isoforms * spontaneous and salt hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  14. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    Science.gov (United States)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  15. Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation

    Directory of Open Access Journals (Sweden)

    Sailas Benjamin

    2000-01-01

    Full Text Available Three distinct forms (Lip A, Lip B and Lip C of extra-cellular lipases (EC- 3.1.1.3, produced by Candida rugosa in solid state fermentation (SSF were purified and characterised. SSF was carried out in glass columns using coconut oil cake and wheat bran. The enzyme was purified from the aqueous extract of fermented matter by ammonium sulphate precipitation, dialysis, ultra-filtration and gel filtration using Sephadex-200 to a 43-fold purification and 64.35-mg/ml specific activity. SDS-PAGE of purified enzyme revealed three distinct bands, indicating the existence of three iso-forms, Lip A, Lip B and Lip C with apparent molecular weight about 64,000, 62,000 and 60,000 Da, respectively. All the three iso-forms were optimally active at 35-40ºC and pH 7-8. They showed marked differences in their Km values with different saturated and unsaturated triacyl glycerols. Ag++ and Hg++ strongly inhibited enzyme activity of all the iso-forms, Mn++ has no effect and Ca++ and Mg++ enhanced the activity. EDTA also strongly inhibited the enzyme activities of iso-forms. However, activities of all the three lipases were completely inhibited by serine protease inhibitors such as 3,4-dichloroisocoumarin, pefabloc and partially by phenylmethanesulphonyl fluoride. To the best of our knowledge, this is the first report describing the purification and characterisation of C. rugosa lipase iso-forms from solid cultures. These lipase iso-forms with diverse characteristics produced in solid cultures may find potential application in biomedical field.Três formas distintas (Lip A, Lip B e Lip C de lipases extracelulares (EC- 3,1,1,3, produzidas por Candida rugosa em fermentação no estado sólido (SSF foram purificadas e caracterizadas. A fermentação foi realizada em colunas de vidro usando como substrato bolo de óleo de coco e o farelo de trigo. O enzima obtida no extrato aquoso do material fermentado foi precipitada com do sulfato de do amônio, dialisada , ultra

  16. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts.

    Directory of Open Access Journals (Sweden)

    Maléne E Lindholm

    2016-09-01

    Full Text Available Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity.

  17. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence

    Directory of Open Access Journals (Sweden)

    Kim Dong Seon

    2012-11-01

    Full Text Available Abstract Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.

  18. Determining the impact of oxidation on the motility of single muscle-fibres expressing different myosin isoforms

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Li, M.; Baron, Caroline P.

    2013-01-01

    heavy chain (MyHC) isoforms has not been previously investigated. Oxidation of myosin isolated from muscle fibres originating from various porcine muscles with a different metabolic profile was studied using a single muscle fibre in-vitro motility assay, allowing measurements of catalytic properties...... (motility speed) and force-generation capacity of specific MyHC isoforms. In the experimental procedure, single muscle fibres were split in different segments and each segment was exposed to a different concentration of hydrogen peroxide. Speed and force measurements were recorded and compared, to assess...... the effect of myosin oxidation on motility and force. The MyHC isoform expression in the single muscle fibre was subsequently determined on silver-stained gel SDS-PAGE. Preliminary results indicate a decrease of directionality and speed of the in-vitro motility as a result of an oxidative environment...

  19. Serum concentrations of apelin-17 isoform vary in accordance to blood pressure categories in individuals with obesity class 3.

    Science.gov (United States)

    Cano Martínez, Luis Javier; Coral Vázquez, Ramón Mauricio; Méndez, Juan Pablo; Trejo, Silvia; Pérez Razo, Juan Carlos; Canto, Patricia

    2018-04-13

    The aim of this study was to investigate if serum concentrations of apelin-36, apelin-17, apelin-13 or apelin-12 were different in obesity class 3 individuals with hypertension, when compared to those without hypertension (normal or high-normal). Twenty six individuals with obesity class 3-related hypertension and thirty three individuals without hypertension, who were divided in individuals with normal (n = 23) or with high-normal (n = 10) blood pressure (BP) were analyzed. All individuals presented obesity class 3, without diabetes mellitus. Measurements of all apelin isoforms were performed using enzyme-linked immunosorbent assay kits. Analysis of differences between groups of Apelin isoform concentrations was performed by a One-way ANOVA, with a Tukey test post hoc. The individuals of the hypertensive group presented a slightly lower serum concentration of all apelin isoforms, but these differences were not statistically significant. These results were more evident when the group of patients without hypertension were divided based in normal and high-normal BP, observing that apelin-17 isoform were higher in individuals with high-normal BP in comparison to subjects with normal BP (P = 0.018); concentrations were also higher when compared to subjects with hypertension (P = 0.004). To our knowledge, this is the first study regarding the differences of apelin-17 isoform concentrations in individuals pertaining to different categories of BP, who presented obesity class 3. The group of patients that presented hypertension showed a lower concentration of all isoforms. This observation could be due to the fact that these patients were taking antihypertensive medication.

  20. In vitro inhibitory activities of the extract of Hibiscus sabdariffa L. (family Malvaceae) on selected cytochrome P450 isoforms.

    Science.gov (United States)

    Johnson, Showande Segun; Oyelola, Fakeye Titilayo; Ari, Tolonen; Juho, Hokkanen

    2013-01-01

    Literature is scanty on the interaction potential of Hibiscus sabdariffa L., plant extract with other drugs and the affected targets. This study was conducted to investigate the cytochrome P450 (CYP) isoforms that are inhibited by the extract of Hibiscus sabdariffa L. in vitro. The inhibition towards the major drug metabolizing CYP isoforms by the plant extract were estimated in human liver microsomal incubations, by monitoring the CYP-specific model reactions through previously validated N-in-one assay method. The ethanolic extract of Hibiscus sabdariffa showed inhibitory activities against nine selected CYP isoforms: CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. The concentrations of the extract which produced 50% inhibition of the CYP isoforms ranged from 306 µg/ml to 1660 µg/ml, and the degree of inhibition based on the IC50 values for each CYP isoform was in the following order: CYP1A2 > CYP2C8 > CYP2D6 > CYP2B6 > CYP2E1 > CYP2C19 > CYP3A4 > CYP2C9 > CYP2A6. Ethanolic extract of Hibiscus sabdariffa caused inhibition of CYP isoforms in vitro. These observed inhibitions may not cause clinically significant herb-drug interactions; however, caution may need to be taken in co-administering the water extract of Hibiscus sabdariffa with other drugs until clinical studies are available to further clarify these findings.

  1. Regulation of C/EBPβ isoforms by MAPK pathways in HL60 cells induced to differentiate by 1,25-dihydroxyvitamin D3

    International Nuclear Information System (INIS)

    Marcinkowska, Ewa; Garay, Edward; Gocek, Elzbieta; Chrobak, Agnieszka; Wang, Xuening; Studzinski, George P.

    2006-01-01

    C/EBPβ is known to be important for monocytic differentiation and macrophage function. Here, we found that expression of all three C/EBPβ isoforms induced in HL60 cells by 1,25-dihydroxyvitamin D 3 (1,25D) was upregulated in a sustained manner that correlates with the appearance of monocytic phenotype and with the G1 phase cell cycle arrest. In 1,25D-resistant HL60-40AF cells, isoforms β-1 and β-3 were expressed at levels comparable to 1,25D-sensitive HL60-G cells, but isoform β-2 was difficult to detect. Treatment of sensitive HL60 cells with 1,25D resulted in predominantly nuclear localization of C/EBP isoforms β-2 and β-3, while a large proportion of C/EBPβ-1 remained in the cytoplasm. Attenuation of the MEK-ERK MAPK pathway by the inhibitor PD98059 markedly reduced the expression, 1,25D-induced phosphorylation and nuclear localization of C/EBPβ-2 and C/EBPβ-3. Interestingly, only the lower molecular mass isoforms of C/EBPβ phosphorylated on Thr235 were found in the nuclei, while C/EBPβ-1 was constitutively phosphorylated and was detected principally in the cytoplasmic fraction. Although the role of C/EBPβ isoforms in 1,25D-induced differentiation is complex, our results taken together strongly suggest that the phosphorylation of C/EBPβ isoforms on Thr235 takes place mainly via the MEK-ERK pathway and that C/EBPβ-2 is the principal transcription factor in this cell system

  2. Molecular characters and expression analysis of a new isoform of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... isoform of the myocyte enhancer factor 2 gene from the silkworm, Bombyx mori. Qing-zhi Ling1, 2, ... BMEF2B mRNA content in the brain was measured using the combined method of quantitative RT-PCR and Southern ... specific cofactors to control gene expression in pheno- typically different muscles.

  3. Functional analysis of the isoforms of an ABI3-like factor of Pisum sativum generated by alternative splicing.

    Science.gov (United States)

    Gagete, Andrés P; Riera, Marta; Franco, Luis; Rodrigo, M Isabel

    2009-01-01

    At least seven isoforms (PsABI3-1 to PsABI3-7) of a putative, pea ABI3-like factor, originated by alternative splicing, have been identified after cDNA cloning. A similar variability had previously only been described for monocot genes. The full-length isoform, PsABI3-1, contains the typical N-terminal acidic domains and C-terminal basic subdomains, B1 to B3. Reverse transcriptase-PCR analysis revealed that the gene is expressed just in seeds, starting at middle embryogenesis; no gene products are observed in embryo axes after 18 h post-imbibition although they are more persistent in cotyledons. The activity of the isoforms was studied by yeast one-hybrid assays. When yeast was transformed with the isoforms fused to the DNA binding domain of Gal4p, only the polypeptides PsABI3-2 and PsABI3-7 failed to complement the activity of Gal4p. Acidic domains A1 and A2 exhibit transactivating activity, but the former requires a small C-terminal extension to be active. Yeast two-hybrid analysis showed that PsABI3 is able to heterodimerize with Arabidopsis thaliana ABI5, thus proving that PsABI3 is functionally active. The minimum requirement for the interaction PsABI3-AtABI5 is the presence of the subdomain B1 with an extension, 81 amino acids long, at their C-terminal side. Finally, a transient onion transformation assay showed that both the active PsABI3-1 and the inactive PsABI3-2 isoforms are localized to nuclei. Considering that the major isoforms remain approximately constant in developing seeds although their relative proportion varied, the possible role of splicing in the regulatory network of ABA signalling is discussed.

  4. Inflammatory Adipokines Decrease Expression of Two High Molecular Weight Isoforms of Tropomyosin Similar to the Change in Type 2 Diabetic Patients.

    Directory of Open Access Journals (Sweden)

    Stuart A Savill

    Full Text Available Cardiovascular disease and cancer are increased in Type 2 diabetes. TPM1 and TPM4 genes encode proteins associated with cardiovascular and neoplastic disease. High (HMW and low (LMW molecular weight isoforms from TPM1 and TPM4 are altered in several cancer cells and the 3'UTR of TPM1 mRNA is tumour suppressive. Leukocytes influence cardiovascular and neoplastic disease by immunosurveillance for cancer and by chronic inflammation in Type 2 diabetes and cardiovascular disease. The aim was to determine changes in expression of isoforms from TPM1 and TPM4 genes in leukocytes from Type 2 diabetic patients and to use the leukocyte cell line THP1 to identify possible mediators of changes in the patients. Gene expression was determined by RT-qPCR. In diabetes, expression of HMW isoforms from TPM1 were markedly decreased (0.55 v 1.00; p = 0.019 but HMW isoforms from TPM4 were not significantly different (0.76 v 1.00; p = 0.205. Within individual variance in expression of HMW isoforms was very high. The change in expression in HMW isoforms from TPM1 and TPM4 was replicated in THP1 cells treated with 1 ng/ml TNFα (0.10 and 0.12 v 1.00 respectively or 10 ng/ml IL-1α (0.17 and 0.14 v 1.00 respectively. Increased insulin or glucose concentrations had no substantial effects on TPM1 or TPM4 expression. Decreased TPM1 mRNA resulted in decreases in HMW protein levels. Expression of HMW isoforms from TPM1 is decreased in Type 2 diabetes. This is probably due to increased levels of inflammatory cytokines TNFα and IL-1α in Type 2 diabetes. Lower levels of TPM1 mRNA reduce tumour suppression and could contribute to increased cancer risk in Type 2 diabetes. Decreased HMW tropomyosin isoforms are associated with cancer. Decreased HMW isoforms give rise to cells that are more plastic, motile, invasive and prone to dedifferentiation resulting in leukocytes that are more invasive but less functionally effective.

  5. Differential Expression of Sox11 and Bdnf mRNA Isoforms in the Injured and Regenerating Nervous Systems

    Directory of Open Access Journals (Sweden)

    Felix L. Struebing

    2017-11-01

    Full Text Available In both the central nervous system (CNS and the peripheral nervous system (PNS, axonal injury induces changes in neuronal gene expression. In the PNS, a relatively well-characterized alteration in transcriptional activation is known to promote axonal regeneration. This transcriptional cascade includes the neurotrophin Bdnf and the transcription factor Sox11. Although both molecules act to facilitate successful axon regeneration in the PNS, this process does not occur in the CNS. The present study examines the differential expression of Sox11 and Bdnf mRNA isoforms in the PNS and CNS using three experimental paradigms at different time points: (i the acutely injured CNS (retina after optic nerve crush and PNS (dorsal root ganglion after sciatic nerve crush, (ii a CNS regeneration model (retina after optic nerve crush and induced regeneration; and (iii the retina during a chronic form of central neurodegeneration (the DBA/2J glaucoma model. We find an initial increase of Sox11 in both PNS and CNS after injury; however, the expression of Bdnf isoforms is higher in the PNS relative to the CNS. Sustained upregulation of Sox11 is seen in the injured retina following regeneration treatment, while the expression of two Bdnf mRNA isoforms is suppressed. Furthermore, two isoforms of Sox11 with different 3′UTR lengths are present in the retina, and the long isoform is specifically upregulated in later stages of glaucoma. These results provide insight into the molecular cascades active during axonal injury and regeneration in mammalian neurons.

  6. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    Science.gov (United States)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  7. Purification of a new isoform of laccase from a Marasmius quercophilus strain isolated from a cork oak litter (Quercus suber L).

    Science.gov (United States)

    Farnet, A M; Criquet, S; Pocachard, E; Gil, G; Ferre, E

    2002-01-01

    A new isoform of laccase from Marasmius quercophilus is described in this study. The strain of this white-rot fungus was isolated for the first time on a cork oak litter. This isoform exhibited certain common properties of laccases (a molecular weight of 65 Kda, an optimum pH of 6.2 with syringaldazine). But this laccase has also particularly novel features: the best activity measured was observed at high temperatures (80 C) and this isoform was not inhibited with EDTA. Furthermore, this induced laccase was able to transform most of the aromatic compounds tested without the addition of mediators to the reaction mixture, and the transformation of certain chlorophenols (2-chlorophenol and 2,4-dichlorophenol) by a laccase isoform from M. quercophilus is reported here for the first time. We also demonstrate the importance of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) as a mediator since it allowed veratryl alcohol and p-hydroxybenzoic acid transformation. Moreover, new products of transformation were observed using the combination of ABTS with this isoform of laccase.

  8. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Christine Chaponnier

    2016-06-01

    Full Text Available Higher vertebrates (mammals and birds express six different highly conserved actin isoforms that can be classified in three subgroups: 1 sarcomeric actins, α-skeletal (α-SKA and α-cardiac (α-CAA, 2 smooth muscle actins (SMAs, α-SMA and γ-SMA, and 3 cytoplasmic actins (CYAs, β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb against an actin isoform (α-SMA was produced and characterized in our laboratory in 1986 (Skalli  et al., 1986 . We have further obtained mAbs against the 5 other isoforms. In this report, we focus on the mAbs anti-α-SKA and anti-α-CAA obtained after immunization of mice with the respective acetylated N-terminal decapeptides using the Repetitive Immunizations at Multiple Sites Strategy (RIMMS. In addition to the identification of their epitope by immunoblotting, we describe the expression of the 2 sarcomeric actins in mature skeletal muscle and during muscle repair after micro-lesions. In particular, we analyze the expression of α-CAA, α-SKA and α-SMA by co-immunostaining in a time course frame during the muscle repair process. Our results indicate that a restricted myocyte population expresses α-CAA and suggest a high capacity of self-regeneration in muscle cells. These antibodies may represent a helpful tool for the follow-up of muscle regeneration and pathological changes.

  9. MicroRNA-281 regulates the expression of ecdysone receptor (EcR) isoform B in the silkworm, Bombyx mori

    Science.gov (United States)

    Hundreds of Bombyx mori miRNAs had been identified in recent years, but their function in vivo remains poorly understood. The silkworm EcR gene (BmEcR) has three transcriptional isoforms, A, B1 and B2. Isoform sequences are different in the 3’UTR region of the gene, which is the case only in insects...

  10. Peroxiredoxin isoforms are associated with cardiovascular risk factors in type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    El Eter, E. [Physiology Department, Faculty of Medicine, King Saud University, Riyadh (Saudi Arabia); Cardiovascular Research Group, Faculty of Medicine, King Saud University, Riyadh (Saudi Arabia); Physiology Department, Faculty of Medicine, Alexandria University, Alexandria (Egypt); Al-Masri, A.A. [Physiology Department, Faculty of Medicine, King Saud University, Riyadh (Saudi Arabia); Cardiovascular Research Group, Faculty of Medicine, King Saud University, Riyadh (Saudi Arabia)

    2015-03-03

    The production of oxygen free radicals in type 2 diabetes mellitus contributes to the development of complications, especially the cardiovascular-related ones. Peroxiredoxins (PRDXs) are antioxidant enzymes that combat oxidative stress. The aim of this study was to investigate the associations between the levels of PRDX isoforms (1, 2, 4, and 6) and cardiovascular risk factors in type 2 diabetes mellitus. Fifty-three patients with type 2 diabetes mellitus (28F/25M) and 25 healthy control subjects (7F/18M) were enrolled. We measured the plasma levels of each PRDX isoform and analyzed their correlations with cardiovascular risk factors. The plasma PRDX1, -2, -4, and -6 levels were higher in the diabetic patients than in the healthy control subjects. PRDX2 and -6 levels were negatively correlated with diastolic blood pressure, fasting blood sugar, and hemoglobin A1c. In contrast, PRDX1 levels were positively correlated with low-density lipoprotein and C-reactive protein levels. PRDX4 levels were negatively correlated with triglycerides. In conclusion, PRDX1, -2, -4, and -6 showed differential correlations with a variety of traditional cardiovascular risk factors. These results should encourage further research into the crosstalk between PRDX isoforms and cardiovascular risk factors.

  11. Peroxiredoxin isoforms are associated with cardiovascular risk factors in type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    El Eter, E.; Al-Masri, A.A.

    2015-01-01

    The production of oxygen free radicals in type 2 diabetes mellitus contributes to the development of complications, especially the cardiovascular-related ones. Peroxiredoxins (PRDXs) are antioxidant enzymes that combat oxidative stress. The aim of this study was to investigate the associations between the levels of PRDX isoforms (1, 2, 4, and 6) and cardiovascular risk factors in type 2 diabetes mellitus. Fifty-three patients with type 2 diabetes mellitus (28F/25M) and 25 healthy control subjects (7F/18M) were enrolled. We measured the plasma levels of each PRDX isoform and analyzed their correlations with cardiovascular risk factors. The plasma PRDX1, -2, -4, and -6 levels were higher in the diabetic patients than in the healthy control subjects. PRDX2 and -6 levels were negatively correlated with diastolic blood pressure, fasting blood sugar, and hemoglobin A1c. In contrast, PRDX1 levels were positively correlated with low-density lipoprotein and C-reactive protein levels. PRDX4 levels were negatively correlated with triglycerides. In conclusion, PRDX1, -2, -4, and -6 showed differential correlations with a variety of traditional cardiovascular risk factors. These results should encourage further research into the crosstalk between PRDX isoforms and cardiovascular risk factors

  12. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

    Science.gov (United States)

    Wu, Yiming; Peng, Jun; Campbell, Kenneth B; Labeit, Siegfried; Granzier, Henk

    2007-01-01

    Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin expression was determined by transcript analysis, gel electrophoresis and immunoelectron microscopy. Diastolic function was measured at the isolated heart, skinned muscle, and cardiac myocyte levels. We found that hypothyroidism resulted in expression of a large titin isoform, the abundance of which gradually increased with time to become the most dominant isoform in long-term hypothyroid rats. This isoform co-migrates on high-resolution gels with fetal cardiac titin. Transcript analysis on myocardium of long-term PTU rats, provided evidence for expression of additional PEVK and Ig domain exons, similar to what has been described in fetal myocardium. Consistent with the expression of a large titin isoform, titin-based restoring and passive forces were significantly reduced in single cardiac myocytes and muscle strips of long-term hypothyroid rats. Overall muscle stiffness and LV diastolic wall stiffness were increased, however, due to increased collagen-based stiffness. We conclude that long term hypothyroidism triggers expression of a large cardiac titin isoform and that the ensuing reduction in titin-based passive stiffness functions as a compensatory mechanism to reduce LV wall stiffness.

  13. Altered β-Amyloid Precursor Protein Isoforms in Mexican Alzheimer’s Disease Patients

    Directory of Open Access Journals (Sweden)

    V. J. Sánchez-González

    2006-01-01

    Full Text Available Objective: To determine the β-amyloid precursor protein (βAPP isoforms ratio as a risk factor for Alzheimer’s Disease and to assess its relationship with demographic and genetic variables of the disease.

  14. Isoform-Selective Disruption of AKAP-Localized PKA Using Hydrocarbon Stapled Peptides

    Science.gov (United States)

    2015-01-01

    A-kinase anchoring proteins (AKAPs) play an important role in the spatial and temporal regulation of protein kinase A (PKA) by scaffolding critical intracellular signaling complexes. Here we report the design of conformationally constrained peptides that disrupt interactions between PKA and AKAPs in an isoform-selective manner. Peptides derived from the A Kinase Binding (AKB) domain of several AKAPs were chemically modified to contain an all-hydrocarbon staple and target the docking/dimerization domain of PKA-R, thereby occluding AKAP interactions. The peptides are cell-permeable against diverse human cell lines, are highly isoform-selective for PKA-RII, and can effectively inhibit interactions between AKAPs and PKA-RII in intact cells. These peptides can be applied as useful reagents in cell-based studies to selectively disrupt AKAP-localized PKA-RII activity and block AKAP signaling complexes. In summary, the novel hydrocarbon-stapled peptides developed in this study represent a new class of AKAP disruptors to study compartmentalized RII-regulated PKA signaling in cells. PMID:24422448

  15. High-throughput proteomics detection of novel splice isoforms in human platelets.

    LENUS (Irish Health Repository)

    Power, Karen A

    2009-01-01

    Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS\\/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS\\/MS datasets.

  16. A DISTINCTIVE DISK-JET COUPLING IN THE SEYFERT-1 ACTIVE GALACTIC NUCLEUS NGC 4051

    International Nuclear Information System (INIS)

    King, A. L.; Miller, J. M.; Gueltekin, K.; Reynolds, M. T.; Cackett, E. M.; Fabian, A. C.; Markoff, S.; Nowak, M. A.; Rupen, M.

    2011-01-01

    We report on the results of a simultaneous monitoring campaign employing eight Chandra X-ray (0.5-10 keV) and six Very Large Array/Extended Very Large Array (8.4 GHz) radio observations of NGC 4051 over seven months. Evidence for compact jets is observed in the 8.4 GHz radio band; this builds on mounting evidence that jet production may be prevalent even in radio-quiet Seyferts. Assuming comparatively negligible local diffuse emission in the nucleus, the results also demonstrate an inverse correlation of L radio ∝ L -0.72±0.04 X-ray . If the A configuration is excluded in the case where diffuse emission plays a significant role, the relation is still L radio ∝ L X-ray -0.12±0.05 . Current research linking the mass of supermassive black holes and stellar-mass black holes in the 'low/hard' state to X-ray luminosities and radio luminosities suggests a 'fundamental plane of accretion onto black holes' that has a positive correlation of L radio ∝ L 0.67±0.12 X-ray . Our simultaneous results differ from this relation by more than 11σ (6σ excluding the A configuration), indicating that a separate mode of accretion and ejection may operate in this system. A review of the literature shows that the inverse correlation seen in NGC 4051 is seen in three other black hole systems, all of which accrete at near 10% of their Eddington luminosity, perhaps suggesting a distinct mode of disk-jet coupling at high Eddington fractions. We discuss our results in the context of disks and jets in black holes and accretion across the black hole mass scale.

  17. Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture.

    Science.gov (United States)

    Zempel, Hans; Dennissen, Frank J A; Kumar, Yatender; Luedtke, Julia; Biernat, Jacek; Mandelkow, Eva-Maria; Mandelkow, Eckhard

    2017-07-21

    Subcellular mislocalization of the microtubule-associated protein Tau is a hallmark of Alzheimer disease (AD) and other tauopathies. Six Tau isoforms, differentiated by the presence or absence of a second repeat or of N-terminal inserts, exist in the human CNS, but their physiological and pathological differences have long remained elusive. Here, we investigated the properties and distributions of human and rodent Tau isoforms in primary forebrain rodent neurons. We found that the Tau diffusion barrier (TDB), located within the axon initial segment (AIS), controls retrograde (axon-to-soma) and anterograde (soma-to-axon) traffic of Tau. Tau isoforms without the N-terminal inserts were sorted efficiently into the axon. However, the longest isoform (2N4R-Tau) was partially retained in cell bodies and dendrites, where it accelerated spine and dendrite growth. The TDB (located within the AIS) was impaired when AIS components (ankyrin G, EB1) were knocked down or when glycogen synthase kinase-3β (GSK3β; an AD-associated kinase tethered to the AIS) was overexpressed. Using superresolution nanoscopy and live-cell imaging, we observed that microtubules within the AIS appeared highly dynamic, a feature essential for the TDB. Pathomechanistically, amyloid-β insult caused cofilin activation and F-actin remodeling and decreased microtubule dynamics in the AIS. Concomitantly with these amyloid-β-induced disruptions, the AIS/TDB sorting function failed, causing AD-like Tau missorting. In summary, we provide evidence that the human and rodent Tau isoforms differ in axodendritic sorting and amyloid-β-induced missorting and that the axodendritic distribution of Tau depends on AIS integrity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.

    Science.gov (United States)

    Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M

    2015-06-05

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  19. Roles of SGK Isoform Signaling in Breast Cancer Migration and Invasion

    Science.gov (United States)

    2011-04-01

    significant number of overlapping substrates, and deregulation in breast carcinoma (5,6). To date, no studies have investigated any role for SGK in cell...isoforms in breast carcinoma cell lines (months 2-3) To insure specificity of SGK knockdown in breast cancer cell lines I made two different specific

  20. Molecular cloning, expression and immunological characterisation of Lol p 5C, a novel allergen isoform of rye grass pollen demonstrating high IgE reactivity.

    Science.gov (United States)

    Suphioglu, C; Mawdsley, D; Schäppi, G; Gruehn, S; de Leon, M; Rolland, J M; O'Hehir, R E

    1999-12-03

    A novel isoform of a major rye grass pollen allergen Lol p 5 was isolated from a cDNA expression library. The new isoform, Lol p 5C, shares 95% amino acid sequence identity with Lol p 5A. Both isoforms demonstrated shared antigenic activity but different allergenic activities. Recombinant Lol p 5C demonstrated 100% IgE reactivity in 22 rye grass pollen sensitive patients. In comparison, recombinant Lol p 5A showed IgE reactivity in less than 64% of the patients. Therefore, Lol p 5C represents a novel and highly IgE-reactive isoform allergen of rye grass pollen.

  1. Biochemical characterization of individual human glycosylated pro-insulin-like growth factor (IGF)-II and big-IGF-II isoforms associated with cancer.

    Science.gov (United States)

    Greenall, Sameer A; Bentley, John D; Pearce, Lesley A; Scoble, Judith A; Sparrow, Lindsay G; Bartone, Nicola A; Xiao, Xiaowen; Baxter, Robert C; Cosgrove, Leah J; Adams, Timothy E

    2013-01-04

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.

  2. Biochemical Characterization of Individual Human Glycosylated pro-Insulin-like Growth Factor (IGF)-II and big-IGF-II Isoforms Associated with Cancer

    Science.gov (United States)

    Greenall, Sameer A.; Bentley, John D.; Pearce, Lesley A.; Scoble, Judith A.; Sparrow, Lindsay G.; Bartone, Nicola A.; Xiao, Xiaowen; Baxter, Robert C.; Cosgrove, Leah J.; Adams, Timothy E.

    2013-01-01

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling. PMID:23166326

  3. Characterisation of Cdkl5transcript isoforms in rat

    OpenAIRE

    Hector, Ralph D.; Dando, Owen; Ritakari, Tuula E.; Kind, Peter C.; Bailey, Mark E.S.; Cobb, Stuart R.

    2017-01-01

    CDKL5 deficiency is a severe neurological disorder caused by mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5). The predominant human CDKL5 brain isoform is a 9.7kb transcript comprised of 18 exons with a large 6.6kb 3'-untranslated region (UTR). Mammalian models of CDKL5 disorder are currently limited to mouse, and little is known about Cdkl5 in other organisms used to model neurodevelopmental disorders, such as rat. In this study we characterise, both bioinformatically a...

  4. Protein chemical characterization of Gc globulin (vitamin D-binding protein) isoforms; Gc-1f, Gc-1s and Gc-2

    DEFF Research Database (Denmark)

    Christiansen, Maja; Jørgensen, Charlotte S; Laursen, Inga

    2007-01-01

    -survival of patients with fulminant hepatic failure and trauma. Here, we characterize the dominant isoforms of plasma-derived Gc globulin from Cohn fraction IV paste with respect to amino acid sequence and posttranslational modifications. Gc globulin was purified in large scale and the isoforms separated by ion...

  5. The interferon-induced antiviral protein PML (TRIM19) promotes the restriction and transcriptional silencing of lentiviruses in a context-specific, isoform-specific fashion.

    Science.gov (United States)

    Masroori, Nasser; Merindol, Natacha; Berthoux, Lionel

    2016-03-22

    The promyelocytic leukemia (PML) protein, a type I interferon (IFN-I)-induced gene product and a member of the tripartite motif (TRIM) family, modulates the transcriptional activity of viruses belonging to various families. Whether PML has an impact on the replication of HIV-1 has not been fully addressed, but recent studies point to its possible involvement in the restriction of HIV-1 in human cells and in the maintenance of transcriptional latency in human cell lines in which HIV-1 is constitutively repressed. We investigated further the restriction of HIV-1 and a related lentivirus, SIVmac, by PML in murine cells and in a lymphocytic human cell line. In particular, we studied the relevance of PML to IFN-I-mediated inhibition and the role of individual human isoforms. We demonstrate that both human PML (hPML) and murine PML (mPML) inhibit the early post-entry stages of the replication of HIV-1 and a related lentivirus, SIVmac. In addition, HIV-1 was transcriptionally silenced by mPML and by hPML isoforms I, II, IV and VI in MEFs. This PML-mediated transcriptional repression was attenuated in presence of the histone deacetylase inhibitor SAHA. In contrast, depletion of PML had no effect on HIV-1 gene expression in a human T cell line. PML was found to contribute to the inhibition of HIV-1 by IFN-I. Specifically, IFN-α and IFN-β treatments of MEFs enhanced the PML-dependent inhibition of HIV-1 early replication stages. We show that PML can inhibit HIV-1 and other lentiviruses as part of the IFN-I-mediated response. The restriction takes place at two distinct steps, i.e. reverse transcription and transcription, and in an isoform-specific, cellular context-specific fashion. Our results support a model in which PML activates innate immune antilentiviral effectors. These data are relevant to the development of latency reversal-inducing pharmacological agents, since PML was previously proposed as a pharmacological target for such inhibitors. This study also has

  6. Couple specialization in multiple equilibria

    NARCIS (Netherlands)

    Esping-Andersen, G.; Boertien, D.; Bonke, J.; Gracia, P.

    2013-01-01

    We address the issue of men’s lagged adaptation to the ongoing revolution of women’s roles. This article proposes a multiple equilibrium approach and shows how modes of couple specialization cluster around qualitatively distinct logics. We identify a traditional, egalitarian, and ‘unstable’

  7. Sequence analysis and identification of new isoform of EP4 receptors in different atlantic salmon tissues (Salmo salar L. and its role in PGE2 induced immunomodulation in vitro.

    Directory of Open Access Journals (Sweden)

    Tz Chun Guo

    Full Text Available PGE2 plays an important role in a broad spectrum of physiological and pathological processes mediated through a membrane-bound G protein-coupled receptor (GPCR called EP receptor. In mammals, four subtypes of EP receptor (EP 1-4 are identified and each of them functions through different signal transduction pathways. Orthologous EP receptors have also been identified in other non-mammalian species, such as chicken and zebrafish. EP4 is the only identified PGE2 receptor to date in Atlantic salmon but its tissue distribution and function have not been studied in any detail. In this study, we first sequenced EP4 receptor in different tissues and found that the presence of the 3nt deletion in the 5' untranslated region was accompanied by silent mutation at nt 668. While attempting to amplify the same sequence in TO cells (an Atlantic salmon macrophage-like cell line, we failed to obtain the full-length product. Further investigation revealed different isoform of EP4 receptor in TO cells and we subsequently documented its presence in different Atlantic salmon tissues. These two isoforms of EP4 receptor share high homology in their first half of sequence but differ in the second half part with several deletion segments though the final length of coding sequence is the same for two isoforms. We further studied the immunomodulation effect of PGE2 in TO cells and found that PGE2 inhibited the induction of CXCL-10, CCL-4, IL-8 and IL-1β genes expression in a time dependent manner and without cAMP upregulation.

  8. Anatomical coupling between distinct metacognitive systems for memory and visual perception.

    Science.gov (United States)

    McCurdy, Li Yan; Maniscalco, Brian; Metcalfe, Janet; Liu, Ka Yuet; de Lange, Floris P; Lau, Hakwan

    2013-01-30

    A recent study found that, across individuals, gray matter volume in the frontal polar region was correlated with visual metacognition capacity (i.e., how well one's confidence ratings distinguish between correct and incorrect judgments). A question arises as to whether the putative metacognitive mechanisms in this region are also used in other metacognitive tasks involving, for example, memory. A novel psychophysical measure allowed us to assess metacognitive efficiency separately in a visual and a memory task, while taking variations in basic task performance capacity into account. We found that, across individuals, metacognitive efficiencies positively correlated between the two tasks. However, voxel-based morphometry analysis revealed distinct brain structures for the two kinds of metacognition. Replicating a previous finding, variation in visual metacognitive efficiency was correlated with volume of frontal polar regions. However, variation in memory metacognitive efficiency was correlated with volume of the precuneus. There was also a weak correlation between visual metacognitive efficiency and precuneus volume, which may account for the behavioral correlation between visual and memory metacognition (i.e., the precuneus may contain common mechanisms for both types of metacognition). However, we also found that gray matter volumes of the frontal polar and precuneus regions themselves correlated across individuals, and a formal model comparison analysis suggested that this structural covariation was sufficient to account for the behavioral correlation of metacognition in the two tasks. These results highlight the importance of the precuneus in higher-order memory processing and suggest that there may be functionally distinct metacognitive systems in the human brain.

  9. Quadrupole time-of-flight mass spectometry : a method to study the actual expression of allergen isoforms identified by PCR cloning

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Gilissen, L.J.W.J.; Ree, van R.; America, A.H.P.; Cordewener, J.H.G.; Bosch, D.

    2002-01-01

    Background: Over the past 2 decades, molecular biology has shown that most major allergens exist in multiple isoforms. Very little is known about the relevance of allergen isoforms at the level of expressed protein (ie, actual allergen exposure). Objective: The aim of this study was to evaluate the

  10. Quadrupole time-of-flight mass spectrometry: a method to study the actual expression of allergen isoforms identified by PCR cloning

    NARCIS (Netherlands)

    Helsper, Johannes P. F. G.; Gilissen, Luud J. W. J.; van Ree, Ronald; America, Antoine H. P.; Cordewener, Jan H. G.; Bosch, Dirk

    2002-01-01

    BACKGROUND: Over the past 2 decades, molecular biology has shown that most major allergens exist in multiple isoforms. Very little is known about the relevance of allergen isoforms at the level of expressed protein (ie, actual allergen exposure). OBJECTIVE: The aim of this study was to evaluate the

  11. Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear.

    Science.gov (United States)

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J; Striessnig, Jörg; Singewald, Nicolas

    2008-05-01

    Dihydropyridine (DHP) L-type Ca(2+) channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. Ca(V)1.2 and Ca(V)1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive Ca(V)1.2 LTCCs (Ca(V)1.2DHP(-/-) mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in Ca(V)1.2DHP(-/-) mice, indicating that it is mediated by Ca(V)1.2, but not by Ca(V)1.3 LTCCs. Supporting this conclusion, Ca(V)1.3-deficient mice (Ca(V)1.3(-/-)) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral Ca(V)1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in Ca(V)1.2DHP(-/-) mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the Ca(V)1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly Ca(V)1.3) is not sufficient to accelerate extinction of conditioned fear in mice.

  12. Inhibition of PaCaMKII-E isoform in the dorsal unpaired median neurosecretory cells of cockroach reduces nicotine- and clothianidin-induced currents.

    Science.gov (United States)

    List, Olivier; Calas-List, Delphine; Taillebois, Emiliane; Juchaux, Marjorie; Heuland, Emilie; Thany, Steeve H

    2014-08-01

    Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII), which transduces the signal into downstream effects. We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms, and only PaCaMKII-E isoform is specifically expressed in the dorsal unpaired median neurosecretory cells. In the present study, using antisense oligonucleotides, we demonstrated that PaCaMKII-E isoform inhibition reduced nicotine-induced currents through α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptor subtypes. Specifically, PaCaMKII-E isoform is sufficient to repress nicotinic current amplitudes as a result of its depression by antisense oligonucleotides. Similar results were found using the neonicotinoid insecticide clothianidin, which acted as a full agonist of dorsal unpaired median neuron nicotinic acetylcholine receptors. Clothianidin current amplitudes are strongly reduced under bath application of PaCaMKII-E antisense oligonucleotides but no significant results are found with α-bungarotoxin co-applied, demonstrating that CaMKII-E isoform affects nicotine currents through α-bungarotoxin-sensitive and -insensitive receptor subtypes whereas clothianidin currents are reduced via α-bungarotoxin-insensitive receptors. In addition, we found that intracellular calcium increase induced by nicotine and clothianidin were reduced by PaCaMKII-E antisense oligonucleotides, demonstrating that intracellular calcium increase induced by nicotine and clothianidin are affected by PaCaMKII-E inhibition. Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII). We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms and only PaCaMKII-E isoform was specifically expressed in the dorsal unpaired median neurosecretory cells. Here we show that specific inhibition of PaCaMKII-E isoform is

  13. Conditional expression of CD44 isoforms in lymphoma cells: influence on hyaluronate binding and tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Fu, J.

    2002-03-01

    CD44 describes a family of surface proteins consisting of many isoforms due to alternative splice of ten 'variant' exons. Members of this family are involved in various processes including hematopoiesis, lymphocyte activation and homing, limb development, wound healing and tumor progression. Clinically, CD44 has been shown to be a prognostic factor for several human cancers. To answer the question which isoform might be relevant for tumor progression and to gain an insight into the mechanism of its function, I established transfectants of the LB lymphoma cell line in which the expression of four CD44 isoforms, namely CD44v3-10, CD44v4-10, CD44v8-10 and CD44s, was controlled by the Tet-off promoter. In the presence of Doxycycline, the expression was repressed. Removal of Doxycycline switched on expression and the maximal CD44 amount was obtained within two days. The transfectants were characterized regarding their ability to bind to the extracellular matrix component hyaluronate (HA). Overexpression of all four CD44 isoforms conferred the ability to bind HA on LB cells. Other glycosaminoglycans (GAGs) were bound in an isotype-specific fashion. CD44v3-10, CD44v4-10 and CD44v8-10 showed high binding affinity to chondroitin A, B and C, and low affinity to heparin, heparan sulfate and keratan sulfate. CD44s could not bind to these GAGs. Among these three variants, the binding ability of CD44v3-10 was the strongest. CD44 clustering seemed to play a crucial role for HA binding. Both CD44s and CD44v8-10 formed reduction-sensitive complexes in LB cells. The complexes are homooligomers or heterooligomers composed of different isoforms. Cys286 in CD44 transmember domain was not responsible for the formation of reduction-sensitive oligomer or for the enhanced HA binding in LB cell line. Using a conditional dimerization system the requirement of CD44 oligomerization for HA binding was directly demonstrated. The induction of oligomerization increased HA binding

  14. Conditional expression of CD44 isoforms in lymphoma cells: influence on hyaluronate binding and tumor growth

    International Nuclear Information System (INIS)

    Fu, J.

    2002-03-01

    CD44 describes a family of surface proteins consisting of many isoforms due to alternative splice of ten 'variant' exons. Members of this family are involved in various processes including hematopoiesis, lymphocyte activation and homing, limb development, wound healing and tumor progression. Clinically, CD44 has been shown to be a prognostic factor for several human cancers. To answer the question which isoform might be relevant for tumor progression and to gain an insight into the mechanism of its function, I established transfectants of the LB lymphoma cell line in which the expression of four CD44 isoforms, namely CD44v3-10, CD44v4-10, CD44v8-10 and CD44s, was controlled by the Tet-off promoter. In the presence of Doxycycline, the expression was repressed. Removal of Doxycycline switched on expression and the maximal CD44 amount was obtained within two days. The transfectants were characterized regarding their ability to bind to the extracellular matrix component hyaluronate (HA). Overexpression of all four CD44 isoforms conferred the ability to bind HA on LB cells. Other glycosaminoglycans (GAGs) were bound in an isotype-specific fashion. CD44v3-10, CD44v4-10 and CD44v8-10 showed high binding affinity to chondroitin A, B and C, and low affinity to heparin, heparan sulfate and keratan sulfate. CD44s could not bind to these GAGs. Among these three variants, the binding ability of CD44v3-10 was the strongest. CD44 clustering seemed to play a crucial role for HA binding. Both CD44s and CD44v8-10 formed reduction-sensitive complexes in LB cells. The complexes are homooligomers or heterooligomers composed of different isoforms. Cys286 in CD44 transmember domain was not responsible for the formation of reduction-sensitive oligomer or for the enhanced HA binding in LB cell line. Using a conditional dimerization system the requirement of CD44 oligomerization for HA binding was directly demonstrated. The induction of oligomerization increased HA binding. Finally, I

  15. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence.

    Science.gov (United States)

    Dentovskaya, Svetlana V; Platonov, Mikhail E; Svetoch, Tat'yana E; Kopylov, Pavel Kh; Kombarova, Tat'yana I; Ivanov, Sergey A; Shaikhutdinova, Rima Z; Kolombet, Lyubov' V; Chauhan, Sadhana; Ablamunits, Vitaly G; Motin, Vladimir L; Uversky, Vladimir N; Anisimov, Andrey P

    2016-01-01

    It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla-strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification

  16. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

    Science.gov (United States)

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.

    2018-01-01

    Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions

  17. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions

    Directory of Open Access Journals (Sweden)

    Sandy Azzi

    2015-06-01

    Full Text Available Intrarenal interleukin-15 (IL-15 participates to renal pathophysiology, but the role of its different membrane-bound isoforms remains to be elucidated. In this study, we reassess the biology of membrane-bound IL-15 (mb-IL-15 isoforms by comparing primary cultures of human renal proximal tubular epithelial cells (RPTEC to peritumoral (ptumTEC, tumoral (RCC, and cancer stem cells (CSC/CD105+. RPTEC express a 14 to 16 kDa mb-IL-15, whose existence has been assumed but never formally demonstrated and likely represents the isoform anchored at the cell membrane through the IL-15 receptor α (IL-15Rα chain, because it is sensitive to acidic treatment and is not competent to deliver a reverse signal. By contrast, ptumTEC, RCC, and CSC express a novel N-hyperglycosylated, short-lived transmembrane mb-IL-15 (tmb-IL-15 isoform around 27 kDa, resistant to acidic shock, delivering a reverse signal in response to its soluble receptor (sIL-15Rα. This reverse signal triggers the down-regulation of the tumor suppressor gene E-cadherin in ptumTEC and RCC but not in CSC/CD105+, where it promotes survival. Indeed, through the AKT pathway, tmb-IL-15 protects CSC/CD105+ from non-programmed cell death induced by serum starvation. Finally, both mb-IL-15 and tmb-IL-15 are sensitive to metalloproteases, and the cleaved tmb-IL-15 (25 kDa displays a powerful anti-apoptotic effect on human hematopoietic cells. Overall, our data indicate that both mb-IL-15 and tmb-IL-15 isoforms play a complex role in renal pathophysiology downregulating E-cadherin and favoring cell survival. Moreover, “apparently normal” ptumTEC cells, sharing different properties with RCC, could contribute to organize an enlarged peritumoral “preneoplastic” environment committed to favor tumor progression.

  18. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Directory of Open Access Journals (Sweden)

    Senthil kumar M

    2011-05-01

    Full Text Available Abstract The Metallothionein (MT is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems. Strong evidence exists that MT modulates complex diseases and the immune system in the body but the primary function of MT still remains unknown. This review's main objective is to explore the capability to specifically manipulate MT levels in cells and in animals to provide answers regarding how MT could impact those complex disease scenarios. The experimental result mentioned in this review related among MT, zinc, cadmium, diabetic, heart disease, bone retardation, neuro toxicity, kidney dysfunction, cancer, and brain suggest novel method for exploration and contribute significantly to the growing scientist to research further in this field.

  19. Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP.

    Directory of Open Access Journals (Sweden)

    Helena Hernández

    2009-09-01

    Full Text Available Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post-translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B'. Results also show that unstructured post-translationally modified C-terminal tails are responsible for the dynamics of Sm-B/B' and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.

  20. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Directory of Open Access Journals (Sweden)

    Ganesh Ambigapathy

    Full Text Available Brain-derived neurotrophic factor (BDNF has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  1. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Science.gov (United States)

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  2. Protein Kinase A Regulatory Subunit Isoforms Regulate Growth and Differentiation in Mucor circinelloides: Essential Role of PKAR4

    Science.gov (United States)

    Ocampo, J.; McCormack, B.; Navarro, E.; Moreno, S.; Garre, V.

    2012-01-01

    The protein kinase A (PKA) signaling pathway plays a role in regulating growth and differentiation in the dimorphic fungus Mucor circinelloides. PKA holoenzyme is comprised of two catalytic (C) and two regulatory (R) subunits. In M. circinelloides, four genes encode the PKAR1, PKAR2, PKAR3, and PKAR4 isoforms of R subunits. We have constructed null mutants and demonstrate that each isoform has a different role in growth and differentiation. The most striking finding is that pkaR4 is an essential gene, because only heterokaryons were obtained in knockout experiments. Heterokaryons with low levels of wild-type nuclei showed an impediment in the emission of the germ tube, suggesting a pivotal role of this gene in germ tube emergence. The remaining null strains showed different alterations in germ tube emergence, sporulation, and volume of the mother cell. The pkaR2 null mutant showed an accelerated germ tube emission and was the only mutant that germinated under anaerobic conditions when glycine was used as a nitrogen source, suggesting that pkaR2 participates in germ tube emergence by repressing it. From the measurement of the mRNA and protein levels of each isoform in the wild-type and knockout strains, it can be concluded that the expression of each subunit has its own mechanism of differential regulation. The PKAR1 and PKAR2 isoforms are posttranslationally modified by ubiquitylation, suggesting another regulation point in the specificity of the signal transduction. The results indicate that each R isoform has a different role in M. circinelloides physiology, controlling the dimorphism and contributing to the specificity of cyclic AMP (cAMP)-PKA pathway. PMID:22635921

  3. Constitutive and nitrogen catabolite repression-sensitive production of Gat1 isoforms.

    Science.gov (United States)

    Rai, Rajendra; Tate, Jennifer J; Georis, Isabelle; Dubois, Evelyne; Cooper, Terrance G

    2014-01-31

    Nitrogen catabolite repression (NCR)-sensitive transcription is activated by Gln3 and Gat1. In nitrogen excess, Gln3 and Gat1 are cytoplasmic, and transcription is minimal. In poor nitrogen, Gln3 and Gat1 become nuclear and activate transcription. A long standing paradox has surrounded Gat1 production. Gat1 was first reported as an NCR-regulated activity mediating NCR-sensitive transcription in gln3 deletion strains. Upon cloning, GAT1 transcription was, as predicted, NCR-sensitive and Gln3- and Gat1-activated. In contrast, Western blots of Gat1-Myc(13) exhibited two constitutively produced species. Investigating this paradox, we demonstrate that wild type Gat1 isoforms (IsoA and IsoB) are initiated at Gat1 methionines 40, 95, and/or 102, but not at methionine 1. Their low level production is the same in rich and poor nitrogen conditions. When the Myc(13) tag is placed after Gat1 Ser-233, four N-terminal Gat1 isoforms (IsoC-F) are also initiated at methionines 40, 95, and/or 102. However, their production is highly NCR-sensitive, being greater in proline than glutamine medium. Surprisingly, all Gat1 isoforms produced in sufficient quantities to be confidently analyzed (IsoA, IsoC, and IsoD) require Gln3 and UASGATA promoter elements, both requirements typical of NCR-sensitive transcription. These data demonstrate that regulated Gat1 production is more complex than previously recognized, with wild type versus truncated Gat1 proteins failing to be regulated in parallel. This is the first reported instance of Gln3 UASGATA-dependent protein production failing to derepress in nitrogen poor conditions. A Gat1-lacZ ORF swap experiment indicated sequence(s) responsible for the nonparallel production are downstream of Gat1 leucine 61.

  4. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch.

    Science.gov (United States)

    Doan; Rudi; Olsen

    1999-11-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed.

  5. Implementation of a SPR immunosensor for the simultaneous detection of the 22K and 20K hGH isoforms in human serum samples.

    Science.gov (United States)

    de Juan-Franco, Elena; Rodríguez-Frade, J M; Mellado, M; Lechuga, Laura M

    2013-09-30

    We have implemented a Surface Plasmon Resonance (SPR) immunosensor based on a sandwich assay for the simultaneous detection of the two main hGH isoforms, of 22 kDa (22K) and 20 kDa (20K). An oriented-antibody sensor surface specific for both hormone isoforms was assembled by using the biotin-streptavidin system. The immunosensor functionality was checked for the direct detection of the 22K hGH isoform in buffer, which gave high specificity and reproducibility (intra and inter-assay mean coefficients of variation of 8.23% and 9% respectively). The selective determination of the 22K and 20K hGH isoforms in human serum samples in a single assay was possible by using two specific anti-hGH monoclonal antibodies. The detection limit for both hormone isoforms was 0.9 ng mL(-1) and the mean coefficient of variation was below 7.2%. The excellent reproducibility and sensitivity obtained indicate the high performance of this immunosensor for implementing an anti-doping test. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Molecular Analysis of Collagen XVIII Reveals Novel Mutations, Presence of a Third Isoform, and Possible Genetic Heterogeneity in Knobloch Syndrome

    Science.gov (United States)

    Suzuki, O. T.; Sertié, A. L.; Der Kaloustian, V. M.; Kok, F.; Carpenter, M.; Murray, J.; Czeizel, A. E.; Kliemann, S. E.; Rosemberg, S.; Monteiro, M.; Olsen, B. R.; Passos-Bueno, M. R.

    2002-01-01

    Knobloch syndrome (KS) is a rare disease characterized by severe ocular alterations, including vitreoretinal degeneration associated with retinal detachment and occipital scalp defect. The responsible gene, COL18A1, has been mapped to 21q22.3, and, on the basis of the analysis of one family, we have demonstrated that a mutation affecting only one of the three COL18A1 isoforms causes this phenotype. We report here the results of the screening of both the entire coding region and the exon-intron boundaries of the COL18A1 gene (which includes 43 exons), in eight unrelated patients with KS. Besides 20 polymorphic changes, we identified 6 different pathogenic changes in both alleles of five unrelated patients with KS (three compound heterozygotes and two homozygotes). All are truncating mutations leading to deficiency of one or all collagen XVIII isoforms and endostatin. We have verified that, in exon 41, the deletion c3514-3515delCT, found in three unrelated alleles, is embedded in different haplotypes, suggesting that this mutation has occurred more than once. In addition, our results provide evidence of nonallelic genetic heterogeneity in KS. We also show that the longest human isoform (NC11-728) is expressed in several tissues (including the human eye) and that lack of either the short variant or all of the collagen XVIII isoforms causes similar phenotypes but that those patients who lack all forms present more-severe ocular alterations. Despite the small sample size, we found low endostatin plasma levels in those patients with mutations leading to deficiency of all isoforms; in addition, it seems that absence of all collagen XVIII isoforms causes predisposition to epilepsy. PMID:12415512

  7. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr and modulates cardiac action potential characteristics.

    Directory of Open Access Journals (Sweden)

    Anders Peter Larsen

    Full Text Available BACKGROUND: The repolarizing cardiac rapid delayed rectifier current, I(Kr, is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr. Marked heterogeneity in the kinetic properties of native I(Kr has been described. We hypothesized that the heterogeneity of native I(Kr can be reproduced by differential expression of ERG1a and ERG1b isoforms. Furthermore, the functional consequences of differential expression of ERG1 isoforms were explored as a potential mechanism underlying native heterogeneity of action potential duration (APD and restitution. METHODOLOGY/PRINCIPAL FINDINGS: The results show that the heterogeneity of native I(Kr can be reproduced in heterologous expression systems by differential expression of ERG1a and ERG1b isoforms. Characterization of the macroscopic kinetics of ERG1 currents demonstrated that these were dependent on the relative abundance of ERG1a and ERG1b. Furthermore, we used a computational model of the ventricular cardiomyocyte to show that both APD and the slope of the restitution curve may be modulated by varying the relative abundance of ERG1a and ERG1b. As the relative abundance of ERG1b was increased, APD was gradually shortened and the slope of the restitution curve was decreased. CONCLUSIONS/SIGNIFICANCE: Our results show that differential expression of ERG1 isoforms may explain regional heterogeneity of I(Kr kinetics. The data demonstrate that subunit dependent changes in channel kinetics are important for the functional properties of ERG1 currents and hence I(Kr. Importantly, our results suggest that regional differences in the relative abundance of ERG1 isoforms may represent a potential mechanism underlying the heterogeneity of both APD and APD restitution observed in mammalian hearts.

  8. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Lewis; Dobler, Markus R.; Radetich, Branko; Zhu, Yanyi; Atadja, Peter W.; Claiborne, Tavina; Grob, Jonathan E.; McRiner, Andrew; Pancost, Margaret R.; Patnaik, Anup; Shao, Wenlin; Shultz, Michael; Tichkule, Ritesh; Tommasi, Ruben A.; Vash, Brian; Wang, Ping; Stams, Travis (Novartis)

    2013-11-20

    Herein we report the discovery of a family of novel yet simple, amino-acid derived class I HDAC inhibitors that demonstrate isoform selectivity via access to the internal acetate release channel. Isoform selectivity criteria is discussed on the basis of X-ray crystallography and molecular modeling of these novel inhibitors bound to HDAC8, potentially revealing insights into the mechanism of enzymatic function through novel structural features revealed at the atomic level.

  9. Na,K-ATPase alpha isoforms at the blood-cerebrospinal fluid-trigeminal nerve and blood-retina interfaces in the rat.

    Science.gov (United States)

    Arakaki, Xianghong; McCleary, Paige; Techy, Matthew; Chiang, Jiarong; Kuo, Linus; Fonteh, Alfred N; Armstrong, Brian; Levy, Dan; Harrington, Michael G

    2013-03-14

    Cerebrospinal fluid (CSF) sodium concentration increases during migraine attacks, and both CSF and vitreous humor sodium increase in the rat migraine model. The Na,K-ATPase is a probable source of these sodium fluxes. Since Na,K-ATPase isoforms have different locations and physiological roles, our objective was to establish which alpha isoforms are present at sites where sodium homeostasis is disrupted. Specific Na,K-ATPase alpha isoforms were identified in rat tissues by immunohistochemistry at the blood-CSF barrier at the choroid plexus, at the blood-CSF-trigeminal barrier at the meninges, at the blood-retina barrier, and at the blood-aqueous barrier at the ciliary body. Calcitonin gene-related peptide (CGRP), occludin, or von Willibrand factor (vWF) were co-localized with Na,K-ATPase to identify trigeminal nociceptor fibers, tight junctions, and capillary endothelial cells respectively. The Na,K-ATPase alpha-2 isoform is located on capillaries and intensely at nociceptive trigeminal nerve fibers at the meningeal blood-CSF-trigeminal barrier. Alpha-1 and -3 are lightly expressed on the trigeminal nerve fibers but not at capillaries. Alpha-2 is expressed at the blood-retina barriers and, with alpha-1, at the ciliary body blood aqueous barrier. Intense apical membrane alpha-1 was associated with moderate cytoplasmic alpha-2 expression at the choroid plexus blood-CSF barrier. Na,K-ATPase alpha isoforms are present at the meningeal, choroid plexus, and retinal barriers. Alpha-2 predominates at the capillary endothelial cells in the meninges and retinal ganglion cell layer.

  10. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Fang; Li, Xiuli [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China); Kong, Jian [Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing (China); Pan, Bing [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Sun, Min [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xian (China); Zheng, Lemin, E-mail: zhengl@bjmu.edu.cn [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Yao, Yuanqing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China)

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.

  11. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Gu, Fang; Li, Xiuli; Kong, Jian; Pan, Bing; Sun, Min; Zheng, Lemin; Yao, Yuanqing

    2013-01-01

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA 3.1 empty vector, pcDNA 3.1 -VEGF111b or pcDNA 3.1 -VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  12. The combined expression patterns of Ikaros isoforms characterize different hematological tumor subtypes.

    Science.gov (United States)

    Orozco, Carlos A; Acevedo, Andrés; Cortina, Lazaro; Cuellar, Gina E; Duarte, Mónica; Martín, Liliana; Mesa, Néstor M; Muñoz, Javier; Portilla, Carlos A; Quijano, Sandra M; Quintero, Guillermo; Rodriguez, Miriam; Saavedra, Carlos E; Groot, Helena; Torres, María M; López-Segura, Valeriano

    2013-01-01

    A variety of genetic alterations are considered hallmarks of cancer development and progression. The Ikaros gene family, encoding for key transcription factors in hematopoietic development, provides several examples as genetic defects in these genes are associated with the development of different types of leukemia. However, the complex patterns of expression of isoforms in Ikaros family genes has prevented their use as clinical markers. In this study, we propose the use of the expression profiles of the Ikaros isoforms to classify various hematological tumor diseases. We have standardized a quantitative PCR protocol to estimate the expression levels of the Ikaros gene exons. Our analysis reveals that these levels are associated with specific types of leukemia and we have found differences in the levels of expression relative to five interexonic Ikaros regions for all diseases studied. In conclusion, our method has allowed us to precisely discriminate between B-ALL, CLL and MM cases. Differences between the groups of lymphoid and myeloid pathologies were also identified in the same way.

  13. alpha isoforms of soluble and membrane-linked folate-binding protein in human blood

    DEFF Research Database (Denmark)

    Hoier-Madsen, M.; Holm, J.; Hansen, S.I.

    2008-01-01

    supported the hypothesis that serum FBP (29 kDa) mainly originates from neutrophils. The presence of FBP/FR alpha isoforms were established for the first time in human blood using antibodies specifically directed against human milk FBP alpha. The alpha isoforms identified on erythrocyte membranes......, and in granulocytes and serum, only constituted an almost undetectable fraction of the functional FBP The FBP alpha in neutrophil granulocytes was identified as a cytoplasmic component by indirect immunofluorescence. Gel filtration of serum revealed a peak of FBP alpha (>120 kDa), which could represent receptor...... fragments from decomposed erythrocytes and granulocytes. The soluble FBPs may exert bacteriostatic effects and protect folates in plasma from biological degradation, whereas FRs on the surface of blood cells could be involved in intracellular folate uptake or serve as signal proteins. The latter receptors...

  14. Protein kinase C isoforms at the neuromuscular junction: localization and specific roles in neurotransmission and development.

    Science.gov (United States)

    Lanuza, Maria A; Santafe, Manel M; Garcia, Neus; Besalduch, Núria; Tomàs, Marta; Obis, Teresa; Priego, Mercedes; Nelson, Phillip G; Tomàs, Josep

    2014-01-01

    The protein kinase C family (PKC) regulates a variety of neural functions including neurotransmitter release. The selective activation of a wide range of PKC isoforms in different cells and domains is likely to contribute to the functional diversity of PKC phosphorylating activity. In this review, we describe the isoform localization, phosphorylation function, regulation and signalling of the PKC family at the neuromuscular junction. Data show the involvement of the PKC family in several important functions at the neuromuscular junction and in particular in the maturation of the synapse and the modulation of neurotransmission in the adult. © 2013 Anatomical Society.

  15. Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system

    International Nuclear Information System (INIS)

    Bu, K.M.; Kwon, H.Y.; Oh, S.W.; Won, C.

    2012-01-01

    Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes. - Highlights: ► Exchange bias phenomena are found in perpendicularly coupled F/F systems. ► Exchange bias exhibits nonlinear behaviors, including sign reversal and singularities. ► These complicated behaviors were caused by two distinct magnetization processes. ► Exchange bias reached a maximum at the transition between the two magnetization processes. ► We established an equation to maximize the exchange bias in perpendicularly coupled F/F system.

  16. Effects of Andrographis paniculata and Orthosiphon stamineus extracts on the glucuronidation of 4-methylumbelliferone in human UGT isoforms.

    Science.gov (United States)

    Ismail, Sabariah; Hanapi, Nur Aziah; Ab Halim, Mohd Rohaimi; Uchaipichat, Verawan; Mackenzie, Peter I

    2010-05-14

    The effects of Andrographis paniculata and Orthosiphon stamineus extracts on the in vitro glucuronidation of 4-methylumbelliferone (4MU) by recombinant human UGTs, UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A10, UGT2B7 and UGT2B15 were determined. The potential inhibitory effects of both of the extracts on the activity of each of the UGT isoforms were investigated using 4MU as the substrate. Incubations contained UDP-glucuronic acid (UDPGA) as the cofactor, MgCl(2), cell lysate of respective isoform, and 4MU at the approximate apparent K(m) or S(50) value of each isoform. Final concentrations of Andrographis paniculata and Orthosiphon stamineus extracts used were 0.025, 0.25, 2.5, 25 and 50 microg/mL and 0.01, 0.10, 1.0, 10 and 50 microg/mL respectively. Both extracts variably inhibited the activity of most of the isoforms in a concentration dependent manner. Andrographis paniculata extract was the better inhibitor of all the isoforms studied (IC(50) 1.70 microg/mL for UGT1A3, 2.57 microg/mL for UGT1A8, 2.82 microg/mL for UGT2B7, 5.00 micorg/mL for UGT1A1, 5.66 microg/mL for UGT1A6, 9.88 microg/mL for UGT1A7 and 15.66 microg/mL for UGT1A10). Both extracts showed less than 70% inhibition of UGT2B15, so the IC(50) values were >50 microg/mL. The inhibition of human UGTs by Andrographis paniculata and Orthosiphon stamineus extracts in vitro suggests a potential for drug-herbal extract interactions in the therapeutic setting.

  17. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch1

    Science.gov (United States)

    Doan, Danny N.P.; Rudi, Heidi; Olsen, Odd-Arne

    1999-01-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed. PMID:10557246

  18. Oestrogen receptor beta isoform expression in sporadic colorectal cancer, familial adenomatous polyposis and progressive stages of colorectal cancer.

    Science.gov (United States)

    Stevanato Filho, Paulo Roberto; Aguiar Júnior, Samuel; Begnami, Maria Dirlei; Kuasne, Hellen; Spencer, Ranyell Matheus; Nakagawa, Wilson Toshihiko; Bezerra, Tiago Santoro; Kupper, Bruna Catin; Takahashi, Renata Maymi; Barros Filho, Mateus; Rogatto, Silvia Regina; Lopes, Ademar

    2017-11-13

    Among the sex hormones, oestrogen may play a role in colorectal cancer, particularly in conjunction with oestrogen receptor-β (ERβ). The expression of ERβ isoform variants and their correlations with familial adenomatous polyposis (FAP) syndrome and sporadic colorectal carcinomas are poorly described. This study aimed to investigate the expression levels of the ERβ1, ERβ2, ERβ4 and ERβ5 isoform variants using quantitative RT-PCR (921 analyses) in FAP, normal mucosa, adenomatous polyps and sporadic colorectal carcinomas. Decreased expression of ERβ isoforms was identified in sporadic polyps and in sporadic colorectal cancer as well as in polyps from FAP syndrome patients compared with normal tissues (p colorectal carcinomas were compared to normal mucosa tissues. These findings suggest an association of the ERβ isoform variants in individuals affected by germline mutations of the APC gene. Progressively decreased expression of ERβ was found in polyps at early stages of low-grade dysplasia, followed by T1-T2 and T3-T4 tumours (p colorectal cancer, the loss of expression was an independent predictor of recurrence, and ERβ1 and ERβ5 expression levels were associated with better disease-free survival (p = 0.002). These findings may provide a better understanding of oestrogens and their potential preventive and therapeutic effects on sporadic colorectal cancer and cancers associated with FAP syndrome.

  19. The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sudit S.; Rosen, Jeffrey M.

    2007-01-01

    The transcription factor nuclear factor I (NFI) has been shown previously both in vivo and in vitro to be involved in the cooperative regulation of whey acidic protein (WAP) gene transcription along with the glucocorticoid receptor and STAT5. In addition, one of the specific NFI isoforms, NFI-B2, was demonstrated in transient co-transfection experiments in JEG cells, which lack endogenous NFI, to be preferentially involved in the cooperative regulation of WAP gene expression. A comparison of the DNA-binding specificities of the different NFI isoforms only partially explained their differential ability to activate the WAP gene transcription. Here, we analyzed the transactivation regions of two NFI isoforms by making chimeric proteins between the NFI-A and B isoforms. Though, their DNA-binding specificities were not altered as compared to the corresponding wild-type transcription factors, the C-terminal region of the NFI-B isoform was shown to preferentially activate WAP gene transcription in cooperation with GR and STAT5 in transient co-transfection assays in JEG-3 cells. Furthermore, determination of serine and threonine-specific glycosylation (O-linked N-acetylglucosamine) of the C-terminus of the NFI-B isoform suggested that the secondary modification by O-GlcNAc might play a role in the cooperative regulation of WAP gene transcription by NFI-B2 and STAT5

  20. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance.

    Science.gov (United States)

    Hamdollah Zadeh, Maryam A; Amin, Elianna M; Hoareau-Aveilla, Coralie; Domingo, Enric; Symonds, Kirsty E; Ye, Xi; Heesom, Katherine J; Salmon, Andrew; D'Silva, Olivia; Betteridge, Kai B; Williams, Ann C; Kerr, David J; Salmon, Andrew H J; Oltean, Sebastian; Midgley, Rachel S; Ladomery, Michael R; Harper, Steven J; Varey, Alexander H R; Bates, David O

    2015-01-01

    The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A165b. Whereas flTIA-1 selectively bound VEGF-A165 mRNA and increased translation of VEGF-A165b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Analysis of human articular chondrocyte CD44 isoform expression and function in health and disease.

    Science.gov (United States)

    Salter, D M; Godolphin, J L; Gourlay, M S; Lawson, M F; Hughes, D E; Dunne, E

    1996-08-01

    Interactions between articular chondrocytes and components of the extracellular matrix are of potential importance in the normal function of cartilage and in the pathophysiology of arthritis. Little is known of the basis of these interactions, but cell adhesive molecules such as CD44 are likely to be involved. Immunohistology using six well-characterized anti-CD44 monoclonal antibodies demonstrated standard CD44 isoform (CD44H) expression by all chondrocytes in normal and osteoarthrotic (OA) cartilage but absence of the CD44E variant. Polymerase chain reaction (PCR) of reverse transcribed mRNA from monolayer cultures of normal and OA chondrocytes using primer sequences which span the region containing variably spliced exons produced a predominant band representing the standard form of CD44, which lacks the variable exons 6-15 (v1-v10). No product was seen at the expected size of the epithelial variant of CD44 (CD44v8-10). Use of exon-specific primers, however, showed expression of variant exons resulting in multiple minor isoforms. Standard CD44 was also shown to be the predominantly expressed isoform identified by immunoprecipitation, but human articular chondrocytes did not adhere to hyaluronan in vitro. Chondrocyte CD44 may function as an adhesion receptor for other matrix molecules such as fibronectin or collagen.

  2. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    Science.gov (United States)

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. Copyright © 2016. Published by Elsevier Inc.

  3. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry

    Directory of Open Access Journals (Sweden)

    Linda V. Hjørnevik

    2015-12-01

    Full Text Available Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s. A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.

  4. The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction.

    Science.gov (United States)

    Chen, Lanfen; Chen, Zhangguo; Baker, Kristi; Halvorsen, Elizabeth M; da Cunha, Andre Pires; Flak, Magdalena B; Gerber, Georg; Huang, Yu-Hwa; Hosomi, Shuhei; Arthur, Janelle C; Dery, Ken J; Nagaishi, Takashi; Beauchemin, Nicole; Holmes, Kathryn V; Ho, Joshua W K; Shively, John E; Jobin, Christian; Onderdonk, Andrew B; Bry, Lynn; Weiner, Howard L; Higgins, Darren E; Blumberg, Richard S

    2012-11-16

    Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with the generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Role of cyclooxygenase isoforms in the altered excitatory motor pathways of human colon with diverticular disease.

    Science.gov (United States)

    Fornai, M; Colucci, R; Antonioli, L; Ippolito, C; Segnani, C; Buccianti, P; Marioni, A; Chiarugi, M; Villanacci, V; Bassotti, G; Blandizzi, C; Bernardini, N

    2014-08-01

    The COX isoforms (COX-1, COX-2) regulate human gut motility, although their role under pathological conditions remains unclear. This study examines the effects of COX inhibitors on excitatory motility in colonic tissue from patients with diverticular disease (DD). Longitudinal muscle preparations, from patients with DD or uncomplicated cancer (controls), were set up in organ baths and connected to isotonic transducers. Indomethacin (COX-1/COX-2 inhibitor), SC-560 (COX-1 inhibitor) or DFU (COX-2 inhibitor) were assayed on electrically evoked, neurogenic, cholinergic and tachykininergic contractions, or carbachol- and substance P (SP)-induced myogenic contractions. Distribution and expression of COX isoforms in the neuromuscular compartment were assessed by RT-PCR, Western blot and immunohistochemical analysis. In control preparations, neurogenic cholinergic contractions were enhanced by COX inhibitors, whereas tachykininergic responses were blunted. Carbachol-evoked contractions were increased by indomethacin or SC-560, but not DFU, whereas all inhibitors reduced SP-induced motor responses. In preparations from DD patients, COX inhibitors did not affect electrically evoked cholinergic contractions. Both indomethacin and DFU, but not SC-560, decreased tachykininergic responses. COX inhibitors did not modify carbachol-evoked motor responses, whereas they counteracted SP-induced contractions. COX-1 expression was decreased in myenteric neurons, whereas COX-2 was enhanced in glial cells and smooth muscle. In control colon, COX-1 and COX-2 down-regulate cholinergic motility, whereas both isoforms enhance tachykininergic motor activity. In the presence of DD, there is a loss of modulation by both COX isoforms on the cholinergic system, whereas COX-2 displays an enhanced facilitatory control on tachykininergic contractile activity. © 2014 The British Pharmacological Society.

  6. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Christine Chaponnier

    2016-03-01

    Full Text Available Higher vertebrates express six different highly conserved actin isoforms that can be classified in three subgroups: 1 sarcomeric actins, α-skeletal (α-SKA and α-cardiac (α-CAA, 2 smooth muscle actins (SMAs, α-SMA and γ-SMA, and 3 cytoplasmic actins (CYAs, β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb against an actin isoform (α-SMA was produced and characterized in our laboratory in 1986 (Skalli et al., 1986. We have further obtained mAbs against the 5 other isoforms. In this report, we focus on the mAb anti-α-SKA and anti-α-CAA obtained after immunization of mice with the respective acetylated N-terminal decapeptides using the Repetitive Immunizations at Multiple Sites Strategy (RIMMS. In addition to the identification of their epitope by immunoblotting, we describe the expression of the 2 sarcomeric actins in mature skeletal muscle and during muscle repair after micro-lesions. In particular, we analyze the expression of α-CAA, α-SKA and α-SMA by co-immunostaining in a time course frame during the muscle repair process. Our results indicate that a restricted myocyte population expresses α-CAA and suggest a high capacity of self-renewal in muscle cells. These antibodies may represent a helpful tool for the follow-up of muscle regeneration and pathological changes.

  7. Transforming growth factor-β1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation

    International Nuclear Information System (INIS)

    Han Fei; Gilbert, James R.; Harrison, Gerald; Adams, Christopher S.; Freeman, Theresa; Tao Zhuliang; Zaka, Raihana; Liang Hongyan; Williams, Charlene; Tuan, Rocky S.; Norton, Pamela A.; Hickok, Noreen J.

    2007-01-01

    Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-β1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-β1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-β1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-β1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression

  8. Dynamic subcellular localization of isoforms of the folate pathway enzyme serine hydroxymethyltransferase (SHMT through the erythrocytic cycle of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Mitchell Sarah L

    2010-12-01

    Full Text Available Abstract Background The folate pathway enzyme serine hydroxymethyltransferase (SHMT converts serine to glycine and 5,10-methylenetetrahydrofolate and is essential for the acquisition of one-carbon units for subsequent transfer reactions. 5,10-methylenetetrahydrofolate is used by thymidylate synthase to convert dUMP to dTMP for DNA synthesis. In Plasmodium falciparum an enzymatically functional SHMT (PfSHMTc and a related, apparently inactive isoform (PfSHMTm are found, encoded by different genes. Here, patterns of localization of the two isoforms during the parasite erythrocytic cycle are investigated. Methods Polyclonal antibodies were raised to PfSHMTc and PfSHMTm, and, together with specific markers for the mitochondrion and apicoplast, were employed in quantitative confocal fluorescence microscopy of blood-stage parasites. Results As well as the expected cytoplasmic occupancy of PfSHMTc during all stages, localization into the mitochondrion and apicoplast occurred in a stage-specific manner. Although early trophozoites lacked visible organellar PfSHMTc, a significant percentage of parasites showed such fluorescence during the mid-to-late trophozoite and schizont stages. In the case of the mitochondrion, the majority of parasites in these stages at any given time showed no marked PfSHMTc fluorescence, suggesting that its occupancy of this organelle is of limited duration. PfSHMTm showed a distinctly more pronounced mitochondrial location through most of the erythrocytic cycle and GFP-tagging of its N-terminal region confirmed the predicted presence of a mitochondrial signal sequence. Within the apicoplast, a majority of mitotic schizonts showed a marked concentration of PfSHMTc, whose localization in this organelle was less restricted than for the mitochondrion and persisted from the late trophozoite to the post-mitotic stages. PfSHMTm showed a broadly similar distribution across the cycle, but with a distinctive punctate accumulation towards

  9. Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Vakhrushev, Sergey Y; Kong, Yun

    2012-01-01

    to include proteome-wide discovery of unique functions of individual GalNAc-Ts. We used the GalNAc-T2 isoform implicated in dyslipidemia and the human HepG2 liver cell line to demonstrate unique functions of this isoform. We confirm that GalNAc-T2-directed site-specific O-glycosylation inhibits proprotein...... activation of the lipase inhibitor ANGPTL3 in HepG2 cells and further identify eight O-glycoproteins exclusively glycosylated by T2 of which one, ApoC-III, is implicated in dyslipidemia. Our study supports an essential role for GalNAc-T2 in lipid metabolism, provides serum biomarkers for GalNAc-T2 enzyme...

  10. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    Science.gov (United States)

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  11. TIMP-1 resistant matrix metalloproteinase-9 is the predominant serum active isoform associated with MRI activity in patients with multiple sclerosis.

    Science.gov (United States)

    Trentini, Alessandro; Manfrinato, Maria C; Castellazzi, Massimiliano; Tamborino, Carmine; Roversi, Gloria; Volta, Carlo A; Baldi, Eleonora; Tola, Maria R; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Fainardi, Enrico

    2015-08-01

    The activity of matrix metalloproteinase-9 (MMP-9) depends on two isoforms, an 82 kDa active MMP-9 modulated by its specific tissue inhibitor (TIMP-1), and a 65 kDa TIMP-1 resistant active MMP-9. The relevance of these two enzymatic isoforms in multiple sclerosis (MS) is still unknown. To investigate the contribution of the TIMP-1 modulated and resistant active MMP-9 isoforms to MS pathogenesis. We measured the serum levels of the 82 kDa and TIMP-1 resistant active MMP-9 isoforms by activity assay systems in 86 relapsing-remitting MS (RRMS) patients, categorized according to clinical and magnetic resonance imaging (MRI) evidence of disease activity, and in 70 inflammatory (OIND) and 69 non-inflammatory (NIND) controls. Serum levels of TIMP-1 resistant MMP-9 were more elevated in MS patients than in OIND and NIND (p < 0.05, p < 0.02, respectively). Conversely, 82 kDa active MMP-9 was higher in NIND than in the OIND and MS patients (p < 0.01 and p < 0.00001, respectively). MRI-active patients had higher levels of TIMP-1 resistant MMP-9 and 82 kDa active MMP-9, than did those with MRI inactive MS (p < 0.01 and p < 0.05, respectively). Our findings suggested that the TIMP-1 resistant MMP-9 seem to be the predominantly active isoform contributing to MS disease activity. © The Author(s), 2015.

  12. Myosin isoform determines the conformational dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex

    Science.gov (United States)

    Prochniewicz, Ewa; Chin, Harvey F.; Henn, Arnon; Hannemann, Diane E.; Olivares, Adrian O.; Thomas, David D.; De La Cruz, Enrique M.

    2010-01-01

    SUMMARY We have used transient phosphorescence anisotropy (TPA) to detect the microsecond rotational dynamics of erythrosin iodoacetamide (ErIA)-labeled actin strongly bound to single-headed fragments of muscle myosin (muscle S1) and non-muscle myosin V (MV). The conformational dynamics of actin filaments in solution are markedly influenced by the isoform of bound myosin. Both myosins increase the final anisotropy of actin at sub-stoichiometric binding densities, indicating long-range, non-nearest neighbor cooperative restriction of filament rotational dynamics amplitude, but the cooperative unit is larger with MV than muscle S1. Both myosin isoforms also cooperatively affect the actin filament rotational correlation time, but with opposite effects; muscle S1 decreases rates of intrafilament torsional motion, while binding of MV increases the rates of motion. The cooperative effects on the rates of intrafilament motions correlate with the kinetics of myosin binding to actin filaments such that MV binds more rapidly, and muscle myosin more slowly, to partially decorated filaments than to bare filaments. The two isoforms also differ in their effects on the phosphorescence lifetime of the actin-bound ErIA; while muscle S1 increases the lifetime, suggesting decreased aqueous exposure of the probe, MV does not induce a significant change. We conclude that the dynamics and structure of actin in the strongly bound actomyosin complex is determined by the isoform of the bound myosin, in a manner likely to accommodate the diverse functional roles of actomyosin in muscle and non-muscle cells. PMID:19962990

  13. Molecular cloning and characterization of a novel isoform of the non-canonical poly(A) polymerase PAPD7

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, Koichi; Cho, Rihe [Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); Hoshino, Shin-ichi, E-mail: hoshino@phar.nagoya-cu.ac.jp [Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan)

    2013-03-01

    Highlights: ► So far, only an enzymatically inactive isoform of PAPD7 was reported. ► The novel isoform: PAPD7 l shows robust nucleotidyl transferase activity. ► The newly identified amino terminal region is required for the activity. ► PAPD7 l localizes to the nucleoplasm. ► The N terminal region identified is also required for the nuclear localization. - Abstract: Non-canonical poly(A) polymerases (ncPAPs) catalyze the addition of poly(A) tail to the 3′ end of RNA to play pivotal roles in the regulation of gene expression and also in quality control. Here we identified a novel isoform of the 7th member of ncPAPs: PAPD7 (PAPD7 l), which contains 230 extra amino acids at the amino terminus of the previously identified PAPD7 (PAPD7 s). In sharp contrast to the inactive PAPD7 s, PAPD7 l showed robust nucleotidyl transferase activity when tethered to an RNA. A region required for the activity was localized to 187–219 aa, and this region was also required for the nuclear retention of PAPD7 l. Western blot analysis revealed that 94 kDa band (corresponding to PAPD7 l) but not 62 kDa band (corresponding to PAPD7 s) detected by PAPD7 antibody was specifically depleted by treatment with PAPD7 siRNA in both HeLa and U2OS cells. These results suggest that PAPD7 l is the major and active isoform of PAPD7 expressed in cells.

  14. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission.

    Science.gov (United States)

    Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S

    2011-03-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  15. A method to couple HEM and HRM two-phase flow models

    Energy Technology Data Exchange (ETDEWEB)

    Herard, J.M.; Hurisse, O. [Elect France, Div Rech and Dev, Dept Mecan Fluides Energies and Environm, F-78401 Chatou (France); Hurisse, O. [Univ Aix Marseille 1, Ctr Math and Informat, Lab Anal Topol and Probabil, CNRS, UMR 6632, F-13453 Marseille 13 (France); Ambroso, A. [CEA Saclay, DEN, DM2S, SFME, LETR, 91 - Gif sur Yvette (France)

    2009-04-15

    We present a method for the unsteady coupling of two distinct two-phase flow models (namely the Homogeneous Relaxation Model, and the Homogeneous Equilibrium Model) through a thin interface. The basic approach relies on recent works devoted to the interfacial coupling of CFD models, and thus requires to introduce an interface model. Many numerical test cases enable to investigate the stability of the coupling method. (authors)

  16. A method to couple HEM and HRM two-phase flow models

    International Nuclear Information System (INIS)

    Herard, J.M.; Hurisse, O.; Hurisse, O.; Ambroso, A.

    2009-01-01

    We present a method for the unsteady coupling of two distinct two-phase flow models (namely the Homogeneous Relaxation Model, and the Homogeneous Equilibrium Model) through a thin interface. The basic approach relies on recent works devoted to the interfacial coupling of CFD models, and thus requires to introduce an interface model. Many numerical test cases enable to investigate the stability of the coupling method. (authors)

  17. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers.

    Science.gov (United States)

    Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana

    2017-08-01

    Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.

  18. The Role of a Novel Myosin Isoform in Prostate Cancer Metastasis

    Science.gov (United States)

    2013-10-01

    2013 Accepted 14 February 2013 Available online 21 February 2013 Keywords: Myosin IC Isoforms Nucleolar localization signal Nucleolus Nucleus RNA...polymerase I Fibrillarinnt matter & 2013 Elsevier 1016/j.yexcr.2013.02.008 S, nucleolar localization ; No, nucleolus ; N, nucle bovine serum albumin; S...the nucleus, and the nucleolus . In the cytoplasm, myosin IC associ- ates with membranes and is involved in vesicle transport of membrane proteins [2

  19. Couple-level Minority Stress: An Examination of Same-sex Couples' Unique Experiences.

    Science.gov (United States)

    Frost, David M; LeBlanc, Allen J; de Vries, Brian; Alston-Stepnitz, Eli; Stephenson, Rob; Woodyatt, Cory

    2017-12-01

    Social stress resulting from stigma, prejudice, and discrimination-"minority stress"-negatively impacts sexual minority individuals' health and relational well-being. The present study examined how being in a same-sex couple can result in exposure to unique minority stressors not accounted for at the individual level. Relationship timeline interviews were conducted with 120 same-sex couples equally distributed across two study sites (Atlanta and San Francisco), gender (male and female), and relationship duration (at least six months but less than three years, at least three years but less than seven years, and seven or more years). Directed content analyses identified 17 unique couple-level minority stressors experienced within nine distinct social contexts. Analyses also revealed experiences of dyadic minority stress processes (stress discrepancies and stress contagion). These findings can be useful in future efforts to better understand and address the cumulative impact of minority stress on relational well-being and individual health.

  20. The combined expression patterns of Ikaros isoforms characterize different hematological tumor subtypes.

    Directory of Open Access Journals (Sweden)

    Carlos A Orozco

    Full Text Available A variety of genetic alterations are considered hallmarks of cancer development and progression. The Ikaros gene family, encoding for key transcription factors in hematopoietic development, provides several examples as genetic defects in these genes are associated with the development of different types of leukemia. However, the complex patterns of expression of isoforms in Ikaros family genes has prevented their use as clinical markers. In this study, we propose the use of the expression profiles of the Ikaros isoforms to classify various hematological tumor diseases. We have standardized a quantitative PCR protocol to estimate the expression levels of the Ikaros gene exons. Our analysis reveals that these levels are associated with specific types of leukemia and we have found differences in the levels of expression relative to five interexonic Ikaros regions for all diseases studied. In conclusion, our method has allowed us to precisely discriminate between B-ALL, CLL and MM cases. Differences between the groups of lymphoid and myeloid pathologies were also identified in the same way.

  1. Identification of two frataxin isoforms in Zea mays: Structural and functional studies.

    Science.gov (United States)

    Buchensky, Celeste; Sánchez, Manuel; Carrillo, Martin; Palacios, Oscar; Capdevila, Mercè; Domínguez-Vera, Jose M; Busi, Maria V; Atrian, Sílvia; Pagani, Maria A; Gomez-Casati, Diego F

    2017-09-01

    Frataxin is a ubiquitous protein that plays a role in Fe-S cluster biosynthesis and iron and heme metabolism, although its molecular functions are not entirely clear. In non-photosynthetic eukaryotes, frataxin is encoded by a single gene, and the protein localizes to mitochondria. Here we report the presence of two functional frataxin isoforms in Zea mays, ZmFH-1 and ZmFH-2. We confirmed our previous findings regarding plant frataxins: both proteins have dual localization in mitochondria and chloroplasts. Physiological, biochemical and biophysical studies show some differences in the expression pattern, protection against oxidants and in the aggregation state of both isoforms, suggesting that the two frataxin homologs would play similar but not identical roles in plant cell metabolism. In addition, two specific features of plant frataxins were evidenced: their ability to form dimers and their tendency to undergo conformational change under oxygen exposure. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.

    Science.gov (United States)

    Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U

    2010-03-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.

  3. Isoforms of retinol binding protein 4 (RBP4) are increased in chronic diseases of the kidney but not of the liver

    DEFF Research Database (Denmark)

    Frey, Simone K; Nagl, Britta; Henze, Andrea

    2008-01-01

    disease (CLD) RBP4 levels decrease. Little is known about RBP4 isoforms including apo-RBP4, holo-RBP4 as well as RBP4 truncated at the C-terminus (RBP4-L and RBP4-LL) except that RBP4 isoforms have been reported to be increased in hemodialysis patients. Since it is not known whether CLD influence RBP4...... isoforms, we investigated RBP4 levels, apo- and holo-RBP4 as well as RBP4-L and RBP4-LL in plasma of 36 patients suffering from CKD, in 55 CLD patients and in 50 control subjects. RBP4 was determined by ELISA and apo- and holo-RBP4 by native polyacrylamide gel electrophoresis (PAGE). RBP4-L and RBP4-LL...

  4. Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hu

    Full Text Available BACKGROUND: Rhodopseudomonas palustris (R. palustris is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin-Benson-Bassham (CBB cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. METHODOLOGY/PRINCIPAL FINDINGS: By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth

  5. Adaptive evolution and elucidating the potential inhibitor against schizophrenia to target DAOA (G72) isoforms.

    Science.gov (United States)

    Sehgal, Sheikh Arslan; Mannan, Shazia; Kanwal, Sumaira; Naveed, Ishrat; Mir, Asif

    2015-01-01

    Schizophrenia (SZ), a chronic mental and heritable disorder characterized by neurophysiological impairment and neuropsychological abnormalities, is strongly associated with D-amino acid oxidase activator (DAOA, G72). Research studies emphasized that overexpression of DAOA may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like SZ. In the present study, a hybrid approach of comparative modeling and molecular docking followed by inhibitor identification and structure modeling was employed. Screening was performed by two-dimensional similarity search against selected inhibitor, keeping in view the physiochemical properties of the inhibitor. Here, we report an inhibitor compound which showed maximum binding affinity against four selected isoforms of DAOA. Docking studies revealed that Glu-53, Thr-54, Lys-58, Val-85, Ser-86, Tyr-87, Leu-88, Glu-90, Leu-95, Val-98, Ser-100, Glu-112, Tyr-116, Lys-120, Asp-121, and Arg-122 are critical residues for receptor-ligand interaction. The C-terminal of selected isoforms is conserved, and binding was observed on the conserved region of isoforms. We propose that selected inhibitor might be more potent on the basis of binding energy values. Further analysis of this inhibitor through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful in designing novel therapeutic targets to cure SZ.

  6. Effects of Andrographis paniculata and Orthosiphon stamineus Extracts on the Glucuronidation of 4-Methylumbelliferone in Human UGT Isoforms

    Directory of Open Access Journals (Sweden)

    Sabariah Ismail

    2010-05-01

    Full Text Available The effects of Andrographis paniculata and Orthosiphon stamineus extracts on the in vitro glucuronidation of 4-methylumbelliferone (4MU by recombinant human UGTs, UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A10, UGT2B7 and UGT2B15 were determined. The potential inhibitory effects of both of the extracts on the activity of each of the UGT isoforms were investigated using 4MU as the substrate. Incubations contained UDP-glucuronic acid (UDPGA as the cofactor, MgCl2, cell lysate of respective isoform, and 4MU at the approximate apparent Km or S50 value of each isoform. Final concentrations of Andrographis paniculata and Orthosiphon stamineus extracts used were 0.025, 0.25, 2.5, 25 and 50 μg/mL and 0.01, 0.10, 1.0, 10 and 50 μg/mL respectively. Both extracts variably inhibited the activity of most of the isoforms in a concentration dependent manner. Andrographis paniculata extract was the better inhibitor of all the isoforms studied (IC50 1.70 μg/mL for UGT1A3, 2.57 μg/mL for UGT1A8, 2.82 μg/mL for UGT2B7, 5.00 μg/mL for UGT1A1, 5.66 μg/mL for UGT1A6, 9.88 μg/mL for UGT1A7 and 15.66 μg/mL for UGT1A10. Both extracts showed less than 70% inhibition of UGT2B15, so the IC50 values were >50μg/mL. The inhibition of human UGTs by Andrographis paniculata and Orthosiphon stamineus extracts in vitro suggests a potential for drug-herbal extract interactions in the therapeutic setting.

  7. Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man

    NARCIS (Netherlands)

    Bosma, P. J.; Seppen, J.; Goldhoorn, B.; Bakker, C.; Oude Elferink, R. P.; Chowdhury, J. R.; Chowdhury, N. R.; Jansen, P. L.

    1994-01-01

    Crigler-Najjar syndrome type I (CN-I) is caused by an inherited absence of UDP-glucuronosyltransferase activity toward bilirubin (B-UGT), resulting in severe non-hemolytic unconjugated hyperbilirubinemia. Based on the expression of cDNAs in COS cells, two UGT isoforms in human liver, B-UGT1 and

  8. Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells

    KAUST Repository

    Moritz, Tom; Venz, Simone; Junker, Heike; Kreuz, Sarah; Walther, Reinhard; Zimmermann, Uwe

    2016-01-01

    The tumour protein D52 isoform 1 (PC-1), a member of the tumour protein D52 (TPD52) protein family, is androgen-regulated and prostate-specific expressed. Previous studies confirmed that PC-1 contributes to malignant progression in prostate cancer

  9. Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT) family.

    Science.gov (United States)

    Wilson-O'Brien, Amy L; Patron, Nicola; Rogers, Suzanne

    2010-05-21

    In general, sugar porters function by proton-coupled symport or facilitative transport modes. Symporters, coupled to electrochemical energy, transport nutrients against a substrate gradient. Facilitative carriers transport sugars along a concentration gradient, thus transport is dependent upon extracellular nutrient levels. Across bacteria, fungi, unicellular non-vertebrates and plants, proton-coupled hexose symport is a crucial process supplying energy under conditions of nutrient flux. In mammals it has been assumed that evolution of whole body regulatory mechanisms would eliminate this need. To determine whether any isoforms bearing this function might be conserved in mammals, we investigated the relationship between the transporters of animals and the proton-coupled hexose symporters found in other species. We took a comparative genomic approach and have performed the first comprehensive and statistically supported phylogenetic analysis of all mammalian glucose transporter (GLUT) isoforms. Our data reveals the mammalian GLUT proteins segregate into five distinct classes. This evolutionary ancestry gives insight to structure, function and transport mechanisms within the groups. Combined with biological assays, we present novel evidence that, in response to changing nutrient availability and environmental pH, proton-coupled, active glucose symport function is maintained in mammalian cells. The analyses show the ancestry, evolutionary conservation and biological importance of the GLUT classes. These findings significantly extend our understanding of the evolution of mammalian glucose transport systems. They also reveal that mammals may have conserved an adaptive response to nutrient demand that would have important physiological implications to cell survival and growth.

  10. Flexible Working and Couples' Coordination of Time Schedules

    OpenAIRE

    Bryan, Mark L.; Sevilla Sanz, Almudena

    2014-01-01

    Using previously unexploited data on time scheduling in the employment and household contexts, we investigate the effect of flexible working on couples' coordination of their daily work time schedules in the UK. We consider three distinct dimensions of flexible working: flexibility of daily start and finish times (flexitime), flexibility of work times over the year (annualised hours), and generalised control of working hours. We find that in couples with flexitime there is greater spouse sync...

  11. Improved mass spectrometry assay for plasma hepcidin: detection and characterization of a novel hepcidin isoform.

    Directory of Open Access Journals (Sweden)

    Coby M M Laarakkers

    Full Text Available Mass spectrometry (MS-based assays for the quantification of the iron regulatory hormone hepcidin are pivotal to discriminate between the bioactive 25-amino acid form that can effectively block the sole iron transporter ferroportin and other naturally occurring smaller isoforms without a known role in iron metabolism. Here we describe the design, validation and use of a novel stable hepcidin-25(+40 isotope as internal standard for quantification. Importantly, the relative large mass shift of 40 Da makes this isotope also suitable for easy-to-use medium resolution linear time-of-flight (TOF platforms. As expected, implementation of hepcidin-25(+40 as internal standard in our weak cation exchange (WCX TOF MS method yielded very low inter/intra run coefficients of variation. Surprisingly, however, in samples from kidney disease patients, we detected a novel peak (m/z 2673.9 with low intensity that could be identified as hepcidin-24 and had previously remained unnoticed due to peak interference with the formerly used internal standard. Using a cell-based bioassay it was shown that synthetic hepcidin-24 was, like the -22 and -20 isoforms, a significantly less potent inducer of ferroportin degradation than hepcidin-25. During prolonged storage of plasma at room temperature, we observed that a decrease in plasma hepcidin-25 was paralleled by an increase in the levels of the hepcidin-24, -22 and -20 isoforms. This provides first evidence that all determinants for the conversion of hepcidin-25 to smaller inactive isoforms are present in the circulation, which may contribute to the functional suppression of hepcidin-25, that is significantly elevated in patients with renal impairment. The present update of our hepcidin TOF MS assay together with improved insights in the source and preparation of the internal standard, and sample stability will further improve our understanding of circulating hepcidin and pave the way towards further optimization and

  12. Genetics Coupled to Quantitative Intact Proteomics Links Heritable Aphid and Endosymbiont Protein Expression to Circulative Polerovirus Transmission▿ †

    Science.gov (United States)

    Cilia, M.; Tamborindeguy, C.; Fish, T.; Howe, K.; Thannhauser, T. W.; Gray, S.

    2011-01-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  13. 55K isoform of CDK9 associates with Ku70 and is involved in DNA repair

    International Nuclear Information System (INIS)

    Liu, Hongbing; Herrmann, Christine H.; Chiang, Karen; Sung, Tzu-Ling; Moon, Sung-Hwan; Donehower, Lawrence A.; Rice, Andrew P.

    2010-01-01

    Positive elongation factor b (P-TEFb) is a cellular protein kinase that is required for RNA polymerase II (RNAP II) transcriptional elongation of protein coding genes. P-TEFb is a set of different molecular complexes, each containing CDK9 as the catalytic subunit. There are two isoforms of the CDK9 protein - the major 42 KDa CDK9 isoform and the minor 55KDa isoform that is translated from an in-frame mRNA that arises from an upstream transcriptional start site. We found that shRNA depletion of the 55K CDK9 protein in HeLa cells induces apoptosis and double-strand DNA breaks (DSBs). The levels of apoptosis and DSBs induced by the depletion were reduced by expression of a 55K CDK9 protein variant resistant to the shRNA, indicating that these phenotypes are the consequence of depletion of the 55K protein and not off-target effects. We also found that the 55K CDK9 protein, but not the 42K CDK9 protein, specifically associates with Ku70, a protein involved in DSB repair. Our findings suggest that the 55K CDK9 protein may function in repair of DNA through an association with Ku70.

  14. Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling

    International Nuclear Information System (INIS)

    Lin, Shi-Rong; Zhang, Ruo-Yang; Ma, Yi-Rong; Jia, Wei; Zhao, Qing

    2016-01-01

    Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.

  15. Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shi-Rong [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Ruo-Yang [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Ma, Yi-Rong; Jia, Wei [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2016-07-29

    Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.

  16. Yersinia pestis Caf1 Protein: Effect of Sequence Polymorphism on Intrinsic Disorder Propensity, Serological Cross-Reactivity and Cross-Protectivity of Isoforms.

    Directory of Open Access Journals (Sweden)

    Pavel Kh Kopylov

    Full Text Available Yersinia pestis Caf1 is a multifunctional protein responsible for antiphagocytic activity and is a key protective antigen. It is generally conserved between globally distributed Y. pestis strains, but Y. pestis subsp. microtus biovar caucasica strains circulating within populations of common voles in Georgia and Armenia were reported to carry a single substitution of alanine to serine. We investigated polymorphism of the Caf1 sequences among other Y. pestis subsp. microtus strains, which have a limited virulence in guinea pigs and in humans. Sequencing of caf1 genes from 119 Y. pestis strains belonging to different biovars within subsp. microtus showed that the Caf1 proteins exist in three isoforms, the global type Caf1NT1 (Ala48 Phe117, type Caf1NT2 (Ser48 Phe117 found in Transcaucasian-highland and Pre-Araks natural plague foci #4-7, and a novel Caf1NT3 type (Ala48 Val117 endemic in Dagestan-highland natural plague focus #39. Both minor types are the progenies of the global isoform. In this report, Caf1 polymorphism was analyzed by comparing predicted intrinsic disorder propensities and potential protein-protein interactivities of the three Caf1 isoforms. The analysis revealed that these properties of Caf1 protein are minimally affected by its polymorphism. All protein isoforms could be equally detected by an immunochromatography test for plague at the lowest protein concentration tested (1.0 ng/mL, which is the detection limit. When compared to the classic Caf1NT1 isoform, the endemic Caf1NT2 or Caf1NT3 had lower immunoreactivity in ELISA and lower indices of self- and cross-protection. Despite a visible reduction in cross-protection between all Caf1 isoforms, our data suggest that polymorphism in the caf1 gene may not allow the carriers of Caf1NT2 or Caf1NT3 variants escaping from the Caf1NT1-mediated immunity to plague in the case of a low-dose flea-borne infection.

  17. Improved purification process of β- and α-trypsin isoforms by ion-exchange chromatography

    Directory of Open Access Journals (Sweden)

    Alexandre Martins Costa Santos

    2008-08-01

    Full Text Available The purpose of this work was to improve the separation and yield of pure β- and α-trypsin isoforms by ion-exchange chromatography and to characterize some physical-chemical properties of these isoforms. Purification of trypsin isoforms was performed by ion-exchange chromatography in 0.1 mol/L tris-HC buffer, pH 7.10 at 4ºC. The sample loading, salt concentration, flow rate and pH of mobile phase were varied to determine their effects on the resolution of the separation. The resolution was optimized mainly between β- and α-trypsin. Pure isoforms were obtained by chromatographying 100 mg of commercial trypsin during seven days, yielding 51 mg of high purity β-trypsin and 13 mg of α-trypsin partially pure, with small amounts of contaminating of ψ-trypsin. Thus, time and resolution of purification were optimized yielding large amounts of pure active enzymes that are useful for several research areas and biotechnology.O propósito deste trabalho foi melhorar a separação e o rendimento das isoformas puras β- e α-tripsina por meio de cromatografia de troca iônica e caracterizar algumas propriedades físico-químicas dessas isoformas. A purificação de isoformas de tripsina foi realizada em SE Sephadex, com tampão tris-HCl, pH 7,10 a 4ºC. A quantidade de amostra, a concentração salina, o fluxo e o pH da fase móvel foram variados para determinar o efeito sobre a resolução da separação. A resolução foi otimizada principalmente entre β- e α-tripsina, utilizando o pH 7,10 a 4ºC. Isoformas puras foram obtidas a partir de 100 mg de tripsina comercial bovina depois de sete dias de cromatografia, fornecendo 51,0 mg de β-tripsina totalmente pura e 13,0 mg de α-tripsina parcialmente pura, com quantidades pequenas de contaminação por ψ-Tripsina. Assim, tempo e resolução da purificação foram otimizados redendo grandes quantidades de enzimas puras e ativas que são úteis em várias áreas de pesquisa e ciências biotecnológicas.

  18. Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast.

    Science.gov (United States)

    Banerjee, Subhrajit; Kane, Patricia M

    2017-09-15

    Luminal pH and phosphoinositide content are fundamental features of organelle identity. Vacuolar H + -ATPases (V-ATPases) drive organelle acidification in all eukaryotes, and membrane-bound a-subunit isoforms of the V-ATPase are implicated in organelle-specific targeting and regulation. Earlier work demonstrated that the endolysosomal lipid PI(3,5)P 2 activates V-ATPases containing the vacuolar a-subunit isoform in Saccharomyces cerevisiae Here we demonstrate that PI(4)P, the predominant Golgi phosphatidylinositol (PI) species, directly interacts with the cytosolic amino terminal (NT) domain of the yeast Golgi V-ATPase a-isoform Stv1. Lysine-84 of Stv1NT is essential for interaction with PI(4)P in vitro and in vivo, and interaction with PI(4)P is required for efficient localization of Stv1-containing V-ATPases. The cytosolic NT domain of the human V-ATPase a2 isoform specifically interacts with PI(4)P in vitro, consistent with its Golgi localization and function. We propose that NT domains of V o a-subunit isoforms interact specifically with PI lipids in their organelles of residence. These interactions can transmit organelle-specific targeting or regulation information to V-ATPases. © 2017 Banerjee and Kane. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms

    DEFF Research Database (Denmark)

    Ross, Fiona A; Jensen, Thomas Elbenhardt; Hardie, D Grahame

    2016-01-01

    The g subunits of heterotrimeric AMPK complexes contain the binding sites for the regulatory adenine nucleotides AMP, ADP and ATP. We addressed whether complexes containing different g isoforms display different responses to adenine nucleotides by generating cells stably expressing FLAG-tagged ve...

  20. Hyper and hypothyroidism change the expression and diurnal variation of thyroid hormone receptor isoforms in rat liver without major changes in their zonal distribution

    NARCIS (Netherlands)

    Zandieh-Doulabi, B.; Platvoet-ter Schiphorst, M.; Kalsbeek, A.; Wiersinga, W. M.; Bakker, O.

    2004-01-01

    We investigated the effect of hypothyroidism or hyperthyroidism on mRNA and protein expression, diurnal variation and zonal distribution of thyroid hormone receptor (TR) isoforms TRalpha1 TRalpha2 and TRbeta1 in rat liver. Hypothyroidism results in increased isoform mRNA and protein expression

  1. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2......-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from...... turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site...

  2. Synchronization of hypernetworks of coupled dynamical systems

    International Nuclear Information System (INIS)

    Sorrentino, Francesco

    2012-01-01

    We consider the synchronization of coupled dynamical systems when different types of interactions are simultaneously present. We assume that a set of dynamical systems is coupled through the connections of two or more distinct networks (each of which corresponds to a distinct type of interaction), and we refer to such a system as a dynamical hypernetwork. Applications include neural networks made up of both electrical gap junctions and chemical synapses, the coordinated motion of shoals of fish communicating through both vision and flow sensing, and hypernetworks of coupled chaotic oscillators. We first analyze the case of a hypernetwork made up of m = 2 networks. We look for the necessary and sufficient conditions for synchronization. We attempt to reduce the linear stability problem to a master stability function (MSF) form, i.e. decoupling the effects of the coupling functions from the structure of the networks. Unfortunately, we are unable to obtain a reduction in an MSF form for the general case. However, we show that such a reduction is possible in three cases of interest: (i) the Laplacian matrices associated with the two networks commute; (ii) one of the two networks is unweighted and fully connected; and (iii) one of the two networks is such that the coupling strength from node i to node j is a function of j but not of i. Furthermore, we define a class of networks such that if either one of the two coupling networks belongs to this class, the reduction can be obtained independently of the other network. As an example of interest, we study synchronization of a neural hypernetwork for which the connections can be either chemical synapses or electrical gap junctions. We propose a generalization of our stability results to the case of hypernetworks formed of m ⩾ 2 networks. (paper)

  3. Regulation of the interaction between the neuronal BIN1 isoform 1 and Tau proteins - role of the SH3 domain.

    Science.gov (United States)

    Malki, Idir; Cantrelle, François-Xavier; Sottejeau, Yoann; Lippens, Guy; Lambert, Jean-Charles; Landrieu, Isabelle

    2017-10-01

    Bridging integrator 1 (bin1) gene is a genetic determinant of Alzheimer's disease (AD) and has been reported to modulate Alzheimer's pathogenesis through pathway(s) involving Tau. The functional impact of Tau/BIN1 interaction as well as the molecular details of this interaction are still not fully resolved. As a consequence, how BIN1 through its interaction with Tau affects AD risk is also still not determined. To progress in this understanding, interaction of Tau with two BIN1 isoforms was investigated using Nuclear Magnetic Resonance spectroscopy. 1 H, 15 N spectra showed that the C-terminal SH3 domain of BIN1 isoform 1 (BIN1Iso1) is not mobile in solution but locked with the core of the protein. In contrast, the SH3 domain of BIN1 isoform 9 (BIN1Iso9) behaves as an independent mobile domain. This reveals an equilibrium between close and open conformations for the SH3 domain. Interestingly, a 334-376 peptide from the clathrin and AP-2-binding domain (CLAP) domain of BIN1Iso1, which contains a SH3-binding site, is able to compete with BIN1-SH3 intramolecular interaction. For both BIN1 isoforms, the SH3 domain can interact with Tau(210-240) sequence. Tau(210-240) peptide can indeed displace the intramolecular interaction of the BIN1-SH3 of BIN1Iso1 and form a complex with the released domain. The measured K d were in agreement with a stronger affinity of Tau peptide. Both CLAP and Tau peptides occupied the same surface on the BIN1-SH3 domain, showing that their interaction is mutually exclusive. These results emphasize an additional level of complexity in the regulation of the interaction between BIN1 and Tau dependent of the BIN1 isoforms. © 2017 Federation of European Biochemical Societies.

  4. Avian cytochrome P450 (CYP 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver.

    Directory of Open Access Journals (Sweden)

    Kensuke P Watanabe

    Full Text Available Cytochrome P450 (CYP of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian xenobiotic metabolism have not yet been elucidated. In this study, we aimed to clarify and classify all of the existing isoforms of CYP1-3 in avian species using available genome assemblies for chicken, zebra finch, and turkey. Furthermore, we performed qRT-PCR assay to identify dominant CYP genes in chicken liver. Our results suggested that avian xenobiotic-metabolizing CYP genes have undergone unique evolution such as CYP2C and CYP3A genes, which have undergone avian-specific gene duplications. qRT-PCR experiments showed that CYP2C45 was the most highly expressed isoform in chicken liver, while CYP2C23b was the most highly induced gene by phenobarbital. Considering together with the result of further enzymatic characterization, CYP2C45 may have a dominant role in chicken xenobiotic metabolism due to the constitutive high expression levels, while CYP2C23a and CYP2C23b can be greatly induced by chicken xenobiotic receptor (CXR activators. These findings will provide not only novel insights into avian xenobiotic metabolism, but also a basis for the further characterization of each CYP gene.

  5. Ouabain interactions with the α4 isoform of the sodium pump trigger non-classical steroid hormone signaling and integrin expression in spermatogenic cells.

    Science.gov (United States)

    Upmanyu, Neha; Dietze, Raimund; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-11-01

    In addition to the ubiquitous α1 isoform of the sodium pump, sperm cells also express a male-specific α4 isoform whose function has been associated with sperm motility, fertility, and capacitation. Here we investigate in the murine spermatogenic cell line GC-2 interactions of the α4 isoform with the cardiotonic steroid ouabain in signaling cascades involved in the non-classical action of steroid hormones. Exposure of GC-2 cells to low concentrations of ouabain stimulates the phosphorylation of Erk1/2 and of the transcription factors CREB and ATF-1. As a consequence of this signaling cascade, ouabain stimulates on the mRNA level the expression of integrins αv, β3 and α5, whose expression is also modulated by the cAMP response element. Increased expression of integrins αv and β3 is also seen in cultures of seminiferous tubules exposed to 10nM ouabain. At the protein level we observed a significant stimulation of β3 integrin expression by ouabain. Abrogation of α4 isoform expression by siRNA leads to the complete suppression of all ouabain-induced signaling mentioned above, including its stimulatory effect on the expression of β3 integrin. The results presented here demonstrate for the first time the induction of signaling cascades through the interaction of ouabain with the α4 isoform in a germ-cell derived cell line. The novel finding that these interactions lead to increased expression of integrins in GC-2 cells and the confirmation of these results in the ex vivo experiments indicate that hormone/receptor-like interactions of ouabain with the α4 isoform might be of significance for male physiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Electronic coupling through natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov [National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States)

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  7. Money and Marriage: Couple's Choices and their Predictors

    Directory of Open Access Journals (Sweden)

    Lina Coelho

    2016-01-01

    Full Text Available The ways in which couples in South Europe manage their money has received little attention. This study uses regression analysis to evaluate the allocative systems of Portuguese couples and their predictors. To do this we use a sample of 3,331 households in Portugal with at least one heterosexual couple. Couples' allocative systems were classified based on Pahl's typology. The results confirm what has been found in previous studies regarding the prevalence of joint pooling management and the predictors of the different models for managing money. However, some particularities have been found: decisions taken in multi-generational familes favour partial joint pooling, as the distinctive characteristics of households in South Europe play a role in assigning intra-family resources.

  8. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    Science.gov (United States)

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (pprostatic tissue (pcancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (preceptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  9. Role of p73 Dinucleotide Polymorphism in Prostate Cancer and p73 Protein Isoform Balance

    Directory of Open Access Journals (Sweden)

    L. Michael Carastro

    2014-01-01

    Full Text Available Background. Molecular markers for prostate cancer (PCa risks are currently lacking. Here we address the potential association of a dinucleotide polymorphism (DNP in exon 2 of the p73 gene with PCa risk/progression and discern any disruption of p73 protein isoforms levels in cells harboring a p73 DNP allele. Methods. We investigated the association between p73 DNP genotype and PCa risk/aggressiveness and survival by fitting logistic regression models in 1,292 incident cases and 682 controls. Results. Although we detected no association between p73 DNP and PCa risk, a significant inverse relationship between p73 DNP and PCa aggressiveness (AT/AT + GC/AT versus GC/GC, OR = 0.55, 95%Cl = 0.31–0.99 was detected. Also, p73 DNP is marginally associated with overall death (dominant model, HR = 0.76, 95%Cl = 0.57–1.00, P=0.053 as well as PCa specific death (HR = 0.69, 95%Cl = 0.45–1.06, P=0.09. Western blot analyses for p73 protein isoforms indicate that cells heterozygous for the p73 DNP have lower levels of ∆Np73 relative to TAp73 (P<0.001. Conclusions. Our findings are consistent with an association between p73 DNP and low risk for PCa aggressiveness by increasing the expressed TAp73/∆Np73 protein isoform ratio.

  10. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms

    DEFF Research Database (Denmark)

    Krintel, Christian; Klint, Cecilia; Lindvall, Håkan

    2010-01-01

    Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa) expressed in a tissue-dependen...

  11. Continental smokers couple mantle degassing and distinctive microbiology within continents

    Science.gov (United States)

    Crossey, Laura J.; Karlstrom, Karl E.; Schmandt, Brandon; Crow, Ryan R.; Colman, Daniel R.; Cron, Brandi; Takacs-Vesbach, Cristina D.; Dahm, Clifford N.; Northup, Diana E.; Hilton, David R.; Ricketts, Jason W.; Lowry, Anthony R.

    2016-02-01

    The discovery of oceanic black (and white) smokers revolutionized our understanding of mid-ocean ridges and led to the recognition of new organisms and ecosystems. Continental smokers, defined here to include a broad range of carbonic springs, hot springs, and fumaroles that vent mantle-derived fluids in continental settings, exhibit many of the same processes of heat and mass transfer and ecosystem niche differentiation. Helium isotope (3He/4He) analyses indicate that widespread mantle degassing is taking place in the western U.S.A., and that variations in mantle helium values correlate best with low seismic-velocity domains in the mantle and lateral contrasts in mantle velocity rather than crustal parameters such as GPS, proximity to volcanoes, crustal velocity, or composition. Microbial community analyses indicate that these springs can host novel microorganisms. A targeted analysis of four springs in New Mexico yield the first published occurrence of chemolithoautotrophic Zetaproteobacteria in a continental setting. These observations lead to two linked hypotheses: that mantle-derived volatiles transit through conduits in extending continental lithosphere preferentially above and at the edges of mantle low velocity domains. High CO2 and other constituents ultimately derived from mantle volatiles drive water-rock interactions and heterogeneous fluid mixing that help structure diverse and distinctive microbial communities.

  12. Examination of Gelatinase Isoforms in Rodent Models of Acute Neurodegenerative Diseases Using Two-Dimensional Zymography.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Qu, Zhe; Cui, Jiankun; Gu, Zezong

    2017-01-01

    Pathological activation of gelatinases (matrix metalloproteinase-2 and -9; MMP-2/-9) has been shown to cause a number of detrimental outcomes in neurodegenerative diseases. In gel gelatin zymography is a highly sensitive methodology commonly used in revealing levels of gelatinase activity and in separating the proform and active form of gelatinases, based on their different molecular weights. However, this methodology is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity can be regulated at transcriptional and/or post-translational levels under in vivo conditions resulting in alternation of their isoelectric focusing (IEF) points. In this chapter, we describe an advanced methodology, termed two-dimensional zymography, combining IEF with zymographic electrophoresis under non-reducing conditions to achieve significant improvement in separation of the gelatinase isoforms in both cell-based and in vivo models for acute brain injuries and neuroinflammation.

  13. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus.

    Science.gov (United States)

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Hozák, Pavel

    2013-01-01

    Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes.

  14. A splice isoform of DNedd4, DNedd4-long, negatively regulates neuromuscular synaptogenesis and viability in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yunan Zhong

    Full Text Available Neuromuscular (NM synaptogenesis is a tightly regulated process. We previously showed that in flies, Drosophila Nedd4 (dNedd4/dNedd4S is required for proper NM synaptogenesis by promoting endocytosis of commissureless from the muscle surface, a pre-requisite step for muscle innervation. DNedd4 is an E3 ubiquitin ligase comprised of a C2-WW(x3-Hect domain architecture, which includes several splice isoforms, the most prominent ones are dNedd4-short (dNedd4S and dNedd4-long (dNedd4Lo.We show here that while dNedd4S is essential for NM synaptogenesis, the dNedd4Lo isoform inhibits this process and causes lethality. Our results reveal that unlike dNedd4S, dNedd4Lo cannot rescue the lethality of dNedd4 null (DNedd4(T121FS flies. Moreover, overexpression of UAS-dNedd4Lo specifically in wildtype muscles leads to NM synaptogenesis defects, impaired locomotion and larval lethality. These negative effects of dNedd4Lo are ameliorated by deletion of two regions (N-terminus and Middle region unique to this isoform, and by inactivating the catalytic activity of dNedd4Lo, suggesting that these unique regions, as well as catalytic activity, are responsible for the inhibitory effects of dNedd4Lo on synaptogenesis. In accord with these findings, we demonstrate by sqRT-PCR an increase in dNedd4S expression relative to the expression of dNedd4Lo during embryonic stages when synaptogenesis takes place.Our studies demonstrate that splice isoforms of the same dNedd4 gene can lead to opposite effects on NM synaptogenesis.

  15. Chronic Restraint Stress Induces an Isoform-Specific Regulation on the Neural Cell Adhesion Molecule in the Hippocampus

    Science.gov (United States)

    Touyarot, K.; Sandi, C.

    2002-01-01

    Existing evidence indicates that 21-days exposure of rats to restraint stress induces dendritic atrophy in pyramidal cells of the hippocampus. This phenomenon has been related to altered performance in hippocampal-dependent learning tasks. Prior studies have shown that hippocampal expression of cell adhesion molecules is modified by such stress treatment, with the neural cell adhesion molecule (NCAM) decreasing and L1 increasing, their expression, at both the mRNA and protein levels. Given that NCAM comprises several isoforms, we investigated here whether chronic stress might differentially affect the expression of the three major isoforms (NCAM-120, NCAM-140, NCAM-180) in the hippocampus. In addition, as glucocorticoids have been implicated in the deleterious effects induced by chronic stress, we also evaluated plasma corticosterone levels and the hippocampal expression of the corticosteroid mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The results showed that the protein concentration of the NCAM-140 isoform decreased in the hippoampus of stressed rats. This effect was isoform-specific, because NCAM-120 and NCAM-180 levels were not significantly modified. In addition, whereas basal levels of plasma corticosterone tended to be increased, MR and GR concentrations were not significantly altered. Although possible changes in NCAM-120, NCAM-180 and corticosteroid receptors at earlier time points of the stress period cannot be ignored; this study suggests that a down-regulation of NCAM-140 might be implicated in the structural alterations consistently shown to be induced in the hippocampus by chronic stress exposure. As NCAM-140 is involved in cell-cell adhesion and neurite outgrowth, these findings suggest that this molecule might be one of the molecular mechanisms involved in the complex interactions among neurodegeneration-related events. PMID:12757368

  16. The Invasion and Metastasis Promotion Role of CD97 Small Isoform in Gastric Carcinoma

    DEFF Research Database (Denmark)

    Liu, Daren; Trojanowicz, Bogusz; Ye, Longyun

    2012-01-01

    CD97 is over-expressed in the majority of gastric adenocarcinomas and is associated with its dedifferentiation and aggressiveness. Our previous results demonstrated that out of three CD97 isoforms tested, only the small one was able to promote increased invasiveness in vitro. Based on these data ...

  17. Effect of inhibition of the ROCK isoform on RT2 malignant glioma cells.

    Science.gov (United States)

    Inaba, Nobuharu; Ishizawa, Sho; Kimura, Masaki; Fujioka, Kouki; Watanabe, Michiko; Shibasaki, Toshiaki; Manome, Yoshinobu

    2010-09-01

    Malignant glioma is one of the most intractable diseases in the human body. Rho-kinase (ROCK) is overexpressed and has been proposed as the main cause for the refractoriness of the disease. Since efficacious treatment is required, this study investigated the effect of inhibition of ROCK isoforms. The short hairpin RNA transcription vector was transfected into the RT2 rat glioma cell line and the characteristics of the cells were investigated. The effect of nimustine hydrochloride (ACNU) anti-neoplastic agent on cells was also measured. Inhibition of ROCK isoforms did not alter cell growth. Cell cycle analysis revealed that ROCK1 down-regulation reduced the G(0) phase population and ROCK2 down-regulation reduced the G(2)/M phase population. When ROCK1-down-regulated cells were exposed to ACNU, they demonstrated susceptibility to the agent. The roles of ROCK1 and ROCK2 may be different in glioma cells. Furthermore, the combination of ROCK1 down-regulation and an anti-neoplastic agent may be useful for the therapy of malignant glioma.

  18. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Shepherd, Peter R.; Chaussade, Claire

    2009-01-01

    PI 3-kinases, in particular class-IA, are key signalling molecules controlling many cellular processes including growth, proliferation, migration and differentiation. In this study, we have used a collection of isoform selective PI 3-kinase inhibitors to determine whether attenuation of signalling through class-IA PI 3-kinase isoforms will impact adipocyte differentiation. First, we analysed the expression profiles and found that fibroblastic pre-adipocytes express detectable levels of p110α and p110δ and that after differentiation, p110δ levels fall while p110α levels rise, together with C/EBPα and PPARγ. When using specific inhibitors during the differentiation process, we observed that neither p110β nor p110δ inhibition, had any significant effect. In contrast PIK-75, a selective p110α inhibitor completely abolished adipocyte differentiation as assessed by morphology, transcript and protein levels of adipocyte markers. These results indicate that long term treatment with p110α inhibitors could potentially have a severe impact on fat cell numbers in vivo.

  19. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Rasmussen, Nadja Bredo

    2016-01-01

    Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease-specific transcript......Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease......-specific transcription patterns in frontal cortex in PD, dementia with Lewy bodies, and MSA, and thus may mediate the development of α-synucleinopathies. In this study, the differential expression of α-synuclein isoforms on transcriptional and translational levels was ascertained in MSA patients in comparison with PD......-synuclein in the brain. We report differential expression of α-synuclein, parkin, and synphilin-1 isoforms in multiple system atrophy (MSA) versus Parkinson's disease and normal control brains. We have focused on brain regions that are severely affected by α-synuclein pathology and neurodegeneration in MSA. The reported...

  20. Protein kinase C isoforms in bovine aortic endothelial cells: role in regulation of P2Y- and P2U-purinoceptor-stimulated prostacyclin release.

    Science.gov (United States)

    Patel, V; Brown, C; Boarder, M R

    1996-05-01

    1. Enhanced synthesis of prostacyclin (PGI2) and inositol polyphosphates in bovine aortic endothelial cells in response to ATP and ADP is mediated by co-existing P2Y- and P2U-purinoceptors. Here we examine the regulation of these responses by isoforms of protein kinase C (PKC). 2. Immunoblots with antisera specific for 8 different PKC isoforms revealed the presence of alpha, epsilon and zeta, while no immunoreactivity was found for beta, gamma, delta, eta and theta isoforms. PKC-alpha was largely cytosolic in unstimulated cells and almost all translocated to the membrane (Triton X-100 soluble) after a 1 min treatment with the PKC activating phorbol myristate acetate (PMA); PKC-epsilon was always in a Triton X-100 insoluble membrane fraction, while PKC-zeta was found in both soluble and membrane bound (Triton X-100 soluble) forms in the unstimulated cells and was unaffected by PMA. 3. Treatment with PMA for 6 h led to a 90% downregulation of PKC-alpha, while the immunoreactivity to the epsilon and zeta isoforms remained largely unchanged. 4. After either 10 min or 6 h exposure to PMA the PGI2 response to activation of both receptors was enhanced, while the inositol 1,4,5-trisphosphate response to P2Y-purinoceptor activation was substantially attenuated and the P2U-purinoceptor response was unchanged. Thus the PGI2 response to PMA under conditions when 90% of the PKC-alpha was lost resembles that seen on acute stimulation of PKC by PMA, and the PGI2 response does not correlate with phospholipase C response. 5. Inhibition of PKC with the isoform non-selective inhibitors, Ro 31-8220 and Go 6850 abolished the PGI2 response to both P2U- and P2Y-purinoceptor stimulation. However, Go 6976, which preferentially inhibits Ca2+ sensitive isoforms (such as PKC-alpha) and not Ca2+ insensitive isoforms (such as PKC-epsilon), had no effect on the PGI2 response. 6. The results show that there is a requirement for PKC in the stimulation of PGI2 production by endothelial P2Y- and P2U

  1. Chaos desynchronization in strongly coupled systems

    International Nuclear Information System (INIS)

    Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng

    2007-01-01

    The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed

  2. Nanospan, an alternatively spliced isoform of sarcospan, localizes to the sarcoplasmic reticulum in skeletal muscle and is absent in limb girdle muscular dystrophy 2F.

    Science.gov (United States)

    Peter, Angela K; Miller, Gaynor; Capote, Joana; DiFranco, Marino; Solares-Pérez, Alhondra; Wang, Emily L; Heighway, Jim; Coral-Vázquez, Ramón M; Vergara, Julio; Crosbie-Watson, Rachelle H

    2017-06-06

    Sarcospan (SSPN) is a transmembrane protein that interacts with the sarcoglycans (SGs) to form a tight subcomplex within the dystrophin-glycoprotein complex that spans the sarcolemma and interacts with laminin in the extracellular matrix. Overexpression of SSPN ameliorates Duchenne muscular dystrophy in murine models. Standard cloning approaches were used to identify nanospan, and nanospan-specific polyclonal antibodies were generated and validated. Biochemical isolation of skeletal muscle membranes and two-photon laser scanning microscopy were used to analyze nanospan localization in muscle from multiple murine models. Duchenne muscular dystrophy biopsies were analyzed by immunoblot analysis of protein lysates as well as indirect immunofluorescence analysis of muscle cryosections. Nanospan is an alternatively spliced isoform of sarcospan. While SSPN has four transmembrane domains and is a core component of the sarcolemmal dystrophin-glycoprotein complex, nanospan is a type II transmembrane protein that does not associate with the dystrophin-glycoprotein complex. We demonstrate that nanospan is enriched in the sarcoplasmic reticulum (SR) fractions and is not present in the T-tubules. SR fractions contain membranes from three distinct structural regions: a region flanking the T-tubules (triadic SR), a SR region across the Z-line (ZSR), and a longitudinal SR region across the M-line (LSR). Analysis of isolated murine muscles reveals that nanospan is mostly associated with the ZSR and triadic SR, and only minimally with the LSR. Furthermore, nanospan is absent from the SR of δ-SG-null (Sgcd -/- ) skeletal muscle, a murine model for limb girdle muscular dystrophy 2F. Analysis of skeletal muscle biopsies from Duchenne muscular dystrophy patients reveals that nanospan is preferentially expressed in type I (slow) fibers in both control and Duchenne samples. Furthermore, nanospan is significantly reduced in Duchenne biopsies. Alternative splicing of proteins from the SG

  3. The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms.

    Science.gov (United States)

    Jauch, Eike; Wecklein, Heike; Stark, Felix; Jauch, Mandy; Raabe, Thomas

    2006-06-07

    Genes encoding for the two evolutionary highly conserved subunits of a heterotetrameric protein kinase CK2 holoenzyme are present in all examined eukaryotic genomes. Depending on the organism, multiple transcription units encoding for a catalytically active CK2alpha subunit and/or a regulatory CK2beta subunit may exist. The phosphotransferase activity of members of the protein kinase CK2alpha family is thought to be independent of second messengers but is modulated by interaction with CK2beta-like proteins. In the genome of Drosophila melanogaster, one gene encoding for a CK2alpha subunit and three genes encoding for CK2beta-like proteins are present. The X-linked DmCK2beta transcription unit encodes for several CK2beta protein isoforms due to alternative splicing of its primary transcript. We addressed the question whether CK2beta-like proteins are redundant in function. Our in vivo experiments show that variations of the very C-terminal tail of CK2beta isoforms encoded by the X-linked DmCK2beta transcription unit influence their functional properties. In addition, we find that CK2beta-like proteins encoded by the autosomal D. melanogaster genes CK2betates and CK2beta' cannot fully substitute for a loss of CK2beta isoforms encoded by DmCK2beta.

  4. Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis.

    Science.gov (United States)

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y; Tsai, Ming-Jer; O'Malley, Bert W

    2008-10-01

    Coactivator activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein, we show that CoAA is a dual-function coregulator that inhibits G(1)-S transition in human kidney cells and suppresses anchorage-independent growth and xenograft tumor formation. Suppression occurs in part by down-regulating c-myc and its downstream effectors ccnd1 and skp2 and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, coactivator modulator (CoAM), antagonizes CoAA-induced G(1)-S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma compared with normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice isoform. This is, thus far, the only example of a nuclear receptor coregulator involved in suppression of kidney cancer and suggests potentially significant new roles for coregulators in renal cancer biology.

  5. Dual roles for CoAA and its counterbalancing isoform CoAM in human kidney cell tumorigenesis

    Science.gov (United States)

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y.; Tsai, Ming-Jer; W. O’Malley, Bert

    2008-01-01

    Co-Activator Activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein we show that CoAA is a dual-function coregulator that inhibits G1/S transition in human kidney cells and suppresses anchorage independent growth and xenograft tumor formation. Suppression occurs in part by downregulating c-myc and its downstream effectors ccnd1 and skp2, and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene, c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, Coactivator Modulator (CoAM), antagonizes CoAA-induced G1/S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma as compared to normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice-isoform. This is so far the only example of a nuclear receptor coregulator involved in suppression of kidney cancer, and suggests potentially significant new roles for coregulators in renal cancer biology. PMID:18829545

  6. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  7. Tissue- and Condition-Specific Isoforms of Mammalian Cytochrome c Oxidase Subunits: From Function to Human Disease

    Directory of Open Access Journals (Sweden)

    Christopher A. Sinkler

    2017-01-01

    Full Text Available Cytochrome c oxidase (COX is the terminal enzyme of the electron transport chain and catalyzes the transfer of electrons from cytochrome c to oxygen. COX consists of 14 subunits, three and eleven encoded, respectively, by the mitochondrial and nuclear DNA. Tissue- and condition-specific isoforms have only been reported for COX but not for the other oxidative phosphorylation complexes, suggesting a fundamental requirement to fine-tune and regulate the essentially irreversible reaction catalyzed by COX. This article briefly discusses the assembly of COX in mammals and then reviews the functions of the six nuclear-encoded COX subunits that are expressed as isoforms in specialized tissues including those of the liver, heart and skeletal muscle, lung, and testes: COX IV-1, COX IV-2, NDUFA4, NDUFA4L2, COX VIaL, COX VIaH, COX VIb-1, COX VIb-2, COX VIIaH, COX VIIaL, COX VIIaR, COX VIIIH/L, and COX VIII-3. We propose a model in which the isoforms mediate the interconnected regulation of COX by (1 adjusting basal enzyme activity to mitochondrial capacity of a given tissue; (2 allosteric regulation to adjust energy production to need; (3 altering proton pumping efficiency under certain conditions, contributing to thermogenesis; (4 providing a platform for tissue-specific signaling; (5 stabilizing the COX dimer; and (6 modulating supercomplex formation.

  8. A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms.

    Science.gov (United States)

    Balbi, Pietro; Massobrio, Paolo; Hellgren Kotaleski, Jeanette

    2017-09-01

    Modelling ionic channels represents a fundamental step towards developing biologically detailed neuron models. Until recently, the voltage-gated ion channels have been mainly modelled according to the formalism introduced by the seminal works of Hodgkin and Huxley (HH). However, following the continuing achievements in the biophysical and molecular comprehension of these pore-forming transmembrane proteins, the HH formalism turned out to carry limitations and inconsistencies in reproducing the ion-channels electrophysiological behaviour. At the same time, Markov-type kinetic models have been increasingly proven to successfully replicate both the electrophysiological and biophysical features of different ion channels. However, in order to model even the finest non-conducting molecular conformational change, they are often equipped with a considerable number of states and related transitions, which make them computationally heavy and less suitable for implementation in conductance-based neurons and large networks of those. In this purely modelling study we develop a Markov-type kinetic model for all human voltage-gated sodium channels (VGSCs). The model framework is detailed, unifying (i.e., it accounts for all ion-channel isoforms) and computationally efficient (i.e. with a minimal set of states and transitions). The electrophysiological data to be modelled are gathered from previously published studies on whole-cell patch-clamp experiments in mammalian cell lines heterologously expressing the human VGSC subtypes (from NaV1.1 to NaV1.9). By adopting a minimum sequence of states, and using the same state diagram for all the distinct isoforms, the model ensures the lightest computational load when used in neuron models and neural networks of increasing complexity. The transitions between the states are described by original ordinary differential equations, which represent the rate of the state transitions as a function of voltage (i.e., membrane potential). The

  9. Modified expression of cytoplasmic isocitrate dehydrogenase electrophoretic isoforms in seminal plasma of men with sertoli-cell-only syndrome and seminoma.

    Science.gov (United States)

    Starita-Geribaldi, Mireille; Samson, Michel; Guigonis, Jean-Marie; Pointis, Georges; Fenichel, Patrick

    2008-06-01

    Two isoforms of human cytoplasmic isocitrate dehydrogenase (IDPc) of close molecular weights and different isoelectric points were identified in human seminal plasma (SP) by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). These two isoforms were detected in the normospermic men SP and their expressions were markedly altered in patients with testicular seminoma, the most frequent testicular germ cell cancer (TGCC): increase of the more acidic spot and decrease of the more basic one. Since oligospermia has been considered as a high risk pathological condition for developing a testicular cancer, the two IDPc isoforms were analyzed in SP of a group of secretory azoospermic patients. In this group the two spots displayed similar variations of expression to those observed in testicular seminoma. These results propose IDPc as a promising SP biomarker of testicular seminoma. Whether IDPc alteration in secretory azoospermia is predictive of testicular seminoma remains to be elucidated. (c) 2007 Wiley-Liss, Inc.

  10. From General Aberrant Alternative Splicing in Cancers and Its Therapeutic Application to the Discovery of an Oncogenic DMTF1 Isoform

    Directory of Open Access Journals (Sweden)

    Na Tian

    2017-03-01

    Full Text Available Alternative pre-mRNA splicing is a crucial process that allows the generation of diversified RNA and protein products from a multi-exon gene. In tumor cells, this mechanism can facilitate cancer development and progression through both creating oncogenic isoforms and reducing the expression of normal or controllable protein species. We recently demonstrated that an alternative cyclin D-binding myb-like transcription factor 1 (DMTF1 pre-mRNA splicing isoform, DMTF1β, is increasingly expressed in breast cancer and promotes mammary tumorigenesis in a transgenic mouse model. Aberrant pre-mRNA splicing is a typical event occurring for many cancer-related functional proteins. In this review, we introduce general aberrant pre-mRNA splicing in cancers and discuss its therapeutic application using our recent discovery of the oncogenic DMTF1 isoform as an example. We also summarize new insights in designing novel targeting strategies of cancer therapies based on the understanding of deregulated pre-mRNA splicing mechanisms.

  11. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner.

    Science.gov (United States)

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

  12. Opioid precursor protein isoform is targeted to the cell nuclei in the human brain

    DEFF Research Database (Denmark)

    Kononenko, Olga; Bazov, Igor; Watanabe, Hiroyuki

    2017-01-01

    to the cell nuclei in a model cellular system. This may be driven by bipartite nuclear localization signal (NLS) that is cryptic in the full-length PDYN molecule and becomes functional when signal peptide is truncated. Nuclear PDYN isoform was identified by western blot and radioimmunoassay in neuronal nuclei...

  13. Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo.

    Directory of Open Access Journals (Sweden)

    Qin Wang

    Full Text Available VEGF family factors are known to be the principal stimulators of abnormal angiogenesis, which play a fundamental role in tumor and various ocular diseases. Inhibition of VEGF is widely applied in antiangiogenic therapy. Conbercept is a novel decoy receptor protein constructed by fusing VEGF receptor 1 and VEGF receptor 2 extracellular domains with the Fc region of human immunoglobulin. In this study, we systematically evaluated the binding affinity of conbercept with VEGF isoforms and PlGF by using anti-VEGF antibody (Avastin as reference. BIACORE and ELISA assay results indicated that conbercept could bind different VEGF-A isoforms with higher affinity than reference. Furthermore, conbercept could also bind VEGF-B and PlGF, whereas Avastin showed no binding. Oxygen-induced retinopathy model showed that conbercept could inhibit the formation of neovasularizations. In tumor-bearing nude mice, conbercept could also suppress tumor growth very effectively in vivo. Overall, our study have demonstrated that conbercept could bind with high affinity to multiple VEGF isoforms and consequently provide remarkable anti-angiogenic effect, suggesting the possibility to treat angiogenesis-related diseases such as cancer and wet AMD etc.

  14. Study of switching behavior of exchange-coupled nanomagnets by transverse magnetization metrology

    Science.gov (United States)

    Dey, Himadri S.; Csaba, Gyorgy; Bernstein, Gary H.; Porod, Wolfgang

    2017-05-01

    We investigate the static switching modes of nanomagnets patterned from antiferromagnetically exchange-coupled magnetic multilayers, and compare them to nanomagnets having only dipole coupling between the ferromagnetic layers. Vibrating sample magnetometry experiments, supported by micromagnetic simulations, reveal two distinct switching mechanisms between the exchange-coupled and only dipole-coupled nanomagnets. The exchange-coupled nanomagnets exhibit gradual switching of the layers, dictated by the strong antiferromagnetic exchange coupling present between the layers. However, the layers of the only dipole-coupled nanomagnets show abrupt nucleation/growth type switching. A comprehensive understanding of the switching modes of such layered and patterned systems can add new insight into the reversal mechanisms of similar systems employed for spintronic and magneto-logic device applications.

  15. Analysis of heparanase isoforms and cathepsin B in the plasma of patients with gastrointestinal carcinomas: analytical cross-sectional study

    Directory of Open Access Journals (Sweden)

    Carina Mucciolo Melo

    Full Text Available CONTEXT AND OBJECTIVE: Heparanase-1 degrades heparan sulfate and has been correlated with tumor progression. Although the isoform heparanase-2 has no catalytic activity, it seems to be important for modulating heparanase-1 activity. Cathepsin B is a proteinase involved in tumor metastasis. The aim of this study was to analyze heparanase isoform expression and cathepsin B activity in plasma samples from patients with gastrointestinal carcinomas, compared with healthy individuals (control group. DESIGN AND SETTING: This was an analytical cross-sectional study. Peripheral blood samples were collected at a Brazilian public hospital, from 21 patients with histopathological diagnoses of gastrointestinal carcinomas and from 43 healthy individuals. The analyses were performed in two Brazilian medical schools. METHODS: Heparanase isoforms were identified and quantified in plasma samples by means of Western blot. The enzymatic activities of heparanase-1 and cathepsin B were also measured. RESULTS: The results demonstrated that the expression of both heparanase isoforms was significantly greater in plasma samples from gastrointestinal carcinoma patients, compared with the control group. Logistic regression analysis showed that increased heparanase-1 and heparanase-2 expression was exclusively dependent on the tumor. There was a significant increase in heparanase-1 and cathepsin B activity in the patients' plasma. CONCLUSION: Overexpression of heparanase-1 and heparanase-2, along with increased heparanase-1 and cathepsin B activity in plasma, is associated with the diagnosis of gastrointestinal carcinoma. These findings provide support for using non-invasive assays (plasma samples as an auxiliary method for diagnosing gastrointestinal tumors.

  16. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Michael B. Armstrong

    2013-12-01

    Full Text Available Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB. MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.

  17. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    National Research Council Canada - National Science Library

    Cadieux, Chantal

    2008-01-01

    Short CUX1 isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas, suggesting that these proteins play a key role in tumor development and progression...

  18. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    National Research Council Canada - National Science Library

    Cadieux, Chantal

    2007-01-01

    Short CDP/Cux isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas, suggesting that these proteins play a key role in tumor development and progression...

  19. The synchronization of asymmetric-structured electric coupling neuronal system

    Science.gov (United States)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  20. Coupled seismoacoustic modes on the seafloor

    Science.gov (United States)

    Butler, Rhett; Lomnitz, Cinna

    2002-05-01

    Wave-to-wave coupling arises when an acoustic pulse selects a Rayleigh mode of the same speed and both travel together swapping energy across an interface [Ewing et al., 1957]. A distinctive signal is observed at the Hawaii-2 Observatory for purely oceanic paths from earthquakes on the Blanco and Mendocino Fracture Zones, off the coast of North America. The signal appears to be a composite of undispersed higher Rayleigh modes propagating along the ocean floor both in the sediments and in the water. The new coupled modes are identified by their frequency composition and their phase and group velocities. Seismoacoustic coupling at the seafloor is conditioned on (a) the presence of a low-velocity interface at the ocean floor, and (b) the wavelength of the Rayleigh component being shorter than the depth of the water layer.

  1. Direct interaction of the mouse cytomegalovirus m152/gp40 immunoevasin with RAE-1 isoforms.

    Science.gov (United States)

    Zhi, Li; Mans, Janet; Paskow, Michael J; Brown, Patrick H; Schuck, Peter; Jonjić, Stipan; Natarajan, Kannan; Margulies, David H

    2010-03-23

    Cytomegaloviruses (CMVs) are ubiquitous species-specific viruses that establish acute, persistent, and latent infections. Both human and mouse CMVs encode proteins that inhibit the activation of natural killer (NK) cells by downregulating cellular ligands for the NK cell activating receptor, NKG2D. The MCMV glycoprotein m152/gp40 downregulates the surface expression of RAE-1 to prevent NK cell control in vivo. So far, it is unclear if there is a direct interaction between m152 and RAE-1 and, if so, if m152 interacts differentially with the five identified RAE-1 isoforms, which are expressed as two groups in MCMV-susceptible or -resistant mouse strains. To address these questions, we expressed and purified the extracellular domains of RAE-1 and m152 and performed size exclusion chromatography binding assays as well as analytical ultracentrifugation and isothermal titration calorimetry to characterize these interactions quantitatively. We further evaluated the role of full-length and naturally glycosylated m152 and RAE-1 in cotransfected HEK293T cells. Our results confirmed that m152 binds RAE-1 directly, relatively tightly (K(d) RAE-1 isoforms, corresponding to the susceptibility to downregulation by m152. A PLWY motif found in RAE-1beta, although contributing to its affinity for m152, does not influence the affinity of RAE-1gamma or RAE-1delta, suggesting that other differences contribute to the RAE-1-m152 interaction. Molecular modeling of the different RAE-1 isoforms suggests a potential site for the m152 interaction.

  2. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues.

    Directory of Open Access Journals (Sweden)

    Helene J Bustad

    Full Text Available Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.

  3. Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (Malus × domestica L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth.

    Science.gov (United States)

    Navarro Gallón, Sandra M; Elejalde-Palmett, Carolina; Daudu, Dimitri; Liesecke, Franziska; Jullien, Frédéric; Papon, Nicolas; Dugé de Bernonville, Thomas; Courdavault, Vincent; Lanoue, Arnaud; Oudin, Audrey; Glévarec, Gaëlle; Pichon, Olivier; Clastre, Marc; St-Pierre, Benoit; Atehortùa, Lucia; Yoshikawa, Nobuyuki; Giglioli-Guivarc'h, Nathalie; Besseau, Sébastien

    2017-07-01

    The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis. In this study, two SQS isoforms were identified in apple tree genome. Both isoforms are located at the endoplasmic reticulum surface and were demonstrated to be functional SQS enzymes using an in vitro activity assay. MdSQS1 and MdSQS2 display specificities in their expression profiles with respect to plant organs and environmental constraints. This indicates a possible preferential involvement of each isoform in phytosterol and/or triterpene metabolic pathways as further argued using RNAseq meta-transcriptomic analyses. Finally, a virus-induced gene silencing (VIGS) approach was used to silence MdSQS1 and MdSQS2. The concomitant down-regulation of both MdSQS isoforms strongly affected phytosterol synthesis without alteration in triterpene accumulation, since triterpene-specific oxidosqualene synthases were found to be up-regulated to compensate metabolic flux reduction. Phytosterol deficiencies in silenced plants clearly disturbed chloroplast pigmentation and led to abnormal development impacting leaf division rather than elongation or differentiation. In conclusion, beyond the characterization of two SQS isoforms in apple tree, this work brings clues for a specific involvement of each isoform in phytosterol and triterpene pathways and emphasizes the biological function of phytosterols in development and chloroplast integrity. Our report also opens the door to metabolism studies in Malus domestica using the apple latent spherical virus-based VIGS method.

  4. Neuronal Glucose Transporter Isoform 3 Deficient Mice Demonstrate Features of Autism Spectrum Disorders

    OpenAIRE

    Zhao, Yuanzi; Fung, Camille; Shin, Don; Shin, Bo-Chul; Thamotharan, Shanthie; Sankar, Raman; Ehninger, Dan; Silva, Alcino; Devaskar, Sherin U.

    2009-01-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristic...

  5. Designing Isoform-selective Inhibitors Against Classical HDACs for Effective Anticancer Therapy: Insight and Perspectives from In Silico.

    Science.gov (United States)

    Ganai, Shabir Ahmad

    2018-01-01

    Histone deacetylase inhibitors, the small molecules modulating the biological activity of histone deacetylases are emerging as potent chemotherapeutic agents. Despite their considerable therapeutic benefits in disease models, the lack of isoform specificity culminates in debilitating off target effects, raising serious concerns regarding their applicability. This emphasizes the pressing and unmet medical need of designing isoform selective inhibitors for safe and effective anticancer therapy. Keeping these grim facts in view, the current article sheds light on structural basis of off-targeting. Furthermore, the article discusses extensively the role of in silico strategies such as Molecular Docking, Molecular Dynamics Simulation and Energetically-optimized structure based pharmacophore approach in designing on-target inhibitors against classical HDACs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. The activity and isoforms of NADP-malic enzyme in Nicotiana benthamiana plants under biotic stress

    Czech Academy of Sciences Publication Activity Database

    Doubnerová, V.; Jirásková, A.; Janošková, M.; Müller, Karel; Baťková, Petra; Synková, Helena; Čeřovská, Noemi; Ryšlavá, H.

    2007-01-01

    Roč. 26, č. 4 (2007), s. 281-289 ISSN 0231-5882 Institutional research plan: CEZ:AV0Z50380511 Keywords : NADP * malic enzyme isoforms * Nicotiana benthamiana Subject RIV: EF - Botanics Impact factor: 1.286, year: 2007 http://www.gpb.sav.sk/2007-4.htm

  7. Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT family

    Directory of Open Access Journals (Sweden)

    Patron Nicola

    2010-05-01

    Full Text Available Abstract Background In general, sugar porters function by proton-coupled symport or facilitative transport modes. Symporters, coupled to electrochemical energy, transport nutrients against a substrate gradient. Facilitative carriers transport sugars along a concentration gradient, thus transport is dependent upon extracellular nutrient levels. Across bacteria, fungi, unicellular non-vertebrates and plants, proton-coupled hexose symport is a crucial process supplying energy under conditions of nutrient flux. In mammals it has been assumed that evolution of whole body regulatory mechanisms would eliminate this need. To determine whether any isoforms bearing this function might be conserved in mammals, we investigated the relationship between the transporters of animals and the proton-coupled hexose symporters found in other species. Results We took a comparative genomic approach and have performed the first comprehensive and statistically supported phylogenetic analysis of all mammalian glucose transporter (GLUT isoforms. Our data reveals the mammalian GLUT proteins segregate into five distinct classes. This evolutionary ancestry gives insight to structure, function and transport mechanisms within the groups. Combined with biological assays, we present novel evidence that, in response to changing nutrient availability and environmental pH, proton-coupled, active glucose symport function is maintained in mammalian cells. Conclusions The analyses show the ancestry, evolutionary conservation and biological importance of the GLUT classes. These findings significantly extend our understanding of the evolution of mammalian glucose transport systems. They also reveal that mammals may have conserved an adaptive response to nutrient demand that would have important physiological implications to cell survival and growth.

  8. Role of Na,K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake.

    Directory of Open Access Journals (Sweden)

    Nina B Illarionova

    Full Text Available Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na(+ co-transporters. This transport is driven by the transmembrane Na(+ gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In the brain α2 is predominantly expressed in astrocytes. The isoforms differ with regard to Na+ affinity, which is lower for α2. The relative roles of the α1 and α2 isoforms in astrocytes are not well understood. Here we present evidence that the presence of the α2 isoform may contribute to a more efficient restoration of glutamate triggered increases in intracellular sodium concentration [Na(+]i. Studies were performed on primary astrocytes derived from E17 rat striatum expressing Na,K-ATPase α1 and α2 and the glutamate/Na(+ co-transporter GLAST. Selective inhibition of α2 resulted in a modest increase of [Na(+]i accompanied by a disproportionately large decrease in uptake of aspartate, an indicator of glutamate uptake. To compare the capacity of α1 and α2 to handle increases in [Na(+]i triggered by glutamate, primary astrocytes overexpressing either α1 or α2 were used. Exposure to glutamate 200 µM caused a significantly larger increase in [Na(+]i in α1 than in α2 overexpressing cells, and as a consequence restoration of [Na(+]i, after glutamate exposure was discontinued, took longer time in α1 than in α2 overexpressing cells. Both α1 and α2 interacted with astrocyte glutamate/Na(+ co-transporters via the 1st intracellular loop.

  9. High resolution X-ray structures of mouse major urinary protein nasal isoform in complex with pheromones

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Miller, Samantha; Zou, Qin; Novotny, Milos V.; Hurley, Thomas D. (Indiana-Med); (Indiana)

    2010-09-07

    In mice, the major urinary proteins (MUP) play a key role in pheromonal communication by binding and transporting semiochemicals. MUP-IV is the only isoform known to be expressed in the vomeronasal mucosa. In comparison with the MUP isoforms that are abundantly excreted in the urine, MUP-IV is highly specific for the male mouse pheromone 2-sec-butyl-4,5-dihydrothiazole (SBT). To examine the structural basis of this ligand preference, we determined the X-ray crystal structure of MUP-IV bound to three mouse pheromones: SBT, 2,5-dimethylpyrazine, and 2-heptanone. We also obtained the structure of MUP-IV with 2-ethylhexanol bound in the cavity. These four structures show that relative to the major excreted MUP isoforms, three amino acid substitutions within the binding calyx impact ligand coordination. The F103 for A along with F54 for L result in a smaller cavity, potentially creating a more closely packed environment for the ligand. The E118 for G substitution introduces a charged group into a hydrophobic environment. The sidechain of E118 is observed to hydrogen bond to polar groups on all four ligands with nearly the same geometry as seen for the water-mediated hydrogen bond network in the MUP-I and MUP-II crystal structures. These differences in cavity size and interactions between the protein and ligand are likely to contribute to the observed specificity of MUP-IV.

  10. The HER4 isoform JM-a/CYT2 relates to improved survival in bladder cancer patients but only if the estrogen receptor α is not expressed

    DEFF Research Database (Denmark)

    Munk, Mathias; Memon, Ashfaque Ahmed; Poulsen, Steen Seier

    2013-01-01

    Abstract Bladder cancer tumors expressing human epidermal growth factor receptor 4 (HER4) demonstrate improved patient survival. HER4 isoforms and estrogen receptor alpha (ER-α) can form chaperone complexes causing cell-proliferation. We wanted to explore if HER4 isoforms and ER-α could correlate...... to poor prognosis in bladder cancers. We developed mRNA assays for HER4 isoforms (JM-a, JM-b, CYT1, and CYT2) and for ER-α. Expression was analyzed in tumors from 85 bladder cancer patients and compared to overall survival (median follow-up of 5.1 years). ER-α was expressed in 38% (n = 32) of tumors...... and half of those (18/36) expressed both isoforms. JM-a/CYT2 expression correlated to improved survival (p = 0.004), but not when ER-α was co-expressed (p = 0.897). Immunohistochemistry revealed protein expression of HER4 and ER-α in tumor cells. Growth of RT4 bladder cancer cells, expressing both JM...

  11. Serine protease isoforms in Gloydius intermedius venom: Full sequences, molecular phylogeny and evolutionary implications.

    Science.gov (United States)

    Yang, Zhang-Min; Yu, Hui; Liu, Zhen-Zhen; Pei, Jian-Zhu; Yang, Yu-E; Yan, Su-Xian; Zhang, Cui; Zhao, Wen-Long; Wang, Zhe-Zhi; Wang, Ying-Ming; Tsai, Inn-Ho

    2017-07-05

    Nine distinct venom serine proteases (vSPs) of Gloydius intermedius were studied by transcriptomic, sub-proteomic and phylogenetic analyses. Their complete amino acid sequences were deduced after Expression Sequence Tag (EST) analyses followed by cDNA cloning and sequencing. These vSPs appear to be paralogs and contain the catalytic triads and 1-4 potential N-glycosylation sites. Their relative expression levels evaluated by qPCR were grossly consistent with their EST hit-numbers. The major vSPs were purified by HPLC and their N-terminal sequences matched well to the deduced sequences, while fragments of the minor vSPs were detected by LC-MS/MS identification. Specific amidolytic activities of the fractions from HPLC and anion exchange separation were assayed using four chromogenic substrates, respectively. Molecular phylogenetic tree based on the sequences of these vSPs and their orthologs revealed six major clusters, one of them covered four lineages of plasminogen activator like vSPs. N-glycosylation patterns and variations for the vSPs are discussed. The high sequence similarities between G. intermedius vSPs and their respective orthologs from American pitvipers suggest that most of the isoforms evolved before Asian pitvipers migrated to the New World. Our results also indicate that the neurotoxic venoms contain more kallikrein-like vSPs and hypotensive components than the hemorrhagic venoms. Full sequences and expression levels of nine paralogous serine proteases (designated as GiSPs) of Gloydius intermedius venom have been studied. A kallikrein-like enzyme is most abundant and four isoforms homologous to venom plasminogen-activators are also expressed in this venom. Taken together, the present and previous data demonstrate that the neurotoxic G. intermedius venoms contain more hypotensive vSPs relative to other hemorrhagic pitviper venoms and the pitviper vSPs are highly versatile and diverse. Their structure-function relationships remain to be explored and

  12. Oestrogen receptor beta isoform expression in sporadic colorectal cancer, familial adenomatous polyposis and progressive stages of colorectal cancer

    DEFF Research Database (Denmark)

    Stevanato Filho, Paulo Roberto; Aguiar Júnior, Samuel; Begnami, Maria Dirlei

    2017-01-01

    BACKGROUND: Among the sex hormones, oestrogen may play a role in colorectal cancer, particularly in conjunction with oestrogen receptor-β (ERβ). The expression of ERβ isoform variants and their correlations with familial adenomatous polyposis (FAP) syndrome and sporadic colorectal carcinomas...... was identified in sporadic polyps and in sporadic colorectal cancer as well as in polyps from FAP syndrome patients compared with normal tissues (p expression in polyps (p ..., no differences were observed when sporadic colorectal carcinomas were compared to normal mucosa tissues. These findings suggest an association of the ERβ isoform variants in individuals affected by germline mutations of the APC gene. Progressively decreased expression of ERβ was found in polyps at early stages...

  13. Characterization of IGF-II isoforms in binge eating disorder and its group psychological treatment.

    Directory of Open Access Journals (Sweden)

    Giorgio Tasca

    Full Text Available Binge eating disorder (BED affects 3.5% of the population and is characterized by binge eating for at least 2 days a week for 6 months. Treatment options include cognitive behavioral therapy, interpersonal psychotherapy, and pharmacotherapy which are associated with varied success. Little is known about the biology of BED. Since there is evidence that the insulin like growth factor system is implicated in regulation of body weight, insulin sensitivity and feeding behavior, we speculated it may be involved in BED.A cross-sectional comparison was made between three groups of women: overweight with BED, overweight without BED and normal weight without BED. Women were assigned to Group Psychodynamic Interpersonal Psychotherapy. Blood was collected before therapy, at completion and at 6 months follow up for evaluation of IGF-II using Western blot.97 overweight women with BED contributed to the cross-sectional comparison. The two control groups comprised 53 overweight women without BED, and 50 age matched normal weight women without BED. Obese women had significantly lower Big IGF-II than normal weight women, p = .028; Overweight women with BED had higher Mature IGF-II than normal weight women, p<.05. Big IGF-II showed a significant decreasing slope from pre- to post- to six months post-group psychological treatment, unrelated to changes in BMI (p = .008.Levels of IGF-II isoforms differed significantly between overweight and normal weight women. Overweight women with BED display abnormal levels of circulating IGF-II isoforms. BED is characterized by elevated mature IGF-II, an isoform shown to carry significant bioactivity. This finding is not related to BMI or to changes in body weight. The results also provide preliminary evidence that BIG IGF-II is sensitive to change due to group psychological treatment. We suggest that abnormalities in IGF-II processing may be involved in the neurobiology of BED.

  14. Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase.

    Directory of Open Access Journals (Sweden)

    Christina Schueler

    Full Text Available Transport metabolons have been discussed between carbonic anhydrase II (CAII and several membrane transporters. We have now studied different CA isoforms, expressed in Xenopus oocytes alone and together with the electrogenic sodium bicarbonate cotransporter 1 (NBCe1, to determine their catalytic activity and their ability to enhance NBCe1 transport activity. pH measurements in intact oocytes indicated similar activity of CAI, CAII and CAIII, while in vitro CAIII had no measurable activity and CAI only 30% of the activity of CAII. All three CA isoforms increased transport activity of NBCe1, as measured by the transport current and the rate of intracellular sodium rise in oocytes. Two CAII mutants, altered in their intramolecular proton pathway, CAII-H64A and CAII-Y7F, showed significant catalytic activity and also enhanced NBCe1 transport activity. The effect of CAI, CAII, and CAII mutants on NBCe1 activity could be reversed by blocking CA activity with ethoxyzolamide (EZA, 10 µM, while the effect of the less EZA-sensitive CAIII was not reversed. Our results indicate that different CA isoforms and mutants, even if they show little enzymatic activity in vitro, may display significant catalytic activity in intact cells, and that the ability of CA to enhance NBCe1 transport appears to depend primarily on its catalytic activity.

  15. Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein

    OpenAIRE

    Minervini, Giovanni; Mazzotta, Gabriella M.; Masiero, Alessandro; Sartori, Elena; Corr?, Samantha; Potenza, Emilio; Costa, Rodolfo; Tosatto, Silvio C. E.

    2015-01-01

    Deregulation of the von Hippel-Lindau tumor suppressor protein (pVHL) is considered one of the main causes for malignant renal clear-cell carcinoma (ccRCC) insurgence. In human, pVHL exists in two isoforms, pVHL19 and pVHL30 respectively, displaying comparable tumor suppressor abilities. Mutations of the p53 tumor suppressor gene have been also correlated with ccRCC insurgence and ineffectiveness of treatment. A recent proteomic analysis linked full length pVHL30 with p53 pathway regulation t...

  16. Growth hormone receptor exon 3 isoforms may have no importance in the clinical setting of multiethnic Brazilian acromegaly patients.

    Science.gov (United States)

    de Oliveira Machado, Evelyn; Lima, Carlos Henrique Azeredo; Ogino, Liana Lumi; Kasuki, Leandro; Gadelha, Mônica R

    2016-08-01

    Acromegaly is associated with significant morbidity and increased mortality, but has a variable severity phenotype. The presence of the exon 3-deleted isoform of the growth hormone receptor (d3-GHR) may influence the disease phenotype and treatment outcomes, including the frequency of biochemical discordance after medical treatment. The objective of this study was to analyze the influence of the d3-GHR isoform on clinical and biochemical characteristics and in the treatment outcomes of Brazilian multiethnic acromegaly patients. We retrospectively analyzed our acromegaly outpatient clinic databank and collected demographic, clinical, biochemical and treatment outcome data from those patients who agreed to participate in the study. A blood sample was collected from all patients, the DNA was extracted and the GHR isoforms were evaluated by PCR, with the full length (fl)-GHR represented by a 935-bp fragment and the d3-GHR represented by a 532-bp fragment. A total of 121 patients were included. Fifty-six patients (46.3 %) were full-length homozygous (fl/fl), 48 (39.7 %) were heterozygous (fl/d3) and 17 (14.0 %) were d3-GHR homozygous (d3/d3). There was no difference between patients homozygous for the fl isoform and those harboring at least one d3-GHR allele in the demographic, clinical and biochemical data or in the treatment outcomes, including somatostatin receptor ligands (SRL) monotherapy, combination therapy with SRL and cabergoline and pegvisomant treatment. There was also no difference between the groups for the frequency of GH and IGF-I discordance after medical treatment. GHR exon 3 genotyping appears to have no clinical significance, at least in Brazilian acromegaly patients.

  17. FoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra finch

    Science.gov (United States)

    Day, Nancy F; Kimball, Todd Haswell; Aamodt, Caitlin M; Heston, Jonathan B; Hilliard, Austin T; Xiao, Xinshu; White, Stephanie A

    2018-01-01

    Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans. PMID:29360038

  18. Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins

    Directory of Open Access Journals (Sweden)

    Yanqi Hao

    2015-07-01

    Full Text Available Alternative splicing acts on transcripts from almost all human multi-exon genes. Notwithstanding its ubiquity, fundamental ramifications of splicing on protein expression remain unresolved. The number and identity of spliced transcripts that form stably folded proteins remain the sources of considerable debate, due largely to low coverage of experimental methods and the resulting absence of negative data. We circumvent this issue by developing a semi-supervised learning algorithm, positive unlabeled learning for splicing elucidation (PULSE; http://www.kimlab.org/software/pulse, which uses 48 features spanning various categories. We validated its accuracy on sets of bona fide protein isoforms and directly on mass spectrometry (MS spectra for an overall AU-ROC of 0.85. We predict that around 32% of “exon skipping” alternative splicing events produce stable proteins, suggesting that the process engenders a significant number of previously uncharacterized proteins. We also provide insights into the distribution of positive isoforms in various functional classes and into the structural effects of alternative splicing.

  19. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Martini, Franciele; Pesarico, Ana P; Brüning, César A; Zeni, Gilson; Nogueira, Cristina W

    2018-02-05

    There is a well-known relationship between the cholinergic system and learning, memory, and other common cognitive processes. The process for researching and developing new drugs has lead researchers to repurpose older ones. This study investigated the effects of ebselen on the activity of acethylcholinesterase (AChE) isoforms in vitro and in an amnesia model induced by scopolamine in Swiss mice. In vitro, ebselen at concentrations equal or higher than 10 μM inhibited the activity of cortical and hippocampal G4/AChE, but not G1/AChE isoform. Treatment of mice with ebselen (50 mg/kg, i.p.) was effective against impairment of spatial recognition memory in both Y-maze and novel object recognition tests induced by scopolamine (1 mg/kg, i.p.). Ebselen (50 mg/kg) inhibited hippocampal AChE activity in mice. The present study demonstrates that ebselen inhibited the G4/AChE isoform in vitro and elicited an anti-amnesic effect in a mouse model induced by scopolamine. These findings reveal ebselen as a potential compound in terms of opening up valid therapeutic avenues for the treatment of memory impairment diseases. © 2018 Wiley Periodicals, Inc.

  20. Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics

    Directory of Open Access Journals (Sweden)

    María S. Aymerich

    2011-01-01

    Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.

  1. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Directory of Open Access Journals (Sweden)

    McGuire John J

    2005-09-01

    Full Text Available Abstract Background The rTS gene (ENOSF1, first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis.

  2. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Science.gov (United States)

    Liang, Ping; Nair, Jayakumar R; Song, Lei; McGuire, John J; Dolnick, Bruce J

    2005-01-01

    Background The rTS gene (ENOSF1), first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS) mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis. PMID:16162288

  3. Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats.

    Science.gov (United States)

    Soukup, T; Diallo, M

    2015-01-01

    Recently, we have established that slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles of euthyroid (EU) Lewis rats posses the same proportions between their four myosin heavy chain (MyHC) mRNAs, protein isoforms and fiber types as determined by real time RT-PCR, SDS-PAGE and 2-D stereological fiber type analysis, respectively. In the present paper we investigated if these proportions are maintained in adult Lewis rats with hyperthyroid (HT) and hypothyroid (HY) status. Although HT and HY states change MyHC isoform expression, results from all three methods showed that proportion between MyHC mRNA-1, 2a, -2x/d, -2b, protein isoforms MyHC-1, -2a, -2x/d, -2b and to lesser extent also fiber types 1, 2A, 2X/D, 2B were preserved in both SOL and EDL muscles. Furthermore, in the SOL muscle mRNA expression of slow MyHC-1 remained up to three orders higher compared to fast MyHC transcripts, which explains the predominance of MyHC-1 isoform and fiber type 1 even in HT rats. Although HT status led in the SOL to increased expression of MyHC-2a mRNA, MyHC-2a isoform and 2A fibers, it preserved extremely low expression of MyHC-2x and -2b mRNA and protein isoforms, which explains the absence of pure 2X/D and 2B fibers. HY status, on the other hand, almost completely abolished expression of all three fast MyHC mRNAs, MyHC protein isoforms and fast fiber types in the SOL muscle. Our data present evidence that a correlation between mRNA, protein content and fiber type composition found in EU status is also preserved in HT and HY rats.

  4. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki

    2015-01-01

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope. Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.

  5. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp

    2015-11-27

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope. Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.

  6. Analysis of transcriptional isoforms of collagen types IX, II, and I in the developing avian cornea by competitive polymerase chain reaction.

    Science.gov (United States)

    Fitch, J M; Gordon, M K; Gibney, E P; Linsenmayer, T F

    1995-01-01

    The genes for the alpha 1(IX), alpha 1(II), and alpha 2(I) collagen chains can give rise to different isoforms of mRNA, generated by alternative promotor usage [for alpha 1(IX) and alpha 2(I)] or alternative splicing [for alpha 1(II)]. In this study, we employed competitive reverse transcriptase PCR to quantitate the amounts of transcriptional isoforms for these genes in the embryonic avian cornea from its inception (about 3 1/2 days of development) to 11 days. In order to compare values at different time points, the results were normalized to those obtained for the "housekeeping" enzyme, glycerol-3-phosphate dehydrogenase (G3PDH). These values were compared to those obtained from other tissues (anterior optic cup and cartilage) that synthesize different combinations of the collagen isoforms. We found that, in the cornea, transcripts from the upstream promotor of alpha 1(IX) collagen (termed "long IX") were predominant at stage 18-20 (about 3 1/2 days), but then fell rapidly, and remained at a low level. By 5 days (just before stromal swelling) the major mRNA isoform of alpha 1(IX) was from the downstream promoter (termed "short IX"). The relative amount of transcript for the short form of type IX collagen rose to a peak at about 6 days of development, and then declined. Throughout this period, the predominant transcriptional isoform of the collagen type II gene was IIA (i.e., containing the alternatively spliced exon 2). This indicates that the molecules of type II collagen that are assembled into heterotypic fibrils with type I collagen possess, at least transiently, an amino-terminal globular domain similar to that found in collagen types I, III, and V. For type I, the "bone/tendon" mRNA isoform of the alpha 2(I) collagen gene was predominant; transcripts from the downstream promotor were at basal levels. In other tissues expressing collagen types IX and II, long IX was expressed predominantly with the IIA form in the anterior optic cup at stage 22/23; in 14 1

  7. Overexpression of EMMPRIN isoform 2 is associated with head and neck cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Zhiquan Huang

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN, a plasma membrane protein of the immunoglobulin (Ig superfamily, has been reported to promote cancer cell invasion and metastasis in several human malignancies. However, the roles of the different EMMPRIN isoforms and their associated mechanisms in head and neck cancer progression remain unknown. Using quantitative real-time PCR, we found that EMMPRIN isoform 2 (EMMPRIN-2 was the only isoform that was overexpressed in both head and neck cancer tissues and cell lines and that it was associated with head and neck cancer metastasis. To determine the effects of EMMPRIN-2 on head and neck cancer progression, we transfected head and neck cancer cells with an EMMPRIN-2 expression vector and EMMPRIN-2 siRNA to exogenously modulate EMMPRIN-2 expression and examined the functional importance of EMMPRIN-2 in head and neck cancer invasion and metastasis. We found that EMMPRIN-2 promoted head and neck cancer cell invasion, migration, and adhesion in vitro and increased lung metastasis in vivo. Mechanistic studies revealed that EMMPRIN-2 overexpression promoted the secretion of extracellular signaling molecules, including matrix metalloproteinases-2(MMP-2, urokinase-type plasminogen activator(uPA and Cathepsin B, in head and neck cancer cells. While MMP-2 and uPA have been demonstrated to be important mediators of EMMPRIN signaling, the role of Cathepsin B in EMMPRIN-mediated molecular cascades and tumorigenesis has not been established. We found that EMMPRIN-2 overexpression and Cathepsin B down-regulation significantly inhibited the invasion, migration and adhesion of Tca8133 cells, suggesting that Cathepsin B is required for EMMPRIN-2 enhanced cell migration and invasion in head and neck cancer. The results of our study demonstrate the important role of EMMPRIN-2 in head and neck cancer progression for the first time and reveal that increased extracellular secretion of Cathepsin B may be a novel

  8. Overexpression of EMMPRIN isoform 2 is associated with head and neck cancer metastasis.

    Science.gov (United States)

    Huang, Zhiquan; Tan, Ning; Guo, Weijie; Wang, Lili; Li, Haigang; Zhang, Tianyu; Liu, Xiaojia; Xu, Qin; Li, Jinsong; Guo, Zhongmin

    2014-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a plasma membrane protein of the immunoglobulin (Ig) superfamily, has been reported to promote cancer cell invasion and metastasis in several human malignancies. However, the roles of the different EMMPRIN isoforms and their associated mechanisms in head and neck cancer progression remain unknown. Using quantitative real-time PCR, we found that EMMPRIN isoform 2 (EMMPRIN-2) was the only isoform that was overexpressed in both head and neck cancer tissues and cell lines and that it was associated with head and neck cancer metastasis. To determine the effects of EMMPRIN-2 on head and neck cancer progression, we transfected head and neck cancer cells with an EMMPRIN-2 expression vector and EMMPRIN-2 siRNA to exogenously modulate EMMPRIN-2 expression and examined the functional importance of EMMPRIN-2 in head and neck cancer invasion and metastasis. We found that EMMPRIN-2 promoted head and neck cancer cell invasion, migration, and adhesion in vitro and increased lung metastasis in vivo. Mechanistic studies revealed that EMMPRIN-2 overexpression promoted the secretion of extracellular signaling molecules, including matrix metalloproteinases-2(MMP-2), urokinase-type plasminogen activator(uPA) and Cathepsin B, in head and neck cancer cells. While MMP-2 and uPA have been demonstrated to be important mediators of EMMPRIN signaling, the role of Cathepsin B in EMMPRIN-mediated molecular cascades and tumorigenesis has not been established. We found that EMMPRIN-2 overexpression and Cathepsin B down-regulation significantly inhibited the invasion, migration and adhesion of Tca8133 cells, suggesting that Cathepsin B is required for EMMPRIN-2 enhanced cell migration and invasion in head and neck cancer. The results of our study demonstrate the important role of EMMPRIN-2 in head and neck cancer progression for the first time and reveal that increased extracellular secretion of Cathepsin B may be a novel mechanism

  9. Cell-Specific PKM Isoforms Contribute to the Maintenance of Different Forms of Persistent Long-Term Synaptic Plasticity.

    Science.gov (United States)

    Hu, Jiangyuan; Adler, Kerry; Farah, Carole Abi; Hastings, Margaret H; Sossin, Wayne S; Schacher, Samuel

    2017-03-08

    Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The sensorimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)-nonassociative and associative LTF-that require the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM Apl I in L7, or PKM Apl II or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however, blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in each neuron whose constitutive activities sustain long-term synaptic plasticity. SIGNIFICANCE STATEMENT Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific kinase isoforms sustains long

  10. CKI isoforms α and ε regulate Star–PAP target messages by controlling Star–PAP poly(A) polymerase activity and phosphoinositide stimulation

    Science.gov (United States)

    Laishram, Rakesh S.; Barlow, Christy A.; Anderson, Richard A.

    2011-01-01

    Star–PAP is a non-canonical, nuclear poly(A) polymerase (PAP) that is regulated by the lipid signaling molecule phosphatidylinositol 4,5 bisphosphate (PI4,5P2), and is required for the expression of a select set of mRNAs. It was previously reported that a PI4,5P2 sensitive CKI isoform, CKIα associates with and phosphorylates Star–PAP in its catalytic domain. Here, we show that the oxidative stress-induced by tBHQ treatment stimulates the CKI mediated phosphorylation of Star–PAP, which is critical for both its polyadenylation activity and stimulation by PI4,5P2. CKI activity was required for the expression and efficient 3′-end processing of its target mRNAs in vivo as well as the polyadenylation activity of Star–PAP in vitro. Specific CKI activity inhibitors (IC261 and CKI7) block in vivo Star–PAP activity, but the knockdown of CKIα did not equivalently inhibit the expression of Star–PAP targets. We show that in addition to CKIα, Star–PAP associates with another CKI isoform, CKIε in the Star–PAP complex that phosphorylates Star–PAP and complements the loss of CKIα. Knockdown of both CKI isoforms (α and ε) resulted in the loss of expression and the 3′-end processing of Star–PAP targets similar to the CKI activity inhibitors. Our results demonstrate that CKI isoforms α and ε modulate Star–PAP activity and regulates Star–PAP target messages. PMID:21729869

  11. Quantitative mass spectrometry reveals changes in SNAP-25 isoforms in schizophrenia

    Science.gov (United States)

    Barakauskas, Vilte E; Moradian, Annie; Barr, Alasdair M.; Beasley, Clare L; Rosoklija, Gorazd; Mann, J John; Ilievski, Boro; Stankov, Aleksandar; Dwork, Andrew J; Falkai, Peter; Morin, Gregg B; Honer, William G

    2016-01-01

    SNAP-25 and syntaxin are presynaptic terminal SNARE proteins altered in amount and function in schizophrenia. In the ventral caudate, we observed 32% lower SNAP-25 and 26% lower syntaxin, but greater interaction between the two proteins using an in vitro assay. SNAP-25 has two isoforms, SNAP-25A and B, differing by only 9 amino acids, but with different effects on neurotransmission. A quantitative mass spectrometry assay was developed to measure total SNAP-25, and proportions of SNAP-25A and B. The assay had a good linear range (50- to 150-fold) and coefficient of variation (4.5%). We studied ventral caudate samples from patients with schizophrenia (n=15) previously reported to have lower total SNAP-25 than controls (n=13). We confirmed 27% lower total SNAP-25 in schizophrenia, and observed 31% lower SNAP-25A (P = 0.002) with 20% lower SNAP-25B amounts (P = 0.10). Lower SNAP-25A amount correlated with greater SNAP-25-syntaxin protein-protein interactions (r = -0.41, P = 0.03); the level of SNAP-25B did not. Administration of haloperidol or clozapine to rats did not mimic the changes found in schizophrenia. The findings suggest that lower levels of SNAP-25 in schizophrenia may represent a greater effect of the illness on the SNAP-25A isoform. This in turn could contribute to the greater interaction between SNAP25 and syntaxin, and possibly disturb neurotransmission in the illness. PMID:26971072

  12. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takahiro; Itoh, Kyoko, E-mail: kxi14@koto.kpu-m.ac.jp; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  13. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    International Nuclear Information System (INIS)

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-01-01

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH 2 -terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions

  14. Nanoscopic and Photonic Ultrastructural Characterization of Two Distinct Insulin Amyloid States

    Directory of Open Access Journals (Sweden)

    Mikael Lindgren

    2012-02-01

    Full Text Available Two different conformational isoforms or amyloid strains of insulin with different cytotoxic capacity have been described previously. Herein these filamentous and fibrillar amyloid states of insulin were investigated using biophysical and spectroscopic techniques in combination with luminescent conjugated oligothiophenes (LCO. This new class of fluorescent probes has a well defined molecular structure with a distinct number of thiophene units that can adopt different dihedral angles depending on its binding site to an amyloid structure. Based on data from surface charge, hydrophobicity, fluorescence spectroscopy and imaging, along with atomic force microscopy (AFM, we deduce the ultrastructure and fluorescent properties of LCO stained insulin fibrils and filaments. Combined total internal reflection fluorescence microscopy (TIRFM and AFM revealed rigid linear fibrous assemblies of fibrils whereas filaments showed a short curvilinear morphology which assemble into cloudy deposits. All studied LCOs bound to the filaments afforded more blue-shifted excitation and emission spectra in contrast to those corresponding to the fibril indicating a different LCO binding site, which was also supported by less efficient hydrophobic probe binding. Taken together, the multi-tool approach used here indicates the power of ultrastructure identification applying AFM together with LCO fluorescence interrogation, including TIRFM, to resolve structural differences between amyloid states.

  15. TANK-Binding Kinase 1 (TBK1 Isoforms Negatively Regulate Type I Interferon Induction by Inhibiting TBK1-IRF3 Interaction and IRF3 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yi Wei Hu

    2018-01-01

    Full Text Available TANK-binding kinase 1 (TBK1 is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible gene I (RIG-I and mitochondria antiviral-signaling protein (MAVS. However, it is still unclear whether alternative splicing patterns and the function of TBK1 isoform(s exist in teleost fish. In this study, we identify two alternatively spliced isoforms of TBK1 from zebrafish, termed TBK1_tv1 and TBK1_tv2. Both TBK1_tv1 and TBK1_tv2 contain an incomplete STKc_TBK1 domain. Moreover, the UBL_TBK1_like domain is also missing for TBK1_tv2. TBK1_tv1 and TBK1_tv2 are expressed in zebrafish larvae. Overexpression of TBK1_tv1 and TBK1_tv2 inhibits RIG-I-, MAVS-, TBK1-, and IRF3-mediated activation of IFN promoters in response to spring viremia of carp virus infection. Also, TBK1_tv1 and TBK1_tv2 inhibit expression of IFNs and IFN-stimulated genes induced by MAVS and TBK1. Mechanistically, TBK1_tv1 and TBK1_tv2 competitively associate with TBK1 and IRF3 to disrupt the formation of a functional TBK1-IRF3 complex, impeding the phosphorylation of IRF3 mediated by TBK1. Collectively, these results demonstrate that TBK1 spliced isoforms are dominant negative regulators in the RIG-I/MAVS/TBK1/IRF3 antiviral pathway by targeting the functional TBK1-IRF3 complex formation. Identification and functional characterization of piscine TBK1 spliced isoforms may contribute to understanding the role of TBK1 expression in innate antiviral response.

  16. Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running.

    Science.gov (United States)

    Talmadge, Robert J; Acosta, Wendy; Garland, Theodore

    2014-11-01

    The myosin heavy chain (MyHC) isoform composition of locomotor and non-locomotor muscles of mini-muscle mice were assessed at the protein and mRNA levels in both adult and juvenile (21 day old) mice. Mini-muscle mice are one outcome of a replicated artificial selection experiment in which four lines of mice were bred for high voluntary wheel running (HR lines). Two of the lines responded with an increase in frequency of a single nucleotide polymorphism in an intron in the MyHC-2b gene (myh4) that when homozygous causes a dramatic reduction in triceps surae mass. We found that both locomotor and non-locomotor muscles of adult mini-muscle mice displayed robust reductions, but not elimination, of the MyHC-2b isoform at both the protein and mRNA levels, with commensurate increases in MyHC-2x and sometimes MyHC-2a, as compared with either a line of HR mice that does not display the mini-muscle phenotype or inbred C57Bl6 mice. Immunohistochemical analyses revealed that locomotor muscles of mini-muscle mice contain fibers that express the MyHC-2b isoform, which migrates normally in SDS-PAGE gels. However, these MyHC-2b positive fibers are generally smaller than the surrounding fibers and smaller than the MyHC-2b positive fibers of non-mini-muscle mice, resulting in characteristically fast muscles that lack a substantial MyHC-2b positive (superficial) region. In contrast, the masseter, a non-locomotor muscle of mini-muscle mice contained MyHC-2b positive fibers that stained more lightly for MyHC-2b, but appeared normal in size and distribution. In adults, many of the MyHC-2b positive fibers in the mini-muscle mice also display central nuclei. Only a small proportion of small MyHC-2b fibers in mini-muscle mice stained positive for the neural cell adhesion molecule, suggesting that anatomical innervation was not compromised. In addition, weanling (21 day old), but not 5 day old mice, displayed alterations in MyHC isoform content at both the protein and mRNA levels, including

  17. Impact of lipoprotein(a) levels and apolipoprotein(a) isoform size on risk of coronary heart disease

    NARCIS (Netherlands)

    Hopewell, J. C.; Seedorf, U.; Farrall, M.; Parish, S.; Kyriakou, T.; Goel, A.; Hamsten, A.; Collins, R.; Watkins, H.; Clarke, R.; van der Hout, Annemarie H.

    Objectives. Observational and genetic studies have shown that lipoprotein(a) [Lp(a)] levels and apolipoprotein( a) [apo(a)] isoform size are both associated with coronary heart disease (CHD) risk, but the relative independence of these risk factors remains unclear. Clarification of this uncertainty

  18. Effects of contraction on localization of GLUT4 and v-SNARE isoforms in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rose, Adam John; Jeppesen, Jacob; Kiens, Bente

    2009-01-01

    In skeletal muscle, contractions increase glucose uptake due to a translocation of GLUT4 glucose transporters from intracellular storage sites to the surface membrane. Vesicle associated membrane proteins (VAMPs) are believed to play an important role in docking and fusion of the GLUT4 transporters...... at the surface membrane. However, knowledge about which VAMP isoforms in fact co-localize with GLUT4 vesicles in mature skeletal muscle and whether they translocate during muscle contractions is incomplete. The aim of the present study was to further identify VAMP isoforms which are associated with GLUT4......, there was a redistribution of VAMP2 (+240 +/- 40%), VAMP5 (+79 +/- 9%) and VAMP7 (+79 +/- 29%), but not VAMP3, to fractions enriched in heavy membranes away from low density membranes (-49 +/- 10%, -54 +/- 9%, -14 +/- 11%, respectively) in contracted versus resting muscle. In summary, VAMP2, VAMP3, VAMP5 and VAMP7 co...

  19. Role of L-Type Ca[superscript 2+] Channel Isoforms in the Extinction of Conditioned Fear

    Science.gov (United States)

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jorg; Singewald, Nicolas

    2008-01-01

    Dihydropyridine (DHP) L-type Ca[superscript 2+] channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the…

  20. Troponin T isoform expression is modulated during Atlantic Halibut metamorphosis

    Directory of Open Access Journals (Sweden)

    Llewellyn Lynda

    2007-06-01

    Full Text Available Abstract Background Flatfish metamorphosis is a thyroid hormone (TH driven process which leads to a dramatic change from a symmetrical larva to an asymmetrical juvenile. The effect of THs on muscle and in particular muscle sarcomer protein genes is largely unexplored in fish. The change in Troponin T (TnT, a pivotal protein in the assembly of skeletal muscles sarcomeres and a modulator of calcium driven muscle contraction, during flatfish metamophosis is studied. Results In the present study five cDNAs for halibut TnT genes were cloned; three were splice variants arising from a single fast TnT (fTnT gene; a fourth encoded a novel teleost specific fTnT-like cDNA (AfTnT expressed exclusively in slow muscle and the fifth encoded the teleost specific sTnT2. THs modified the expression of halibut fTnT isoforms which changed from predominantly basic to acidic isoforms during natural and T4 induced metamorphosis. In contrast, expression of red muscle specific genes, AfTnT and sTnT2, did not change during natural metamorphosis or after T4 treatment. Prior to and after metamorphosis no change in the dorso-ventral symmetry or temporal-spatial expression pattern of TnT genes and muscle fibre organization occurred in halibut musculature. Conclusion Muscle organisation in halibut remains symmetrical even after metamorphosis suggesting TH driven changes are associated with molecular adaptations. We hypothesize that species specific differences in TnT gene expression in teleosts underlies different larval muscle developmental programs which better adapts them to the specific ecological constraints.