WorldWideScience

Sample records for islands coral reef

  1. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    International Nuclear Information System (INIS)

    Nakata, Takashi; Omoto, Kunio; Koba, Motoharu

    1978-01-01

    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes. (Mori, K.)

  2. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, T; Omoto, K; Koba, M [Tohoku Univ., Sendai (Japan). Faculty of Science

    1978-06-01

    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes.

  3. Contaminants assessment in the coral reefs of Virgin Islands National Park and Virgin Islands Coral Reef National Monument

    Science.gov (United States)

    Bargar, Timothy A.; Garrison, Virginia H.; Alvarez, David A.; Echols, Kathy

    2013-01-01

    Coral, fish, plankton, and detritus samples were collected from coral reefs in Virgin Islands National Park (VIIS) and Virgin Islands Coral Reef National Monument (VICR) to assess existing contamination levels. Passive water sampling using polar organic chemical integrative samplers (POCIS) and semi-permeable membrane devices found a few emerging pollutants of concern (DEET and galaxolide) and polynuclear aromatic hydrocarbons. Very little persistent organic chemical contamination was detected in the tissue or detritus samples. Detected contaminants were at concentrations below those reported to be harmful to aquatic organisms. Extracts from the POCIS were subjected to the yeast estrogen screen (YES) to assess potential estrogenicity of the contaminant mixture. Results of the YES (estrogen equivalency of 0.17–0.31 ng/L 17-β-estradiol) indicated a low estrogenicity likelihood for contaminants extracted from water. Findings point to low levels of polar and non-polar organic contaminants in the bays sampled within VICR and VIIS.

  4. Community Structure Of Coral Reefs In Saebus Island, Sumenep District, East Java

    Science.gov (United States)

    Rizmaadi, Mada; Riter, Johannes; Fatimah, Siti; Rifaldi, Riyan; Yoga, Arditho; Ramadhan, Fikri; Ambariyanto, Ambariyanto

    2018-02-01

    Increasing degradation coral reefs ecosystem has created many concerns. Reduction of this damage can only be done with good and proper management of coral reef ecosystem based on existing condition. The condition of coral reef ecosystem can be determined by assessing its community structure. This study investigates community structure of coral reef ecosystems around Saebus Island, Sumenep District, East Java, by using satellite imagery analysis and field observations. Satellite imagery analysis by Lyzenga methods was used to determine the observation stations and substrate distribution. Field observations were done by using Line Intercept Transect method at 4 stations, at the depth of 3 and 10 meters. The results showed that the percentage of coral reef coverage at the depth of 3 and 10 meters were 64.36% and 59.29%, respectively, and included in fine coverage category. This study found in total 25 genera from 13 families of corals at all stations. The most common species found were Acropora, Porites, and Pocillopora, while the least common species were Favites and Montastrea. Average value of Diversity, Uniformity and Dominancy indices were 2.94, 0.8 and 0.18 which include as medium, high, and low category, respectively. These results suggest that coral reef ecosystems around Saebus Island is in a good condition.

  5. 77 FR 12567 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Science.gov (United States)

    2012-03-01

    ... Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems Logbook and Reporting AGENCY... with, or any U.S. citizen issued with, a Special Coral Reef Ecosystem Fishing Permit (authorized under the Fishery Management Plan for Coral Reef Ecosystems of the Western Pacific Region), to complete...

  6. 77 FR 12243 - Proposed Information Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems...

    Science.gov (United States)

    2012-02-29

    ... Collection; Comment Request; Pacific Islands Region Coral Reef Ecosystems Permit Form AGENCY: National... using a vessel to fish for Western Pacific coral reef ecosystem management unit species in the... allowed in the regulations; or (3) fishing for, taking, or retaining any Potentially Harvested Coral Reef...

  7. INVENTORY AND DISTRIBUTION OF MOLLUSC IN CORAL REEF OF BACAN ISLAND WATERS, NORTH MALUKU PROVINCE

    Directory of Open Access Journals (Sweden)

    Hendrik A.W. Cappenberg

    2017-11-01

    Full Text Available Bacan Island waters of North Maluku Province consisted of three main tropical ecosystems, namely mangrove, seagrass, and coral reef with the highest marine biodiversity. Mollusc is a group of marine fauna that most of them associated with coral reef.  However, little is known about their information in the Bacan Island due to lack of study conducted there. The purpose of this study is to observe the diversity and distribution of mollusc fauna in the coral reef flat of Bacan Island. Mollusc inventory was done using Rapid Reef Resource Assessment (RRA method by snorkling in the reefs of east coast (25 sites and west coast (10 sites of Bacan Island. The molluscs found were directly identified into species level and recorded.  Results of inventory show that there are 47 species belong to 19 families with the family of Muricidae is the highest diversity (6 species, while the lowest are Buccinidae, Bursidae, Haliotidae, Olividae, Cardiidae, Isognomonidae and Spondylidae, respectively with only 1 species in each of those families. The highest species number of mollusc was distributed along the east coast of the island (40 species, and the lowest one was in the west coast (37 species. Some species such as Tridacna spp., Pinctada margaritifera and Pteria penguin are important species, because they have economical values. Keywords:       biodiversity, molluscs, coral reef, Bacan Island, North Maluku

  8. Sea-level standstill and dominant hermatypic coral from the holocene raised reef terraces at the Kikai Island, Ryukyu Islands

    International Nuclear Information System (INIS)

    Hongo, Chuki

    2010-01-01

    Coral reef terraces are one of the best recorders of biological response to environmental change events (e.g., sea-level changes). Kikai Island provides a rare opportunity to show biological and ecological frameworks (e.g., competition, coexistence, and succession) during a recent geological period. The island is fringed by raised Holocene raised reef terraces, which formed as a result of periodic tectonic uplifts. This study aims to characterize the spatial and temporal changes of corals at this island during the Holocene. The analysis is based on topographical and biological data obtained for the three sites (Shidooke, Kadon, and Nakugama reefs). Three raised reef terraces (Terrace II, III, and IV) grew from 7300 to 4500 years ago (during 2800 years), from 4500 to 2900 years ago (during 1600 years), and from 2900 to 1800 years ago (during 1100 years), respectively. Terrace II and III were uplifted 1-2 m around 4500 years ago and around 2900 years ago. Terrace IV was uplifted 1-2 m around 1800 years ago. The modern reef has been composed of corals for 1800 years. Sixteen coral genera and 53 species were recorded from the reef terraces. Terrace III and IV were dominated by four coral species (A. digitifera, A. robusta, G. retiformis, and F. stelligera), but Terrace II was predominantly composed of A. digitifera and A. robusta. These biological and ecological variations between the terraces represent a growth strategy responding to differences of reef growth time and/or insolation. (author)

  9. Digital reef rugosity estimates coral reef habitat complexity.

    Science.gov (United States)

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity.

  10. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    Science.gov (United States)

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  11. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  12. Mapping of Nitrate, Phospat And Zooxanthelae With Abundance Of Sea Urchins on Massive Coral Reef in Karimunjawa Island

    Science.gov (United States)

    Suryanti, S.; Ain, C.; Latifah, N.

    2018-02-01

    Coral reefs have high organic productivity because coral reefs can withstand nutrients and accommodate all external inputs. Many factors affect the life of corals, which is nitrate, phosphate and zooxanthellae. The purpose of this study are to know mapping of the content and the relationship between of nitrate, phosphate, zooxanthellae and abundance of sea urchins on massive coral reefs in Karimunjawa Islands. This research was conducted in May - June 2017 in three stations are Karimunjawa, Menjangan Kecil and Cemara Kecil Island. The method used in this research is survey method with quantitative approach. Results of mapping of nitrate contents on massive corals on all three islands showed the highest nitrate content on Cemara Kecil Island and lowest on Karimunjawa island, with a range of values 5.078-212.853 mg/kg. In mapping the distribution of phosphate content in the three islands showed the highest phosphate content in Menjangan Kecil island and the lowest on Karimunjawa island, with a range of values from 6.78-19.35 mg/kg. Zooxanthelae map shows that the highest and lowest distribution of zooxanthela content on Karimunjawa island, with a range of values 2.84-8.88 cell/cm2. The sea urchins found in Karimunjawa Islands during the study were Diadema setosum and Echinothrix calamaris with a range of values 5-147. Based on multiple regression analysis showed that the relationship between nitrate, phosphate and zooxanthela with abundance of sea urchins showed a strong correlation result with correlation value (r) is 0.64. These results can be an indicator of coastal environmental health, especially coral reef ecosystems.

  13. Permanent 'phase shifts' or reversible declines in coral cover? Lack of recovery of two coral reefs in St. John, US Virgin Islands

    Science.gov (United States)

    Rogers, C.S.; Miller, J.

    2006-01-01

    Caribbean coral reefs have changed dramatically in the last 3 to 4 decades, with significant loss of coral cover and increases in algae. Here we present trends in benthic cover from 1989 to 2003 at 2 reefs (Lameshur Reef and Newfound Reef) off St. John, US Virgin Islands (USVI). Coral cover has declined in the fore-reef zones at both sites, and no recovery is evident. At Lameshur Reef, Hurricane Hugo (1989) caused significant physical damage and loss of coral. We suggest that macroalgae rapidly colonized new substrate made available by this storm and have hindered or prevented growth of adult corals, as well as settlement and survival of new coral recruits. Overfishing of herbivorous fishes in the USVI and loss of shelter for these fishes because of major storms has presumably reduced the levels of herbivory that formerly controlled algal abundance. Coral cover declined at Newfound Reef from 1999 to 2000, most likely because of coral diseases. The trends that we have documented, loss of coral followed by no evidence of recovery, appear similar to findings from other studies in the Caribbean. We need to focus on functional shifts in the resilience of coral reefs that result in their inability to recover from natural and human-caused stressors. ?? Inter-Research 2006.

  14. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Madeleine J.H. van Oppen

    2015-07-01

    Full Text Available Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative

  15. The percentage of coral reef cover in Saonek Kecil Island, Raja Ampat, West Papua

    Science.gov (United States)

    Wiguna, D. A.; Masithah, E. D.; Manan, A.

    2018-04-01

    Raja Ampat archipelago is located in the heart of the world’s coral triangle which is the center of the richest tropical marine biodiversity in the world. The Saonek Kecil Island has a location close to the Waisai Harbour (±2 km of sea routes). The Island that has no inhabitants and has a location close to harbour activities potentially damage coral reefs. This research was conducted by Line Intercept Transect (LIT) method that calculate the length of each colony form of growth (life form) of coral reefs on the line transect which stretched along the 50 metres parallel to the coastline at each station to obtain the percentage cover data, diversity index, uniformity index, and dominance index. The results of research precentage cover of coral reeef in the waters of Small Saonek Island reach 68.80% – 79.30% by category according to the decision of the Minister of State for the Environment number 4 of 2001 about the damage the reefs criteria included in the category of good – very good. As for the value of diversity index (H’) of 0.487 – 0.675 (medium-high), uniformity index (J) 0.437 – 0.606 (medium-high), and dominance index (C) 0.338 – 0.502 (medium-high).

  16. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific coral reef

    Directory of Open Access Journals (Sweden)

    Fernando A Zapata

    2010-05-01

    Full Text Available Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004 from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7% and algal cover low (28.8%-37.5% and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP, recovering pre-disturbance (1979 levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (<6% reduction. Despite

  17. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific) coral reef.

    Science.gov (United States)

    Zapata, Fernando A; Rodríguez-Ramírez, Alberto; Caro-Zambrano, Carlos; Garzón-Ferreira, Jaime

    2010-05-01

    Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC) was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004) from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7%) and algal cover low (28.8%-37.5%) and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP), recovering pre-disturbance (1979) levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (< 6% reduction). Despite recurrent

  18. Local and Regional Impacts of Pollution on Coral Reefs along the Thousand Islands North of the Megacity Jakarta, Indonesia

    Science.gov (United States)

    Baum, Gunilla; Januar, Hedi I.; Ferse, Sebastian C. A.; Kunzmann, Andreas

    2015-01-01

    Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers), however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80% of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation. PMID:26378910

  19. Local and Regional Impacts of Pollution on Coral Reefs along the Thousand Islands North of the Megacity Jakarta, Indonesia.

    Science.gov (United States)

    Baum, Gunilla; Januar, Hedi I; Ferse, Sebastian C A; Kunzmann, Andreas

    2015-01-01

    Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers), however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80% of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation.

  20. Local and Regional Impacts of Pollution on Coral Reefs along the Thousand Islands North of the Megacity Jakarta, Indonesia.

    Directory of Open Access Journals (Sweden)

    Gunilla Baum

    Full Text Available Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers, however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80% of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation.

  1. Co-existence of Coral Reef Conservation and Tourism at Pigeon Island National Park

    Directory of Open Access Journals (Sweden)

    Nishanthi Marian Perera

    2016-11-01

    Full Text Available AbstractPigeon islands National Park (PINP is one of the three Marine National Parks in Sri Lanka with coral reefs being the major habitat protected. A study was undertaken at PINP with the objective of understanding the challenges encountered and opportunities available for managing the park addressing both coral reef conservation and increasing tourism potential. Field visits, formal and informal group discussions, expert opinions, web based information and literature surveys were the methodology utilized.  Despise the impose of an entrance fee in May 2011,  146,375 tourists visited the 471 ha park within 40 month period indicating that one hectare of coral reefs can earn more revenue than larger terrestrial parks with charismatic species such as elephants.  Foreign tourist arrivals had increased from 11.9% in 2011 to 25.13% by 2014.  Visitor reviews indicates that their experience was either excellent (46% or very good (30% due to abundance of marine life, while12% had either a poor or a terrible visitor experience at the site owing to overcrowding, reef damage and high price. With only 21% of live coral cover in 2013, it is evident that the reef is being degraded, indicating that a Protected Area which emphasizes on collecting user-fee revenues can lose sight of its primary conservation objectives and is not undertaking sustainable tourism.  Park management effectiveness is not at desirable level (43%, mainly due to non- implementation of a scientifically based management plan. A continuous monitoring programme to check the health of the reef is need, while the introduction of a multi-tiered user fee structures can enhance the economic reruns.  Incorporating PINP into wider Seascape/landscape management through utilizing Special Area Management approach needed to be promoted. Key Words: Coral Reefs; Pigeon Island National Park; Management Effectiveness; Sustainable Tourism; Stakeholders     

  2. DIVERSITY OF REEF FISH FUNGSIONAL GROUPS IN TERMS OF CORAL REEF RESILIENCES

    Directory of Open Access Journals (Sweden)

    Isa Nagib edrus

    2017-01-01

    Full Text Available Infrastructure development in the particular sites of  Seribu Islands as well as those in main land of Jakarta City increased with coastal population this phenomenon is likely to increase the effects to the adjacent coral waters of Seribu Islands.  Chemical pollutants, sedimentation, and domestic wastes are the common impact and threatening, the survival of coral reef ecosystem. Coral reef resiliences naturaly remained on their processes under many influences of supporting factors. One of the major factor is the role of reef fish functional groups on controling algae growth to recolonize coral juveniles. The  aim of this study to obtain data of a herbivory and other fish functional groups of reef fishes in the Pari Islands that are resilience indicators, or that may indicate the effectiveness of management actions. A conventional scientific approach on fish diversity and abundance data gathering was conducted by the underwater visual cencus. Diversity values of the reef fish functional groups, such as the abundance of individual fish including species, were collected and tabulated by classes and weighted as a baseline to understand the resilience of coral reed based on Obura and Grimsditch (2009 techniques. The results succesfully identified several fish functional groups such as harbivores (21 species, carnivores (13 species and fish indicator (5 species occurred in the area. Regarding the aspects of fish density and its diversity, especially herbivorous fish functional group, were presumably in the state of rarely available to support the coral reef resiliences. Resilience indices ranged from 1 (low level to 3 (moderate level and averages of the quality levels ranged from 227 to 674. These levels were inadequate to support coral reef recolonization.

  3. The IUCN Red List of Threatened Species: an assessment of coral reef fishes in the US Pacific Islands

    Science.gov (United States)

    Zgliczynski, B. J.; Williams, I. D.; Schroeder, R. E.; Nadon, M. O.; Richards, B. L.; Sandin, S. A.

    2013-09-01

    Widespread declines among many coral reef fisheries have led scientists and managers to become increasingly concerned over the extinction risk facing some species. To aid in assessing the extinction risks facing coral reef fishes, large-scale censuses of the abundance and distribution of individual species are critically important. We use fisheries-independent data collected as part of the NOAA Pacific Reef Assessment and Monitoring Program from 2000 to 2009 to describe the range and density across the US Pacific of coral reef fishes included on The International Union for the Conservation of Nature's (IUCN) 2011 Red List of Threatened Species. Forty-five species, including sharks, rays, groupers, humphead wrasse ( Cheilinus undulatus), and bumphead parrotfish ( Bolbometopon muricatum), included on the IUCN List, were recorded in the US Pacific Islands. Most species were generally rare in the US Pacific with the exception of a few species, principally small groupers and reef sharks. The greatest diversity and densities of IUCN-listed fishes were recorded at remote and uninhabited islands of the Pacific Remote Island Areas; in general, lower densities were observed at reefs of inhabited islands. Our findings complement IUCN assessment efforts, emphasize the efficacy of large-scale assessment and monitoring efforts in providing quantitative data on reef fish assemblages, and highlight the importance of protecting populations at remote and uninhabited islands where some species included on the IUCN Red List of Threatened Species can be observed in abundance.

  4. Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands.

    Science.gov (United States)

    Abdo, David A; Bellchambers, Lynda M; Evans, Scott N

    2012-01-01

    Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature along the whole Western Australian coastline, producing the first-recorded widespread bleaching of corals at the Abrolhos. We examined long term trends in the marine climate at the Abrolhos using historical sea surface temperature data (HadISST data set) from 1900-2011. In addition in situ water temperature data for the Abrolhos (from data loggers installed in 2008, across four island groups) were used to determine temperature exposure profiles. Coupled with the results of coral cover surveys conducted annually since 2007; we calculated bleaching thresholds for monitoring sites across the four Abrolhos groups. In situ temperature data revealed maximum daily water temperatures reached 29.54°C in March 2011 which is 4.2°C above mean maximum daily temperatures (2008-2010). The level of bleaching varied across sites with an average of ∼12% of corals bleached. Mortality was high, with a mean ∼50% following the 2011 bleaching event. Prior to 2011, summer temperatures reached a mean (across all monitoring sites) of 25.1°C for 2.5 days. However, in 2011 temperatures reached a mean of 28.1°C for 3.3 days. Longer term trends (1900-2011) showed mean annual sea surface temperatures increase by 0.01°C per annum. Long-term temperature data along with short-term peaks in 2011, outline the potential for corals to be exposed to more frequent bleaching risk with consequences for this high latitude coral reef system at the edge of its distribution.

  5. The Use of Diethanolamine as a Co2 Absorbent in Was Take the Determination Coral Reef Age in Barrang Lompo Island Spermonde Islands Through Measurements of 14c Activity by Liquid Scintillation Counting (Lsc) Method

    OpenAIRE

    Matande, Jumiati Bunga; Zakir, Muhammad; Noor, Alfian

    2017-01-01

    Research on the use of diethanolamine (DEA) as a CO2 absorbent in was take the determination coral reef age in Barrang Lompo Island, Spermonde Islands through measurements of 14C activity by liquid scintillation Counting method (LSC) was carried our. Coral reef sample of the island Barrang Lompo at coordinates 5 ° 06 '49 " LS 119 ° 25' 20" BT with a dept of 3-4 meters from the sea surface. Coral reefs (coral reef) is an ecosystem that live on the water in the form of limestone formations (CaC...

  6. New protection initiatives announced for coral reefs

    Science.gov (United States)

    Showstack, Randy

    Off the coasts of some of the South Pacific's most idyllic-sounding atolls, Austin Bowden-Kerby has seen first-hand the heavy damage to coral reefs from dynamite and cyanide fishing. For instance, while snorkeling near Chuuk, an island in Micronesia, he has observed craters and rubble beds of coral, which locals have told him date to World War II ordnance.A marine biologist and project scientist for the Coral Gardens Initiative of the Foundation for the Peoples of the South Pacific, Bowden-Kerby has also identified what he says are some public health effects related to destroyed coral reefs and their dying fisheries. These problems include protein and vitamin A deficiency and blindness, all of which may—in some instances—be linked to poor nutrition resulting from lower reef fish consumption by islanders, according to Bowden-Kerby.

  7. Assessing land use, sedimentation, and water quality stressors as predictors of coral reef condition in St. Thomas, U.S. Virgin Islands.

    Science.gov (United States)

    Oliver, L M; Fisher, W S; Fore, L; Smith, A; Bradley, P

    2018-03-13

    Coral reef condition on the south shore of St. Thomas, U.S. Virgin Islands, was assessed at various distances from Charlotte Amalie, the most densely populated city on the island. Human influence in the area includes industrial activity, wastewater discharge, cruise ship docks, and impervious surfaces throughout the watershed. Anthropogenic activity was characterized using a landscape development intensity (LDI) index, sedimentation threat (ST) estimates, and water quality (WQ) impairments in the near-coastal zone. Total three-dimensional coral cover, reef rugosity, and coral diversity had significant negative coefficients for LDI index, as did densities of dominant species Orbicella annularis, Orbicella franksi, Montastraea cavernosa, Orbicella faveolata, and Porites porites. However, overall stony coral colony density was not significantly correlated with stressors. Positive relationships between reef rugosity and ST, between coral diversity and ST, and between coral diversity and WQ were unexpected because these stressors are generally thought to negatively influence coral growth and health. Sponge density was greater with higher disturbance indicators (ST and WQ), consistent with reports of greater resistance by sponges to degraded water quality compared to stony corals. The highest FoRAM (Foraminifera in Reef Assessment and Monitoring) indices indicating good water quality were found offshore from the main island and outside the harbor. Negative associations between stony coral metrics and LDI index have been reported elsewhere in the Caribbean and highlight LDI index potential as a spatial tool to characterize land-based anthropogenic stressor gradients relevant to coral reefs. Fewer relationships were found with an integrated stressor index but with similar trends in response direction.

  8. Evaluation of Stony Coral Indicators for Coral Reef Management.

    Science.gov (United States)

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for ...

  9. Coral reproduction on the world’s southernmost reef at Lord Howe Island, Australia

    DEFF Research Database (Denmark)

    Baird, Andrew H.; Cumbo, Vivian R.; Gudge, Sallyann

    2015-01-01

    Despite a recent expansion in the geographic extent of coral reproductive research, there remain many regions in the Indo-Pacific where knowledge is limited. For example, Lord Howe Island is the southernmost reef system in the world (31° S); however, very little is known of the reproductive biology...... of the coral fauna. Here, aspects of the reproductive biology and the timing of reproduction for 40 of the approximately 65 species that occur on Lord Howe Island are documented. In December 2010, field assessments of the stage of gamete maturity in Acropora spp. colonies suggested that 5 species spawned...

  10. Black reefs: iron-induced phase shifts on coral reefs.

    Science.gov (United States)

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-03-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km(2)). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions.

  11. Black reefs: iron-induced phase shifts on coral reefs

    NARCIS (Netherlands)

    Wegley Kelly, L.; Barott, K.L.; Dinsdale, E.; Friedlander, A.M.; Nosrat, B.; Obura, D.; Sala, E.; Sandin, S.A.; Smith, J.E.; Vermeij, M.J.A.; Williams, G.J.; Willner, D.; Rohwer, F.

    2012-01-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the

  12. Coral reefs as eco-factories for fixing CO2

    International Nuclear Information System (INIS)

    Kayanne, H.

    1994-01-01

    This paper presents an estimation of carbon dioxide fixation rate by the natural coral reefs. The author explains mechanism and rate of carbon dioxide fixation; then he presents the fixation by coral reefs on Ishigaki Island. (TEC). 3 refs., 3 figs

  13. Coral reefs chronically exposed to river sediment plumes in the southwestern Caribbean: Rosario Islands, Colombia.

    Science.gov (United States)

    Restrepo, Juan D; Park, Edward; Aquino, Samia; Latrubesse, Edgardo M

    2016-05-15

    Politicians do not acknowledge the devastating impacts riverine sediments can have on healthy coral reef ecosystems during environmental debates in Caribbean countries. Therefore, regional and/or local decision makers do not implement the necessary measures to reduce fluvial sediment fluxes on coral reefs. The Magdalena River, the main contributor of continental fluxes into the Caribbean Sea, delivers water and sediment fluxes into the Rosario Islands National Park, an important marine protected area in the southwestern Caribbean. Until now, there is no scientific consensus on the presence of sediment fluxes from the Magdalena River in the coral reefs of the Rosario Islands. Our hypothesis is that high sediment and freshwater inputs from the Magdalena have been present at higher acute levels during the last decade than previously thought, and that these runoff pulses are not flashy. We use in-situ calibrated MODIS satellite images to capture the spatiotemporal variability of the distribution of suspended sediment over the coral reefs. Furthermore, geochemical data are analyzed to detect associated sedimentation rates and pollutant dispersion into the coastal zone. Results confirm that turbidity levels have been much higher than previous values presented by national environmental authorities on coral reefs off Colombia over the last decade. During the 2003-2013-period most of the Total Suspended Sediments (TSS) values witnessed in the sampled regions were above 10mg/l, a threshold value of turbidity for healthy coral reef waters. TSS concentrations throughout the analyzed time were up to 62.3mg/l. Plume pulses were more pronounced during wet seasons of La Niña events in 2002-2003, 2007-2008, and 2009-2010. Reconstructed time series of MODIS TSS indicates that coral reef waters were exposed to river plumes between 19.6 and 47.8% of the entire period of analysis (2000-2013). Further analyses of time series of water discharge and sediment load into the coastal zone

  14. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Science.gov (United States)

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  15. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    Science.gov (United States)

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  16. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Jamison M Gove

    Full Text Available Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km from 85% of our study locations

  17. Primary productivity of marine macrophytes in the coral reef lagoon of the Kadmat Island, Lakshadweep

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Shaikh, N.

    n situ primary productivity measurements were carried out with different macrophyte species (belonging to four groups) dominating the benthic communities in the coral reef lagoon of the Kadmat Island of the Lakshadweep Archipelago...

  18. Constraints on the diversity and distribution of coral-reef assemblages in the volcanic Northern Mariana Islands

    Science.gov (United States)

    Houk, P.; Starmer, J.

    2010-03-01

    A central problem for jurisdictional scientists and managers is to reconcile how multiple environmental regimes, encompassing continuous, intermittent and human disturbances, influence pertinent ecological management targets. The presence of heterogeneous environments throughout the volcanic Northern Mariana Islands (NMI), coupled with the availability of descriptive physical data, form the basis examining environmental-ecological relationships. Since 2003, coral abundances and macrobiota (all visibly recognizable taxa greater than 2 cm) occurrences have been estimated at 42 reef slopes along the volcanic archipelago. Analyses showed that reef types acted as surrogates of coral growth capacity and the modern assemblages residing upon them, being highest and most favorable, respectively, where relatively high salinity levels, low-to-moderate wave exposure, and an absence of volcanic activity for ~90 years existed. However, island size was the greatest constraint on species richness overall, but relations with corals were dampened by volcanic activity and increased for sponges and algae where greater connection with the island aquifer existed (i.e., relatively low salinity levels). The number of years since volcanic activity has occurred was positively related to the residuals of species-area relationships and coral cover, with a ~90-year time frame predicted for recovery. Notably, no relationships with watershed characteristics or distance from CNMI’s main fishing port and coral-reef assemblages or species richness were found. Further examination of specific management concerns, such as fisheries and feral animal populations, should be designed to account for the inherent differences in driving environmental regimes. Management strategies focused upon conserving biodiversity and ecosystem function should be centered at the island level, matching the operational scale of dominant environmental-ecological relationships. Marine reserves represent a strategy pertinent

  19. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa

    Science.gov (United States)

    McAdoo, Brian G.; Ah-Leong, Joyce Samuelu; Bell, Lui; Ifopo, Pulea; Ward, Juney; Lovell, Edward; Skelton, Posa

    2011-07-01

    The coral reef bordering the coastline of Samoa affected by the 29 September 2009 tsunami provides a variety of ecosystem services — from nurseries for fisheries and inshore source of food for local communities, to aesthetics for tourists, and the width of the lagoon may have been a factor in reducing the onshore wave height. To understand the complex interactions between the onshore human population and the offshore coral, we formed an interdisciplinary survey team to document the effects the tsunami had on the nearshore coral reef, and how these changes might affect local inhabitants. The scale of reef damage varied from severe, where piles of freshly-killed coral fragments and mortality were present, to areas that exhibited little impact, despite being overrun by the tsunami. We found that many coral colonies were impacted by tsunami-entrained coral debris, which had been ripped up and deposited on the fore reef by repeated cyclones and storm waves. In other places, large surface area tabular coral sustained damage as the tsunami velocity increased as it was funneled through channels. Areas that lacked debris entrained by the waves as well as areas in the lee of islands came through relatively unscathed, with the exception of the delicate corals that lived on a sandy substrate. In the lagoon on the south coast with its steep topography, coral colonies were damaged by tsunami-generated debris from onshore entrained in the backwash. Despite the potential for severe tsunami-related damage, there were no noticeable decreases in live coral cover between successive surveys at two locations, although algal cover was higher with the increased nutrients mobilized by the tsunami. While there was an immediate decrease in fish takes in the month following the tsunami, when supporting services were likely impacted, both volume and income have rapidly increased to pre-tsunami levels. Long-term monitoring should be implemented to determine if nursery services were affected.

  20. Local Stressors, Resilience, and Shifting Baselines on Coral Reefs.

    Science.gov (United States)

    McLean, Matthew; Cuetos-Bueno, Javier; Nedlic, Osamu; Luckymiss, Marston; Houk, Peter

    2016-01-01

    Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.

  1. Local Stressors, Resilience, and Shifting Baselines on Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Matthew McLean

    Full Text Available Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.

  2. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages

    KAUST Repository

    Hoey, Andrew; Pratchett, Morgan S.; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32?S, 159°04?E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m -2), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha -1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. © 2011 Hoey et al.

  3. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages

    KAUST Repository

    Hoey, Andrew

    2011-10-03

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32?S, 159°04?E), the worlds\\' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m -2), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha -1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands\\' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. © 2011 Hoey et al.

  4. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages.

    Directory of Open Access Journals (Sweden)

    Andrew S Hoey

    Full Text Available Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E, the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment, and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4% and fleshy macroalgae (20.9%. Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2, however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1, and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1% with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.

  5. Status and conservation of coral reefs in Costa Rica.

    Science.gov (United States)

    Cortés, Jorge; Jiménez, Carlos E; Fonseca, Ana C; Alvarado, Juan José

    2010-05-01

    Costa Rica has coral communities and reefs on the Caribbean coast and on the Pacific along the coast and off-shore islands. The Southern section of the Caribbean coast has fringing and patch reefs, carbonate banks, and an incipient algal ridge. The Pacific coast has coral communities, reefs and isolated coral colonies. Coral reefs have been seriously impacted in the last 30 years, mainly by sediments (Caribbean coast and some Pacific reefs) and by El Niño warming events (both coasts). Monitoring is being carried out at three sites on each coast. Both coasts suffered significant reductions in live coral cover in the 1980's, but coral cover is now increasing in most sites. The government of Costa Rica is aware of the importance of coral reefs and marine environments in general, and in recent years decrees have been implemented (or are in the process of approval) to protect them, but limited resources endanger their proper management and conservation, including proper outreach to reef users and the general public.

  6. Reef Development on Artificial Patch Reefs in Shallow Water of Panjang Island, Central Java

    Science.gov (United States)

    Munasik; Sugiyanto; Sugianto, Denny N.; Sabdono, Agus

    2018-02-01

    Reef restoration methods are generally developed by propagation of coral fragments, coral recruits and provide substrate for coral attachment using artificial reefs (ARs). ARs have been widely applied as a tool for reef restoration in degraded natural reefs. Successful of coral restoration is determined by reef development such as increasing coral biomass, natural of coral recruits and fauna associated. Artificial Patch Reefs (APRs) is designed by combined of artificial reefs and coral transplantation and constructed by modular circular structures in shape, were deployed from small boats by scuba divers, and are suitable near natural reefs for shallow water with low visibility of Panjang Island, Central Java. Branching corals of Acropora aspera, Montipora digitata and Porites cylindrica fragments were transplanted on to each module of two units of artificial patch reefs in different periods. Coral fragments of Acropora evolved high survival and high growth, Porites fragments have moderate survival and low growth, while fragment of Montipora show in low survival and moderate growth. Within 19 to 22 months of APRs deployment, scleractinian corals were recruited on the surface of artificial patch reef substrates. The most recruits abundant was Montastrea, followed by Poritids, Pocilloporids, and Acroporids. We conclude that artificial patch reefs with developed by coral fragments and natural coral recruitment is one of an alternative rehabilitation method in shallow reef with low visibility.

  7. Deposition of organic material in a coral reef lagoon, One Tree Island, Great Barrier Reef

    Science.gov (United States)

    Koop, K.; Larkum, A. W. D.

    1987-07-01

    Deposition of organic material was measured at four sites on One Tree Island coral reef using fixed sediment traps. Although no reliable data were obtained for the reef crest area because of problems of resuspension, mean deposition in the backreef area amounted to some 4 g organic C m -2 day -1 whereas in the lagoon it was about 1·5 g C m -2 day -1. This amounted to mean nitrogen deposition rates of 160 and 95 mg N m -2 day -1, respectively. As primary production by turf algae, the principal producers at One Tree Island, has been estimated at about 2·3 g C m -2 day -1 for the whole reef system and the weighted mean carbon deposition is estimated at 2·2 g C m -2 day -1, it is clear that the carbon produced by plants is largely retained in the system. Nitrogen deposition, on the other hand, amounted to only about 60% of that produced by turf algae and it must be assumed that much of this leached into the water during sedimentation. Losses of nitrogen may be minimized by incorporation of dissolved nitrogen by pelagic microheterotrophs which may in turn be consumed by filter feeders before they leave the reef.

  8. Reefs for the future: Resilience of coral reefs in the main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declining health of coral reef ecosystems led scientists to search for factors that support reef resilience: the ability of reefs to resist and recover from...

  9. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false PRIA coral reef ecosystem fisheries. [Reserved] 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Pacific Remote Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries. [Reserved] ...

  10. The wicked problem of China's disappearing coral reefs.

    Science.gov (United States)

    Hughes, Terry P; Huang, Hui; Young, Matthew A L

    2013-04-01

    We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10-15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef-management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. © 2012 Society for Conservation Biology.

  11. Pacific Reef Assessment and Monitoring Program: Rapid Ecological Assessment Quadrat Surveys of Corals around the Marianas Islands from 2003 to 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pacific Reef Assessment and Monitoring Program (Pacific RAMP), established by the Coral Reef Ecosystem Program (CREP) of the NOAA Pacific Islands Fisheries...

  12. The results of long term coral reef monitoring at three locations in Jamaica: Monkey Island, “Gorgo City” and Southeast Cay

    Directory of Open Access Journals (Sweden)

    Marcia Creary Ford

    2014-09-01

    Full Text Available The global and regional impacts of climate change are having devastating consequences on the coral reef ecosystems of the Caribbean. Long term monitoring are important tool for assessing reef health. Monitoring was established in 2000 in the Bahamas, Belize and Jamaica. Following the pilot project, the program was institutionalized in Jamaica and monitoring was conducted on eight occasions from 2000 to 2010. Monkey Island and “Gorgo City” near Discovery Bay (both on the north coast and Southeast Cay at Port Royal on the south coast were selected. Macroalgae dominated the benthic substrate. Monkey Island and “Gorgo City” had the highest coral cover. Porites astreoides, Montastraea spp., Porites porities, Siderastrea siderea, and Agaricia agaricites were the most common species. Data from this programme have been used in local and regional coral reef assessment and management initiatives.

  13. Low calcification in corals in the Great Barrier Reef

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-10-01

    Reef-building coral communities in the Great Barrier Reef—the world's largest coral reef—may now be calcifying at only about half the rate that they did during the 1970s, even though live coral cover may not have changed over the past 40 years, a new study finds. In recent decades, coral reefs around the world, home to large numbers of fish and other marine species, have been threatened by such human activities as pollution, overfishing, global warming, and ocean acidification; the latter affects ambient water chemistry and availability of calcium ions, which are critical for coral communities to calcify, build, and maintain reefs. Comparing data from reef surveys during the 1970s, 1980s, and 1990s with present-day (2009) measurements of calcification rates in One Tree Island, a coral reef covering 13 square kilometers in the southern part of the Great Barrier Reef, Silverman et al. show that the total calcification rates (the rate of calcification minus the rate of dissolution) in these coral communities have decreased by 44% over the past 40 years; the decrease appears to stem from a threefold reduction in calcification rates during nighttime.

  14. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations

    KAUST Repository

    Schmidt, GM; Phongsuwan, N; Jantzen, C; Roder, Cornelia; Khokiattiwong, S; Richter, C

    2012-01-01

    The Similan Islands, a Thai archipelago in the Andaman Sea located near the shelf break, are subjected to frequent (up to several events per hour) and abrupt changes in physico-chemical conditions, particularly during the dry season (NE monsoon, January through April) and to an intense monsoon season with strong surface wave action (May to October). The exposed west slopes of the islands feature more coral species, but lack a carbonate reef framework. By contrast, the sheltered east sides show a complex reef framework dominated by massive Porites. Our results suggest that the sudden changes in temperature, pH and nutrients (drops of up to 10°C and 0.6 U and increases of up to 9.4 µmol NOx l−1, respectively) due to pulsed upwelling events may rival the importance of surface waves and storms in shaping coral distribution and reef development.

  15. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations

    KAUST Repository

    Schmidt, GM

    2012-06-07

    The Similan Islands, a Thai archipelago in the Andaman Sea located near the shelf break, are subjected to frequent (up to several events per hour) and abrupt changes in physico-chemical conditions, particularly during the dry season (NE monsoon, January through April) and to an intense monsoon season with strong surface wave action (May to October). The exposed west slopes of the islands feature more coral species, but lack a carbonate reef framework. By contrast, the sheltered east sides show a complex reef framework dominated by massive Porites. Our results suggest that the sudden changes in temperature, pH and nutrients (drops of up to 10°C and 0.6 U and increases of up to 9.4 µmol NOx l−1, respectively) due to pulsed upwelling events may rival the importance of surface waves and storms in shaping coral distribution and reef development.

  16. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  17. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    Science.gov (United States)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  18. The future of coral reefs in the US Virgin Islands: is Acropora palmata more likely to recover than Montastraea annularis complex?

    Science.gov (United States)

    Rogers, Caroline S.; Muller, Erinn; Spitzack, Tony; Miller, Jeff

    2008-01-01

    Coral diseases have played a major role in the degradation of coral reefs in the Caribbean, including those in the US Virgin Islands (USVI). In 2005, bleaching affected reefs throughout the Caribbean, and was especially severe on USVI reefs. Some corals began to regain their color as water temperatures cooled, but an outbreak of disease (primarily white plague) led to losses of over 60% of the total live coral cover. Montastraea annularis, the most abundant coral, was disproportionately affected, and decreased in relative abundance. The threatened species Acropora palmata bleached for the first time on record in the USVI but suffered less bleaching and less mortality from disease than M. annularis. Acropora palmata and M. annularis are the two most significant species in the USVI because of their structural role in the architecture of the reefs, the large size of their colonies, and their complex morphology. The future of the USVI reefs depends largely on their fate. Acropora palmata is more likely to recover than M. annularis for many reasons, including its faster growth rate, and its lower vulnerability to bleaching and disease.

  19. Coral reefs and residents of the U.S. Virgin Islands: a relationship of knowledge, outdoor activities and stewardship.

    Science.gov (United States)

    Settar, Christine; Turner, Teresa

    2010-10-01

    To test the hypotheses that U.S. Virgin Islanders' knowledge about local coral reefs is correlated with behavior, and that different sociological groups of residents have different patterns of knowledge and behavior, a mixed approach to surveying residents was used: (1) personal interviews were held in public locations and (2) an online version of the survey was administered to residents of the U.S. Virgin Islands. From July-October 2008,462 residents over 18 years old were surveyed. Results indicate that people who engaged in outdoor activities knew significantly more about coral reefs (Spearman p Acropora palmata coral than non-fishers (chi2 = 4.138, p = 0.126); however, swimmers, snorkelers and divers (as a class) were more able to identify A. palmata than non-swimmers (chi2 = 9.764, p = 0.002). Most residents identified sea turtle species as endangered (hawksbill turtle, 78.9%) but only 48.2% of the responses included Acropora spp. as threatened. Resident attitudes towards conservation of local resources were overwhelmingly positive.

  20. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Mary J.; Sramek, Carolyn M.; Antonelis, George A. [National Oceanic and Atmospheric Administration Commissioned Corps, National Marine Fisheries Service Honolulu Lab., Honolulu, HI (United States); Boland, Raymond C. [Hawaii Univ. Research Corp., Joint Inst. for Marine and Atmospheric Research, Honolulu, HI (United States)

    2001-07-01

    Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km{sup 2}. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago. (Author)

  1. Derelict fishing gear in the northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems.

    Science.gov (United States)

    Donohue, M J; Boland, R C; Sramek, C M; Antonelis, G A

    2001-12-01

    Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km2. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago.

  2. Fishing degrades size structure of coral reef fish communities.

    Science.gov (United States)

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016

  3. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific coral reef

    Directory of Open Access Journals (Sweden)

    Fernando A Zapata

    2010-05-01

    Full Text Available Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004 from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7% and algal cover low (28.8%-37.5% and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP, recovering pre-disturbance (1979 levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (A través del Sistema

  4. Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific

    Science.gov (United States)

    Riegl, B.; Glynn, P. W.; Wieters, E.; Purkis, S.; D'Angelo, C.; Wiedenmann, J.

    2015-02-01

    Predicted increases in seawater temperatures accelerate coral reef decline due to mortality by heat-driven coral bleaching. Alteration of the natural nutrient environment of reef corals reduces tolerance of corals to heat and light stress and thus will exacerbate impacts of global warming on reefs. Still, many reefs demonstrate remarkable regeneration from past stress events. This paper investigates the effects of sea surface temperature (SST) and water column productivity on recovery of coral reefs. In 71 Indo-Pacific sites, coral cover changes over the past 1-3 decades correlated negative-exponentially with mean SST, chlorophyll a, and SST rise. At six monitoring sites (Persian/Arabian Gulf, Red Sea, northern and southern Galápagos, Easter Island, Panama), over half of all corals were coral reefs presently have the best chances for survival. However, reefs best buffered against temperature and nutrient effects are those that current studies suggest to be most at peril from future ocean acidification.

  5. Bathymetry of NPS's Virgin Islands Coral Reef National Monument (Inshore), St. John, US Virgin Islands 2005, 1M Grid, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of an inshore portion of the NPS's Virgin Islands Coral Reef National Monument,...

  6. Will Coral Islands maintain their growth over the next century? A deterministic model of sediment availability at Lady Elliot Island, Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Sarah Hamylton

    Full Text Available A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present, present and future (2010-2100 time periods. Reef platform sediment production is estimated at 569 m3 yr-1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81. Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86. Reef-scale outputs are compared with historic rates of production generated from (i radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr-1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000-2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr-1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution

  7. Will Coral Islands maintain their growth over the next century? A deterministic model of sediment availability at Lady Elliot Island, Great Barrier Reef.

    Science.gov (United States)

    Hamylton, Sarah

    2014-01-01

    A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010-2100) time periods. Reef platform sediment production is estimated at 569 m3 yr-1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr-1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000-2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr-1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time

  8. Diel coral reef acidification driven by porewater advection in permeable sands, Heron Island, Great Barrier Reef

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Glud, Ronnie N.; Maher, Damien

    2011-01-01

    Little is known about how biogeochemical processes in permeable sediments affect the pH of coastal waters. We demonstrate that seawater recirculation in permeable sands can play a major role in proton (H+) cycling in a coral reef lagoon. The diel pH range (up to 0.75 units) in the Heron Island...... lagoon was the broadest ever reported for reef waters, and the night‐time pH (7.69) was comparable to worst‐case scenario predictions for seawater pH in 2100. The net contribution of coarse carbonate sands to the whole system H+ fluxes was only 9% during the day, but approached 100% at night when small...... scale (i.e., flow and topography‐induced pressure gradients) and large scale (i.e., tidal pumping as traced by radon) seawater recirculation processes were synergistic. Reef lagoon sands were a net sink for H+, and the sink strength was a function of porewater flushing rate. Our observations suggest...

  9. Coral reefs and residents of the U.S. Virgin Islands: A relationship of knowledge, outdoor activities and stewardship

    Directory of Open Access Journals (Sweden)

    Christine Settar

    2010-10-01

    Full Text Available To test the hypotheses that U.S. Virgin Islanders’ knowledge about local coral reefs is correlated with behavior, and that different sociological groups of residents have different patterns of knowledge and behavior, a mixed approach to surveying residents was used: (1 personal interviews were held in public locations and (2 an online version of the survey was administered to residents of the U.S. Virgin Islands. From July-October 2008, 462 residents over 18 years old were surveyed. Results indicate that people who engaged in outdoor activities knew significantly more about coral reefs (Spearman p<0.01, r2=0.128. Those more knowledgeable about coral reefs engaged in more positive stewardship activities (e.g. beach clean-ups (Spearman p<0.01, r2=0.127. Negative behaviors (e.g. anchoring on reef were not significantly correlated with increased knowledge of coral reefs (Spearman p=0.911, r2=-0.000025. Fishers did not have greater ability in identifying Acropora palmate coral than non-fishers (χ2=4.138, p=0.126; however, swimmers, snorkelers and divers (as a class were moreable to identify A. palmata than non-swimmers (χ2 =9.764, p=0.002. Most residents identified sea turtle species as endangered (hawksbill turtle, 78.9% but only 48.2% of the responses included Acropora spp. as threatened. Resident attitudes towards conservation of local resources were overwhelmingly positive. Rev. Biol. Trop. 58 (Suppl. 3: 197-212. Epub 2010 October 01.

  10. Swell-generated Set-up and Infragravity Wave Propagation Over a Fringing Coral Reef: Implications for Wave-driven Inundation of Atoll Islands

    Science.gov (United States)

    Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.; Quataert, E.; van Dongeren, A.

    2014-12-01

    The Republic of the Marshall Islands is comprised of 1156 islands on 29 low-lying atolls with a mean elevation of 2 m that are susceptible to sea-level rise and often subjected to overwash during large wave events. A 6-month deployment of wave and tide gauges across two shore-normal sections of north-facing coral reef on the Roi-Namur Island on Kwajalein Atoll was conducted during 2013-2014 to quantify wave dynamics and wave-driven water levels on the fringing coral reef. Wave heights and periods on the reef flat were strongly correlated to the water levels. On the fore reef, the majority of wave energy was concentrated in the incident band (5-25 s); due to breaking at the reef crest, however, the wave energy over the reef flat was dominated by infragravity-band (25-250 s) motions. Two large wave events with heights of 6-8 m at 15 s over the fore reef were observed. During these events, infragravity-band wave heights exceeded the incident band wave heights and approximately 1.0 m of set-up was established over the innermost reef flat. This set-up enabled the propagation of large waves across the reef flat, reaching maximum heights of nearly 2 m on the innermost reef flat adjacent to the toe of the beach. XBEACH models of the instrument transects were able to replicate the incident waves, infragravity waves, and wave-driven set-up across the reef when the hydrodynamic roughness of the reef was correctly parameterized. These events led to more than 3 m of wave-driven run-up and inundation of the island that drove substantial morphological change to the beach face.

  11. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data at Jarvis Island from 2016-05-16 to 2016-05-22 (NCEI Accession 0157594)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surveys were conducted in the course of a reef fish survey cruise conducted by the NOAA Coral Reef Ecosystem Program (CREP) at the NOAA Pacific Islands Fisheries...

  12. Modeling fine-scale coral larval dispersal and interisland connectivity to help designate mutually-supporting coral reef marine protected areas: Insights from Maui Nui, Hawaii

    Science.gov (United States)

    Storlazzi, Curt; van Ormondt, Maarten; Chen, Yi-Leng; Elias, Edwin P. L.

    2017-01-01

    Connectivity among individual marine protected areas (MPAs) is one of the most important considerations in the design of integrated MPA networks. To provide such information for managers in Hawaii, USA, a numerical circulation model was developed to determine the role of ocean currents in transporting coral larvae from natal reefs throughout the high volcanic islands of the Maui Nui island complex in the southeastern Hawaiian Archipelago. Spatially- and temporally-varying wind, wave, and circulation model outputs were used to drive a km-scale, 3-dimensional, physics-based circulation model for Maui Nui. The model was calibrated and validated using satellite-tracked ocean surface current drifters deployed during coral-spawning conditions, then used to simulate the movement of the larvae of the dominant reef-building coral, Porites compressa, from 17 reefs during eight spawning events in 2010–2013. These simulations make it possible to investigate not only the general dispersal patterns from individual coral reefs, but also how anomalous conditions during individual spawning events can result in large deviations from those general patterns. These data also help identify those reefs that are dominated by self-seeding and those where self-seeding is limited to determine their relative susceptibility to stressors and potential roadblocks to recovery. Overall, the numerical model results indicate that many of the coral reefs in Maui Nui seed reefs on adjacent islands, demonstrating the interconnected nature of the coral reefs in Maui Nui and providing a key component of the scientific underpinning essential for the design of a mutually supportive network of MPAs to enhance conservation of coral reefs.

  13. Proceedings of the SERDP Coral Reef Monitoring and Assessment Workshop

    Science.gov (United States)

    2009-12-01

    the U.S. that have coral reefs within their jurisdictions. Biscayne National Park, the Dry Tortugas , and U.S. Virgin Island parks at St. John and...Signs Monitoring Networks Dry Tortugas NP Buck Island Reef NM Virgin Islands National Park Biscayne NP South Florida/Caribbean Network Florida/Caribbean...Buck Island, Dry Tortugas and Biscayne • Extensive sites – 4 10m permanent transects per site – 18 sites in DRTO Virgin Islands NP % l i v e c o r

  14. A matter of scale: damage from Hurricane Hugo (1989) to U.S. Virgin Islands reefs at the colony, community and whole reef level

    Science.gov (United States)

    Rogers, Caroline S.

    1993-01-01

    Studies at Buck Island Reef National Monument (St. Croix) and Virgin Islands National Park (St. John) by scientists in the U.S. National Park Service Coral Reef Assessment Program re- vealed the effects of Humcane Hugo on individual coral species, community parameters, and overall reef structure. Effects of the storm varied with depth, coral species, location relative to the storm path, character of the pre-storm communities, and ecological history. Live coral cover, initially less than 30% at all sites, dropped by 40 to 73%. Cover by the dominant species Montastrea annularis de- clined about 35% on the St. John reefs. At Buck Island, Acropora palmata cover, already reduced from 85% to 5% by white band disease and storms, fell to 0.8% after Hugo. Some areas on the south side of Buck Island were reduced to rubble pave- ment while other areas escaped serious damage. Data from cores at Buck Island reveal the influence of wave energy and storm frequency on overall reef character. Patchiness and variation in the responses of different species, zones, and entire reefs to the storm suggest that assessment of long-term trends in reef structure and composition requires analysis of changes at permanent study sites distributed over large areas.

  15. Coral health on reefs near mining sites in New Caledonia.

    Science.gov (United States)

    Heintz, T; Haapkylä, J; Gilbert, A

    2015-07-23

    Coral health data are poorly documented in New Caledonia, particularly from reefs chronically subject to anthropogenic and natural runoff. We investigated patterns of coral disease and non-disease conditions on reefs situated downstream of mining sites off the coast of New Caledonia. Surveys were conducted in March 2013 at 2 locations along the west coast and 2 locations along the east coast of the main island. Only 2 coral diseases were detected: growth anomalies and white syndrome. The most prevalent signs of compromised health at each location were sediment damage and algal overgrowth. These results support earlier findings that sedimentation and turbidity are major threats to in-shore reefs in New Caledonia. The Poritidae-dominated west coast locations were more subject to sediment damage, algal overgrowth and growth anomalies compared to the Acroporidae-dominated east coast locations. If growth form and resistance of coral hosts influence these results, differences in environmental conditions including hydro-dynamism between locations may also contribute to these outputs. Our results highlight the importance of combining coral health surveys with measurements of coral cover when assessing the health status of a reef, as reefs with high coral cover may have a high prevalence of corals demonstrating signs of compromised health.

  16. Coral reef fish biomass and benthic cover data from Timor-Leste in June 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reef fish and benthos were surveyed at 150 shallow-water coral reef sites across the north coast of Timor-Leste and around Atauro Island in June 2013 during a...

  17. Dredging in the Spratly Islands: Gaining Land but Losing Reefs.

    Science.gov (United States)

    Mora, Camilo; Caldwell, Iain R; Birkeland, Charles; McManus, John W

    2016-03-01

    Coral reefs on remote islands and atolls are less exposed to direct human stressors but are becoming increasingly vulnerable because of their development for geopolitical and military purposes. Here we document dredging and filling activities by countries in the South China Sea, where building new islands and channels on atolls is leading to considerable losses of, and perhaps irreversible damages to, unique coral reef ecosystems. Preventing similar damage across other reefs in the region necessitates the urgent development of cooperative management of disputed territories in the South China Sea. We suggest using the Antarctic Treaty as a positive precedent for such international cooperation.

  18. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    Science.gov (United States)

    Schill, Steven R; Raber, George T; Roberts, Jason J; Treml, Eric A; Brenner, Jorge; Halpin, Patrick N

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  19. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    Directory of Open Access Journals (Sweden)

    Steven R Schill

    Full Text Available We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  20. Human activities threaten coral reefs

    International Nuclear Information System (INIS)

    Tveitdal, Svein; Bjoerke, Aake

    2002-01-01

    Research indicates that 58 per cent of the coral reefs of the world are threatened by human activities. Pollution and global heating represent some of the threats. Coral reefs just beneath the surface of the sea are very sensitive to temperature changes. Since 1979, mass death of coral reefs has been reported increasingly often. More than 1000 marine species live in the coral reefs, among these are one fourth of all marine species of fish. It is imperative that the coral reefs be preserved, as coastal communities all over the world depend on them as sources of food and as they are the raw materials for important medicines. The article discusses the threats to the coral reefs in general and does not single out any particular energy-related activity as the principal threat. For instance, the El-Nino phenomenon of the Pacific Ocean is probably involved in mass death of coral reefs and in the North Sea large parts of deep-water reefs have been crushed by heavy beam trawlers fishing for bottom fish

  1. Say what? Coral reef sounds as indicators of community assemblages and reef conditions

    Science.gov (United States)

    Mooney, T. A.; Kaplan, M. B.

    2016-02-01

    Coral reefs host some of the highest diversity of life on the planet. Unfortunately, reef health and biodiversity is declining or is threatened as a result of climate change and human influences. Tracking these changes is necessary for effective resource management, yet estimating marine biodiversity and tracking trends in ecosystem health is a challenging and expensive task, especially in many pristine reefs which are remote and difficult to access. Many fishes, mammals and invertebrates make sound. These sounds are reflective of a number of vital biological processes and are a cue for settling reef larvae. Biological sounds may be a means to quantify ecosystem health and biodiversity, however the relationship between coral reef soundscapes and the actual taxa present remains largely unknown. This study presents a comparative evaluation of the soundscape of multiple reefs, naturally differing in benthic cover and fish diversity, in the U.S. Virgin Islands National Park. Using multiple recorders per reef we characterized spacio-temporal variation in biological sound production within and among reefs. Analyses of sounds recorded over 4 summer months indicated diel trends in both fish and snapping shrimp acoustic frequency bands with crepuscular peaks at all reefs. There were small but statistically significant acoustic differences among sites on a given reef raising the possibility of potentially localized acoustic habitats. The strength of diel trends in lower, fish-frequency bands were correlated with coral cover and fish density, yet no such relationship was found with shrimp sounds suggesting that fish sounds may be of higher relevance to tracking certain coral reef conditions. These findings indicate that, in spite of considerable variability within reef soundscapes, diel trends in low-frequency sound production reflect reef community assemblages. Further, monitoring soundscapes may be an efficient means of establishing and monitoring reef conditions.

  2. Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted

    Science.gov (United States)

    Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica

    2016-09-01

    Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.

  3. Climate-change refugia: shading reef corals by turbidity.

    Science.gov (United States)

    Cacciapaglia, Chris; van Woesik, Robert

    2016-03-01

    Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change. © 2015 John Wiley & Sons Ltd.

  4. Assessment of Nonindigenous Species on Coral Reefs in the Hawaiian Islands, with Emphasis on Introduced Invertebrates (NODC Accession 0001419)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reefs on the islands of Kaua'i, Moloka'i, Maui, Hawai'i and O'ahu were surveyed for the presence and impact of marine nonindigenous and cryptogenic species...

  5. Monitoring Coral Health to Determine Coral Bleaching Response at High Latitude Eastern Australian Reefs: An Applied Model for A Changing Climate

    Directory of Open Access Journals (Sweden)

    Andrew G. Carroll

    2011-09-01

    Full Text Available Limited information is available on the bleaching susceptibility of coral species that dominate high latitude reefs along the eastern seaboard of Australia. The main aims of this study were to: (i monitor coral health and spatial patterns of coral bleaching response at the Solitary Islands Marine Park (SIMP and Lord Howe Island Marine Park (LHIMP, to determine variability of bleaching susceptibility among coral taxa; (ii predict coral bleaching thresholds at 30 °S and 31.5 °S, extrapolated from published bleaching threshold data; and (iii propose a subtropical northern New South Wales coral bleaching model from biological and physical data. Between 2005 and 2007 minor bleaching was observed in dominant coral families including Pocilloporidae, Poritidae and Dendrophylliidae in the SIMP and Pocilloporidae, Poritidae and Acroporidae (Isopora and Montipora spp. in the LHIMP, with a clear difference in bleaching susceptibility found between sites, both within and between locations. Bleaching susceptibility was highest in Porites spp. at the most offshore island site within the SIMP during summer 2005. Patterns of subtropical family bleaching susceptibility within the SIMP and LHIMP differed to those previously reported for the central Great Barrier Reef (GBR. These differences may be due to a number of factors, including temperature history and/or the coral hosts association with different zooxanthellae clades, which may have lower thermal tolerances. An analysis of published estimates of coral bleaching thresholds from the Caribbean, South Africa, GBR and central and northern Pacific regions suggests that the bleaching threshold at 30–31.5 °S ranges between 26.5–26.8 °C. This predicted threshold was confirmed by an extensive coral bleaching event on the world’s southernmost coral reef at Lord Howe Island, during the 2010 austral summer season. These results imply that dominant coral taxa at subtropical reefs along the eastern Australian

  6. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands

    Directory of Open Access Journals (Sweden)

    T. Cyronak

    2013-04-01

    Full Text Available To better predict how ocean acidification will affect coral reefs, it is important to understand how biogeochemical cycles on reefs alter carbonate chemistry over various temporal and spatial scales. This study quantifies the contribution of shallow porewater exchange (as quantified from advective chamber incubations and fresh groundwater discharge (as traced by 222Rn to total alkalinity (TA dynamics on a fringing coral reef lagoon along the southern Pacific island of Rarotonga over a tidal and diel cycle. Benthic alkalinity fluxes were affected by the advective circulation of water through permeable sediments, with net daily flux rates of carbonate alkalinity ranging from −1.55 to 7.76 mmol m−2 d−1, depending on the advection rate. Submarine groundwater discharge (SGD was a source of TA to the lagoon, with the highest flux rates measured at low tide, and an average daily TA flux of 1080 mmol m−2 d−1 at the sampling site. Both sources of TA were important on a reef-wide basis, although SGD acted solely as a delivery mechanism of TA to the lagoon, while porewater advection was either a sink or source of TA dependent on the time of day. This study describes overlooked sources of TA to coral reef ecosystems that can potentially alter water column carbonate chemistry. We suggest that porewater and groundwater fluxes of TA should be taken into account in ocean acidification models in order to properly address changing carbonate chemistry within coral reef ecosystems.

  7. Use of Integrated Landscape Indicators to Evaluate the Health of Linked Watersheds and Coral Reef Environments in the Hawaiian Islands

    Science.gov (United States)

    Rodgers, Ku`ulei S.; Kido, Michael H.; Jokiel, Paul L.; Edmonds, Tim; Brown, Eric K.

    2012-07-01

    A linkage between the condition of watersheds and adjacent nearshore coral reef communities is an assumed paradigm in the concept of integrated coastal management. However, quantitative evidence for this "catchment to sea" or "ridge to reef" relationship on oceanic islands is lacking and would benefit from the use of appropriate marine and terrestrial landscape indicators to quantify and evaluate ecological status on a large spatial scale. To address this need, our study compared the Hawai`i Watershed Health Index (HI-WHI) and Reef Health Index (HI-RHI) derived independently of each other over the past decade. Comparisons were made across 170 coral reef stations at 52 reef sites adjacent to 42 watersheds throughout the main Hawaiian Islands. A significant positive relationship was shown between the health of watersheds and that of adjacent reef environments when all sites and depths were considered. This relationship was strongest for sites facing in a southerly direction, but diminished for north facing coasts exposed to persistent high surf. High surf conditions along the north shore increase local wave driven currents and flush watershed-derived materials away from nearshore waters. Consequently, reefs in these locales are less vulnerable to the deposition of land derived sediments, nutrients and pollutants transported from watersheds to ocean. Use of integrated landscape health indices can be applied to improve regional-scale conservation and resource management.

  8. Evaluation of Stony Coral Indicators for Coral Reef ...

    Science.gov (United States)

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for their response to gradients of human disturbance. The purpose of the study was to identify indicators that could be used for regulatory assessments under authority of the Clean Water Act--this requires that indicators distinguish anthropogenic disturbances from natural variation. Stony coral indicators were tested for correlation with human disturbance across gradients located on three different sides of the island. At the most intensely disturbed location, five of eight primary indicators were highly correlated with distance from the source of disturbance: Coral taxa richness, average colony size, the coefficient of variation of colony size (an indicator of colony size heterogeneity), total topographic coral surface area, and live coral surface area. An additional set of exploratory indicators related to rarity, reproductive and spawning mode, and taxonomic identity were also screened for association with disturbance at the same location. For the other two locations, there were no significant changes in indicator values and therefore no discernible effects of human activity. Coral indicators demonstrated sufficient precision to detect levels of change that would be applicable in a regio

  9. Biology of corals and coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Rajkumar, R.; Parulekar, A.H.

    on the systematic position is presented. The general structure is depicted with illustrations. Physiology part is updated to current knowledge on reproduction, nutrition and excretion of corals. The coral reefs section begins with status of world reefs...

  10. Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific.

    Science.gov (United States)

    Riegl, B; Glynn, P W; Wieters, E; Purkis, S; d'Angelo, C; Wiedenmann, J

    2015-02-05

    Predicted increases in seawater temperatures accelerate coral reef decline due to mortality by heat-driven coral bleaching. Alteration of the natural nutrient environment of reef corals reduces tolerance of corals to heat and light stress and thus will exacerbate impacts of global warming on reefs. Still, many reefs demonstrate remarkable regeneration from past stress events. This paper investigates the effects of sea surface temperature (SST) and water column productivity on recovery of coral reefs. In 71 Indo-Pacific sites, coral cover changes over the past 1-3 decades correlated negative-exponentially with mean SST, chlorophyll a, and SST rise. At six monitoring sites (Persian/Arabian Gulf, Red Sea, northern and southern Galápagos, Easter Island, Panama), over half of all corals were <31 years, implying that measured environmental variables indeed shaped populations and community. An Indo-Pacific-wide model suggests reefs in the northwest and central Indian Ocean, as well as the central west Pacific, are at highest risk of degradation, and those at high latitudes the least. The model pinpoints regions where coral reefs presently have the best chances for survival. However, reefs best buffered against temperature and nutrient effects are those that current studies suggest to be most at peril from future ocean acidification.

  11. Diverse coral communities in naturally acidified waters of a Western Pacific reef

    Science.gov (United States)

    Shamberger, Kathryn E. F.; Cohen, Anne L.; Golbuu, Yimnang; McCorkle, Daniel C.; Lentz, Steven J.; Barkley, Hannah C.

    2014-01-01

    Anthropogenic carbon dioxide emissions are acidifying the oceans, reducing the concentration of carbonate ions ([CO32-]) that calcifying organisms need to build and cement coral reefs. To date, studies of a handful of naturally acidified reef systems reveal depauperate communities, sometimes with reduced coral cover and calcification rates, consistent with results of laboratory-based studies. Here we report the existence of highly diverse, coral-dominated reef communities under chronically low pH and aragonite saturation state (Ωar). Biological and hydrographic processes change the chemistry of the seawater moving across the barrier reefs and into Palau's Rock Island bays, where levels of acidification approach those projected for the western tropical Pacific open ocean by 2100. Nevertheless, coral diversity, cover, and calcification rates are maintained across this natural acidification gradient. Identifying the combination of biological and environmental factors that enable these communities to persist could provide important insights into the future of coral reefs under anthropogenic acidification.

  12. Spatio-temporal patterns of coral recruitment at Vamizi Island ...

    African Journals Online (AJOL)

    Spatio-temporal patterns of coral recruitment at Vamizi Island, Quirimbas Archipelago, Mozambique. ... Spatial and temporal patterns of recruitment of reef corals were assessed for the first time in Mozambique ... AJOL African Journals Online.

  13. Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa.

    Directory of Open Access Journals (Sweden)

    Peter Houk

    Full Text Available BACKGROUND: Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s of spatial variation in the recovery process. METHODOLOGY/PRINCIPAL FINDINGS: This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of 'recovery status', defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. CONCLUSIONS/SIGNIFICANCE: Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.

  14. Coral reefs and eutrophication

    International Nuclear Information System (INIS)

    Stambler, N.

    1999-01-01

    Coral reefs are found in oligotrophic waters, which are poor in nutrients such as nitrogen, phosphate, and possibly iron. In spite of this, coral reefs exhibit high gross primary productivity rates. They thrive in oligotrophic conditions because of the symbiotic relationship between corals and dinoflagellate algae (zooxanthellae) embedded in the coral tissue. In their mutualistic symbiosis, the zooxanthellae contribute their photosynthetic capability as the basis for the metabolic energy of the whole association, and eventually of a great part of the entire reef ecosystem

  15. Agents of coral mortality on reef formations of the Colombian Pacific.

    Science.gov (United States)

    Navas-Camacho, Raúl; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina

    2010-05-01

    The National Monitoring System for Coral Reefs of Colombia (SIMAC) monitors the impact of some of the most important agents of coral tissue loss (bleaching and/or disease) in the Colombian Pacific coral formations since 1998. Physiological bleaching is among the main results of stress in the area. Signs of coral diseases resembling bacterial bleaching such as White Plague and White Band, were observed in Malpelo and Gorgona islands. Damage to the Pacific gorgonian Pacifigorgia spp., similar to those produced by Aspergillosis in Caribbean corals, was detected in Utria Bay. The presence of tumors in colonies of massive corals was also recorded. Even though coral diseases are globally widespread, their occurrence in American Pacific reefs has been poorly documented to date.

  16. The influence of coral reef benthic condition on associated fish assemblages.

    Directory of Open Access Journals (Sweden)

    Karen M Chong-Seng

    Full Text Available Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58% and high structural complexity to high macroalgae cover (up to 95% and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.

  17. The structure and composition of Holocene coral reefs in the Middle Florida Keys

    Science.gov (United States)

    Toth, Lauren T.; Stathakopoulos, Anastasios; Kuffner, Ilsa B.

    2016-07-21

    The Florida Keys reef tract (FKRT) is the largest coral-reef ecosystem in the continental United States. The modern FKRT extends for 362 kilometers along the coast of South Florida from Dry Tortugas National Park in the southwest, through the Florida Keys National Marine Sanctuary (FKNMS), to Fowey Rocks reef in Biscayne National Park in the northeast. Most reefs along the FKRT are sheltered by the exposed islands of the Florida Keys; however, large channels are located between the islands of the Middle Keys. These openings allow for tidal transport of water from Florida Bay onto reefs in the area. The characteristics of the water masses coming from Florida Bay, which can experience broad swings in temperature, salinity, nutrients, and turbidity over short periods of time, are generally unfavorable or “inimical” to coral growth and reef development.Although reef habitats are ubiquitous throughout most of the Upper and Lower Keys, relatively few modern reefs exist in the Middle Keys most likely because of the impacts of inimical waters from Florida Bay. The reefs that are present in the Middle Keys generally are poorly developed compared with reefs elsewhere in the region. For example, Acropora palmata has been the dominant coral on shallow-water reefs in the Caribbean over the last 1.5 million years until populations of the coral declined throughout the region in recent decades. Although A. palmata was historically abundant in the Florida Keys, it was conspicuously absent from reefs in the Middle Keys. Instead, contemporary reefs in the Middle Keys have been dominated by occasional massive (that is, boulder or head) corals and, more often, small, non-reef-building corals.Holocene reef cores have been collected from many locations along the FKRT; however, despite the potential importance of the history of reefs in the Middle Florida Keys to our understanding of the environmental controls on reef development throughout the FKRT, there are currently no published

  18. Long-term monitoring of coral reef fish assemblages in the Western central pacific.

    Science.gov (United States)

    Heenan, Adel; Williams, Ivor D; Acoba, Tomoko; DesRochers, Annette; Kosaki, Randall K; Kanemura, Troy; Nadon, Marc O; Brainard, Russell E

    2017-12-05

    Throughout the tropics, coral reef ecosystems, which are critically important to people, have been greatly altered by humans. Differentiating human impacts from natural drivers of ecosystem state is essential to effective management. Here we present a dataset from a large-scale monitoring program that surveys coral reef fish assemblages and habitats encompassing the bulk of the US-affiliated tropical Pacific, and spanning wide gradients in both natural drivers and human impact. Currently, this includes >5,500 surveys from 39 islands and atolls in Hawaii (including the main and Northwestern Hawaiian Islands) and affiliated geo-political regions of American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the Pacific Remote Islands Areas. The dataset spans 2010-2017, during which time, each region was visited at least every three years, and ~500-1,000 surveys performed annually. This standardised dataset is a powerful resource that can be used to understand how human, environmental and oceanographic conditions influence coral reef fish community structure and function, providing a basis for research to support effective management outcomes.

  19. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific.

    Science.gov (United States)

    Smith, Jennifer E; Brainard, Rusty; Carter, Amanda; Grillo, Saray; Edwards, Clinton; Harris, Jill; Lewis, Levi; Obura, David; Rohwer, Forest; Sala, Enric; Vroom, Peter S; Sandin, Stuart

    2016-01-13

    Numerous studies have documented declines in the abundance of reef-building corals over the last several decades and in some but not all cases, phase shifts to dominance by macroalgae have occurred. These assessments, however, often ignore the remainder of the benthos and thus provide limited information on the present-day structure and function of coral reef communities. Here, using an unprecedentedly large dataset collected within the last 10 years across 56 islands spanning five archipelagos in the central Pacific, we examine how benthic reef communities differ in the presence and absence of human populations. Using islands as replicates, we examine whether benthic community structure is associated with human habitation within and among archipelagos and across latitude. While there was no evidence for coral to macroalgal phase shifts across our dataset we did find that the majority of reefs on inhabited islands were dominated by fleshy non-reef-building organisms (turf algae, fleshy macroalgae and non-calcifying invertebrates). By contrast, benthic communities from uninhabited islands were more variable but in general supported more calcifiers and active reef builders (stony corals and crustose coralline algae). Our results suggest that cumulative human impacts across the central Pacific may be causing a reduction in the abundance of reef builders resulting in island scale phase shifts to dominance by fleshy organisms. © 2016 The Author(s).

  20. Modeled connectivity of Acropora millepora populations from reefs of the Spratly Islands and the greater South China Sea

    Science.gov (United States)

    Dorman, Jeffrey G.; Castruccio, Frederic S.; Curchitser, Enrique N.; Kleypas, Joan A.; Powell, Thomas M.

    2016-03-01

    The Spratly Island archipelago is a remote network of coral reefs and islands in the South China Sea that is a likely source of coral larvae to the greater region, but about which little is known. Using a particle-tracking model driven by oceanographic data from the Coral Triangle region, we simulated both spring and fall spawning events of Acropora millepora, a common coral species, over a 46-yr period (1960-2005). Simulated population biology of A. millepora included the acquisition and loss of competency, settlement over appropriate benthic habitat, and mortality based on experimental data. The simulations aimed to provide insights into the connectivity of reefs within the Spratly Islands, the settlement of larvae on reefs of the greater South China Sea, and the potential dispersal range of reef organisms from the Spratly Islands. Results suggest that (1) the Spratly Islands may be a significant source of A. millepora larvae for the Palawan reefs (Philippines) and some of the most isolated reefs of the South China Sea; and (2) the relatively isolated western Spratly Islands have limited source reefs supplying them with larvae and fewer of their larvae successfully settling on other reefs. Examination of particle dispersal without biology (settlement and mortality) suggests that larval connectivity is possible throughout the South China Sea and into the Coral Triangle region. Strong differences in the spring versus fall larval connectivity and dispersal highlight the need for a greater understanding of spawning dynamics of the region. This study confirms that the Spratly Islands are likely an important source of larvae for the South China Sea and Coral Triangle region.

  1. Status of coral reefs in South Asia: Bangladesh, India, Maldives, Sri Lanka

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasuriya, A.; Zahir, H.; Muley, E.V.; Subramanian, B.R.; Venkataraman, K.; Wafar, M.V.M.; Khan, S.M.M.H.; Whittingham, E.

    only around St. Martin's Island. Pakistan has poorly developed scattered reef communities. Natural disturbances and the lack of management of human activities continue to cause widespread damage to coral reefs in the region. In general, legal...

  2. Balance of constructive and destructive carbonate processes on mesophotic coral reefs

    Science.gov (United States)

    Weinstein, D. K.; Klaus, J. S.; Smith, T. B.; Helmle, K. P.; Marshall, D.

    2013-12-01

    Net carbonate accumulation of coral reefs is the product of both constructive and destructive processes that can ultimately influence overall reef geomorphology. Differences in these processes with depth may in part explain why the coral growth-light intensity association does no result in the traditionally theorized reef accretion decrease with depth. Until recently, physical sampling limitations had prevented the acquisition of sedimentary data needed to assess in situ carbonate accumulation in mesophotic reefs (30-150 m). Coral framework production, secondary carbonate production (calcareous encrusters), and bioerosion, the three most critical components of net carbonate accumulation, were analyzed in mesophotic reefs more than 10 km south of St. Thomas, U.S. Virgin Islands along a very gradual slope that limits sediment transport and sedimentation. Recently dead samples of the massive coral, Orbicella annularis collected from three structurally different upper mesophotic coral reef habitats (30-45 m) were cut parallel to the primary growth axis to identify density banding through standard x-radiographic techniques. Assuming annual banding, mesophotic linear extension rates were calculated on the order of 0.7-1.5 mm/yr. Weight change of experimental coral substrates exposed for 3 years indicate differing rates (1.1-17.2 g/yr) of bioerosion and secondary accretion between mesophotic sites. When correcting bioerosion rates for high mesophotic skeletal density, carbonate accumulation rates were found to vary significantly between neighboring mesophotic reefs with distinctive structures. Results imply variable rates of mesophotic reef net carbonate accretion with the potential to influence overall reef/platform morphology, including localized mesophotic reef structure.

  3. CO2 fixation by coral reefs. Sangosho ni yoru nisanka tanso no kotei

    Energy Technology Data Exchange (ETDEWEB)

    Kayane, H [Geological Survey of Japan, Tsukuba (Japan)

    1993-05-01

    In order for a coral reef to be a CO2 absorbing source, a condition would have to be satisfied that, with respect to production of organic carbon through photosynthesis, a total production by coral reef organism association is large, and the ratio of the total production to a total consumption is more than one. A requirement that the ratio of inorganic carbon production through calcification be 1.5 or more must also be met. Measurements have been carried out at coral fields off the Ishigaki Island by the Geological Research Center. The measurement results revealed that production is high for both of organic carbon and inorganic carbon, surplus organic carbon is produced, and CO2 is absorbed into the coral reefs. It was also found by measuring the stable isotope ratio of nitrogen in coral reef organisms that nitrogen required for the production in the coral reefs is supplied from the atmosphere through nitrogen fixation. The paper adds a description that CaCO3 deposition in the coral reefs has peaked in 5000 years to 6000 years ago, and it is in a ceiling-hit condition now. 25 refs., 3 figs.

  4. Monitoring Coral Health to Determine Coral Bleaching Response at High Latitude Eastern Australian Reefs: An Applied Model for A Changing Climate

    OpenAIRE

    Dalton, Steven J.; Carroll, Andrew G.

    2011-01-01

    Limited information is available on the bleaching susceptibility of coral species that dominate high latitude reefs along the eastern seaboard of Australia. The main aims of this study were to: (i) monitor coral health and spatial patterns of coral bleaching response at the Solitary Islands Marine Park (SIMP) and Lord Howe Island Marine Park (LHIMP), to determine variability of bleaching susceptibility among coral taxa; (ii) predict coral bleaching thresholds at 30 °S and 31.5 °S, extrapolate...

  5. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines

    Science.gov (United States)

    Quataert, Ellen; Storlazzi, Curt; van Rooijen, Arnold; van Dongeren, Ap; Cheriton, Olivia

    2015-01-01

    A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.

  6. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines

    Science.gov (United States)

    Quataert, Ellen; Storlazzi, Curt; Rooijen, Arnold; Cheriton, Olivia; Dongeren, Ap

    2015-08-01

    A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.

  7. Coral settlement on a highly disturbed equatorial reef system.

    Science.gov (United States)

    Bauman, Andrew G; Guest, James R; Dunshea, Glenn; Low, Jeffery; Todd, Peter A; Steinberg, Peter D

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world's most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m(-2) yr(-1)) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March-May and September-November, coinciding with annual coral spawning periods (March-April and October), while the lowest settlement occurred from December-February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure ('others'; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore's reefs appears relatively constrained, which could lead

  8. Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2018-04-01

    Full Text Available Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal development, mining, aquaculture, shipping, and global warming. We calculated an index of the risk to cumulative impacts: (i assuming uniform sensitivity of coral reefs to stressors; and (ii using impact weights to reflect varying tolerance levels of coral reefs to each stressor. We also predicted the index in both the presence and absence of global warming. We found that 16% and 37% of coral reefs had high to very high risk of cumulative impacts, without and with information on sensitivity respectively, and 42% of reefs had low risk to cumulative impacts from both local and global stressors. Our outputs are the first comprehensive spatial dataset of cumulative impact on coral reefs in Brazil, and show that areas requiring attention mostly corresponded to those closer to population centres. We demonstrate how the relationships between risks from local and global stressors can be used to derive strategic management actions.

  9. Hawaii Institute for Marine Biology and NOAA National Ocean Service, Marine Sanctuary Program Partnership, in affiliation with the Coral Reef Assessment and Monitoring Program, 2007 Survey of the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve: Digital Still Images (NODC Accession 0052882)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rapid Assessment Transects were conducted in 2007 in the Papahanaumokuakea Marine National Monument of the Northwest Hawaiian Islands Coral Reef Ecosystem Reserve....

  10. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  11. Reef fish and coral assemblages at Maptaput, Rayong Province

    Directory of Open Access Journals (Sweden)

    Voravit Cheevaporn

    2007-06-01

    Full Text Available This study describes the structure of coral and fish assemblages of a group of small islands and pinnacles in the vicinity of Maptaput deep sea port, Rayong Province, Thailand during 2002. The coral and fish assemblages at Saket Island and nearby pinnacle, Hin-Yai, which are located less than 1 km from the deep sea port, had changed. Living coral cover in 2002 was 8% at Hin-Yai and 4% at Saket Island which decreased from 33% and 64%, respectively in the previous report in 1992. Numbers of coral species at Saket Island decreased from 41 species to 13 species. Acropora spp. that previously dominated the area had nearly disappeared. For fishes, a total of 40 species were found in 2002 the numbers decreased to only 6 species at Saket Island and 36 species at Hin-Yai. Fishes that dominated the area are small pomacentrids. After 1997, the conditions of coral and fish assemblages at Saket Island and Hin-Yai had markedly changed, whereas, the conditions found in the nearby area are much better. Sediment load from port construction was the primary cause of the degradation. This should indicate the adverse effect of sedimentation on coral and reef fish assemblages at Maptaput. Coral communities developed on rock pinnacles west of Maptaput deep-sea port are reported and described herein for the first time.

  12. Coral reef fish biomass and benthic cover data from Timor-Leste in June 2013 (NCEI Accession 0165354)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reef fish and benthos were surveyed at 150 shallow-water coral reef sites across the north coast of Timor-Leste and around Atauro Island in June 2013 during a...

  13. Quality and Quantity of Particulate Organic Carbon in a Coral Reef at Tioman Island, Malaysia

    International Nuclear Information System (INIS)

    Nakajima, R.; Toda, T.; Shibata, A.

    2011-01-01

    The quality and quantity of particulate organic carbon (POC) were investigated in a fringing coral reef of Tioman Island, Malaysia to better understand the food sources for reef meso-zooplankton. Phytoplankton biomass in the water column was on average 0.22 (± 0.07) mg Chl-a m-3, of which pico phytoplankton was the most important (size <3 μm, 50-70 % of the total Chl-a). The proportion of C biomass by phytoplankton and other plankton to particulate organic carbon (POC) was low (6 % and 5 %, respectively) and the major portion of POC was occupied by detritus (89 %), suggesting that the diet of particle-feeding or suspension feeding meso-zooplankton would chiefly consist of detritus. (author)

  14. Pacific Reef Assessment and Monitoring Program Rapid Ecological Assessment Quadrat Surveys of Corals around the Marianas Islands from 2003-08-22 to 2007-06-08 (NCEI Accession 0129066)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pacific Reef Assessment and Monitoring Program (Pacific RAMP), established by the Coral Reef Ecosystem Division of the NOAA Pacific Islands Fisheries Science...

  15. 40 CFR 230.44 - Coral reefs.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged or...

  16. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    Science.gov (United States)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  17. Agents of coral mortality on reef formations of the Colombian Pacific

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available The National Monitoring System for Coral Reefs of Colombia (SIMAC monitors the impact of some of the most important agents of coral tissue loss (bleaching and/or disease in the Colombian Pacific coral formations since 1998. Physiological bleaching is among the main results of stress in the area. Signs of coral diseases resembling bacterial bleaching such as White Plague and White Band, were observed in Malpelo and Gorgona islands. Damage to the Pacific gorgonian Pacifigorgia spp., similar to those produced by Aspergillosis in Caribbean corals, was detected in Utría Bay. The presence of tumors in colonies of massive corals was also recorded. Even though coral diseases are globally widespread, their occurrence in American Pacific reefs has been poorly documented to date. Rev. Biol. Trop. 58 (Suppl. 1: 133-138. Epub 2010 May 01.

  18. Disease and stress-induced mortality of corals in Indian reefs and observations on bleaching of corals in the Andamans

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Raghukumar, C.; Raghukumar, S.

    A study was carried out in the Lakshadweep and Andaman islands and the Gulf of Kutch to assess the health of corals in Indian reefs. Disease, predation and stress were the major factors of coral mortality. Death caused by diseases - the black band...

  19. The application of PIT tags to measure transport of detrital coral fragments on a fringing reef: Majuro Atoll, Marshall Islands

    Science.gov (United States)

    Ford, Murray R.

    2014-06-01

    Passive integrated transponder (PIT) tags are a radio-frequency identification device widely used as a machine-readable identification tool in fisheries research. PIT tags have also been employed, to a lesser extent, to track the movement of gravel-sized clasts within fluvial and coastal systems. In this study, PIT tags were inserted into detrital coral fragments and used to establish source-sink transport pathways on a fringing reef on Majuro Atoll in the Marshall Islands. Results suggest the transport of gravel-sized material on the inter-tidal reef flat is exclusively across-reef towards the lagoon. Considerable variation in the distance travelled by fragments was observed. Fragments were largely intact and visually recognisable after almost 5 months on the reef flat. However, the branches of some recovered fragments had broken off and corallite abrasion was observed in recovered fragments. This study indicates that PIT tags are an inexpensive and powerful new addition to the suite of sediment transport and taphonomic tools for researchers working within coral reef systems.

  20. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    Science.gov (United States)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  1. Coral reef bleaching: ecological perspectives

    Science.gov (United States)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  2. Dietary shift in juvenile coral trout ( Plectropomus maculatus) following coral reef degradation from a flood plume disturbance

    Science.gov (United States)

    Wen, Colin K. C.; Bonin, Mary C.; Harrison, Hugo B.; Williamson, David H.; Jones, Geoffrey P.

    2016-06-01

    Acute environmental disturbances impact on habitat quality and resource availability, which can reverberate through trophic levels and become apparent in species' dietary composition. In this study, we observed a distinct dietary shift of newly settled and juvenile coral trout ( Plectropomus maculatus) following severe coral reef habitat degradation after a river flood plume affected the Keppel Islands, Australia. Hard coral cover declined by ~28 % in the 2 yr following the 2010-2011 floods, as did the abundance of young coral trout. Gut contents analysis revealed that diets had shifted from largely crustacean-based to non-preferred prey fishes following the disturbances. These results suggest that newly settled and juvenile coral trout modify their diet and foraging strategy in response to coral habitat degradation. This bottom-up effect of habitat degradation on the diet of a top coral reef predator may incur a metabolic cost, with subsequent effects on growth and survival.

  3. Organic matter degradation drives benthic cyanobacterial mat abundance on caribbean coral reefs

    NARCIS (Netherlands)

    Brocke, Hannah J.; Polerecky, Lubos; De Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M.

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised

  4. Performance Evaluation of CRW Reef-Scale and Broad-Scale SST-Based Coral Monitoring Products in Fringing Reef Systems of Tobago

    Directory of Open Access Journals (Sweden)

    Shaazia S. Mohammed

    2015-12-01

    Full Text Available Satellite-derived sea surface temperature (SST is used to monitor coral bleaching through the National Oceanic and Atmospheric Administration’s Coral Reef Watch (CRW Decision Support System (DSS. Since 2000, a broad-scale 50 km SST was used to monitor thermal stress for coral reefs globally. However, some discrepancies were noted when applied to small-scale fringing coral reefs. To address this, CRW created a new DSS, specifically targeted at or near reef scales. Here, we evaluated the new reef-scale (5 km resolution products using in situ temperature data and coral bleaching surveys which were also compared with the heritage broad-scale (50 km for three reefs (Buccoo Reef, Culloden and Speyside of the southern Caribbean island of Tobago. Seasonal and annual biases indicated the new 5 km SST generally represents the conditions at these reefs more accurately and more consistently than the 50 km SST. Consistency between satellite and in situ temperature data influences the performance of anomaly-based predictions of bleaching: the 5 km DHW product showed better consistency with bleaching observations than the 50 km product. These results are the first to demonstrate the improvement of the 5 km products over the 50 km predecessors and support their use in monitoring thermal stress of reefs in the southern Caribbean.

  5. Cyanobacteria in Coral Reef Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    L. Charpy

    2012-01-01

    Full Text Available Cyanobacteria have dominated marine environments and have been reef builders on Earth for more than three million years (myr. Cyanobacteria still play an essential role in modern coral reef ecosystems by forming a major component of epiphytic, epilithic, and endolithic communities as well as of microbial mats. Cyanobacteria are grazed by reef organisms and also provide nitrogen to the coral reef ecosystems through nitrogen fixation. Recently, new unicellular cyanobacteria that express nitrogenase were found in the open ocean and in coral reef lagoons. Furthermore, cyanobacteria are important in calcification and decalcification. All limestone surfaces have a layer of boring algae in which cyanobacteria often play a dominant role. Cyanobacterial symbioses are abundant in coral reefs; the most common hosts are sponges and ascidians. Cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. Cyanobacteria can also form pathogenic microbial consortia in association with other microbes on living coral tissues, causing coral tissue lysis and death, and considerable declines in coral reefs. In deep lagoons, coccoid cyanobacteria are abundant and are grazed by ciliates, heteroflagellates, and the benthic coral reef community. Cyanobacteria produce metabolites that act as attractants for some species and deterrents for some grazers of the reef communities.

  6. Mesopredator trophodynamics on thermally stressed coral reefs

    Science.gov (United States)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  7. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    Science.gov (United States)

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.

  8. Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    OpenAIRE

    Rafael A. Magris; Alana Grech; Robert L. Pressey

    2018-01-01

    Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal de...

  9. Coral Reef Biological Criteria: Using Clean Water Act to Protect a National Treasure

    Science.gov (United States)

    A collaborative Environmental Protection Agency effort is underway to elucidate the technical aspects of coral reef biocriteria implementation. A stony coral rapid bioassessment protocol has been introduced and applied in the Florida Keys and U.S. Virgin Islands, where several in...

  10. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  11. Coral Reef Status of Navassa Island 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic and habitat data collected on the 2004 cruise to Navassa Islands National Wildlife Refuge. Parameters include benthic cover, coral disease prevalence,...

  12. Mapping Prevalence and Incidence of Coral Disease in reef-building corals at two Natural Reserves of the Southwest Puerto Rico

    Science.gov (United States)

    Sanchez Viruet, I.; Irizarry-Soto, E.; Ruiz-Valentín, I.

    2016-02-01

    Coral diseases seems to be the main cause of coral reef decline in the Caribbean. Before the bleaching event of 2005, coral reefs in Puerto Rico were dominated by the reef-building taxa: Orbicella annularis, Porites astreoides, Montastrea cavernosa, Agaricia agaracites and Colpophyllia natans. After the event, live-coral cover significantly declined and more than 90% of the scleractinian corals in the U.S. Virgin Islands and Puerto Rico showed signals of thermal stressors. The prevalence of coral diseases in five reef-building coral (Orbicella annularis, Orbicella franksi, Orbicella faveolata, Porites porites and Pseudiploria strigosa) species was assessed by tagging, photographing, and mapping all diseased and healthy colonies within 10 permanent 40m2 band transects at each inshore and mid-shelf reefs of Belvedere and Punta Guaniquilla Natural Reserves using a random stratified sampling method. Maximum and perpendicular diameter was used to assess coral size using Coral Point Count with Excel Extension. Corals were classified into three size class populations (class I: 0-50cm, class II: 50-100cm and class III: >100 cm). Data was used to develop a GIS-based map containing coral species, size and disease presence. Preliminary results of the inshore area showed a higher disease prevalence in Belvedere natural reserve and for P. strigosa (17.1%) and O. annularis (9.3%). Frequency distribution analysis showed a dominance of O. faveolata at Punta Guaniquilla and Belvedere (127 and 88 individuals respectively). Size class I dominates the distribution of each species within the natural reserves with a higher disease prevalence. Future work include continue prevalence surveys of the outer reef shelf on both natural reserves, monitoring and GIS-based mapping of incidence and resilience through time. This study will help in the assessment of the status of the coral reef of the southwest insular platform.

  13. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    Science.gov (United States)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  14. The relative abundance of dimethylsulfoniopropionate (DMSP) among other zwitterions in branching coral at Heron Island, southern Great Barrier Reef.

    Science.gov (United States)

    Swan, Hilton B; Deschaseaux, Elisabeth S M; Jones, Graham B; Eyre, Bradley D

    2017-07-01

    Dimethylsulfoniopropionate (DMSP) and eleven other target zwitterions were quantified in the branch tips of six Acropora species and Stylophora pistillata hard coral growing on the reef flat surrounding Heron Island in the southern Great Barrier Reef (GBR), Australia. Hydrophilic interaction liquid chromatography mass spectrometry (HILIC-MS) was used for sample analysis with isotope dilution MS applied to quantify DMSP. The concentration of DMSP was ten times greater in A. aspera than A. valida, with this difference being maintained throughout the spring, summer and winter seasons. In contrast, glycine betaine was present in significantly higher concentrations in these species during the summer than the winter. Exposure of branch tips of A. aspera to air and hypo-saline seawater for up to 1 h did not alter the concentrations of DMSP present in the coral when compared with control samples. DMSP was the most abundant target zwitterion in the six Acropora species examined, ranging from 44-78% of all target zwitterions in A. millepora and A. aspera, respectively. In contrast, DMSP only accounted for 7% in S. pistillata, with glycine betaine and stachydrine collectively accounting for 88% of all target zwitterions in this species. The abundance of DMSP in the six Acropora species examined points to Acropora coral being an important source for the biogeochemical cycling of sulfur throughout the GBR, since this reef-building branching coral dominates the coral cover of the GBR. Graphical Abstract HILIC-MS extracted ion chromatogram showing zwitterionic metabolites from the branching coral Acropora isopora.

  15. The coral reef of South Moloka'i, Hawai'i - Portrait of a sediment-threatened fringing reef

    Science.gov (United States)

    Field, Michael E.; Cochran, Susan A.; Logan, Joshua; Storlazzi, Curt D.

    2008-01-01

    Moloka‘i, with the most extensive coral reef in the main Hawaiian Islands, is especially sacred to Hina, the Goddess of the Moon. As Hinaalo, she is the Mother of the Hawaiian people; as Hinapuku‘a, she is the Goddess of Fishermen; and in the form Hina‘opuhalako‘a, she is the Goddess who gave birth to coral, coral reefs, and all spiny marine organisms. Interdependence between the reef’s living resources, the people, and their cosmology was the basis for management of Moloka‘i’s coastal waters for over a thousand years.The ancient residents of Moloka‘i built the greatest concentration of fishponds known anywhere, but their mastery of mariculture, something needed now more than ever, was lost after near genocide from exotic Western diseases. Subsequent destruction of the native vegetation for exotic cattle, goats, pigs, sugar cane, and pineapple caused soil erosion and sedimentation on the reef flat. This masterful volume clearly documents that soil washing into the sea is the major threat to the reef today. Abandoned fishponds, choked with sediment, now act as barriers and mud traps, making damage to corals less than it would otherwise would have been.The role of mud and freshwater from land in preventing coral reef growth, clearly articulated in Charles Darwin’s first book, The Structure and Distribution of Coral Reefs, is the major theme of this book. All around the tropics, coral reefs have died from huge increases in terrestrial sedimentation that resulted from destruction of hillside forests for cash-crop agriculture and pastures in the colonial era, especially in Latin America, Asia, and the islands of the Caribbean and Indo-Pacific. It is obvious that one cannot manage the coastal zone as a unit separate from the watersheds that drain into it. Yet there has been surprisingly little comprehensive scientific study of these impacts.In this landmark volume, U.S. Geological Survey researchers and their colleagues have developed and applied a

  16. NOAA ESRI Geotiff- 1m Multibeam Bathymetry of NPS's Virgin Islands Coral Reef National Monument (Inshore), St. John, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of an inshore portion of the NPS's Virgin Islands Coral Reef National...

  17. NOAA ESRI Geotiff- 2m Multibeam Bathymetry of NPS's Virgin Islands Coral Reef National Monument (Offshore), St. John, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of an offshore portion of the NPS's Virgin Islands Coral Reef National...

  18. Population genetic structure of coral reef species Plectorhinchus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... 1The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao. 266003 P. R. ... marginal sea of Western Pacific, which was an enclosed inland sea ... coral islands and reefs in South China Sea. There are ..... strong genetic divergence in Southeast Asia (Liu et al., 2006).

  19. Spatiotemporal patterns of coral disease prevalence on Heron Island, Great Barrier Reef, Australia

    Science.gov (United States)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2010-12-01

    Despite increasing research effort on coral diseases, little is known about factors driving disease dynamics on the Great Barrier Reef (GBR). This is the first study to investigate the temporal patterns of coral disease prevalence and potential drivers of disease around Heron Island, in the southern Capricorn Bunker sector of the GBR. Surveys were conducted in two austral summers and three winters between November 2007 and August 2009 on six sites around the island. Six diseases were detected: brown band syndrome (BrB), growth anomalies (GA), ulcerative white spots (UWS), white syndrome (WS), skeletal eroding band disease (SEB) and black band disease (BBD). The lowest overall mean disease prevalence was 1.87 ± 0.75% (mean ± SE) in November 2007 and the highest 4.22 ± 1.72% in August 2008. There was evidence of seasonality for two diseases: BrB and UWS. This is the first study to report a higher prevalence of BrB in the winter. BrB had a prevalence of 3.29 ± 0.58% in August 2008 and 1.53 ± 0.28% in August 2009, while UWS was the most common syndrome in the summer with a prevalence of 1.12 ± 0.31% in November 2007 and 2.67 ± 0.52% prevalence in January 2008. The prevalence of GAs and SEB did not depend on the season, although the prevalence of GAs increased throughout the study period. WS had a slightly higher prevalence in the summer, but its overall prevalence was low (disease prevalence (12% of Acropora and 3.3% of Montipora species were diseased respectively). These results highlight the correlations between coral disease prevalence, seasonally varying environmental parameters and coral community composition. Given that diseases are likely to reduce the resilience of corals, seasonal patterns in disease prevalence deserve further research.

  20. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-01-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  1. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-02-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  2. A unique coral community in the mangroves of Hurricane Hole, St. John, US Virgin Islands

    Science.gov (United States)

    Rogers, Caroline S.

    2017-01-01

    Corals do not typically thrive in mangrove environments. However, corals are growing on and near the prop roots of red mangrove trees in Hurricane Hole, an area within the Virgin Islands Coral Reef National Monument under the protection of the US National Park Service in St. John, US Virgin Islands. This review summarizes current knowledge of the remarkable biodiversity of this area. Over 30 scleractinian coral species, about the same number as documented to date from nearby coral reefs, grow here. No other mangrove ecosystems in the Caribbean are known to have so many coral species. This area may be a refuge from changing climate, as these corals weathered the severe thermal stress and subsequent disease outbreak that caused major coral loss on the island’s coral reefs in 2005 and 2006. Shading by the red mangrove trees reduces the stress that leads to coral bleaching. Seawater temperatures in these mangroves are more variable than those on the reefs, and some studies have shown that this variability results in corals with a greater resistance to higher temperatures. The diversity of sponges and fish is also high, and a new genus of serpulid worm was recently described. Continuing research may lead to the discovery of more new species.

  3. Use of habitats as surrogates of biodiversity for efficient coral reef conservation planning in Pacific Ocean islands.

    Science.gov (United States)

    Dalleau, Mayeul; Andréfouët, Serge; Wabnitz, Colette C C; Payri, Claude; Wantiez, Laurent; Pichon, Michel; Friedman, Kim; Vigliola, Laurent; Benzoni, Francesca

    2010-04-01

    Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species' spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected-area site selections were derived from a rarity-complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species-habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat-mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space-borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.

  4. Mapping Health of Bonaire Coral Reefs Using a Lightweight Hyperspectral Mapping System - First Results

    Science.gov (United States)

    Suomalainen, Juha; Mucher, Sander; Kooistra, Lammert; Meesters, Erik

    2014-05-01

    The Dutch Caribbean island of Bonaire is one of the world's top diving holiday destinations much due to its clear waters and healthy coral reefs. The coral reefs surround the western side of the island as an approximately 50-150m wide band. However, the general consensus is that the extent and biodiversity of the Bonarian coral reef is constantly decreasing due to anthropogenic pressures. The last extensive study of the health of the reef ecosystem was performed in 1985 by Van Duyl creating an underwater atlas. In order to update this atlas of Bonaire's coral reefs, in October 2013, a hyperspectral mapping campaign was performed using the WUR Hyperspectral Mapping System (HYMSY). A dive validation campaign has been planned for early 2014. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing it to be mounted on varying platforms. In Bonaire the system was flown on two platforms. (1) on a Cessna airplane to provide a coverage for whole west side of the island with a hyperspectral map in 2-4m resolution and a RGB orthomosaic in 15cm resolution, and (2) on a kite pulled by boat and car to provide a subset coverage in higher resolution. In this presentation we will present our mapping technique and first results including a preliminary underwater atlas and conclusions on reef development.

  5. Possibility of high CO{sub 2} fixation rate by coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    K. Yamada; Y. Suzuki; B.E. Casareto; H. Komiyama [Shinshu University, Tokida (Japan). Dept. of Fine Materials Engineering

    2003-07-01

    Previous net rates of CO{sub 2} fixation by coral reef ecosystems have been said to be nearly zero due to a balance between CO{sub 2} fixed by organic carbon production and CO{sub 2} released by both organic carbon decomposition and inorganic carbon formation. But this study, conducted in Bora Bay, Miyako Island, Japan showed net rates of about 7 gC m{sup -2} d{sup -1} inside a coral reef and on a coral reef. It was found by experiment that the photosynthetic rate of coral increased with the increase of the flow rate of seawater. The authors tried to calculate net primary production (= net rates of CO{sub 2} fixation) outside a coral reef with flow rate. A flow rate on the coral reef of the open seaside is much higher than that in a lagoon. As an example, the CO{sub 2} fixation rates at the flow rates of 6 and 30 cm/s are compared. When it is assumed that the length of the whole coral reef facing the ocean is 50,000 km and its width is 100 m, and the flow rate is 30cm/s, the CO{sub 2} fixation rate is calculated to be 6.3 x 10{sup 6} t-C/y (3.5g-C/m{sup 2}d). This value is 2.2 times higher than that at the flow rate of 6 cm/s. This fixation rate is only by the coral itself. It means that the CO{sub 2} fixation rate by coral reef ecosystems can be much higher and the magnitude for worldwide ecosystems can be in the order of 10{sup 6}-10{sup 7} t-C/y. 14 refs., 5 tabs.

  6. Mesoscale variation in the photophysiology of the reef building coral Pocillopora damicornis along an environmental gradient

    Science.gov (United States)

    Cooper, Timothy F.; Ulstrup, Karin E.

    2009-06-01

    Spatial variation in the photophysiology of symbiotic dinoflagellates (zooxanthellae) of the scleractinian coral Pocillopora damicornis was examined along an environmental gradient in the Whitsunday Islands (Great Barrier Reef) at two depths (3 m and 6 m). Chlorophyll a fluorescence of photosystem II (PSII) and PAR-absorptivity measurements were conducted using an Imaging-PAM (pulse-amplitude-modulation) fluorometer. Most photophysiological parameters correlated with changes in environmental conditions quantified by differences in water quality along the gradient. For example, maximum quantum yield ( Fv/ Fm) increased and PAR-absorptivity decreased as water quality improved along the gradient from nearshore reefs (low irradiance, elevated nutrients and sediments) to outer islands (high irradiance, low nutrients and sediments). For apparent photosynthetic rate (PS max) and minimum saturating irradiance ( Ek), the direction of change differed depending on sampling depth, suggesting that different mechanisms of photo-acclimatisation operated between shallow and deep corals. Deep corals conformed to typical patterns of light/shade acclimatisation whereas shallow corals exhibited reduced PS max and Ek with improving water quality coinciding with greater heat dissipation (NPQ 241). Furthermore, deep corals on nearshore reefs exhibited elevated Q241 in comparison to outer islands possibly due to effects of sedimentation and/or pollutants rather than irradiance. These results highlight the importance of mesoscale sampling to obtain useful estimates of the variability of photophysiological parameters, particularly if such measures are to be used as bioindicators of the condition of coral reefs.

  7. Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean

    Directory of Open Access Journals (Sweden)

    Phanor Hernando Montoya Maya

    2016-11-01

    Full Text Available The aim of ecological restoration is to establish self-sustaining and resilient systems. In coral reef restoration, transplantation of nursery-grown corals is seen as a potential method to mitigate reef degradation and enhance recovery. The transplanted reef should be capable of recruiting new juvenile corals to ensure long-term resilience. Here, we quantified how coral transplantation influenced natural coral recruitment at a large-scale coral reef restoration site in Seychelles, Indian Ocean. Between November 2011 and June 2014 a total of 24,431 nursery-grown coral colonies from 10 different coral species were transplanted in 5,225 m2 (0.52 ha of degraded reef at the no-take marine reserve of Cousin Island Special Reserve in an attempt to assist in natural reef recovery. We present the results of research and monitoring conducted before and after coral transplantation to evaluate the positive effect that the project had on coral recruitment and reef recovery at the restored site. We quantified the density of coral recruits (spat <1 cm and juveniles (colonies 1-5 cm at the transplanted site, a degraded control site and a healthy control site at the marine reserve. We used ceramic tiles to estimate coral settlement and visual surveys with 1 m2 quadrats to estimate coral recruitment. Six months after tile deployment, total spat density at the transplanted site (123.4 ± 13.3 spat m-2 was 1.8 times higher than at healthy site (68.4 ± 7.8 spat m-2 and 1.6 times higher than at degraded site (78.2 ± 7.17 spat m-2. Two years after first transplantation, the total recruit density was highest at healthy site (4.8 ± 0.4 recruits m-2, intermediate at transplanted site (2.7 ± 0.4 recruits m-2, and lowest at degraded site (1.7 ± 0.3 recruits m-2. The results suggest that large-scale coral restoration may have a positive influence on coral recruitment and juveniles. The effect of key project techniques on the results are discussed. This study supports

  8. Incident wave, infragravity wave, and non-linear low-frequency bore evolution across fringing coral reefs

    Science.gov (United States)

    Storlazzi, C. D.; Griffioen, D.; Cheriton, O. M.

    2016-12-01

    Coral reefs have been shown to significantly attenuate incident wave energy and thus provide protection for 100s of millions of people globally. To better constrain wave dynamics and wave-driven water levels over fringing coral reefs, a 4-month deployment of wave and tide gauges was conducted across two shore-normal transects on Roi-Namur Island and two transects on Kwajalein Island in the Republic of the Marshall Islands. At all locations, although incident wave (periods 250 s) heights on the outer reef flat just inshore of the zone of wave breaking, the infragravity wave heights generally equaled the incident wave heights by the middle of the reef flat and exceeded the incident wave heights on the inner reef flat by the shoreline. The infragravity waves generally were asymmetric, positively skewed, bore-like forms with incident-band waves riding the infragravity wave crest at the head of the bore; these wave packets have similar structure to high-frequency internal waves on an internal wave bore. Bore height was shown to scale with water depth, offshore wave height, and offshore wave period. For a given tidal elevation, with increasing offshore wave heights, such bores occurred more frequently on the middle reef flat, whereas they occurred less frequently on the inner reef flat. Skewed, asymmetric waves are known to drive large gradients in velocity and shear stress that can transport material onshore. Thus, a better understanding of these low-frequency, energetic bores on reef flats is critical to forecasting how coral reef-lined coasts may respond to sea-level rise and climate change.

  9. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Science.gov (United States)

    Markey, Kathryn L; Abdo, Dave A; Evans, Scott N; Bosserelle, Cyprien

    2016-01-01

    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  10. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Directory of Open Access Journals (Sweden)

    Kathryn L Markey

    Full Text Available In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile. Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011 has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  11. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    Science.gov (United States)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  12. Hawaii Institute for Marine Biology and NOAA National Ocean Service, Marine Sanctuary Program Partnership, in affiliation with the Coral Reef Assessment and Monitoring Program, 2007 Survey of the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve: Benthic Data from Digital Still Images (NODC Accession 0000881)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rapid Assessment Transects were conducted in 2007 in the Papahanaumokuakea Marine National Monument of the Northwest Hawaiian Islands Coral Reef Ecosystem Reserve....

  13. Coral identity underpins architectural complexity on Caribbean reefs.

    Science.gov (United States)

    Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A

    2011-09-01

    The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.

  14. Benthic reef primary production in response to large amplitude internal waves at the Similan Islands (Andaman Sea, Thailand)

    KAUST Repository

    Jantzen, Carin

    2013-11-29

    Coral reefs are facing rapidly changing environments, but implications for reef ecosystem functioning and important services, such as productivity, are difficult to predict. Comparative investigations on coral reefs that are naturally exposed to differing environmental settings can provide essential information in this context. One prevalent phenomenon regularly introducing alterations in water chemistry into coral reefs are internal waves. This study therefore investigates the effect of large amplitude internal waves (LAIW) on primary productivity in coral reefs at the Similan Islands (Andaman Sea, Thailand). The LAIW-exposed west sides of the islands are subjected to sudden drops in water temperature accompanied by enhanced inorganic nutrient concentrations compared to the sheltered east. At the central island, Ko Miang, east and west reefs are only few hundred meters apart, but feature pronounced differences. On the west lower live coral cover (-38%) coincides with higher turf algae cover (+64%) and growth (+54%) compared to the east side. Turf algae and the reef sand-associated microphytobenthos displayed similar chlorophyll a contents on both island sides, but under LAIW exposure, turf algae exhibited higher net photosynthesis (+23%), whereas the microphytobenthos displayed reduced net and gross photosynthesis (-19% and -26%, respectively) accompanied by lower respiration (-42%). In contrast, the predominant coral Porites lutea showed higher chlorophyll a tissues contents (+42%) on the LAIW-exposed west in response to lower light availability and higher inorganic nutrient concentrations, but net photosynthesis was comparable for both sides. Turf algae were the major primary producers on the west side, whereas microphytobenthos dominated on the east. The overall primary production rate (comprising all main benthic primary producers) was similar on both island sides, which indicates high primary production variability under different environmental conditions.

  15. Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Kawahata, Hodaka

    2003-01-01

    The seawater CO 2 system and carbon budget were examined in coral reefs of wide variety with respect to topographic types and oceanographic settings in the Indo-Pacific oceans. A system-level net organic-to-inorganic carbon production ratio (ROI) is a master parameter for controlling the carbon cycle in coral reef systems, including their sink/source behavior for atmospheric CO 2 . A reef system with ROI less than approximately 0.6 has a potential for releasing CO 2 . The production ratio, however, is not easy to estimate on a particular reef. Instead, observations planned to detect the offshore-lagoon difference in partial pressure of CO 2 (pCO 2 ) and a graphic approach based on a total alkalinity-dissolved inorganic carbon diagram can reveal system-level performance of the carbon cycle in coral reefs. Surface pCO 2 values in the lagoons of atolls and barrier reefs were consistently higher than those in their offshore waters, showing differences between 6 and 46 atm, together with a depletion in total alkalinity up to 100 mol/kg, indicating predominant carbonate production relative to net organic carbon production. Reef topography, especially residence time of lagoon water, has a secondary effect on the magnitude of the offshore-lagoon pCO 2 difference. Terrestrial influence was recognized in coastal reefs, including the GBR lagoon and a fringing reef of the Ryukyu Islands. High carbon input appears to enhance CO 2 efflux to the atmosphere because of their high dissolved C:P ratios. Coral reefs, in general, act as an alkalinity sink and a potentially CO 2 -releasing site due to carbonate precipitation and land-derived carbon

  16. Reef coral δ18O thermometer in Hainan island waters, south China sea

    International Nuclear Information System (INIS)

    He Xuexian; Peng Zicheng; Wang Zhaorong; Huo Weiguo; Tan Jun; Nie Baofu; Chen Tegu; Zhong Jinliang

    2000-01-01

    An 18-year-long (1981-1998) study was conducted in Hainan Island waters (22 degree 22'N, 110 degree 39'E) to determine the relationship between δ 18 O in skeletal aragonite carbonate and sea surface temperature (SST) in porites lutea of reef-building corals. δ 18 O values in skeletal aragonite carbonate were measured by means of mass spectrometry. Coral samples grew at 5 m depth at Longwan Bay. Monthly measurements of the SST from 1960 to 1998 were taken at Qinglan Bay adjacent to the place of the collected samples. The thermometer shows that SST = -4.16 δ 18 O PDB + 4.9 (r = 0.80) and dδ 18 O/dT = -0.24 per mil/degree C. The δ 18 O thermometer is strongly influenced by the rainfall and runoff. Using the thermometer, the SST in the past hundred years with monthly resolution will be reconstructed and the climatic change in the northern area of South China Sea will be hind cast

  17. Is Acropora palmata (elkhorn coral) making a comeback in the Virgin Islands?

    Science.gov (United States)

    Rogers, Caroline S.

    2000-01-01

    White band disease (WBD) ravaged Acropora palmata (elkhorn coral) on many coral reefs in the Caribbean in the late 1970’s and 1980’s, including those around St. John and St. Croix, U. S. Virgin Islands—USVI (Gladfelter 1982, Rogers 1985). Quantitative data, photographs, and anecdotal observations indicate WBD killed large stands of elkhorn coral in the USVI from about 1976 until sometime in the late 1980’s. Branching Acroporid species, which are most susceptible to WBD, are also the most vulnerable to storm damage (Rogers et al. 1982). Since 1979, eight hurricanes have passed near or over the USVI. Because elkhorn coral contributed most of the living coral and determined the physical structure of many shallow reef zones, its demise dramatically altered many areas. But now, some of the reefs in the Virgin Islands once again have large, actively growing colonies of this important, reef-building species.

  18. Coral reefs in the Anthropocene.

    Science.gov (United States)

    Hughes, Terry P; Barnes, Michele L; Bellwood, David R; Cinner, Joshua E; Cumming, Graeme S; Jackson, Jeremy B C; Kleypas, Joanie; van de Leemput, Ingrid A; Lough, Janice M; Morrison, Tiffany H; Palumbi, Stephen R; van Nes, Egbert H; Scheffer, Marten

    2017-05-31

    Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.

  19. Bomb-cratered coral reefs in Puerto Rico, the untold story about a novel habitat: from reef destruction to community-based ecological rehabilitation

    Directory of Open Access Journals (Sweden)

    Edwin A. Hernández-Delgado

    2014-09-01

    Full Text Available Ecological impacts of military bombing activities in Puerto Rico have often been described as minimal, with recurrent allegations of confounding effects by hurricanes, coral diseases and local anthropogenic stressors. Reef craters, though isolated, are associated with major colony fragmentation and framework pulverization, with a net permanent loss of reef bio-construction. In contrast, adjacent non-bombarded reef sections have significantly higher benthic spatial relief and biodiversity. We compared benthic communities on 35-50 year-old bomb-cratered coral reefs at Culebra and Vieques Islands, with adjacent non-impacted sites; 2 coral recruit density and fish community structure within and outside craters; and 3 early effects of a rehabilitation effort using low-tech Staghorn coral Acropora cervicornis farming. Reef craters ranged in size from approximately 50 to 400m² and were largely dominated by heavily fragmented, flattened benthos, with coral cover usually below 2% and dominance by non-reef building taxa (i.e., filamentous algal turfs, macroalgae. Benthic spatial heterogeneity was lower within craters which also resulted in a lowered functional value as fish nursery ground. Fish species richness, abundance and biomass, and coral recruit density were lower within craters. Low-tech, community-based approaches to culture, harvest and transplant A. cervicornis into formerly bombarded grounds have proved successful in increasing percent coral cover, benthic spatial heterogeneity, and helping rehabilitate nursery ground functions.

  20. Effects of herbicides on coral and seasonal distribution in water and sediments collected from rivers and coral reefs of the Ryukyu Archipelago, Japan

    Science.gov (United States)

    Kaneshiro, A.; Fujimura, H.; Oomori, T.; Gima, S.; Suzuki, Y.; Casareto, B. E.; Higuchi, T.; Sagawa, T.

    2011-12-01

    Introduction Coral reefs are subjected to artificial chemicals such as herbicide and pesticides. Diuron [N'-(3, 4-dichlorophenyl)-N, N-dimethylurea] is one of the active constituent contained in a herbicide. Although acute effects of diuron on coral are reported by several researchers, longer-period toxicity with lower level concentration and synergistic effect between the herbicide and soil sedimentation from river water have not been studied. We investigated the concentration level, distribution, seasonal variation and accumulation of several herbicides and pesticides in coral reef and river in Ishigaki Island and Okinawa Island, and estimated the rates of carbon production of calcification and photosynthesis to access the effects of herbicides on coral. Materials and Methods Water and sediment samples were collected from Todoroki river and Shiraho coral reef in Ishigaki Island and several rivers from Okinawa Island in August 2010 to August 2011. Diuron and other active constituents were extracted using a solid-phase column and measured with a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Corals for the experiment were collected from Okinawa Island and incubated in glass bottles. Seawater adjusted several concentrations of herbicide was continuously supplied to the bottles. Coral calcification and photosynthesis were estimated based on the change in total alkalinity and pH during a few hours when we temporary cease the water flow. Results and Discussion Higher diuron of 563 ng/L in water and 26 μg/kg in sediment was detected at the headwater of the Todoroki river in Ishigaki. in June. Sugarcane plantation is prevailing in Todoroki river area and rainwater can tend to gather topographically to upstream of the river. The higher concentration at the headwater decreased to 23 ng/L toward the river mouth. On the whole, the concentrations were higher during summer and lower in the other seasons in Ishigaki. On the other hand, seasonal variation was not

  1. 2000 years of sustainable use of watersheds and coral reefs in Pacific Islands: A review for Palau

    Science.gov (United States)

    Koshiba, Shirley; Besebes, Meked; Soaladaob, Kiblas; Ngiraingas, Madelsar; Isechal, Adelle Lukes; Victor, Steven; Golbuu, Yimnang

    2014-05-01

    In Palau and everywhere in the world, coastal coral reefs are threatened by sedimentation resulting from land clearing in the watersheds. Palau's largest island of Babeldaob is particularly susceptible to significant erosion due to its steep topography, high rainfall, and highly erodible volcanic soil. Previous studies have shown the damaging impacts of sedimentation on coral reefs around Babeldaob Island. Related studies conducted in Micronesia have also documented that mangroves can trap about 30% of the fine eroded sediment from land. This paper examines the sediment trapping capability of cultivated wetlands, in particular taro (Colocasia esculenta) fields, which are natural wetlands used to grow taro, a main staple crop for the population. A 7-months long field study was undertaken to quantify the sediment accumulation rate for taro fields and to determine their sediment trapping efficiency. The results showed that the taro fields were able to trap on average 90% of sediment, therefore sheltering coastal coral reefs and their fisheries from the negative impacts of terrestrial runoff. Based on the results of this study, we suggest that the combined sediment trapping capacity of taro fields and mangroves helped reduce sedimentation on coral reefs around Babeldaob Island. This enabled human settlement for over 2000 years on a small Pacific Island with the main staple food being taro for starch and reef fish for protein. Even with a population of 30,000 people over Babeldaob Island, the living was sustainable for at least 1000 years, implying that the population was able to survive and prosper with its main food being the starch from taro fields and protein from reef fish. While there was intensive cultivation on land the sustainability of reef fisheries must have required that the reef be sheltered from excessive soil erosion.The structure of the taro field (mesei) initialized by the Palauan ancestors, has been maintained to this day. Their development, probably

  2. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth

    International Nuclear Information System (INIS)

    Zhang, Ruijie; Zhang, Ruiling; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Pei, Jiying; Wei, Chaoshuai; Pan, Ziliang; Qin, Zhenjun; Zhang, Gan

    2018-01-01

    Laboratory research has indicated that antibiotics had negative effects on coral growth by disturbing natural microbiota; however, no field studies have reported antibiotic contamination levels and their influence on coral growth in natural coral reef regions (CRRs). This study investigated antibiotic occurrence and sources in the surface water from CRRs that have suffered from rapid coral degradation and evaluated their risk to coral growth. These regions are in the South China Sea, including four coastal and two offshore CRRs. The results show that 13 antibiotics were detected in the coastal CRRs with concentrations ranging from 10 −2 –10 0  ng L −1 , while 5 antibiotics occurred in offshore CRRs (300–950 km from the mainland), with concentrations ranging from 10 −2 to 10 −1  ng L −1 . Their concentrations decreased gradually from the coast to offshore in the transport process. However, Yongxing Island, which is approximately 300 km from the mainland, was an exception with relatively higher concentrations than the surrounding reefs because of the ever-increasing human activity on the island. The presence of anthropogenic contaminants antibiotics in CRRs may be a potential risk to coral growth. - Highlights: • The study first studied antibiotic contamination in seawater from coral reef regions. • Thirteen antibiotics were detected at the level of 10 −2 - 10 0  ng L −1 . • The antibiotic concentrations decreased gradually from the coast to offshore. • Higher concentrations were detected in one offshore reef with more human activities. • Potential risk of the antibiotics to the coral could be ruled out. - Antibiotic contamination level, sources and their potential risk to coral growth were first studied in the surface water of natural coral reef regions.

  3. An assessment of an environmental gradient using coral geochemical records, Whitsunday Islands, Great Barrier Reef, Australia

    International Nuclear Information System (INIS)

    Lewis, S.E.; Brodie, J.E.; McCulloch, M.T.; Mallela, J.; Jupiter, S.D.; Stuart Williams, H.; Lough, J.M.; Matson, E.G.

    2012-01-01

    Coral cores were collected along an environmental and water quality gradient through the Whitsunday Island group, Great Barrier Reef (Australia), for trace element and stable isotope analysis. The primary aim of the study was to examine if this gradient could be detected in coral records and, if so, whether the gradient has changed over time with changing land use in the adjacent river catchments. Y/Ca was the trace element ratio which varied spatially across the gradient, with concentrations progressively decreasing away from the river mouths. The Ba/Ca and Y/Ca ratios were the only indicators of change in the gradient through time, increasing shortly after European settlement. The Mn/Ca ratio responded to local disturbance related to the construction of tourism infrastructure. Nitrogen isotope ratios showed no apparent trend over time. This study highlights the importance of site selection when using coral records to record regional environmental signals.

  4. Habitat degradation and fishing effects on the size structure of coral reef fish communities.

    Science.gov (United States)

    Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C

    2010-03-01

    Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.

  5. Advancing the integration of spatial data to map human and natural drivers on coral reefs

    Science.gov (United States)

    Gove, Jamison M.; Walecka, Hilary R.; Donovan, Mary K.; Williams, Gareth J.; Jouffray, Jean-Baptiste; Crowder, Larry B.; Erickson, Ashley; Falinski, Kim; Friedlander, Alan M.; Kappel, Carrie V.; Kittinger, John N.; McCoy, Kaylyn; Norström, Albert; Nyström, Magnus; Oleson, Kirsten L. L.; Stamoulis, Kostantinos A.; White, Crow; Selkoe, Kimberly A.

    2018-01-01

    A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location–the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002–2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-a, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O‘ahu, where 70% of the state’s population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs. PMID:29494613

  6. Distribution and covering percentage of sponge (Porifera in different coral reef condition and depth in Barranglompo Island, South Sulawesi

    Directory of Open Access Journals (Sweden)

    SUHARYANTO

    2008-07-01

    Full Text Available In 1996, four specieses of sponge namely Auletta sp., Callyspongia pseudoreticulata, Callyspongia sp., and Halichondria sp. have been potentially identified as bacteriside for fishery commodities. Nevertheless, information on sponge distribution, its covering percentage, and its habitate are still very little. Observation on distribution and abundance of sponge was conducted in the Southeastern and the Northwestern part of Barranglompo Island, South Sulawesi, using scuba diving set and under water writting tools. At first, coral reef condition in 3 and 10 m depths up to 100 m length of shore line were observed in both stations, using “lifeform method”. Then distribution and covering percentage of sponge, biotic and abiotic factor in 3, 6, 9, and 12 m depths in both stations were examined using “square transect method”. The result showed that different coral reef condition qualitatively causes different of sponge species distribution, but quantitatively not significantly different (P>0,05 on its covering percentage. It was also found that generally sponge grows better at the dead coral where no other biotic organism around.

  7. Patterns of Symbiodinium (Dinophyceae) diversity and assemblages among diverse hosts and the coral reef environment of Lizard Island, Australia

    KAUST Repository

    Ziegler, Maren

    2018-04-26

    Large-scale environmental disturbances may impact both partners in coral host-Symbiodinium systems. Elucidation of the assembly patterns in such complex and interdependent communities may enable better prediction of environmental impacts across coral reef ecosystems. In this study, we investigated how the community composition and diversity of dinoflagellate symbionts in the genus Symbiodinium were distributed among 12 host species from six taxonomic orders (Actinaria, Alcyonacea, Miliolida, Porifera, Rhizostoma, Scleractinia) and in the reef water and sediments at Lizard Island, Great Barrier Reef before the 3rd Global Coral Bleaching Event. 454 pyrosequencing of the ITS2 region of Symbiodinium yielded 83 Operational Taxonomic Units (OTUs) at a 97% similarity cut-off. Approximately half of the Symbiodinium OTUs from reef water or sediments were also present in symbio. OTUs belonged to six clades (A-D, F-G), but community structure was uneven. The two most abundant OTUs (100% matches to types C1 and A3) comprised 91% of reads and OTU C1 was shared by all species. However, sequence-based analysis of these dominant OTUs revealed host species-specificity, suggesting that genetic similarity cut-offs of Symbiodinium ITS2 data sets need careful evaluation. Of the less abundant OTUs, roughly half occurred at only one site or in one species and the background Symbiodinium communities were distinct between individual samples. We conclude that sampling multiple host taxa with differing life history traits will be critical to fully understand the symbiont diversity of a given system and to predict coral ecosystem responses to environmental change and disturbance considering the differential stress response of the taxa within. This article is protected by copyright. All rights reserved.

  8. Distribution and abundance of elkhorn coral, Acropora palmata, and prevalence of white-band disease at Buck Island Reef National Monument, St. Croix, US Virgin Islands

    Science.gov (United States)

    Mayor, Philippe A.; Rogers, Caroline S.; Hillis-Starr, Zandy M.

    2006-05-01

    In the 1970s and 1980s elkhorn coral, Acropora palmata, declined dramatically throughout the Caribbean primarily due to white-band disease (WBD). In 2005, elkhorn coral was proposed for listing as threatened under the US Endangered Species Act. WBD was first documented at Buck Island Reef National Monument (BIRNM). Together with hurricanes WBD reduced live elkhorn coral coverage by probably over 90%. In the past decade some recovery has been observed at BIRNM. This study assessed the distribution and abundance of elkhorn coral and estimated the prevalence of WBD at the monument. Within an area of 795 ha, we estimated 97,232 134,371 (95% confidence limits) elkhorn coral colonies with any dimension of connected live tissue greater than one meter, about 3% of which were infected by WBD. Despite some recovery, the elkhorn coral density remains low and WBD may continue to present a threat to the elkhorn coral population.

  9. Short-term assessment of the sediment deposition rate and water conditions during a rainy season on La Azufrada coral reef, Gorgona Island, Colombia

    Directory of Open Access Journals (Sweden)

    Diego F. Lozano-Cortés

    2014-02-01

    Full Text Available One of the major stresses on corals is the settlement of suspended sediment on their surfaces. This leads to the blocking of light, the covering of the coral mucus surface and an increased risk of disease. For this reason sediment deposition on a reef is considered a highly important variable in coral reef studies. With the use of sediment traps and oceanographic sensors, the sediment deposition rate and water conditions during a rainy season (April-May 2009 on a Tropical Eastern Pacific coral reef (La Azufrada at Gorgona Island in Colombia were investigated. To quantify sediment deposition, sediment traps were established in nine stations along the coral reef (three stations per reef zone: backreef, flat and slope. To minimize disturbance by aquatic organisms in the sediment traps these were filled with hypersaline borax-buffered 10% formaline solution before their deployment; animals found in the filter contents were fixed and stored in a 4% formalin solution, frozen and identified in the laboratory. To determine the water conditions, discrete samples of water from 1 m and 10 m depths were collected using a Niskin bottle. Oceanographic variables (temperature, salinity and dissolved oxygen as well as turbidity, chlorophyll and nutrient concentration (nitrite, nitrate and phosphorus were measured in the samples from both depths. Vertical records of temperature and salinity were carried out with a Seabird-19 CTD nearest to La Azufrada and water transparency was measured using a Secchi disk. We found a mean trap collection rate of 23.30±4.34gm-2d-1 and did not detect a significant difference in the trap collection rate among reef zones. The mean temperature and salinity in the coral reef depth zone (0-10m layer were 26.98±0.19°C and 32.60±0.52, respectively. Fourteen taxonomic groups of invertebrates were detected inside the sediment traps with bivalves and copepods being the most abundant and frequen. The findings presented here constitute

  10. Short-term assessment of the sediment deposition rate and water conditions during a rainy season on La Azufrada coral reef, Gorgona Island, Colombia

    KAUST Repository

    Lozano-Cortés, Diego F

    2014-02-01

    One of the major stresses on corals is the settlement of suspended sediment on their surfaces. This leads to the blocking of light, the covering of the coral mucus surface and an increased risk of disease. For this reason sediment deposition on a reef is considered a highly important variable in coral reef studies. With the use of sediment traps and oceanographic sensors, the sediment deposition rate and water conditions during a rainy season (April-May 2009) on a Tropical Eastern Pacific coral reef (La Azufrada) at Gorgona Island in Colombia were investigated. To quantify sediment deposition, sediment traps were established in nine stations along the coral reef (three stations per reef zone: backreef, flat and slope). To minimize disturbance by aquatic organisms in the sediment traps these were filled with hypersaline borax-buffered 10% formaline solution before their deployment; animals found in the filter contents were fixed and stored in a 4% formalin solution, frozen and identified in the laboratory. To determine the water conditions, discrete samples of water from 1 m and 10 m depths were collected using a Niskin bottle. Oceanographic variables (temperature, salinity and dissolved oxygen) as well as turbidity, chlorophyll and nutrient concentration (nitrite, nitrate and phosphorus) were measured in the samples from both depths. Vertical records of temperature and salinity were carried out with a Seabird-19 CTD nearest to La Azufrada and water transparency was measured using a Secchi disk. We found a mean trap collection rate of 23.30±4.34gm-2d-1 and did not detect a significant difference in the trap collection rate among reef zones. The mean temperature and salinity in the coral reef depth zone (0-10m layer) were 26.98±0.19°C and 32.60±0.52, respectively. Fourteen taxonomic groups of invertebrates were detected inside the sediment traps with bivalves and copepods being the most abundant and frequen. The findings presented here constitute the first report

  11. Development of Miocene-Pliocene reef trend, St. Croix, U. S. Virgin Islands

    Energy Technology Data Exchange (ETDEWEB)

    Gill, I.; Eby, D.E.; Hubbard, D.K.; Frost, S.H.

    1988-01-01

    The Miocene-Pliocene reef trend on St. Croix, U.S. Virgin Islands, rims the present southern western coasts of the island and includes accompanying lagoonal and forereef facies. The reef trend was established on a foram-algal bank facies that represents basinal shallowing from the deep-water pelagic and hemipelagic facies of the Miocene Kingshill Limestone. Information on facies distribution and thickness is derived from rock exposures and 22 test wells drilled to a maximum depth of 91 m. The greatest thickness of the reef facies exists in a subsidiary graben on the south coast of St. Croix. The thickness of the reef section in this locality is due to preservation of the section in a downdropped block. Reef faunas include extant corals, as well as several extinct genera. Extant corals (e.g. Montastrea annularis, Diploria sp., and Porites porites) and extinct corals (e.g., Stylophora affinis, Antillea bilobata, and Thysanus sp.) are the main reef frame-builders. Coralline algea and large benthic foraminifera are significant contributors to the sediments both prior to and during scleractinian reef growth. Dolomitization and calcite cementation occur prominantly in an area corresponding to a Holocene lagoon. The spatial distribution of the dolomite suggests that the lagoon is a Tertiary feature directly related to the dolomitization process. Stable isotopic values suggest dolomitization of fluids of elevated salinity.

  12. Oceanic forcing of coral reefs.

    Science.gov (United States)

    Lowe, Ryan J; Falter, James L

    2015-01-01

    Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.

  13. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...

    Science.gov (United States)

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  14. Ecological States and the Resilience of Coral Reefs

    Directory of Open Access Journals (Sweden)

    Tim McClanahan

    2002-12-01

    incidence of diseases in coral reef species. Consequently, many coral reefs, including those that are heavily managed, have experienced net losses in accumulated inorganic carbon in recent decades and appear likely to continue this trend in coming decades. Reefs urgently need to be managed with a view to strengthening their resilience to the increased frequency and intensity of these pressures. Ecological targets must include the restoration or maintenance of species diversity, keystone species, spatial heterogeneity, refugia, and connectivity. Achieving these goals will require unprecedented cooperative synergy between human organizations at all political levels, from intergovernmental to local. * [ERRATUM: A longer version of this paper is published as a book chapter in McClanahan, T.R., N.V.C. Polunin and T.J. Done. 2002. Resilience of coral reefs. in L.H. Gunderson and L. Pritchard Jr. (editors. Resilience and the Behavior of Large-Scale Systems. SCOPE and Island Press, Washington. The original version of this paper stated incorrectly that the book chapter was still in press.

  15. Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Kawahata, Hodaka [National Inst. of Advanced Industrial Science and Technology, Ibaraki (Japan). Inst. for Marine Resources and Environment

    2003-04-01

    The seawater CO{sub 2} system and carbon budget were examined in coral reefs of wide variety with respect to topographic types and oceanographic settings in the Indo-Pacific oceans. A system-level net organic-to-inorganic carbon production ratio (ROI) is a master parameter for controlling the carbon cycle in coral reef systems, including their sink/source behavior for atmospheric CO{sub 2}. A reef system with ROI less than approximately 0.6 has a potential for releasing CO{sub 2}. The production ratio, however, is not easy to estimate on a particular reef. Instead, observations planned to detect the offshore-lagoon difference in partial pressure of CO{sub 2} (pCO{sub 2}) and a graphic approach based on a total alkalinity-dissolved inorganic carbon diagram can reveal system-level performance of the carbon cycle in coral reefs. Surface pCO{sub 2} values in the lagoons of atolls and barrier reefs were consistently higher than those in their offshore waters, showing differences between 6 and 46 atm, together with a depletion in total alkalinity up to 100 mol/kg, indicating predominant carbonate production relative to net organic carbon production. Reef topography, especially residence time of lagoon water, has a secondary effect on the magnitude of the offshore-lagoon pCO{sub 2} difference. Terrestrial influence was recognized in coastal reefs, including the GBR lagoon and a fringing reef of the Ryukyu Islands. High carbon input appears to enhance CO{sub 2} efflux to the atmosphere because of their high dissolved C:P ratios. Coral reefs, in general, act as an alkalinity sink and a potentially CO{sub 2}-releasing site due to carbonate precipitation and land-derived carbon.

  16. 75 FR 48934 - Coral Reef Conservation Program Implementation Guidelines

    Science.gov (United States)

    2010-08-12

    ...-01] RIN 0648-ZC19 Coral Reef Conservation Program Implementation Guidelines AGENCY: National Oceanic... Guidelines (Guidelines) for the Coral Reef Conservation Program (CRCP or Program) under the Coral Reef... assistance for coral reef conservation projects under the Act. NOAA revised the Implementation Guidelines for...

  17. Assessment of Nonindigenous Species on Coral Reefs in the Hawaiian Islands, with Emphasis on Introduced Invertebrates, November 2, 2002 - November 5, 2003 (NODC Accession 0001419)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reefs on the islands of Kauai, Molokai, Maui, Hawaii and Oahu were surveyed for the presence and impact of marine nonindigenous and cryptogenic species (NIS)...

  18. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.

    2012-06-29

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  19. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.; Hoey, Andrew; Bellwood, David R.

    2012-01-01

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  20. The role of turtles as coral reef macroherbivores.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas and hawksbill turtles (Eretmochelys imbricata showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.

  1. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  2. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs

    International Nuclear Information System (INIS)

    Nugues, Maggy M.; Roberts, Callum M.

    2003-01-01

    Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and ≥50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs

  3. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    Nugues, Maggy M.; Roberts, Callum M

    2003-03-01

    Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and {>=}50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs.

  4. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    Directory of Open Access Journals (Sweden)

    Virginia H. Garrison

    2012-03-01

    Full Text Available In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands in 1999 and was followed for 12 years. The primary objectives were to (1 identify a source of coral colonies for transplantation that would not result in damage to reefs, (2 test the feasibility of transplanting storm-generated coral fragments, and (3 develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae] and another fast-growing species [Porites porites (Poritidae] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and

  5. Wave Transformation over a Fringing Coral Reef and the Importance of Low-Frequency Waves and Offshore Water Levels to Runup and Island Overtopping

    Science.gov (United States)

    Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.

    2016-02-01

    Low-lying, reef-fringed islands are susceptible to sea-level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, wave gauges and a current meter were deployed for 5 months across two shore-normal transects on Roi-Namur, an atoll island in the Republic of the Marshall Islands. These observations captured two large wave events that had maximum wave heights greater than 6 m and peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly-skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, exceeded 3.7 m at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3-hr time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along atoll and fringing reef-lined shorelines, such as island overwash. These observations lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of both extreme shoreline runup and island overwash, threatening the sustainability of these islands.

  6. Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef

    Science.gov (United States)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2013-09-01

    Coral disease is a major threat to the resilience of coral reefs; thus, understanding linkages between disease outbreaks and disturbances predicted to increase with climate change is becoming increasingly important. Coral disease surveys conducted twice yearly between 2008 and 2011 at a turbid inshore reef in the central Great Barrier Reef spanned two disturbance events, a coral bleaching event in 2009 and a severe cyclone (cyclone `Yasi') in 2011. Surveys of coral cover, community structure and disease prevalence throughout this 4-yr study provide a unique opportunity to explore cumulative impacts of disturbance events and disease for inshore coral assemblages. The principal coral disease at the study site was atramentous necrosis (AtN), and it primarily affected the key inshore, reef-building coral Montipora aequituberculata. Other diseases detected were growth anomalies, white syndrome and brown band syndrome. Diseases affected eight coral genera, although Montipora was, by far, the genus mostly affected. The prevalence of AtN followed a clear seasonal pattern, with disease outbreaks occurring only in wet seasons. Mean prevalence of AtN on Montipora spp. (63.8 % ± 3.03) was three- to tenfold greater in the wet season of 2009, which coincided with the 2009 bleaching event, than in other years. Persistent wet season outbreaks of AtN combined with the impacts of bleaching and cyclone events resulted in a 50-80 % proportional decline in total coral cover. The greatest losses of branching and tabular acroporids occurred following the low-salinity-induced bleaching event of 2009, and the greatest losses of laminar montiporids occurred following AtN outbreaks in 2009 and in 2011 following cyclone Yasi. The shift to a less diverse coral assemblage and the concomitant loss of structural complexity are likely to have long-term consequences for associated vertebrate and invertebrate communities on Magnetic Island reefs.

  7. NOAA ESRI Geotiff- 1m Multibeam Bathymetry of NPS's Virgin Islands Coral Reef National Monument (Inshore), St. John, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of an inshore portion of the NPS's Virgin Islands Coral Reef National...

  8. The northernmost coral frontier of the Maldives: The coral reefs of Ihavandippolu Atoll under long-term environmental change.

    Science.gov (United States)

    Tkachenko, Konstantin S

    2012-12-01

    Ihavandippolu, the northernmost atoll of the Maldives, experienced severe coral bleaching and mortality in 1998 followed by several bleaching episodes in the last decade. Coral cover in the 11 study sites surveyed in July-December of 2011 in the 3-5 m depth range varied from 1.7 to 51%. Reefs of the islands located in the center of Ihavandippolu lagoon have exhibited a very low coral recovery since 1998 and remain mostly degraded 12 years after the impact. At the same time, some reefs, especially in the inner part of the eastern ring of the atoll, demonstrate a high coral cover (>40%) with a dominance of branching Acropora that is known to be one of the coral genera that is most susceptible to thermal stress. The last severe bleaching event in 2010 resulted in high coral mortality in some sites of the atoll. Differences in coral mortality rates and proportion between "susceptible" and "resistant" taxa in study sites are apparently related to long-term adaptation and local hydrological features that can mitigate thermal impacts. Abundant herbivorous fish observed in the atoll prevent coral overgrowth by macroalgae even on degraded reefs. Despite the frequent influence of temperature anomalies and having less geomorphologic refuges for coral survivals than other larger Maldivian atolls, a major part of observed coral communities in Ihavandippolu Atoll exhibits high resilience and potential for further acclimatization to a changing environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. White plague-like coral disease in remote reefs of the Western Caribbean

    Directory of Open Access Journals (Sweden)

    Juan A Sánchez

    2010-05-01

    Full Text Available The health of coral reef communities has been decreasing over the last 50 years, due the negative effects of human activities combined with other natural processes. We present documentation of a White Plague Disease (WPD outbreak in the Serrana Bank, an isolated Western Caribbean atoll with presumably inexistent pollutant inputs from local human settlements. In addition, this study summarizes seven years of observations on diseased corals in the nearby island of San Andrés, which in contrast is one of the most populated islands of the Caribbean. There was a massive coral mortality in the atoll lagoon (14°27’53.24", 80°14’22.27" W, and 12m depth due to WPD on May 4 of 2003. Seventeen species were found dead or largely affected by the disease. The information resulting from GPS and manta-tow transects revealed that approximately 5.8ha of reticulate Montastraea spp. patch reefs were lethally affected by the disease in the atoll. On May 8 of the same year we observed and calculated a mean coral cover of 7.03% (SD± 2.44, a mean diseased coral tissue cover of 5.5% (SD± 1.1 and a 13.4% (SD± 8.05 of recently dead coral covered with a thin filamentous algae layer; approximately 73% of mortalities caused by the disease occurred before the end of the outbreak. A rough estimate of 18.9% in recent coral cover reduction can be attributed to WPD. This represents about 82% of the total coral cover decline since 1995. Semi-enclosed environments such as atoll lagoons and the reticulate patch-reefs of Montastraea spp. seem to be particularly vulnerable to this kind of coral disease, which constitute an alert to increase the monitoring of the same kind of atoll environments. The WPD has been present in the area of the nearby island of San Andrés at a low prevalence level, with sporadic increasing peaks of disease proliferation. The peaks observed during 1999 and 2004 comprised increases of 266% and 355% respectively, suggesting an alarming progression of

  10. Coral mass bleaching and reef temperatures at Navassa Island, 2006

    Science.gov (United States)

    Miller, M. W.; Piniak, G. A.; Williams, D. E.

    2011-01-01

    Bleaching and associated mortality is an extreme threat to the persistence of coral populations in the projected warming regime of the next few decades. Recent evidence indicates that thermal bleaching thresholds may be affected by water quality gradients. The unexpected encounter of a coral mass bleaching event at a remote, uninhabited Caribbean island (Navassa) during a routine reef assessment cruise in November 2006 provided the opportunity to characterize bleaching responses and thermal exposure in an oceanic area with negligible continental influence or human impact on water quality. The coral taxa most susceptible to bleaching were Agaricia spp. and Montastraea faveolata. Siderastraea siderea, Diploria spp. and Porites porites were intermediately affected, while Porites astreoides and Montastraea cavernosa were minimally affected and negligible bleaching was observed in Acropora palmata. Bleaching prevalence (colonies > 4 cm diameter) ranged from 0.16 to 0.63 among sites. Deeper sites (between 18 and 37 m) had significantly higher prevalence of bleaching than shallow sites (<10 m). This general pattern of more bleaching in deeper sites also occurred within species. Though exposure to high-temperature stress was not greater at deeper sites, water motion, which may bolster bleaching resistance, was likely less. In situ loggers indicated temperatures over 30 °C initiated at shallow sites in mid-August, at deeper sites in early September, and were persistent at all sites until mid-October. Long term (1983-2007) climatologies constructed from AVHRR SSTs suggest that the mass bleaching event observed at Navassa in 2006 corresponded with greater intensity and duration of warm temperature anomalies than occurred in 2005, for which no in situ observations (bleaching nor temperature) are available.

  11. Developing a multi-stressor gradient for coral reefs

    Science.gov (United States)

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be es...

  12. Coral ages and island subsidence, Hilo drill hole

    Science.gov (United States)

    Moore, J.G.; Ingram, B.L.; Ludwig, K. R.; Clague, D.A.

    1996-01-01

    A 25.8-m-thick sedimentary section containing coral fragments occurs directly below a surface lava flow (the ???1340 year old Panaewa lava flow) at the Hilo drill hole. Ten coral samples from this section dated by accelerator mass spectrometry (AMS) radiocarbon and five by thermal infrared multispectral scanner (TIMS) 230Th/U methods show good agreement. The calcareous unit is 9790 years old at the bottom and 1690 years old at the top and was deposited in a shallow lagoon behind an actively growing reef. This sedimentary unit is underlain by a 34-m-thick lava flow which in turn overlies a thin volcaniclastic silt with coral fragments that yield a single 14C date of 10,340 years. The age-depth relations of the dated samples can be compared with proposed eustatic sea level curves after allowance for island subsidence is taken. Island subsidence averages 2.2 mm/yr for the last 47 years based on measurements from a tide gage near the drill hole or 2.5-2.6 mm/yr for the last 500,000 years based on the ages and depths of a series of drowned coral reefs offshore from west Hawaii. The age-depth measurements of coral fragments are more consistent with eustatic sea levels as determined by coral dating at Barbados and Albrolhos Islands than those based on oxygen isotopic data from deep sea cores. The Panaewa lava flow entered a lagoon underlain by coral debris and covered the drill site with 30.9 m of lava of which 11 m was above sea level. This surface has now subsided to 4.2 m above sea level, but it demonstrates how a modern lava flow entering Hilo Bay would not only change the coastline but could extensively modify the offshore shelf.

  13. Identification and classification of very low frequency waves on a coral reef flat

    NARCIS (Netherlands)

    Gawehn, M.; van Dongeren, AR; van Rooijen, A.A.; Storlazzi, C.D.; Cheriton, O.M.; Reniers, A.J.H.M.

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on

  14. Shifting paradigms in restoration of the world's coral reefs.

    Science.gov (United States)

    van Oppen, Madeleine J H; Gates, Ruth D; Blackall, Linda L; Cantin, Neal; Chakravarti, Leela J; Chan, Wing Y; Cormick, Craig; Crean, Angela; Damjanovic, Katarina; Epstein, Hannah; Harrison, Peter L; Jones, Thomas A; Miller, Margaret; Pears, Rachel J; Peplow, Lesa M; Raftos, David A; Schaffelke, Britta; Stewart, Kristen; Torda, Gergely; Wachenfeld, David; Weeks, Andrew R; Putnam, Hollie M

    2017-09-01

    Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine-protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014-2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs. © 2017 John Wiley & Sons Ltd.

  15. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  16. Climate Change in the Seychelles: Implications for Water and Coral Reefs

    Energy Technology Data Exchange (ETDEWEB)

    Payet, Rolph; Agricole, Wills [National Meteorological Services Mahe (Seychelles). Div. of Policy, Planning and Services

    2006-06-15

    The Seychelles is a small island state in the western Indian Ocean that is vulnerable to the effects of climate change. This vulnerability led the Intergovernmental Panel on Climate Change (IPCC) in 2001 to express concern over the potential economic and social consequences that may be faced by small island states. Small island states should be prepared to adapt to such changes, especially in view of their dependence on natural resources, such as water and coral reefs, to meet basic human welfare needs. Analysis of long-term data for precipitation, air temperature, and sea-surface temperature indicated that changes are already observable in the Seychelles. The increase in dry spells that resulted in drought conditions in 1999 and the 1998 mass coral bleaching are indicative of the events that are likely to occur under future climate change. Pre-IPCC Third Assessment Report scenarios and the new SRES scenarios are compared for changes in precipitation and air surface temperature for the Seychelles. These intercomparisons indicate that the IS92 scenarios project a much warmer and wetter climate for the Seychelles than do the SRES scenarios. However, a wetter climate does not imply readily available water, but rather longer dry spells with more intense precipitation events. These observations will likely place enormous pressures on water-resources management in the Seychelles. Similarly, sea-surface temperature increases predicted by the HADCm{sup 3} model will likely trigger repeated coral-bleaching episodes, with possible coral extinctions within the Seychelles region by 2040. The cover of many coral reefs around the Seychelles have already changed, and the protection of coral-resilient areas is a critical adaptive option.

  17. 78 FR 67128 - Coral Reef Conservation Program; Meeting

    Science.gov (United States)

    2013-11-08

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Coral Reef Conservation Program; Meeting AGENCY: Coral Reef Conservation Program, Office of Ocean and Coastal Resource Management... meeting of the U.S. Coral Reef Task Force (USCRTF). The meeting will be held in Christiansted, U.S. Virgin...

  18. Catastrophic impact of typhoon waves on coral communities in the Ryukyu Islands under global warming

    Science.gov (United States)

    Hongo, Chuki; Kawamata, Hideki; Goto, Kazuhisa

    2012-06-01

    Typhoon-generated storm waves generally cause mechanical damage to coral communities on present-day reefs, and the magnitude and extent of damage is predicted to increase in the near future as a result of global warming. Therefore, a comprehensive understanding of potential future scenarios of reef ecosystems is of prime interest. This study assesses the current status of coral communities on Ibaruma reef, Ryukyu Islands, on the basis of field observations, engineering and fluid dynamic models, and calculations of wave motion, and predicts the potential effects of a super-extreme typhoon (incident wave height,H = 20 m; wave period, T = 20 s) on the reef. On the present-day reef, massive corals occur in shallow lagoons and tabular corals occur from the reef crest to the reef slope. The observed distribution of corals, which is frequently attacked by moderate (H = 10 m, T = 10 s) and extreme (H = 10 m, T = 15 s) typhoons, is consistent with the predictions of engineering models. Moreover, this study indicates that if a super-extreme typhoon attacks the reef in the near future, massive corals will survive in the shallow lagoons but tabular corals on the reef crest and reef slope will be severely impacted. The findings imply that super-extreme typhoons will cause a loss of species diversity, as the tabular corals are important reef builders and are critical to the maintenance of reef ecosystems. Consequently, reef restoration is a key approach to maintaining reef ecosystems in the wake of super-extreme typhoons.

  19. Remote sensing of deep hermatypic coral reefs in Puerto Rico and the U.S. Virgin Islands using the Seabed autonomous underwater vehicle

    Science.gov (United States)

    Armstrong, Roy A.; Singh, Hanumant

    2006-09-01

    Optical imaging of coral reefs and other benthic communities present below one attenuation depth, the limit of effective airborne and satellite remote sensing, requires the use of in situ platforms such as autonomous underwater vehicles (AUVs). The Seabed AUV, which was designed for high-resolution underwater optical and acoustic imaging, was used to characterize several deep insular shelf reefs of Puerto Rico and the US Virgin Islands using digital imagery. The digital photo transects obtained by the Seabed AUV provided quantitative data on living coral, sponge, gorgonian, and macroalgal cover as well as coral species richness and diversity. Rugosity, an index of structural complexity, was derived from the pencil-beam acoustic data. The AUV benthic assessments could provide the required information for selecting unique areas of high coral cover, biodiversity and structural complexity for habitat protection and ecosystem-based management. Data from Seabed sensors and related imaging technologies are being used to conduct multi-beam sonar surveys, 3-D image reconstruction from a single camera, photo mosaicking, image based navigation, and multi-sensor fusion of acoustic and optical data.

  20. Status of coral reefs of India

    Digital Repository Service at National Institute of Oceanography (India)

    Muley, E.V.; Venkataraman, K.; Alfred, J.R.B.; Wafar, M.V.M.

    and economic significance of coral reefs and the threat perceptions, Government of India has initiated measures for their intensive conservation and management. Present paper deals with ecological status of coral reefs in the country and various national...

  1. The Ecological Role of Sharks on Coral Reefs.

    Science.gov (United States)

    Roff, George; Doropoulos, Christopher; Rogers, Alice; Bozec, Yves-Marie; Krueck, Nils C; Aurellado, Eleanor; Priest, Mark; Birrell, Chico; Mumby, Peter J

    2016-05-01

    Sharks are considered the apex predator of coral reefs, but the consequences of their global depletion are uncertain. Here we explore the ecological roles of sharks on coral reefs and, conversely, the importance of reefs for sharks. We find that most reef-associated shark species do not act as apex predators but instead function as mesopredators along with a diverse group of reef fish. While sharks perform important direct and indirect ecological roles, the evidence to support hypothesised shark-driven trophic cascades that benefit corals is weak and equivocal. Coral reefs provide some functional benefits to sharks, but sharks do not appear to favour healthier reef environments. Restoring populations of sharks is important and can yet deliver ecological surprise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  3. Storm-generated coral fragments - A viable source of transplants for reef rehabilitation

    Science.gov (United States)

    Garrison, V.; Ward, G.

    2008-01-01

    Coral reefs throughout the world have been damaged by storms, diseases, coral predators, temperature anomalies, and human activities. During the past three decades, recovery has been limited and patchy. Although a damaged coral reef cannot be restored to its original condition, interest in reef restoration is increasing. In a pilot project in the Caribbean (US Virgin Islands), storm-produced fragments of Acropora palmata, A. cervicornis, and Porites porites were collected from donor reefs and transplanted to nearby degraded reefs. Sixty coral fragments were attached to dead-coral substrate (usually A. palmata skeletons), at similar depths from which they had been collected (1-3.5 m), using nylon cable ties. Seventy-five intact colonies were designated as controls. Study colonies were assessed at 6-month intervals for 2 years (1999-2001) and annually thereafter (through 2004). One-fourth of the 135 colonies and fragments monitored were alive at the conclusion of the 5-year study. Survival of control and transplanted A. cervicornis and P. porites was very low (median survival 2.4 and 1.8 years, respectively), with no significant differences between transplant and control colonies. Site and depth did not contribute significantly to A. palmata colony survival, but colony size and transplant/control status did. Probability of survival increased with colony size. Median survival for A. palmata was 1.3 years for transplant and 4.3 years for natural colonies when not controlled for size. A. palmata was the only viable candidate for reef rehabilitation. Storm swells were the primary cause of mortality.

  4. Identification of Coral Reefs in Mamburit Waters, Sumenep Regency

    OpenAIRE

    Sawiya, Sawiya; Mahmudi, Mohammad; Guntur, Guntur

    2014-01-01

    This research was conducted in September to October 2013 in Mamburit Waters, Sumenep Regency. This study was aimed to assess the percentage of coral reefs and acknowkedge the type of the coral reefs. Coral reefs was observed with the Line Intercept (LIT) method laid parallel to the coastline in the depth of 3 m and 10 m in windward and leeward area. Total of 59.88% coral reefs lived in leeward area in 3 m depth includes in good category and the percentage of dead coral reefs and other fauna f...

  5. Mesophotic bioerosion: Variability and structural impact on U.S. Virgin Island deep reefs

    Science.gov (United States)

    Weinstein, David K.; Smith, Tyler B.; Klaus, James S.

    2014-10-01

    Mesophotic reef corals, found 30-150 m below sea level, build complex structures that provide habitats for diverse ecosystems. Whereas bioerosion is known to impact the development and persistence of shallow reef structures, little is known regarding the extent of mesophotic bioerosion or how it might affect deeper reef geomorphology and carbonate accretion. Originally pristine experimental coral substrates and collected coral rubble were both used to investigate the variation and significance of mesophotic coral reef bioerosion south of St. Thomas, U.S. Virgin Islands. Bioerosion rates were calculated from experimental coral substrates exposed as framework for 1 and 2 years at four structurally distinct mesophotic coral reef habitats (between 30 and 45 m) as well as at a mid-shelf patch reef (21 m) and a shallow fringing patch reef (9 m). The long-term effects of macroboring were assessed by examining coral rubble collected at all sites. Overall, differences in bioerosional processes were found between shallow and mesophotic reefs. Increases in bioerosion on experimental substrates (amount of weight lost) were related to both decreasing seawater depth and increasing biomass of bioeroding parrotfish. Significant differences in coral skeleton bioerosion rates were also found between the transitional mesophotic reef zone (30-35 m) and the upper mesophotic reef zone (35-50 m) after 2 years of exposure, ranging from - 19.6 to 3.7 g/year. Total coral rubble macroboring was greater at most deep sites compared to shallower sites. Bioerosional grazing was found to dominate initial substrate modification in reefs 30.7 m and shallower, but sponges are believed to act as the main time-averaged long-term substrate bioeroders in reefs between 35 and 50 m. Although initial substrate bioerosion rates of a uniform substrate were relatively homogeneous in the 35-50 m depth zone, comparison of site composition suggests that mesophotic bioerosion will vary depending on the amount

  6. Early-phase dynamics in coral recovery following cyclone disturbance on the inshore Great Barrier Reef, Australia

    Science.gov (United States)

    Sato, Yui; Bell, Sara C.; Nichols, Cassandra; Fry, Kent; Menéndez, Patricia; Bourne, David G.

    2018-06-01

    Coral recovery (the restoration of abundance and composition of coral communities) after disturbance is a key process that determines the resilience of reef ecosystems. To understand the mechanisms underlying the recovery process of coral communities, colony abundance and size distribution were followed on reefs around Pelorus Island, located in the inshore central region of the Great Barrier Reef, following a severe tropical cyclone in 2011 that caused dramatic loss of coral communities. Permanent quadrats (600 m2) were monitored biannually between 2012 and 2016, and individual coral colonies were counted, sized and categorized into morphological types. The abundance of coral recruits and coral cover were also examined using permanent quadrats and random line intercept transects, respectively. The number of colonies in the smallest size class (4-10 cm) increased substantially during the study period, driving the recovery of coral populations. The total number of coral colonies 5 yr post-cyclone reached between 73 and 122% of pre-cyclone levels though coral cover remained between 16 and 31% of pre-cyclone levels, due to the dominance of small coral colonies in the recovering communities. Temporal transitions of coral demography (i.e., colony-size distributions) illustrated that the number of recently established coral populations overtook communities of surviving colonies. Coral recruits (coral recovery. A shift in morphological composition of coral communities was also observed, with the relative abundance of encrusting corals reduced post-cyclone in contrast to their dominance prior to the disturbance. This study identifies the fine-scale processes involved in the initial recovery of coral reefs, providing insights into the dynamics of coral demography that are essential for determining coral reef resilience following major disturbance.

  7. Reef-fidelity and migration of tiger sharks, Galeocerdo cuvier, across the coral sea

    KAUST Repository

    Werry, Jonathan M.

    2014-01-08

    Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark-human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km3. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a

  8. Reef-fidelity and migration of tiger sharks, Galeocerdo cuvier, across the coral sea

    KAUST Repository

    Werry, Jonathan M.; Planes, Serge; Berumen, Michael L.; Lee, Kate A.; Braun, Camrin D.; Clua, Eric

    2014-01-01

    Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark-human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km3. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a

  9. Reef-fidelity and migration of tiger sharks, Galeocerdo cuvier, across the Coral Sea.

    Science.gov (United States)

    Werry, Jonathan M; Planes, Serge; Berumen, Michael L; Lee, Kate A; Braun, Camrin D; Clua, Eric

    2014-01-01

    Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark-human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km³. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a

  10. Ecological Processes and Contemporary Coral Reef Management

    Directory of Open Access Journals (Sweden)

    Angela Dikou

    2010-05-01

    Full Text Available Top-down controls of complex foodwebs maintain the balance among the critical groups of corals, algae, and herbivores, thus allowing the persistence of corals reefs as three-dimensional, biogenic structures with high biodiversity, heterogeneity, resistance, resilience and connectivity, and the delivery of essential goods and services to societies. On contemporary reefs world-wide, however, top-down controls have been weakened due to reduction in herbivory levels (overfishing or disease outbreak while bottom-up controls have increased due to water quality degradation (increase in sediment and nutrient load and climate forcing (seawater warming and acidification leading to algal-dominated alternate benthic states of coral reefs, which are indicative of a trajectory towards ecological extinction. Management to reverse common trajectories of degradation for coral reefs necessitates a shift from optimization in marine resource use and conservation towards building socio-economic resilience into coral reef systems while attending to the most manageable human impacts (fishing and water quality and the global-scale causes (climate change.

  11. Status and trends of Caribbean coral reefs: 1970-2012

    Science.gov (United States)

    Jackson, Jeremy; Donovan, Mary; Cramer, Katie; Lam, Vivian

    2014-01-01

    being finalized were made in 2013-2014 at the ICRI General meeting in Belize, the biennial meeting of the Association of Island Marine Laboratories in Jamaica, the Panamerican Coral Reef Congress in Merida, Mexico, the annual meeting of he Western Society of Naturalists, and numerous universities in Costa Rica, the USA and Europe.The main body of the report is in two sections. Part I provides an overview of overall status and trends and detailed analyses of the multiple factors responsible for the decline of reef corals throughout the entire wider Caribbean region. The editors are grateful to all the people who have so generously provided data and expertise, but we assume responsibility for the many statements, conclusions and recommendations and final wording of the text. Part II provides a more detailed analysis of the status and trends of coral reef ecosystems in the 32 countries, states, and territories for which we have data. The format includes maps indicating all locations sampled, a detailed table of data sources and sites surveyed, timelines of ecologically important evens, and relevant references. Each of these reports was compiled in consultation with local experts and all those who provided data and advice are listed as authors of each country report.

  12. Island-enhanced cooling mechanism in typhoon events revealed by field observations and numerical simulations for a coral reef area, Sekisei Lagoon, Japan

    Science.gov (United States)

    Bernardo, Lawrence Patrick C.; Nadaoka, Kazuo; Nakamura, Takashi; Watanabe, Atsushi

    2017-11-01

    While widely known for their destructive power, typhoon events can also bring benefit to coral reef ecosystems through typhoon-induced cooling which can mitigate against thermally stressful conditions causing coral bleaching. Sensor deployments in Sekisei Lagoon, Japan's largest coral reef area, during the summer months of 2013, 2014, and 2015 were able to capture local hydrodynamic features of numerous typhoon passages. In particular, typhoons 2015-13 and 2015-15 featured steep drops in near-bottom temperature of 5 °C or more in the north and south sides of Sekisei Lagoon, respectively, indicating local cooling patterns which appeared to depend on the track and intensity of the passing typhoon. This was further investigated using Regional Ocean Modeling System (ROMS) numerical simulations conducted for the summer of 2015. The modeling results showed a cooling trend to the north of the Yaeyama Islands during the passage of typhoon 2015-13, and a cooling trend that moved clockwise from north to south of the islands during the passage of typhoon 2015-15. These local cooling events may have been initiated by the Yaeyama Islands acting as an obstacle to a strong typhoon-generated flow which was modulated and led to prominent cooling of waters on the leeward sides. These lower temperature waters from offshore may then be transported to the shallower inner parts of the lagoon area, which may partly be due to density-driven currents generated by the offshore-inner area temperature difference.

  13. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    Science.gov (United States)

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Groundtruthing Notes and Miscellaneous Biological Datasets from Coral Ecosystems Surveys from the Northwestern Hawaiian Islands Rapid Reef Assessment and Monitoring Program of 2000-2002 (NODC Accession 0001448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northwestern Hawaiian Islands Coral Reef Assessment and Monitoring Program (NOWRAMP) began in 2000 with the mission to rapidly evaluate and map the shallow water...

  15. Conservation genetics and the resilience of reef-building corals.

    Science.gov (United States)

    van Oppen, Madeleine J H; Gates, Ruth D

    2006-11-01

    Coral reefs have suffered long-term decline due to a range of anthropogenic disturbances and are now also under threat from climate change. For appropriate management of these vulnerable and valuable ecosystems it is important to understand the factors and processes that determine their resilience and that of the organisms inhabiting them, as well as those that have led to existing patterns of coral reef biodiversity. The scleractinian (stony) corals deposit the structural framework that supports and promotes the maintenance of biological diversity and complexity of coral reefs, and as such, are major components of these ecosystems. The success of reef-building corals is related to their obligate symbiotic association with dinoflagellates of the genus Symbiodinium. These one-celled algal symbionts (zooxanthellae) live in the endodermal tissues of their coral host, provide most of the host's energy budget and promote rapid calcification. Furthermore, zooxanthellae are the main primary producers on coral reefs due to the oligotrophic nature of the surrounding waters. In this review paper, we summarize and critically evaluate studies that have employed genetics and/or molecular biology in examining questions relating to the evolution and ecology of reef-building corals and their algal endosymbionts, and that bear relevance to coral reef conservation. We discuss how these studies can focus future efforts, and examine how these approaches enhance our understanding of the resilience of reef-building corals.

  16. Coral reefs and the World Bank.

    Science.gov (United States)

    Hatziolos, M

    1997-01-01

    The World Bank¿s involvement in coral reef conservation is part of a larger effort to promote the sound management of coastal and marine resources. This involves three major thrusts: partnerships, investments, networks and knowledge. As an initial partner and early supporter of the International Coral Reef Initiative (ICRI), the Bank serves as the executive planning committee of ICRI. In partnership with the World Conservation Union and the Great Barrier Reef Marine Park Authority, the Bank promotes the efforts towards the establishment and maintenance of a globally representative system of marine protected areas. In addition, the Bank invested over $120 million in coral reef rehabilitation and protection programs in several countries. Furthermore, the Bank developed a ¿Knowledge Bank¿ that would market ideas and knowledge to its clients along with investment projects. This aimed to put the best global knowledge on environmentally sustainable development in the hands of its staff and clients. During the celebration of 1997, as the International Year of the Reef, the Bank planned to cosponsor an associated event that would highlight the significance of coral reefs and encourage immediate action to halt their degradation to conserve this unique ecosystem.

  17. Warm-water coral reefs and climate change.

    Science.gov (United States)

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. Copyright © 2015, American Association for the Advancement of Science.

  18. The Role of Near-Shore Bathymetry During Tsunami Inundation in a Reef Island Setting: A Case Study of Tutuila Island

    Science.gov (United States)

    Dilmen, Derya I.; Roe, Gerard H.; Wei, Yong; Titov, Vasily V.

    2018-04-01

    On September 29, 2009 at 17:48 UTC, an M w = 8.1 earthquake in the Tonga Trench generated a tsunami that caused heavy damage across Samoa, American Samoa, and Tonga. One of the worst hits was the volcanic island of Tutuila in American Samoa. Tutuila has a typical tropical island bathymetry setting influenced by coral reefs, and so the event provided an opportunity to evaluate the relationship between tsunami dynamics and the bathymetry in that typical island environment. Previous work has come to differing conclusions regarding how coral reefs affect tsunami dynamics through their influence on bathymetry and dissipation. This study presents numerical simulations of this event with a focus on two main issues: first, how roughness variations affect tsunami run-up and whether different values of Manning's roughness parameter, n, improve the simulated run-up compared to observations; and second, how depth variations in the shelf bathymetry with coral reefs control run-up and inundation on the island coastlines they shield. We find that no single value of n provides a uniformly good match to all observations; and we find substantial bay-to-bay variations in the impact of varying n. The results suggest that there are aspects of tsunami wave dissipation which are not captured by a simplified drag formulation used in shallow-water waves model. The study also suggests that the primary impact of removing the near-shore bathymetry in coral reef environment is to reduce run-up, from which we conclude that, at least in this setting, the impact of the near-shore bathymetry is to increase run-up and inundation.

  19. The Role of Near-Shore Bathymetry During Tsunami Inundation in a Reef Island Setting: A Case Study of Tutuila Island

    Science.gov (United States)

    Dilmen, Derya I.; Roe, Gerard H.; Wei, Yong; Titov, Vasily V.

    2018-02-01

    On September 29, 2009 at 17:48 UTC, an M w = 8.1 earthquake in the Tonga Trench generated a tsunami that caused heavy damage across Samoa, American Samoa, and Tonga. One of the worst hits was the volcanic island of Tutuila in American Samoa. Tutuila has a typical tropical island bathymetry setting influenced by coral reefs, and so the event provided an opportunity to evaluate the relationship between tsunami dynamics and the bathymetry in that typical island environment. Previous work has come to differing conclusions regarding how coral reefs affect tsunami dynamics through their influence on bathymetry and dissipation. This study presents numerical simulations of this event with a focus on two main issues: first, how roughness variations affect tsunami run-up and whether different values of Manning's roughness parameter, n, improve the simulated run-up compared to observations; and second, how depth variations in the shelf bathymetry with coral reefs control run-up and inundation on the island coastlines they shield. We find that no single value of n provides a uniformly good match to all observations; and we find substantial bay-to-bay variations in the impact of varying n. The results suggest that there are aspects of tsunami wave dissipation which are not captured by a simplified drag formulation used in shallow-water waves model. The study also suggests that the primary impact of removing the near-shore bathymetry in coral reef environment is to reduce run-up, from which we conclude that, at least in this setting, the impact of the near-shore bathymetry is to increase run-up and inundation.

  20. CRED REA Belt Surveys of Coral Population and Disease Assessments at Maro Reef, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  1. Coral Reefs: A Gallery Program, Grades 7-12.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    Gallery classes at the National Aquarium in Baltimore give the opportunity to study specific aquarium exhibits which demonstrate entire natural habitats. The coral reef gallery class features the gigantic western Atlantic coral reef (325,000 gallons) with over 1,000 fish. The exhibit simulates a typical Caribbean coral reef and nearby sandy…

  2. Drivers of pCO2 dynamics in two contrasting coral reef lagoons: The influence of submarine groundwater discharge (Invited)

    Science.gov (United States)

    Cyronak, T.; Santos, I. R.; Erler, D.; Maher, D. T.; Eyre, B.

    2013-12-01

    The carbon chemistry of coral reef lagoons can be highly variable over short time scales. While much of the diel variability in seawater carbon chemistry is explained by biological processes, external sources such as river and groundwater seepage may deliver large amounts of organic and inorganic carbon to coral reefs and represent a poorly understood feedback to ocean acidification. Here, we assess the impact of submarine groundwater discharge (SGD) on pCO2 variability in two coral reef lagoons with distinct SGD driving mechanisms. Diel variability of pCO2 in the two ecosystems was explained by a combination of biological drivers and SGD inputs. In Rarotonga, a South Pacific volcanic island, SGD was driven primarily by a steep terrestrial hydraulic gradient, and the lagoon was influenced by the high pCO2 (5,501 μatm) of the fresh groundwater. In Heron Island, a Great Barrier Reef coral cay, SGD was dominated by seawater recirculation through sediments (i.e. tidal pumping) and pCO2 was mainly impacted through the stimulation of biological processes. The Rarotonga water column had a relatively higher average pCO2 (549 μatm) than Heron Island (471 μatm). However, pCO2 exhibited a greater diel range in Heron Island (778 μatm) than in Rarotonga (507 μatm). The Rarotonga lagoon received 31.2 mmol CO2 m-2 d-1 from SGD, while the Heron Island lagoon received 12.3 mmol CO2 m-2 d-1. Over the course of this study both systems were sources of CO2 to the atmosphere (3.00 to 9.67 mmol CO2 m-2 d-1), with SGD-derived CO2 contributing a large portion to the air-sea CO2 flux. The relationship between both water column pH and aragonite saturation state (ΩAr) and radon (222Rn) concentrations indicate that SGD may enhance the local acidification of some coral reef lagoons. Studies measuring the carbon chemistry of coral reefs (e.g. community metabolism, calcification rates) may need to consider SGD-derived CO2.

  3. Limited contemporary gene flow and high self-replenishment drives peripheral isolation in an endemic coral reef fish.

    Science.gov (United States)

    van der Meer, Martin H; Horne, John B; Gardner, Michael G; Hobbs, Jean-Paul A; Pratchett, Morgan; van Herwerden, Lynne

    2013-06-01

    Extensive ongoing degradation of coral reef habitats worldwide has lead to declines in abundance of coral reef fishes and local extinction of some species. Those most vulnerable are ecological specialists and endemic species. Determining connectivity between locations is vital to understanding recovery and long-term persistence of these species following local extinction. This study explored population connectivity in the ecologically-specialized endemic three-striped butterflyfish (Chaetodon tricinctus) using mt and msatDNA (nuclear microsatellites) to distinguish evolutionary versus contemporary gene flow, estimate self-replenishment and measure genetic diversity among locations at the remote Australian offshore coral reefs of Middleton Reef (MR), Elizabeth Reef (ER), Lord Howe Island (LHI), and Norfolk Island (NI). Mt and msatDNA suggested genetic differentiation of the most peripheral location (NI) from the remaining three locations (MR, ER, LHI). Despite high levels of mtDNA gene flow, there is limited msatDNA gene flow with evidence of high levels of self-replenishment (≥76%) at all four locations. Taken together, this suggests prolonged population recovery times following population declines. The peripheral population (NI) is most vulnerable to local extinction due to its relative isolation, extreme levels of self-replenishment (95%), and low contemporary abundance.

  4. NOAA's Coral Reef Conservation Program: 2016 projects to address coral reef conservation issues

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to address aspects of coral reef conservation: Enhancing Management of Pacific ESA-listed Corals with Improved Utility...

  5. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    Science.gov (United States)

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  6. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Resilience of coral reefs in the main Hawaiian Islands from 2013 to 2014 (NCEI Accession 0128219)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declining health of coral reef ecosystems led scientists to search for factors that support reef resilience: the ability of reefs to resist and recover from...

  8. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    Science.gov (United States)

    Garrison, Virginia H.; Ward, Greg A.

    2012-01-01

    In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands) in 1999 and was followed for 12 years. The primary objectives were to (1) identify a source of coral colonies for transplantation that would not result in damage to reefs, (2) test the feasibility of transplanting storm-generated coral fragments, and (3) develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community.  The ultimate goal was to enhance abundance of threatened reef-building species on local reefs.  Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae)] and another fast-growing species [Porites porites (Poritidae)] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs.  Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate.  Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place.  Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only.  Location was a factor in survival only for A. palmata reference colonies and after year 10.  Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are

  9. Radiography of X-ray in coral reefs

    International Nuclear Information System (INIS)

    Djoli Soembogo

    2016-01-01

    The application of X-ray radiography has been developed and it is already widely used in metal materials such as metal steel and carbon steel. This radiography using a source of radiation from X-ray machines. This research attempts to use the application of digital radiography X-ray source and use scanner Epson V700 positive films media for digitization results of conventional radiographic films on coral reefs. It has been testing radiography using Fuji film 100 to get the contrast medium, the sensitivity of the medium and image quality is good, Single Wall Single Image method , and using the media scanner films positive and X-ray sources, observation parameter are density radiographic film and the defect shape. Radiography uses Fuji film 100 to obtain a good contrast medium, good medium sensitivity and good quality image. Radiography of X-ray on coral reefs aims to find defects or discontinuities coral reefs such as porosity which would interfere with the determination of the age of the coral reefs. X-ray exposure time is 1 seconds for a thickness of 5.45 mm and 5.60 mm coral reefs by using a high voltage X-ray machine Rigaku of 130 kV. The result of the positive film scanner in the form of digital radiography that allows for the transfer of digital data or digital computerized data storage. The test results of radiographic on coral reefs with Single Wall Single Image method obtained radiographic film density parameter for Fuji film 100 on coral reefs No. 2 are 2.55; 2.53; 2.59 and on coral reefs No. 4 are 2.62; 2.65; 2.66, unsharpness geometric of radiographic results obtained 0.022 mm and 0.023 mm, sensitivity radiography are 1.648% and 1.604%. No defect found of Porosity that is significant. Status is acceptable for Fuji film 100, because the density of the film is in conformity with the standards referred to. Status of coral reefs No. 2 and No. 4 can be accepted, because it has conformed with the standards referred. (author)

  10. Macroalgal herbivory on recovering versus degrading coral reefs

    Science.gov (United States)

    Chong-Seng, K. M.; Nash, K. L.; Bellwood, D. R.; Graham, N. A. J.

    2014-06-01

    Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20-46 %) and those degrading with high macroalgal cover (57-82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m-2 h-1 on coral-dominated and 5.3 ± 2.1 g m-2 h-1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser , Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change

  11. Coral Reefs: Beyond Mortality?

    Directory of Open Access Journals (Sweden)

    Charles Sheppard

    2000-01-01

    Full Text Available The scale of the collapse of coral reef communities in 1998 following a warming episode (Wilkinson, 2000 was unprecedented, and took many people by surprise. The Indian Ocean was the worst affected with a coral mortality over 75% in many areas such as the Chagos Archipelago (Sheppard, 1999, Seychelles (Spencer et al., 2000 and Maldives (McClanahan, 2000. Several other locations were affected at least as much, with mortality reaching 100% (to the nearest whole number; this is being compiled by various authors (e.g., CORDIO, in press. For example, in the Arabian Gulf, coral mortality is almost total across many large areas of shallow water (Sheppard, unpublished; D. George and D. John, personal communication. The mortality is patchy of course, depending on currents, location inside or outside lagoons, etc., but it is now possible to swim for over 200 m and see not one remaining living coral or soft coral on some previously rich reefs.

  12. Coral Reefs: An English Compilation of Activities for Middle School Students.

    Science.gov (United States)

    Walker, Sharon H.; Newton, R. Amanda; Ortiz, Alida

    This activity book on coral reefs for middle school students is divided into 10 sections. Section 1 contains the introduction. Section 2 describes what coral reefs are while section 3 describes how coral reefs reproduce and grow. Section 4 discusses where coral reefs are found and section 5 describes life on a coral reef. Section 6 discusses the…

  13. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity.

    Science.gov (United States)

    Granados-Cifuentes, Camila; Bellantuono, Anthony J; Ridgway, Tyrone; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2013-04-08

    Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.

  14. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; Mueller, C.E.; Struck, U.; Middelburg, J.J.; van Duyl, F.C.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.; Van Oevelen, D.

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and

  15. Coral Reef Ecosystems under Climate Change and Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Ove Hoegh-Guldberg

    2017-05-01

    Full Text Available Coral reefs are found in a wide range of environments, where they provide food and habitat to a large range of organisms as well as providing many other ecological goods and services. Warm-water coral reefs, for example, occupy shallow sunlit, warm, and alkaline waters in order to grow and calcify at the high rates necessary to build and maintain their calcium carbonate structures. At deeper locations (40–150 m, “mesophotic” (low light coral reefs accumulate calcium carbonate at much lower rates (if at all in some cases yet remain important as habitat for a wide range of organisms, including those important for fisheries. Finally, even deeper, down to 2,000 m or more, the so-called “cold-water” coral reefs are found in the dark depths. Despite their importance, coral reefs are facing significant challenges from human activities including pollution, over-harvesting, physical destruction, and climate change. In the latter case, even lower greenhouse gas emission scenarios (such as Representative Concentration Pathway RCP 4.5 are likely drive the elimination of most warm-water coral reefs by 2040–2050. Cold-water corals are also threatened by warming temperatures and ocean acidification although evidence of the direct effect of climate change is less clear. Evidence that coral reefs can adapt at rates which are sufficient for them to keep up with rapid ocean warming and acidification is minimal, especially given that corals are long-lived and hence have slow rates of evolution. Conclusions that coral reefs will migrate to higher latitudes as they warm are equally unfounded, with the observations of tropical species appearing at high latitudes “necessary but not sufficient” evidence that entire coral reef ecosystems are shifting. On the contrary, coral reefs are likely to degrade rapidly over the next 20 years, presenting fundamental challenges for the 500 million people who derive food, income, coastal protection, and a range of

  16. A Global Estimate of the Number of Coral Reef Fishers.

    Directory of Open Access Journals (Sweden)

    Louise S L Teh

    Full Text Available Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  17. A Global Estimate of the Number of Coral Reef Fishers.

    Science.gov (United States)

    Teh, Louise S L; Teh, Lydia C L; Sumaila, U Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  18. Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Steven J Lindfield

    Full Text Available In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI, where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers dominated spearfishing catches, with parrotfish (scarines and surgeonfish/unicornfish (acanthurids the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries.

  19. Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes.

    Science.gov (United States)

    Lindfield, Steven J; McIlwain, Jennifer L; Harvey, Euan S

    2014-01-01

    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries.

  20. Status of coral reefs of Upolu (Independent State of Samoa) in the South West Pacific and recommendations to promote resilience and recovery of coastal ecosystems

    KAUST Repository

    Ziegler, Maren

    2018-03-23

    Coral reef ecosystems worldwide are immediately threatened by the impacts of climate change. Here we report on the condition of coral reefs over 83 km of coastline at the island of Upolu, Samoa in the remote South West Pacific in 2016 during the Tara Pacific Expedition. Despite the distance to large urban centers, coral cover was extremely low (<1%) at approximately half of the sites and below 10% at 78% of sites. Two reef fish species, Acanthurus triostegus and Zanclus cornutus, were 10% smaller at Upolu than at neighboring islands. Importantly, coral cover was higher within marine protected areas, indicating that local management action remains a useful tool to support the resilience of local reef ecosystems to anthropogenic impacts. This study may be interpreted as cautionary sign for reef ecosystem health in remote locations on this planet, reinforcing the need to immediately reduce anthropogenic impacts on a global scale.

  1. Status of coral reefs of Upolu (Independent State of Samoa) in the South West Pacific and recommendations to promote resilience and recovery of coastal ecosystems

    KAUST Repository

    Ziegler, Maren; Qué ré , Gaë lle; Ghiglione, Jean-Franç ois; Iwankow, Guillaume; Barbe, Valé rie; Boissin, Emilie; Wincker, Patrick; Planes, Serge; Voolstra, Christian R.

    2018-01-01

    Coral reef ecosystems worldwide are immediately threatened by the impacts of climate change. Here we report on the condition of coral reefs over 83 km of coastline at the island of Upolu, Samoa in the remote South West Pacific in 2016 during the Tara Pacific Expedition. Despite the distance to large urban centers, coral cover was extremely low (<1%) at approximately half of the sites and below 10% at 78% of sites. Two reef fish species, Acanthurus triostegus and Zanclus cornutus, were 10% smaller at Upolu than at neighboring islands. Importantly, coral cover was higher within marine protected areas, indicating that local management action remains a useful tool to support the resilience of local reef ecosystems to anthropogenic impacts. This study may be interpreted as cautionary sign for reef ecosystem health in remote locations on this planet, reinforcing the need to immediately reduce anthropogenic impacts on a global scale.

  2. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Treml, Eric A; Wren, Johanna L K; Donovan, Mary K; Toonen, Robert J

    2016-04-27

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems. © 2016 The Authors.

  3. Reef-scale modeling of coral calcification responses to ocean acidification and sea-level rise

    Science.gov (United States)

    Nakamura, Takashi; Nadaoka, Kazuo; Watanabe, Atsushi; Yamamoto, Takahiro; Miyajima, Toshihiro; Blanco, Ariel C.

    2018-03-01

    To predict coral responses to future environmental changes at the reef scale, the coral polyp model (Nakamura et al. in Coral Reefs 32:779-794, 2013), which reconstructs coral responses to ocean acidification, flow conditions and other factors, was incorporated into a reef-scale three-dimensional hydrodynamic-biogeochemical model. This coupled reef-scale model was compared to observations from the Shiraho fringing reef, Ishigaki Island, Japan, where the model accurately reconstructed spatiotemporal variation in reef hydrodynamic and geochemical parameters. The simulated coral calcification rate exhibited high spatial variation, with lower calcification rates in the nearshore and stagnant water areas due to isolation of the inner reef at low tide, and higher rates on the offshore side of the inner reef flat. When water is stagnant, bottom shear stress is low at night and thus oxygen diffusion rate from ambient water to the inside of the coral polyp limits respiration rate. Thus, calcification decreases because of the link between respiration and calcification. A scenario analysis was conducted using the reef-scale model with several pCO2 and sea-level conditions based on IPCC (Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 2013) scenarios. The simulation indicated that the coral calcification rate decreases with increasing pCO2. On the other hand, sea-level rise increases the calcification rate, particularly in the nearshore and the areas where water is stagnant at low tide under present conditions, as mass exchange, especially oxygen exchange at night, is enhanced between the corals and their ambient seawater due to the reduced stagnant period. When both pCO2 increase and sea-level rise occur concurrently, the calcification rate generally decreases due to the effects of ocean acidification. However, the

  4. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    Science.gov (United States)

    Hochberg, E. J.

    2016-02-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  5. The continuing decline of coral reefs in Bahrain.

    Science.gov (United States)

    Burt, John A; Al-Khalifa, Khalifa; Khalaf, Ebtesam; Alshuwaikh, Bassem; Abdulwahab, Ahmed

    2013-07-30

    Historically coral reefs of Bahrain were among the most extensive in the southern basin of the Arabian Gulf. However, Bahrain's reefs have undergone significant decline in the last four decades as a result of large-scale coastal development and elevated sea surface temperature events. Here we quantitatively surveyed six sites including most major coral reef habitats around Bahrain and a reef located 72 km offshore. Fleshy and turf algae now dominate Bahrain's reefs (mean: 72% cover), and live coral cover is low (mean: 5.1%). Formerly dominant Acropora were not observed at any site. The offshore Bulthama reef had the highest coral cover (16.3%) and species richness (22 of the 23 species observed, 13 of which were exclusive to this site). All reefs for which recent and historical data are available show continued degradation, and it is unlikely that they will recover under continuing coastal development and projected climate change impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Relating Landscape Development Intensity to Coral Reef Condition in the Watersheds of St. Croix, U.S. Virgin Islands

    Science.gov (United States)

    Diagnosing the degree to which local landscape activities impact coral reef ecosystems and their ecological services is critically important to coastal and watershed decision-makers. We report, for the first time, a study that relates coral reef condition metrics to metrics of h...

  7. NOAA TIFF Image - 1 m Backscatter Mosaic of an offshore portion of the NPS's Virgin Islands Coral Reef National Monument, south of St. John, US Virgin Islands, Project NF-05-05, 2005, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution backscatter mosaic of an offshore portion of the NPS's Virgin Islands Coral Reef National Monument, south of St. John, US...

  8. NOAA TIFF Image - 1 m Backscatter Mosaic of an inshore portion of the NPS's Virgin Islands Coral Reef National Monument, south of St. John, US Virgin Islands, Project NF-05-05, 2005, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution backscatter mosaic of the inshore portion of the NPS's Virgin Islands Coral Reef National Monument, south of St. John, US...

  9. Coral diseases and their research in Colombian reefs

    International Nuclear Information System (INIS)

    Gil A, Diego L; Navas C, Raul; RodrIguez, Alberto; Reyes, Maria C

    2009-01-01

    Coral reefs are one of the most beautiful and important ecosystems in the planet. These ecosystems have existed for over 200 million years and have survived extreme episodes such as glaciation and mass extinctions during their history. Nonetheless, during the last three decades, these ecosystems have registered sudden and dramatic changes that, according to some researchers, endanger their survival and persistence. One of the major problems coral reefs are facing nowadays is the outbreak of diseases that affect corals, which constitute the basic unit of this ecosystem. There is no consensus regarding whether these disease outbreaks are recent episodes; but what seems to be true is that some of these diseases have favored unprecedented changes in coral reefs. Coral reefs in Colombia have also been affected by disease events, and since the 1980, several coral diseases have been observed and studied, and even one of them was first described in Colombian reefs. This work presents a compendium of the main coral diseases registered around the world and is meant to serve as a guide for new studies in this topic. Similarly, a summary of coral disease research carried out in Colombia is presented as well as a discussion on current perspectives for the study of this field in the country.

  10. THE EFFECT OF ORGANIC SEDIMENT CONTENT ON CORAL DIVERSITY IN KARIMUNJAWA ISLAND, INDONESIA

    Directory of Open Access Journals (Sweden)

    Fajar Nugroho

    2018-06-01

    Full Text Available Coral reef now are under threats due to sedimentation. Fatal effect of organic rich sediment, leading corals mortality. Therefore, the study was conducted to investigate effect of organic sediment content to the coral diversity in Karimunjawa Island, Central Java, Indonesia. Field data was conducted at 6 locations.  Three sediment traps were deployed at each sites to measure organic sediment content. Twenty replicated quadrant transects were used to estimate coral density and coral diversity. Analysis of variance (ANOVA was used to examine the differences of organic sediment content in each station. The linear regression was used to assess the relationship between organic sediment content and coral diversity. Our field result demonstrated that sediment content significantly different between sites with value range from 0.42 mg/800 ml - 1.32 mg/800 ml. Based on the Simson’s Diversity Index, the highest coral diversity found at Alang-alang as site with low sedimentation while the lowest coral diversity was found at Legon Lele as site with high sedimentation. The study shown significant negative correlation between organic sediment content and coral diversity with the coefficient of regression 0.68. This study convinces that disturbance on coral reefs might affect coral diversity in Karimunjawa Island, in addition to other factors such as the influence of human activities, natural disruption and climate change. Keywords: sedimentation, organic, coral, diversity, Karimunjawa

  11. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Pacific Remote Island Areas from Water Samples collected since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  12. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.

    Science.gov (United States)

    Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P

    2012-06-01

    Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change. © 2012 Blackwell Publishing Ltd/CNRS.

  13. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    Directory of Open Access Journals (Sweden)

    Tracey McDole

    Full Text Available The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change have been identified, the mechanism(s of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.

  14. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    Science.gov (United States)

    McDole, Tracey; Nulton, James; Barott, Katie L; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J; Brainard, Russell E; Rohwer, Forest

    2012-01-01

    The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.

  15. Plastic waste associated with disease on coral reefs.

    Science.gov (United States)

    Lamb, Joleah B; Willis, Bette L; Fiorenza, Evan A; Couch, Courtney S; Howard, Robert; Rader, Douglas N; True, James D; Kelly, Lisa A; Ahmad, Awaludinnoer; Jompa, Jamaluddin; Harvell, C Drew

    2018-01-26

    Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Are coral reefs victims of their own past success?

    Science.gov (United States)

    Renema, Willem; Pandolfi, John M; Kiessling, Wolfgang; Bosellini, Francesca R; Klaus, James S; Korpanty, Chelsea; Rosen, Brian R; Santodomingo, Nadiezhda; Wallace, Carden C; Webster, Jody M; Johnson, Kenneth G

    2016-04-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs' ability to provide ecosystem services.

  17. Patterns of coral species richness and reef connectivity in Malaysia

    NARCIS (Netherlands)

    Waheed, Z.

    2016-01-01

    Much remains to be discovered about the biodiversity of coral reefs in Malaysia, making this area a priority for coral reef research. This thesis aims to provide insights into the patterns of reef coral species richness and the degree of reef connectivity across Malaysia. For the species richness

  18. A study on the recovery of Tobago's coral reefs following the 2010 mass bleaching event.

    Science.gov (United States)

    Buglass, Salome; Donner, Simon D; Alemu I, Jahson B

    2016-03-15

    In 2010, severe coral bleaching was observed across the southeastern Caribbean, including the island of Tobago, where coral reefs are subject to sedimentation and high nutrient levels from terrestrial runoff. Here we examine changes in corals' colony size distributions over time (2010-2013), juvenile abundances and sedimentation rates for sites across Tobago following the 2010 bleaching event. The results indicated that since pre-bleaching coral cover was already low due to local factors and past disturbance, the 2010 event affected only particular susceptible species' population size structure and increased the proportion of small sized colonies. The low density of juveniles (mean of 5.4±6.3 juveniles/m(-2)) suggests that Tobago's reefs already experienced limited recruitment, especially of large broadcasting species. The juvenile distribution and the response of individual species to the bleaching event support the notion that Caribbean reefs are becoming dominated by weedy non-framework building taxa which are more resilient to disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Baseline assessments for coral reef community structure and demographics on West Maui

    Science.gov (United States)

    Vargas-Angel, Bernardo; White, Darla; Storlazzi, Curt; Callender, Tova; Maurin, Paulo

    2017-01-01

    The coastal and upslope terrains of West Maui have had a long history of impacts owing to more than a century of human activities. Resource extraction, agriculture, as well as residential and resort development have caused land-based pollution that impairs water quality and adversely impact the adjacent marine ecosystem. Today, West Maui’s coral reefs are chronically impacted by the effects of land-based pollution, mainly sedimentation and nutrients, with documented losses of 30 – 75% in coral cover over the last 20 years. Nonetheless, despite their current status and levels of environmental impact, these coral reef communities represent a key local resource and a counterpoint to the overall low coral reef development levels both island- and state-wide. This is of high relevance because the occurrence of coral-rich assemblages and accreted reef complexes statewide is sparse. Only limited segments along the coastlines of Maui, Hawai‘i, Lana‘i, Moloka‘i, and Kaho‘olawe, harbor mature, fringing coral reefs; and unfortunately, many of them are seriously threatened by terrestrial runoff. This report describes the results of baseline assessment surveys of coral reef benthic structure, coral community demographics, and coral condition. These surveys are intended to provide benchmarks for continued monitoring efforts and provide a gauge for comparing and evaluating the effectiveness of management actions to reduce land-based sources of pollution in priority watersheds on West Maui. Within this context, 12 permanent, long-term monitoring sites were strategically established adjacent to the 7 primary stream drainages (Wahikuli, Honokōwai, Mahinahina, Kahana/Ka‘opala, Honokeana, Honokahua, and Honolua) within the five priority watersheds (Wahikuli, Honokōwai, Kahana, Honokahua, and Honolua). Herein, benthic cover and composition, coral demographics, and coral condition of the monitoring sites are described and contrasted in the “Benthic Characterization

  20. CRED REA Belt Surveys of Coral Population and Disease Assessments at Kingman Reef, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 14-19 April 2010, belt...

  1. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  2. 230Th/234U dates of late Pleistocene corals from Kita- and Minami-Diato Island, Okinawa, Japan

    International Nuclear Information System (INIS)

    Omura, Akio; Iwata, Hideki; Ota, Yoko; Koba, Motoharu; Kawana, Toshio.

    1991-01-01

    Alpha spectrometric Th-230/U-234 dating was applied to 50 Pleistocene corals from Kita- and Minami-Daito Islands, both have been well known as the noteworthy representatives of raised atolls. The Th-230/U-234 dates ranged from 113±6 to 133±6 ka (123±1 ka on average) in the autochthonous corals from Kita-, and from 111±5 to 159±10 ka (123±1 ka on average) in those from Minami-Daito Island, intimating that the fringing reefs have been developed during the high sea level stand of the last interglacial maximum. These dates are correlative to the oxygen isotope stage 5e. The upper limit of occurrence of the dated autochthonous corals was 8.1 m in Kita- and 11 m in Minami-Daito Island. Besides, the somewhat younger dates corresponding to OIS-5a or 5c were obtained from some allochthonous corals in a detrital limestone unit in Kita-Daito Island. However, hermatypic corals were alive, forming small scale reefs in shallow sea around Kita-Daito Island. The former shoreline was proved by the presence of raised surf bench at some localities, where the dated autochthonous corals were collected. (K.I.)

  3. Effects of reduced water quality on coral reefs in and out of no-take marine reserves.

    Science.gov (United States)

    Wenger, Amelia S; Williamson, David H; da Silva, Eduardo T; Ceccarelli, Daniela M; Browne, Nicola K; Petus, Caroline; Devlin, Michelle J

    2016-02-01

    Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ∼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ∼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water

  4. A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands.

    Directory of Open Access Journals (Sweden)

    Jade M S Delevaux

    Full Text Available Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients, mediated by human activities (land cover/use, and marine drivers (waves, geography, and habitat on coral reefs. We applied this framework in two 'ridge-to-reef' systems (Hā'ena and Ka'ūpūlehu subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka'ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā'ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka'ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā'ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as

  5. Depth Refuge and the Impacts of SCUBA Spearfishing on Coral Reef Fishes

    OpenAIRE

    Lindfield, Steven J.; McIlwain, Jennifer L.; Harvey, Euan S.

    2014-01-01

    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Gu...

  6. Coral reef degradation and metabolic performance of the scleractinian coral Porites lutea under anthropogenic impact along the NE coast of Hainan Island, South China Sea

    KAUST Repository

    Roder, Cornelia; Wu, Zhongjie; Richter, Claudio; Zhang, Jing

    2013-01-01

    Hainan's coast provides favorable climatic, geochemical and biogeographic conditions for the development of extensive coral reefs in China. Observations in five reefs along the NE coast of Hainan showed, however, that the overall density of mobile macrofauna is low and key functional groups such as browsing, scraping or excavating herbivore fish are missing altogether. Coral diseases, partial mortality or tissue degradation are abundant and growth of macroalgal space competitors extensive. Signs of eutrophication, siltation and destructive fishing practices are evident resulting in a strongly altered environment unfavorable for coral recruitment success and survival. Acclimation to the anthropogenically altered conditions in the massive coral Porites lutea occurs at the cost of a decreased photosynthesis: respiration ratio reducing the regenerative capacity of these key framebuilding organisms. Even though, on the organismal level, corals are able to cope with these stressful conditions, a shift is imminent on the ecosystem level from a coral reef to a macroalgae-dominated community if land-based disturbance prevails unabated. © 2012 Elsevier Ltd.

  7. Coral reef degradation and metabolic performance of the scleractinian coral Porites lutea under anthropogenic impact along the NE coast of Hainan Island, South China Sea

    KAUST Repository

    Roder, Cornelia

    2013-04-01

    Hainan\\'s coast provides favorable climatic, geochemical and biogeographic conditions for the development of extensive coral reefs in China. Observations in five reefs along the NE coast of Hainan showed, however, that the overall density of mobile macrofauna is low and key functional groups such as browsing, scraping or excavating herbivore fish are missing altogether. Coral diseases, partial mortality or tissue degradation are abundant and growth of macroalgal space competitors extensive. Signs of eutrophication, siltation and destructive fishing practices are evident resulting in a strongly altered environment unfavorable for coral recruitment success and survival. Acclimation to the anthropogenically altered conditions in the massive coral Porites lutea occurs at the cost of a decreased photosynthesis: respiration ratio reducing the regenerative capacity of these key framebuilding organisms. Even though, on the organismal level, corals are able to cope with these stressful conditions, a shift is imminent on the ecosystem level from a coral reef to a macroalgae-dominated community if land-based disturbance prevails unabated. © 2012 Elsevier Ltd.

  8. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    Science.gov (United States)

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-05

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  9. Benthic metabolic feedbacks to carbonate chemistry on coral reefs:implications for ocean acidification

    Science.gov (United States)

    Price, N.; Rohwer, F. L.; Stuart, S. A.; Andersson, A.; Smith, J.

    2012-12-01

    The metabolic activity of resident organisms can cause spatio-temporal variability in carbonate chemistry within the benthic boundary layer, and thus potentially buffer the global impacts of ocean acidification. But, little is known about the capacity for particular species assemblages to contribute to natural daily variability in carbonate chemistry. We encapsulated replicate areas (~3m2) of reef across six Northern Line Islands in the central Pacific for 24 hrs to quantify feedbacks to carbonate chemistry within the benthic boundary layer from community metabolism. Underneath each 'tent', we quantified relative abundance and biomass of each species of corals and algae. We coupled high temporal resolution time series data on the natural diurnal variability in pH, dissolved oxygen, salinity, and temperature (using autonomous sensors) with resident organisms' net community calcification and productivity rates (using change in total dissolved carbon and total alkalinity over time) to examine feedbacks from reef metabolism to boundary layer carbonate chemistry. These reefs experienced large ranges in pH (> 0.2 amplitude) each day, similar to the magnitude of 'acidification' expected over the next century. Daily benthic pH, pCO2, and aragonite saturation state (Ωaragonite) were contrasted with seasonal threshold values estimated from open ocean climatological data extrapolated at each island to determine relative inter-island feedbacks. Diurnal amplitude in pH, pCO2, and Ωaragonite at each island was dependent upon the resident species assemblage of the benthos and was particularly reliant upon the biomass, productivity, and calcification rate of Halimeda. Net primary productivity of fleshy algae (algal turfs and Lobophora spp.) predominated on degraded, inhabited islands where net community calcification was negligible. In contrast, the chemistry over reefs on 'pristine', uninhabited islands was driven largely by net calcification of calcareous algae and stony

  10. Relationships between structural complexity, coral traits, and reef fish assemblages

    Science.gov (United States)

    Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.

    2017-06-01

    With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.

  11. Coral Reef Guidance

    Science.gov (United States)

    Guidance prepared by EPA and Army Corps of Engineers concerning coral reef protection under the Clean Water Act, Marine Protection, Research, and Sanctuaries Act, Rivers and Harbors Act, and Federal Project Authorities.

  12. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs.

    Science.gov (United States)

    Brocke, Hannah J; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs.

  13. Community structure and coral health status across the depth gradients of Grande Island, Central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Manikandan, B.; Ravindran, J.; Mohan, H.; Periasamy, R.; ManiMurali, R.; Ingole, B.S.

    The Grande Island, located at the central west coast of India is one of the less studied coral reef systems in India. In this study, we provide a comprehensive description of the coral community structure and health status of corals across...

  14. Loss of live coral compromises predator-avoidance behaviour in coral reef damselfish.

    Science.gov (United States)

    Boström-Einarsson, Lisa; Bonin, Mary C; Munday, Philip L; Jones, Geoffrey P

    2018-05-17

    Tropical reefs have experienced an unprecedented loss of live coral in the past few decades and the biodiversity of coral-dependent species is under threat. Many reef fish species decline in abundance as coral cover is lost, yet the mechanisms responsible for these losses are largely unknown. A commonly hypothesised cause of fish decline is the loss of shelter space between branches as dead corals become overgrown by algae. Here we tested this hypothesis by quantifying changes in predator-avoidance behaviour of a common damselfish, Pomacentrus moluccensis, before and after the death of their coral colony. Groups of P. moluccensis were placed on either healthy or degraded coral colonies, startled using a visual stimulus and their sheltering responses compared over a 7-week period. P. moluccensis stopped sheltering amongst the coral branches immediately following the death of the coral, despite the presence of ample shelter space. Instead, most individuals swam away from the dead coral, potentially increasing their exposure to predators. It appears that the presence of live coral rather than shelter per se is the necessary cue that elicits the appropriate behavioural response to potential predators. The disruption of this link poses an immediate threat to coral-associated fishes on degrading reefs.

  15. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth.

    Science.gov (United States)

    Zhang, Ruijie; Zhang, Ruiling; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Pei, Jiying; Wei, Chaoshuai; Pan, Ziliang; Qin, Zhenjun; Zhang, Gan

    2018-01-01

    Laboratory research has indicated that antibiotics had negative effects on coral growth by disturbing natural microbiota; however, no field studies have reported antibiotic contamination levels and their influence on coral growth in natural coral reef regions (CRRs). This study investigated antibiotic occurrence and sources in the surface water from CRRs that have suffered from rapid coral degradation and evaluated their risk to coral growth. These regions are in the South China Sea, including four coastal and two offshore CRRs. The results show that 13 antibiotics were detected in the coastal CRRs with concentrations ranging from 10 -2 -10 0  ng L -1 , while 5 antibiotics occurred in offshore CRRs (300-950 km from the mainland), with concentrations ranging from 10 -2 to 10 -1  ng L -1 . Their concentrations decreased gradually from the coast to offshore in the transport process. However, Yongxing Island, which is approximately 300 km from the mainland, was an exception with relatively higher concentrations than the surrounding reefs because of the ever-increasing human activity on the island. The presence of anthropogenic contaminants antibiotics in CRRs may be a potential risk to coral growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Global warming transforms coral reef assemblages.

    Science.gov (United States)

    Hughes, Terry P; Kerry, James T; Baird, Andrew H; Connolly, Sean R; Dietzel, Andreas; Eakin, C Mark; Heron, Scott F; Hoey, Andrew S; Hoogenboom, Mia O; Liu, Gang; McWilliam, Michael J; Pears, Rachel J; Pratchett, Morgan S; Skirving, William J; Stella, Jessica S; Torda, Gergely

    2018-04-01

    Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.

  17. Revealing the regime of shallow coral reefs at patch scale by continuous spatial modeling

    Directory of Open Access Journals (Sweden)

    Antoine eCollin

    2014-11-01

    Full Text Available Reliably translating real-world spatial patterns of ecosystems is critical for understanding processes susceptible to reinforce resilience. However the great majority of studies in spatial ecology use thematic maps to describe habitats and species in a binary scheme. By discretizing the transitional areas and neglecting the gradual replacement across a given space, the thematic approach may suffer from substantial limitations when interpreting patterns created by many continuous variables. Here, local and regional spectral proxies were used to design and spatially map at very fine scale a continuous index dedicated to one of the most complex seascapes, the coral reefscape. Through a groundbreaking merge of bottom-up and top-down approach, we demonstrate that three to seven-habitat continuous indices can be modeled by nine, six, four and three spectral proxies, respectively, at 0.5 m spatial resolution using hand- and spaceborne measurements. We map the seven-habitat continuous index, spanning major Indo-Pacific coral reef habitats through the far red-green normalized difference ratio over the entire lagoon of a low (Tetiaroa atoll and a high volcanic (Moorea island in French Polynesia with 84% and 82% accuracy, respectively. Further examinations of the two resulting spatial models using a customized histoscape (density function of model values distributed on a concentric strip across the reef crest-coastline distance show that Tetiaroa exhibits a greater variety of coral reef habitats than Moorea. By designing such easy-to-implement, transferrable spectral proxies of coral reef regime, this study initiates a framework for spatial ecologists tackling coral reef biodiversity, responses to stresses, perturbations and shifts. We discuss the limitations and contributions of our findings towards the study of worldwide coral reef resilience following stochastic environmental change.

  18. [Coral reefs in the face of ecological threats of XXI century].

    Science.gov (United States)

    Tkachenko, K S

    2015-01-01

    To date, more than a quarter of tropical coral reefs of the World Ocean are believed to be totally de- stroyed. Given the present rates of reefs degradation, this value may be doubled in the nearest 30 years. For the essential part of coastal community, the destruction of coral ecosystems implies the loss of the major food sources, natural protection from storms, and significant (if not the only) revenue from exploi- tation of reefs especially in tourism industry. Finally, the disappearance of low-laying coral islands may threat the local communities by deprivation of living space. Global negative effects include temperature anomalies of sea surface waters and an increase of atmospheric CO2 concentration leading to ocean acidification. Local negative effects are related to in- crease of sedimentation and eutrophication, cyclone and storm passes, coral diseases, chemical pollution, mechanical destruction of corals by humans, anthropogenic depletion of functional groups of fish and invertebrates. An entire set of responses of coral ecosystems to stressful factors on the levels of both separate taxa and ecosystem is discussed. An analysis of published data suggests that with high probability the tropical coral communities will come to collapse stage by the middle of the current century at more than 50% of the area of their biogeographic range, especially in the regions of dense human population. At the most optimistic scenario, complex effect of reviewed negative factors will result in coral ecosystems main- taining in some areas. However, after global transformations, these ecosystems will be dominated by the most resistant taxa, mainly massive and encrusting forms of long-lived species with low growth rates and high competitive ability. Among such taxa, Poritidae demonstrates the highest adaptive capability. At the most pessimistic scenario, scleractinian communities will be replaced by alternative communities of macroalgae and non-calcareous anthozoans.

  19. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada.

    Science.gov (United States)

    Reguero, Borja G; Beck, Michael W; Agostini, Vera N; Kramer, Philip; Hancock, Boze

    2018-03-15

    implementation criteria. Four pilot units were implemented in 2015 and are currently being field-tested. This paper presents one of the few existing examples available to date of a reef restoration project designed and engineered to deliver risk reduction benefits. The case study shows how engineering and ecology can work together in community-based adaptation. Our findings are particularly important for Small Island States on the front lines of climate change, who have the most to gain from protecting and managing coral reefs as coastal infrastructure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. UNEP-IOC-ASPEI global task team on the implications of climate change on coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The first meeting of the Global Task Team on the Implications of Climate Change on Coral Reefs was held to develop an authoritative scientific and technical review of the implications of climate change for coral reefs and their ecologically sustainable use. The Task Team is expected to provide expert advice and guidance in the implementation of the pilot activity on coral reef monitoring as part of the UNEP-IOC-WMO Long-Term Global Monitoring System of coastal and near-shore phenomena related to climate change. This would ensure coordination of various activities aimed at assessing the scale of impacts on natural environments and socio-economic systems particularly in the case of low-lying islands and other areas vulnerable to climate change and sea level rise. The work of the Task Team should ultimately assist the Governments concerned in mitigating the impacts of such changes.

  1. Trophodynamics as a Tool for Understanding Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Stacy L. Bierwagen

    2018-02-01

    Full Text Available The increased frequency of publications concerning trophic ecology of coral reefs suggests a degree of interest in the role species and functional groups play in energy flow within these systems. Coral reef ecosystems are particularly complex, however, and assignment of trophic positions requires precise knowledge of mechanisms driving food webs and population dynamics. Competent analytical tools and empirical analysis are integral to defining ecosystem processes and avoiding misinterpretation of results. Here we examine the contribution of trophodynamics to informing ecological roles and understanding of coral reef ecology. Applied trophic studies of coral reefs were used to identify recent trends in methodology and analysis. Although research is increasing, clear definitions and scaling of studies is lacking. Trophodynamic studies will require more precise spatial and temporal data collection and analysis using multiple methods to fully explore the complex interactions within coral reef ecosystems.

  2. Predicting Heat Stress to Inform Reef Management: NOAA Coral Reef Watch's 4-Month Coral Bleaching Outlook

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available The U.S. National Oceanic and Atmospheric Administration's (NOAA Coral Reef Watch (CRW operates a global 4-Month Coral Bleaching Outlook system for shallow-water coral reefs in collaboration with NOAA's National Centers for Environmental Prediction (NCEP. The Outlooks are generated by applying the algorithm used in CRW's operational satellite coral bleaching heat stress monitoring, with slight modifications, to the sea surface temperature (SST predictions from NCEP's operational Climate Forecast System Version 2 (CFSv2. Once a week, the probability of heat stress capable of causing mass coral bleaching is predicted for 4-months in advance. Each day, CFSv2 generates an ensemble of 16 forecasts, with nine runs out to 45-days, three runs out to 3-months, and four runs out to 9-months. This results in 28–112 ensemble members produced each week. A composite for each predicted week is derived from daily predictions within each ensemble member. The probability of each of four heat stress ranges (Watch and higher, Warning and higher, Alert Level 1 and higher, and Alert Level 2 is determined from all the available ensemble members for the week to form the weekly probabilistic Outlook. The probabilistic 4-Month Outlook is the highest weekly probability predicted among all the weekly Outlooks during a 4-month period for each of the stress ranges. An initial qualitative skill analysis of the Outlooks for 2011–2015, compared with CRW's satellite-based coral bleaching heat stress products, indicated the Outlook has performed well with high hit rates and low miss rates for most coral reef areas. Regions identified with high false alarm rates will guide future improvements. This Outlook system, as the first and only freely available global coral bleaching prediction system, has been providing critical early warning to marine resource managers, scientists, and decision makers around the world to guide management, protection, and monitoring of coral reefs

  3. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef

    Science.gov (United States)

    Kramer, M. J.; Bellwood, D. R.; Bellwood, O.

    2012-12-01

    Composed of a collection of algae, detritus, sediment and invertebrates, the epilithic algal matrix (EAM) is an abundant and ubiquitous feature of coral reefs. Despite its prevalence, there is a paucity of information regarding its associated invertebrate fauna. The cryptofaunal invertebrate community of the EAM was quantitatively investigated in Pioneer Bay on Orpheus Island, Great Barrier Reef. Using a vacuum collection method, a diversity of organisms representing 10 different phyla were identified. Crustacea dominated the samples, with harpacticoid copepods being particularly abundant (2025 ± 132 100 cm-2; mean density ± SE). The volume of coarse particulate matter in the EAM was strongly correlated with the abundance of harpacticoid copepods. The estimated biomass of harpacticoid copepods (0.48 ± 0.05 g m-2; wet weight) suggests that this group is likely to be important for reef trophodynamics and nutrient cycling.

  4. Human disturbances on coral reefs in Sri Lanka: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, M C; Linden, O [Stockholm Univ. (Sweden). Dept. of Zoology; Rajasuriya, A [NARA, Crow Island, Colombo (Sri Lanka)

    1993-01-01

    The degradation of coral reefs in Sri Lanka has increased substantially over the last decades. Human activities causing this degradation include: mining for lime production, sewage discharges, discharges of oil and other pollutants in connection with shipping and port activities, destructive fishing practices, land and mangrove destruction, tourism and the collecting of fauna such as fish, shells and corals. In this study, three adjacent coral reefs; Bar Reef, Talawila Reef, and Kandakuliya Reef, which are widely scattered patch reefs off Kalpitiya Peninsula, northwestern Sri Lanka, were surveyed and compared in terms of their fish and coral diversity and abundance as well as human and natural disturbances. Information was gathered by snorkeling in visual overview surveys and by scuba diving in detailed transect surveys. When each reef was ranked according to the extent of live coral cover, and chaetodontid diversity, the results indicated that Bar Reef was in excellent condition, Talawila Reef was intermediate, and Kandakuliya Reef was in poor condition. The diversity of coral genera, the topographic relief and the proportion of coral rubble, did not follow the same pattern. The number of coral genera found was 49, while 283 fish species belonging to 51 families were recorded. Human disturbance factors on the reefs were found to be net fishing, boat anchoring and ornamental fish collection for the aquarium trade. Bottom.set nylon nets in particular were found to have a very destructive impact on the bottom fauna. 33 refs, 7 figs, 1 tab

  5. NOAA TIFF Image - 1 m Backscatter Mosaic of an inshore portion of the NPS's Virgin Islands Coral Reef National Monument, south of St. John, US Virgin Islands, Project NF-05-05, 2005, UTM 20 WGS84 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution backscatter mosaic of the inshore portion of the NPS's Virgin Islands Coral Reef National Monument, south of St. John, US...

  6. NOAA TIFF Image - 1 m Backscatter Mosaic of an offshore portion of the NPS's Virgin Islands Coral Reef National Monument, south of St. John, US Virgin Islands, Project NF-05-05, 2005, UTM 20 WGS84 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1 meter resolution backscatter mosaic of an offshore portion of the NPS's Virgin Islands Coral Reef National Monument, south of St. John, US...

  7. Wave Dissipation on Low- to Super-Energy Coral Reefs

    Science.gov (United States)

    Harris, D. L.

    2016-02-01

    Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.

  8. Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract.

    Science.gov (United States)

    Lirman, Diego; Fong, Peggy

    2007-06-01

    Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species

  9. Hypoxia tolerance in coral-reef triggerfishes (Balistidae)

    Science.gov (United States)

    Wong, Corrie C.; Drazen, Jeffrey C.; Callan, Chatham K.; Korsmeyer, Keith E.

    2018-03-01

    Despite high rates of photosynthetic oxygen production during the day, the warm waters of coral reefs are susceptible to hypoxia at night due to elevated respiration rates at higher temperatures that also reduce the solubility of oxygen. Hypoxia may be a challenge for coral-reef fish that hide in the reef to avoid predators at night. Triggerfishes (Balistidae) are found in a variety of reef habitats, but they also are known to find refuge in reef crevices and holes at night, which may expose them to hypoxic conditions. The critical oxygen tension ( P crit) was determined as the point below which oxygen uptake could not be maintained to support standard metabolic rate (SMR) for five species of triggerfish. The triggerfishes exhibited similar levels of hypoxia tolerance as other coral-reef and coastal marine fishes that encounter low oxygen levels in their environment. Two species, Rhinecanthus rectangulus and R. aculeatus, had the lowest P crit ( 3.0 kPa O2), comparable to the most hypoxia-tolerant obligate coral-dwelling gobies, while Odonus niger and Sufflamen bursa were moderately tolerant to hypoxia ( P crit 4.5 kPa), and Xanthichthys auromarginatus was intermediate ( P crit 3.7 kPa). These differences in P crit were not due to differences in oxygen demand, as all the species had a similar SMR once mass differences were taken into account. The results suggest that triggerfish species are adapted for different levels of hypoxia exposure during nocturnal sheltering within the reef.

  10. Calcite/aragonite-biocoated artificial coral reefs for marine parks

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2017-08-01

    Full Text Available Natural formation of the coral reefs is complicated by slow biomediated precipitation of calcium carbonate from seawater. Therefore, manufactured artificial coral reefs can be used for the formation of “underwater gardens” in marine parks for the recreational fishing and diving that will protect natural coral reefs from negative anthropogenic effects. Additionally, the coating of the concrete, plastic or wooden surfaces of artificial coral reef with calcium carbonate layer could promote attachment and growth of coral larvae and photosynthetic epibiota on these surfaces. Three methods of biotechnological coating of the artificial coral reefs have been tested: (1 microbially induced calcium carbonate precipitation from concentrated calcium chloride solution using live bacterial culture of Bacillus sp. VS1 or dead but urease-active cells of Yaniella sp. VS8; (2 precipitation from calcium bicarbonate solution; (3 precipitation using aerobic oxidation of calcium acetate by bacteria Bacillus ginsengi strain VSA1. The thickness of biotechnologically produced calcium carbonate coating layer was from 0.3 to 3 mm. Biocoating using calcium salt and urea produced calcite in fresh water and aragonite in seawater. The calcium carbonate-coated surfaces were colonized in aquarium with seawater and hard corals as inoculum or in aquarium with fresh water using cyanobacteria Chlorella sorokiana as inoculum. The biofilm on the light-exposed side of calcium carbonate-coated surfaces was formed after six weeks of incubation and developed up to the average thickness of 250 µm in seawater and about 150 µm in fresh water after six weeks of incubation. The biotechnological manufacturing of calcium carbonate-coated concrete, plastic, or wooden surfaces of the structures imitating natural coral reef is technologically feasible. It could be commercially attractive solution for the introduction of aesthetically pleasant artificial coral reefs in marine parks and

  11. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    Science.gov (United States)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  12. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots.

    Science.gov (United States)

    Cowman, P F; Bellwood, D R

    2011-12-01

    Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  13. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Northwestern Hawaiian Islands from Water Samples collected in 2015 (NCEI Accession 0160330)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  14. The Decline of Coral Reefs: a Political Economy Approach

    OpenAIRE

    Samuel, Asumadu-Sarkodie

    2015-01-01

    Coral reefs provide economic services like job, food and tourism. Yet, within the past decades, there has been an overwhelming decline in the vitality of coral reefs and their ecosystem. Scientist have not be able to set the record straight regarding their scientific argument on biodiversity and ecological wealth of natural environment. Therefore, actions to recover coral reefs from destruction have proved futile. This paper will analyze the economical values, economic valuation, socioeconomi...

  15. Diversity of Coral Fish At Saebus Island, East Java, Indonesia

    Science.gov (United States)

    Fatimah, Siti; Putra, Tri Widya Laksana; Kondang, Putranto; Suratman; Gamelia, Larossa; Syahputra, Hendry; Rahmadayanti; Rizmaaadi, Mada; Ambariyanto, Ambariyanto

    2018-02-01

    Coral reef ecosystem is known as an important place to live various types of fish, where coral conditions will affect the diversity and abundance of the fish. In healthy coral reef ecosystems generally can be found many types of fish with high density. This research aims to investigate the diversity and abundance of coral fishes at Saebus Island, East Java. The observation conducted at 4 stations, according to cardinal point by UVS (underwater visual census) methods with belt transect with the visibility of 2,5 m horizontally, and 5 m vertically. The length of transect was 100 m parallel with coastline, with the area of observation is 500 m2. The censuses were conducted at 2 different depths (3 and 10 m). This study found 70 kinds of coral fish originated form 20 family at all stations. These fishes were from 3 different fish categories i.e. 7 target fishes, 13 indicator fishes, and 50 major fishes. Three different fishes that dominated target fish, indicator fish and major fish were Epinephelus fasciatus, Chaetodon baronessa and Aulostomus chinensis, respectively. There was similar value of fish diversity index at two different depths which were 3.635 and 3,623. While uniformity index at the depth of 3m was 0.153 and at 10m was 0.217, and domination index at the depth of 3m was 0.11 and at 10m was 0.167. These values suggest that diversity of coral fish at Saebus island can be categorized as high diversity.

  16. Coral reef fish assemblages at Clipperton Atoll (Eastern Tropical Pacific and their relationship with coral cover

    Directory of Open Access Journals (Sweden)

    Aurora M. Ricart

    2016-11-01

    Full Text Available Clipperton Atoll, one of the most isolated coral reefs worldwide, is of great scientific interest due to its geomorphology and high levels of endemism. This study explored the reef fish assemblage structure of Clipperton Atoll and its relationship with live coral cover. Nine stations were sampled at three sites and three depths (6, 12 and 20 m around the reef, measuring fish species richness and biomass and hermatypic coral cover (at genus level. We evaluated variation in species richness, biomass and diversity of fish assemblages among sites and depths, as well as the relationship between the entire fish assemblage composition and live coral cover. The results showed that species richness and biomass were similar among sites, but differed across depths, increasing with depth. In contrast, diversity differed among sites but not among depths. Multivariate analyses indicated that fish assemblage composition differed among sites and depths in relation to changes in cover of coral of the genera Pocillopora, Porites, Pavona and Leptoseris, which dominate at different depths. The results showed that fish species richness and diversity were low at Clipperton Atoll and that, in isolated coral reefs with a low habitat heterogeneity and low human disturbance, live coral cover has a significant influence on the spatial variation of the reef fish assemblages. This study highlights the importance of coral habitat structure in shaping coral reef fish assemblages.

  17. Forecasted coral reef decline in marine biodiversity hotspots under climate change.

    Science.gov (United States)

    Descombes, Patrice; Wisz, Mary S; Leprieur, Fabien; Parravicini, Valerianio; Heine, Christian; Olsen, Steffen M; Swingedouw, Didier; Kulbicki, Michel; Mouillot, David; Pellissier, Loïc

    2015-01-21

    Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low-latitude climatic conditions have no present-day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo-Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change. © 2015 John Wiley & Sons Ltd.

  18. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea.

    Science.gov (United States)

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-02-22

    In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  19. Spatial competition dynamics between reef corals under ocean acidification

    Science.gov (United States)

    Horwitz, Rael; Hoogenboom, Mia O.; Fine, Maoz

    2017-01-01

    Climate change, including ocean acidification (OA), represents a major threat to coral-reef ecosystems. Although previous experiments have shown that OA can negatively affect the fitness of reef corals, these have not included the long-term effects of competition for space on coral growth rates. Our multispecies year-long study subjected reef-building corals from the Gulf of Aqaba (Red Sea) to competitive interactions under present-day ocean pH (pH 8.1) and predicted end-of-century ocean pH (pH 7.6). Results showed coral growth is significantly impeded by OA under intraspecific competition for five out of six study species. Reduced growth from OA, however, is negligible when growth is already suppressed in the presence of interspecific competition. Using a spatial competition model, our analysis indicates shifts in the competitive hierarchy and a decrease in overall coral cover under lowered pH. Collectively, our case study demonstrates how modified competitive performance under increasing OA will in all likelihood change the composition, structure and functionality of reef coral communities.

  20. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Science.gov (United States)

    Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  1. Modelling Coral Reef Futures to Inform Management: Can Reducing Local-Scale Stressors Conserve Reefs under Climate Change?

    Science.gov (United States)

    Gurney, Georgina G.; Melbourne-Thomas, Jessica; Geronimo, Rollan C.; Aliño, Perry M.; Johnson, Craig R.

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  2. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Directory of Open Access Journals (Sweden)

    Georgina G Gurney

    Full Text Available Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general

  3. Accretion history of mid-Holocene coral reefs from the southeast Florida continental reef tract, USA

    Science.gov (United States)

    Stathakopoulos, A.; Riegl, B. M.

    2015-03-01

    Sixteen new coral reef cores were collected to better understand the accretion history and composition of submerged relict reefs offshore of continental southeast (SE) Florida. Coral radiometric ages from three sites on the shallow inner reef indicate accretion initiated by 8,050 Cal BP and terminated by 5,640 Cal BP. The reef accreted up to 3.75 m of vertical framework with accretion rates that averaged 2.53 m kyr-1. The reef was composed of a nearly even mixture of Acropora palmata and massive corals. In many cases, cores show an upward transition from massives to A. palmata and may indicate local dominance by this species prior to reef demise. Quantitative macroscopic analyses of reef clasts for various taphonomic and diagenetic features did not correlate well with depth/environmental-related trends established in other studies. The mixed coral framestone reef lacks a classical Caribbean reef zonation and is best described as an immature reef and/or a series of fused patch reefs; a pattern that is evident in both cores and reef morphology. This is in stark contrast to the older and deeper outer reef of the SE Florida continental reef tract. Accretion of the outer reef lasted from 10,695-8,000 Cal BP and resulted in a larger and better developed structure that achieved a distinct reef zonation. The discrepancies in overall reef morphology and size as well as the causes of reef terminations remain elusive without further study, yet they likely point to different climatic/environmental conditions during their respective accretion histories.

  4. Coral Reef Watch, Hotspots, 50 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Coral Reef Watch provides Coral Bleaching hotspot maps derived from NOAA's Polar Operational Environmental Satellites (POES). This data provides global area...

  5. Effect of severe hurricanes on biorock coral reef restoration projects in Grand Turk, Turks and Caicos Islands.

    Science.gov (United States)

    Wells, Lucy; Perez, Fernando; Hibbert, Marlon; Clerveaux, Luc; Johnson, Jodi; Goreau, Thomas J

    2010-10-01

    Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5 m deep in Grand Turk, at Oasis (October 2006) and at Governor's Beach (November 2007). Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor's Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor's Beach. After hurricanes Hanna and Ike (September 2008) the Governor's Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure). Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas.

  6. Coral Reef Resilience, Tipping Points and the Strength of Herbivory.

    Science.gov (United States)

    Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J

    2016-11-02

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.

  7. Historical baselines of coral cover on tropical reefs as estimated by expert opinion

    Directory of Open Access Journals (Sweden)

    Tyler D. Eddy

    2018-01-01

    Full Text Available Coral reefs are important habitats that represent global marine biodiversity hotspots and provide important benefits to people in many tropical regions. However, coral reefs are becoming increasingly threatened by climate change, overfishing, habitat destruction, and pollution. Historical baselines of coral cover are important to understand how much coral cover has been lost, e.g., to avoid the ‘shifting baseline syndrome’. There are few quantitative observations of coral reef cover prior to the industrial revolution, and therefore baselines of coral reef cover are difficult to estimate. Here, we use expert and ocean-user opinion surveys to estimate baselines of global coral reef cover. The overall mean estimated baseline coral cover was 59% (±19% standard deviation, compared to an average of 58% (±18% standard deviation estimated by professional scientists. We did not find evidence of the shifting baseline syndrome, whereby respondents who first observed coral reefs more recently report lower estimates of baseline coral cover. These estimates of historical coral reef baseline cover are important for scientists, policy makers, and managers to understand the extent to which coral reefs have become depleted and to set appropriate recovery targets.

  8. Historical baselines of coral cover on tropical reefs as estimated by expert opinion.

    Science.gov (United States)

    Eddy, Tyler D; Cheung, William W L; Bruno, John F

    2018-01-01

    Coral reefs are important habitats that represent global marine biodiversity hotspots and provide important benefits to people in many tropical regions. However, coral reefs are becoming increasingly threatened by climate change, overfishing, habitat destruction, and pollution. Historical baselines of coral cover are important to understand how much coral cover has been lost, e.g., to avoid the 'shifting baseline syndrome'. There are few quantitative observations of coral reef cover prior to the industrial revolution, and therefore baselines of coral reef cover are difficult to estimate. Here, we use expert and ocean-user opinion surveys to estimate baselines of global coral reef cover. The overall mean estimated baseline coral cover was 59% (±19% standard deviation), compared to an average of 58% (±18% standard deviation) estimated by professional scientists. We did not find evidence of the shifting baseline syndrome, whereby respondents who first observed coral reefs more recently report lower estimates of baseline coral cover. These estimates of historical coral reef baseline cover are important for scientists, policy makers, and managers to understand the extent to which coral reefs have become depleted and to set appropriate recovery targets.

  9. Variable uplift rate through time: Holocene coral reef and neotectonics of Lutao, eastern Taiwan

    Science.gov (United States)

    Shen, Chuan-Chou; Wu, Chung-Che; Dai, Chang-Feng; Gong, Shou-Yeh

    2018-05-01

    Significant discrepancies have existed regarding rate and timing of the uplift of Lutao (Green Island), located at the border of the ongoing collision between the Eurasia continental plate and the Philippine Sea Plate. To document its neotectonic history, two cores were drilled into Holocene coral reefs exposed at the southeastern coast of Lutao. Twelve pristine fossil corals, nine taken from cores and three on the surface, were 230Th dated. The results show that the coral reefs started to develop at 8,736 ± 56 yr BP (before 1950 CE) with uplift rate varying from 3.6 mm/yr during 8.7-6.0 kyr BP to 1.2 mm/yr in the past six thousand years. Our study strongly suggests that the uplift rate can vary significantly on millennial time scale. Caution should be used when extrapolating uplift rate estimates based on Mid-late Holocene corals to early times for tectonic active locations, such as Lutao.

  10. Photography of Coral Reefs from ISS

    Science.gov (United States)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  11. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss

    KAUST Repository

    Pratchett, M.S.; Hoey, A.S.; Wilson, S.K.; Messmer, V.; Graham, N.A.J.

    2011-01-01

    Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching) and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60%) coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  12. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss

    KAUST Repository

    Pratchett, M.S.

    2011-08-12

    Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching) and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60%) coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  13. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Directory of Open Access Journals (Sweden)

    Tom C L Bridge

    Full Text Available High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  14. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Science.gov (United States)

    Bridge, Tom C L; Ferrari, Renata; Bryson, Mitch; Hovey, Renae; Figueira, Will F; Williams, Stefan B; Pizarro, Oscar; Harborne, Alastair R; Byrne, Maria

    2014-01-01

    High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2) plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  15. Calibration of Community-based Coral Reef Monitoring Protocols ...

    African Journals Online (AJOL)

    Coral reef monitoring (CRM) has been recognised as an important management tool and has consequently been incorporated in Integrated Coastal Area Management (ICAM) programmes in the Western Indian Ocean (WIO). Community-based coral reef monitoring (CB-CRM), which uses simplified procedures suitable for ...

  16. Coral Reef Functioning Along a Cross‐shelf Environmental Gradient: Abiotic and Biotic Drivers of Coral Reef Growth in the Red Sea

    KAUST Repository

    Roik, Anna

    2016-06-01

    Despite high temperature and salinity conditions that challenge reef growth in other oceans, the Red Sea maintains amongst the most biodiverse and productive coral reefs worldwide. It is therefore an important region for the exploration of coral reef functioning, and expected to contribute valuable insights towards the understanding of coral reefs in challenging environments. This dissertation assessed the baseline variability of in situ abiotic conditions (temperature, dissolved oxygen, pH, and total alkalinity, among others) in the central Red Sea and highlights these environmental regimes in a global context. Further, focus was directed on biotic factors (biofilm community dynamics, calcification and bioerosion), which underlie reef growth processes and are crucial for maintaining coral reef functioning and ecosystem services. Using full‐year data from an environmental cross‐shelf gradient, the dynamic interplay of abiotic and biotic factors was investigated. In situ observations demonstrate that central Red Sea coral reefs were highly variable on spatial, seasonal, and diel scales, and exhibited comparably high temperature, high salinity, and low dissolved oxygen levels, which on the one hand reflect future ocean predictions. Under these conditions epilithic bacterial and algal assemblages were mainly driven by variables (i.e., temperature, salinity, dissolved oxygen) which are predicted to change strongly in the progression of global climate change, implying an influential bottom up effect on reef‐building communities. On the other hand, measured alkalinity and other carbonate chemistry value were close to the estimates of preindustrial global ocean surface water and thus in favor of reef growth processes. Despite this beneficial carbonate chemistry, calcification and carbonate budgets in the reefs were not higher than in other coral reef regions. In this regard, seasonal calcification patterns suggest that summer temperatures may be exceeding the optima

  17. Large-scale coral recruitment patterns on Mona Island, Puerto Rico: evidence of a transitional community trajectory after massive coral bleaching and mortality

    Directory of Open Access Journals (Sweden)

    Edwin A. Hernández-Delgado

    2014-09-01

    Full Text Available Coral reefs have largely declined across the northeastern Caribbean following the 2005 massive bleaching event. Climate change-related sea surface warming and coral disease outbreaks of a white plague-like syndrome and of yellow band disease (YBD have caused significant coral decline affecting massive reef building species (i.e., Orbicella annularis species complex which show no apparent signs of recovery through larval sexual recruitment. We addressed coral recruit densities across three spur and groove reef locations along the western shelf of remote Mona Island, Puerto Rico: Punta Capitán (PCA, Pasa de Las Carmelitas (PLC, and Las Carmelitas-South (LCS. Data were collected during November 2012 along 93 haphazard transects across three depth zones (<5m, 5-10m, 10-15m. A total of 32 coral species (9 octocorals, 1 hydrocoral, 22 scleractinians were documented among the recruit community. Communities had low densities and dominance by short-lived brooder species seven years after the 2005 event. Mean coral recruit density ranged from 1.2 to 10.5/m2 at PCA, 6.3 to 7.2/m² at LCS, 4.5 to 9.5/m² at PLC. Differences in coral recruit community structure can be attributed to slight variation in percent macroalgal cover and composition as study sites had nearly similar benthic spatial heterogeneity. Dominance by ephemeral coral species was widespread. Recovery of largely declining massive reef-building species such as the O. annularis species complex was limited or non-existent. The lack of recovery could be the combined result of several mechanisms involving climate change, YBD disease, macroalgae, fishing, urchins and Mona Island’s reefs limited connectivity to other reef systems. There is also for rehabilitation of fish trophic structure, with emphasis in recovering herbivore guilds and depleted populations of D. antillarum. Failing to recognize the importance of ecosystem-based management and resilience rehabilitation may deem remote coral reefs

  18. Synergistic impacts of global warming on the resilience of coral reefs

    Science.gov (United States)

    Bozec, Yves-Marie; Mumby, Peter J.

    2015-01-01

    Recent epizootics have removed important functional species from Caribbean coral reefs and left communities vulnerable to alternative attractors. Global warming will impact reefs further through two mechanisms. A chronic mechanism reduces coral calcification, which can result in depressed somatic growth. An acute mechanism, coral bleaching, causes extreme mortality when sea temperatures become anomalously high. We ask how these two mechanisms interact in driving future reef state (coral cover) and resilience (the probability of a reef remaining within a coral attractor). We find that acute mechanisms have the greatest impact overall, but the nature of the interaction with chronic stress depends on the metric considered. Chronic and acute stress act additively on reef state but form a strong synergy when influencing resilience by intensifying a regime shift. Chronic stress increases the size of the algal basin of attraction (at the expense of the coral basin), whereas coral bleaching pushes the system closer to the algal attractor. Resilience can change faster—and earlier—than a change in reef state. Therefore, we caution against basing management solely on measures of reef state because a loss of resilience can go unnoticed for many years and then become disproportionately more difficult to restore.

  19. Virus-host interactions and their roles in coral reef health and disease.

    Science.gov (United States)

    Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S

    2017-04-01

    Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.

  20. CRED Towed-Diver Fish Biomass Surveys at Maro Reef, NW Hawaiian Islands in 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towed-diver surveys (aka. Towboard surveys) are conducted by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center (PIFSC) as...

  1. CRED Towed-Diver Fish Biomass Surveys at Maro Reef, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towed-diver surveys (aka. Towboard surveys) are conducted by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center (PIFSC) as...

  2. CRED Towed-Diver Fish Biomass Surveys at Maro Reef, NW Hawaiian Islands in 2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towed-diver surveys (aka. Towboard surveys) are conducted by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center (PIFSC) as...

  3. CRED Towed-Diver Fish Biomass Surveys at Maro Reef, NW Hawaiian Islands in 2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towed-diver surveys (aka. Towboard surveys) are conducted by the Coral Reef Ecosystem Division (CRED) of the NOAA Pacific Islands Fisheries Science Center (PIFSC) as...

  4. Effects of Changing Weather, Oceanographic Conditions, and Land Uses on Spatio-Temporal Variation of Sedimentation Dynamics along Near-Shore Coral Reefs

    Directory of Open Access Journals (Sweden)

    Abimarie Otaño-Cruz

    2017-08-01

    Full Text Available Sedimentation is a critical threat to coral reefs worldwide. Major land use alteration at steep, highly erodible semi-arid islands accelerates the potential of soil erosion, runoff, and sedimentation stress to nearshore coral reefs during extreme rainfall events. The goal of this study was to assess spatio-temporal variation of sedimentation dynamics across nearshore coral reefs as a function of land use patterns, weather and oceanographic dynamics, to identify marine ecosystem conservation strategies. Sediment was collected at a distance gradient from shore at Bahia Tamarindo (BTA and Punta Soldado (PSO coral reefs at Culebra Island, Puerto Rico. Sediment texture and composition were analyzed by dry sieving and loss-on-ignition techniques, and were contrasted with environmental variables for the research period (February 2014 to April 2015. Rainfall and oceanographic data were analyzed to address their potential role on affecting sediment distribution with BEST BIO-ENV, RELATE correlation, and linear regression analysis. A significant difference in sedimentation rate was observed by time and distance from shore (PERMANOVA, p < 0.0100, mostly attributed to higher sediment exposure at reef zones closer to shore due to strong relationships with coastal runoff. Sedimentation rate positively correlated with strong rainfall events (Rho = 0.301, p = 0.0400 associated with storms and rainfall intensity exceeding 15 mm/h. At BTA, sediment deposited were mostly composed of sand, suggesting a potential influence of resuspension produced by waves and swells. In contrast, PSO sediments were mostly composed of silt-clay and terrigenous material, mainly attributed to a deforestation event that occurred at adjacent steep sub-watershed during the study period. Spatial and temporal variation of sedimentation pulses and terrigenous sediment input implies that coral reefs exposure to sediment stress is determined by local land use patterns, weather, and

  5. Microbial ecology of four coral atolls in the Northern Line Islands.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Dinsdale

    Full Text Available Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp. and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1 oceaonographic and/or hydrographic conditions or 2 human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation

  6. Microbial Ecology of Four Coral Atolls in the Northern Line Islands

    Science.gov (United States)

    Smriga, Steven; Edwards, Robert A.; Angly, Florent; Wegley, Linda; Hatay, Mark; Hall, Dana; Brown, Elysa; Haynes, Matthew; Krause, Lutz; Sala, Enric; Sandin, Stuart A.; Thurber, Rebecca Vega; Willis, Bette L.; Azam, Farooq; Knowlton, Nancy; Rohwer, Forest

    2008-01-01

    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems

  7. Ocular media transmission of coral reef fish--can coral reef fish see ultraviolet light?

    Science.gov (United States)

    Siebeck, U E; Marshall, N J

    2001-01-15

    Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N. (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible.

  8. Population Structure of Acanthaster Planci on the Reef Flat at the Southern Part of Bunaken Island

    OpenAIRE

    Napitupulu, Patritia; Tioho, Hanny; Windarto, Agung

    2013-01-01

    The information on population structure of Acanthaster planci in Bunaken National Park (BNP) is urgent to be presented in order to be considered in decision making especially on coral reef management in BNP. The objectives of this study was to examine the population structure of A. planci, represented by the diameter and weight, number of arms, while the density, distribution and types of coral predation by reef animals in the Southern part of Bunaken Island also observed. Data were collect...

  9. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    Directory of Open Access Journals (Sweden)

    Zarinah Waheed

    Full Text Available The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39, Agariciidae (n = 30 and Euphylliidae (n = 15. The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51% and good (38%. Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  10. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    Science.gov (United States)

    Waheed, Zarinah; van Mil, Harald G J; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  11. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages

    Science.gov (United States)

    Waheed, Zarinah; van Mil, Harald G. J.; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W.

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park. PMID:26719987

  12. Project Overview: A Reef Manager's Guide to Coral Bleaching ...

    Science.gov (United States)

    The purpose of this report is to provide the latest scientific knowledge and discuss available management options to assist local and regional managers in responding effectively to mass coral bleaching events. Background A Reef Manager’s Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) share the best available scientific information on climate-related coral bleaching; and (2) compile a tool kit of currently available strategies for adaptive management of coral reefs in a changing climate. The result is a compendium of current information, tools, and practical suggestions to aid managers in their efforts to protect reefs in a way that maximizes reef resilience in the face of continuing climate change. The Guide is a joint publication of the National Oceanic and Atmospheric Administration, the Great Barrier Reef Marine Park Authority, and The World Conservation Union, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. EPA’s Office of Research and Development was a major contributor to the Guide through authorship and participation in the final review and editing process for the entire report. A Reef Manager’s Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) share the best available scientific information on climate-related coral blea

  13. Role of coral reefs in global ocean production

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C J; Hatcher, B G; Smith, S V [CSIRO Institute of Natural Resources and Environment, Dickson, ACT (Australia)

    1991-01-01

    Coral reefs cover some 600 thousand square kilometres of the earth's surface (0.17% of the ocean surface). First order estimates show coral reefs to contribute about 0.05% of the estimated net CO{sub 2} fixation rate of the global oceans. Gross CO{sub 2} fixation is relatively high (of the order 700 x 10{sup 12}g C year{sup -1}), but most of this material is recycled within the reefs. Excess (net) production of organic material (E) is much smaller, of the order 20 x 10{sup 12}g C year{sup -1}. 75% of E is available for export from coral reefs to adjacent areas. Comparison of estimates for net production by reefs and their surrounding oceans indicates that the excess production by coral reefs is similar to new production in the photic zone of oligotrophic oceans. Consequently, estimates for global ocean production should as a first approximation include reefal areas with the surrounding ocean when assigning average net production rates. It can be concluded that organic production by reefs plays a relatively minor role in the global scale of fluxes and storage of elements. In comparison, the companion process of biologically-mediated inorganic carbon precipitation represents a major role for reefs. While reef production does respond on local scales to variation in ocean climate, neither the absolute rates nor the amount accumulated into organic pools appear to be either sensitive indicators or accurate recorders of climatic change in most reef systems. Similarly, the productivity of most reefs should be little affected by currently predicted environmental changes resulting from the greenhouse effect. 86 refs., 2 figs., 1 tab.

  14. NOAA's Coral Reef Conservation Program: Coral Reef Habitat Mapping Projects in 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Maps are a critical cornerstone of coral reef management, research and planning, with direct links to management needs in a number of forms. To accurately...

  15. Challenges for Managing Fisheries on Diverse Coral Reefs

    Directory of Open Access Journals (Sweden)

    Douglas Fenner

    2012-03-01

    Full Text Available Widespread coral reef decline has included the decline of reef fish populations, and the subsistence and artisanal fisheries that depend on them. Overfishing and destructive fishing have been identified as the greatest local threats to coral reefs, but the greatest future threats are acidification and increases in mass coral bleaching caused by global warming. Some reefs have shifted from dominance by corals to macroalgae, in what are called “phase shifts”. Depletion of herbivores including fishes has been identified as a contributor to such phase shifts, though nutrients are also involved in complex interactions with herbivory and competition. The depletion of herbivorous fishes implies a reduction of the resilience of coral reefs to the looming threat of mass coral mortality from bleaching, since mass coral deaths are likely to be followed by mass macroalgal blooms on the newly exposed dead substrates. Conventional stock assessment of each fish species would be the preferred option for understanding the status of the reef fishes, but this is far too expensive to be practical because of the high diversity of the fishery and poverty where most reefs are located. In addition, stock assessment models and fisheries in general assume density dependent populations, but a key prediction that stocks recover from fishing is not always confirmed. Catch Per Unit Effort (CPUE has far too many weaknesses to be a useful method. The ratio of catch to stock and the proportion of catch that is mature depend on fish catch data, and are heavily biased toward stocks that are in good condition and incapable of finding species that are in the worst condition. Near-pristine reefs give us a reality check about just how much we have lost. Common fisheries management tools that control effort or catch are often prohibitively difficult to enforce for most coral reefs except in developed countries. Ecosystem-based management requires management of impacts of fishing

  16. Biological impacts of oil pollution: coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    Knap, A H [Bermuda Biological Station, Ferry Reach (Bermuda)

    1992-01-01

    Coral reefs are the largest structures made by living things and exist as extremely productive ecosystems in tropical and sub-tropical areas of the world. Their location in nearshore waters means that there is a potential danger to corals from tanker accidents, refinery operations, oil exploration and production. There are now a number of published scientific papers concerning the effects of oils on corals. This report summarises and interprets the findings, and provides background information on the structure and ecology of coral reefs. Clean-up options and their implications are discussed in the light of the latest evidence from case histories and field experiments. (author)

  17. Workshop on Biological Integrity of Coral Reefs August 21-22, 2012, Caribbean Coral Reef Institute, Isla Magueyes, La Parguera, Puerto Rico.

    Science.gov (United States)

    This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characterist...

  18. Coral mortality in reefs: The cause and effect; A central concern for reef monitoring

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    stream_size 4 stream_content_type text/plain stream_name Region_Workshop_Conserv_Sustain_Mgmt_Coral_Reefs_1997_C83.pdf.txt stream_source_info Region_Workshop_Conserv_Sustain_Mgmt_Coral_Reefs_1997_C83.pdf.txt Content-Encoding ISO-8859...

  19. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data of the Mariana Archipelago in 2014 (NCEI Accession 0157596)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data provided in this data set were collected as part of the NOAA Pacific Islands Fisheries Science Center (PIFSC), Coral Reef Ecosystem Program (CREP) led NCRMP...

  20. Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs.

    Science.gov (United States)

    Séré, Mathieu G; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2015-06-03

    Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean. Surveys conducted at multiple sites in Reunion, South Africa and Mayotte between August 2010 and June 2012 revealed the presence of 6 main coral diseases: black band disease (BBD), white syndrome (WS), pink line syndrome (PLS), growth anomalies (GA), skeleton eroding band (SEB) and Porites white patch syndrome (PWPS). Overall, disease prevalence was higher in Reunion (7.5 ± 2.2%; mean ± SE) compared to South Africa (3.9 ± 0.8%) and Mayotte (2.7 ± 0.3%). Across locations, Acropora and Porites were the genera most susceptible to disease. Spatial variability was detected in both Reunion and South Africa, with BBD and WS more prevalent on shallow than deep reefs. There was also evidence of seasonality in 2 diseases: the prevalence of BBD and WS was higher in summer than winter. This was the first study to investigate the ecology of coral diseases, providing both qualitative and quantitative data, on Western Indian Ocean reefs, and surveys should be expanded to confirm these patterns.

  1. Snapping shrimp sound production patterns on Caribbean coral reefs: relationships with celestial cycles and environmental variables

    Science.gov (United States)

    Lillis, Ashlee; Mooney, T. Aran

    2018-06-01

    The rich acoustic environment of coral reefs, including the sounds of a variety of fish and invertebrates, is a reflection of the structural complexity and biological diversity of these habitats. Emerging interest in applying passive acoustic monitoring and soundscape analysis to measure coral reef habitat characteristics and track ecological patterns is hindered by a poor understanding of the most common and abundant sound producers on reefs—the snapping shrimp. Here, we sought to address several basic biophysical drivers of reef sound by investigating acoustic activity patterns of snapping shrimp populations on two adjacent coral reefs using a detailed snap detection analysis routine to a high-resolution 2.5-month acoustic dataset from the US Virgin Islands. The reefs exhibited strong diel and lunar periodicity in snap rates and clear spatial differences in snapping levels. Snap rates peaked at dawn and dusk and were higher overall during daytime versus nighttime, a seldom-reported pattern in earlier descriptions of diel snapping shrimp acoustic activity. Small differences between the sites in snap rate rhythms were detected and illustrate how analyses of specific soundscape elements might reveal subtle between-reef variation. Snap rates were highly correlated with environmental variables, including water temperature and light, and were found to be sensitive to changes in oceanographic forcing. This study further establishes snapping shrimp as key players in the coral reef chorus and provides evidence that their acoustic output reflects a combination of environmental conditions, celestial influences, and spatial habitat variation. Effective application of passive acoustic monitoring in coral reef habitats using snap rates or snapping-influenced acoustic metrics will require a mechanistic understanding of the underlying spatial and temporal variation in snapping shrimp sound production across multiple scales.

  2. The importance of spatial fishing behavior for coral reef resilience

    Science.gov (United States)

    Rassweiler, A.; Lauer, M.; Holbrook, S. J.

    2016-02-01

    Coral reefs are dynamic systems in which disturbances periodically reduce coral cover but are normally followed by recovery of the coral community. However, human activity may have reduced this resilience to disturbance in many coral reef systems, as an increasing number of reefs have undergone persistent transitions from coral-dominated to macroalgal-dominated community states. Fishing on herbivores may be one cause of reduced reef resilience, as lower herbivory can make it easier for macroalgae to become established after a disturbance. Despite the acknowledged importance of fishing, relatively little attention has been paid to the potential for feedbacks between ecosystem state and fisher behavior. Here we couple methods from environmental anthropology and ecology to explore these feedbacks between small-scale fisheries and coral reefs in Moorea, French Polynesia. We document how aspects of ecological state such as the abundance of macroalgae affect people's preference for fishing in particular lagoon habitats. We then incorporate biases towards fishing in certain ecological states into a spatially explicit bio-economic model of ecological dynamics and fishing in Moorea's lagoons. We find that feedbacks between spatial fishing behavior and ecological state can have critical effects on coral reefs. Presence of these spatial behaviors consistently leads to more coherence across the reef-scape. However, whether this coherence manifests as increased resilience or increased fragility depends on the spatial scales of fisher movement and the magnitudes of disturbance. These results emphasize the potential importance of spatially-explicit fishing behavior for reef resilience, but also the complexity of the feedbacks involved.

  3. Baselines and Comparison of Coral Reef Fish Assemblages in the Central Red Sea

    KAUST Repository

    Kattan, Alexander

    2014-12-01

    In order to properly assess human impacts and appropriate restoration goals, baselines of pristine conditions on coral reefs are required. In Saudi Arabian waters of the central Red Sea, widespread and heavy fishing pressure has been ongoing for decades. To evaluate this influence, we surveyed the assemblage of offshore reef fishes in both this region as well as those of remote and largely unfished southern Sudan. At comparable latitudes, of similar oceanographic influence, and hosting the same array of species, the offshore reefs of southern Sudan provided an ideal location for comparison. We found that top predators (jacks, large snappers, groupers, and others) dominated the reef fish community biomass in Sudan’s deep south region, resulting in an inverted (top-heavy) biomass pyramid. In contrast, the Red Sea reefs of central Saudi Arabia exhibited the typical bottom-heavy pyramid and show evidence for trophic cascades in the form of mesopredator release. Biomass values from Sudan’s deep south are quite similar to those previously reported in the remote and uninhabited Northwest Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other remote Pacific islands and atolls. The findings of this study suggest that heavy fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia while simultaneously making a strong case for protection in the form of marine protected areas in the southern Sudanese Red Sea.

  4. U.S. coral reefs; imperiled national treasures

    Science.gov (United States)

    Field, M.E.; Cochran, S.A.; Evans, K.R.

    2002-01-01

    Coral reefs are home to 25% of all marine species. However, the tiny colonial animals that build these intricate limestone masses are dying at alarming rates. If this trend continues, in 20 years the living corals on many of the world's reefs will be dead and the ecosystems that depend on them severely damaged. As part of the effort to protect our Nation's extensive reefs, U.S. Geological Survey (USGS) scientists are working to better understand the processes that affect the health of these ecologically and economically important ecosystems.

  5. Changes in coral reef metabolism during the 2015 El Niño in the eastern Pacific

    Science.gov (United States)

    McGillis, W. R.; Manzello, D.; Smith, T. B.; Baker, A.; Fong, P.; Glynn, P.; Smith, J.; Takeshita, Y.; Martz, T. R.; Hsueh, D.; Langdon, C.; Price, N.; Mate, J.

    2016-02-01

    The likely strong 2015-2016 El Niño event offers an opportunity to assess coral reef benthic metabolism under stressful high temperatures, coral bleaching, and mortality. During a period of increasing ocean temperatures caused by the 2015-2016 El Niño-Southern Oscillation (ENSO), we assessed the metabolism, at hourly intervals, of eastern Pacific coral reefs using the Benthic Ecosystem and Acidification Measurement System (BEAMS). We measured coral reef net ecosystem productivity (NEP) and net ecosystem calcification (NEC) in 2014 before the start of the El Niño event and in 2015 during the first anomalously high sea surface temperatures of the 2015 El Niño. Increases in ocean temperatures of 1-2°C between 2014 and 2015 caused over 30% decline in calcification at Uva Is. (Panama) and Darwin Is. (Galapagos), along with significant coral bleaching at Uva and coral paling at Darwin. Warming at Saboga Island, in the seasonally upwelling Gulf of Panama, was only 0.3oC, did not result in significant bleaching, and was accompanied by a significant increase in coral reef metabolism. Additional key findings include an increase in nighttime dissolution of calcium carbonate during ENSO heating. Light-NEP and light-NEC relationships were generated for each location, and showed that variations in metabolism were strongly correlated with the incident bottom solar intensity, with strong daily cycles and patterns of light-enhanced calcification also identified. The response of different coral species also provides in situ data on the varying metabolism. The metabolism of the 2015-2016 El Niño shows the possible reef function under future warming and acidified conditions. These emerging results may be harbingers of significant further decreases in metabolism, and other detrimental impacts, if this region experiences additional warming during the current ENSO event.

  6. Effect of severe hurricanes on Biorock Coral Reef Restoration Projects in Grand Turk, Turks and Caicos Islands

    Directory of Open Access Journals (Sweden)

    Lucy Wells

    2010-10-01

    Full Text Available Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5m deep in Grand Turk, at Oasis (October 2006 and at Governor’s Beach (November 2007. Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor’s Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor’s Beach. After hurricanes Hanna and Ike (September 2008 the Governor’s Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure. Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas. Rev. Biol. Trop. 58 (Suppl. 3: 141-149. Epub 2010 October 01.

  7. 76 FR 30110 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Science.gov (United States)

    2011-05-24

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic..., Coral Reefs, and Live/Hardbottom Habitat of the South Atlantic Region. The applicant has requested.... HHSN261200900012C) between the National Cancer Institute ( http://www.cancer.gov/ ) and the Coral Reef Research...

  8. Occurrence and distribution of soft corals (Octocorallia: Alcyonacea) from the Andaman and Nicobar Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Jayasree, V.; Bhat, K.L.; Parulekar, A.H.

    with resistance to harsh environments and life history parameters. Competitive interaction with other benthic reef-organisms also plays a major role in the distribution of soft corals in the Andaman and Nicobar Islands....

  9. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in the Pacific Remote Island Areas from Water Samples collected in 2015 (NCEI Accession 0159169)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  10. Snapshot recordings provide a first description of the acoustic signatures of deeper habitats adjacent to coral reefs of Moorea

    Directory of Open Access Journals (Sweden)

    Frédéric Bertucci

    2017-11-01

    Full Text Available Acoustic recording has been recognized as a valuable tool for non-intrusive monitoring of the marine environment, complementing traditional visual surveys. Acoustic surveys conducted on coral ecosystems have so far been restricted to barrier reefs and to shallow depths (10–30 m. Since they may provide refuge for coral reef organisms, the monitoring of outer reef slopes and describing of the soundscapes of deeper environment could provide insights into the characteristics of different biotopes of coral ecosystems. In this study, the acoustic features of four different habitats, with different topographies and substrates, located at different depths from 10 to 100 m, were recorded during day-time on the outer reef slope of the north Coast of Moorea Island (French Polynesia. Barrier reefs appeared to be the noisiest habitats whereas the average sound levels at other habitats decreased with their distance from the reef and with increasing depth. However, sound levels were higher than expected by propagation models, supporting that these habitats possess their own sound sources. While reef sounds are known to attract marine larvae, sounds from deeper habitats may then also have a non-negligible attractive potential, coming into play before the reef itself.

  11. Developing a multi-stressor gradient for coral reefs | Science ...

    Science.gov (United States)

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be established. Developing stressor gradients presents challenges including: stressors which co-occur but operate at different or unknown spatial and temporal scales, inconsistent data availability measuring stressor levels, and unknown effects on exposed reef biota. We are developing a generalized stressor model using Puerto Rico as case study location, to represent the cumulative spatial/temporal co-occurrence of multiple anthropogenic stressors. Our approach builds on multi-stressor research in streams and rivers, and focuses on three high-priority stressors identified by coral reef experts: land-based sources of pollution (LBSP), global climate change (GCC) related temperature anomalies, and fishing pressure. Landscape development intensity index, based on land use/land cover data, estimates human impact in watersheds adjacent to coral reefs and is proxy for LBSP. NOAA’s retrospective daily thermal anomaly data is used to determine GCC thermal anomalies. Fishing pressure is modeled using gear-specific and fishery landings data. Stressor data was adjusted to a common scale or weighted for relative importance, buffered to account for diminished impact further from source, and compared wit

  12. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  13. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    Science.gov (United States)

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  14. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian

    2014-09-16

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  15. Using virtual reality to estimate aesthetic values of coral reefs

    Science.gov (United States)

    Clifford, Sam; Caley, M. Julian; Pearse, Alan R.; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E.

    2018-01-01

    Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems. PMID:29765676

  16. Geochronology and subsurface stratigraphy of Pukapuka and Rakahanga atolls, Cook Islands: Late Quaternary reef growth and sea level history

    Science.gov (United States)

    Gray, S.C.; Hein, J.R.; Hausmann, R.; Radtke, U.

    1992-01-01

    Eustatic sea-level cycles superposed on thermal subsidence of an atoll produce layers of high sea-level reefs separated by erosional unconformities. Coral samples from these reefs from cores drilled to 50 m beneath the lagoons of Pukapuka and Rakahanga atolls, northern Cook Islands give electron spin resonance (ESR) and U-series ages ranging from the Holocene to 600,000 yr B.P. Subgroups of these ages and the stratigraphic position of their bounding unconformities define at least 5 periods of reef growth and high sea-level (0-9000 yr B.P., 125,000-180,000 yr B.P., 180,000-230,000 yr B.P., 300,000-460,000 yr B.P., 460,000-650,000 yr B.P.). Only two ages fall within error of the last interglacial high sea-level stand (???125,000-135,000 yr B.P.). This paucity of ages may result from extensive erosion of the last intergracial reef. In addition, post-depositional isotope exchange may have altered the time ages of three coral samples to apparent ages that fall within glacial stage 6. For the record to be preserved, vertical accretion during rising sea-level must compensate for surface lowering from erosion during sea-level lowstands and subsidence of the atoll; erosion rates (6-63 cm/1000 yr) can therefore be calculated from reef accretion rates (100-400 cm/1000 yr), subsidence rates (2-6 cm/1000 yr), and the duration of island submergence (8-15% of the last 600,000 yr). The stratigraphy of coral ages indicates island subsidence rates of 4.5 ?? 2.8 cm/1000 yr for both islands. A model of reef growth and erosion based on the stratigraphy of the Cook Islands atolls suggests average subsidence and erosion rates of between 3-6 and 15-20 cm/1000 yr, respectively. ?? 1992.

  17. Synergistic impacts of global warming on the resilience of coral reefs

    OpenAIRE

    Bozec, Yves-Marie; Mumby, Peter J.

    2015-01-01

    Recent epizootics have removed important functional species from Caribbean coral reefs and left communities vulnerable to alternative attractors. Global warming will impact reefs further through two mechanisms. A chronic mechanism reduces coral calcification, which can result in depressed somatic growth. An acute mechanism, coral bleaching, causes extreme mortality when sea temperatures become anomalously high. We ask how these two mechanisms interact in driving future reef state (coral cover...

  18. Coral bleaching, hurricane damage, and benthic cover on coral reefs in St. John, U.S. Virgin Islands: A comparison of surveys with the chain transect method and videography

    Science.gov (United States)

    Rogers, C.S.; Miller, J.

    2001-01-01

    The linear chain transect method and videography were used to quantify the percent cover by corals, macroalgae, gorgonians, other living organisms, and substrate along permanent transects on two fringing reefs off St. John. Both methods were used simultaneously on Lameshur reef in November 1998, and on Newfound reef in March and October 1998. Hurricane Georges passed over St. John in September 1998, and a severe coral bleaching episode began the same month. Both methods gave remarkably similar values for coral cover, while the video method gave consistently higher values for gorgonians and macroalgae. The most dramatic difference was in the quantification of bleaching. At Newfound, the chain method indicated 13.4% (SD = 14.1) of the coral tissues were bleached and the video method, 43.4% (SD = 13.0). Corresponding values at Lameshur were 18.1% (SD = 22.3) and 46.5% (SD = 13.3). Although hurricane damage was conspicuous at Newfound reef, neither method showed significant changes in coral cover or other categories as a result of the storm.

  19. The growth of coral reef science in the Gulf: a historical perspective.

    Science.gov (United States)

    Burt, John A

    2013-07-30

    Coral reef science has grown exponentially in recent decades in the Gulf. Analysis of literature from 1950 to 2012 identified 270 publications on coral reefs in the Gulf, half of which were published in just the past decade. This paper summarizes the growth and evolution of coral reef science in the Gulf by examining when, where and how research has been conducted on Gulf reefs, who conducted that research, and what themes and taxa have dominated scientific interest. The results demonstrate that there has been significant growth in our understanding of the valuable coral reefs of the Gulf, but also highlight the fact that we are documenting an increasingly degraded ecosystem. Reef scientists must make a concerted effort to improve dialogue with regional reef management and decision-makers if we are to stem the tide of decline in coral reefs in the Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 76 FR 66273 - Snapper-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the...

    Science.gov (United States)

    2011-10-26

    ...-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the South Atlantic... the South Atlantic Region and the FMP for Coral, Coral Reefs, and Live/Hard Bottom Habitats of the... Aquariums to collect, with certain conditions, various species of reef fish and live rock in Federal waters...

  1. Potential effects of runoff, fluvial sediment, and nutrient discharges on the coral reefs of Puerto Rico

    Science.gov (United States)

    Larsen, M.C.; Webb, R.M.T.

    2009-01-01

    Coral reefs, the foundation and primary structure of many highly productive and diverse tropical marine ecosystems, have been degraded by human activity in much of the earth's tropical oceans. To contribute to improved understanding of this problem, the potential relation between river sediment and nutrient discharges and degradation of coral reefs surrounding Puerto Rico was studied using streamflow, suspended-sediment, and water-quality data. Mean annual runoff for the 8711 km2 island is 911 mm, about 57% of mean annual precipitation (1600 mm). Mean annual suspended-sediment discharge from Puerto Rico to coastal waters is estimated at 2.7-9.0 million metric tonnes. Storm runoff transports a substantial part of sediment: the highest recorded daily sediment discharge is 1-3.6 times the mean annual sediment discharge. Hurricane Georges (1998) distributed an average of 300 mm of rain across the island, equivalent to a volume of about 2.6 billion m3. Runoff of more than 1.0 billion m3 of water and as much as 5 to 10 million metric tonnes of sediment were discharged to the coast and shelf. Nitrogen and phosphorous concentrations in river waters are as much as 10 times the estimated presettlement levels. Fecal coliform and fecal streptococcus concentrations in many Puerto Rico rivers are near or above regulatory limits. Unlike sediment discharges, which are predominantly episodic and intense, river-borne nutrient and fecal discharge is a less-intense but chronic stressor to coral reefs found near the mouths of rivers. Negative effects of riverderived sediment and nutrient discharge on coral reefs are especially pronounced on the north, southwest, and west coasts.

  2. Coral reefs as eco-energy factories. Eco-energy kichi to shite no sangosho

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, K [Electrochemical Laboratory, Tsukuba (Japan)

    1993-05-01

    This paper gives an outline of basic problems related to possibilities of CO2 fixing technologies using coral reefs, and problems in their development. The paper describes that primary production (of organic matters) per unit area of a coral reef shows a value exceeding that with tropical rain forests. However, with respect to whether an effective CO2 fixing system could be structured, there are questions to be answered to CO2 fixing mechanisms in coral reefs and to where organic matters produced in coral reefs would go. For the latter problem, the following three cases may be assumed: Accumulation in coral bottom materials; flow-out from a coral reef and transfer to deep ocean layers; and decomposition into CO2 and water as a result of actions of microorganisms. As regards development of CO2 fixing technologies, the paper indicates necessity of discussions on the following matters: Utilization of ocean thermal energy conversion in addition to promoting CO2 fixation using coral reefs; dissolution of coral reef limestone by injecting liquefied CO2; and utilization of coral reefs as energy transportation relaying stations. 3 refs., 2 figs.

  3. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    Science.gov (United States)

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  4. Vulnerability of Coral Reefs to Bioerosion From Land-Based Sources of Pollution

    Science.gov (United States)

    Prouty, Nancy G.; Cohen, Anne; Yates, Kimberly K.; Storlazzi, Curt D.; Swarzenski, Peter W.; White, Darla

    2017-12-01

    Ocean acidification (OA), the gradual decline in ocean pH and [CO32-] caused by rising levels of atmospheric CO2, poses a significant threat to coral reef ecosystems, depressing rates of calcium carbonate (CaCO3) production, and enhancing rates of bioerosion and dissolution. As ocean pH and [CO32-] decline globally, there is increasing emphasis on managing local stressors that can exacerbate the vulnerability of coral reefs to the effects of OA. We show that sustained, nutrient rich, lower pH submarine groundwater discharging onto nearshore coral reefs off west Maui lowers the pH of seawater and exposes corals to nitrate concentrations 50 times higher than ambient. Rates of coral calcification are substantially decreased, and rates of bioerosion are orders of magnitude higher than those observed in coral cores collected in the Pacific under equivalent low pH conditions but living in oligotrophic waters. Heavier coral nitrogen isotope (δ15N) values pinpoint not only site-specific eutrophication, but also a sewage nitrogen source enriched in 15N. Our results show that eutrophication of reef seawater by land-based sources of pollution can magnify the effects of OA through nutrient driven-bioerosion. These conditions could contribute to the collapse of coastal coral reef ecosystems sooner than current projections predict based only on ocean acidification.Plain Language SummaryWe show that sustained, nutrient rich, lower pH submarine groundwater discharging onto nearshore coral reefs off west Maui lowers the pH of seawater and exposes corals to nitrate concentrations 50 times higher than ambient. Rates of coral calcification are substantially decreased, and rates of bioerosion are orders of magnitude higher than those observed in coral cores collected in the Pacific. With many of Maui's coral reefs in significant decline reducing any stressors at a local scale is important to sustaining future coral reef ecosystems and planning for resiliency.

  5. Coral reefs: threats and conservation in an era of global change.

    Science.gov (United States)

    Riegl, Bernhard; Bruckner, Andy; Coles, Steve L; Renaud, Philip; Dodge, Richard E

    2009-04-01

    Coral reefs are iconic, threatened ecosystems that have been in existence for approximately 500 million years, yet their continued ecological persistence seems doubtful at present. Anthropogenic modification of chemical and physical atmospheric dynamics that cause coral death by bleaching and newly emergent diseases due to increased heat and irradiation, as well as decline in calcification caused by ocean acidification due to increased CO(2), are the most important large-scale threats. On more local scales, overfishing and destructive fisheries, coastal construction, nutrient enrichment, increased runoff and sedimentation, and the introduction of nonindigenous invasive species have caused phase shifts away from corals. Already approximately 20% of the world's reefs are lost and approximately 26% are under imminent threat. Conservation science of coral reefs is well advanced, but its practical application has often been lagging. Societal priorites, economic pressures, and legal/administrative systems of many countries are more prone to destroy rather than conserve coral-reef ecosystems. Nevertheless, many examples of successful conservation exist from the national level to community-enforced local action. When effectively managed, protected areas have contributed to regeneration of coral reefs and stocks of associated marine resources. Local communities often support coral-reef conservation in order to raise income potential associated with tourism and/or improved resource levels. Coral reefs create an annual income in S-Florida alone of over $4 billion. Thus, no conflict between development, societal welfare, and coral-reef conservation needs to exist. Despite growing threats, it is not too late for decisive action to protect and save these economically and ecologically high-value ecosystems. Conservation science plays a critical role in designing effective strategies.

  6. Linking social and ecological systems to sustain coral reef fisheries.

    Science.gov (United States)

    Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P

    2009-02-10

    The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.

  7. Global warming and coral reefs. Chikyu ondanka to sangosho

    Energy Technology Data Exchange (ETDEWEB)

    Kayane, H [Geological Survey of Japan, Tokyo (Japan)

    1991-09-01

    A summary is described with respect to the relation of the global warming with coral reefs on the environmental estimation based on the sea level rise, and the development of counter-technologies utilizing the CO{sub 2} fixing capability of coral reefs. if no measures are taken to reduce discharge of greenhouse effective gases, the air temperature will rise by 1{degree}C by the year 2025, and 3{degree}C by 2100. The thermal expansion of sea water and partial melting of land ice caused from the said temperature rise will cause the annual sea level rising speed to climb to 6 mm in the next century. It is estimated that the sea level will be elevated higher by 25 cm by the year 2025, 65 cm by 2100, and the maximum of 1 m than the present level. The upward growth rate of reef ridges is between 1m and 4m in 1000 years, and the growth of reef rides as the frameworks of coral reefs and lime alga ridges can not catch up the sea level rise of 6 mm/year. This may cause a possibility of sea water erosion or inundation. As a possible contermeasure, an expectation is placed on structuring coral reef eco-factories which may be possible as a result of elucidating the CO{sub 2} fixing mechanism in coral reefs and utilizing the capability to its maximum. 23 refs., 7 figs., 1 tab.

  8. Coral Reefs and Their Management in Tanzania | Wagner | Western ...

    African Journals Online (AJOL)

    management approaches and strategies implemented by various ICM programs, conservation areas and marine parks in Tanzania. It also provides recommendations for further research and coral reef management strategies. Keywords: coral reefs, threats, management, recent initiatives, Tanzania West Indian Ocean ...

  9. The engine of the reef: Photobiology of the coral-algal symbiosis

    Directory of Open Access Journals (Sweden)

    Melissa Susan Roth

    2014-08-01

    Full Text Available Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis and recent advances in the field. Studies integrating physiology with the developing omics fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.

  10. Agents of coral mortality on reef formations of the Colombian Pacific

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available The National Monitoring System for Coral Reefs of Colombia (SIMAC monitors the impact of some of the most important agents of coral tissue loss (bleaching and/or disease in the Colombian Pacific coral formations since 1998. Physiological bleaching is among the main results of stress in the area. Signs of coral diseases resembling bacterial bleaching such as White Plague and White Band, were observed in Malpelo and Gorgona islands. Damage to the Pacific gorgonian Pacifigorgia spp., similar to those produced by Aspergillosis in Caribbean corals, was detected in Utría Bay. The presence of tumors in colonies of massive corals was also recorded. Even though coral diseases are globally widespread, their occurrence in American Pacific reefs has been poorly documented to date. Rev. Biol. Trop. 58 (Suppl. 1: 133-138. Epub 2010 May 01.A través del Sistema Nacional de Monitoreo de Arrecifes Coralinos en Colombia-SIMAC se han evaluado algunos agentes de mortalidad coralina en el Pacifico Colombiano desde 1998. Uno de los principales factores que han contribuido a la pérdida de cobertura coralina han sido los eventos de blanqueamiento. No obstante, también se han observado signos que sugieren la presencia de enfermedades coralinas como el blanqueamiento bacteriano, la Plaga Blanca, la Banda Blanca, los tumores coralinos y la Aspergilosis en Pacifigorgia spp.. Aunque las enfermedades coralinas están globalmente distribuidas, su ocurrencia en el Pacifico tropical americano ha sido pobremente documentada. Esta nota incluye la ocurrencia de potenciales enfermedades coralinas en el Pacífico Colombiano.

  11. Towards a new paleotemperature proxy from reef coral occurrences.

    Science.gov (United States)

    Lauchstedt, Andreas; Pandolfi, John M; Kiessling, Wolfgang

    2017-09-05

    Global mean temperature is thought to have exceeded that of today during the last interglacial episode (LIG, ~ 125,000 yrs b.p.) but robust paleoclimate data are still rare in low latitudes. Occurrence data of tropical reef corals may provide new proxies of low latitude sea-surface temperatures. Using modern reef coral distributions we developed a geographically explicit model of sea surface temperatures. Applying this model to coral occurrence data of the LIG provides a latitudinal U-shaped pattern of temperature anomalies with cooler than modern temperatures around the equator and warmer subtropical climes. Our results agree with previously published estimates of LIG temperatures and suggest a poleward broadening of the habitable zone for reef corals during the LIG.

  12. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Science.gov (United States)

    2013-11-06

    ... the Western Pacific; Special Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries... special coral reef ecosystem fishing permit. SUMMARY: NMFS issued a Special Coral Reef Ecosystem Fishing Permit that authorizes Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem management unit...

  13. A clear human footprint in the coral reefs of the Caribbean.

    Science.gov (United States)

    Mora, Camilo

    2008-04-07

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs.

  14. Remote Sensing Tropical Coral Reefs: The View from Above

    Science.gov (United States)

    Purkis, Sam J.

    2018-01-01

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis—it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  15. Remote Sensing Tropical Coral Reefs: The View from Above.

    Science.gov (United States)

    Purkis, Sam J

    2018-01-03

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  16. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea

    Directory of Open Access Journals (Sweden)

    Takaomi Arai

    2015-01-01

    Full Text Available BACKGROUND: In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. RESULTS: Proportions of saturated fatty acids (SAFA ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. CONCLUSIONS: Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  17. Managing dive tourism for the sustainable use of coral reefs: validating diver perceptions of attractive site features.

    Science.gov (United States)

    Uyarra, Maria C; Watkinson, Andrew R; Côté, Isabelle M

    2009-01-01

    It has been argued that strategies to manage natural areas important for tourism and recreation should integrate an understanding of tourist preferences for specific natural features. However, the accuracy of tourist recalled perceptions of environmental attributes, which are usually derived from post hoc surveys and used to establish management priorities, is currently unmeasured. We tested the validity of the relationship between tourist-stated preferences and actual condition of coral reefs around the Caribbean island of Bonaire. Using standardized questionnaires, we asked 200 divers to select their most and least favorite dive sites and the attributes that contributed to that selection. We also carried out ecological surveys at 76 of the 81 dives sites around the island to assess the actual conditions of the attributes indicated as important for site selection. Fish- and coral-related attributes were key features affecting dive enjoyment. In general, divers appeared to be able to perceive differences between sites in the true condition of biological attributes such as fish species richness, total number of fish schools, live coral cover, coral species richness, and reef structural complexity, although men and women divers differed in their ability to perceive/recall some of the attributes. Perceived differences in environmental attributes, such as surface conditions, underwater current, and the likelihood of encountering rare fish and sea turtles, were not empirically validated. The fact that divers perceive correctly differences in the condition of some of the key biological attributes that affect dive enjoyment reinforces the need to maintain overall reef condition at satisfactory levels. However, variation in accuracy of perceptions owing to demographic factors and attribute type suggests the need for caution when using public perceptions to develop environmental management strategies, particularly for coral reefs.

  18. From ridge to reef—linking erosion and changing watersheds to impacts on the coral reef ecosystems of Hawai‘i and the Pacific Ocean

    Science.gov (United States)

    Stock, Jonathan D.; Cochran, Susan A.; Field, Michael E.; Jacobi, James D.; Tribble, Gordon

    2011-01-01

    Coral reef ecosystems are threatened by unprecedented watershed changes in the United States and worldwide. These ecosystems sustain fishing and tourism industries essential to the economic survival of many communities. Sediment, nutrients, and pollutants from watersheds are increasingly transported to coastal waters, where these contaminants damage corals. Although pollution from watersheds is one of many factors threatening coral survival, it is one that local people can have a profound influence on. U.S. Geological Survey scientists are using mapping, monitoring, and computer modeling to better forecast the effects of watershed changes on reef health. Working with communities in Hawai‘i and on other U.S. islands in the Pacific, they are helping to provide the science needed to make informed decisions on watershed and coral reef management.

  19. Operationalizing resilience for adaptive coral reef management under global environmental change.

    Science.gov (United States)

    Anthony, Kenneth R N; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas A J; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on

  20. From Citizen Science to Policy Development on the Coral Reefs of Jamaica

    Directory of Open Access Journals (Sweden)

    M. James C. Crabbe

    2012-01-01

    Full Text Available This paper explores the application of citizen science to help generation of scientific data and capacity-building, and so underpin scientific ideas and policy development in the area of coral reef management, on the coral reefs of Jamaica. From 2000 to 2008, ninety Earthwatch volunteers were trained in coral reef data acquisition and analysis and made over 6,000 measurements on fringing reef sites along the north coast of Jamaica. Their work showed that while recruitment of small corals is returning after the major bleaching event of 2005, larger corals are not necessarily so resilient and so need careful management if the reefs are to survive such major extreme events. These findings were used in the development of an action plan for Jamaican coral reefs, presented to the Jamaican National Environmental Protection Agency. It was agreed that a number of themes and tactics need to be implemented in order to facilitate coral reef conservation in the Caribbean. The use of volunteers and citizen scientists from both developed and developing countries can help in forging links which can assist in data collection and analysis and, ultimately, in ecosystem management and policy development.

  1. Coral reefs - sources or sinks of atmospheric CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J R; Smith, S V; Reakakudla, M L [Hawaii University, Honolulu, HI (USA). Dept. of Oceanography

    1992-09-01

    Because the precipitation of calcium carbonate results in the sequestering of carbon, it frequently has been thought that coral reefs function as sinks of global atmospheric CO[sub 2]. However, the precipitation of calcium carbonate is accompanied by a shift of pH that results in the release of CO[sub 2]. This release of CO[sub 2] is less in buffered sea water than fresh water systems; nevertheless, coral reefs are sources, not sinks, of atmospheric carbon. Using estimated rates of coral reef carbonate production, we compute that coral reefs release 0.02 to 0.08 Gt C as CO[sub 2] annually. This is approximately 0.4% to 1.4% of the current anthropogenic CO[sub 2] production due to fossil fuel combustion.

  2. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea

    Science.gov (United States)

    Feldman, Bar; Shlesinger, Tom; Loya, Yossi

    2018-03-01

    With more than 450 studied species, coral reproduction is a well-known research field. However, the vast majority of coral reproduction research has focused exclusively on shallow reefs. The incentive for the present study was: (1) the recent accelerated global degradation of coral reefs; (2) the growing interest in mesophotic coral ecosystems (MCEs; 30-120 m depth) and their potential to serve as a larval source for shallow reefs; and (3) the lack of information on MCE coral reproduction. Here, we compare the reproduction and ecology of the depth-generalist coral Paramontastraea peresi between shallow (5-10 m) and mesophotic (40-45 m) habitats in the Gulf of Eilat/Aqaba, Red Sea. Field surveys were conducted to assess the living cover, abundance, and size frequency distribution of P. peresi. Four to six colonies from each habitat were sampled monthly between April 2015 and January 2017, and the gametogenesis cycles, fecundity, and oocyte sizes were measured. The reproductive cycle in the MCEs was shorter than in the shallow reef. Despite having larger polyps, the mesophotic colonies contained significantly smaller and fewer oocytes per polyp. In spite of the relatively stable environmental conditions of the MCEs, which may contribute to coral survival, scarcity of sunlight is probably a major energetic impediment to investment in reproduction by P. peresi at mesophotic depths. Further intensive reproductive studies in mesophotic reefs are thus required to assess the ability of corals in this environment to reproduce and constitute a larval source for depleted shallow-water reefs.

  3. Radiocarbon ages of 'exposed reef' at Minamitori-shima (Marcus Island), Central Pacific

    International Nuclear Information System (INIS)

    Konishi, Kenji; Tanaka, Takeo; Omura, Akio

    1985-01-01

    Studies were carried out on the geoscientific features of bench-like steps and exposed or elevated reef on the coast of Minamitori-shima (Marcus Island) by referring mainly Bryan's report in 1903. Field work were carried out in May, 1979 for geoscientific survey and coral sample collection. Features of the bench-like steps survey clarified that only four steps were found for those reported by Bryan. As for the exposed reef reported by him, it was found at the northern corner of the western beach in contact with the moat of present reef. Across the northern part of the western coast two transects, A and B, were selected, and cobble-size fossils of corals composed by mainly Favia and Favites were collected from beach conglomerate at 6 and 8 sampling points of the A and B transects, respectively. Except one specimen, all the collected corals of the both transects showed their age by radiocarbon dating of 2,430 to 3,210 y B.P. and their average value was 2,838 +- 206 y B.P. As for ages of reef creast and reef flat, they were 2,130 and 2,880 y B.P., and 540 and 1,280 y B.P., respectively. Based on these coral age data and related geoscientific understandings, it was speculated that the origin of beach conglomerate was a tempesite deposited above mean sea level through stormy high tide. In addition to this speculation, geotectonic movement and geological features are also discussed in this paper. (Takagi, S.)

  4. Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean.

    Science.gov (United States)

    Davies, S W; Treml, E A; Kenkel, C D; Matz, M V

    2015-01-01

    Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo-West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef-building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation-by-distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15-21% of the observed genetic variation compared to between-island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species-rich Coral Triangle. However, for A. hyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast-spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale. © 2014 John Wiley & Sons Ltd.

  5. Carbonate sedimentology of Seribu Islands patch reef complex: a literature review

    Science.gov (United States)

    Utami, D. A.; Hakim, A. R.

    2018-02-01

    Many oil and gas reservoirs in the world are reserved in fossil carbonate sediment. Knowledge of modern carbonate sedimentology is important for a better understanding of ancient carbonate sedimentation. Equatorial coral reefs comprise almost half of the world coral reef production, and yet their dynamics, distributions, and cycles are still not well understood. Contrary to their subtropical counterpart, South East Asian carbonate system is known to be strongly influenced by the combination of oceanographic and climatic conditions. Hence carbonate sediments in the tropics have a distinct depositional system, and ought to be treated differently since common distribution models were developed from the (sub-tropical) Atlantic and Pacific regions. This paper systematically summarizes carbonate sediment studies in Seribu Islands and its dominant oceanographic configuration to provide insights and a sense of research direction in the future.

  6. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae.

    Science.gov (United States)

    Barott, Katie L; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L; Vermeij, Mark J A; Smith, Jennifer E; Rohwer, Forest L

    2012-04-22

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.

  7. Seven new species of Paleanotus (Annelida: Chrysopetalidae) described from Lizard Island, Great Barrier Reef, and coral reefs of northern Australia and the Indo-Pacific: two cryptic species pairs revealed between western Pacific Ocean and the eastern Indian Ocean.

    Science.gov (United States)

    Watson, Charlotte

    2015-09-18

    Morphological investigation into the paleate genus Paleanotus Schmarda 1861 of the family Chrysopetalidae from northern Australian coral reefs, primarily Lizard Island and outlying reefs, included a complex of very small, slender individuals (length < 5 mm). This complex resolved into 7 new species, described herein: Paleanotus inornatus n. sp., P. adornatus n. sp., P. chrysos n. sp., P. aquifolia n. sp., P. latifolia n. sp., P. silus n. sp., and P. silopsis n. sp. A key is provided to the new species and Paleanotus distinguished from Treptopale and Hyalopale, two closely related genera. Diagnostic features of the apical structure and shape of the notochaetal main paleae plus median paleae shape and raised rib pattern, differentiates each species from the other. Gametous states are described. Two cryptic species pairs (Paleanotus silopsis n. sp. and P. silus n. sp.; Paleanotus aquifolia n. sp. and P. latifolia n. sp.) were identified. In each case one species is restricted to either the NE or NW Australian coast. In each pair the most eastern point for the NW Australian species range occurs at Darwin, western Arnhemland, Northern Territory. Additional material for each species pair extends their respective ranges northwards: NW Australia to Thailand, Andaman Sea, eastern Indian Ocean or NE Australia, Great Barrier Reef to the Philippines, western Pacific Ocean. Cryptic morphology and potential genetic diversity is discussed in Paleanotus inornatus n. sp. and P. adornatus n. sp. that possess overlapping widespread distribution patterns across northern Australia and Indo-Pacific reefs. The smallest bodied taxon, Paleanotus chrysos n. sp. is the only species with a Coral Sea range encompassing Lizard Island, Heron Island and New Caledonia.

  8. 75 FR 39917 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the...

    Science.gov (United States)

    2010-07-13

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the Southern Atlantic... regulations implementing the Fishery Management Plan for Coral, Coral Reefs, and Live/Hardbottom Habitat of... Cancer Institute (http:// [[Page 39918

  9. Sewage pollution: mitigation is key for coral reef stewardship.

    Science.gov (United States)

    Wear, Stephanie L; Thurber, Rebecca Vega

    2015-10-01

    Coral reefs are in decline worldwide, and land-derived sources of pollution, including sewage, are a major force driving that deterioration. This review presents evidence that sewage discharge occurs in waters surrounding at least 104 of 112 reef geographies. Studies often refer to sewage as a single stressor. However, we show that it is more accurately characterized as a multiple stressor. Many of the individual agents found within sewage, specifically freshwater, inorganic nutrients, pathogens, endocrine disrupters, suspended solids, sediments, and heavy metals, can severely impair coral growth and/or reproduction. These components of sewage may interact with each other to create as-yet poorly understood synergisms (e.g., nutrients facilitate pathogen growth), and escalate impacts of other, non-sewage-based stressors. Surprisingly few published studies have examined impacts of sewage in the field, but those that have suggest negative effects on coral reefs. Because sewage discharge proximal to sensitive coral reefs is widespread across the tropics, it is imperative for coral reef-focused institutions to increase investment in threat-abatement strategies for mitigating sewage pollution. © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  10. Coral reef soundscapes may not be detectable far from the reef

    Science.gov (United States)

    Kaplan, Maxwell B.; Mooney, T. Aran

    2016-08-01

    Biological sounds produced on coral reefs may provide settlement cues to marine larvae. Sound fields are composed of pressure and particle motion, which is the back and forth movement of acoustic particles. Particle motion (i.e., not pressure) is the relevant acoustic stimulus for many, if not most, marine animals. However, there have been no field measurements of reef particle motion. To address this deficiency, both pressure and particle motion were recorded at a range of distances from one Hawaiian coral reef at dawn and mid-morning on three separate days. Sound pressure attenuated with distance from the reef at dawn. Similar trends were apparent for particle velocity but with considerable variability. In general, average sound levels were low and perhaps too faint to be used as an orientation cue except very close to the reef. However, individual transient sounds that exceeded the mean values, sometimes by up to an order of magnitude, might be detectable far from the reef, depending on the hearing abilities of the larva. If sound is not being used as a long-range cue, it might still be useful for habitat selection or other biological activities within a reef.

  11. Coral Reefs Under Rapid Climate Change and Ocean Acidification

    Science.gov (United States)

    Hoegh-Guldberg, O.; Mumby, P. J.; Hooten, A. J.; Steneck, R. S.; Greenfield, P.; Gomez, E.; Harvell, C. D.; Sale, P. F.; Edwards, A. J.; Caldeira, K.; Knowlton, N.; Eakin, C. M.; Iglesias-Prieto, R.; Muthiga, N.; Bradbury, R. H.; Dubi, A.; Hatziolos, M. E.

    2007-12-01

    Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.

  12. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century

    Science.gov (United States)

    Clark, Tara R.; Roff, George; Zhao, Jian-xin; Feng, Yue-xing; Done, Terence J.; McCook, Laurence J.; Pandolfi, John M.

    2017-09-01

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (shifted baseline.

  13. Coral reefs in an urban embayment in Hawaii: a complex case history controlled by natural and anthropogenic stress

    Science.gov (United States)

    Grigg, R. W.

    1995-11-01

    The effects of natural and anthropogenic stress need to be separated before coral reef ecosystems can be effectively managed. In this paper, a 25 year case history of coral reefs in an urban embayment (Mamala Bay) off Honolulu, Hawaii is described and differences between natural and man-induced stress are distinguished. Mamala Bay is a 30 km long shallow coastal bay bordering the southern (leeward) shore of Oahu and the city of Honolulu in the Hawaiian Islands. During the last 25 years, this area has been hit by two magnitude 5 hurricane events (winds > 240 km/h) generating waves in excess of 7.5 m. Also during this period, two large sewer outfalls have discharged up to 90 million gallons per day (mgd) or (360 × 106 L/day) of point source pollution into the bay. Initially the discharge was raw sewage, but since 1977 it has received advanced primary treatment. Non-point source run-off from the Honolulu watershed also enters the bay on a daily basis. The results of the study show that discharge of raw sewage had a serious but highly localized impact on shallow (˜10 m) reef corals in the bay prior to 1977. After 1977, when treatment was upgraded to the advanced primary level and outfalls were extended to deep water (> 65 m), impacts to reef corals were no longer significant. No measurable effects of either point or non-point source pollution on coral calcification, growth, species composition, diversity or community structure related to pollution can now be detected. Conversely the effects of hurricane waves in 1982 and 1992 together caused major physical destruction to the reefs. In 1982, average coral cover of well-developed offshore reefs dropped from 60-75% to 5-15%. Only massive species in high relief areas survived. Today, recovery is occurring, and notwithstanding major future disturbance events, long-term biological processes should eventually return the coral ecosystems to a more mature successional stage. This case history illustrates the complex nature of

  14. Coral reef ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.

    ), on submerged banks like Gave shani bank (13°24'N; 73°45'E) (Nair and Qasim 1978) andSidere~ko Bank (13°43.5' N; 73°42'E) (Rao 1972) and as stray individual units off Visakhapatnam (Bakus, G. personal communication) and Pondicherry (Ramesh, A. personal... communication). Fossil reefs, drowned as a result of the Holocene sea level rise, occur at 92, 85, 75 and 55 m depth along .. ~ !! ":2 0. ~ Figure 3.1 Graphical Representation of the SO-Box Model of a Caribbean Coral Reef Key: 1. Benthic producers. 2. Detritus...

  15. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery.

    Directory of Open Access Journals (Sweden)

    Guillermo Diaz-Pulido

    Full Text Available Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance.In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata, colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated.These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.

  16. Reversal of ocean acidification enhances net coral reef calcification.

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  17. Scientific Frontiers in the Management of Coral Reefs

    Directory of Open Access Journals (Sweden)

    Shankar eAswani

    2015-07-01

    Full Text Available Coral reefs are subjected globally to a variety of natural and anthropogenic stressors that often act synergistically. Today, reversing ongoing and future coral reef degradation presents significant challenges and countering this negative trend will take considerable efforts and investments. Scientific knowledge can inform and guide the requisite decision-making process and offer practical solutions to the problem of protection as the effects of climate change exacerbate. However, implementation of solutions presently lags far behind the pace required to reverse global declines, and there is a need for an urgent and significant step-up in the extent and range of strategies being implemented. In this paper, we consider scientific frontiers in natural and social science research that can help build stronger support for reef management and improve the efficacy of interventions. We cover various areas including: (1 enhancing the case for reef conservation and management, (2 dealing with local stressors on reefs, (3 addressing global climate change impacts, (4 and reviewing various approaches to the governance of coral reefs. In sum, we consider scientific frontiers in natural and social science that will require further attention in coming years as managers’ work towards building stronger support for reef management and improve the efficacy of local interventions.

  18. A geological perspective on the degradation and conservation of western Atlantic coral reefs

    Science.gov (United States)

    Kuffner, Ilsa B.; Toth, Lauren T.

    2016-01-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of

  19. Zonation of uplifted pleistocene coral reefs on barbados, west indies.

    Science.gov (United States)

    Mesolella, K J

    1967-05-05

    The coral species composition of uplifted Pleistocene reefs on Barbados is very similar to Recent West Indian reefs. Acropora palmata, Acropora cervicornis, and Montastrea annularis are qtuantitatively the most important of the coral species.

  20. Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia.

    Science.gov (United States)

    Rowlands, Gwilym; Purkis, Sam; Riegl, Bernhard; Metsamaa, Liisa; Bruckner, Andrew; Renaud, Philip

    2012-06-01

    We propose a framework for spatially estimating a proxy for coral reef resilience using remote sensing. Data spanning large areas of coral reef habitat were obtained using the commercial QuickBird satellite, and freely available imagery (NASA, Google Earth). Principles of coral reef ecology, field observation, and remote observations, were combined to devise mapped indices. These capture important and accessible components of coral reef resilience. Indices are divided between factors known to stress corals, and factors incorporating properties of the reef landscape that resist stress or promote coral growth. The first-basis for a remote sensed resilience index (RSRI), an estimate of expected reef resilience, is proposed. Developed for the Red Sea, the framework of our analysis is flexible and with minimal adaptation, could be extended to other reef regions. We aim to stimulate discussion as to use of remote sensing to do more than simply deliver habitat maps of coral reefs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Responses of Cryptofaunal Species Richness and Trophic Potential to Coral Reef Habitat Degradation

    Directory of Open Access Journals (Sweden)

    Derek P. Manzello

    2012-02-01

    Full Text Available Coral reefs are declining worldwide as a result of many anthropogenic disturbances. This trend is alarming because coral reefs are hotspots of marine biodiversity and considered the ‘rainforests of the sea. As in the rainforest, much of the diversity on a coral reef is cryptic, remaining hidden among the cracks and crevices of structural taxa. Although the cryptofauna make up the majority of a reef’s metazoan biodiversity, we know little about their basic ecology or how these communities respond to reef degradation. Emerging research shows that the species richness of the motile cryptofauna is higher among dead (framework vs. live coral substrates and, surprisingly, increases within successively more eroded reef framework structures, ultimately reaching a maximum in dead coral rubble. Consequently, the paradigm that abundant live coral is the apex of reef diversity needs to be clarified. This provides guarded optimism amidst alarming reports of declines in live coral cover and the impending doom of coral reefs, as motile cryptic biodiversity should persist independent of live coral cover. Granted, the maintenance of this high species richness is contingent on the presence of reef rubble, which will eventually be lost due to physical, chemical, and biological erosion if not replenished by live coral calcification and mortality. The trophic potential of a reef, as inferred from the abundance of cryptic organisms, is highest on live coral. Among dead framework substrates, however, the density of cryptofauna reaches a peak at intermediate levels of degradation. In summary, the response of the motile cryptofauna, and thus a large fraction of the reef’s biodiversity, to reef degradation is more complex and nuanced than currently thought; such that species richness may be less sensitive than overall trophic function.

  2. Spatial and temporal behavior and acute ecotoxicological effects of Tributyltin (TBT) on coral reef and adjacent ecosystems around Okinawa Island, Japan.

    Science.gov (United States)

    Sheikh, M. A.; Higuchi, T.; Imo, T. S.; Fujimura, H.; Oomori, T.

    2007-12-01

    Spatial and temporal behavior of the tributyl tin (TBT) were investigated in the coastal areas around Okinawa Island, Japan. A seasonal monitoring study was conducted between February and October 2006. The effects of TBT on the carbon metabolisms (net production and calcification) on the intact coral-alga association Galaxea fascicularis were also investigated. Mean concentration of TBT (2.45 ng/L) found in the Manko estuary waters have exceeded some international permissible targets of waters quality guideline for TBT (1ng/L). The sediments in Manko estuary sediments can be considered lightly contaminated (0-20 ng/g dw) and Okukubi estuary as uncontaminated (below 3ng/g dw) with TBT. The seasonal concentration pattern of TBT at the Manko estuary was autumn > spring > summer > winter. The acute ecotoxicological results show that the photosynthesis rate and calcification rate were significantly reduced by 78 % and 72 % relative to the control (ANOVA, p0.05) were observed when corals were exposed to 1000 ng/LTBT. The present study reports the occurrence and continuous input of TBT in the coastal areas around Okinawa Island, even 16 years after legal restriction of TBT usage in coastal waters was implemented by the Japanese Environmental Authorities. However, the nominal sensitive concentration of TBT that causes alteration of carbon metabolisms of coral within 96 hrs exposure are much higher than those recently found in the coral reef waters and adjacent ecosystems.

  3. Coral reefs as fixers of CO2. Sangosho ni yoru nisanka tanso no kotei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M [Geological Survey of Japan, Tsukuba (Japan)

    1992-07-25

    This paper explains CO2 fixing mechanisms in coral reefs and technologies to construct coral reef eco-factories. A coral reef fists CO2 through two routes of photosynthesis and calcification, with both processes proceeding conjugately. Calcification is driven by the photosynthesis that proceeds at a rate more than ten times faster than the calcification. The Geological Survey of Japan is working on elucidating CO2 fixing mechanisms in coral reefs and studying coral reef eco-factory structuring technologies to utilize the capability of the mechanisms at a possible maximum extent. This study is directed to optimizing site conditions for coral reefs, optimal arrangements and environmental conditions for clusters, and production process determining factors. The structuring technologies may include controlling water temperatures, water flows, nutritious salts, and suspended substances that match optimal CO2 fixing conditions in coral reefs; seeding technologies for coral reef organisms; aquaculture techniques utilizing fixed CO2; combination with cultivating techniques; and combination with new energy technologies including sea water temperature difference power generation to control water flows and maintain facilities. 4 refs., 5 figs.

  4. Prioritizing land and sea conservation investments to protect coral reefs.

    Science.gov (United States)

    Klein, Carissa J; Ban, Natalie C; Halpern, Benjamin S; Beger, Maria; Game, Edward T; Grantham, Hedley S; Green, Alison; Klein, Travis J; Kininmonth, Stuart; Treml, Eric; Wilson, Kerrie; Possingham, Hugh P

    2010-08-30

    Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.

  5. Macroalgae in the coral reefs of Eilat (Gulf of Aqaba, Red Sea) as a possible indicator of reef degradation

    International Nuclear Information System (INIS)

    Bahartan, Karnit; Zibdah, Mohammad; Ahmed, Yousef; Israel, Alvaro; Brickner, Itzchak; Abelson, Avigdor

    2010-01-01

    The current state of health of the coral reefs in the northern Gulf of Aqaba (Red Sea), notably the Eilat reefs, is under debate regarding both their exact condition and the causes of degradation. A dearth of earlier data and unequivocal reliable indices are the major problems hinder a clear understanding of the reef state. Our research objective was to examine coral-algal dynamics as a potential cause and an indication of reef degradation. The community structure of stony corals and algae along the northern Gulf of Aqaba reveal non-seasonal turf algae dominancy in the shallow Eilat reefs (up to 72%), while the proximate Aqaba reefs present negligible turf cover (<6%). We believe that turf dominancy can indicate degradation in these reefs, based on the reduction in essential reef components followed by proliferation of perennial turf algae. Our findings provide further evidence for the severe state of the Eilat coral reefs.

  6. A clear human footprint in the coral reefs of the Caribbean

    Science.gov (United States)

    Mora, Camilo

    2008-01-01

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs. PMID:18182370

  7. 78 FR 12703 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Amendment to the Corals and Reef...

    Science.gov (United States)

    2013-02-25

    ... Associated Plants and Invertebrates Fishery Management Plan of Puerto Rico and the U.S. Virgin Islands AGENCY... Reef Associated Plants and Invertebrates of Puerto Rico and the U.S. Virgin Islands (USVI) (Coral FMP... maritima), and one group of species, the sea vines (Halophila spp., including H. decipiens, H. baillonis, H...

  8. Deposition of calcium carbonate into postglacial reefs: a test on a 'coral reef hypothesis'. Kohyoki no sangosho eno tansan calcium taiseki sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Kayanne, H [Geological Survey of Japan, Tsukuba (Japan)

    1993-06-15

    This paper describes the following matters on changes in rates of deposition of calcium carbonate into postglacial coral reefs: Estimation was made on change in CaCO3 deposition in four coral reefs the data of which relating to all cross sections down to reef base have been acquired by drilling; the main deposition periods in the coral reefs formed in the postglacial period were five to six thousand years ago; the maximum deposition rate is estimated to be 2.7 [times] 10[sup 14] gC per one thousand years under an assumption that the total deposition amount in postglacial coral reefs is 1.2 [times] 10[sup 18] gC (converted to carbon amount); the recent deposition rate is (1/7.5) that of the former rate; from information obtained on submerged coral reefs, deposition amounts in coral reefs before 10,000 years ago are judged to have been smaller than those thereafter; and the above knowledges do not support the 'coral reef hypothesis' by Berger et al. that deposition of calcium carbonate into postglacial coral reefs has occurred from 15,000 years ago to 10,000 years ago. 30 refs., 2 figs.

  9. Extinction vulnerability of coral reef fishes.

    Science.gov (United States)

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-04-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. © 2011 Blackwell Publishing Ltd/CNRS.

  10. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs.

    Science.gov (United States)

    Loh, Tse-Lynn; Pawlik, Joseph R

    2014-03-18

    Ecological studies have rarely been performed at the community level across a large biogeographic region. Sponges are now the primary habitat-forming organisms on Caribbean coral reefs. Recent species-level investigations have demonstrated that predatory fishes (angelfishes and some parrotfishes) differentially graze sponges that lack chemical defenses, while co-occurring, palatable species heal, grow, reproduce, or recruit at faster rates than defended species. Our prediction, based on resource allocation theory, was that predator removal would result in a greater proportion of palatable species in the sponge community on overfished reefs. We tested this prediction by performing surveys of sponge and fish community composition on reefs having different levels of fishing intensity across the Caribbean. A total of 109 sponge species was recorded from 69 sites, with the 10 most common species comprising 51.0% of sponge cover (3.6-7.7% per species). Nonmetric multidimensional scaling indicated that the species composition of sponge communities depended more on the abundance of sponge-eating fishes than geographic location. Across all sites, multiple-regression analyses revealed that spongivore abundance explained 32.8% of the variation in the proportion of palatable sponges, but when data were limited to geographically adjacent locations with strongly contrasting levels of fishing pressure (Cayman Islands and Jamaica; Curaçao, Bonaire, and Martinique), the adjusted R(2) values were much higher (76.5% and 94.6%, respectively). Overfishing of Caribbean coral reefs, particularly by fish trapping, removes sponge predators and is likely to result in greater competition for space between faster-growing palatable sponges and endangered reef-building corals.

  11. Unseen players shape benthic competition on coral reefs.

    Science.gov (United States)

    Barott, Katie L; Rohwer, Forest L

    2012-12-01

    Recent work has shown that hydrophilic and hydrophobic organic matter (OM) from algae disrupts the function of the coral holobiont and promotes the invasion of opportunistic pathogens, leading to coral morbidity and mortality. Here we refer to these dynamics as the (3)DAM [dissolved organic matter (DOM), direct contact, disease, algae and microbes] model. There is considerable complexity in coral-algae interactions; turf algae and macroalgae promote heterotrophic microbial overgrowth of coral, macroalgae also directly harm the corals via hydrophobic OM, whereas crustose coralline algae generally encourage benign microbial communities. In addition, complex flow patterns transport OM and pathogens from algae to downstream corals, and direct algal contact enhances their delivery. These invisible players (microbes, viruses, and OM) are important drivers of coral reefs because they have non-linear responses to disturbances and are the first to change in response to perturbations, providing near real-time trajectories for a coral reef, a vital metric for conservation and restoration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Using reefcheck monitoring database to develop the coral reef index of biological integrity

    DEFF Research Database (Denmark)

    Nguyen, Hai Yen T.; Pedersen, Ole; Ikejima, Kou

    2009-01-01

    The coral reef indices of biological integrity was constituted based on the reef check monitoring data. Seventy six minimally disturbed sites and 72 maximallv disturbed sites in shallow water and 39 minimally disturbed sites and 37 maximally disturbed sites in deep water were classified based...... on the high-end and low-end percentages and ratios of hard coral, dead coral and fieshy algae. A total of 52 candidate metrics was identified and compiled, Eight and four metrics were finally selected to constitute the shallow and deep water coral reef indices respectively. The rating curve was applied.......05) and coral damaged by other factors -0.283 (pcoral reef indices were sensitive responses to stressors and can be capable to use as the coral reef biological monitoring tool....

  13. Global and local threats to coral reef functioning and existence: review and predictions

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, C.R. [Australian Institute of Marine Sciences, Townsville, Qld. (Australia)

    1999-07-01

    Factors causing global degradation of coral reefs are examined briefly as a basis for predicting the likely consequences of increases in these factors. The earlier consensus was that widespread but localized damage from natural factors such as storms, and direct anthropogenic effects such as increased sedimentation, pollution and exploitation, posed the largest immediate threat to coral reefs. Now truly global factors associated with accelerating Global Climate Change are either damaging coral reefs or have the potential to inflict greater damage in the immediate future e.g. increases in coral bleaching and mortality, and reduction in coral calcification due to changes in sea-water chemistry with increasing carbon dioxide concentrations. Rises in sea level will probably disrupt human communities and their cultures by making coral cays uninhabitable, whereas coral reefs will sustain minimal damage from the rise in sea level. The short-term (decades) prognosis is that major reductions are almost certain in the extent and biodiversity of coral reefs, and severe disruptions to cultures and economies dependent on reef resources will occur. The long-term (centuries to millennia) prognosis is more encouraging because coral reefs have remarkable resilience to severe disruption and will probably show this resilience in the future when climate changes either stabilize or reverse.

  14. CORAL CONDITION: HOW TO FATHOM THE DECLINE OF CORAL REEF ECOSYSTEMS

    Science.gov (United States)

    Coral reefs have experienced unprecedented levels of bleaching, disease and mortality during the last three decades. The goal of EPA-ORD research is to identify the culpable stressors in different species, reefs and regions using integrated field and laboratory studies.

  15. A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia.

    Directory of Open Access Journals (Sweden)

    Zoe T Richards

    Full Text Available The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs, prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution.

  16. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    Science.gov (United States)

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  17. Effects of ocean acidification on the dissolution rates of reef-coral skeletons

    Directory of Open Access Journals (Sweden)

    Robert van Woesik

    2013-11-01

    Full Text Available Ocean acidification threatens the foundation of tropical coral reefs. This study investigated three aspects of ocean acidification: (i the rates at which perforate and imperforate coral-colony skeletons passively dissolve when pH is 7.8, which is predicted to occur globally by 2100, (ii the rates of passive dissolution of corals with respect to coral-colony surface areas, and (iii the comparative rates of a vertical reef-growth model, incorporating passive dissolution rates, and predicted sea-level rise. By 2100, when the ocean pH is expected to be 7.8, perforate Montipora coral skeletons will lose on average 15 kg CaCO3 m−2 y−1, which is approximately −10.5 mm of vertical reduction of reef framework per year. This rate of passive dissolution is higher than the average rate of reef growth over the last several millennia and suggests that reefs composed of perforate Montipora coral skeletons will have trouble keeping up with sea-level rise under ocean acidification. Reefs composed of primarily imperforate coral skeletons will not likely dissolve as rapidly, but our model shows they will also have trouble keeping up with sea-level rise by 2050.

  18. Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation.

    Science.gov (United States)

    Thampi, Vivek A; Anand, Madhur; Bauch, Chris T

    2018-02-07

    The Caribbean coral reef ecosystem has experienced a long history of deterioration due to various stressors. For instance, over-fishing of parrotfish - an important grazer of macroalgae that can prevent destructive overgrowth of macroalgae - has threatened reef ecosystems in recent decades and stimulated conservation efforts such as the formation of marine protected areas. Here we develop a mathematical model of coupled socio-ecological interactions between reef dynamics and conservation opinion dynamics to better understand how natural and human factors interact individually and in combination to determine coral reef cover. We find that the coupling opinion and reef systems generates complex dynamics that are difficult to anticipate without use of a model. For instance, instead of converging to a stable state of constant coral cover and conservationist opinion, the system can oscillate between low and high live coral cover as human opinion oscillates in a boom-bust cycle between complacency and concern. Out of various possible parameter manipulations, we also find that raising awareness of coral reef endangerment best avoids counter-productive nonlinear feedbacks and always increases and stabilizes live coral reef cover. In conclusion, an improved understanding of coupled opinion-reef dynamics under anthrogenic stressors is possible using coupled socio-ecological models, and such models should be further researched.

  19. Carbon dioxide addition to coral reef waters suppresses net community calcification

    Science.gov (United States)

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-01

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  20. Responses of reef building corals to microplastic exposure.

    Science.gov (United States)

    Reichert, Jessica; Schellenberg, Johannes; Schubert, Patrick; Wilke, Thomas

    2018-06-01

    Pollution of marine environments with microplastic particles (i.e. plastic fragments terrestrial origin, coastal ecosystems such as coral reefs are particularly threatened. Recent studies revealed that microplastic ingestion can have adverse effects on marine invertebrates. However, little is known about its effects on small-polyp stony corals that are the main framework builders in coral reefs. The goal of this study is to characterise how different coral species I) respond to microplastic particles and whether the exposure might II) lead to health effects. Therefore, six small-polyp stony coral species belonging to the genera Acropora, Pocillopora, and Porites were exposed to microplastics (polyethylene, size 37-163 μm, concentration ca. 4000 particles L -1 ) over four weeks, and responses and effects on health were documented. The study showed that the corals responded differentially to microplastics. Cleaning mechanisms (direct interaction, mucus production) but also feeding interactions (i.e. interaction with mesenterial filaments, ingestion, and egestion) were observed. Additionally, passive contact through overgrowth was documented. In five of the six studied species, negative effects on health (i.e. bleaching and tissue necrosis) were reported. We here provide preliminary knowledge about coral-microplastic-interactions. The results call for further investigations of the effects of realistic microplastic concentrations on growth, reproduction, and survival of stony corals. This might lead to a better understanding of resilience capacities in coral reef ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    Science.gov (United States)

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  2. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.

    Science.gov (United States)

    Leal, Isabela Carolina Silva; de Araújo, Maria Elisabeth; da Cunha, Simone Rabelo; Pereira, Pedro Henrique Cipresso

    2015-07-01

    Branching hydrocorals from the genus Millepora play an important ecological role in South Atlantic reefs, where branching scleractinian corals are absent. Previous studies have shown a high proportion of reef fish species using branching fire-coral colonies as shelter, breeding, and feeding sites. However, the effects of Millepora spp. colony size and how the agonistic behaviour of a competitive damselfish affect the associated reef fish community are still unknown. The present study examined how fire-coral colony volume and the presence of a highly territorial and aggressive damselfish (Brazilian endemic Stegastes fuscus) affects the reef fish community associated with the fire-coral Millepora alcicornis. M. alcicornis colonies were surveyed from September 2012 to April 2013 at Tamandaré Reefs off Northeast Brazil. Our results show that the abundance and richness of coral associated fish was positively correlated with M. alcicornis coral colony volume. Additionally, behaviour of S. fuscus, the most abundant reef fish species found associated with fire-coral colonies (almost 57% of the fish community), was also influenced by fire-coral colony volume. There was a clear trend of increased agonistic behaviour and feeding on coral polyps as colony volume increased. This trend was reversed for the non-occupational swimming category, which decreased as M. alcicornis colony volume increased. Behavioural ontogenetic changes were also detected for S. fuscus individuals. Juveniles mainly showed two distinct behaviours: sheltered on coral branches and feeding on coral polyps. In contrast, adults presented greater equitability among the behavioural categories, mostly non-occupational swimming around coral colonies and agonistic behaviour. Lastly, S. fuscus individuals actively defended fire-coral colonies from intruders. A large number of agonistic interactions occurred against potential food competitors, which were mainly roving herbivores, omnivores, and sessile

  3. Nitrification in reef corals

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; David, J.J.

    . An estimate of the density of nitrifying bacteria on living corals can be made by comparing the nitrifying rates of bacterial cells and the rate of production of NO,-. Kaplan (1983) summarized the growth con- stants of marine nitrifying bacteria... Reef Con=. 3: 395-399. -, C. R. WILKINSON, V. p. VICENTE, J. M. MORELL, AND E. OTERO. 1988. Nitrate release by Carib- bean reef sponges. Limnol. Oceanogr. 33: 114- 120. CROSSLAND, C. J., AND D. J. BARNES. 1983. Dissolved nutrients and organic...

  4. Coral Reef Protection Implementation Plan

    National Research Council Canada - National Science Library

    Lobel, Lisa

    2000-01-01

    This document identify policies and actions to implement the Department of Defense's responsibilities under Executive Order 13089 on Coral Reef Protection, and are a requirement of the interim Task...

  5. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    Science.gov (United States)

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. © 2016 The Author(s).

  6. Pleistocene corals of the Florida keys: Architects of imposing reefs - Why?

    Science.gov (United States)

    Lidz, B.H.

    2006-01-01

    Five asymmetrical, discontinuous, stratigraphically successive Pleistocene reef tracts rim the windward platform margin off the Florida Keys. Built of large head corals, the reefs are imposing in relief (???30 m high by 1 km wide), as measured from seismic profiles. Well dated to marine oxygen isotope substages 5c, 5b, and 5a, corals at depth are inferred to date to the Stage 6/5 transition. The size of these reefs attests to late Pleistocene conditions that repeatedly induced vigorous and sustained coral growth. In contrast, the setting today, linked to Florida Bay and the Gulf of Mexico, is generally deemed marginal for reef accretion. Incursion onto the reef tract of waters that contain seasonally inconsistent temperature, salinity, turbidity, and nutrient content impedes coral growth. Fluctuating sea level and consequent settings controlled deposition. The primary dynamic was position of eustatic zeniths relative to regional topographic elevations. Sea level during the past 150 ka reached a maximum of ???10.6 m higher than at present ???125 ka, which gave rise to an inland coral reef (Key Largo Limestone) and ooid complex (Miami Limestone) during isotope substage 5e. These formations now form the Florida Keys and a bedrock ridge beneath The Quicksands (Gulf of Mexico). High-precision radiometric ages and depths of dated corals indicate subsequent apices remained ???15 to 9 m, respectively, below present sea level. Those peaks provided accommodation space sufficient for vertical reef growth yet exposed a broad landmass landward of the reefs for >100 ka. With time, space, lack of bay waters, and protection from the Gulf of Mexico, corals thrived in clear oceanic waters of the Gulf Stream, the only waters to reach them.

  7. Satellite Remote Sensing of Coral Reefs: By Learning about Coral Reefs, Students Gain an Understanding of Ecosystems and How Cutting-Edge Technology Can Be Used to Study Ecological Change

    Science.gov (United States)

    Palandro, David; Thoms, Kristin; Kusek, Kristen; Muller-Karger, Frank; Greely, Teresa

    2005-01-01

    Coral reefs are one of the most important ecosystems on the planet, providing sustenance to both marine organisms and humans. Yet they are also one of the most endangered ecosystems as coral reef coverage has declined dramatically in the past three decades. Researchers continually seek better ways to map coral reef coverage and monitor changes…

  8. Preliminary numerical simulation for shallow strata stability of coral reef in South China Sea

    Science.gov (United States)

    Tang, Qinqin; Zhan, Wenhuan; Zhang, Jinchang

    2017-04-01

    Coral reefs are the geologic material and special rock and soil, which live in shallow water of the tropic ocean and are formed through biological and geological action. Since infrastructure construction is being increasingly developed on coral reefs during recent years, it is necessary to evaluate the shallow strata stability of coral reefs in the South China Sea. The paper is to study the borehole profiles for shallow strata of coral reefs in the South China Sea, especially in the hydrodynamic marine environment?, and to establish a geological model for numerical simulation with Geo-Studio software. Five drilling holes show a six-layer shallow structure of South China Sea, including filling layer, mid-coarse sand, coral sand gravel, fine sand, limestone debris and reef limestone. The shallow coral reef profile next to lagoon is similar to "layers cake", in which the right side close to the sea is analogous to "block cake". The simulation results show that coral reef stability depends on wave loads and earthquake strength, as well as the physical properties of coral reefs themselves. The safety factor of the outer reef is greater than 10.0 in the static condition, indicating that outer reefs are less affected by the wave and earthquake. However, the safety factor next to lagoon is ranging from 0.1 to 4.9. The main reason for the variations that the strata of coral reefs close to the sea are thick. For example, the thickness of reef limestone is more than 10 m and equivalent to the block. When the thickness of inside strata is less than 10 m, they show weak engineering geological characteristics. These findings can provide useful information for coral reef constructions in future. This work was funded by National Basic Research Program of China (contract: 2013CB956104) and National Natural Science Foundation of China (contract: 41376063).

  9. The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts

    Directory of Open Access Journals (Sweden)

    Keisha D. Bahr

    2015-05-01

    Full Text Available Kāneʻohe Bay, which is located on the on the NE coast of Oʻahu, Hawaiʻi, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāneʻohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Loʻe (Coconut Island in the southern region of the bay became home to the Hawaiʻi Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960’s the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of

  10. The unnatural history of Kāne'ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts.

    Science.gov (United States)

    Bahr, Keisha D; Jokiel, Paul L; Toonen, Robert J

    2015-01-01

    Kāne'ohe Bay, which is located on the on the NE coast of O'ahu, Hawai'i, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāne'ohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Lo'e (Coconut Island) in the southern region of the bay became home to the Hawai'i Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960's the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of coral cover. The reefs of K

  11. Shoreline changes in reef islands of the Central Pacific: Takapoto Atoll, Northern Tuamotu, French Polynesia

    Science.gov (United States)

    Duvat, Virginie K. E.; Pillet, Valentin

    2017-04-01

    Atoll reef islands are considered highly vulnerable to the impacts of climate change. While accelerated sea-level rise is expected to destabilize reef islands, ocean warming and acidification are considered as major threats to coral reef growth, which is of primary importance for the persistence of islands and of food supply to islanders. Using multi-date aerial imagery, shoreline and island changes between 1969 and 2013 were assessed on Takapoto Atoll, Northern Tuamotu region, in French Polynesia. Results show that over the 44-year study period, 41% of islands were stable in area while 33% expanded and 26% contracted. Island expansion was the dominant mode of change on the leeward side of the atoll. Tropical Cyclone Orama (category 3, 1983) contributed to shoreline and island change on the windward side of the atoll through the reworking of previous storm deposits and the injection of fresh sediments in the island system (with up to 62% of an island's land area being covered with fresh sediments). Human activities contributed significantly to shoreline and island change throughout the atoll through infrastructure construction, the removal of the indigenous vegetation from a number of islets and sediment mining.

  12. Can we measure beauty? Computational evaluation of coral reef aesthetics

    NARCIS (Netherlands)

    Haas, A.F.; Guibert, M.; Foerschner, A.; Co, T.; Calhoun, S.; George, E.; Hatay, M.; Dinsdale, E.; Sandin, S.A.; Smith, J.E.; Vermeij, M.J.A.; Felts, B.; Dustan, P.; Salamon, P.; Rohwer, F.

    2015-01-01

    The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters,

  13. Prioritizing land and sea conservation investments to protect coral reefs.

    Directory of Open Access Journals (Sweden)

    Carissa J Klein

    Full Text Available BACKGROUND: Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming and in the sea (e.g. overfishing. Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification. Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. CONCLUSIONS/SIGNIFICANCE: Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.

  14. The contribution of microbial biotechnology to mitigating coral reef degradation.

    Science.gov (United States)

    Damjanovic, Katarina; Blackall, Linda L; Webster, Nicole S; van Oppen, Madeleine J H

    2017-09-01

    The decline of coral reefs due to anthropogenic disturbances is having devastating impacts on biodiversity and ecosystem services. Here we highlight the potential and challenges of microbial manipulation strategies to enhance coral tolerance to stress and contribute to coral reef restoration and protection. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Comparative genomics explains the evolutionary success of reef-forming corals

    OpenAIRE

    Bhattacharya, Debashish; Agrawal, Shobhit; Aranda, Manuel; Baumgarten, Sebastian; Belcaid, Mahdi; Drake, Jeana L; Erwin, Douglas; Foret, Sylvian; Gates, Ruth D; Gruber, David F; Kamel, Bishoy; Lesser, Michael P; Levy, Oren; Liew, Yi Jin; MacManes, Matthew

    2016-01-01

    eLife digest For millions of years, reef-building stony corals have created extensive habitats for numerous marine plants and animals in shallow tropical seas. Stony corals consist of many small, tentacled animals called polyps. These polyps secrete a mineral called aragonite to create the reef ? an external ?skeleton? that supports and protects the corals. Photosynthesizing algae live inside the cells of stony corals, and each species depends on the other to survive. The algae produce the co...

  16. Arrecifes de Coral: Una Coleccion de Actividades en Espanol para Estudiantes de Escuela Intermedia (Coral Reefs: A Spanish Compilation of Activities for Middle School Students).

    Science.gov (United States)

    Walker, Sharon H.; Newton, R. Amanda; Ortiz, Alida

    This activity book for middle school students on coral reefs is divided into 10 sections. Section 1 is the introduction. Section 2 describes what coral reefs are while section 3 describes how coral reefs reproduce and grow. Section 4 describes where coral reefs are found, and section 5 describes life on a coral reef. Section 6 describes the…

  17. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals.

    Science.gov (United States)

    Loh, Tse-Lynn; McMurray, Steven E; Henkel, Timothy P; Vicente, Jan; Pawlik, Joseph R

    2015-01-01

    Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  18. Mapping Coral Reef Resilience Indicators Using Field and Remotely Sensed Data

    Directory of Open Access Journals (Sweden)

    Stuart Phinn

    2013-03-01

    Full Text Available In the face of increasing climate-related impacts on coral reefs, the integration of ecosystem resilience into marine conservation planning has become a priority. One strategy, including resilient areas in marine protected area (MPA networks, relies on information on the spatial distribution of resilience. We assess the ability to model and map six indicators of coral reef resilience—stress-tolerant coral taxa, coral generic diversity, fish herbivore biomass, fish herbivore functional group richness, density of juvenile corals and the cover of live coral and crustose coralline algae. We use high spatial resolution satellite data to derive environmental predictors and use these in random forest models, with field observations, to predict resilience indicator values at unsampled locations. Predictions are compared with those obtained from universal kriging and from a baseline model. Prediction errors are estimated using cross-validation, and the ability to map each resilience indicator is quantified as the percentage reduction in prediction error compared to the baseline model. Results are most promising (percentage reduction = 18.3% for mapping the cover of live coral and crustose coralline algae and least promising (percentage reduction = 0% for coral diversity. Our study has demonstrated one approach to map indicators of coral reef resilience. In the context of MPA network planning, the potential to consider reef resilience in addition to habitat and feature representation in decision-support software now exists, allowing planners to integrate aspects of reef resilience in MPA network development.

  19. Coral Reef Biological Criteria

    Science.gov (United States)

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  20. Lower Mesophotic Coral Communities (60-125 m Depth of the Northern Great Barrier Reef and Coral Sea.

    Directory of Open Access Journals (Sweden)

    Norbert Englebert

    Full Text Available Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m, despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60-125 m at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60-80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213 between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve.

  1. Interoceanic differences in the reproduction of coral-reef fishes.

    Science.gov (United States)

    Thresher, R E

    1982-10-01

    Eggs of demersal spawning coral-reef fishes of the tropical western Atlantic are smaller than those of related species in the western Pacific. Decreased egg volume may result in increased fecundity per unit body weight of Atlantic species, a factor that may underlie apparent differences in the stability of the respective coral-reef fish communities.

  2. Human Dimensions of Coral Reef Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    John N. Kittinger

    2012-12-01

    Full Text Available Coral reefs are among the most diverse ecosystems on the planet but are declining because of human activities. Despite general recognition of the human role in the plight of coral reefs, the vast majority of research focuses on the ecological rather than the human dimensions of reef ecosystems, limiting our understanding of social relationships with these environments as well as potential solutions for reef recovery. General frameworks for social-ecological systems (SESs have been advanced, but system-specific approaches are needed to develop a more nuanced view of human-environmental interactions for specific contexts and resource systems, and at specific scales. We synthesize existing concepts related to SESs and present a human dimensions framework that explores the linkages between social system structural traits, human activities, ecosystem services, and human well-being in coral reef SESs. Key features of the framework include social-ecological reciprocity, proximate and underlying dimensions, and the directionality of key relationships and feedback loops. Such frameworks are needed if human dimensions research is to be more fully integrated into studies of ecosystem change and the sustainability of linked SESs.

  3. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    2016-10-01

    Full Text Available Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase. These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  4. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii coral reef ecosystem fisheries. [Reserved] 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. [Reserved] ...

  5. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka‘i, Hawai‘i

    Science.gov (United States)

    Jokiel, Paul L.; Rodgers, Ku'ulei S.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1(offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.

  6. How models can support ecosystem-based management of coral reefs

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Janssen, A.B.G.; Kuiper, J.J.; Leemans, R.; Leemput, van de I.A.; Mooij, W.M.

    2015-01-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic

  7. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Mariana coral reef ecosystem fisheries. [Reserved] 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries. [Reserved] ...

  8. Acoustic and biological trends on coral reefs off Maui, Hawaii

    Science.gov (United States)

    Kaplan, Maxwell B.; Lammers, Marc O.; Zang, Eden; Aran Mooney, T.

    2018-03-01

    Coral reefs are characterized by high biodiversity, and evidence suggests that reef soundscapes reflect local species assemblages. To investigate how sounds produced on a given reef relate to abiotic and biotic parameters and how that relationship may change over time, an observational study was conducted between September 2014 and January 2016 at seven Hawaiian reefs that varied in coral cover, rugosity, and fish assemblages. The reefs were equipped with temperature loggers and acoustic recording devices that recorded on a 10% duty cycle. Benthic and fish visual survey data were collected four times over the course of the study. On average, reefs ranged from 0 to 80% live coral cover, although changes between surveys were noted, in particular during the major El Niño-related bleaching event of October 2015. Acoustic analyses focused on two frequency bands (50-1200 and 1.8-20.5 kHz) that corresponded to the dominant spectral features of the major sound-producing taxa on these reefs, fish, and snapping shrimp, respectively. In the low-frequency band, the presence of humpback whales (December-May) was a major contributor to sound level, whereas in the high-frequency band sound level closely tracked water temperature. On shorter timescales, the magnitude of the diel trend in sound production was greater than that of the lunar trend, but both varied in strength among reefs, which may reflect differences in the species assemblages present. Results indicated that the magnitude of the diel trend was related to fish densities at low frequencies and coral cover at high frequencies; however, the strength of these relationships varied by season. Thus, long-term acoustic recordings capture the substantial acoustic variability present in coral-reef ecosystems and provide insight into the presence and relative abundance of sound-producing organisms.

  9. Global change and the decline of coral reefs

    OpenAIRE

    Strasser, A.

    1999-01-01

    Ever since coral reefs exist, changing environmental conditions have periodically led to their decline. However, within the perspective of geological time-spans, corals have always managed to re-install themselves. Today, human activity has enhanced stress factors and added new ones that cause a rapid and (on the human time-scale) irreversible decline of many reef ecosystems. The reasons for the disturbance of these complex communities are multiple, but global warming is a k...

  10. Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral Reef Fishes, Using a Visual Census Technique

    Science.gov (United States)

    Nagelkerken, I.; van der Velde, G.; Gorissen, M. W.; Meijer, G. J.; Van't Hof, T.; den Hartog, C.

    2000-07-01

    The nursery function of various biotopes for coral reef fishes was investigated on Bonaire, Netherlands Antilles. Length and abundance of 16 commercially important reef fish species were determined by means of visual censuses during the day in six different biotopes: mangrove prop-roots ( Rhizophora mangle) and seagrass beds ( Thalassia testudinum) in Lac Bay, and four depth zones on the coral reef (0 to 3 m, 3 to 5 m, 10 to 15 m and 15 to 20 m). The mangroves, seagrass beds and shallow coral reef (0 to 3 m) appeared to be the main nursery biotopes for the juveniles of the selected species. Mutual comparison between biotopes showed that the seagrass beds were the most important nursery biotope for juvenile Haemulon flavolineatum, H. sciurus, Ocyurus chrysurus, Acanthurus chirurgus and Sparisoma viride, the mangroves for juvenile Lutjanus apodus, L. griseus, Sphyraena barracuda and Chaetodon capistratus, and the shallow coral reef for juvenile H. chrysargyreum, L. mahogoni , A. bahianus and Abudefduf saxatilis. Juvenile Acanthurus coeruleus utilized all six biotopes, while juvenile H. carbonarium and Anisotremus surinamensis were not observed in any of the six biotopes. Although fishes showed a clear preference for a specific nursery biotope, most fish species utilized multiple nursery biotopes simultaneously. The almost complete absence of juveniles on the deeper reef zones indicates the high dependence of juveniles on the shallow water biotopes as a nursery. For most fish species an (partial) ontogenetic shift was observed at a particular life stage from their (shallow) nursery biotopes to the (deeper) coral reef. Cluster analyses showed that closely related species within the families Haemulidae, Lutjanidae and Acanthuridae, and the different size classes within species in most cases had a spatial separation in biotope utilization.

  11. The potential for coral reef establishment through free-living stabilization

    KAUST Repository

    Hennige, S. J.

    2017-10-11

    Corals thrive in a variety of environments, from low wave and tidal energy lagoons, to high energy tidal reef flats, but remain dependent upon suitable substrate. Herein we reviewed the phenomenon of free-living corals (coralliths), examined whether they have the capacity to create their own stable habitat in otherwise uninhabitable, poor substrate environments through \\'free-living stabilization\\', and explore their potential ecological role on coral reefs. This stabilization could be achieved by coral settlement and survival on mobile substrate, with subsequent growth into free-living coralliths until a critical mass is reached that prevents further movement. This allows for secondary reef colonization by other coral species. To preliminarily test this hypothesis we provide evidence that the potential to support secondary coral colonisation increases with corallith size. Due to the limited diversity of corallith species observed here and in the literature, and the lack of physiological differences exhibited by coralliths here to static controls, it seems likely that only a small selection of coral species have the ability to form coralliths, and the potential to create their own stable habitat.

  12. The potential for coral reef establishment through free-living stabilization

    KAUST Repository

    Hennige, S. J.; Burdett, H. L.; Perna, Gabriela; Tudhope, A. W.; Kamenos, N. A.

    2017-01-01

    Corals thrive in a variety of environments, from low wave and tidal energy lagoons, to high energy tidal reef flats, but remain dependent upon suitable substrate. Herein we reviewed the phenomenon of free-living corals (coralliths), examined whether they have the capacity to create their own stable habitat in otherwise uninhabitable, poor substrate environments through 'free-living stabilization', and explore their potential ecological role on coral reefs. This stabilization could be achieved by coral settlement and survival on mobile substrate, with subsequent growth into free-living coralliths until a critical mass is reached that prevents further movement. This allows for secondary reef colonization by other coral species. To preliminarily test this hypothesis we provide evidence that the potential to support secondary coral colonisation increases with corallith size. Due to the limited diversity of corallith species observed here and in the literature, and the lack of physiological differences exhibited by coralliths here to static controls, it seems likely that only a small selection of coral species have the ability to form coralliths, and the potential to create their own stable habitat.

  13. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt.

    Science.gov (United States)

    Shlesinger, Tom; Grinblat, Mila; Rapuano, Hanna; Amit, Tal; Loya, Yossi

    2018-02-01

    Mesophotic coral ecosystems (i.e., deep coral reefs at 30-120 m depth) appear to be thriving while many shallow reefs in the world are declining. Amid efforts to understand and manage their decline, it was suggested that mesophotic reefs might serve as natural refuges and a possible source of propagules for the shallow reefs. However, our knowledge of how reproductive performance of corals alters with depth is sparse. Here, we present a comprehensive study of the reproductive phenology, fecundity, and abundance of seven reef-building conspecific corals in shallow and mesophotic habitats. Significant differences were found in the synchrony and timing of gametogenesis and spawning between shallow and mesophotic coral populations. Thus, mesophotic populations exhibited delayed or protracted spawning events, which led to spawning of the mesophotic colonies in large proportions at times where the shallow ones had long been depleted of reproductive material. All species investigated demonstrated a substantial reduction in fecundity and/or oocyte sizes at mesophotic depths (40-60 m). Two species (Seriatopora hystrix and Galaxea fascicularis) displayed a reduction in both fecundity and oocyte size at mesophotic depths. Turbinaria reniformis had only reduced fecundity and Acropora squarrosa and Acropora valida only reduced oocyte size. In Montipora verrucosa, reduced fecundity was found during one annual reproductive season while, in the following year, only reduced oocyte size was found. In contrast, reduced oocyte size in mesophotic populations of Acropora squarrosa was consistent along three studied years. One species, Acropora pharaonis, was found to be infertile at mesophotic depths along two studied years. This indicates that reproductive performance decreases with depth; and that although some species are capable of reproducing at mesophotic depths, their contribution to the replenishment of shallow reefs may be inconsequential. Reduced reproductive performance

  14. Coral reef sedimentation on Rodrigues and the Western Indian Ocean and its impact on the carbon cycle.

    Science.gov (United States)

    Rees, Siwan A; Opdyke, Bradley N; Wilson, Paul A; Fifield, L Keith

    2005-01-15

    Coral reefs in the southwest Indian Ocean cover an area of ca. 18,530 km2 compared with a global reef area of nearly 300,000 km2. These regions are important as fishing grounds, tourist attractions and as a significant component of the global carbon cycle. The mass of calcium carbonate stored within Holocene neritic sediments is a number that we are only now beginning to quantify with any confidence, in stark contrast to the mass and sedimentation rates associated with pelagic calcium carbonate, which have been relatively well defined for decades. We report new data that demonstrate that the reefs at Rodrigues, like those at Reunion and Mauritius, only reached a mature state (reached sea level) by 2-3 ka: thousands of years later than most of the reefs in the Australasian region. Yet field observations show that the large lagoon at Rodrigues is already completely full of carbonate detritus (typical lagoon depth less than 1 m at low spring tide). The presence of aeolian dunes at Rodrigues indicates periodic exposure of past lagoons throughout the Pleistocene. The absence of elevated Pleistocene reef deposits on the island indicates that the island has not been uplifted. Most Holocene reefs are between 15 and 20 m in thickness and those in the southwest Indian Ocean appear to be consistent with this observation. We support the view that the CO2 flux associated with coral-reef growth acts as a climate change amplifier during deglaciation, adding CO2 to a warming world. southwest Indian Ocean reefs could have added 7-10% to this global flux during the Holocene.

  15. 75 FR 21650 - Coral Reef Restoration Plan, Draft Programmatic Environmental Impact Statement, Biscayne National...

    Science.gov (United States)

    2010-04-26

    ... DEPARTMENT OF THE INTERIOR National Park Service Coral Reef Restoration Plan, Draft Programmatic... Coral Reef Restoration Plan, Biscayne National Park. SUMMARY: Pursuant to the National Environmental... availability of a Draft Programmatic Environmental Impact Statement (DEIS) for the Coral Reef Restoration Plan...

  16. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    Science.gov (United States)

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  17. Identification and classification of very low frequency waves on a coral reef flat

    Science.gov (United States)

    Gawehn, Matthijs; van Dongeran, Ap; van Rooijen, Arnold; Storlazzi, Curt; Cheriton, Olivia; Reniers, Ad

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (∼0.5–6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  18. Identification and classification of very low frequency waves on a coral reef flat

    Science.gov (United States)

    Gawehn, Matthijs; van Dongeren, Ap; van Rooijen, Arnold; Storlazzi, Curt D.; Cheriton, Olivia M.; Reniers, Ad

    2016-10-01

    Very low frequency (VLF, 0.001-0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (˜0.5-6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  19. The current status of coral reefs and their vulnerability to climate change and multiple human stresses in the Comoros Archipelago, Western Indian Ocean.

    Science.gov (United States)

    Cowburn, B; Samoilys, M A; Obura, D

    2018-05-31

    Coral bleaching and various human stressors have degraded the coral reefs of the Comoros Archipelago in the past 40 years and rising atmospheric CO 2 levels are predicted to further impact marine habitats. The condition of reefs in the Comoros is poorly known; using SCUBA based methods we surveyed reef condition and resilience to bleaching at sites in Grande Comore and Mohéli in 2010 and 2016. The condition of reefs was highly variable, with a range in live coral cover between 6% and 60% and target fishery species biomass between 20 and 500 kg per ha. The vulnerability assessment of reefs to future coral bleaching and their exposure to fishing, soil erosion and river pollution in Mohéli Marine Park found that offshore sites around the islets south of the island were least likely to be impacted by these negative pressures. The high variability in both reef condition and vulnerability across reefs in the Park lends itself to spatially explicit conservation actions. However, it is noteworthy that climate impacts to date appear moderate and that local human pressures are not having a major impact on components of reef health and recovery, suggesting these reefs are relatively resilient to the current anthropogenic stresses that they are experiencing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Fishing down the largest coral reef fish species.

    Science.gov (United States)

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Comparison of coral reef ecosystems along a fishing pressure gradient.

    Directory of Open Access Journals (Sweden)

    Mariska Weijerman

    Full Text Available Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs-such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn's cycling index and mean path length-indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai'i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai'i, O'ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community were most robust (i.e., showed the clearest trend and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system's internal structure that can be used to support management in identification of approaches to reverse unfavorable states.

  2. Remote sensing of coral reefs and their physical environment

    International Nuclear Information System (INIS)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T.

    2004-01-01

    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas

  3. Modern coral reefs of western Atlantic: new geological perspective

    Energy Technology Data Exchange (ETDEWEB)

    MacIntyre, I.G.

    1988-11-01

    Contrary to popular belief of the late 1960s, western Atlantic Holocene reefs have a long history and are not feeble novice nearshore veneers that barely survived postglacial temperatures. Rather, the growth of these reefs kept pace with the rising seas of the Holocene transgression and their development was, for the most part, controlled by offshore wave-energy conditions and the relationship between changing sea levels and local shelf topography. Thus, the outer shelves of the eastern Caribbean in areas of high energy have relict reefs consisting predominantly of Acropora palmata, a robust shallow-water coral. The flooding of adjacent shelves during the postglacial transgression introduced stress conditions that terminated the growth of these reefs. When, about 7000 yr ago, shelf-water conditions improved, scattered deeper water coral communities reestablished themselves on these stranded shelf-edge reefs, and fringing and bank-barrier reefs began to flourish in shallow coastal areas. At the same time, the fragile and rapidly growing Acropora cervicornis and other corals flourished at greater depths on the more protected shelves of the western Caribbean and the Gulf of Mexico. As a result, late Holocene buildups more than 30 m thick developed in those areas. 7 figures.

  4. Remote sensing of coral reefs and their physical environment

    Energy Technology Data Exchange (ETDEWEB)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T

    2004-02-01

    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas.

  5. Trace metal incorporation in otoliths of a territorial coral reef fish (Abudefduf saxatilis as an environmental monitoring tool

    Directory of Open Access Journals (Sweden)

    Herrera-Reveles A. T.

    2013-04-01

    Full Text Available Trace metal levels in the otolith external layer of newly Abudefduf saxatilis (Pomacentridae recruits, a common fish of the Caribbean coral reef, were examined as an indicator of recently occupied habitat from the most important coral reefs of the east of Venezuela (Mochima National Park and La Tortuga Island. These otoliths were analyzed trough an Energy-dispersive X-ray spectroscopy (EDS fixed to scanning electron microscopy (SEM. The five trace metals analyzed (Cd, Cu, Hg, Pb and Zn were found at external layer of most evaluated otoliths at all localities, in which %weight of Pb/Ca and Hg/Ca showed the highest values. These results show the bioavailability of evaluated metals at Mochima National Park and La Tortuga Island, and their significant spatial variations on otoliths make evidence of different concentration of Cd, Hg and Pb in water and/or sediments of these locations.

  6. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay-Thousand Islands coral reef complex.

    Science.gov (United States)

    Cleary, D F R; Polónia, A R M; Renema, W; Hoeksema, B W; Rachello-Dolmen, P G; Moolenbeek, R G; Budiyanto, A; Yahmantoro; Tuti, Y; Giyanto; Draisma, S G A; Prud'homme van Reine, W F; Hariyanto, R; Gittenberger, A; Rikoh, M S; de Voogd, N J

    2016-09-30

    Substrate cover, water quality parameters and assemblages of corals, fishes, sponges, echinoderms, ascidians, molluscs, benthic foraminifera and macroalgae were sampled across a pronounced environmental gradient in the Jakarta Bay-Thousand Islands reef complex. Inshore sites mainly consisted of sand, rubble and turf algae with elevated temperature, dissolved oxygen, pH and chlorophyll concentrations and depauperate assemblages of all taxa. Live coral cover was very low inshore and mainly consisted of sparse massive coral heads and a few encrusting species. Faunal assemblages were more speciose and compositionally distinct mid- and offshore compared to inshore. There were, however, small-scale differences among taxa. Certain midshore sites, for example, housed assemblages resembling those typical of the inshore environment but this differed depending on the taxon. Substrate, water quality and spatial variables together explained from 31% (molluscs) to 72% (foraminifera) of the variation in composition. In general, satellite-derived parameters outperformed locally measured parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Integration of coral reef ecosystem process studies and remote sensing: Chapter 5

    Science.gov (United States)

    Brook, John; Yates, Kimberly; Halley, Robert

    2006-01-01

    Worldwide, local-scale anthropogenic stress combined with global climate change is driving shifts in the state of reef benthic communities from coral-rich to micro- or macroalgal-dominated (Knowlton, 1992; Done, 1999). Such phase shifts in reef benthic communities may be either abrupt or gradual, and case studies from diverse ocean basins demonstrate that recovery, while uncertain (Hughes, 1994), typically involves progression through successional stages (Done, 1992). These transitions in benthic community structure involve changes in community metabolism, and accordingly, the holistic evaluation of associated biogeochemical variables is of great intrinsic value (Done, 1992). Effective reef management requires advance prediction of coral reef alteration in the face of anthropogenic stress and change in the global environment (Hatcher, 1997a). In practice, this goal requires techniques that can rapidly discern, at an early stage, sublethal effects that may cause long-term increases in mortality (brown, 1988; Grigg and Dollar, 1990). Such methods would improve our understanding of the differences in the population, community, and ecosystem structure, as well as function, between pristine and degraded reefs. This knowledge base could then support scientifically based management strategies (Done, 1992). Brown (1988) noted the general lack of rigor in the assessment of stress on coral reefs and suggested that more quantitative approaches than currently exist are needed to allow objective understanding of coral reef dynamics. Sensitive techniques for the timely appraisal of pollution effects or generalized endemic stress in coral reefs are sorely lacking (Grigg and Dollar, 1990; Wilkinsin, 1992). Moreover, monitoring methods based on population inventories, sclerochronology, or reproductive biology tend to myopic and may give inconsistent results. Ideally, an improved means of evaluating reef stress would discriminate mortality due to natural causes from morality to

  8. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    KAUST Repository

    Feary, David A.

    2013-07-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter \\'Gulf\\') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. © 2013 Elsevier Ltd.

  9. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    Science.gov (United States)

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A.; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David; Grandcourt, Edwin; Hill, Ross; John, David M.; Jones, David A.; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Joerg

    2014-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/ Persian Gulf (thereafter ‘Gulf’) coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  10. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    KAUST Repository

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A R; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl L.; Baker, Andrew C.; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geó rgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David Glen; Grandcourt, Edwin Mark; Hill, Ross; John, David Michael; Jones, David Alan; Keshavmurthy, Shashank; Mahmoud, Huda M A; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood A.; Pichon, Michel; Purkis, Sam J.; Riegl, Bernhard M.; Samimi-Namin, Kaveh; Sheppard, Charles R C; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Jö rg

    2013-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter 'Gulf') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. © 2013 Elsevier Ltd.

  11. Quantifying uncertainty and resilience on coral reefs using a Bayesian approach

    International Nuclear Information System (INIS)

    Van Woesik, R

    2013-01-01

    Coral reefs are rapidly deteriorating globally. The contemporary management option favors managing for resilience to provide reefs with the capacity to tolerate human-induced disturbances. Yet resilience is most commonly defined as the capacity of a system to absorb disturbances without changing fundamental processes or functionality. Quantifying no change, or the uncertainty of a null hypothesis, is nonsensical using frequentist statistics, but is achievable using a Bayesian approach. This study outlines a practical Bayesian framework that quantifies the resilience of coral reefs using two inter-related models. The first model examines the functionality of coral reefs in the context of their reef-building capacity, whereas the second model examines the recovery rates of coral cover after disturbances. Quantifying intrinsic rates of increase in coral cover and habitat-specific, steady-state equilibria are useful proxies of resilience. A reduction in the intrinsic rate of increase following a disturbance, or the slowing of recovery over time, can be useful indicators of stress; a change in the steady-state equilibrium suggests a phase shift. Quantifying the uncertainty of key reef-building processes and recovery parameters, and comparing these parameters against benchmarks, facilitates the detection of loss of resilience and provides signals of imminent change. (letter)

  12. Quantifying uncertainty and resilience on coral reefs using a Bayesian approach

    Science.gov (United States)

    van Woesik, R.

    2013-12-01

    Coral reefs are rapidly deteriorating globally. The contemporary management option favors managing for resilience to provide reefs with the capacity to tolerate human-induced disturbances. Yet resilience is most commonly defined as the capacity of a system to absorb disturbances without changing fundamental processes or functionality. Quantifying no change, or the uncertainty of a null hypothesis, is nonsensical using frequentist statistics, but is achievable using a Bayesian approach. This study outlines a practical Bayesian framework that quantifies the resilience of coral reefs using two inter-related models. The first model examines the functionality of coral reefs in the context of their reef-building capacity, whereas the second model examines the recovery rates of coral cover after disturbances. Quantifying intrinsic rates of increase in coral cover and habitat-specific, steady-state equilibria are useful proxies of resilience. A reduction in the intrinsic rate of increase following a disturbance, or the slowing of recovery over time, can be useful indicators of stress; a change in the steady-state equilibrium suggests a phase shift. Quantifying the uncertainty of key reef-building processes and recovery parameters, and comparing these parameters against benchmarks, facilitates the detection of loss of resilience and provides signals of imminent change.

  13. 77 FR 25407 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Science.gov (United States)

    2012-04-30

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic... South Carolina Aquarium to collect, with certain conditions, various species of reef fish, crabs, and..., marine sanctuaries, special management zones, or artificial reefs without additional authorization...

  14. Spatio-temporal patterns in the coral reef communities of the Spermonde Archipelago, 2012–2014, II: Fish assemblages display structured variation related to benthic condition

    DEFF Research Database (Denmark)

    Plass-Johnson, Jeremiah Grahm; Teichberg, Mirta; Bednarz, Vanessa N.

    2018-01-01

    The Spermonde Archipelago is a complex of ~70 mostly populated islands off Southwest Sulawesi, Indonesia, in the center of the Coral Triangle. The reefs in this area are exposed to a high level of anthropogenic disturbances. Previous studies have shown that variation in the benthos is strongly...... with distance, while few species were present across the entire range of sites. Relating fish communities to benthic composition using a multivariate generalized linear model confirmed that fish groups relate to structural complexity (rugosity) or differing benthic groups; either algae, reef builders (coral...... and crustose coralline algae) or invertebrates and rubble. From these relationships we can identify sets of fish species that may be lost given continued degradation of the Spermonde reefs. Lastly, the incorporation of water quality, benthic and fish indices indicates that local coral reefs responded...

  15. 76 FR 24050 - Coral Reef Restoration Plan, Final Programmatic Environmental Impact Statement, Biscayne National...

    Science.gov (United States)

    2011-04-29

    ... DEPARTMENT OF THE INTERIOR National Park Service [2310-0003-422] Coral Reef Restoration Plan... for the Coral Reef Restoration Plan, Biscayne National Park. SUMMARY: Pursuant to the National... availability of a Final Programmatic Environmental Impact Statement for the Coral Reef Restoration Plan (Plan...

  16. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Science.gov (United States)

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  17. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Lauren A Freeman

    Full Text Available Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  18. Coral community response to bleaching on a highly disturbed reef.

    Science.gov (United States)

    Guest, J R; Low, J; Tun, K; Wilson, B; Ng, C; Raingeard, D; Ulstrup, K E; Tanzil, J T I; Todd, P A; Toh, T C; McDougald, D; Chou, L M; Steinberg, P D

    2016-02-15

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress.

  19. Biological impacts of oil pollution: coral reefs. V. 3

    International Nuclear Information System (INIS)

    1997-01-01

    Coral reefs are the largest structures made by living things and exist as extremely productive ecosystems in tropical and sub-tropical areas of the world. Their location in nearshore waters means that there is a potential danger to corals from tanker accidents, refinery operations, oil exploration and production. There are now a number of published scientific papers concerning the effects of oils on corals, but results are not entirely consistent. This report summarizes and interprets the findings, and provides background information on the structure and ecology of coral reefs. Clean-up options and their implications are discussed in the light of the latest evidence from case histories and field experiments. (UK)

  20. CRED REA Reef Fish Assessment Survey at Niihau Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  1. CRED REA Reef Fish Assessment Survey at Lanai Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  2. CRED REA Reef Fish Assessment Survey at Hawaii Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  3. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem

    DEFF Research Database (Denmark)

    Wild, C.; Huettel, M.; Klueter, A.

    2004-01-01

    Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs(1), but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus(2,3). Here we show that released coral mucus efficiently traps organic...... matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56......% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders...

  4. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.; Brewin, Robert J. W.; Zhan, Peng; Dreano, Denis; Pradhan, Yaswant; Nanninga, Gerrit B.; Hoteit, Ibrahim

    2017-01-01

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  5. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.

    2017-08-18

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  6. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition.

    Science.gov (United States)

    Acosta-González, Gilberto; Rodríguez-Zaragoza, Fabián A; Hernández-Landa, Roberto C; Arias-González, Jesús E

    2013-01-01

    Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU) in two GUs (reef slope and terrace) over six years (2000, 2005, 2006, 2007, 2008, 2010). Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope) and deeper (reef terrace) GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity) over time may imply the abetment of vulnerability in the face of local and global changes.

  7. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition.

    Directory of Open Access Journals (Sweden)

    Gilberto Acosta-González

    Full Text Available Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU in two GUs (reef slope and terrace over six years (2000, 2005, 2006, 2007, 2008, 2010. Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope and deeper (reef terrace GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity over time may imply the abetment of vulnerability in the face of local and global changes.

  8. Drivers of shoreline change in atoll reef islands of the Tuamotu Archipelago, French Polynesia

    Science.gov (United States)

    Duvat, Virginie K. E.; Salvat, Bernard; Salmon, Camille

    2017-11-01

    This paper increases by around 30% the sample of atoll reef islands studied from a shoreline change perspective, and covers an under-studied geographical area, i.e. the French Tuamotu Archipelago. It brings new irrefutable evidences on the persistence of reef islands over the last decades, as 77% of the 111 study islands exhibited areal stability while 15% and 8% showed expansion and contraction, respectively. This paper also addresses a key research gap by interpreting the major local drivers controlling recent shoreline and island change, i.e. tropical cyclones and seasonal swells, sediment supply by coral reefs and human activities. The 1983 tropical cyclones had contrasting impacts, depending on the shoreline indicator considered. While they generally caused a marked retreat of the stability line, the base of the beach advanced at some locations, as a result of either sediment reworking or fresh sediment inputs. The post-cyclone fair weather period was characterised by reversed trends indicating island morphological readjustment. Cyclonic waves contributed to island upwards growth, which reached up to 1 m in places, through the transfer of sediments up onto the island surface. However, the steep outer slopes of atolls limited sediment transfers to the reef flat and island system. We found that 57% of the study islands are disturbed by human activities, including 'rural' and uninhabited islands. Twenty-six percent of these islands have lost the capacity to respond to ocean-climate related pressures, including the 'capital' islands concentrating atolls' population, infrastructures and economic activities, which is preoccupying under climate change.

  9. A restoration genetics guide for coral reef conservation.

    Science.gov (United States)

    Baums, Iliana B

    2008-06-01

    Worldwide degradation of coral reef communities has prompted a surge in restoration efforts. They proceed largely without considering genetic factors because traditionally, coral populations have been regarded as open over large areas with little potential for local adaptation. Since, biophysical and molecular studies indicated that most populations are closed over shorter time and smaller spatial scales. Thus, it is justified to re-examine the potential for site adaptation in corals. There is ample evidence for differentiated populations, inbreeding, asexual reproduction and the occurrence of ecotypes, factors that may facilitate local adaptation. Discovery of widespread local adaptation would influence coral restoration projects mainly with regard to the physical and evolutionary distance from the source wild and/or captive bred propagules may be moved without causing a loss of fitness in the restored population. Proposed causes for loss of fitness as a result of (plant) restoration efforts include founder effects, genetic swamping, inbreeding and/or outbreeding depression. Direct evidence for any of these processes is scarce in reef corals due to a lack of model species that allow for testing over multiple generations and the separation of the relative contributions of algal symbionts and their coral hosts to the overall performance of the coral colony. This gap in our knowledge may be closed by employing novel population genetic and genomics approaches. The use of molecular tools may aid managers in the selection of appropriate propagule sources, guide spatial arrangement of transplants, and help in assessing the success of coral restoration projects by tracking the performance of transplants, thereby generating important data for future coral reef conservation and restoration projects.

  10. Unmixing-Based Denoising as a Pre-Processing Step for Coral Reef Analysis

    Science.gov (United States)

    Cerra, D.; Traganos, D.; Gege, P.; Reinartz, P.

    2017-05-01

    Coral reefs, among the world's most biodiverse and productive submerged habitats, have faced several mass bleaching events due to climate change during the past 35 years. In the course of this century, global warming and ocean acidification are expected to cause corals to become increasingly rare on reef systems. This will result in a sharp decrease in the biodiversity of reef communities and carbonate reef structures. Coral reefs may be mapped, characterized and monitored through remote sensing. Hyperspectral images in particular excel in being used in coral monitoring, being characterized by very rich spectral information, which results in a strong discrimination power to characterize a target of interest, and separate healthy corals from bleached ones. Being submerged habitats, coral reef systems are difficult to analyse in airborne or satellite images, as relevant information is conveyed in bands in the blue range which exhibit lower signal-to-noise ratio (SNR) with respect to other spectral ranges; furthermore, water is absorbing most of the incident solar radiation, further decreasing the SNR. Derivative features, which are important in coral analysis, result greatly affected by the resulting noise present in relevant spectral bands, justifying the need of new denoising techniques able to keep local spatial and spectral features. In this paper, Unmixing-based Denoising (UBD) is used to enable analysis of a hyperspectral image acquired over a coral reef system in the Red Sea based on derivative features. UBD reconstructs pixelwise a dataset with reduced noise effects, by forcing each spectrum to a linear combination of other reference spectra, exploiting the high dimensionality of hyperspectral datasets. Results show clear enhancements with respect to traditional denoising methods based on spatial and spectral smoothing, facilitating the coral detection task.

  11. Decline of coral reefs during late Paleocene to early Eocene global warming

    OpenAIRE

    Scheibner , C.; Speijer , R. P.

    2007-01-01

    International audience; Since the 1980s the frequency of warming events has intensified and simultaneously widespread coral bleaching, and enhanced coral mortality have been observed. Yet, it remains unpredictable how tropical coral reef communities will react to prolonged adverse conditions. Possibly, coral reef systems are sufficiently robust to withstand continued environmental pressures. But if coral mortality increases, what will platform communities of the future look like? The co-evolu...

  12. Coral Reef and Hardbottom from Unified Florida Reef Tract Map (NODC Accession 0123059)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a subset of the Unified Map representing Coral reef and Hardbottom areas. Version 1.1 - December 2013. The Unified Florida Reef Tract Map (Unified...

  13. Coral reef connectivity within the Western Gulf of Mexico

    Science.gov (United States)

    Salas-Monreal, David; Marin-Hernandez, Mark; Salas-Perez, Jose de Jesus; Salas-de-Leon, David Alberto; Monreal-Gomez, Maria Adela; Perez-España, Horacio

    2018-03-01

    The yearlong monthly mean satellite data of the geostrophic velocities, the sea surface temperature and the chlorophyll-a values were used to elucidate any possible pathway among the different coral reef systems of the Western Gulf of Mexico (WGM). The geostrophic current velocities suggested different pathways connecting the coral reef areas. The typical coastal alongshore pathway constricted to the continental shelf, and two open ocean pathway, the first connecting the Campeche Reef System (CRS) with the Veracruz (VRS) and Tuxpan-Lobos Reef Systems (TLRS), and the second pathway connecting the Tuxpan-Lobos Reef System with the Flower Garden Reef System (FGRS). According to the pathways there should be more larvae transport from the southern Gulf of Mexico reef systems toward the FGRS than the other way. The connection from the southern Gulf of Mexico toward the FGRS took place during January, May, July, August and September (2015), while the connection from the FGRS toward the southern Gulf of Mexico reef system took place during January and February (2015), this was also suggested via model outputs. The density radio (R) was used as a first approximation to elucidate the influence of the freshwater continental discharges within the continental shelf. All coral reef areas were located where the Chlorophyll-a monthly mean values had values bellow 1 mg m- 2 with a density radio between 0 and 1, i.e. under the influence of continental discharges.

  14. The status of coral reef ecology research in the Red Sea

    KAUST Repository

    Berumen, Michael L.

    2013-06-21

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia\\'s Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (<2 % of the area of the Red Sea) in the far northern Red Sea. We summarize the general state of knowledge in these eight topics and highlight the areas of future research priorities for the Red Sea region. Notably, data that could inform science-based management approaches are badly lacking in most Red Sea countries. The Red Sea, as a geologically "young" sea located in one of the warmest regions of the world, has the potential to provide insight into pressing topics such as speciation processes as well as the capacity of reef systems and organisms to adapt to global climate change. As one of the world\\'s most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale. © 2013 Springer-Verlag Berlin Heidelberg.

  15. Coral bleaching at Little Cayman, Cayman Islands 2009

    Science.gov (United States)

    van Hooidonk, Ruben J.; Manzello, Derek P.; Moye, Jessica; Brandt, Marilyn E.; Hendee, James C.; McCoy, Croy; Manfrino, Carrie

    2012-06-01

    The global rise in sea temperature through anthropogenic climate change is affecting coral reef ecosystems through a phenomenon known as coral bleaching; that is, the whitening of corals due to the loss of the symbiotic zooxanthellae which impart corals with their characteristic vivid coloration. We describe aspects of the most prevalent episode of coral bleaching ever recorded at Little Cayman, Cayman Islands, during the fall of 2009. The most susceptible corals were found to be, in order, Siderastrea siderea, Montastraea annularis, and Montastraea faveolata, while Diplora strigosa and Agaricia spp. were less so, yet still showed considerable bleaching prevalence and severity. Those found to be least susceptible were Porites porites, Porites astreoides, and Montastraea cavernosa. These observations and other reported observations of coral bleaching, together with 29 years (1982-2010) of satellite-derived sea surface temperatures, were used to optimize bleaching predictions at this location. To do this a Degree Heating Weeks (DHW) and Peirce Skill Score (PSS) analysis was employed to calculate a local bleaching threshold above which bleaching was expected to occur. A threshold of 4.2 DHW had the highest skill, with a PSS of 0.70. The method outlined here could be applied to other regions to find the optimal bleaching threshold and improve bleaching predictions.

  16. Temporal and taxonomic contrasts in coral growth at Davies Reef, central Great Barrier Reef, Australia

    Science.gov (United States)

    Anderson, Kristen D.; Cantin, Neal E.; Heron, Scott F.; Lough, Janice M.; Pratchett, Morgan S.

    2018-06-01

    Demographic processes, such as growth, can have an important influence on the population and community structure of reef-building corals. Importantly, ongoing changes in environmental conditions (e.g. ocean warming) are expected to affect coral growth, contributing to changes in the structure of coral populations and communities. This study quantified contemporary growth rates (linear extension and calcification) for the staghorn coral, Acropora muricata, at Davies Reef, central Great Barrier Reef, Australia. Growth rates were measured at three different depths (5, 10, and 15 m) over 2 yr (2012-2014) assessing both seasonal and inter-annual variability. Results of this study were compared to equivalent measurements made in 1980-1982 at the same location. To assist in understanding inter-annual variability in coral growth, we also examined annual growth bands from massive Porites providing continuous growth and records of flooding history for Davies Reef over the period 1979-2012. Linear extension rates of A. muricata were substantially (11-62%) lower in 2012-2014 compared to 1980-1982, especially at 10 and 15 m depths. These declines in growth coincide with a + 0.14 °C change in annual mean temperature. For massive Porites, however, calcification rates were highly variable among years and there was no discernible long-term change in growth despite sustained increases in temperature of 0.064 °C per decade. Apparent differences in the growth rates of Acropora between 1980-1982 and 2012-2014 may reflect inter-annual variation in coral growth (as seen for massive Porites), though it is known branching Acropora is much more sensitive to changing environmental conditions than massive corals. There are persistent issues in assessing the sensitivities of branching corals to environmental change due to limited capacity for retrospective analyses of growth, but given their disproportionate contribution to habitat complexity and reef structure, it is critical to ascertain

  17. Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States

    Science.gov (United States)

    Wobus, C. W.; Lane, D.; Buddemeier, R. W.; Ready, R. C.; Shouse, K. C.; Martinich, J.

    2012-12-01

    Global climate change presents a two-pronged threat to coral reef ecosystems: increasing sea surface temperatures will increase the likelihood of episodic bleaching events, while increasing ocean carbon dioxide concentrations will change the carbonate chemistry that drives coral growth. Because coral reefs have important societal as well as ecological benefits, climate change mitigation policies that ameliorate these impacts may create substantial economic value. We present a model that evaluates both the ecological and the economic impacts of climate change on coral reefs in the United States. We use a coral reef mortality and bleaching model to project future coral reef declines under a range of climate change policy scenarios for south Florida, Puerto Rico and Hawaii. Using a benefits transfer approach, the outputs from the physical model are then used to quantify the economic impacts of these coral reef declines for each of these regions. We find that differing climate change trajectories create substantial changes in projected coral cover and value for Hawaii, but that the ecological and economic benefits of more stringent emissions scenarios are less clear for Florida and Puerto Rico. Overall, our results indicate that the effectiveness of climate change mitigation policies may be region-specific, but that these policies could result in a net increase of nearly $10 billion in economic value from coral reef-related recreational activities alone, over the 21st century.

  18. Widespread hybridization and bidirectional introgression in sympatric species of coral reef fish

    KAUST Repository

    Harrison, Hugo B.

    2017-10-28

    Coral reefs are highly diverse ecosystems, where numerous closely related species often coexist. How new species arise and are maintained in these high geneflow environments have been long-standing conundrums. Hybridization and patterns of introgression between sympatric species provide a unique insight into the mechanisms of speciation and the maintenance of species boundaries. In this study, we investigate the extent of hybridization between two closely related species of coral reef fish: the common coral trout (Plectropomus leopardus) and the bar-cheek coral trout (Plectropomus maculatus). Using a complementary set of 25 microsatellite loci, we distinguish pure genotype classes from first- and later-generation hybrids, identifying 124 interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid-shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary processes are acting to maintain species barriers. We elaborate on these finding to investigate the extent of genomic introgression and admixture from 2,271 SNP loci recovered from a ddRAD library of pure and hybrid individuals. An analysis of genomic clines on recovered loci indicates that 261 SNP loci deviate from a model of neutral introgression, of which 132 indicate a pattern of introgression consistent with selection favouring both hybrid and parental genotypes. Our findings indicate genome-wide, bidirectional introgression between two sympatric species of coral reef fishes and provide further support to a growing body of evidence for the role of hybridization in the evolution of coral reef fishes.

  19. Recent Advances in Understanding the Effects of Climate Change on Coral Reefs

    Directory of Open Access Journals (Sweden)

    Andrew S. Hoey

    2016-05-01

    Full Text Available Climate change is one of the greatest threats to the persistence of coral reefs. Sustained and ongoing increases in ocean temperatures and acidification are altering the structure and function of reefs globally. Here, we summarise recent advances in our understanding of the effects of climate change on scleractinian corals and reef fish. Although there is considerable among-species variability in responses to increasing temperature and seawater chemistry, changing temperature regimes are likely to have the greatest influence on the structure of coral and fish assemblages, at least over short–medium timeframes. Recent evidence of increases in coral bleaching thresholds, local genetic adaptation and inheritance of heat tolerance suggest that coral populations may have some capacity to respond to warming, although the extent to which these changes can keep pace with changing environmental conditions is unknown. For coral reef fishes, current evidence indicates increasing seawater temperature will be a major determinant of future assemblages, through both habitat degradation and direct effects on physiology and behaviour. The effects of climate change are, however, being compounded by a range of anthropogenic disturbances, which may undermine the capacity of coral reef organisms to acclimate and/or adapt to specific changes in environmental conditions.

  20. New perspectives on ecological mechanisms affecting coral recruitment on reefs

    NARCIS (Netherlands)

    Ritson-Williams, R.; Arnold, S.N.; Fogarty, N.D.; Steneck, R.S.; Vermeij, M.J.A.; Paul, V.J.

    2009-01-01

    Coral mortality has increased in recent decades, making coral recruitment more important than ever in sustaining coral reef ecosystems and contributing to their resilience. This review summarizes existing information on ecological factors affecting scleractinian coral recruitment. Successful