WorldWideScience

Sample records for island-thwaites palaeo-ice stream

  1. Crevasse-squeeze ridge corridors: Diagnostic features of late-stage palaeo-ice stream activity

    Science.gov (United States)

    Evans, David J. A.; Storrar, Robert D.; Rea, Brice R.

    2016-04-01

    A 200-km-long and 10-km-wide linear assemblage of till-filled geometrical ridges on the bed of the Maskwa palaeo-ice stream of the late Wisconsinan southwest Laurentide Ice Sheet are interpreted as crevasse-squeeze ridges (CSR) developed during internal flow unit reorganization, immediately prior to ice stream shutdown. Ridge orientations are predominantly orientated WNW-ESE, with a subordinate WSW-ENE alignment, both indicative of ice fracture development transverse to former ice stream flow, as indicated by NNE-SSW aligned MSGL. Subglacial till injection into basal and/or full depth, mode I and II crevasses occurred at the approximate centreline of the ice stream, in response to extension and fracturing. Landform preservation indicates that this took place during the final stages of ice streaming, immediately prior to ice stream shutdown. This linear zone of ice fracturing therefore likely represents the narrowing of the fast-flowing trunk, similar to the plug flow identified in some surging valley glaciers. Lateral drag between the final active flow unit and the slower moving ice on either side is likely recorded by the up-ice bending of the CSR limbs. The resulting CSR corridor, here related to an individual ice stream flow unit, constitutes a previously unreported style of crevasse infilling and contrasts with two existing CSR patterns: (1) wide arcuate zones of CSRs related to widespread fracturing within glacier surge lobes; and (2) narrow concentric arcs of CSRs and recessional push moraines related to submarginal till deformation at active temperate glacier lobes.

  2. Geomorphology and till architecture of terrestrial palaeo-ice streams of the southwest Laurentide Ice Sheet: A borehole stratigraphic approach

    Science.gov (United States)

    Norris, Sophie L.; Evans, David J. A.; Cofaigh, Colm Ó.

    2018-04-01

    A multidimensional study, utilising geomorphological mapping and the analysis of regional borehole stratigraphy, is employed to elucidate the regional till architecture of terrestrial palaeo-ice streams relating to the Late Wisconsinan southwest Laurentide Ice Sheet. Detailed mapping over a 57,400 km2 area of southwestern Saskatchewan confirms previous reconstructions of a former southerly flowing ice stream, demarcated by a 800 km long corridor of megaflutes and mega-scale glacial lineations (Ice Stream 1) and cross cut by three, formerly southeast flowing ice streams (Ice Streams 2A, B and C). Analysis of the lithologic and geophysical characteristics of 197 borehole samples within these corridors reveals 17 stratigraphic units comprising multiple tills and associated stratified sediments overlying preglacial deposits, the till thicknesses varying with both topography and distance down corridor. Reconciling this regional till architecture with the surficial geomorphology reveals that surficial units are spatially consistent with a dynamic switch in flow direction, recorded by the cross cutting corridors of Ice Streams 1, 2A, B and C. The general thickening of tills towards lobate ice stream margins is consistent with subglacial deformation theory and variations in this pattern on a more localised scale are attributed to influences of subglacial topography including thickening at buried valley margins, thinning over uplands and thickening in overridden ice-marginal landforms.

  3. 2017 Rapid Retreat Of Thwaites Glacier

    Science.gov (United States)

    Milillo, P.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.

    2017-12-01

    We employ data from the second generation of SAR systems e.g. the Italian COSMO- SkyMed (CSK) constellation and the German TanDEM-X (TDX) formation to monitor grounding line retreat using short repeat-time interferometry and accurate InSAR DEM on Thwaites glacier in the Amundsen Sea Embayment (ASE), West Antarctica. The ASE is a marine-based ice sheet with a retrograde bed containing enough ice to raise global sea level by 120 cm. Several studies have inferred the mechanical properties of portions of ASE using observationally constrained numerical models, but these studies offer only temporal snapshots of basal mechanics owing to a dearth of observational time series. Prior attempts of grounding lines mapping have been limited because few space-borne SAR missions offer the short-term repeat pass capability required to map the differential vertical displacement of floating ice at tidal frequencies with sufficient detail to resolve grounding line boundaries in areas of fast ice deformation. Using 1-day CSK repeat pass data and TDX DEMs, we collected frequent, high-resolution grounding line measurements of Thwaites glaciers spanning 2015-2017. We compare the results with ERS data spanning 1996-2011, and Sentinel-1a 2014-2015 data. Between 2011 and 2017 we observe a maximum retreat of 5-7 km across the main Thwaites glacier tongue and Thwaites Eastern ice shelf (TEIS) corresponding to an increased retreat rate of 0.5 km/yr. Grounding line retreat has been fueled by the enhanced intrusion of warm, salty, subsurface ocean water of circumpolar deep water origin onto the continental shelf, beneath the floating ice shelf, to reach the glacier grounding zone and melt it from below at rates varying from 50 to 150 m/yr. The retreat rate varies depending on the magnitude of ice melt by the ocean, the rate of ice thinning and the shape of the glacier surface and bed topography.

  4. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    Science.gov (United States)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  5. On the reconstruction of palaeo-ice sheets: Recent advances and future challenges

    Science.gov (United States)

    Stokes, Chris R.; Tarasov, Lev; Blomdin, Robin; Cronin, Thomas M.; Fisher, Timothy G.; Gyllencreutz, Richard; Hattestrand, Clas; Heyman, Jakob; Hindmarsh, Richard C. A.; Hughes, Anna L. C.; Jakobsson, Martin; Kirchner, Nina; Livingstone, Stephen J.; Margold, Martin; Murton, Julian B.; Noormets, Riko; Peltier, W. Richard; Peteet, Dorothy M.; Piper, David J. W.; Preusser, Frank; Renssen, Hans; Roberts, David H.; Roche, Didier M.; Saint-Ange, Francky; Stroeven, Arjen P.; Teller, James T.

    2015-01-01

    Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus

  6. Mass Balance of the West Antarctic Ice-Sheet from ICESat Measurements

    Science.gov (United States)

    Zwally, H. Jay; Li, Jun; Robins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    Mass balance estimates for 2003-2008 are derived from ICESat laser altimetry and compared with estimates for 1992-2002 derived from ERS radar altimetry. The net mass balance of 3 drainage systems (Pine Island, Thwaites/Smith, and the coast of Marie Bryd) for 2003-2008 is a loss of 100 Gt/yr, which increased from a loss of 70 Gt/yr for the earlier period. The DS including the Bindschadler and MacAyeal ice streams draining into the Ross Ice Shelf has a mass gain of 11 Gt/yr for 2003-2008, compared to an earlier loss of 70 Gt/yr. The DS including the Whillans and Kamb ice streams has a mass gain of 12 Gt/yr, including a significant thickening on the upper part of the Kamb DS, compared to a earlier gain of 6 Gt/yr (includes interpolation for a large portion of the DS). The other two DS discharging into the Ronne Ice Shelf and the northern Ellsworth Coast have a mass gain of 39 Gt/yr, compared to a gain of 4 Gt/yr for the earlier period. Overall, the increased losses of 30 Gt/yr in the Pine Island, Thwaites/Smith, and the coast of Marie Bryd DSs are exceeded by increased gains of 59 Gt/yr in the other 4 DS. Overall, the mass loss from the West Antarctic ice sheet has decreased to 38 Gt/yr from the earlier loss of 67 Gt/yr, reducing the contribution to sea level rise to 0.11 mm/yr from 0.19 mm/yr

  7. Glacially-megalineated limestone terrain of Anticosti Island, Gulf of St. Lawrence, Canada; onset zone of the Laurentian Channel Ice Stream

    Science.gov (United States)

    Eyles, Nick; Putkinen, Niko

    2014-03-01

    Anticosti is a large elongate island (240 km long, 60 km wide) in eastern Canada within the northern part of a deep water trough (Gulf of St. Lawrence) that terminates at the Atlantic continental shelf edge. The island's Pleistocene glaciological significance is that its long axis lay transverse to ice from the Quebec and Labrador sectors of the Laurentide Ice Sheet moving south from the relatively high-standing Canadian Shield. Recent glaciological reconstructions place a fast-flowing ice stream along the axis of the Gulf of St. Lawrence but supporting geologic evidence in terms of recognizing its hard-bedded onset zone and downstream streamlined soft bed is limited. Anticosti Island consists of gently southward-dipping limestone plains composed of Ordovician and Silurian limestones (Vaureal, Becscie and Jupiter formations) with north-facing escarpments transverse to regional ice flow. Glacial deposits are largely absent and limestone plains in the higher central plateau of the island retain a relict apparently ‘preglacial’ drainage system consisting of deeply-incised dendritic bedrock valleys. In contrast, the bedrock geomorphology of the lower lying western and eastern limestone plains of the island is strikingly different having been extensively modified by glacial erosion. Escarpments are glacially megalineated with a distinct ‘zig-zag’ planform reflecting northward-projecting bullet-shaped ‘noses’ (identified as rock drumlins) up to 2 km wide at their base and 4 km in length with rare megagrooved upper surfaces. Drumlins are separated by southward-closing, funnel-shaped ‘through valleys’ where former dendritic valleys have been extensively altered by the streaming of basal ice through gaps in the escarpments. Glacially-megalineated bedrock terrain such as on the western and eastern flanks of Anticosti Island is elsewhere associated with the hard-bedded onset zones of fast flowing ice streams and provides important ground truth for the

  8. New details about the LGM extent and subsequent retreat of the West Antarctic Ice Sheet from the easternmost Amundsen Sea Embayment shelf

    Science.gov (United States)

    Klages, J. P.; Hillenbrand, C. D.; Kuhn, G.; Smith, J. A.; Graham, A. G. C.; Nitsche, F. O.; Frederichs, T.; Arndt, J. E.; Gebhardt, C.; Robin, Z.; Uenzelmann-Neben, G.; Gohl, K.; Jernas, P.; Wacker, L.

    2017-12-01

    In recent years several previously undiscovered grounding-zone wedges (GZWs) have been described within the Abbot-Cosgrove palaeo-ice stream trough on the easternmost Amundsen Sea Embayment shelf. These GZWs document both the Last Glacial Maximum (LGM; 26.5-19 cal. ka BP) grounding-line extent and the subsequent episodic retreat within this trough that neighbors the larger Pine Island-Thwaites trough to the west. Here we combine bathymetric, seismic, and geologic data showing that 1) the grounding line in Abbot Trough did not reach the continental shelf break at any time during the last glacial period, and 2) a prominent stacked GZW constructed from six individual wedges lying upon another was deposited 100 km upstream from the LGM grounding-line position. The available data allow for calculating volumes for most of these individual GZWs and for the entire stack. Sediment cores were recovered seawards from the outermost GZW in the trough, and from the individual wedges of the stacked GZW in order to define the LGM grounding-line extent, and provide minimum grounding-line retreat ages for the respective positions on the stacked GZW. We present implications of a grounded-ice free outer shelf throughout the last glacial period. Furthermore, we assess the significance of the grounding-line stillstand period recorded by the stacked GZW in Abbot Trough for the timing of post-LGM retreat of the West Antarctic Ice Sheet from the Amundsen Sea Embayment shelf.

  9. Variable crustal thickness beneath Thwaites Glacier revealed from airborne gravimetry, possible implications for geothermal heat flux in West Antarctica

    Science.gov (United States)

    Damiani, Theresa M.; Jordan, Tom A.; Ferraccioli, Fausto; Young, Duncan A.; Blankenship, Donald D.

    2014-12-01

    Thwaites Glacier has one of the largest glacial catchments in West Antarctica. The future stability of Thwaites Glacier's catchment is of great concern, as this part of the West Antarctic Ice Sheet has recently been hypothesized to already be en route towards collapse. Although an oceanic trigger is thought to be responsible for current change at the grounding line of Thwaites Glacier, in order to determine the effects of this coastal change further in the interior of the West Antarctic Ice Sheet it is essential to also better constrain basal conditions that control the dynamics of fast glacial flow within the catchment itself. One major contributor to fast glacial flow is the presence of subglacial water, the production of which is a result of both glaciological shear heating and geothermal heat flux. The primary goal of our study is to investigate the crustal thickness beneath Thwaites Glacier, which is an important contributor to regional-scale geothermal heat flux patterns. Crustal structure is an indicator of past tectonic events and hence provides a geophysical proxy for the thermal status of the crust and mantle. Terrain-corrected Bouguer gravity disturbances are used here to estimate depths to the Moho and mid-crustal boundary. The thin continental crust we reveal beneath Thwaites Glacier supports the hypothesis that the West Antarctic Rift System underlies the region and is expressed topographically as the Byrd Subglacial Basin. This rifted crust is of similar thickness to that calculated from airborne gravity data beneath neighboring Pine Island Glacier, and is more extended than crust in the adjacent Siple Coast sector of the Ross Sea Embayment. A zone of thinner crust is also identified near the area's subaerial volcanoes lending support to a recent interpretation predicting that this part of Marie Byrd Land is a major volcanic dome, likely within the West Antarctic Rift System itself. Near-zero Bouguer gravity disturbances for the subglacial highlands

  10. How dynamic are ice-stream beds?

    Science.gov (United States)

    Davies, Damon; Bingham, Robert G.; King, Edward C.; Smith, Andrew M.; Brisbourne, Alex M.; Spagnolo, Matteo; Graham, Alastair G. C.; Hogg, Anna E.; Vaughan, David G.

    2018-05-01

    Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3-6 years apart, along a cumulative ˜ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a-1, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a-1 previously reported from repeat geophysical surveys in West Antarctica.

  11. Investigating palaeo-subglacial lakes in the central Barents Sea

    Science.gov (United States)

    Esteves, M.; Shackleton, C.; Winsborrow, M.; Andreassen, K.; Bjarnadóttir, L. R.

    2017-12-01

    In the past decade hundreds of subglacial lakes have been detected beneath the Antarctic Ice Sheet, and several more beneath the Greenland Ice Sheet. These are important components of the subglacial hydrological system and can influence basal shear stress, with implications for ice sheet dynamics and mass balance, potentially on rapid timescales. Improvements in our understanding of subglacial hydrological systems are therefore important, but challenging due to the inaccessibility of contemporary subglacial environments. Whilst the beds of palaeo-ice sheets are easier to access, few palaeo-subglacial lakes have been identified due to uncertainties in the sedimentological and geomorphological diagnostic criteria. In this study we address these uncertainties, using a suite of sedimentological, geomorphological and modelling approaches to investigate sites of potential palaeo-subglacial lakes in the central Barents Sea. Geomorphological signatures of hydraulic activity in the area include large meltwater channels, tunnel valleys, and several interlinked basins. Modelling efforts indicate the potential for subglacial hydraulic sinks within the area during the early stages of ice retreat since the Last Glacial Maximum. In support of this, sedimentological observations indicate the presence of a dynamic glaciolacustrine depositional environment. Using the combined results of the modelling, geomorphology, and sedimentological analyses, we conclude that palaeo-subglacial lakes are likely to have formed on the northwestern banks of Thor Iversenbanken, central Barents Sea, and suggest that numerous other subglacial lakes may have been present beneath the Barents Sea Ice Sheet. Furthermore, we investigate and refine the existing diagnostic criteria for the identification of palaeo-subglacial lakes.

  12. Palaeo sea-level and ice-sheet databases: problems, strategies and perspectives

    Science.gov (United States)

    Rovere, Alessio; Düsterhus, André; Carlson, Anders; Barlow, Natasha; Bradwell, Tom; Dutton, Andrea; Gehrels, Roland; Hibbert, Fiona; Hijma, Marc; Horton, Benjamin; Klemann, Volker; Kopp, Robert; Sivan, Dorit; Tarasov, Lev; Törnqvist, Torbjorn

    2016-04-01

    Databases of palaeoclimate data have driven many major developments in understanding the Earth system. The measurement and interpretation of palaeo sea-level and ice-sheet data that form such databases pose considerable challenges to the scientific communities that use them for further analyses. In this paper, we build on the experience of the PALSEA (PALeo constraints on SEA level rise) community, which is a working group inside the PAGES (Past Global Changes) project, to describe the challenges and best strategies that can be adopted to build a self-consistent and standardised database of geological and geochemical data related to palaeo sea levels and ice sheets. Our aim in this paper is to identify key points that need attention and subsequent funding when undertaking the task of database creation. We conclude that any sea-level or ice-sheet database must be divided into three instances: i) measurement; ii) interpretation; iii) database creation. Measurement should include postion, age, description of geological features, and quantification of uncertainties. All must be described as objectively as possible. Interpretation can be subjective, but it should always include uncertainties and include all the possible interpretations, without unjustified a priori exclusions. We propose that, in the creation of a database, an approach based on Accessibility, Transparency, Trust, Availability, Continued updating, Completeness and Communication of content (ATTAC3) must be adopted. Also, it is essential to consider the community structure that creates and benefits of a database. We conclude that funding sources should consider to address not only the creation of original data in specific research-question oriented projects, but also include the possibility to use part of the funding for IT-related and database creation tasks, which are essential to guarantee accessibility and maintenance of the collected data.

  13. A varied subglacial landscape under Thwaites Glacier, West Antarctica

    Science.gov (United States)

    Christianson, K. A.; Holschuh, N.; Paden, J. D.; Sprick, J.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.

    2017-12-01

    Deglaciated landscapes, whether subaerial or submarine, are often host to a rich panoply of subglacial landforms, such as drumlims, crags, megascale glacial lineations, grounding-line wedges, deep meltwater channels, and more. These landforms are formed and shaped by interactions between the ice and underlying substrate, and thus have implications for the flow of the overlying ice. Robust interpretations of the relationship between the ice and its substrate based on subglacial landforms that remain after deglaciation have been inhibited by a dearth of high-resolution observations of currently glaciated subglacial landscapes, where ice flow speed is known and where subglacial conditions can be ascertained using geophysical methods. Past direct observations of landforms under currently fast-flowing ice have been limited to a few ice streams, where relatively homogeneous, thick dilatant till layers may favor formation of specific subglacial features, i.e., megascale glacial lineations and grounding-zone wedges. Here we present two detailed gridded subglacial topographies, obtained from ice-penetrating radar measurements, from Thwaites Glacier, West Antarctica, where ice flows over a highly variable bed (in both topography and model-inferred basal shear stress). One grid is located ˜170 km downstream from the ice divide where ice is moving ˜100 m/yr. Here the ice advects over a broad basin and then flows into a subglacial ridge (of several hundred meters amplitude) oriented orthogonally to flow. A deep canyon ( 400 m) that cuts through this ridge in roughly the ice-flow direction and relatively soft sediments on the downstream side of the basin (immediately upstream of the canyon) suggest that a large subglacial lake may have formed in this location and drained catastrophically, as has been hypothesized as the formation mechanism for the deep canyons observed on the Amundsen Sea continental shelf. Numerous multiscale glacial lineations are also observed in the

  14. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  15. Irish Ice Sheet dynamics during deglaciation of the central Irish Midlands: Evidence of ice streaming and surging from airborne LiDAR

    Science.gov (United States)

    Delaney, Catherine A.; McCarron, Stephen; Davis, Stephen

    2018-04-01

    High resolution digital terrain models (DTMs) generated from airborne LiDAR data and supplemented by field evidence are used to map glacial landform assemblages dating from the last glaciation (Midlandian glaciation; OI stages 2-3) in the central Irish Midlands. The DTMs reveal previously unrecognised low-amplitude landforms, including crevasse-squeeze ridges and mega-scale glacial lineations overprinted by conduit fills leading to ice-marginal subaqueous deposits. We interpret this landform assemblage as evidence for surging behaviour during ice recession. The data indicate that two separate phases of accelerated ice flow were followed by ice sheet stagnation during overall deglaciation. The second surge event was followed by a subglacial outburst flood, forming an intricate esker and crevasse-fill network. The data provide the first clear evidence that ice flow direction was eastward along the eastern watershed of the Shannon River basin, at odds with previous models, and raise the possibility that an ice stream existed in this area. Our work demonstrates the potential for airborne LiDAR surveys to produce detailed paleoglaciological reconstructions and to enhance our understanding of complex palaeo-ice sheet dynamics.

  16. Environmental constraints on West Antarctic ice-sheet formation

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, D R; MacAyeal, D R

    1987-01-01

    Small perturbations in Antarctic environmental conditions can culminate in the demise of the Antarctic ice sheet's western sector. This may have happened during the last interglacial period, and could recur within the next millennium due to atmospheric warming from trace gas and CO/sub 2/ increases. In this study, we investigate the importance of sea-level, accumulation rate, and ice influx from the East Antarctic ice sheet in the re-establishment of the West Antarctic ice sheet from a thin cover using a time-dependent numerical ice-shelf model. Our results show that a precursor to the West Antarctic ice sheet can form within 3000 years. Sea-level lowering caused by ice-sheet development in the Northern Hemisphere has the greatest environmental influence. Under favorable conditions, ice grounding occurs over all parts of the West Antarctic ice sheet except up-stream of Thwaites Glacier and in the Ross Sea region.

  17. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  18. Taxonomic revision of Asian genus Glyptopetalum Thwaites (Celastraceae R. Br.

    Directory of Open Access Journals (Sweden)

    Ivan A. Savinov

    2014-12-01

    Full Text Available Taxonomic survey of Asian genus Glyptopetalum Thwaites (Celastraceae R. Br. is presented. Thirty five species taxa of Glyptopetalum are accepted, including one new species, G.  vidalii I. Savinov (Laos, Thailand, a new record for China, G. tonkinense Pitard (SE Yunnan and a new record for Cambodia,               G. quadrangulare Prain ex King, a new record for Indonesia – G. euonymoides Merr. and a new record for Philippines, Mindanao island – G. loheri Merr. 

  19. Switch of flow direction in an Antarctic ice stream.

    Science.gov (United States)

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  20. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    Science.gov (United States)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  1. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  2. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    Science.gov (United States)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  3. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    Science.gov (United States)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  4. Subglacial hydrology and the formation of ice streams.

    Science.gov (United States)

    Kyrke-Smith, T M; Katz, R F; Fowler, A C

    2014-01-08

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice-water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.

  5. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  6. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems

    Science.gov (United States)

    Lang, Jörg; Lauer, Tobias; Winsemann, Jutta

    2018-01-01

    A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.

  7. A linked lake system beneath Thwaites Glacier, West Antarctica reveals an efficient mechanism for subglacial water flow.

    Science.gov (United States)

    Smith, B. E.; Gourmelen, N.; Huth, A.; Joughin, I. R.

    2016-12-01

    In this presentation we show the results of a multi-sensor survey of a system of subglacial lakes beneath Thwaites Glacier, West Antarctica. This is the first substantial active (meaning draining or filling on annual time scales) lake system detected under the fast-flowing glaciers of the Amundsen Coast. Altimetry data show that over the 2013 calendar year, four subglacial lakes drained, essentially simultaneously, with the bulk of the drainage taking place over the course the first three months of the year. The largest of the lakes appears to have drained around 3.7 km3 of water, with the others each draining less than 1 km3. The high-resolution radar surveys conducted in this area by NASA's IceBridge program allow detailed analysis of the subglacial hydrologic potential, which shows that the potential map in this area is characterized by small closed basins that should not, under the common assumption that water flow is directed down the gradient of the hydropotential, allow long-range water transport. The lakes' discharge demonstrates that, at least in some cases, water can flow out of apparently closed hydropotential basins. Combining a basal-flow routing map with a map of basal melt production suggests that the largest drainage event could recur as often as every 22 years, provided that overflow or leakage of mapped hydropotential basins allows melt water transport to refill the lake. An analysis of ice-surface speed records both around the lakes and at the Thwaites grounding line shows small changes in ice speed, but none clearly associated with the drainage event, suggesting that, at least in this area where subglacial melt is abundant, the addition of further water to the subglacial hydrologic system need not have any significant effect on ice flow. It is likely that the main impact of the lake system on the glacier is that as an efficient mechanism to remove meltwater from the system, it drains water that would otherwise flow through less efficient

  8. Patterned basal seismicity shows sub-ice stream bedforms

    Science.gov (United States)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal

  9. Arctic ice island and sea ice movements and mechanical properties. First quarterly report, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Stringer, W.J.

    1984-01-01

    Research activities for the first quarter are presented for the following tasks: (1) ice island; (2) intrusion of the pack ice edge in the Chukchi Sea; and (3) spray ice adhesion to offshore structure coatings. With respect to the ice island portion of this project the following activities are planned for the year: (1) use aerial photography, satellite imagery, and all available historical records to establish a time history of all of the ice shelves of Ellesmere Island; (2) establish positioning buoys on the existing ice islands to track their trajectories daily and to telemeter daily barometric pressure and temperature, via System Argos; (3) relate geostrophic winds to the observed trajectories; (4) begin to build a pseudo-random model for ice island motion over the long term which would enable a determination of the probability of interaction between ice islands and offshore structures. The overall objective of task 2 is to investigate and analyze the causes and extent of summer time pace ice intrusions into the Chukchi Sea, which would interfere with exploration drilling and emplacement of permanent production structures. For task three a method for evaluating shear and tensile strengths of the interface bond between the sea spray ice layer and the structure or ship surface will be developed. A second more detailed task is to then measure the mechanical properties of this bonded layer for a variety of candidate coatings, as functions of temperature, loading rate, strain rate, salinity, and ice type. 25 references, 92 figures.

  10. Rate of Mass Loss Across the Instability Threshold for Thwaites Glacier Determines Rate of Mass Loss for Entire Basin

    Science.gov (United States)

    Waibel, M. S.; Hulbe, C. L.; Jackson, C. S.; Martin, D. F.

    2018-01-01

    Rapid change now underway on Thwaites Glacier (TG) raises concern that a threshold for unstoppable grounding line retreat has been or is about to be crossed. We use a high-resolution ice sheet model to examine the mechanics of TG self-sustained retreat by nudging the grounding line just past the point of instability. We find that by modifying surface slope in the region of the grounding line, the rate of the forcing dictates the rate of retreat, even after the external forcing is removed. Grounding line retreats that begin faster proceed more rapidly because the shorter time interval for the grounding line to erode into the grounded ice sheet means relatively thicker ice and larger driving stress upstream of the boundary. Retreat is sensitive to short-duration re-advances associated with reduced external forcing where the bathymetry allows regrounding, even when an instability is invoked.

  11. Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica

    Science.gov (United States)

    Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre

    2013-04-01

    Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of

  12. Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law

    Science.gov (United States)

    Lipovsky, Bradley Paul; Dunham, Eric M.

    2017-04-01

    The Whillans Ice Plain (WIP), Antarctica, experiences twice daily tidally modulated stick-slip cycles. Slip events last about 30 min, have sliding velocities as high as ˜0.5 mm/s (15 km/yr), and have total slip ˜0.5 m. Slip events tend to occur during falling ocean tide: just after high tide and just before low tide. To reproduce these characteristics, we use rate-and-state friction, which is commonly used to simulate tectonic faulting, as an ice stream sliding law. This framework describes the evolving strength of the ice-bed interface throughout stick-slip cycles. We present simulations that resolve the cross-stream dimension using a depth-integrated treatment of an elastic ice layer loaded by tides and steady ice inflow. Steady sliding with rate-weakening friction is conditionally stable with steady sliding occurring for sufficiently narrow ice streams relative to a nucleation length. Stick-slip cycles occur when the ice stream is wider than the nucleation length or, equivalently, when effective pressures exceed a critical value. Ice streams barely wider than the nucleation length experience slow-slip events, and our simulations suggest that the WIP is in this slow-slip regime. Slip events on the WIP show a sense of propagation, and we reproduce this behavior by introducing a rate-strengthening region in the center of the otherwise rate-weakening ice stream. If pore pressures are raised above a critical value, our simulations predict that the WIP would exhibit quasi-steady tidally modulated sliding as observed on other ice streams. This study validates rate-and-state friction as a sliding law to describe ice stream sliding styles.

  13. Ice stream behaviour and deglaciation of the Scandinavian Ice Sheet in the Kuittijärvi area, Russian Karelia

    Directory of Open Access Journals (Sweden)

    Juha-Pekka Lunkka

    2008-01-01

    Full Text Available Glacial landforms of the Lake Kuittijärvi area, Russian Karelia, which covers an area of more than 7000 km^2, were studied in detail using aerial photography and satellite imagery methods and on-site field observations. This was done to reconstruct a detailed historyof Scandinavian ice sheet behaviour in the Lake Kuittijärvi area. The results indicate that the Lake Tuoppajärvi sub-ice stream (TIS that formed the northern part of the Kuusamo-White Sea ice stream and the Lake Kuittijärvi sub-ice stream (KIS, which was part of theNorthern Karelian ice stream, operated in the area during the last deglaciation. Subglacially formed lineation patterns associated with other indicative landforms such as end moraines and esker ridges indicate a clear age relationship between the ice streams’ activity and that the KIS was active after the linear landforms were created by the TIS. It is estimated that deglaciation of the TIS from the Kalevala end moraine to the Lake Pääjärvi end moraine took place between ca. 11 300 – 10 900 calendar years ago. It seems that the terminus of the KIS marker by the Kalevala end moraine was also formed around 11 300 calendar years ago but the KIS remained active longer than the TIS. Both of these sub-ice streams terminated into a glacial lake that was part of a larger White Sea Basin ice lake.

  14. Ice shelf thickness change from 2010 to 2017

    Science.gov (United States)

    Hogg, A.; Shepherd, A.; Gilbert, L.; Muir, A. S.

    2017-12-01

    Floating ice shelves fringe 74 % of Antarctica's coastline, providing a direct link between the ice sheet and the surrounding oceans. Over the last 25 years, ice shelves have retreated, thinned, and collapsed catastrophically. While change in the mass of floating ice shelves has only a modest steric impact on the rate of sea-level rise, their loss can affect the mass balance of the grounded ice-sheet by influencing the rate of ice flow inland, due to the buttressing effect. Here we use CryoSat-2 altimetry data to map the detailed pattern of ice shelf thickness change in Antarctica. We exploit the dense spatial sampling and repeat coverage provided by the CryoSat-2 synthetic aperture radar interferometric mode (SARIn) to investigate data acquired between 2010 to the present day. We find that ice shelf thinning rates can exhibit large fluctuations over short time periods, and that the improved spatial resolution of CryoSat-2 enables us to resolve the spatial pattern of thinning with ever greater detail in Antarctica. In the Amundsen Sea, ice shelves at the terminus of the Pine Island and Thwaites glaciers have thinned at rates in excess of 5 meters per year for more than two decades. We observe the highest rates of basal melting near to the ice sheet grounding line, reinforcing the importance of high resolution datasets. On the Antarctic Peninsula, in contrast to the 3.8 m per decade of thinning observed since 1992, we measure an increase in the surface elevation of the Larsen-C Ice-Shelf during the CryoSat-2 period.

  15. Devon island ice cap: core stratigraphy and paleoclimate.

    Science.gov (United States)

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  16. Seasonal ice dynamics of the Northeast Greenland Ice Stream

    DEFF Research Database (Denmark)

    Vijay, Saurabh; Khan, Shfaqat Abbas; Simonsen, Sebastian Bjerregaard

    2018-01-01

    and temporal details. This study focus on the Northeast Greenland Ice Stream (NEGIS), which consists of three main outlets, 79 North glacier (79N), Zachariae Isstrøm (ZI) and Storstrømmen Glacier (SG). While both 79 North and Storstrømmen have floating tongues, Zachariae Isstrøm is mostly grounded...

  17. Palaeo-ethnology, palaeo-environment and palaeo-climatology of Piaui, Brazil: palynological studies on human coprolites collected at the ''Pedra Furada'' site

    International Nuclear Information System (INIS)

    Chaves, S.; Renault-Miskovsky, J.

    1996-01-01

    Fossil human faeces were collected from the rock-shelter of ''Pedra Furada'' (Piaui, Brazil), which is considered nowadays as one of the most ancient prehistoric sites in America. These dated coprolites range from 8,500 to 7,000 BP and are evidence of an occupation phase connected with ''Serra Talhada'' cultural traditions I and II. These coprolites were analysed by palynological studies. The results have given palaeo-climatological and palaeo-environmental data with an emphasis on palaeo-ethnological aspects. Evidence emerges regarding the range of medicinal and food plants of the prehistoric humans who inhabited the site for some 1,500 years. (authors). 32 refs., 3 figs

  18. Reconstructing the post-LGM decay of the Eurasian Ice Sheets with Ice Sheet Models; data-model comparison and focus on the Storfjorden (Svalbard) ice stream dynamics history

    Science.gov (United States)

    Petrini, Michele; Kirchner, Nina; Colleoni, Florence; Camerlenghi, Angelo; Rebesco, Michele; Lucchi, Renata G.; Forte, Emanuele; Colucci, Renato R.

    2017-04-01

    The challenge of reconstructing palaeo-ice sheets past growth and decay represent a critical task to better understand mechanisms of present and future global climate change. Last Glacial Maximum (LGM), and the subsequent deglaciation until Pre-Industrial time (PI) represent an excellent testing ground for numerical Ice Sheet Models (ISMs), due to the abundant data available that can be used in an ISM as boundary conditions, forcings or constraints to test the ISMs results. In our study, we simulate with ISMs the post-LGM decay of the Eurasian Ice Sheets, with a focus on the marine-based Svalbard-Barents Sea-Kara Sea Ice Sheet. In particular, we aim to reconstruct the Storfjorden ice stream dynamics history by comparing the model results with the marine geological data (MSGLs, GZWs, sediment cores analysis) available from the area, e.g., Pedrosa et al. 2011, Rebesco et al. 2011, 2013, Lucchi et al. 2013. Two hybrid SIA/SSA ISMs are employed, GRISLI, Ritz et al. 2001, and PSU, Pollard&DeConto 2012. These models differ mainly in the complexity with which grounding line migration is treated. Climate forcing is interpolated by means of climate indexes between LGM and PI climate. Regional climate indexes are constructed based on the non-accelerated deglaciation transient experiment carried out with CCSM3, Liu et al. 2009. Indexes representative of the climate evolution over Siberia, Svalbard and Scandinavia are employed. The impact of such refined representation as opposed to the common use of the NGRIP δ18O index for transient experiments is analysed. In this study, the ice-ocean interaction is crucial to reconstruct the Storfjorden ice stream dynamics history. To investigate the sensitivity of the ice shelf/stream retreat to ocean temperature, we allow for a space-time variation of basal melting under the ice shelves by testing two-equations implementations based on Martin et al. 2011 forced with simulated ocean temperature and salinity from the TraCE-21ka coupled

  19. Rapid grounding line migration induced by internal variability of a marine-terminating ice stream

    Science.gov (United States)

    Robel, A.; Schoof, C.; Tziperman, E.

    2013-12-01

    Numerous studies have found significant variability in the velocity of ice streams to be a prominent feature of geomorphologic records in the Siple Coast (Catania et al. 2012) and other regions in West Antarctica (Dowdeswell et al. 2008). Observations indicate that grounding line position is strongly influenced by ice stream variability, producing rapid grounding line migration in the recent past (Catania et al. 2006) and the modern (Joughin & Tulaczyk 2002). We analyze the interaction of grounding line mass flux and position in a marine-terminating ice stream using a stretch-coordinate flowline model. This model is based on that described in Schoof (2007), with a mesh refined near the grounding line to ensure accurate resolution of the mechanical transition zone. Here we have added lateral shear stress (Dupont & Alley 2005) and an undrained plastic bed (Tulaczyk et al. 2000). The parameter dependence of ice stream variability seen in this model compares favorably to both simpler (Robel et al. 2013) and more complex (van der Wel et al. 2013) models, though with some key differences. We find that thermally-induced internal ice stream variability can cause very rapid grounding line migration even in the absence of retrograde bed slopes or external forcing. Activation waves propagate along the ice stream length and trigger periods of rapid grounding line migration. We compare the behavior of the grounding line due to internal ice stream variability to changes triggered externally at the grounding line such as the rapid disintegration of buttressing ice shelves. Implications for Heinrich events and the Marine Ice Sheet Instability are discussed.

  20. Capturing the Petermann Ice Island Flux With the CI2D3 Database

    Science.gov (United States)

    Crawford, A. J.; Crocker, G.; Mueller, D.; Saper, R.; Desjardins, L.; Carrieres, T.

    2017-12-01

    The Petermann Glacier ice tongue lost >460 km2 of areal extent ( 38 Gt of mass) due to three large calving events in 2008, 2010 and 2012, as well as three previously unrecorded events in 2011 and 2012. Hundreds of ice islands subsequently drifted south between Hall Basin and Newfoundland's Grand Banks, but no systematic data collection or analysis has been conducted for the full flux of fragments prior to the present study. To accomplish this, the Canadian Ice Service's extensive RADARSAT-1 and -2 synthetic aperture radar image archive was mined to create the Canadian Ice Island Drift, Deterioration and Detection (CI2D3) Database. Over 15000 fragments have been digitized in GIS software from 3200 SAR scenes. A unique characteristic of the database is the inclusion of the lineage (i.e., connecting repeat observations or mother-daughter fragments) for all tracked fragments with areas >0.25 km2. This genealogical information was used to isolate ice islands that were about to fracture in order to assess the environmental conditions and morphological characteristics that influence this deterioration mechanism. Fracture counts showed a significant relationship with sea ice concentration (r = -0.56). However, variations in relative thickness played a large role in fracturing likelihood regardless of sea ice conditions. The exceedance probability of the daughter fragment length was calculated, as is often conducted for offshore industry hazard assessment. Grounded ice islands, which are hazards to seafloor installations and disturb benthic ecology, were recognized from their negligible drift speeds and two grounding hot-spots were identified along the Coburg and eastern Baffin island coasts. Petermann ice islands have been noted to drift along specific isobaths due to the influence of bathymetry on ocean currents. 50% of observations occurred between the 100 and 300 m isobaths, and smaller ice islands were observed more frequently in deeper regions. The CI2D3 Database can

  1. The Glacial and Relative Sea Level History of Southern Banks Island, NT, Canada

    Science.gov (United States)

    Vaughan, Jessica Megan

    The mapping and dating of surficial glacial landforms and sediments across southern Banks Island document glaciation by the northwest Laurentide Ice Sheet (LIS) during the last glacial maximum. Geomorphic landforms confirm the operation of an ice stream at least 1000 m thick in Amundsen Gulf that was coalescent with thin, cold-based ice crossing the island's interior, both advancing offshore onto the polar continental shelf. Raised marine shorelines across western and southern Banks Island are barren, recording early withdrawal of the Amundsen Gulf Ice Stream prior to the resubmergence of Bering Strait and the re-entry of Pacific molluscs ~13,750 cal yr BP. This withdrawal resulted in a loss of ~60,000 km2 of ice --triggering drawdown from the primary northwest LIS divide and instigating changes in subsequent ice flow. The Jesse moraine belt on eastern Banks Island records a lateglacial stillstand and/or readvance of Laurentide ice in Prince of Wales Strait (13,750 -- 12,750 cal yr BP). Fossiliferous raised marine sediments that onlap the Jesse moraine belt constrain final deglaciation to ~12,600 cal yr BP, a minimum age for the breakup of the Amundsen Gulf Ice Stream. The investigation of a 30 m thick and 6 km wide stratigraphic sequence at Worth Point, southwest Banks Island, identifies an advance of the ancestral LIS during the Mid-Pleistocene (sensu lato), substantially diversifying the glacial record on Banks Island. Glacial ice emplaced during this advance has persisted through at least two glacial-interglacial cycles, demonstrating the resilience of circumpolar permafrost. Pervasive deformation of the stratigraphic sequence also records a detailed history of glaciotectonism in proglacial and subglacial settings that can result from interactions between cold-based ice and permafrost terrain. This newly recognized history rejects the long-established paleoenvironmental model of Worth Point that assumed a simple 'layer-cake' stratigraphy.

  2. A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests

    DEFF Research Database (Denmark)

    Fernández-Palacios, José María; de Nascimento, Lea; Otto, Rüdiger

    2011-01-01

    Macaronesia is a biogeographical region comprising five Atlantic Oceanic archipelagos: the Azores, Madeira, Selvagen (Savage Islands), Canaries and Cape Verde. It has strong affinities with the Atlantic coast of the Iberian Peninsula and the north-western fringes of Africa. This paper re...... the role of these archipelagos as stepping stones and as both repositories of palaeo-endemic forms and crucibles of neo-endemic radiations of plant and animal groups. Our principal focus is on the laurel forest communities, long considered impoverished relicts of the Palaeotropical Tethyan flora....... This account is therefore contextualized by reference to the long-term climatic and biogeographical history of Southern Europe and North Africa and by consideration of the implications of changes in land–sea configuration, climate and ocean circulation for Macaronesian biogeography. We go on to provide...

  3. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    Science.gov (United States)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  4. Contaminants in tropical island streams and their biota.

    Science.gov (United States)

    Buttermore, Elissa N; Cope, W Gregory; Kwak, Thomas J; Cooney, Patrick B; Shea, Damian; Lazaro, Peter R

    2018-02-01

    Environmental contamination is problematic for tropical islands due to their typically dense human populations and competing land and water uses. The Caribbean island of Puerto Rico (USA) has a long history of anthropogenic chemical use, and its human population density is among the highest globally, providing a model environment to study contaminant impacts on tropical island stream ecosystems. Polycyclic Aromatic Hydrocarbons, historic-use chlorinated pesticides, current-use pesticides, Polychlorinated Biphenyls (PCBs), and metals (mercury, cadmium, copper, lead, nickel, zinc, and selenium) were quantified in the habitat and biota of Puerto Rico streams and assessed in relation to land-use patterns and toxicological thresholds. Water, sediment, and native fish and shrimp species were sampled in 13 rivers spanning broad watershed land-use characteristics during 2009-2010. Contrary to expectations, freshwater stream ecosystems in Puerto Rico were not severely polluted, likely due to frequent flushing flows and reduced deposition associated with recurring flood events. Notable exceptions of contamination were nickel in sediment within three agricultural watersheds (range 123-336ppm dry weight) and organic contaminants (PCBs, organochlorine pesticides) and mercury in urban landscapes. At an urban site, PCBs in several fish species (Mountain Mullet Agonostomus monticola [range 0.019-0.030ppm wet weight] and American Eel Anguilla rostrata [0.019-0.031ppm wet weight]) may pose human health hazards, with concentrations exceeding the U.S. Environmental Protection Agency (EPA) consumption limit for 1 meal/month. American Eel at the urban site also contained dieldrin (range island-wide; only mercury at one site (an urban location) exceeded EPA's consumption limit of 3 meals/month for this species. These results comprise the first comprehensive island-wide contaminant assessment of Puerto Rico streams and biota and provide natural resource and public health agencies here and

  5. Contaminants in tropical island streams and their biota

    Science.gov (United States)

    Buttermore, Elissa N.; Cope, W. Gregory; Kwak, Thomas J.; Cooney, Patrick B.; Shea, Damian; Lazaro, Peter R.

    2018-01-01

    Environmental contamination is problematic for tropical islands due to their typically dense human populations and competing land and water uses. The Caribbean island of Puerto Rico (USA) has a long history of anthropogenic chemical use, and its human population density is among the highest globally, providing a model environment to study contaminant impacts on tropical island stream ecosystems. Polycyclic Aromatic Hydrocarbons, historic-use chlorinated pesticides, current-use pesticides, Polychlorinated Biphenyls (PCBs), and metals (mercury, cadmium, copper, lead, nickel, zinc, and selenium) were quantified in the habitat and biota of Puerto Rico streams and assessed in relation to land-use patterns and toxicological thresholds. Water, sediment, and native fish and shrimp species were sampled in 13 rivers spanning broad watershed land-use characteristics during 2009–2010. Contrary to expectations, freshwater stream ecosystems in Puerto Rico were not severely polluted, likely due to frequent flushing flows and reduced deposition associated with recurring flood events. Notable exceptions of contamination were nickel in sediment within three agricultural watersheds (range 123–336 ppm dry weight) and organic contaminants (PCBs, organochlorine pesticides) and mercury in urban landscapes. At an urban site, PCBs in several fish species (Mountain Mullet Agonostomus monticola [range 0.019–0.030 ppm wet weight] and American Eel Anguilla rostrata [0.019–0.031 ppm wet weight]) may pose human health hazards, with concentrations exceeding the U.S. Environmental Protection Agency (EPA) consumption limit for 1 meal/month. American Eel at the urban site also contained dieldrin (range lipid content) and may be most suitable for human consumption island-wide; only mercury at one site (an urban location) exceeded EPA's consumption limit of 3 meals/month for this species. These results comprise the first comprehensive island-wide contaminant assessment of Puerto Rico

  6. The role of the margins in ice stream dynamics

    Science.gov (United States)

    Echelmeyer, Keith; Harrison, William

    1993-07-01

    At first glance, it would appear that the bed of the active ice stream plays a much more important role in the overall force balance than do the margins, especially because the ratio of the half-width to depth for a typical ice stream is large (15:1 to 50:1). On the other hand, recent observations indicate that at least part of the ice stream is underlain by a layer of very weak till (shear strength about 2 kPa), and this weak basal layer would then imply that some or all of the resistive drag is transferred to the margins. In order to address this question, a detailed velocity profile near Upstream B Camp, which extends from the center of the ice stream, across the chaotic shear margin, and onto the Unicorn, which is part of the slow-moving ice sheet was measured. Comparison of this observed velocity profile with finite-element models of flow shows several interesting features. First, the shear stress at the margin is on the order of 130 kPa, while the mean value along the bed is about 15 kPa. Integration of these stresses along the boundaries indicates that the margins provide 40 to 50 percent, and the bed, 60 to 40 percent of the total resistive drag needed to balance the gravitational driving stress in this region. (The range of values represents calculations for different values of surface slope.) Second, the mean basal stress predicted by the models shows that the entire bed cannot be blanketed by the weak till observed beneath upstream B - instead there must be a distribution of weak till and 'sticky spots' (e.g., 85 percent till and 15 percent sticky spots of resistive stress equal to 100 kPa). If more of the bed were composed of weak till, then the modeled velocity would not match that observed. Third, the ice must exhibit an increasing enhancement factor as the margins are approached (E equals 10 in the chaotic zone), in keeping with laboratory measurements on ice under prolonged shear strain. Also, there is either a narrow zone of somewhat stiffer ice (E

  7. Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation

    Directory of Open Access Journals (Sweden)

    G. H. Gudmundsson

    2008-07-01

    Full Text Available New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow-ice-stream approximation are presented. These solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice rheology. Comparison is made with corresponding solutions of the shallow-ice-sheet approximation, and with solutions of the full Stokes equations. The shallow-ice-stream approximation is commonly used to describe large-scale ice stream flow over a weak bed, while the shallow-ice-sheet approximation forms the basis of most current large-scale ice sheet models. It is found that the shallow-ice-stream approximation overestimates the effects of bed topography perturbations on surface profile for wavelengths less than about 5 to 10 ice thicknesses, the exact number depending on values of surface slope and slip ratio. For high slip ratios, the shallow-ice-stream approximation gives a very simple description of the relationship between bed and surface topography, with the corresponding transfer amplitudes being close to unity for any given wavelength. The shallow-ice-stream estimates for the timescales that govern the transient response of ice streams to external perturbations are considerably more accurate than those based on the shallow-ice-sheet approximation. In particular, in contrast to the shallow-ice-sheet approximation, the shallow-ice-stream approximation correctly reproduces the short-wavelength limit of the kinematic phase speed given by solving a linearised version of the full Stokes system. In accordance with the full Stokes solutions, the shallow-ice-sheet approximation predicts surface fields to react weakly to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice thicknesses.

  8. Improved age constraints for the retreat of the Irish Sea Ice Stream

    Science.gov (United States)

    Smedley, Rachel; Chiverrell, Richard; Duller, Geoff; Scourse, James; Small, David; Fabel, Derek; Burke, Matthew; Clarke, Chris; McCarroll, Danny; McCarron, Stephen; O'Cofaigh, Colm; Roberts, David

    2016-04-01

    BRITICE-CHRONO is a large (> 45 researchers) consortium project working to provide an extensive geochronological dataset constraining the rate of retreat of a number of ice streams of the British-Irish Ice Sheet following the Last Glacial Maximum. When complete, the large empirical dataset produced by BRITICE-CHRONO will be integrated into model simulations to better understand the behaviour of the British-Irish Ice Sheet in response to past climate change, and provide an analogue for contemporary ice sheets. A major feature of the British-Irish Ice Sheet was the dynamic Irish Sea Ice Stream, which drained a large proportion of the ice sheet and extended to the proposed southern limit of glaciation upon the Isles of Scilly (Scourse, 1991). This study will focus on a large suite of terrestrial samples that were collected along a transect of the Irish Sea basin, covering the line of ice retreat from the Isles of Scilly (50°N) in the south, to the Isle of Man (54°N) in the north; a distance of 500 km. Ages are determined for both the eastern and western margins of the Irish Sea using single-grain luminescence dating (39 samples) and terrestrial cosmogenic nuclide dating (10 samples). A Bayesian sequence model is then used in combination with the prior information determined for deglaciation to integrate the geochronological datasets, and assess retreat rates for the Irish Sea Ice Stream. Scourse, J.D., 1991. Late Pleistocene stratigraphy and palaeobotany of the Isles of Scilly. Philosophical Transactions of the Royal Society of London B334, 405 - 448.

  9. Bathymetry and ocean properties beneath Pine Island Glacier revealed by Autosub3 and implications for recent ice stream evolution (Invited)

    Science.gov (United States)

    Jenkins, A.; Dutrieux, P.; McPhail, S.; Perrett, J.; Webb, A.; White, D.; Jacobs, S. S.

    2009-12-01

    The Antarctic ice sheet, which represents the largest of all potential contributors to sea level rise, appears to be losing mass at a rate that has accelerated over recent decades. Ice loss is focussed in a number of key drainage basins where dynamical changes in the outlet glaciers have led to increased discharge. The synchronous response of several independent glaciers, coupled with the observation that thinning is most rapid over their floating termini, is generally taken as an indicator that the changes have been driven from the ocean. Some of the most significant changes have been observed on Pine Island Glacier, where thinning, acceleration and grounding line retreat have all been observed, primarily through satellite remote sensing. Even during the relatively short satellite record, rates of change have been observed to increase. Between 20th and 30th January 2009 the Autosub3 autonomous underwater vehicle was deployed from host ship RVIB Nathaniel B Palmer on six sorties into the ocean cavity beneath Pine Island Glacier. Total track length was 887 km (taking 167 hours) of which 510 km (taking 94 hours) were beneath the glacier. Some of the main aims were to map both the seabed beneath and the underside of the glacier and to investigate how warm Circumpolar Deep Water (CDW) flows beneath Pine Island Glacier and determines its melt rate. Among the instruments carried by Autosub-3 were a Seabird CTD, with dual conductivity and temperature sensors plus a dissolved oxygen sensor and a transmissometer, a multi-beam echosounder that could be configured to look up or down, and two Acoustic Doppler Current Profilers (ADCPs): an upward-looking 300 kHz instrument and a downward-looking 150 kHz instrument, providing a record of ice draft and seabed depth along the vehicle track. The ADCP data reveal an apparently continuous ridge with an undulating crest that extends across the cavity about 30km in from the current ice front. This topographic feature blocks CDW inflow

  10. Antarctic Ice-Sheet Mass Balance from Satellite Altimetry 1992 to 2001

    Science.gov (United States)

    Zwally, H. Jay; Brenner, Anita C.; Cornejo, Helen; Giovinetto, Mario; Saba, Jack L.; Yi, Donghui

    2003-01-01

    A major uncertainty in understanding the causes of the current rate of sea level rise is the potential contributions from mass imbalances of the Greenland and Antarctic ice sheets. Estimates of the current mass balance of the Antarctic ice sheet are derived from surface- elevation changes obtained from 9 years of ERS - 1 & 2 radar altimeter data. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 S. The time series are fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt). On the major Rome-Filchner, Ross, and Amery ice shelves, the W d t are small or near zero. In contrast, the ice shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm per year surface elevation decrease on the Larsen ice shelf and a 65 +/- 4 cm per year decrease on the Dotson ice shelf. On the grounded ice, significant elevation decreases are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers in West Antarctica and inland of Law Dome in East Antarctica. Significant elevation increases are observed within about 200 km of the coast around much of the rest of the ice sheet. Farther inland, the changes are a mixed pattern of increases and decreases with increases of a few centimeters per year at the highest elevations of the East Antarctic plateau. The derived elevation changes are combined with estimates of the bedrock uplift from several models to provide maps of ice thickness change. The ice thickness changes enable estimates of the ice mass balances for the major drainage basins, the overall mass balance, and the current contribution of the ice sheet to global sea level change.

  11. Disintegration of a marine-based ice stream - evidence from the Norwegian Channel, north-eastern North Sea

    Science.gov (United States)

    Morén, Björn M.; Petter Sejrup, Hans; Hjelstuen, Berit O.; Haflidason, Haflidi; Schäuble, Cathrina; Borge, Marianne

    2014-05-01

    The Norwegian Channel Ice Stream repeatedly drained large part of the Fennoscandian Ice Sheet through Mid and Late Pleistocene glacial stages. During parts of Marine Isotope Stages 2 and 3, glacial ice from Fennoscandia and the British Isles coalesced in the central North Sea and the Norwegian Channel Ice Stream reached the shelf edge on multiple occasions. Through the last decades a large amount of acoustic and sediment core data have been collected from the Norwegian Channel, providing a good background for studies focussing on stability- and development-controlling parameters for marine-based ice streams, the retreat rate of the Norwegian Channel Ice Stream, and the behaviour of the Fennoscandian Ice Sheet. Further, this improved understanding can be used to develop more accurate numerical climate models and models which can be used to model ice-sheet behaviour of the past as well as the future. This study presents new acoustic records and data from sediment cores which contribute to a better understanding of the retreat pattern and the retreat rate of the last ice stream that occupied the Norwegian Channel. From bathymetric and TOPAS seismic data, mega-scale glacial lineations, grounding-zone wedges, and end moraines have been mapped, thereby allowing us to reconstruct the pro- and subglacial conditions at the time of the creation of these landforms. It is concluded that the whole Norwegian Channel was deglaciated in just over 1 000 years and that for most of this time the ice margin was located at positions reflected by depositional grounding-zone wedges. Further work will explore the influence of channel shape and feeding of ice from western Norwegian fjords on this retreat pattern through numerical modelling.

  12. Destabilization of the Northeast Greenland Ice Stream

    DEFF Research Database (Denmark)

    Korsgaard, N. J.; Khan, Shfaqat Abbas; Kjaer, K. H.

    . Here, we reveal that the Northeast Greenland Ice Stream (NEGIS), which extends more than 600 km into the interior of the ice sheet, is now undergoing dynamic thinning after more than a quarter of a century of stability. This sector of the GrIS is of particular interest in sea level projections, because...... the glacier flows into a large submarine basin with a negative bed slope near the grounding line. Our findings unfold the next step in mass loss of the GrIS as we show a heightened risk of rapid sustained loss from Northeast Greenland on top of the thinning in Southeast and Northwestern Greenland....

  13. New marine geophysical and sediment record of the Northeast Greenland Ice Stream.

    Science.gov (United States)

    Callard, L.; Roberts, D. H.; O'Cofaigh, C.; Lloyd, J. M.; Smith, J. A.; Dorschel, B.

    2017-12-01

    The NE Greenland Ice Stream (NEGIS) drains 16% of the Greenland Ice Sheet (GrIS) and has a sea-level equivalent of 1.1-1.4 m. Stabilised by two floating ice shelves, 79N and Zachariae Isstrom, until recently it has shown little response to increased atmospheric and oceanic warming. However, since 2010 it has experienced an accelerated rate of grounding line retreat ( 4 km) and significant ice shelf loss that indicates that this sector of the GrIS is now responding to current oceanic and/or climatic change and has the potential to be a major contributor to future global sea-level rise. The project `NEGIS', a collaboration between Durham University and AWI, aims to reconstruct the history of the NE Greenland Ice Stream from the Last Glacial Maximum (LGM) to present using both onshore and offshore geological archives to better understand past ice stream response to a warming climate. This contribution presents results and interpretations from an offshore dataset collected on the RV Polarstern, cruises PS100 and PS109 in 2016 and 2017. Gravity and box cores, supplemented by swath bathymetric and sub-bottom profiler data, were acquired and initial core analysis including x-radiographs and MSCL data logging has been performed. Data collection focused principally in the Norske Trough and the area directly in front of the 79N ice shelf, a sub-ice shelf environment as recently as two years ago. On the outer shelf streamlined subglacial bedforms, grounding-zone wedges and moraines as well as overconsolidated subglacial tills, record an extensive ice sheet advance to the shelf edge. On the inner shelf and in front of the 79N ice shelf, deep, glacially-eroded bedrock basins are infilled with stratified sediment. The stratified muds represent deglacial and Holocene glacimarine sedimentation, and capture the recent transition from sub-ice shelf to shelf free conditions. Multiproxy palaeoenvironmental reconstructions, including foraminifera and diatom analysis, and radiocarbon

  14. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    Directory of Open Access Journals (Sweden)

    J. Feldmann

    2017-08-01

    Full Text Available >Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  15. Uranium-series ages of corals, sea level history, and palaeozoogeography, Canary Islands, Spain: an exploratory study for two Quaternary interglacial periods

    Science.gov (United States)

    Muhs, Daniel R.; Meco, Joaquín; Simmons, Kathleen R.

    2014-01-01

    We present the first U-series ages of corals from emergent marine deposits on the Canary Islands. Deposits at + 20 m are 481 ± 39 ka, possibly correlative to marine isotope stage (or MIS) 11, while those at + 12 and + 8 m are 120.5 ± 0.8 ka and 130.2 ± 0.8 ka, respectively, correlative to MIS 5.5. The age, elevations, and uplift rates derived from MIS 5.5 deposits on the Canary Islands allow calculations of hypothetical palaeo-sea levels during the MIS 11 high sea stand. Estimates indicate that the MIS 11 high sea stand likely was at least + 9 m (relative to present sea level) and could have been as high as + 24 m. The most conservative estimates of palaeo-sea level during MIS 11 would require an ice mass loss equivalent to all of the modern Greenland and West Antarctic ice sheets; the more extreme estimates would require additional ice mass loss from the East Antarctic ice sheet. Extralimital southern species of mollusks, found in both MIS 11 and MIS 5.5 deposits on the Canary Islands, imply warmer-than-modern sea surface temperatures during at least a part of MIS 11 and much warmer sea surface temperatures during at least a part of MIS 5.5. Both MIS 11 and MIS 5.5 marine deposits on the Canary Islands contain extralimital northern species of mollusks as well, indicating cooler-than-present waters at times during these interglacial periods. We hypothesize that the co-occurrence of extralimital southern and northern species of marine invertebrates in the fossil record of the Canary Islands reflects its geographic location with respect to major synoptic-scale controls on climate and ocean currents. Previous interglacials may have been characterized by early, insolation-forced warming, along with northward migration of the intertropical convergence zone (ITCZ), accompanied by weakened trade winds and diminished upwelling. This allowed the arrival of extralimital southern taxa from the tropical Senegalese faunal province. During later parts of the MIS 11 and 5

  16. Firn thickness variations across the Northeast Greenland Ice Stream margins indicating nonlinear densification rates

    Science.gov (United States)

    Riverman, K. L.; Anandakrishnan, S.; Alley, R. B.; Peters, L. E.; Christianson, K. A.; Muto, A.

    2013-12-01

    Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining approximately 8.4% of the ice sheet's area. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. Geophysical methods are valuable tools for this application, but their results are sensitive to the structure of the firn and any spatial variations in firn properties across a given study region. Here we present firn data from a 40-km-long seismic profile across the upper reaches of NEGIS, collected in the summer of 2012 as part of an integrated ground-based geophysical survey. We find considerable variations in firn thickness that are coincident with the ice stream shear margins, where a thinner firn layer is present within the margins, and a thicker, more uniform firn layer is present elsewhere in our study region. Higher accumulation rates in the marginal surface troughs due to drift-snow trapping can account for some of this increased densification; however, our seismic results also highlight enhanced anisotropy within the firn and upper ice column that is confined to narrow bands within the shear margins. We thus interpret these large firn thickness variations and abrupt changes in anisotropy as indicators of firn densification dependent on the effective stress state as well as the overburden pressure, suggesting that the strain rate increases nonlinearly with stress across the shear margins. A GPS strain grid maintained for three weeks across both margins observed strong side shearing, with rapid stretching and then compression along particle paths, indicating large deviatoric stresses in the margins. This work demonstrates the importance of developing a high-resolution firn densification model when conducting geophysical field work in regions possessing a complex ice flow history; it also motivates the need for a more

  17. Implications of 36Cl exposure ages from Skye, northwest Scotland for the timing of ice stream deglaciation and deglacial ice dynamics

    Science.gov (United States)

    Small, David; Rinterknecht, Vincent; Austin, William E. N.; Bates, Richard; Benn, Douglas I.; Scourse, James D.; Bourlès, Didier L.; Hibbert, Fiona D.

    2016-10-01

    Geochronological constraints on the deglaciation of former marine based ice streams provide information on the rates and modes by which marine based ice sheets have responded to external forcing factors such as climate change. This paper presents new 36Cl cosmic ray exposure dating from boulders located on two moraines (Glen Brittle and Loch Scavaig) in southern Skye, northwest Scotland. Ages from the Glen Brittle moraines constrain deglaciation of a major marine terminating ice stream, the Barra-Donegal Ice Stream that drained the former British-Irish Ice Sheet, depending on choice of production method and scaling model this occurred 19.9 ± 1.5-17.6 ± 1.3 ka ago. We compare this timing of deglaciation to existing geochronological data and changes in a variety of potential forcing factors constrained through proxy records and numerical models to determine what deglaciation age is most consistent with existing evidence. Another small section of moraine, the Scavaig moraine, is traced offshore through multibeam swath-bathymetry and interpreted as delimiting a later stillstand/readvance stage following ice stream deglaciation. Additional cosmic ray exposure dating from the onshore portion of this moraine indicate that it was deposited 16.3 ± 1.3-15.2 ± 0.9 ka ago. When calculated using the most up-to-date scaling scheme this time of deposition is, within uncertainty, the same as the timing of a widely identified readvance, the Wester Ross Readvance, observed elsewhere in northwest Scotland. This extends the area over which this readvance has potentially occurred, reinforcing the view that it was climatically forced.

  18. Palaeo-karst of diwa type and metallogenesis in Guangxi

    International Nuclear Information System (INIS)

    Liu Lijun; Shi Jingkun; Wang Qinghe.

    1989-01-01

    Two palaeo-karstification periods, the preliminary mobilization period and the climax-mobilization period of diwa development have been recognized. The subsurface caverns formed in these two periods were separately filled with T 3 -J 3 , K-E accumulation materials and karst Palaeokarst sedimentary rock subsequently transformed into the fossil karst-palaeo-karst sedimentary bodies which are not currently carried by modern ground water circulation. During the preliminary mobilization period of diwa development, karstification was intimately associated with Cu, Zn, Mo, Ag, Sb, Au and U mineralization, thus resulting in the formation of palaeo-karst deposit. It is supposed that ore materials were derived from the perexisting ore source stratum, bodies or mineralization. They were suffered from epigenetic weathering and leaching, were transported into ancient underground caves and were concentrated to form deposits by bacterial action. This type of the deposit possesses great potential in prospecting. The genetic model can be briefly summarized as follows: the pre-existing ore source → the diwa → superimposed palaeo-karst depression → the karst sedimentary bodies of the preliminary-mobilization period of diwa development → the anomalies of sulphophile element and radioactivity → the middle to bottom part of palaeo-karst sedimentary body along the direction of palaeo-karst → ore bodies

  19. Initial Continuous Chemistry Results From The Roosevelt Island Ice Core (RICE)

    Science.gov (United States)

    Kjær, H. A.; Vallelonga, P. T.; Simonsen, M. F.; Neff, P. D.; Bertler, N. A. N.; Svensson, A.; Dahl-Jensen, D.

    2014-12-01

    The Roosevelt Island ice core (79.36° S, -161.71° W) was drilled in 2011-13 at the top of the Roosevelt Island ice dome, a location surrounded by the Ross ice shelf. The RICE ice core provides a unique opportunity to look into the past evolution of the West Antarctic Ice sheet. Further the site has high accumulation; 0.26 m of ice equivalent is deposited annually allowing annual layer determination for many chemical parameters. The RICE core was drilled to bedrock and has a total length of 763 metres. Preliminary results derived from water isotopes suggest that the oldest ice reaches back to the Eemian, with the last glacial being compressed in the bottom 60 metres. We present preliminary results from the RICE ice core including continuous measurements of acidity using an optical dye method, insoluble dust particles, conductivity and calcium. The core was analyzed at the New Zealand National Ice Core Research Facility at GNS Science in Wellington. The analytical set up used to determine climate proxies in the ice core was a modified version of the Copenhagen CFA system (Bigler et al., 2011). Key volcanic layers have been matched to those from the WAIS record (Sigl et al., 2013). A significant anti-correlation between acidity and calcium was seen in the Holocene part of the record. Due to the proximity to the ocean a large fraction of the calcium originates from sea salt and is in phase with total conductivity and sodium. In combination with the insoluble dust record, calcium has been apportioned into ocean-related and dust-related sources. Variability over the Holocene is presented and attributed to changing inputs of marine and dust aerosols.

  20. Amphidromy links a newly documented fish community of continental Australian streams, to oceanic islands of the west Pacific.

    Directory of Open Access Journals (Sweden)

    Paul A Thuesen

    Full Text Available BACKGROUND: Indo-Pacific high island streams experience extreme hydrological variation, and are characterised by freshwater fish species with an amphidromous life history. Amphidromy is a likely adaptation for colonisation of island streams following stochastic events that lead to local extirpation. In the Wet Tropics of north-eastern Australia, steep coastal mountain streams share similar physical characteristics to island systems. These streams are poorly surveyed, but may provide suitable habitat for amphidromous species. However, due to their ephemeral nature, common non-diadromous freshwater species of continental Australia are unlikely to persist. Consequently, we hypothesise that coastal Wet Tropics streams are faunally more similar, to distant Pacific island communities, than to nearby faunas of large continental rivers. METHODS/PRINCIPAL FINDINGS: Surveys of coastal Wet Tropics streams recorded 26 species, 10 of which are first records for Australia, with three species undescribed. This fish community is unique in an Australian context in that it contains mostly amphidromous species, including sicydiine gobies of the genera Sicyopterus, Sicyopus, Smilosicyopus and Stiphodon. Species presence/absence data of coastal Wet Tropics streams were compared to both Wet Tropics river networks and Pacific island faunas. ANOSIM indicated the fish fauna of north-eastern Australian coastal streams were more similar to distant Pacific islands (R = 0.76, than to nearby continental rivers (R = 0.98. MAIN CONCLUSIONS/SIGNIFICANCE: Coastal Wet Tropics streams are faunally more similar to distant Pacific islands (79% of species shared, than to nearby continental fauna due to two factors. First, coastal Wet Tropics streams lack many non-diadromous freshwater fish which are common in nearby large rivers. Second, many amphidromous species found in coastal Wet Tropics streams and Indo-Pacific islands remain absent from large rivers of the Wet Tropics

  1. Quantitative use of Palaeo-Proxy Data in Global Circulation Models

    Science.gov (United States)

    Collins, M.

    2003-04-01

    It is arguably one of the ultimate aims of palaeo-modelling science to somehow "get the palaeo-proxy data into the model" i.e. to constrain the climate of the model the trajectory of the real climate recorded in the palaeo data. The traditional way of interfacing data with models is to use data assimilation. This presents a number of problems in the palaeo context as the data are more often representative of seasonal to annual or decadal climate and models have time steps of order minutes, hence the model increments are likely to be vanishingly small. Also, variational data assimilation schemes would require the adjoint of the coupled ocean-atmosphere model and the adjoint of the functions which translate model variables such as temperature and precipitation into the palaeo-proxies, both of which are hard to determine because of the high degree of non-linearity in the system and the wide range of space and time scales. An alternative is to add forward models of proxies to the model and run "many years" of simulation until an analog state is found which matches the palaeo data for each season, year, decade etc. Clearly "many years" might range from a few thousand years to almost infinity and depends on the number of degrees of freedom in the climate system and on the error characteristics of the palaeo data. The length of simulation required is probably beyond the supercomputer capacity of a single institution and hence an alternative is to use idle capacity of home and business personal computers - the climateprediction.net project.

  2. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter

    International Nuclear Information System (INIS)

    Sato, Kazutoshi; Inoue, Jun; Watanabe, Masahiro

    2014-01-01

    Abnormal sea-ice retreat over the Barents Sea during early winter has been considered a leading driver of recent midlatitude severe winters over Eurasia. However, causal relationships between such retreat and the atmospheric circulation anomalies remains uncertain. Using a reanalysis dataset, we found that poleward shift of a sea surface temperature front over the Gulf Stream likely induces warm southerly advection and consequent sea-ice decline over the Barents Sea sector, and a cold anomaly over Eurasia via planetary waves triggered over the Gulf Stream region. The above mechanism is supported by the steady atmospheric response to the diabatic heating anomalies over the Gulf Stream region obtained with a linear baroclinic model. The remote atmospheric response from the Gulf Stream would be amplified over the Barents Sea region via interacting with sea-ice anomaly, promoting the warm Arctic and cold Eurasian pattern. (letter)

  3. Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion

    Science.gov (United States)

    Barcheck, C. Grace; Tulaczyk, Slawek; Schwartz, Susan Y.; Walter, Jacob I.; Winberry, J. Paul

    2018-03-01

    The Whillans Ice Plain (WIP) is unique among Antarctic ice streams because it moves by stick-slip. The conditions allowing stick-slip and its importance in controlling ice dynamics remain uncertain. Local basal seismicity previously observed during unstable slip is a clue to the mechanism of ice stream stick-slip and a window into current basal conditions, but the spatial extent and importance of this basal seismicity are unknown. We analyze data from a 2010-2011 ice-plain-wide seismic and GPS network to show that basal micro-seismicity correlates with large-scale patterns in ice stream slip behavior: Basal seismicity is common where the ice moves the least between unstable slip events, with small discrete basal micro-earthquakes happening within 10s of km of the central stick-slip nucleation area and emergent basal tremor occurring downstream of this area. Basal seismicity is largely absent in surrounding areas, where inter-slip creep rates are high. The large seismically active area suggests that a frictional sliding law that can accommodate stick-slip may be appropriate for ice stream beds on regional scales. Variability in seismic behavior over inter-station distances of 1-10 km indicates heterogeneity in local bed conditions and frictional complexity. WIP unstable slips may nucleate when stick-slip basal earthquake patches fail over a large area. We present a conceptual model in which basal seismicity results from slip-weakening frictional failure of over-consolidated till as it is eroded and mobilized into deforming till.

  4. An improved bathymetry compilation for the Bellingshausen Sea, Antarctica, to inform ice-sheet and ocean models

    Directory of Open Access Journals (Sweden)

    A. G. C. Graham

    2011-02-01

    Full Text Available The southern Bellingshausen Sea (SBS is a rapidly-changing part of West Antarctica, where oceanic and atmospheric warming has led to the recent basal melting and break-up of the Wilkins ice shelf, the dynamic thinning of fringing glaciers, and sea-ice reduction. Accurate sea-floor morphology is vital for understanding the continued effects of each process upon changes within Antarctica's ice sheets. Here we present a new bathymetric grid for the SBS compiled from shipborne multibeam echo-sounder, spot-sounding and sub-ice measurements. The 1-km grid is the most detailed compilation for the SBS to-date, revealing large cross-shelf troughs, shallow banks, and deep inner-shelf basins that continue inland of coastal ice shelves. The troughs now serve as pathways which allow warm deep water to access the ice sheet in the SBS. Our dataset highlights areas still lacking bathymetric constraint, as well as regions for further investigation, including the likely routes of palaeo-ice streams. The new compilation is a major improvement upon previous grids and will be a key dataset for incorporating into simulations of ocean circulation, ice-sheet change and history. It will also serve forecasts of ice stability and future sea-level contributions from ice loss in West Antarctica, required for the next IPCC assessment report in 2013.

  5. Tides in the Last Interglacial: insights from notch geometry and palaeo tidal models in Bonaire, Netherland Antilles.

    Science.gov (United States)

    Lorscheid, Thomas; Felis, Thomas; Stocchi, Paolo; Obert, J Christina; Scholz, Denis; Rovere, Alessio

    2017-11-24

    The study of past sea levels relies largely on the interpretation of sea-level indicators. Palaeo tidal notches are considered as one of the most precise sea-level indicators as their formation is closely tied to the local tidal range. We present geometric measurements of modern and palaeo (Marine Isotope Stage (MIS) 5e) tidal notches on Bonaire (southern Caribbean Sea) and results from two tidal simulations, using the present-day bathymetry and a palaeo-bathymetry. We use these two tools to investigate changes in the tidal range since MIS 5e. Our models show that the tidal range changes most significantly in shallow areas, whereas both, notch geometry and models results, suggest that steeper continental shelves, such as the ones bordering the island of Bonaire, are less affected to changes in tidal range in conditions of MIS 5e sea levels. We use our data and results to discuss the importance of considering changes in tidal range while reconstructing MIS 5e sea level histories, and we remark that it is possible to use hydrodynamic modelling and notch geometry as first-order proxies to assess whether, in a particular area, tidal range might have been different in MIS 5e with respect to today.

  6. Palaeo island-affinities revisited--biogeography and systematics of the Indo-Pacific genus Cethosia Fabricius (Lepidoptera: Nymphalidae).

    Science.gov (United States)

    Müller, C J; Beheregaray, L B

    2010-10-01

    better explained by vicariant processes linked to the history of formation of micro-continent and associated palaeo islands. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  7. Transient Conditions at the Ice/bed Interface Under a Palaeo-ice Stream Derived from Numerical Simulation of Groundwater Flow and Sedimentological Observations in a Drumlin Field, NW Poland

    Science.gov (United States)

    Hermanowski, P.; Piotrowski, J. A.

    2017-12-01

    Evacuation of glacial meltwater through the substratum is an important agent modulating the ice/bed interface processes. The amount of meltwater production, subglacial water pressure, flow patterns and fluxes all affect the strength of basal coupling and thus impact the ice-sheet dynamics. Despite much research into the subglacial processes of past ice sheets which controlled sediment transport and the formation of specific landforms, our understanding of the ice/bed interface remains fragmentary. In this study we numerically simulated, using finite difference and finite element codes, groundwater flow pattern and fluxes during an ice advance in the Stargard Drumlin Field, NW Poland to examine the potential influence of groundwater drainage on the landforming processes. The results are combined with sedimentological observations of the internal composition of the drumlins to validate the outcome of the numerical model. Our numerical experiments of groundwater flow suggest a highly time-dependent response of the subglacial hydrogeological system to the advancing ice margin. This is manifested as diversified areas of downward- and upward-oriented groundwater flows whereby the drumlin field area experienced primarily groundwater discharge towards the ice sole. The investigated drumlins are composed of (i) mainly massive till with thin stringers of meltwater sand, and (ii) sorted sediments carrying ductile deformations. The model results and sedimentological observations suggest a high subglacial pore-water pressure in the drumlin field area, which contributed to sediment deformation intervening with areas of basal decoupling and enhanced basal sliding.

  8. Ice-Shelf Melt Response to Changing Winds and Glacier Dynamics in the Amundsen Sea Sector, Antarctica

    Science.gov (United States)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.

    2017-12-01

    It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.

  9. Patterns at Multi-Spatial Scales on Tropical Island Stream Insect Assemblages: Gorgona Island Natural National Park, Colombia, Tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    Magnolia Longo

    2014-02-01

    Full Text Available Tropical Eastern Pacific island streams (TEPis differ from other neotropical streams in their rainy climate, mixed sedimentary-volcanic geology and faunal composition. Yet, their relationships between environmental characteristics and stream biota remain unexplored. We analyzed the environmental subject at three spatial scales using a fully nested sampling design (6 streams, 2 reaches within each stream, 2 habitats within each reach, and 4 replicates per habitat on Gorgona Island (Colombia. Sampling was carried out in two months with contrasting rainfall during early 2009. We studied the spatial variation of assemblage composition and density along with 27 independent variables within two contrasting rainfall conditions. Five stream-scale variables, two reach-scale variables, and five habitat-scale variables were selected using a Canonical Correspondence Analysis (CCA. A partial CCA showed that the total variance explained was 13.98%, while stream- and habitat-scale variables explained the highest proportion of the variance (5.74 and 5.01%, respectively. Dissolved oxygen (as affected by rainfall, high-density use zone (a management category, and sedimentary geology were the best descriptors of insect assemblages. The two latter descriptors affected fine-scale variables such as total benthic organic matter and gravel substratum, respectively. A Nested ANOVA showed significant differences in total density and richness among streams and habitats, and significant differences between the two sampling months regardless of the spatial scale. The evenness showed a significant stream- and habitat-dependent temporal variability. These results suggested that rainfall regime in Gorgona Island might be a driver of insect assemblage dynamics mediated by water chemistry and substratum properties. Spatial assemblage variability here is greater within habitats (among samples, and a minor fraction occurs at habitat- and stream-scales, while no longitudinal

  10. Genetic diversity of the causative agent of ice-ice disease of the seaweed Kappaphycus alvarezii from Karimunjawa island, Indonesia

    Science.gov (United States)

    Syafitri, E.; Prayitno, S. B.; Ma'ruf, W. F.; Radjasa, O. K.

    2017-02-01

    An essential step in investigating the bacterial role in the occurrence of diseases in Kappaphycus alvarezii is the characterization of bacteria associated with this seaweed. A molecular characterization was conducted on the genetic diversity of the causative agents of ice-ice disease associated with K. alvarezii widely known as the main source of kappa carrageenan. K. alvrezii infected with ice-ice were collected from the Karimunjawa island, North Java Sea, Indonesia. Using Zobell 2216E marine agar medium, nine bacterial species were isolated from the infected seaweed. The molecular characterizations revealed that the isolated bacteria causing ice-ice disease were closely related to the genera of Alteromonas, Bacillus, Pseudomonas, Pseudoalteromonas, Glaciecola, Aurantimonas, and Rhodococcus. In order to identify the symptoms causative organisms, the isolated bacterial species were cultured and were evaluated for their pathogenity. Out of 9 species, only 3 isolates were able to cause the ice-ice symptoms and consisted of Alteromonas macleodii, Pseudoalteromonas issachenkonii and Aurantimonas coralicida. A. macleodii showed the highest pathogenity.

  11. Shredders are abundant and species-rich in tropical continental-island low-order streams: Gorgona Island, Tropical Eastern Pacific, Colombia

    Directory of Open Access Journals (Sweden)

    Magnolia Longo

    2014-02-01

    Full Text Available Macroinvertebrate shredders may have been overlooked in tropical streams due to the geographical bias of early studies, methodological limitations, and the complex influences of local-scale factors. While shredders seem to be scarce in most oceanic island streams, we here test if they are abundant in a continental island. Gut content analyses of benthic macroinvertebrates were used to identify shredding taxa in streams located in different types of forest in Gorgona Island (Tropical Eastern Pacific. General dietary overlap (GO was quantified and relative biomass, relative frequency and the leaf litter percentage in the guts were used to establish the relative importance of each taxon in the shredding guild. Various indices were used to identify the spatial arrangement (i.e. contagious or random of each taxon and shredding guild among streams. We identified 31 shredding taxa that were divided into specialist-shredders (14 taxa, generalist-shredders (10, and collector-shredders (7. There was a complete GO (0.75, p<0.001 for the guild. Cockroaches (Epilampra were the most represented shredders due to the greatest contribution to guild total biomass and to the highest content of leaf litter in their guts. These organisms were more important than shrimps and crabs in terms of abundance and biomass in leaf pack samples. Potimirin shrimps ranked second and Stenochironomus midges ranked third. Among aquatic insects, other secondarily important species were Leptohyphes (Ephemeroptera, Macrelmis, Anchytarsus and Tetraglosa (Coleoptera. Ten taxa exhibited contagious spatial pattern and twenty-one exhibited a random distribution. Resource distribution (i.e., leaf packs between streams was random too. The guild was contagiously distributed, but this result could be highly influenced by the taxa with contagious distribution. Mean abundance, richness and mean biomass of shredders were not significantly correlated with any of the environmental variables

  12. Fine scale monitoring of ice ablation following convective heat transfer: case study based on ice-wedge thermo-erosion on Bylot Island (Canadian High Arctic) and laboratory observations

    Science.gov (United States)

    Godin, E.; Fortier, D.

    2011-12-01

    Thermo-erosion gullies often develop in ice-wedge polygons terrace and contribute to the dynamic evolution of the periglacial landscape. When snowmelt surface run-off concentrated into streams and water tracks infiltrate frost cracks, advective heat flow and convective thermal transfer from water to the ice-wedge ice enable the rapid development of tunnels and gullies in the permafrost (Fortier et al. 2007). Fine scale monitoring of the physical interaction between flowing water and ice rich permafrost had already been studied in a context of thermal erosion of a large river banks in Russia (Costard et al. 2003). Ice wedge polygons thermo-erosion process leading to gullying remains to be physically modelled and quantified. The present paper focus on the fine scale monitoring of thermo-erosion physical parameters both in the field and in laboratory. The physical model in laboratory was elaborated using a fixed block of ice monitored by a linear voltage differential transducer (LVDT) and temperature sensors connected to a logger. A water container with controlled discharge and temperature provided the fluid which flowed over the ice through a hose. Water discharge (Q), water temperature (Tw), ice melting temperature (Ti) and ice ablation rate (Ar) were measured. In laboratory, water at 281 Kelvin (K) flowing on the ice (Ti 273 K) made the ice melt at a rate Ar of 0.002 m min-1, under a continuous discharge of ≈ 8 x 10-7 m3 s-1. In the field, a small channel was dug between a stream and an exposed ice-wedge in a pre-existing active gully, where in 2010 large quantities of near zero snowmelt run-off water contributed to several meters of ice wedge ablation and gully development. Screws were fastened into the ice and a ruler was used to measure the ablation rate every minute. The surface temperature of the ice wedge was monitored with thermocouples connected to a logger to obtain the condition of the ice boundary layer. Discharge and water temperature were measured in

  13. RICE ice core: Black Carbon reflects climate variability at Roosevelt Island, West Antarctica

    Science.gov (United States)

    Ellis, Aja; Edwards, Ross; Bertler, Nancy; Winton, Holly; Goodwin, Ian; Neff, Peter; Tuohy, Andrea; Proemse, Bernadette; Hogan, Chad; Feiteng, Wang

    2015-04-01

    The Roosevelt Island Climate Evolution (RICE) project successfully drilled a deep ice core from Roosevelt Island during the 2011/2012 and 2012/2013 seasons. Located in the Ross Ice Shelf in West Antarctica, the site is an ideal location for investigating climate variability and the past stability of the Ross Ice Shelf. Black carbon (BC) aerosols are emitted by both biomass burning and fossil fuels, and BC particles emitted in the southern hemisphere are transported in the atmosphere and preserved in Antarctic ice. The past record of BC is expected to be sensitive to climate variability, as it is modulated by both emissions and transport. To investigate BC variability over the past 200 years, we developed a BC record from two overlapping ice cores (~1850-2012) and a high-resolution snow pit spanning 2010-2012 (cal. yr). Consistent results are found between the snow pit profiles and ice core records. Distinct decadal trends are found with respect to BC particle size, and the record indicates a steady rise in BC particle size over the last 100 years. Differences in emission sources and conditions may be a possible explanation for changes in BC size. These records also show a significant increase in BC concentration over the past decade with concentrations rising over 1.5 ppb (1.5*10^-9 ng/g), suggesting a fundamental shift in BC deposition to the site.

  14. Radar Interferometry Studies of the Mass Balance of Polar Ice Sheets

    Science.gov (United States)

    Rignot, Eric (Editor)

    1999-01-01

    The objectives of this work are to determine the current state of mass balance of the Greenland and Antarctic Ice Sheets. Our approach combines different techniques, which include satellite synthetic-aperture radar interferometry (InSAR), radar and laser altimetry, radar ice sounding, and finite-element modeling. In Greenland, we found that 3.5 times more ice flows out of the northern part of the Greenland Ice Sheet than previously accounted for. The discrepancy between current and past estimates is explained by extensive basal melting of the glacier floating sections in the proximity of the grounding line where the glacier detaches from its bed and becomes afloat in the ocean. The inferred basal melt rates are very large, which means that the glaciers are very sensitive to changes in ocean conditions. Currently, it appears that the northern Greenland glaciers discharge more ice than is being accumulated in the deep interior, and hence are thinning. Studies of temporal changes in grounding line position using InSAR confirm the state of retreat of northern glaciers and suggest that thinning is concentrated at the lower elevations. Ongoing work along the coast of East Greenland reveals an even larger mass deficit for eastern Greenland glaciers, with thinning affecting the deep interior of the ice sheet. In Antarctica, we found that glaciers flowing into a large ice shelf system, such as the Ronne Ice Shelf in the Weddell Sea, exhibit an ice discharge in remarkable agreement with mass accumulation in the interior, and the glacier grounding line positions do not migrate with time. Glaciers flowing rapidly into the Amudsen Sea, unrestrained by a major ice shelf, are in contrast discharging more ice than required to maintain a state of mass balance and are thinning quite rapidly near the coast. The grounding line of Pine Island glacier (see diagram) retreated 5 km in 4 years, which corresponds to a glacier thinning rate of 3.5 m/yr. Mass imbalance is even more negative

  15. Food Web Structure and Basal Resource Utilization along a Tropical Island Stream Continuum, Puerto Rico.

    Science.gov (United States)

    James G. March; Catherine M. Pringle

    2003-01-01

    Tropical stream food webs are thought to be based primarily on terrestrial resources (leaf litter) in small forested headwater streams and algal resources in larger, wider streams. In tropical island streams, the dominant consumers are often omnivorous freshwater shrimps that consume algae, leaf litter, insects, and other shrimps. We used stable isotope analysis...

  16. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 2. Sensitivity to external forcings

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    A coupled ice stream-ice shelf-ocean cavity model is used to assess the sensitivity of the coupled system to far-field ocean temperatures, varying from 0.0 to 1.8°C, as well as sensitivity to the parameters controlling grounded ice flow. A response to warming is seen in grounding line retreat and grounded ice loss that cannot be inferred from the response of integrated melt rates alone. This is due to concentrated thinning at the ice shelf lateral margin, and to processes that contribute to this thinning. Parameters controlling the flow of grounded ice have a strong influence on the response to sub-ice shelf melting, but this influence is not seen until several years after an initial perturbation in temperatures. The simulated melt rates are on the order of that observed for Pine Island Glacier in the 1990s. However, retreat rates are much slower, possibly due to unrepresented bedrock features.

  17. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier.

    Science.gov (United States)

    Smith, J A; Andersen, T J; Shortt, M; Gaffney, A M; Truffer, M; Stanton, T P; Bindschadler, R; Dutrieux, P; Jenkins, A; Hillenbrand, C-D; Ehrmann, W; Corr, H F J; Farley, N; Crowhurst, S; Vaughan, D G

    2017-01-05

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf-is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  18. Earthquake-induced deformations on ice-stream landforms in Kuusamo, eastern Finnish Lapland

    Science.gov (United States)

    Sutinen, Raimo; Hyvönen, Eija; Middleton, Maarit; Airo, Meri-Liisa

    2018-01-01

    Kuusamo in eastern Finnish Lapland is characterized by ice-streamlined landforms as well as clusters of historical and recent earthquakes (Mw landslides, earth flows as well as kettle holes (craters), on the fluted surfaces within the Kuusamo ice-stream fan. We found these deformations to be a common feature on the Archean granitoid gneisses and within a 20 km wide and NW-SE oriented corridor between the major intrusives, the Iivaara nepheline syenite and the Näränkävaara gabbro. Of the paleolandslides, liquefaction morphologies were generally developed on the distal slopes (1.3-2.8%; 0.75-1.6°) of the streamlined forms. Sedimentary anisotropy, obtained with azimuthal electrical conductivity (σa; skin depth down to 3-6 m), of the deformed flutes significantly deviated from the non-deformed (clean) ones. The fields of the Pulju moraine, a subglacial landform, formed a grounding zone for the ice-streaming SW of the paleolandslide cluster. We therefore propose that both subglacial and postglacial earthquake-induced landforms are present in Kuusamo. No PGFs could be verified in the Kuusamo area, yet gravity, airborne magnetic, and LiDAR morphological lineaments suggest that the old Paleoproterozoic structures have been reactivated as strike-slip faults, due to the lithospheric plate stresses and glacio-isostatic adjustment (GIA).

  19. Microbial processes at the beds of glaciers and ice sheets: a look at life below the Whillans Ice Stream

    Science.gov (United States)

    Mikucki, J.; Campen, R.; Vancleave, S.; Scherer, R. P.; Coenen, J. J.; Powell, R. D.; Tulaczyk, S. M.

    2017-12-01

    Groundwater, saturated sediments and hundreds of subglacial lakes exist below the ice sheets of Antarctica. The few Antarctic subglacial environments sampled to date all contain viable microorganisms. This is a significant finding because microbes are known to be key in mediating biogeochemical cycles. In sediments, microbial metabolic activity can also result in byproducts or direct interactions with sediment particles that influence the physical and geochemical characteristics of the matrix they inhabit. Subglacial Lake Whillans (SLW), a fresh water lake under the Whillans Ice Stream that drains into the Ross Sea at its grounding zone, was recently sampled as part of the NSF-funded Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Sediments from both SLW and its grounding zone contain microbial taxa related to iron, sulfur, nitrogen and methane oxidizers. In addition to molecular data, biogeochemical measurements and culture based experiments on Whillans sediments support the notion that the system is chemosynthetic with energy derived in part by cycling inorganic compounds. Etch pitting and mineral precipitates on fossil sponge spicules suggest that spicules may also provide microbial nutrients in these environments. Perhaps the most widespread microbial process that affects sediment structure and mineral weathering is the production of extra polymeric substances (EPS). Several phylogenetic groups detected in Whillans sediments are known to produce EPS and we have observed its production in pure cultures enriched directly from these sediments. Our data sheds light on how microbial life persists below the Antarctic Ice Sheet despite extended isolation in icy darkness, and how these microbes may be shaping their environment.

  20. Palaeo-ethnology, palaeo-environment and palaeo-climatology of Piaui, Brazil: palynological studies on human coprolites collected at the ``Pedra Furada`` site; Paleoethnologie, paleoenvironnement et paleoclimatologie du Piaui, Bresil: apport de l`etude pollinique de coprolithes humains recueillis dans le gisement prehistorique de ``Pedra Furada``

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, S.; Renault-Miskovsky, J. [Institut de Paleontologie, 75 - Paris (France)]|[Universidade Federal, Rio de Janeiro, RJ (Brazil)

    1996-06-13

    Fossil human faeces were collected from the rock-shelter of ``Pedra Furada`` (Piaui, Brazil), which is considered nowadays as one of the most ancient prehistoric sites in America. These dated coprolites range from 8,500 to 7,000 BP and are evidence of an occupation phase connected with ``Serra Talhada`` cultural traditions I and II. These coprolites were analysed by palynological studies. The results have given palaeo-climatological and palaeo-environmental data with an emphasis on palaeo-ethnological aspects. Evidence emerges regarding the range of medicinal and food plants of the prehistoric humans who inhabited the site for some 1,500 years. (authors). 32 refs., 3 figs.

  1. Continental-scale transport of sediments by the Baltic Ice Stream elucidated by coupled grain size and Nd provenance analyses

    Science.gov (United States)

    Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.

    2018-05-01

    We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.

  2. The sensitivity of the Greenland Ice Sheet to glacial-interglacial oceanic forcing

    Science.gov (United States)

    Tabone, Ilaria; Blasco, Javier; Robinson, Alexander; Alvarez-Solas, Jorge; Montoya, Marisa

    2018-04-01

    Observations suggest that during the last decades the Greenland Ice Sheet (GrIS) has experienced a gradually accelerating mass loss, in part due to the observed speed-up of several of Greenland's marine-terminating glaciers. Recent studies directly attribute this to warming North Atlantic temperatures, which have triggered melting of the outlet glaciers of the GrIS, grounding-line retreat and enhanced ice discharge into the ocean, contributing to an acceleration of sea-level rise. Reconstructions suggest that the influence of the ocean has been of primary importance in the past as well. This was the case not only in interglacial periods, when warmer climates led to a rapid retreat of the GrIS to land above sea level, but also in glacial periods, when the GrIS expanded as far as the continental shelf break and was thus more directly exposed to oceanic changes. However, the GrIS response to palaeo-oceanic variations has yet to be investigated in detail from a mechanistic modelling perspective. In this work, the evolution of the GrIS over the past two glacial cycles is studied using a three-dimensional hybrid ice-sheet-shelf model. We assess the effect of the variation of oceanic temperatures on the GrIS evolution on glacial-interglacial timescales through changes in submarine melting. The results show a very high sensitivity of the GrIS to changing oceanic conditions. Oceanic forcing is found to be a primary driver of GrIS expansion in glacial times and of retreat in interglacial periods. If switched off, palaeo-atmospheric variations alone are not able to yield a reliable glacial configuration of the GrIS. This work therefore suggests that considering the ocean as an active forcing should become standard practice in palaeo-ice-sheet modelling.

  3. Ice processes affect habitat use and movements of adult cutthroat trout and brook trout in a Wyoming foothills stream

    Science.gov (United States)

    Lindstrom, J.W.; Hubert, W.A.

    2004-01-01

    Habitat use and movements of 25 adult cutthroat trout Oncorhynchus clarkii and 25 adult brook trout Salvelinus fontinalis from fall through winter 2002-2003 were assessed by means of radiotelemetry in a 7-km reach of a Rocky Mountains foothills stream. Temporal dynamics of winter habitat conditions were evaluated by regularly measuring the features of 30 pools and 5 beaver Castor canadensis ponds in the study reach. Groundwater inputs at three locations raised mean daily water temperatures in the stream channel during winter to 0.2-0.6??C and kept at least 250 m of the downstream channel free of ice, but the lack of surface ice further downstream led to the occurrence of frazil ice and anchor ice in pools and unstable habitat conditions for trout. Pools in segments that were not affected by groundwater inputs and beaver ponds tended to be stable and snow accumulated on the surface ice. Pools throughout the study reach tended to become more stable as snow accumulated. Both cutthroat trout and brook trout selected beaver ponds as winter progressed but tended to use lateral scour pools in proportion to their availability. Tagged fish not in beaver ponds selected lateral scour pools that were deeper than average and stable during winter. Movement frequencies by tagged fish decreased from fall through winter, but some individuals of both species moved during winter. Ice processes affected both the habitat use and movement patterns of cutthroat trout and brook trout in this foothills stream.

  4. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    Science.gov (United States)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  5. Ice Stream Slowdown Will Drive Long-Term Thinning of the Ross Ice Shelf, With or Without Ocean Warming

    Science.gov (United States)

    Campbell, Adam J.; Hulbe, Christina L.; Lee, Choon-Ki

    2018-01-01

    As time series observations of Antarctic change proliferate, it is imperative that mathematical frameworks through which they are understood keep pace. Here we present a new method of interpreting remotely sensed change using spatial statistics and apply it to the specific case of thickness change on the Ross Ice Shelf. First, a numerical model of ice shelf flow is used together with empirical orthogonal function analysis to generate characteristic patterns of response to specific forcings. Because they are continuous and scalable in space and time, the patterns allow short duration observations to be placed in a longer time series context. Second, focusing only on changes that are statistically significant, the synthetic response surfaces are used to extract magnitude and timing of past events from the observational data. Slowdown of Kamb and Whillans Ice Streams is clearly detectable in remotely sensed thickness change. Moreover, those past events will continue to drive thinning into the future.

  6. Human impacts quantification on the coastal landforms of Gran Canaria Island (Canary Islands)

    Science.gov (United States)

    Ferrer-Valero, Nicolás; Hernández-Calvento, Luis; Hernández-Cordero, Antonio I.

    2017-06-01

    The coastal areas of the Canary Islands are particularly sensitive to changes, both from a natural perspective and for their potential socio-economic implications. In this paper, the state of conservation of an insular coast is approached from a geomorphological point of view, considering recent changes induced by urban and tourism development. The analysis is applied to the coast of Gran Canaria, a small Atlantic island of volcanic origin, subject to a high degree of human pressure on its coastal areas, especially in recent decades. Currently, much of the economic activity of Gran Canaria is linked to mass tourism, associated with climatic and geomorphological features of the coast. This work is addressed through detailed mapping of coastal landforms across the island (256 km perimeter), corresponding to the period before the urban and tourism development (late 19th century for the island's capital, mid-20th century for the rest of the island) and today. The comparison between the coastal geomorphology before and after the urban and tourism development was established through four categories of human impacts, related to their conservation state: unaltered, altered, semi-destroyed and extinct. The results indicate that 43% of coastal landforms have been affected by human impacts, while 57% remain unaltered. The most affected are sedimentary landforms, namely coastal dunes, palaeo-dunes, beaches and wetlands. Geodiversity loss was also evaluated by applying two diversity indices. The coastal geodiversity loss by total or partial destruction of landforms is estimated at - 15.2%, according to Shannon index (H‧), while it increases to - 32.1% according to an index proposed in this paper. We conclude that the transformations of the coast of Gran Canaria induced by urban and tourism development have heavily affected the most singular coastal landforms (dunes, palaeo-dunes and wetlands), reducing significantly its geodiversity.

  7. Inferring Ice Thickness from a Glacier Dynamics Model and Multiple Surface Datasets.

    Science.gov (United States)

    Guan, Y.; Haran, M.; Pollard, D.

    2017-12-01

    The future behavior of the West Antarctic Ice Sheet (WAIS) may have a major impact on future climate. For instance, ice sheet melt may contribute significantly to global sea level rise. Understanding the current state of WAIS is therefore of great interest. WAIS is drained by fast-flowing glaciers which are major contributors to ice loss. Hence, understanding the stability and dynamics of glaciers is critical for predicting the future of the ice sheet. Glacier dynamics are driven by the interplay between the topography, temperature and basal conditions beneath the ice. A glacier dynamics model describes the interactions between these processes. We develop a hierarchical Bayesian model that integrates multiple ice sheet surface data sets with a glacier dynamics model. Our approach allows us to (1) infer important parameters describing the glacier dynamics, (2) learn about ice sheet thickness, and (3) account for errors in the observations and the model. Because we have relatively dense and accurate ice thickness data from the Thwaites Glacier in West Antarctica, we use these data to validate the proposed approach. The long-term goal of this work is to have a general model that may be used to study multiple glaciers in the Antarctic.

  8. Asphalt features and gas accumulation mechanism of Sinian reservoirs in the Tongwan Palaeo-uplift, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-10-01

    Full Text Available Breakthroughs have been made in natural gas exploration in Sinian reservoirs in the Tongwan Palaeo-uplift, Sichuan Basin, recently. However, there are disputes with regard to the genetic mechanisms of natural gas reservoirs. The development law of asphalts in the Sinian reservoirs may play an extremely important role in the study of the relationships between palaeo oil and gas reservoirs. Accordingly, researches were conducted on the features and development patterns of asphalts in the Sinian reservoirs in this area. The following research results were obtained. (1 Asphalts in the Sinian reservoirs were developed after the important hydrothermal event in the Sichuan Basin, namely the well-known Emei Taphrogeny in the mid-late Permian Period. (2 Distribution of asphalts is related to palaeo oil reservoirs under the control of palaeo-structures of Indosinian-Yanshanian Period, when the palaeo-structures contained high content of asphalts in the high positions of the palaeo-uplift. (3 Large-scale oil and gas accumulations in the Sinian reservoirs occurred in the Indosinian-Yanshanian Period to generate the Leshan-Ziyang and Gaoshiti-Moxi-Guang'an palaeo oil reservoirs. Cracking of crude oil in the major parts of these palaeo oil reservoirs controlled the development of the present natural gas reservoirs. (4 The development of asphalts in the Sinian reservoirs indicates that hydrocarbons in the Dengying Formation originated from Cambrian source rocks and natural gas accumulated in the Sinian reservoirs are products of late-stage cracking of the Sinian reservoirs. (5 The Sinian palaeo-structures of Indosinian-Yanshanian Period in the Sichuan Basin are favorable regions for the development of the Sinian reservoirs, where discoveries and exploration practices will play an important role in the era of Sinian natural gas development in China.

  9. Geomorphological mapping of ice-free areas using polarimetric RADARSAT-2 data on Fildes Peninsula and Ardley Island, Antarctica

    Science.gov (United States)

    Schmid, T.; López-Martínez, J.; Guillaso, S.; Serrano, E.; D'Hondt, O.; Koch, M.; Nieto, A.; O'Neill, T.; Mink, S.; Durán, J. J.; Maestro, A.

    2017-09-01

    Satellite-borne Synthetic Aperture Radar (SAR) has been used for characterizing and mapping in two relevant ice-free areas in the South Shetland Islands. The objective has been to identify and characterize land surface covers that mainly include periglacial and glacial landforms, using fully polarimetric SAR C band RADARSAT-2 data, on Fildes Peninsula that forms part of King George Island, and Ardley Island. Polarimetric parameters obtained from the SAR data, a selection of field based training and validation sites and a supervised classification approach, using the support vector machine were chosen to determine the spatial distribution of the different landforms. Eight periglacial and glacial landforms were characterized according to their scattering mechanisms using a set of 48 polarimetric parameters. The mapping of the most representative surface covers included colluvial deposits, stone fields and pavements, patterned ground, glacial till and rock outcrops, lakes and glacier ice. The overall accuracy of the results was estimated at 81%, a significant value when mapping areas that are within isolated regions where access is limited. Periglacial surface covers such as stone fields and pavements occupy 25% and patterned ground over 20% of the ice-free areas. These are results that form the basis for an extensive monitoring of the ice-free areas throughout the northern Antarctic Peninsula region.

  10. Recent evolution of the overall radioactive levels in the ice of Livingston Island (Antarctica)

    International Nuclear Information System (INIS)

    Baeza, A.; Del Rio, L.M.; Jimenez, A.; Miro, C.; Paniagua, J.M.

    1996-01-01

    A study was carried out of the physico-chemical characteristics of the different layers of ice to a depth of 8.32 m in the Hurd glacier on Livingston Island in the South Shetland archipelago (Antartica). No dependence on depth was observed for the pH, dry residue, or the concentrations of Ca 2+ , Mg 2+ , and K + ions. The only dependence observed was a systematic increase in density from 05 to 0.85 g cm -3 due to the greater compaction of the deeper layers. The mean annual mass balance was determined by two methods; localization of the ashes emitted by a volcano on Deception Island and by means of a 210 Pb dating method. The result in both cases was a value of 0.24 kg m -2 kg m -2 yr -1 , which allowed us to date different layers of ice sampled. The mean annual 210 Pb fallout was determined to be 1.9 Bq m -2 yr -1 . While no systematic variations in total β activity were observed with depth, they were observed for total α and residual β activities in the said ice layers. (Author)

  11. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2012-07-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski icefield and the adjacent central part. The new data set is composed of ground based and airborne ground penetrating radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the ground based measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the instrument used, survey procedure, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is 240 ± 6 m, with a maximum value of 422 ± 10 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at http://dx.doi.org/10.1594/PANGAEA.770567.

  12. Evidence for slow late-glacial ice retreat in the upper Rangitata Valley, South Island, New Zealand

    Science.gov (United States)

    Shulmeister, J.; Fink, D.; Winkler, S.; Thackray, G. D.; Borsellino, R.; Hemmingsen, M.; Rittenour, T. M.

    2018-04-01

    A suite of cosmogenic radionuclide ages taken from boulders on lateral and latero-terminal moraines in the Rangitata Valley, eastern South Island, New Zealand demonstrates that relatively thick ice occupied valley reaches inland of the Rangitata Gorge until c. 21 ka. Thereafter ice began to thin, and by c. 17 ka it had retreated 33 km up-valley of the Rangitata Gorge to the Butler-Brabazon Downs, a structurally created basin in the upper Rangitata Valley. Despite its magnitude, this retreat represents a minor ice volume reduction from 21 ka to 17 ka, and numerous lateral moraines preserved suggest a relatively gradual retreat over that 4 ka period. In contrast to records from adjacent valleys, there is no evidence for an ice-collapse at c. 18 ka. We argue that the Rangitata record constitutes a more direct record of glacial response to deglacial climate than other records where glacial dynamics were influenced by proglacial lake development, such as the Rakaia Valley to the North and the major valleys in the Mackenzie Basin to the south-west. Our data supports the concept of a gradual warming during the early deglaciation in the South Island New Zealand.

  13. Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr ice core record of black carbon aerosol deposition to the Ross Ice Shelf, West Antarctica.

    Science.gov (United States)

    Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad

    2015-04-01

    Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.

  14. Late quaternary palaeo-oceanography and palaeo-climatology from sediment cores of the eastern Arctic Ocean

    International Nuclear Information System (INIS)

    Pagels, U.; Koehler, S.

    1991-01-01

    Box cores recovered along a N-S transect in the Eurasian Basin allow the establishment of a time scale for the Late Quaternary history of the Arctic Ocean, based on stable oxygen isotope stratigraphy and AMS 14 C dating of planktonic foraminifers (N. pachyderma I.c.). This high resolution stratigraphy, in combination with sedimentological investigations (e.g. coarse fraction analysis, carbonate content, productivity of foraminifers), was carried out to reconstruct the glacial and inter-glacial Arctic Ocean palaeo-environment The sediment cores, which can be correlated throughout the sampling area in the Eastern Arctic Ocean, were dated as representing oxygen isotope stages 1 to 4/5. The sedimentation rates varied between a few mm/ka in glacials and approximately one cm/ka during the Holocene. The sediments allow a detailed sedimentological description of the depositional regime and the palaeo-oceanography of the Eastern Arctic Ocean. Changing ratios of biogenic and lithogenic components in the sediments reflect variations in the oceanographic circulation pattern in the Eurasian Basin during the Late Quaternary. Carbonate content (1-9wt.%), productivity of foraminifers (high in interglacial, low in glacial stages) and the terrigenous components are in good correlation with glacial and inter-glacial climatic fluctuations

  15. Recent evolution of the overall radioactive levels in the ice of Livingston Island (Antarctica)

    Energy Technology Data Exchange (ETDEWEB)

    Baeza, A.; Del Rio, L.M.; Jimenez, A.; Miro, C.; Paniagua, J.M. [Universidad de Extremadura, Caceres (Spain). Departamento de Fisica; Navarro, E. [IFIC, Facutad de Fisicas, Valencia (Spain)

    1996-08-01

    A study was carried out of the physico-chemical characteristics of the different layers of ice to a depth of 8.32 m in the Hurd glacier on Livingston Island in the South Shetland archipelago (Antartica). No dependence on depth was observed for the pH, dry residue, or the concentrations of Ca{sup 2+}, Mg{sup 2+}, and K{sup +} ions. The only dependence observed was a systematic increase in density from 05 to 0.85 g cm{sup -3} due to the greater compaction of the deeper layers. The mean annual mass balance was determined by two methods; localization of the ashes emitted by a volcano on Deception Island and by means of a {sup 210}Pb dating method. The result in both cases was a value of 0.24 kg m{sup -2} kg m{sup -2} yr{sup -1}, which allowed us to date different layers of ice sampled. The mean annual {sup 210}Pb fallout was determined to be 1.9 Bq m{sup -2} yr{sup -1}. While no systematic variations in total {beta} activity were observed with depth, they were observed for total {alpha} and residual {beta} activities in the said ice layers. (Author).

  16. Combined Usage of TanDEM-X and CryoSat-2 for Generating a High Resolution Digital Elevation Model of Fast Moving Ice Stream and Its Application in Grounding Line Estimation

    Directory of Open Access Journals (Sweden)

    Seung Hee Kim

    2017-02-01

    Full Text Available Definite surface topography of ice provides fundamental information for most glaciologists to study climate change. However, the topography at the marginal region of ice sheets exhibits noticeable dynamical changes from fast flow velocity and large thinning rates; thus, it is difficult to determine instantaneous topography. In this study, the surface topography of the marginal region of Thwaites Glacier in the Amundsen Sector of West Antarctica, where ice melting and thinning are prevailing, is extracted using TanDEM-X interferometry in combination with data from the near-coincident CryoSat-2 radar altimeter. The absolute height offset, which has been a persistent problem in applying the interferometry technique for generating DEMs, is determined by linear least-squares fitting between the uncorrected TanDEM-X heights and reliable reference heights from CryoSat-2. The reliable heights are rigorously selected at locations of high normalized cross-correlation and low RMS heights between segments of data points. The generated digital elevation model with the resolved absolute height offset is assessed with airborne laser altimeter data from the Operation IceBridge that were acquired five months after TanDEM-X and show high correlation with biases of 3.19 m and −4.31 m at the grounding zone and over the ice sheet surface, respectively. For practical application of the generated DEM, grounding line estimation assuming hydrostatic equilibrium was carried out, and the feasibility was seen through comparison with the previous grounding line. Finally, it is expected that the combination of interferometry and altimetery with similar datasets can be applied at regions even with a lack of ground control points.

  17. Streams in the urban heat island: spatial and temporal variability in temperature

    Science.gov (United States)

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization

  18. Non-Dive Activities for Islands in the Stream 2002 - Deep Reef Habitat - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Expeditions Information System (EIS) contains information recorded by the NOAA Office of Ocean Exploration's data manager during the 2002 "Islands in the Stream...

  19. Ship Sensor Observations for Islands in the Stream 2002 - Deep Reef Habitat - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the 2002 "Islands in the Stream - Deep Reef Habitat" expedition sponsored by the...

  20. Archive of Geosample Data and Information from the University of Wisconsin Ice Island T3 Core Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1963 to 1972, 349 piston cores were collected from the Arctic Ocean using Ice Island T3 as a sampling platform and sent to the University of Wisconsin-Madison...

  1. Substrata Residue, Linguistic Reconstruction, and Linking: Methodological Premises, and the Case History of Palaeo-Sardinian

    Directory of Open Access Journals (Sweden)

    Eduardo Blasco Ferrer

    2015-12-01

    Full Text Available This paper demonstrates that, within substratal research, prior to undertaking any comparative endeavour, it is necessary to conduct a thorough distributional analysis of the morphological regularities displayed by the language under consideration, so as to determine the phonological rules governing diachronic changes, which leads to establishing the typology of the substratal language. The application of this rigorous methodology to Palaeo-Sardinian toponymic material makes it possible to recognize the primitive agglutinative typology, and thereby to precise its relation to Palaeo-Basque. After having highlighted some flaws and weaknesses of prior reconstructions, the author first describes the benefits stemming from a systematic segmentation of nearly 1000 microtoponyms of Central Sardinia, which display clear morphological regularities, and restores the underlying phonological system, as well as some of the most distinctive evolutionary laws (e.g., it is argued that the structure of most reconstructed roots can be boiled down to a single syllable template CVC, as /d-u-r/, /d-o-n/; this helps to establish some phonetic laws, as /d/ > /l/ in dur > lur, don > loh, etc.. Finally, a detailed confrontation of Palaeo-Sardinian with reconstructed morphological and phonological systems of Palaeo-Basque evince a vast array of striking correspondances which are due, most probably, to the prehistoric split of Pre-Proto-Basque into Proto-Basque and Palaeo-Sardinian branches in the late Mesolithic / early Neolithic age. The paper provides a new Stammbaum model to account for this split.

  2. Changes on the ice plain of Ice Stream B and Ross Ice Shelf

    Science.gov (United States)

    Shabtaie, Sion

    1993-01-01

    During the 1970's and 1980's, nearly 200 stations from which accurate, three dimensional position fixes have been obtained from TRANSIT satellites were occupied throughout the Ross Ice Shelf. We have transformed the elevations obtained by satellite altimetry to the same geodetic datum, and then applied a second transformation to reduce the geodetic heights to elevations above mean sea level using the GEM-10C geoidal height. On the IGY Ross Ice Shelf traverse between Oct. 1957 and Feb. 1958, an accurate method of barometric altimetry was used on a loop around the ice shelf that was directly tied to the sea at both ends of the travel route, thus providing absolute elevations. Comparisons of the two sets of data at 32 station pairs on floating ice show a mean difference of 0 +/- 1 m. The elevation data were also compared with theoretical values of elevations for a hydrostatically floating ice shelf. The mean difference between theoretical and measured values of elevations is -2 +/- 1 m.

  3. Ship track for Islands in the Stream 2002 - Pharmaceutical Discovery, Vision, and Bioluminescence - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the 2002 "Islands in the Stream - Pharmaceutical Discovery, Vision, and Bioluminescence" expedition sponsored by the...

  4. Evidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China

    Science.gov (United States)

    Z. Zhou; Y. Ouyang; Z. Qiu; G. Zhou; M. Lin; Y. Li

    2017-01-01

    Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis...

  5. The wide-spread presence of rib-like patterns in basal shear of ice streams detected by surface data inversion

    Science.gov (United States)

    Sergienko, O. V.

    2013-12-01

    The direct observations of the basal conditions under continental-scale ice sheets are logistically impossible. A possible approach to estimate conditions at the ice - bed interface is from surface observations by means of inverse methods. The recent advances in remote and ground-based observations have allowed to acquire a wealth observations from Greenland and Antarctic ice sheets. Using high-resolution data sets of ice surface and bed elevations and surface velocities, inversions for basal conditions have been performed for several ice streams in Greenland and Antarctica. The inversion results reveal the wide-spread presence of rib-like spatial structures in basal shear. The analysis of the hydraulic potential distribution shows that these rib-like structures co-locate with highs of the gradient of hydraulic potential. This suggests that subglacial water plays a role in the development and evolution of the basal shear ribs.

  6. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    Science.gov (United States)

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as

  7. Submersible Data (Dive Waypoints) for Islands in the Stream 2002 - Deep Reef Habitat - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during one dive of the 2002 "Islands in the Stream - Deep Reef...

  8. Intermittent ice sheet discharge events in northeastern North America during the last glacial period

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Brian D.; Mysak, Lawrence A.; Wang, Zhaomin [McGill University, Earth System Modelling Group, Department of Atmospheric and Oceanic Sciences, Montreal, QC (Canada)

    2006-02-01

    The 3D ice sheet model of Marshall and Clarke, which includes both dynamics and thermodynamics, is used to successfully simulate millennial-scale oscillations within an ice sheet under steady external forcing. Such internal oscillations are theorized to be the main cause of quasi-periodic large-scale ice discharges known as Heinrich Events. An analysis of the mechanisms associated with multi-millennial oscillations of the Laurentide Ice Sheet, including the initiation and termination of sliding events, is performed. This analysis involves an examination of the various heat sources and sinks that affect the basal ice temperature, which in turn determines the nature of the ice sheet movement. The ice sheet thickness and surface slope, which affect the pressure-melting point and strain heating, respectively, are found to be critical for the formation and development of fast moving ice streams, which lead to large iceberg calving. Although the main provenance for Heinrich Events is thought to be from Hudson Bay and Hudson Strait, we show that the more northerly regions around Lancaster Strait and Baffin Island may also be important sources for ice discharges during the last glacial period. (orig.)

  9. Ship Sensor Observations for Islands in the Stream 2002 - Pharmaceutical Discovery, Vision, and Bioluminescence - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the 2002 "Islands in the Stream - Pharmaceutical Discovery, Vision, and...

  10. Non-Dive Activities for Islands in the Stream 2002 - Pharmaceutical Discovery, Vision, and Bioluminescence - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Expeditions Information System (EIS) contains information recorded by the NOAA Office of Ocean Exploration's data manager during the 2002 "Islands in the Stream...

  11. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet.

    Science.gov (United States)

    Smith, Laurence C; Chu, Vena W; Yang, Kang; Gleason, Colin J; Pitcher, Lincoln H; Rennermalm, Asa K; Legleiter, Carl J; Behar, Alberto E; Overstreet, Brandon T; Moustafa, Samiah E; Tedesco, Marco; Forster, Richard R; LeWinter, Adam L; Finnegan, David C; Sheng, Yongwei; Balog, James

    2015-01-27

    Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km(2) of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54-2.81 cm⋅d(-1)) indicate that the surface drainage system conveyed its own storage volume every drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056-0.112 km(3)⋅d(-1) vs. ∼0.103 km(3)⋅d(-1)), and when integrated over the melt season, totaled just 37-75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean.

  12. Digital Video taken during the 3-person submersible Clelia dive 610 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, August 31, 2001 (NCEI Accession 0037158)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The video data in this accession was captured during the Islands in the Stream mission of 2001. Islands in the Stream was a three-month scientific expedition to...

  13. Digital Video taken during the 3-person submersible Clelia dive 609 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, August 30, 2001 (NCEI Accession 0037122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The video data in this accession was captured during the Islands in the Stream mission of 2001. Islands in the Stream was a three-month scientific expedition to...

  14. Digital Video taken during the 3-person submersible Clelia dive 613 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 01, 2001 (NCEI Accession 0037126)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The video data in this accession was captured during the Islands in the Stream mission of 2001. Islands in the Stream was a three-month scientific expedition to...

  15. Digital video taken during the 3-person submersible Clelia dive 606 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, August 29, 2001 (NCEI Accession 0039739)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The video data in this accession was captured during the Islands in the Stream mission of 2001. Islands in the Stream was a three-month scientific expedition to...

  16. Effects of a controlled under-ice oil spill on invertebrates of an arctic and a subarctic stream

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.C.; Stout, J.R.; Alexander, V.

    1986-01-01

    The short-term drift of macroinvertebrates is documented following two controlled oil spills placed under ice in an arctic (Imnavait Creek) and subarctic (Poker-Caribou Creek) stream just as ice covered the water in early winter. No mortality was observed, but several species responded by differentially drifting from the oil-impacted areas during the following days. In the arctic stream, Trichotanypus posticalis (Diptera) showed a significant increase in drift for the first few days. There was also an overall increase in drift of total organisms post spill. Phaenospectra sp. 1, the numerical dominant, decreased its nocturnal drifting compared with the upstream control station in the 5 days post spill. In the subarctic stream, Skwala sp. 1 (Plecoptera), Prosimulium sp. 1 (Simulidae) and Pseudodiamesa sp. 1 showed significant increase din drift post spill. Among the species of benthic invertebrates sampled with a Hess sampler (WILDCO, Saginaw, Mich.), only the density of Nemoura sp. 1 declined significantly post spill. Polar ordinations using percent difference showed that the oil-treated stations separated from the control stations in both the drift and the Hess bottom samples. Colonization of artificial substrates in Imnavait Creek during the winter following the spill was almost non-existent. In Poker-Caribou Creek much colonization took place over the winter with significantly more occurring on unoiled rocks as compared with oiled rocks.

  17. New Mass-Conserving Bedrock Topography for Pine Island Glacier Impacts Simulated Decadal Rates of Mass Loss

    Science.gov (United States)

    Nias, I. J.; Cornford, S. L.; Payne, A. J.

    2018-04-01

    High-resolution ice flow modeling requires bedrock elevation and ice thickness data, consistent with one another and with modeled physics. Previous studies have shown that gridded ice thickness products that rely on standard interpolation techniques (such as Bedmap2) can be inconsistent with the conservation of mass, given observed velocity, surface elevation change, and surface mass balance, for example, near the grounding line of Pine Island Glacier, West Antarctica. Using the BISICLES ice flow model, we compare results of simulations using both Bedmap2 bedrock and thickness data, and a new interpolation method that respects mass conservation. We find that simulations using the new geometry result in higher sea level contribution than Bedmap2 and reveal decadal-scale trends in the ice stream dynamics. We test the impact of several sliding laws and find that it is at least as important to accurately represent the bedrock and initial ice thickness as the choice of sliding law.

  18. A natural ice boom

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.R. [Manitoba Hydro, Winnipeg, MB (Canada)

    1998-10-01

    Planning for ice jams and ice movements are critical on the Nelson River in northern Manitoba in designing cofferdams. Experience on the St. Lawrence River demonstrated the possibility of exercising some control over ice action by judicious placement of log booms or ice control structures. The success of experiments with man-made controls led to field tests in which an ice sheet of sufficient magnitude and competence was introduced into the open water stream of the Nelson River. The ice sheet was subsequently jammed in a narrow channel, thereby creating a natural ice bridge or boom upstream of a proposed hydro development. Under favourable conditions, this boom would initiate the progression of the ice cover from its location upstream, cutting off the downstream reach from the ice producing potential of the upstream reach. Although ice would still be generated downstream, the length of the reach between the ice boom and the development site would be short enough that ice jamming at the development site would never occur. Although problems in blasting prevented the introduction of a competent ice sheet into the main stream of the river at the location chosen, sufficient confidence in the theory was gained to warrant further consideration. 4 refs., 1 tab., 10 figs.

  19. A simple holistic hypothesis for the self-destruction of ice sheets

    Science.gov (United States)

    Hughes, T.

    2011-07-01

    Ice sheets are the only components of Earth's climate system that can self-destruct. This paper presents the quantitative force balance for bottom-up modeling of ice sheets, as first presented qualitatively in this journal as a way to quantify ice-bed uncoupling leading to self-destruction of ice sheets ( Hughes, 2009a). Rapid changes in sea level and climate can result if a large ice-sheet self-destructs quickly, as did the former Laurentide Ice Sheet of North America between 8100 and 7900 BP, thereby terminating the last cycle of Quaternary glaciation. Ice streams discharge up to 90 percent of ice from past and present ice sheets. A hypothesis is presented in which self-destruction of an ice sheet begins when ubiquitous ice-bed decoupling, quantified as a floating fraction of ice, proceeds along ice streams. This causes ice streams to surge and reduce thickness by some 90 percent, and height above sea level by up to 99 percent for floating ice, so the ice sheet undergoes gravitational collapse. Ice collapsing over marine embayments becomes floating ice shelves that may then disintegrate rapidly. This floods the world ocean with icebergs that reduce the ocean-to-atmosphere heat exchange, thereby triggering climate change. Calving bays migrate up low stagnating ice streams and carve out the accumulation zone of the collapsed ice sheet, which prevents its recovery, decreases Earth's albedo, and terminates the glaciation cycle. This sequence of events may coincide with a proposed life cycle of ice streams that drain the ice sheet. A first-order treatment of these life cycles is presented that depends on the longitudinal force balance along the flowbands of ice streams and gives a first approximation to ice-bed uncoupling at snapshots during gravitational collapse into ice shelves that disintegrate, thereby removing the ice sheet. The stability of the Antarctic Ice Sheet is assessed using this bottom-up approach.

  20. delta 18O variations in snow on the Devon Island ice cap, Northwest Territories, Canada

    International Nuclear Information System (INIS)

    Koerner, R.; Russel, R.D.

    1979-01-01

    A study of delta 18 O variations of snow samples taken on traverses across the Devon Island ice cap in June 1971, 1972, and 1973 has shown a difference between the accumulation conditions on the souteast and nortwest sides of the ice cap. On the souteast side there is an increasing depletion of 18 O in the snow with increasing elevation. This pattern is attibuted to the effect of orographic uplift of air masses moving over the ice cap from the southeast, which promotes condensation and precipitation due to adiabatic cooling. On the northwest side of the ice cap there is no evidence of any further depletion of 18 O in snow, neither with increasing distance from the possible moisture source in Baffin Bay to the southeast nor with increasing elevation if the air mass comes from the northwest. In this case condensation is due to isobaric cooling so that precipitation is generally from level cloud bases. The changes inferred for the isotopic composition of the water vapour as it rises up the southeast slope are found to be consistent with its depletion through precipitation under near-equilibrium conditions. It is calculated that approximately 30% of the moisture at sea level on the southeast side of the ice cap and 8% at the top of the ice cap are of local origin. Lower temporal and aerial variability of the delta values on the southeast side of the ice cap is attributed to dominance of the Baffin Bay low on that side Effecting consistency of storm conditions there. The delta values of ice in the ablation zone on the Sverdrup Glacier show the combined effect of ice movement from the accumulation to the ablation zone and climatic change during the period of movement from cold to warm and back to cold conditions again. (auth)

  1. Phased occupation and retreat of the last British-Irish Ice Sheet in the southern North Sea; geomorphic and seismostratigraphic evidence of a dynamic ice lobe

    Science.gov (United States)

    Dove, Dayton; Evans, David J. A.; Lee, Jonathan R.; Roberts, David H.; Tappin, David R.; Mellett, Claire L.; Long, David; Callard, S. Louise

    2017-05-01

    Along the terrestrial margin of the southern North Sea, previous studies of the MIS 2 glaciation impacting eastern Britain have played a significant role in the development of principles relating to ice sheet dynamics (e.g. deformable beds), and the practice of reconstructing the style, timing, and spatial configuration of palaeo-ice sheets. These detailed terrestrially-based findings have however relied on observations made from only the outer edges of the former ice mass, as the North Sea Lobe (NSL) of the British-Irish Ice Sheet (BIIS) occupied an area that is now almost entirely submarine (c.21-15 ka). Compounded by the fact that marine-acquired data have been primarily of insufficient quality and density, the configuration and behaviour of the last BIIS in the southern North Sea remains surprisingly poorly constrained. This paper presents analysis of a new, integrated set of extensive seabed geomorphological and seismo-stratigraphic observations that both advances the principles developed previously onshore (e.g. multiple advance and retreat cycles), and provides a more detailed and accurate reconstruction of the BIIS at its southern-most extent in the North Sea. A new bathymetry compilation of the region reveals a series of broad sedimentary wedges and associated moraines that represent several terminal positions of the NSL. These former still-stand ice margins (1-4) are also found to relate to newly-identified architectural patterns (shallow stacked sedimentary wedges) in the region's seismic stratigraphy (previously mapped singularly as the Bolders Bank Formation). With ground-truthing constraint provided by sediment cores, these wedges are interpreted as sub-marginal till wedges, formed by complex subglacial accretionary processes that resulted in till thickening towards the former ice-sheet margins. The newly sub-divided shallow seismic stratigraphy (at least five units) also provides an indication of the relative event chronology of the NSL. While there

  2. MIS-11 duration key to disappearance of the Greenland ice sheet

    Science.gov (United States)

    Robinson, Alexander; Alvarez-Solas, Jorge; Calov, Reinhard; Ganopolski, Andrey; Montoya, Marisa

    2017-07-01

    Palaeo data suggest that Greenland must have been largely ice free during Marine Isotope Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it remains unclear how such conditions led to an almost complete disappearance of the ice sheet. Here we use transient climate-ice sheet simulations to simultaneously constrain estimates of regional temperature anomalies and Greenland's contribution to the MIS-11 sea-level highstand. We find that Greenland contributed 6.1 m (3.9-7.0 m, 95% credible interval) to sea level, ~7 kyr after the peak in regional summer temperature anomalies of 2.8 °C (2.1-3.4 °C). The moderate warming produced a mean rate of mass loss in sea-level equivalent of only around 0.4 m per kyr, which means the long duration of MIS-11 interglacial conditions around Greenland was a necessary condition for the ice sheet to disappear almost completely.

  3. Deformation and failure of the ice bridge on the Wilkins Ice Shelf, Antarctica

    NARCIS (Netherlands)

    Humbert, A.; Gross, D.; Müller, R.; Braun, M.; van de Wal, R.S.W.; van den Broeke, M.R.; Vaughan, D.G.; van de Berg, W.J.

    2010-01-01

    A narrow bridge of floating ice that connected the Wilkins Ice Shelf, Antarctica, to two confining islands eventually collapsed in early April 2009. In the month preceding the collapse, we observed deformation of the ice bridge by means of satellite imagery and from an in situ GPS station.

  4. Tuppiap Qeqertaa (Tobias Island): a newly discovered island off northeast Greenland

    DEFF Research Database (Denmark)

    Bennike, O.; Mikkelsen, N.; Forsberg, René

    2006-01-01

    The small island of Tuppiap Qeqertaa, formerly known as Tobias circle divide or Tobias Island, is situated 80 km off the northeast Greenland coast. The island was discovered in 1993 and is approximately 2 km long and 1.5 km wide. Most of the island is covered by an ice cap that rises to 35 in abo...

  5. Submersible Data (Dive Waypoints) for Islands in the Stream 2002 - Pharmaceutical Discovery, Vision, and Bioluminescence - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during one dive of the 2002 "Islands in the Stream -...

  6. Ice issues relating to the Kashagan phase II development, North Caspian Sea.

    Energy Technology Data Exchange (ETDEWEB)

    Croasdale, Ken [KRCA, Calgary (Canada); Verlaan, Paul [Shell Development Kashagan, London (United Kingdom)

    2011-07-01

    The ice conditions in the north Caspian Sea are challenging for the Kashagan field development. The climatic conditions of the area are extreme, with cold winters (-30 degrees C) and hot summers (+40 degrees C). The presence and the quantity of ice are also highly variable from year to year. This paper investigated the major ice-related issues affecting the Kashagan structures and pipelines. An extensive description of the ice environment was provided. Ice design criteria for the offshore rock islands, the pipelines and the layout of the ice protection barriers around the islands were presented. It was found that the ice design methods used in Arctic areas have required some adaptations to meet Caspian conditions. All the islands were designed with an ice encroachment zone to reduce the hazardous effect of the ice rubble encroaching. Rock sloped barriers and steel barriers were implanted around the islands to protect the logistical areas.

  7. Balance of the West Antarctic Ice Sheet

    Science.gov (United States)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  8. Geoologic controls on the architecture of the Antarctic Ice Sheet's basal interface: New results from West and East Antarctica from long range geophysics (Invited)

    Science.gov (United States)

    Young, D. A.; Blankenship, D. D.; Greenbaum, J. S.; Richter, T.; Aitken, A.; Siegert, M. J.; Roberts, J. L.

    2013-12-01

    The ice-rock interface underlying the Antarctic Ice Sheet was shaped by interactions between underlying gondwanan geology and the overlying ice sheet. The ice sheet now preserves from sedimentary infill an incredibly rugged terrain which now plays a critical role in shaping subglacial hydrology, and thus shape ice sheet behavior. This terrain can by imaged through aerogeophysical means, in particular through ice penetrating radar, while airborne potential fields measurements provide insight into the geological framework that controlled erosion. Over the post IPY era, the density of airborne coverage is only now reaching the point where small scale structure can be identified and placed in context. Of particular importance is understanding the formation of focused erosional valleys, 30-50 km wide, representing now buried subglacial fjords. After initial data from the GIMBLE project in West Antarctica, and five years of sustained long range ICECAP surveys over East Antarctica , we now have a better view of the diversity of these features. The local erosion of these valleys, often cutting through significant topographic barriers, irregularly samples the underlying geology, provided a complex story in the sediment to the Antarctic margin. These valleys now provide the subglacial conduits for significant ice sheet catchments, in particular for subglacial water, including the inland catchments of DeVicq, Thwaites, and Pine Island Glaciers in West Antarctica, and Denman Glacier, Totten Glacier, Byrd Glacier and Cook Ice Shelf in East Antarctica. We find that these features, now sometimes hundreds of kilometers inland of the modern grounding line, often nucleate on or are aligned with structure inherited from the assembly of the Antarctic continent. While many of these features currently host active outlet glaciers or their tributaries, some do not, implying avenues for ice sheet change. In West Antarctica, we find a new deep connection between the coast and interior basin

  9. Sedimentary infilling of bedrock-controlled palaeo-embayments off Cape Trafalgar, Strait of Gibraltar (Gulf of Cadiz)

    Science.gov (United States)

    de Castro, Sandra; Lobo, Francisco J.

    2018-02-01

    This study investigates two bedrock-controlled palaeo-coastal embayments on the Barbate Platform off Cape Trafalgar near the Strait of Gibraltar (Gulf of Cadiz shelf, SW Iberian Peninsula), aiming to reveal their infilling dynamics and the influence of rocky outcrops on shallow-water hydrodynamics and sediment transport. The approach relies on detailed multibeam bathymetric data, high-resolution seismic profiles and tidal current simulations. Elongated rocky outcrops formed a palaeo-coast when sea level was approximately 35 to 20 m below that of the present day, and bound a relatively flat area. However, the seismic profiles enabled to distinguish two main troughs (A and B) that were infilled following a distinctive evolution during the last transgression. Five seismic units were identified (I to V, from base to top). Deposit A is composed of seismic units II to V and is interpreted as a marine embayment infill, here termed the Barbate palaeo-embayment (BPE). Deposit B is composed of seismic units I to IV and is interpreted as a palaeo-valley infill, here termed the Barbate palaeo-valley (BPV). The complex internal stratigraphic architecture depicts an overall evolution from tidal/fluvial deposits to shallow-water marine deposits. Most significant is the occurrence of coupled tidal flats/estuarine sand bars constituting the infilling of the BPE; this suggests the persistence of a high-energy current in a shallow, confined embayment, which was amplified by the rocky outcrop constrictions and possibly facilitated by the episodic movement of a normal fault. In contrast to this active setting, the nearby straight and narrow BPV was subjected to lower-energy infilling dynamics during its initial flooding phases. There, tidal activity was possibly reduced by the straight morphology of the valley and the occurrence of a topographic constriction (i.e. the Barbate Passage) at the mouth of the valley.

  10. Research on metallogenetic system and palaeo-hydrodynamic analysis on exogenic uranium deposits

    International Nuclear Information System (INIS)

    Ma Liang; Wang Ping

    2008-01-01

    The research and current development trends of sandstone-type uranium deposit at home and abroad are analyzed. A new study idea is put forward in the view of evolution of metallogenetic system i.e. taking the dynamics of matter transportation as main clue to restore the regional palaeo- topography at pre-ore stage, ore forming stage and post-ore stage under the principle of system theory in the way of background evolution of regional geology, especially tectonic dynamic evolution and lithofacies and palaeogeography. Palaeo-flowing field at different geological periods in the processing of regional evolution is reestablished by the usage of palaeohydrogeological analysis combined with the theory of groundwater flowing system. Dynamical process of source-transportation-accumulation- reservation of metallogenetic matter is focused on region scale. (authors)

  11. Dive Data from Expedition Information System (EIS) for Islands in the Stream 2002 - Deep Reef Habitat - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Expeditions Information System (EIS) contains information recorded by the NOAA Office of Ocean Exploration's data manager during the 2002 "Islands in the Stream...

  12. Disordered kagomé spin ice

    Science.gov (United States)

    Greenberg, Noah; Kunz, Andrew

    2018-05-01

    Artificial spin ice is made from a large array of patterned magnetic nanoislands designed to mimic naturally occurring spin ice materials. The geometrical arrangement of the kagomé lattice guarantees a frustrated arrangement of the islands' magnetic moments at each vertex where the three magnetic nanoislands meet. This frustration leads to a highly degenerate ground state which gives rise to a finite (residual) entropy at zero temperature. In this work we use the Monte Carlo simulation to explore the effects of disorder in kagomé spin ice. Disorder is introduced to the system by randomly removing a known percentage of magnetic islands from the lattice. The behavior of the spin ice changes as the disorder increases; evident by changes to the shape and locations of the peaks in heat capacity and the residual entropy. The results are consistent with observations made in diluted physical spin ice materials.

  13. Inception of the Laurentide Ice Sheet using asynchronous coupling of a regional atmospheric model and an ice model

    Science.gov (United States)

    Birch, L.; Cronin, T.; Tziperman, E.

    2017-12-01

    The climate over the past 0.8 million years has been dominated by ice ages. Ice sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of ice flow dynamics missing in GCMs. We investigate the growth of the Laurentide Ice Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an ice sheet model based on the shallow-ice approximation, capturing the ice flow that may be critical to the spread of ice sheets away from mountain ice caps. The ice sheet model calculates the surface area newly covered by ice and the change in the ice surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of ice cover and changes in ice surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial ice growth on the Penny Ice Cap causes regional cooling that increases the accumulation on the Barnes Ice Cap. We investigate how ice and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.

  14. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    Science.gov (United States)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  15. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    Science.gov (United States)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  16. Simulating the evolution of the Amundsen Sea Sector with a coupled ice-ocean model

    Science.gov (United States)

    Seroussi, H. L.; Nakayama, Y.; Menemenlis, D.; Larour, E. Y.; Morlighem, M.; Rignot, E. J.

    2017-12-01

    Ice shelves and floating glacier termini play an important role in the stability of ice sheets and interact strongly with the ocean. They account for much of the buttressing against the flow of inland glaciers that drain the Antarctic ice sheet. Changes in their geometry due to ice-front retreat, thinning or even collapse profoundly affect the flow of their tributary glaciers, which in turn affects the volume of grounded ice carried by these tributary glaciers into the ocean, and the extent of resulting sea level rise. Recent simulations of glaciers in Antarctica show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects glaciers' speed over several hundreds of kilometers upstream of the grounding line. These melting rates, however, as well as their spatial and temporal evolution remain largely unknown. In the absence of direct long-term observations, coupled ice-ocean models are the best available approach to address this question. In a previous study, we simulated the coupled ice-ocean system near Thwaites Glacier using a new two-way coupled system between the Massachusetts Institute of Technology general circulation model (MITgcm) and the Ice Sheet System Model (ISSM). Our results highlighted the impact of ocean conditions on glacier evolution and demonstrated the importance of simulating the coupled ice-ocean system to produce accurate melting rates under the ice shelf and at the grounding line. In this study, we focus on the entire Amundsen Sea sector, a region that experienced glacier acceleration, thinning and grounding line retreat over the past three decades. We investigate the feedbacks between changes in the ice and ocean, and the dynamic response of the glacier to changes in the ocean circulation. The simulations suggest that this region is likely to undergo substantial changes in the coming decades. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a

  17. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    Science.gov (United States)

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  18. One million served: Rhode Island`s recycling facility

    Energy Technology Data Exchange (ETDEWEB)

    Malloy, M.G.

    1997-11-01

    Rhode Island`s landfill and adjacent materials recovery facility (MRF) in Johnston, both owned by the quasi-public Rhode Island Resource Recovery Corp. (RIRRC, Johnston), serve the entire state. The $12-million recycling facility was built in 1989 next to the state`s sole landfill, the Central Landfill, which accepts only in-state trash. The MRF is operated for RIRRC by New England CRInc. (Hampton, N.H.), a unit of Waste Management, Inc. (WMI, Oak Brook, Ill.). It handles a wide variety of materials, from the usual newspaper, cardboard, and mixed containers to new streams such as wood waste, scrap metal, aseptic packaging (milk and juice boxes), and even textiles. State municipalities are in the process of adding many of these new recyclable streams into their curbside collection programs, all of which feed the facility.

  19. Quaternary geology of the Duck Hawk Bluffs, southwest Banks Island, Arctic Canada: a re-investigation of a critical terrestrial type locality for glacial and interglacial events bordering the Arctic Ocean

    Science.gov (United States)

    Evans, David J. A.; England, John H.; La Farge, Catherine; Coulthard, Roy D.; Lakeman, Thomas R.; Vaughan, Jessica M.

    2014-05-01

    Duck Hawk Bluffs, southwest Banks Island, is a primary section (8 km long and 60 m high) in the western Canadian Arctic Archipelago exposing a long record of Quaternary sedimentation adjacent to the Arctic Ocean. A reinvestigation of Duck Hawk Bluffs demonstrates that it is a previously unrecognized thrust-block moraine emplaced from the northeast by Laurentide ice. Previous stratigraphic models of Duck Hawk Bluffs reported a basal unit of preglacial fluvial sand and gravel (Beaufort Fm, forested Arctic), overlain by a succession of three glaciations and at least two interglacials. Our observations dismiss the occurrence of preglacial sediments and amalgamate the entire record into three glacial intervals and one prominent interglacial. The first glacigenic sedimentation is recorded by an ice-contact sandur containing redeposited allochthonous organics previously assigned to the Beaufort Fm. This is overlain by fine-grained sediments with ice wedge pseudomorphs and well-preserved bryophyte assemblages corresponding to an interglacial environment similar to modern. The second glacial interval is recorded by ice-proximal mass flows and marine rhythmites that were glacitectonized when Laurentide ice overrode the site from Amundsen Gulf to the south. Sediments of this interval have been reported to be magnetically reversed (>780 ka). The third interval of glacigenic sedimentation includes glacifluvial sand and gravel recording the arrival of Laurentide ice that overrode the site from the northeast (island interior) depositing a glacitectonite and constructing the thrust block moraine that comprises Duck Hawk Bluffs. Sediments of this interval have been reported to be magnetically normal (Banks Island coalesced with an ice stream in Amundsen Gulf, depositing the interlobate Sachs Moraine that contains shells as young as ˜24 cal ka BP (Late Wisconsinan). During deglaciation, meltwater emanating from these separating ice lobes deposited outwash that extended to deglacial

  20. Dive Data from Expedition Information System (EIS) for Islands in the Stream 2002 - Pharmaceutical Discovery, Vision, and Bioluminescence - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Expeditions Information System (EIS) contains information recorded by the NOAA Office of Ocean Exploration's data manager during the 2002 "Islands in the Stream...

  1. GPR capabilities for ice thickness sampling of low salinity ice and for detecting oil in ice

    Energy Technology Data Exchange (ETDEWEB)

    Lalumiere, Louis [Sensors by Design Ltd. (Canada)

    2011-07-01

    This report discusses the performance and capabilities test of two airborne ground-penetrating radar (GPR) systems of the Bedford Institute of Oceanography (BIO), Noggin 1000 and Noggin 500, for monitoring low salinity snow and ice properties which was used to measure the thickness of brackish ice on Lake Melville in Labrador and on a tidal river in Prince Edward Island. The work of other researchers is documented and the measurement techniques proposed are compared to the actual GPR approach. Different plots of GPR data taken over snow and freshwater ice and over ice with changing salinity are discussed. An interpretation of brackish ice GPR plots done by the Noggin 1000 and Noggin 500 systems is given based on resolution criterion. Additionally, the capability of the BIO helicopter-borne GPR to detect oil-in-ice has been also investigated, and an opinion on the likelihood of the success of GPR as an oil-in-ice detector is given.

  2. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.

  3. Observation of Arctic island barren-ground caribou (Rangifer tarandus groenlandicus migratory movement delay due to human induced sea-ice breaking

    Directory of Open Access Journals (Sweden)

    Mathieu Dumond

    2013-06-01

    Full Text Available Normal 0 21 false false false SV X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Normal tabell"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-fareast-language:EN-US;} The seasonal migration of the Dolphin and Union caribou (Rangifer tarandus groenlandicus herd between Victoria Island and the mainland (Nunavut/Northwest Territories, Canada relies on the formation of sea-ice that connects the Island to the mainland from late-October to early-June.  During an aerial survey of the Dolphin and Union caribou herd in October 2007 on southern Victoria Island, Nunavut, Canada, we documented the short-term effects of the artificial maintenance of an open water channel in the sea-ice on caribou migratory movements during staging along the coast.

  4. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  5. Integrating terrestrial and marine records of the LGM in McMurdo Sound, Antarctica: implications for grounded ice expansion, ice flow, and deglaciation of the Ross Sea Embayment

    Science.gov (United States)

    Christ, A. J.; Marchant, D. R.

    2017-12-01

    During the LGM, grounded glacier ice filled the Ross Embayment and deposited glacial drift on volcanic islands and peninsulas in McMurdo Sound, as well as along coastal regions of the Transantarctic Mountains (TAM), including the McMurdo Dry Valleys and Royal Society Range. The flow geometry and retreat history of this ice remains debated, with contrasting views yielding divergent implications for both the fundamental cause of Antarctic ice expansion as well as the interaction and behavior of ice derived from East and West Antarctica during late Quaternary time. We present terrestrial geomorphologic evidence that enables the reconstruction of former ice elevations, ice-flow paths, and ice-marginal environments in McMurdo Sound. Radiocarbon dates of fossil algae interbedded with ice-marginal sediments provide a coherent timeline for local ice retreat. These data are integrated with marine-sediment records and multi-beam data to reconstruct late glacial dynamics of grounded ice in McMurdo Sound and the western Ross Sea. The combined dataset suggest a dominance of ice flow toward the TAM in McMurdo Sound during all phases of glaciation, with thick, grounded ice at or near its maximum extent between 19.6 and 12.3 calibrated thousands of years before present (cal. ka). Our data show no significant advance of locally derived ice from the TAM into McMurdo Sound, consistent with the assertion that Late Pleistocene expansion of grounded ice in McMurdo Sound, and throughout the wider Ross Embayment, occurs in response to lower eustatic sea level and the resulting advance of marine-based outlet glaciers and ice streams (and perhaps also reduced oceanic heat flux), rather than local increases in precipitation and ice accumulation. Finally, when combined with allied data across the wider Ross Embayment, which show that widespread deglaciation outside McMurdo Sound did not commence until 13.1 ka, the implication is that retreat of grounded glacier ice in the Ross Embayment did

  6. Solicitation of HPLC and HPTLC Techniques for Determination of Rutin from Polyalthia longifolia Thwaites

    Science.gov (United States)

    Doshi, Gaurav Mahesh; Zine, Sandeep Prabhakar; Chaskar, Pratip Kashinath; Une, Hemant Devidas

    2014-01-01

    Background: Polyalthia longifolia Thwaites is an important traditional plant in India. Rutin, an active constituent has been reported to possess good amount of pharmacological as well as therapeutic potential. Objective: The aim of the present study was to find out by analytical techniques how much percentage of rutin is present in the plant leaves’ ethanolic extract by analytical techniques. Materials and Methods: Shade dried leaves of Polyalthia longifolia were subjected to cold ethanolic extraction followed by monitoring the isolated rutin high-pressure liquid chromatography (HPLC) and high performance thin layer chromatography (HPTLC) after carrying out preliminary phytochemical screening. Results: Extraction yield was found to be 13.94% w/w. Phytochemical screening of the extract showed the presence of flavonoids, steroids, diterpenoids, alkaloids, saponins, tannins and phenolic compounds and mucilage. From the Rf value, the ethanolic extract was found to be having constituent identical to rutin. By HPTLC and HPLC the amount of rutin was found to be 11.60% w/w and 4.03% w/v, respectively. Conclusion: The active constituent isolated was found to be equal to rutin. PMID:25002804

  7. Architecture and sedimentary processes on the mid-Norwegian continental slope: A 2.7 Myr record from extensive seismic evidence

    Science.gov (United States)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2018-07-01

    Quaternary architectural evolution and sedimentary processes on the mid-Norwegian continental slope are investigated using margin-wide three- and two-dimensional seismic datasets. Of ∼100,000 km3 sediments delivered to the mid-Norwegian shelf and slope over the Quaternary, ∼75,000 km3 comprise the slope succession. The structural high of the Vøring Plateau, characterised by initially low (∼1-2°) slope gradients and reduced accommodation space, exerted a strong control over the long-term architectural evolution of the margin. Slope sediment fluxes were higher on the Vøring Plateau area, increasing up to ∼32 km3 ka-1 during the middle Pleistocene, when fast-flowing ice streams advanced to the palaeo-shelf edge. Resulted in a more rapid slope progradation on the Vøring Plateau, these rates of sediment delivery are high compared to the maximum of ∼7 km3 ka-1 in the adjacent sectors of the slope, characterised by steeper slope (∼3-5°), more available accommodation space and smaller or no palaeo-ice streams on the adjacent shelves. In addition to the broad-scale architectural evolution, identification of more than 300 buried slope landforms provides an unprecedented level of detailed, process-based palaeoenvironmental reconstruction. Channels dominate the Early Pleistocene record (∼2.7-0.8 Ma), during which glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Morphologic signature of glacigenic debris-flows appear within the Middle-Late Pleistocene (∼0.8-0 Ma) succession. Their abundance increases towards Late Pleistocene, marking a decreasing role for channelized turbidity currents and dense water flows. This broad-scale palaeo-environmental shift coincides with the intensification of Northern Hemispheric glaciations, highlighting first-order climate control on the sedimentary processes in high-latitude continental slopes.

  8. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden)

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  9. Ice sheet hydrology from observations

    International Nuclear Information System (INIS)

    Jansson, Peter

    2010-11-01

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  10. Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes ice motion and topography measurements that were taken by measuring movement and altitude of poles set in the West Antarctic Ice Shelf. The...

  11. Constructing Palaeo-DEMs in landscape evolution: example of the Geren catchment, Turkey

    Science.gov (United States)

    van Gorp, Wouter; Schoorl, Jeroen M.; Veldkamp, Tom; Maddy, Darrel; Demir, Tuncer; Aytac, Serdar

    2017-04-01

    How to reconstruct the past landscape and how does this influence your modelling results? This is an important paradigma in the soilscape and landscape evolution modelling community. Here an example of Turkey will be presented where a 300 ka LEM simulation requested to the thoroughly think about the initial landscape as an important input. What information can be used to know the morphology of a landscape 300 ka ago? The Geren catchment, a tributary of the upstream Gediz river near Kula, Turkey, has been influenced by base level changes during the Late Pleistocene and Holocene. Different lavaflows have blocked the Gediz and Geren river several times over in the timespan of the last 300 ka -200 Ka and in the recent Holocene. The heavily dissected Geren catchment shows a landscape evolution which is more complex than just a reaction on these base level changes. The steps and inputs of the palaeo DEM reconstruction will be presented and the modelling results will be presented. Keywords: Digital Elevation Model, Palaeo DEMs, Numerical modelling

  12. Geochemistry and geochronology of the Archean and palaeo-Proterozoic formations of southern Cameroon (Ntem group, Congo craton)

    International Nuclear Information System (INIS)

    Rchameni, R.

    1997-01-01

    The aim of this work is to understand the crustal evolution of the NW margin of the Congo craton using structural, petrography, isotopic, geochemical and geochronological studies of the Archean and palaeo-Proterozoic formations of the Ntem group of southern Cameroon. The synthesis of these studies allows to propose a diapir-type gravity model linked with the genesis of granitoids to explain the geodynamical evolution of this part of the craton during the Archean. A convergence model with the collision of the Congo and Sao-Francisco cratons and with crust thickening followed by a relaxation phase is proposed for the palaeo-Proterozoic. (J.S.)

  13. Observation of hydro-acoustic signal from the Balleny Islands, Ross Sea, Antarctic: Seasonal ice activities and earthquakes from Pacific-Antarctic ridge

    Science.gov (United States)

    Hong, J. K.; Kang, S. G.; Dziak, R. P.; Park, Y.; Lau, T. K. A.; Haxel, J.; Matsumoto, H.

    2017-12-01

    From January 2015 to March 2016, five hydrophone moorings were deployed near the Balleny Islands to obtain the long-term hydroacoustic record as a collaborative effort between the NOAA/Pacific Marine Environmental Laboratory and the Korea Polar Research Institute. The goal of this hydro-acoustic project is to understand seasonal sea-ice activities and identify potential underwater volcanic sources within the Balleny seamounts. All five of the hydrophone moorings were recovered in March 2016, however only three of them recorded 14 months of continuous, broadband (1 kHz sample rate) hydro-acoustic data successfully. In spite of coordinating problem by partial recovery, recorded data contain valuable information for seasonal sea-ice activities and earthquakes from Pacific-Antarctic Ridge. We analyzed events from ice-quakes and earthquakes statistically. The number of ice-quakes is maximum in the austral summer while minimum in the austral winter which shows a clear seasonal pattern consistent with freeze-thaw cycles. Comparing with global earthquakes catalogue, number of earthquake events are correlated well with the catalogue. Because the austral winter is more calm by ice-quakes, however, we can detect more earthquakes in this season.

  14. Marine dispersal determines the genetic population structure of migratory stream fauna of Puerto Rico: evidence for island-scale population recovery processes

    Science.gov (United States)

    Benjamin D. Cook; Sofie Bernays; Catherine M. Pringle; Jane M. Hughes

    2009-01-01

    Various components of island stream faunas, including caridean shrimps, fish, and gastropods, undertake obligate amphidromous migration, whereby larvae are released in upstream freshwater reaches, drift downstream to estuaries or marine waters, then migrate upstream as postlarvae to freshwater adult habitats. Longitudinal migration from estuaries to headwaters is well...

  15. Using aerogravity and seismic data to model the bathymetry and upper crustal structure beneath the Pine Island Glacier ice shelf, West Antarctica

    Science.gov (United States)

    Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.

    2013-12-01

    Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.

  16. Islands in the Stream 2001 on NOAA Ship Gordon Gunter in the North Atlantic Ocean and the Gulf of Mexico between 20010510 and 20011004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Islands in the Stream expedition explored protected and unprotected deep water coral reefs and hard-bottom communities throughout the Gulf of Mexico and South...

  17. Physical modeling and monitoring of the process of thermal-erosion of an ice-wedge during a partially-controlled field experiment (Bylot Island, NU, Canada)

    Science.gov (United States)

    Godin, E.; Fortier, D.

    2013-12-01

    Syngenetic ice-wedges polygons are widespread periglacial features of the Arctic. On Bylot Island, Nunavut, Canada, numerous thermo-erosion gullies up to several 100's m in length developed in polygonal wetlands during the last decades. These gullies contributed to drainage of these wetlands and changed dramatically local ecological conditions. Concentrated and repeated snowmelt surface runoff infiltrated frost cracks, where convective heat transfer between flowing water and ice initiated piping in ice wedges leading to the rapid development of tunnels and gullies in the permafrost (Fortier D. et al., 2007). We conducted field experiments to quantify the convection process and speed of ice wedges ablation. The experiments were accomplished between the 23/06/2013 and the 05/07/2013 over A; an exposed sub-horizontal ice-wedge surface and B; a tunnel in an ice-wedge crack. The ice was instrumented with graduated sticks to calculate the ice ablation following the flow of a defined amount of water. A fixed quantity of water obtained from a nearby waterfall was diverted over the ice through a PVC pipe. Water temperature Wt (K), quantity Wq (L s-1 or m3 s-1), ice ablation rate Iar (m s-1) and convective heat transfer coefficient α (W m-2 K) were obtained during the 5 experiments. The objective of this paper is to quantify the heat transfer process from field measurements from an ice wedge under ablation and to compare with coefficients from previous researches and in the literature. For each experiment with the ice-surface scenario, water temperature varied between 280 K and 284 K. Discharge varied between 0.0001 and 0.0003 m3 s-1. Ablation rate varied between 1.8 * 10-5 and 0.0004 m s-1. Heat transfer coefficient varied between 706 and 11 655 W m-2 K and between 54 and 4802 W of heat was transferred to ice. For each experiment with the tunnel scenario, water temperature was 284 K × 1 K. Discharge was 0.0002 m3 s-1. Ablation rate varied between 0.0001 and 0.0003 m s-1

  18. Ancient limpet shells as paleo-environmental and ethno-archaeological archives: the case of Beniguet Island's shell middens (Iroise Sea)

    Science.gov (United States)

    Cudennec, Jean-François; Stephan, Pierre; Dupont, Catherine; Pailler, Yvan; Thébault, Julien; Schöne, Bernd; Paulet, Yves-Marie

    2017-04-01

    During the winter 2013-2014, severe storm events caused a coastal erosion in the southern part of the Beniguet Island (Brittany, France). The associated shoreline retreat had uncovered three layers of shell middens interbedded into an aeolian sand dune deposit. From several radiocarbon dating crossed with the study of ceramic and lithic contents, the shell middens were dated to the Final Neolithic (2400 BC), the Early Bronze Age (2000 BC) and the Early Middle Age (800 AD) respectively. This site offers a unique opportunity to collect two types of information: palaeo-environmental (palaeo-temperature of sea water) and archaeological (determination of harvest season). In this study, we focus on gastropod of the genus Patella which represent 90% of the remains found in this midden. This organism is potentially a highly valuable archive for these environments because they are intertidal and relatively sedentary. We studied the growth rings in the outer calcitic layer of individual limpet shells from the Neolithic, Early Bronze Age and Present Day populations. We report here the results of δ18O analyses. We found a similarity between the reconstructed palaeo-temperature in the Neolithic and the Present periods (between 13 and 14°C in summer and about 8 - 9°C in winter). However, palaeo-temperatures of the Early Bronze Age shells are significantly lower in winter (5 - 6 °C). Moreover, the initial results of the δ18O analyses at the margin of these shells showed that they were harvested during a specific season (end of spring or early summer). Additional work will be done to address questions about shell growth dynamics of these species. These results confirm the interest of using ancient limpet shells as palaeo-environmental and archaeological archives.

  19. Behavioural and physiological responses of brook trout Salvelinus fontinalis to midwinter flow reduction in a small ice-free mountain stream.

    Science.gov (United States)

    Krimmer, A N; Paul, A J; Hontela, A; Rasmussen, J B

    2011-09-01

    This study presents an experimental analysis of the effects of midwinter flow reduction (50-75%, reduction in discharge in 4 h daily pulses) on the physical habitat and on behaviour and physiology of overwintering brook trout Salvelinus fontinalis in a small mountain stream. Flow reduction did not result in significant lowering of temperature or formation of surface or subsurface ice. The main findings were (1) daily movement by S. fontinalis increased (c. 2·5-fold) during flow reduction, but was limited to small-scale relocations (reduced during flow reduction. (3) Although both experimental and reference fish did lose mass and condition during the experiment, no effects of flow reduction on stress indicators (blood cortisol or glucose) or bioenergetics (total body fat, water content or mass loss) were detected, probably because access to the preferred type of cover remained available. Like other salmonids, S. fontinalis moves little and seeks physical cover during winter. Unlike many of the more studied salmonids, however, this species overwinters successfully in small groundwater-rich streams that often remain ice-free, and this study identifies undercut banks as the critical winter habitat rather than substratum cover. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  20. Applying 3D Dynamic Visualisation to (Palaeo) Geomorphic Reconstruction: Modelling a Tenth Century Jökulhlaup at Sólheimajökull Glacier, South Iceland.

    Science.gov (United States)

    Booth, Laura; Isaacs, John

    2014-05-01

    Jökulhlaup (glacial outburst floods) are caused by subglacial geothermal activity melting overlying ice, or by draining of ice-dammed lakes. They pose a recurring hazard along Iceland's south coast where volcano-glacial interactions create often unpredictable, high-magnitude floods. Gathering information about past floods is crucial for projecting findings to present day scenarios and developing future predictions for contemporary flood routes. Understanding the physical setting or surrounding environment is essential in palaeo-flood reconstruction as drainage routes are ultimately defined by local topography and changing ice cover. At Sólheimajökull glacier, which drains the southern portion of Mýrdalsjökull ice cap, field evidence has been collected of a Tenth Century flood, recorded in the Icelander's Landnámabók (Book of Settlements). It was an exceptional event in terms of generation, magnitude and geomorphic impact. Although now fragmented and piecemeal, many of its direct (and indirect) geomorphological and sedimentary markers are still relatively well preserved and have been identified, mapped and dated to unravel the sequence of events played out during this significant episode in the glacial history and complex regional flood chronology. VolcVis, an innovative, bespoke visualisation platform, is developed and applied for the first time in visualising volcanic jökulhlaup. The platform is created using the Microsoft XNA game development framework, which facilitates rapid game engine production by providing a set of tools utilising a managed runtime environment. VolcVis can render large amounts of data efficiently and still provide an extremely high level of interaction with the data being presented, including full freedom of motion. This enables synthesis and presentation of field results from Sólheimajökull in a novel way, creating an interactive, multi-perspective, three-dimensional (3D) prototype model. The platform combines Digital Elevation

  1. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite-wedge casts on the Magdalen Islands (eastern Canada)

    DEFF Research Database (Denmark)

    Remillard, A.M.; Hetu, B.; Bernatchez, P.

    2015-01-01

    to the former presence of permafrost under periglacial conditions. These features truncate Carboniferous sandstone or Last Glacial Maximum (LGM) glacial and glaciomarine diamicts, both overlain by subtidal or coastal units. Six optically stimulated luminescence (OSL) and four radiocarbon ages were obtained from......The Magdalen Islands are a valuable terrestrial record, evidencing the complex glacial and periglacial history of the Gulf of St. Lawrence. Thirteen structures interpreted as ice-wedge pseudomorphs or composite-wedge casts were observed at four sites on the southern Magdalen Islands and testify...... both host and infilled sedimentary units. These ages provide the first absolute chronological data on these structures, shedding new light on the relationships between glacial and periglacial phases. Our chronostratigraphic data suggest that, after the deglaciation and the emersion of the archipelago...

  2. Assimilation of old carbon by stream food webs in arctic Alaska

    Science.gov (United States)

    O'Donnell, J. A.; Carey, M.; Xu, X.; Koch, J. C.; Walker, J. C.; Zimmerman, C. E.

    2017-12-01

    Permafrost thaw in arctic and sub-arctic region is mobilizing old carbon (C) from perennially frozen soils, driving the release of old C to the atmosphere and to aquatic ecosystems. Much research has focused on the transport and lability of old dissolved organic C (DOC) as a possible feedback to the climate system following thaw. However, little is known about the role of old C as a source to aquatic food webs in watersheds underlain by thawing permafrost. To quantify the contributions of old C to Arctic stream food-webs, we measured the radiocarbon (Δ14C) and stable isotope (δ13C, δ15N) contents of periphyton, macroinvertebrates, and resident fish species (Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma)). We also characterized the isotopic composition of possible C sources, including DOC, dissolved inorganic carbon (DIC), and soil organic matter. Samples were collected across 10 streams in Arctic Alaska, draining watersheds underlain by varying parent material and ground-ice content, from ice-poor bedrock to ice-rich loess (i.e. Yedoma). Fraction modern (FM) values for Arctic Grayling and Dolly Varden ranged from 0.6720 to 1.0101 (3195 years BP to modern) across all streams, and closely tracked spatial variation in Δ14C content of periphyton. Parent material and ground-ice content appear to govern the age and form of dissolved C sources to stream biota. For instance, in watersheds underlain by ice-poor bedrock, old DIC (< 5000 years BP) was the dominant C source to stream biota, reflecting contributions from carbonate weathering and soil respiration. In streams draining ice-rich Yedoma, high concentrations of younger DOC were the primary C source to stream biota, reflecting leaching of DOC from saturated, peaty soils of the active layer. These findings highlight the importance of permafrost characteristics as a control on subsurface hydrology and the delivery of aged C to surface waters. Given the large stores Pleistocene-aged organic

  3. Ice-Ocean Interactions to the North-West of Greenland: Glaciers, Straits, Ice Bridges, and the Rossby Radius (Invited)

    Science.gov (United States)

    Muenchow, A.; Falkner, K. K.; Melling, H.; Johnson, H. L.; Huntley, H. S.; Ryan, P.; Friends Of Petermann

    2010-12-01

    Petermann Glacier at 81 N latitude is a major outlet glacier adjacent to Nares Strait. It terminates in a long (70 km), narrow (16 km) and thin (50 m) floating tongue and has a grounding line more than 500 m below sea level. A calving event in 2010 reduced the floating area by 25% and produced a single 240 km2 ice island currently moving south in Nares Strait where it will likely interact with island to potentially create a temporary polynya in Nares Strait. The 2010 calving from Petermann Glacier contributes bridge formed regularly at the southern end of Nares Strait creating the North-Water polynya near 79 N latitude. Since 2006 this ice bridge has largely failed to form, leading, perhaps, to the occasional formation of a secondary ice bridge 300 km to the north where Nares Strait connects to the Arctic Ocean. However, this ice bridge appears to form for shorter periods only. Consequently Arctic sea ice can now exit the Arctic in winter via pathways to the west of Greenland all year. We speculate that this changed ocean and sea ice regime in Nares Strait and the Arctic Ocean may contribute to the recently observed calving events in Petermann Fjord.

  4. Non-Dive Activities for Islands in the Stream 2002 - Exploration of Outer Shelf and Slope Habitats off the Coast of North Carolina - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Expeditions Information System (EIS) contains information recorded by the NOAA Office of Ocean Exploration's data manager during the 2002 "Islands in the Stream...

  5. COMPILATION OF GEOMORPHOLOGICAL MAP FOR RECONSTRUCTING THE DEGLACIATION OF ICE-FREE AREAS IN THE MARTEL INLET, KING GEORGE ISLAND, ANTARCTICA

    Directory of Open Access Journals (Sweden)

    Kátia Kellem Rosa

    2014-03-01

    Full Text Available We compiled a geomorphological map and a reconstruction map of glacier extension and ice-free areas in the Martel Inlet, located in King George Island, South Shetlands, Antarctica. Glacier extension data were derived of the digitized over a orthophotomosaic (2003, SPOT (February, 1988; March, 1995 and 2000, Quickbird (October, 2006 and Cosmo-Skymed (February, 2011 images. This mapping was supported by fieldworks carried out in the summers of 2007, 2010 and 2011, and by topographic surveys and geomorphic map in the proglacial area. Several types of glacial deposits were identified in the study area, such as frontal and lateral moraines, flutes, meltwater channels and erosional features like rock moutonnés, striations and U-shaped valleys. These features allowed reconstructing the evolution of the deglaciation environment in the Martel Inlet ice-free areas, which has been affected by a regional climate warming trend. The mapped data indicated the glaciers in study area lost about 0.71 km² of their ice masses (13.2% of the 50.3 km² total area, without any advances during 1979-2011. Since those years these glaciers receded by an average of 25.9 m a-1. These ice-free areas were susceptible to rapid post-depositional changes.

  6. Evolution of Pine Island Glacier subglacial conditions in response to 18 years of ice flow acceleration

    Science.gov (United States)

    Brisbourne, A.; Bougamont, M. H.; Christoffersen, P.; Cornford, S. L.; Nias, I.; Vaughan, D.; Smith, A.

    2017-12-01

    Antarctica's main contribution to sea-level rise originates from the Amundsen Coast, when warm ocean water intrudes onto the continental shelf. As a result, strong melting beneath the ice shelves induces thinning near the grounding line of glaciers, which is ensued by large ice flow speed up diffusing rapidly inland. In particular, ice loss from Pine Island Glacier (PIG) accounts for 20% of the total ice loss in West Antarctica, amounting to 0.12 mm yr-1 of global sea-level rise. Forecasting the future flow of Amundsen Coast glaciers is however hindered by large uncertainties regarding how the thinning initiated at the grounding line is transmitted upstream, and how the grounded flow will ultimately respond. This work aims at elucidating the role of subglacial processes beneath PIG tributaries in modulating the ice flow response to frontal perturbations. We used the Community Ice Sheet Model (CISM 2.0) to perform numerical inversions of PIG surface velocity as observed in 1996 and 2014. Over that time period, ice flow acceleration has been widespread over PIG's basin, and the inversions provide insights into the related evolution of the basal thermal and stress conditions. We assume the latter to be directly related to changes in the properties of a soft sediment (till) layer known to exist beneath PIG. We find that the overall bed strength has weakened by 18% in the region of enhanced flow, and that the annual melt production for PIG catchment increased by 25% between 1996 and 2014. Specifically, regions of high melt production are located in the southern tributaries, where the overall stronger bed allows for more frictional melting. However, we find no significant and widespread change in the basal strength of that region, and we infer that the water produced is transported away in a concentrated hydrological system, without much interaction with the till layer. In contrast, we find that relatively less basal melting occurs elsewhere in the catchment, where the

  7. Ship Sensor Observations for Islands in the Stream 2002 - Exploration of Outer Shelf and Slope Habitats off the Coast of North Carolina - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the 2002 "Islands in the Stream - Exploration of Outer Shelf and Slope Habitats...

  8. Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

    DEFF Research Database (Denmark)

    Winter, Kate; Ross, Neil; Ferraccioli, Fausto

    2018-01-01

    Hypothesized drawdown of the East Antarctic Ice Sheet through the “bottleneck” zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted...... investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice...... Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could...

  9. Distinguishing Clouds from Ice over the East Siberian Sea, Russia

    Science.gov (United States)

    2002-01-01

    As a consequence of its capability to retrieve cloud-top elevations, stereoscopic observations from the Multi-angle Imaging SpectroRadiometer (MISR) can discriminate clouds from snow and ice. The central portion of Russia's East Siberian Sea, including one of the New Siberian Islands, Novaya Sibir, are portrayed in these views from data acquired on May 28, 2002.The left-hand image is a natural color view from MISR's nadir camera. On the right is a height field retrieved using automated computer processing of data from multiple MISR cameras. Although both clouds and ice appear white in the natural color view, the stereoscopic retrievals are able to identify elevated clouds based on the geometric parallax which results when they are observed from different angles. Owing to their elevation above sea level, clouds are mapped as green and yellow areas, whereas land, sea ice, and very low clouds appear blue and purple. Purple, in particular, denotes elevations very close to sea level. The island of Novaya Sibir is located in the lower left of the images. It can be identified in the natural color view as the dark area surrounded by an expanse of fast ice. In the stereo map the island appears as a blue region indicating its elevation of less than 100 meters above sea level. Areas where the automated stereo processing failed due to lack of sufficient spatial contrast are shown in dark gray. The northern edge of the Siberian mainland can be found at the very bottom of the panels, and is located a little over 250 kilometers south of Novaya Sibir. Pack ice containing numerous fragmented ice floes surrounds the fast ice, and narrow areas of open ocean are visible.The East Siberian Sea is part of the Arctic Ocean and is ice-covered most of the year. The New Siberian Islands are almost always covered by snow and ice, and tundra vegetation is very scant. Despite continuous sunlight from the end of April until the middle of August, the ice between the island and the mainland

  10. Magnetostratigraphy of a Marine Triassic-Jurassic Boundary Section, Kennecott Point, Queen Charlotte Islands: Implications for the Temporal Correlation of a 'Big Five' Mass Extinction Event.

    Science.gov (United States)

    Hilburn, I. A.; Kirschvink, J. L.; Ward, P. D.; Haggart, J. W.; Raub, T. D.

    2008-12-01

    Several causes have been proposed for Triassic-Jurassic (T-J) boundary extinctions, including global ocean anoxia/euxinia, an impact event, and/or eruption of the massive Central Atlantic Magmatic Province (CAMP), but poor intercontinental correlation makes testing these difficult. Sections at Kennecott Point, Queen Charlotte Islands, British Columbia span the late Norian through Rhaetian (Triassic) and into the earliest Hettangian (Jurassic) and provide the best integrated magneto- and chemostratigraphic framework for placing necessary temporal constraints upon the T-J mass extinctions. At Kennecott Point, turnover of radiolaria and ammonoids define the T-J boundary marine extinction and are coincident with a 2 ‰ negative excursion in δ13Corg similar in magnitude to that observed at Ferguson Hill (Muller Canyon), Nevada (1, 2). With Conodont Alteration Index values in the 1-2 range, Kennecott Point provides the ideal setting for use of magnetostratigraphy to tie the marine isotope excursion into the chronostratigraphic framework of the Newark, Hartford, and Fundy Basins. In the summer of 2005, we collected a ~1m resolution magnetostratigraphic section from 105 m of deep marine, silt- and sandstone turbidites and interbedded mudstones, spanning the T-J boundary at Kennecott Point. Hybrid progressive demagnetization - including zero-field, low-temperature cycling; low-field AF cleaning; and thermal demagnetization in ~25°C steps to 445°C under flowing N2 gas (3) - first removed a Northerly, steeply inclined component interpreted to be a Tertiary overprint, revealing an underlying dual-polarity component of moderate inclination. Five major polarity zones extend through our section, with several short, one-sample reversals interspersed amongst them. Comparison of this pattern with other T-J boundary sections (4-6) argues for a Northern hemisphere origin of our site, albeit with large vertical-axis rotations. A long normal chron bounds the T-J boundary punctuated

  11. Large-Scale, Multi-Temporal Remote Sensing of Palaeo-River Networks: A Case Study from Northwest India and its Implications for the Indus Civilisation

    Directory of Open Access Journals (Sweden)

    Hector A. Orengo

    2017-07-01

    Full Text Available Remote sensing has considerable potential to contribute to the identification and reconstruction of lost hydrological systems and networks. Remote sensing-based reconstructions of palaeo-river networks have commonly employed single or limited time-span imagery, which limits their capacity to identify features in complex and varied landscape contexts. This paper presents a seasonal multi-temporal approach to the detection of palaeo-rivers over large areas based on long-term vegetation dynamics and spectral decomposition techniques. Twenty-eight years of Landsat 5 data, a total of 1711 multi-spectral images, have been bulk processed using Google Earth Engine© Code Editor and cloud computing infrastructure. The use of multi-temporal data has allowed us to overcome seasonal cultivation patterns and long-term visibility issues related to recent crop selection, extensive irrigation and land-use patterns. The application of this approach on the Sutlej-Yamuna interfluve (northwest India, a core area for the Bronze Age Indus Civilisation, has enabled the reconstruction of an unsuspectedly complex palaeo-river network comprising more than 8000 km of palaeo-channels. It has also enabled the definition of the morphology of these relict courses, which provides insights into the environmental conditions in which they operated. These new data will contribute to a better understanding of the settlement distribution and environmental settings in which this, often considered riverine, civilisation operated.

  12. The Pliocene initiation and Early Pleistocene volcanic disruption of the palaeo-Gediz fluvial system, Western Turkey

    NARCIS (Netherlands)

    Maddy, D.; Demir, T.; Bridgland, D.R.; Veldkamp, A.; Stemerdink, C.; Schriek, van der T.; Schreve, D.

    2007-01-01

    In this paper, we report our latest observations concerning a Pliocene and Early Pleistocene record from Western Turkey. The sedimentary sequence described comprises the fluvial deposits of an Early Pleistocene palaeo-Gediz river system and its tributaries prior to the onset of volcanism around Kula

  13. Submersible Data (Dive Waypoints) for Islands in the Stream 2002 - Exploration of Outer Shelf and Slope Habitats off the Coast of North Carolina - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during one dive of the 2002 "Islands in the Stream - Outer Shelf...

  14. The role of ice dynamics in shaping vegetation in flowing waters.

    Science.gov (United States)

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  15. ESR/U-series study of teeth recovered from the palaeo-anthropological stratum of the Dali Man site (Shaanxi Province, China)

    International Nuclear Information System (INIS)

    Yin, G.; Han, F.; Bahain, J.J.; Tissoux, H.; Falgueres, Ch.; Han, F.; Shao, Q.; Shen, G.; Shao, Q.; Dolo, J.M.

    2011-01-01

    The Dali skull is a key fossil for understanding human evolution in China. It has been attributed either to an archaic Homo sapiens, an evolved Homo erectus or to other species of Homo, such as Homo heidelbergensis. The cranium was discovered in 1978 in Shaanxi Province in a fluvial terrace which was recovered by a loessic sequence including two interglacial palaeo-soils. ESR/U-series data analyses were carried out on several teeth recovered from the palaeo-anthropological level. Four samples exhibit different kinds of uranium-uptake behaviour, but the results seem to indicate that the cranium is coeval with Marine Isotope Stage (MIS) 8 and that some teeth might be reworked from older deposits. (authors)

  16. Persistent Tracers of Historic Ice Flow in Glacial Stratigraphy near Kamb Ice Stream, West Antarctica

    OpenAIRE

    Holschuh, Nicholas; Christianson, Knut; Conway, Howard; Jacobel, Robert W.; Welch, Brian C.

    2018-01-01

    Variations in properties controlling ice flow (e.g., topography, accumulation rate, basal friction) are recorded by structures in glacial stratigraphy. When anomalies that disturb the stratigraphy are fixed in space, the structures they produce advect away from the source, and can be used to trace flow pathways and reconstruct ice-flow patterns of the past. Here we provide an example of one of these persistent tracers: a prominent unconformity in the glacial layering that originates at Mt. Re...

  17. Turbulent heat exchange between water and ice at an evolving ice-water interface

    Science.gov (United States)

    Ramudu, Eshwan; Hirsh, Benjamin Henry; Olson, Peter; Gnanadesikan, Anand

    2016-07-01

    We conduct laboratory experiments on the time evolution of an ice layer cooled from below and subjected to a turbulent shear flow of warm water from above. Our study is motivated by observations of warm water intrusion into the ocean cavity under Antarctic ice shelves, accelerating the melting of their basal surfaces. The strength of the applied turbulent shear flow in our experiments is represented in terms of its Reynolds number $\\textit{Re}$, which is varied over the range $2.0\\times10^3 \\le \\textit{Re} \\le 1.0\\times10^4$. Depending on the water temperature, partial transient melting of the ice occurs at the lower end of this range of $\\textit{Re}$ and complete transient melting of the ice occurs at the higher end. Following these episodes of transient melting, the ice reforms at a rate that is independent of $\\textit{Re}$. We fit our experimental measurements of ice thickness and temperature to a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. The melting mechanism we investigate in our experiments can easily account for the basal melting rate of Pine Island Glacier ice shelf inferred from observations.

  18. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from NATHANIEL B. PALMER, ICE ISLANDS and AKADEMIK FYODOROV in the Weddell Sea from 1992-02-02 to 1992-06-18 (NODC Accession 9500052)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and Rosette Bottle sampling was done from helicopter, ship, and ice island. The data were collected in Weddell Sea as...

  19. The Response of Ice Sheets to Climate Variability

    Science.gov (United States)

    Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.

    2017-12-01

    West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.

  20. Geothermal heat flux in the Amundsen Sea sector of West Antarctica: New insights from temperature measurements, depth to the bottom of the magnetic source estimation, and thermal modeling

    Science.gov (United States)

    Dziadek, R.; Gohl, K.; Diehl, A.; Kaul, N.

    2017-07-01

    Focused research on the Pine Island and Thwaites glaciers, which drain the West Antarctic Ice Shelf (WAIS) into the Amundsen Sea Embayment (ASE), revealed strong signs of instability in recent decades that result from variety of reasons, such as inflow of warmer ocean currents and reverse bedrock topography, and has been established as the Marine Ice Sheet Instability hypothesis. Geothermal heat flux (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal heat flux for (paleo) ice sheet stability. Due to a complex tectonic and magmatic history of West Antarctica, the region is suspected to exhibit strong heterogeneous geothermal heat flux variations. We present an approach to investigate ranges of realistic heat fluxes in the ASE by different methods, discuss direct observations, and 3-D numerical models that incorporate boundary conditions derived from various geophysical studies, including our new Depth to the Bottom of the Magnetic Source (DBMS) estimates. Our in situ temperature measurements at 26 sites in the ASE more than triples the number of direct GHF observations in West Antarctica. We demonstrate by our numerical 3-D models that GHF spatially varies from 68 up to 110 mW m-2.

  1. Uncertainties in the Antarctic Ice Sheet Contribution to Sea Level Rise: Exploration of Model Response to Errors in Climate Forcing, Boundary Conditions, and Internal Parameters

    Science.gov (United States)

    Schlegel, N.; Seroussi, H. L.; Boening, C.; Larour, E. Y.; Limonadi, D.; Schodlok, M.; Watkins, M. M.

    2017-12-01

    The Jet Propulsion Laboratory-University of California at Irvine Ice Sheet System Model (ISSM) is a thermo-mechanical 2D/3D parallelized finite element software used to physically model the continental-scale flow of ice at high resolutions. Embedded into ISSM are uncertainty quantification (UQ) tools, based on the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) software. ISSM-DAKOTA offers various UQ methods for the investigation of how errors in model input impact uncertainty in simulation results. We utilize these tools to regionally sample model input and key parameters, based on specified bounds of uncertainty, and run a suite of continental-scale 100-year ISSM forward simulations of the Antarctic Ice Sheet. Resulting diagnostics (e.g., spread in local mass flux and regional mass balance) inform our conclusion about which parameters and/or forcing has the greatest impact on century-scale model simulations of ice sheet evolution. The results allow us to prioritize the key datasets and measurements that are critical for the minimization of ice sheet model uncertainty. Overall, we find that Antartica's total sea level contribution is strongly affected by grounding line retreat, which is driven by the magnitude of ice shelf basal melt rates and by errors in bedrock topography. In addition, results suggest that after 100 years of simulation, Thwaites glacier is the most significant source of model uncertainty, and its drainage basin has the largest potential for future sea level contribution. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  2. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  3. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    Science.gov (United States)

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period

  4. Dive Data from Expedition Information System (EIS) for Islands in the Stream 2002 - Exploration of Outer Shelf and Slope Habitats off the Coast of North Carolina - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Expeditions Information System (EIS) contains information recorded by the NOAA Office of Ocean Exploration's data manager during the 2002 "Islands in the Stream...

  5. Mechanisms driving variability in the ocean forcing of Pine Island Glacier.

    Science.gov (United States)

    Webber, Benjamin G M; Heywood, Karen J; Stevens, David P; Dutrieux, Pierre; Abrahamsen, E Povl; Jenkins, Adrian; Jacobs, Stanley S; Ha, Ho Kyung; Lee, Sang Hoon; Kim, Tae Wan

    2017-02-17

    Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS.

  6. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    Science.gov (United States)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  7. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    Science.gov (United States)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  8. Digital Video taken during the 3-person submersible Clelia dive 611 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, August 31, 2001 (NCEI Accession 0037157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  9. Digital Video taken during the 3-person submersible Clelia dive 618 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 04, 2001 (NCEI Accession 0041700)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  10. Digital Video taken during the 3-person submersible Clelia dive 620 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 05, 2001 (NCEI Accession 0041969)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  11. Digital Video taken during the 3-person submersible Clelia dive 616 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 03, 2001 (NCEI Accession 0041480)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  12. Digital Video taken during the 3-person submersible Clelia dive 615 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 02, 2001 (NCEI Accession 0041370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  13. Digital Video taken during the 3-person submersible Clelia dive 622 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 07, 2001 (NCEI Accession 0039430)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  14. Digital Video taken during the 3-person submersible Clelia dive 621 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 05, 2001 (NCEI Accession 0039428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  15. Digital Video taken during the 3-person submersible Clelia dive 614 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 02, 2001 (NCEI Accession 0039974)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  16. Digital Video taken during the 3-person submersible Clelia dive 612 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 01, 2001 (NCEI Accession 0037156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  17. Digital Video taken during the 3-person submersible Clelia dive 607 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, August 29, 2001 (NCEI Accession 0039467)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  18. Digital Video taken during the 3-person submersible Clelia dive 617 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 03, 2001 (NCEI Accession 0041593)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  19. Digital Video taken during the 3-person submersible Clelia dive 608 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, August 30, 2001 (NCEI Accession 0039353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  20. Digital Video taken during the 3-person submersible Clelia dive 619 of the NOAA Office of Ocean Exploration's Islands in the Stream 2001 cruise, September 04, 2001 (NCEI Accession 0041848)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Islands in the Stream is a three-month scientific expedition to marine protected areas and other habitats being considered for protection from offshore of Belize in...

  1. Data assimilation of surface altimetry on the North-Easter Ice Stream using the Ice Sheet System Model (ISSM)

    Science.gov (United States)

    Larour, Eric; Utke, Jean; Morlighem, Mathieu; Seroussi, Helene; Csatho, Beata; Schenk, Anton; Rignot, Eric; Khazendar, Ala

    2014-05-01

    Extensive surface altimetry data has been collected on polar ice sheets over the past decades, following missions such as Envisat and IceSat. This data record will further increase in size with the new CryoSat mission, the ongoing Operation IceBridge Mission and the soon to launch IceSat-2 mission. In order to make the best use of these dataset, ice flow models need to improve on the way they ingest surface altimetry to infer: 1) parameterizations of poorly known physical processes such as basal friction; 2) boundary conditions such as Surface Mass Balance (SMB). Ad-hoc sensitivity studies and adjoint-based inversions have so far been the way ice sheet models have attempted to resolve the impact of 1) on their results. As for boundary conditions or the lack thereof, most studies assume that they are a fixed quantity, which, though prone to large errors from the measurement itself, is not varied according to the simulated results. Here, we propose a method based on automatic differentiation to improve boundary conditions at the base and surface of the ice sheet during a short-term transient run for which surface altimetry observations are available. The method relies on minimizing a cost-function, the best fit between modeled surface evolution and surface altimetry observations, using gradients that are computed for each time step from automatic differentiation of the ISSM (Ice Sheet System Model) code. The approach relies on overloaded operators using the ADOLC (Automatic Differentiation by OverLoading in C++) package. It is applied to the 79 North Glacier, Greenland, for a short term transient spanning a couple of decades before the start of the retreat of the Zachariae Isstrom outlet glacier. Our results show adjustments required on the basal friction and the SMB of the whole basin to best fit surface altimetry observations, along with sensitivities each one of these parameters has on the overall cost function. Our approach presents a pathway towards assimilating

  2. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.

  3. Offshore platforms and deterministic ice actions: Kashagan phase 2 development: North Caspian Sea.

    Energy Technology Data Exchange (ETDEWEB)

    Croasdale, Ken [KRCA, Calgary (Canada); Jordaan, Ian [Ian Jordaan and Associates, St John' s (Canada); Verlaan, Paul [Shell Development Kashagan, London (United Kingdom)

    2011-07-01

    The Kashagan development has to face the difficult conditions of the northern Caspian Sea. This paper investigated ice interaction scenarios and deterministic methods used on platform designs for the Kashagan development. The study presents first a review of the types of platforms in use and being designed for the Kashagan development. The various ice load scenarios and the structures used in each case are discussed. Vertical faced barriers, mobile drilling barges and sheet pile islands were used for the ice loads on vertical structures. Sloping faced barriers and islands of rock were used for the ice loads on sloping structures. Deterministic models such as the model in ISO 19906 were used to calculate the loads occurring with or without ice rubble in front of the structure. The results showed the importance of rubble build-up in front of wide structures in shallow water. Recommendations were provided for building efficient vertical and sloping faced barriers.

  4. Spatial patterning and persistence of meltwater on ice shelves and the implications for ice shelf collapse

    Science.gov (United States)

    Robel, A.; MacAyeal, D. R.; Tsai, V. C.; Shean, D. E.

    2017-12-01

    Observations indicate that for at least the last few decades, there has been extensive surface melting over ice shelves in Antarctica. Meltwater either collects in ponds or flows over the surface in streams that discharge to the ocean. The spatial organization and persistence of this meltwater can have a significant influence on the thermomechanical ice shelf state through albedo, turbulent heat exchange, refreezing and hydrofracture. However, as more meltwater forms on Antarctic ice shelves, there is no general theory that predicts the spatial pattern of meltwater ponded on the ice shelf surface and the volume of meltwater runoff to the ocean. Here, we show how dynamical systems tools, such as cellular automata, can be used to calculate the expected distribution of meltwater on ice shelf surfaces. These tools can also be used to explore how ice shelf surface morphology is modified by meltwater albedo and turbulent heating feedbacks. We apply these numerical approaches to new high-resolution digital elevation models for ice shelves in West Antarctica. Additionally, we survey the prospects of developing general rules of meltwater patterning by applying scaling approaches from percolation theory. We conclude by discussing the types of ice shelves that are more likely to cause ice shelf collapse through surface melt-induced hydrofracture or thermomechanical weakening.

  5. An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate

    Science.gov (United States)

    Hughes, T.

    2008-12-01

    Modeling continental ice sheets was inaugurated by meteorologists William Budd and Uwe Radok, with mathematician Richard Jenssen, in 1971. Their model calculated the thermal and mechanical regime using measured surface accumulation rates, temperatures, and elevations, and bed topography. This top-down approach delivered a basal thermal regime of temperatures or melting rates for an assumed basal geothermal heat flux. When Philippe Huybrechts and others incorporated time, largely unknownpast surface conditions had a major effect on present basal thermal conditions. This approach produced ice-sheet models with only a slow response to external forcing, whereas the glacial geological record and climate records from ice and ocean cores show that ice sheets can have rapid changes in size and shape independent of external forcing. These top-down models were wholly inadequate for reconstructing former ice sheets at the LGM for CLIMAP in 1981. Ice-sheet areas,elevations, and volumes provided the albedo, surface topography, and sea-surface area as input to climate models. A bottom-up model based on dated glacial geology was developed to provide the areal extent and basal thermal regime of ice sheets at the LGM. Basal thermal conditions determined ice-bed coupling and therefore the elevation of ice sheets. High convex ice surfaces for slow sheet flow lower about 20 percent when a frozen bed becomes thawed. As further basal melting drowns bedrock bumps that "pin" basal ice, the ice surface becomes concave in fast stream flow that ends as low floating ice shelves at marine ice margins. A revolution in modeling interactions between glaciation, climate, and sea level is driven by new Greenland and Antarctic data from Earth-orbiting satellites, airborne and surface traverses, and deep drilling. We anticipate continuous data acquisition of surface albedo, accumulation/ablation rates, elevations, velocities, and temperatures over a whole ice sheet, mapping basal thermal conditions

  6. Analysis of the Water Resources on Baseflow River Basin in Jeju Island, Korea

    Science.gov (United States)

    Yang, S.-K.; Jung, W.-Y.; Kang, M.-S.

    2012-04-01

    Jeju Island is a volcanic island located at the southernmost of Korea, and is the heaviest raining area in Korea, but due to its hydrological / geological characteristics different from those of inland areas, most streams are of the dry form, and it relies on groundwater for water resources. As for some streams, however, springwater is discharged at a point near the downstream of the final discharge to maintain the flow of the stream; this has been developed as the source for water supply since the past, but the studies on detail observations and analysis are yet inadequate. This study utilizes the ADCP (Acoustic Doppler Current Profiler) hydrometer to regularly observe the flow amount of base run-off stream, and the water resources of base discharge basin of Jeju Island were analyzed using the SWAT (Soil & Water Assessment Tool) model. The detail water resource analysis study using modeling and site observation with high precision for Jeju Island water resources is expected to become the foundation for efficient usage and security of water resources against future climate changes.

  7. Evaluation of tidal stream energy and its impacts on surrounding dynamics in the Eastern Region of Pingtan Island, China

    Science.gov (United States)

    Wu, He; Wang, Xin; Wang, Bingzhen; Bai, Yang; Wang, Peitao

    2017-11-01

    Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southern cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.

  8. Report on the radioactive mineral development project in Negros Island

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1981-12-01

    A reconnaissance radiometric and stream sediment survey was conducted in Negros Island from April to May 1980. An area in Mabinay, Negros Oriental with significant above-background uranium in stream sediment was delineated in Upper Miocene to Pliocene continental clastic associated with silty limestone. In general, Negros has low radioactivity except for isolated points which have 2-3 times above-the-background radioactivity. Other areas in the western part of the island with high radioactivity and above-normal uranium in stream sediments were delineated. However, these above-normal observations were noted in areas underlain by recent volcanic sediments which were probably derived from Mt. Kanlaon. (author)

  9. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    Science.gov (United States)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  10. A State-Space Model for River Ice Forecasting

    National Research Council Canada - National Science Library

    Daly, Steven

    2003-01-01

    Each winter ice forms on rivers streams, and navigable waterways, causing many problems through its effects on the operation of hydraulic control structures, locks and dams, hydropower plants, and water intakes...

  11. Ice-sheet modelling accelerated by graphics cards

    Science.gov (United States)

    Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek

    2014-11-01

    Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.

  12. Effects of sea ice on breeding numbers and clutch size of a high arctic population of the common eider Somateria mollissima

    Science.gov (United States)

    Mehlum, Fridtjof

    2012-04-01

    The breeding performance of high-arctic bird populations shows large inter-annual variation that may be attributed to environmental variability, such as the timing of snow melt and break-up of the landfast sea ice that surrounds breeding colonies on islands and along coasts. In the Kongsfjorden area (79°N) on Svalbard, the number of breeding pairs and the average egg clutch size vary considerably among years. In this study, data on breeding performance are presented from 15 years in the period 1981-2000. The results showed that early break-up of sea ice in Kongsfjorden resulted in larger numbers of nests and larger average clutch sizes than late break-up. Also, individual islands with early break-up of sea ice in a particular year had more nests and larger clutch sizes compared to other islands surrounded by sea ice during a longer period in spring. Thus, the inter-annual variation in the break-up of sea ice in the fjord has considerable implications for the inter-annual variability of recruitment to the population. The results indicate that the effects of global warming on changes in the sea ice melting regime in coastal regions are important for the reproductive output of island-nesting eiders.

  13. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

    KAUST Repository

    Brown, Jed; Smith, Barry; Ahmadia, Aron

    2013-01-01

    The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today's ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

  14. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

    KAUST Repository

    Brown, Jed

    2013-03-12

    The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today\\'s ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

  15. Balance Velocities of the Greenland Ice Sheet

    Science.gov (United States)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  16. Modelling large-scale ice-sheet–climate interactions following glacial inception

    Directory of Open Access Journals (Sweden)

    J. M. Gregory

    2012-10-01

    Full Text Available We have coupled the FAMOUS global AOGCM (atmosphere-ocean general circulation model to the Glimmer thermomechanical ice-sheet model in order to study the development of ice-sheets in north-east America (Laurentia and north-west Europe (Fennoscandia following glacial inception. This first use of a coupled AOGCM–ice-sheet model for a study of change on long palæoclimate timescales is made possible by the low computational cost of FAMOUS, despite its inclusion of physical parameterisations similar in complexity to higher-resolution AOGCMs. With the orbital forcing of 115 ka BP, FAMOUS–Glimmer produces ice caps on the Canadian Arctic islands, on the north-west coast of Hudson Bay and in southern Scandinavia, which grow to occupy the Keewatin region of the Canadian mainland and all of Fennoscandia over 50 ka. Their growth is eventually halted by increasing coastal ice discharge. The expansion of the ice-sheets influences the regional climate, which becomes cooler, reducing the ablation, and ice accumulates in places that initially do not have positive surface mass balance. The results suggest the possibility that the glaciation of north-east America could have begun on the Canadian Arctic islands, producing a regional climate change that caused or enhanced the growth of ice on the mainland. The increase in albedo (due to snow and ice cover is the dominant feedback on the area of the ice-sheets and acts rapidly, whereas the feedback of topography on SMB does not become significant for several centuries, but eventually has a large effect on the thickening of the ice-sheets. These two positive feedbacks are mutually reinforcing. In addition, the change in topography perturbs the tropospheric circulation, producing some reduction of cloud, and mitigating the local cooling along the margin of the Laurentide ice-sheet. Our experiments demonstrate the importance and complexity of the interactions between ice-sheets and local climate.

  17. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice.

    Science.gov (United States)

    Hatam, Ido; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2016-10-01

    Arctic sea ice can be classified into two types: seasonal ice (first-year ice, FYI) and multi-year ice (MYI). Despite striking differences in the physical and chemical characteristics of FYI and MYI, and the key role sea ice bacteria play in biogeochemical cycles of the Arctic Ocean, there are a limited number of studies comparing the bacterial communities from these two ice types. Here, we compare the membership and composition of bacterial communities from FYI and MYI sampled north of Ellesmere Island, Canada. Our results show that communities from both ice types were dominated by similar class-level phylogenetic groups. However, at the operational taxonomic unit (OTU) level, communities from MYI and FYI differed in both membership and composition. Communities from MYI sites had consistent structure, with similar membership (presence/absence) and composition (OTU abundance) independent of location and year of sample. By contrast, communities from FYI were more variable. Although FYI bacterial communities from different locations and different years shared similar membership, they varied significantly in composition. Should these findings apply to sea ice across the Arctic, we predict increased compositional variability in sea ice bacterial communities resulting from the ongoing transition from predominantly MYI to FYI, which may impact nutrient dynamics in the Arctic Ocean.

  18. The Northeast Stream Quality Assessment

    Science.gov (United States)

    Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.

    2016-04-22

    In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).

  19. Antarctic Glaciological Data at NSIDC: field data, temperature, and ice velocity

    Science.gov (United States)

    Bauer, R.; Bohlander, J.; Scambos, T.; Berthier, E.; Raup, B.; Scharfen, G.

    2003-12-01

    An extensive collection of many Antarctic glaciological parameters is available for the polar science community upon request. The National Science Foundation's Office of Polar Programs funds the Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) to archive and distribute Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program. AGDC facilitates data exchange among Principal Investigators, preserves recently collected data useful to future research, gathers data sets from past research, and compiles continent-wide information useful for modeling and field work planning. Data sets are available via our web site, http://nsidc.org/agdc/. From here, users can access extensive documentation, citation information, locator maps, derived images and references, and the numerical data. More than 50 Antarctic scientists have contributed data to the archive. Among the compiled products distributed by AGDC are VELMAP and THERMAP. THERMAP is a compilation of over 600 shallow firn temperature measurements ('10-meter temperatures') collected since 1950. These data provide a record of mean annual temperature, and potentially hold a record of climate change on the continent. The data are represented with maps showing the traverse route, and include data sources, measurement technique, and additional measurements made at each site, i.e., snow density and accumulation. VELMAP is an archive of surface ice velocity measurements for the Antarctic Ice Sheet. The primary objective of VELMAP is to assemble a historic record of outlet glaciers and ice shelf ice motion over the Antarctic. The collection includes both PI-contributed measurements and data generated at NSIDC using Landsat and SPOT satellite imagery. Tabular data contain position, speed, bearing, and data quality information, and related references. Two new VELMAP data sets are highlighted: the Mertz Glacier and the Institute Ice Stream. Mertz Glacier ice

  20. Atmospheric forcing of sea ice leads in the Beaufort Sea

    Science.gov (United States)

    Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.

    2016-12-01

    Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.

  1. Palaeo-pollution from mining activities in the Vosges Mountains: 1000 years and still bioavailable.

    Science.gov (United States)

    Mariet, Anne-Lise; de Vaufleury, Annette; Bégeot, Carole; Walter-Simonnet, Anne-Véronique; Gimbert, Frédéric

    2016-07-01

    Mining and smelting activities have contaminated the environment with trace metals (TMs) at a worldwide scale for at least two millennia. A combination of chemical approaches and active biomonitoring was performed to analyse the environmental availability and bioavailability of TM palaeo-pollution in a former PbAg mining district in the Vosges Mountains, France. Along a soil TM contamination gradient that covered eight stations, including two archaeological mining sites, the toxicokinetics of six TMs (Pb, Cd, As, Ag, Co, Sb) in the snail Cantareus aspersus revealed that palaeo-pollution from the studied sites remains bioavailable. This study provides the first data on the accumulation kinetics of Ag and Co for C. aspersus. The environmental availability of the TMs was estimated with three chemical extraction methods (aqua regia, EDTA 50 mM, CaCl2 10 mM). Univariate regression analyses showed that EDTA extraction is the best method for estimating the bioavailability of Pb, As, Ag, Co and Sb to snails. None of the three extractants was efficient for Cd. A multivariate analysis of bioaccumulation data revealed that TM bioavailability and transfer were modulated by exposure sources (soil, humus and vegetation) rather than by soil physico-chemical characteristics. Hence, although the deposition of mining wastes dates back several centuries, these wastes still represent a source of contamination that must be considered to develop relevant site management and environmental risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Isolation and characterization of coliforms from glacial ice and water in Canada's High Arctic.

    Science.gov (United States)

    Dancer, S J; Shears, P; Platt, D J

    1997-05-01

    Ellesmere Island is the northern most member of the Canadian Arctic Archipelago with over one-third of the land mass covered by ice. A joint services expedition to the island's Blue Mountains offered a unique opportunity for microbiological studies of resident bacteria in an environment uninhabited by man. Over 100 samples of water and ice were collected from stream, lake and glacier and the filtrate cultured under canvas. Bacterial growth was harvested onto swabs for transport back to the UK and 50 coliforms chosen at random for identification and antibiotic susceptibility testing. Most of the glacial strains were capsulated, pigmented and some over 2000 years old. Genera such as Serratia, Enterobacter, Klebsiella and Yersinia were found; speciation was inconclusive and some organisms remain unidentified. Ampicillin resistance was evident in 80% of water isolates as opposed to 30% of the glacial organisms, but the isolates were generally exquisitely susceptible to antibiotics. The facility for ampicillin resistance did not appear to be transferable. Plasmid DNA was found in 33% of the glacial organisms and over 50% of the water isolates. Similar profiles were identified within and apparently between species and required plasmid restriction analysis to help establish identity. Plasmid-free Serratia spp. were subjected to genomic fingerprinting. Indistinguishable patterns were found within sets of isolates both widely spaced by distance and collection date and it was postulated that coliforms able to survive an Arctic environment had spread extensively throughout the expedition area. In conclusion, this study contributes towards knowledge of naturally occurring antibiotic resistance, confirms the presence of plasmids and genotypic data provided evidence that potentially ancient organisms from glaciers can be cultured from water samples significantly distant.

  3. The paradox of a long grounding during West Antarctic Ice Sheet retreat in Ross Sea.

    Science.gov (United States)

    Bart, Philip J; Krogmeier, Benjamin J; Bart, Manon P; Tulaczyk, Slawek

    2017-04-28

    Marine geological data show that the West Antarctic Ice Sheet (WAIS) advanced to the eastern Ross Sea shelf edge during the Last Glacial Maximum (LGM) and eventually retreated ~1000 km to the current grounding-line position on the inner shelf. During the early deglacial, the WAIS deposited a voluminous stack of overlapping grounding zone wedges (GZWs) on the outer shelf of the Whales Deep Basin. The large sediment volume of the GZW cluster suggests that the grounding-line position of the paleo-Bindschadler Ice Stream was relatively stationary for a significant time interval. We used an upper bound estimate of paleo-sediment flux to investigate the lower bound duration over which the ice stream would have deposited sediment to account for the GZW volume. Our calculations show that the cluster represents more than three millennia of ice-stream sedimentation. This long duration grounding was probably facilitated by rapid GZW growth. The subsequent punctuated large-distance (~200 km) grounding-line retreat may have been a highly non-linear ice sheet response to relatively continuous external forcing such as gradual climate warming or sea-level rise. These findings indicate that reliable predictions of future WAIS retreat may require incorporation of realistic calculations of sediment erosion, transport and deposition.

  4. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution.

    Science.gov (United States)

    Lecavalier, Benoit S; Fisher, David A; Milne, Glenn A; Vinther, Bo M; Tarasov, Lev; Huybrechts, Philippe; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S

    2017-06-06

    We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.

  5. Elevation Changes of Ice Caps in the Canadian Arctic Archipelago

    Science.gov (United States)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Yungel, J.; Koerner, R.

    2004-01-01

    Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers, but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed, but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally less than 0.5 m/yr , which is consistent with what would be expected from the warm temperature anomalies in the region for the 5-year period between surveys and appears to be a continuation of a trend that began in the mid 1980s. Further south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m/yr in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation. The observations on Barnes, and perhaps Penny are consistent with the idea that the observed thinning is part of a much longer term deglaciation, as has been previously suggested for Barnes Ice Cap. Based on the regional relationships between elevation and elevation-change in our data, the 1995-2000 mass balance for the region is estimated to be 25 cu km/yr of ice, which corresponds to a sea level increase of 0.064 mm/ yr . This places it among the more significant sources of eustatic sea level rise, though not as substantial as Greenland ice sheet, Alaskan glaciers, or the Patagonian ice fields.

  6. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Science.gov (United States)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  7. Revised estimates of Greenland ice sheet thinning histories based on ice-core records

    DEFF Research Database (Denmark)

    Lecavalier, B.S.; Milne, G.A.; Fisher, D.A.

    2013-01-01

    -based reconstructions and, to some extent, the estimated elevation histories. A key component of the ice core analysis involved removing the influence of vertical surface motion on the dO signal measured from the Agassiz and Renland ice caps. We re-visit the original analysis with the intent to determine if the use...... of more accurate land uplift curves can account for some of the above noted discrepancy. To improve on the original analysis, we apply a geophysical model of glacial isostatic adjustment calibrated to sea-level records from the Queen Elizabeth Islands and Greenland to calculate the influence of land...... in this selection is further complicated by the possible influence of Innuitian ice during the early Holocene (12-8 ka BP). Our results indicate that a more accurate treatment of the uplift correction leads to elevation histories that are, in general, shifted down relative to the original curves at GRIP, NGRIP, DYE...

  8. Hydrogeochemical and stream sediment reconnaissance basic data for Grand Island NTMS Quadrangle, Nebraska/Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Grand Island Quadrangle, Nebraska/Kansas are reported. Statistical data and areal distributions for uranium and uranium-related variables are presented for 564 groundwater and 532 stream sediment samples. Also included is a brief discussion on location and geologic setting. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in shallow wells (0 to 20 m) along or near the Platte and Republican Rivers, which flow west to east along the northern and southern portions of the quadrangle, respectively. Waters containing high concentration of uranium in the northern portion of the quadrangle occur in recent alluvium and nearby glacial deposits. In the southern portion of the quadrangle, waters containing high uranium concentrations occur in Recent alluvium and the Niobrara Chalk in the southeast. Stream sediment data indicate that uranium concentrations above the 85th percentile occur in sediments along the Platte River in the northern portion of the quadrangle and paralleling the Republican River in the southeastern portion. Sediments with high uranium values along the Platte River are derived from glacial and alluvial deposits. High uranium values paralleling the Republican River in the southeast are derived from the Niobrara Chalk, the Carlile Shale, and glacial and alluvial deposits. High U-NT and thorium values, and high values for cerium, niobium, scandium, titanium, vanadium, yttrium, and zirconium suggest the presence of clays and/or residual minerals in the southeast. Sediment derivation and the leaching of possible ash-rich loess and alluvial deposits and/or uranium-rich alkaline evaporite deposits could account for high uranium concentrations in sediment and groundwaters within the quadrangle

  9. Multi-population comparison of resource exploitation by island foxes: Implications for conservation

    Directory of Open Access Journals (Sweden)

    B.L. Cypher

    2014-12-01

    Full Text Available Imperiled island foxes are inherently resource-limited by their insular ecology. We examined food use on all 6 islands where they occur to assess resource exploitation patterns. Over 40 different food items were identified with item use varying among islands. Sixteen items occurred with ≥10% frequency in annual fox diets: deer mice, birds, lizards, beetles, beetle larvae, Jerusalem crickets, silk-spinning sand crickets, grasshoppers, earwigs, snails, and fruits of toyon, manzanita, prickly pear cactus, ice plant, Australian saltbush, and summer holly. Foxes used a diversity of food items with variations among islands attributable to island-specific availabilities. Deer mice in particular appeared to be preferred. Foxes also exhibited extensive use of non-native items, such as ice plant fruits, European snails, and earwigs, and foxes may even be dependent on these items on some islands. To increase food security and promote population stability, we recommend (1 continuing and enhancing habitat restoration efforts on all islands, (2 increasing the abundance of native items in association with any removals of non-native species used by foxes, and (3 monitoring annual trends in abundance of key food items as well as periodic monitoring of item use by foxes to determine functional responses to changes in item availability. Keywords: Channel islands, Endangered species, Food-item selection, Foraging ecology, Island fox, Urocyon littoralis

  10. Evaluating Potential Tipping Points of Antarctic basins

    Science.gov (United States)

    Durand, G.; Sainan, S.; Pattyn, F.; Jourdain, N.

    2017-12-01

    Antarctica is currently loosing mass and its forthcoming contribution to sea-level rise could substantially increase during the coming centuries. This is essentially due to geometrical constraints, i.e., in regions where grounded ice lies on a bedrock below sea-level sloping down towards the interior of the ice sheet (retrograde slope). For such a configuration the ice sheet is considered potentially unstable, as suggested by theory. However, recent observations on accelerated grounding-line retreat and new insights in modeling Pine Island and Thwaites glaciers give evidence that such self-sustained retreat, called marine ice sheet instability (MISI), has already been on its way. Although West Antarctica appears to be the most vulnerable region for MISI occurrence, similar topographic configurations are also observed in East Antarctica, in the Wilkes Basin in particular. Therefore, evaluating the MISI potential at a pan-Antarctic scale is becoming a priority. Here, using the f.ETISh ice sheet model, an ensemble of simulations of the entire contemporary Antarctic ice sheet has been carried out. In particular, we investigate the debuttressing of ice shelves required to initiate MISI for each coastal region around Antarctica by forcing the model with realistic sub-shelf melt pulses of varying duration and amplitude. We further identify the currently grounded areas where the outlet glaciers could hardly stabilize, the Amundsen Sea Sector being the more prone to large self-sustained retreats. On the contrary, the ability of Cook and Ninnis ice shelves to recover after large perturbations and enough buttress upstream outlet glaciers tends to limit self-sustained retreat of the sector. For each basin, rates of contribution to sea-level rise are discussed together with the RCPs and time when tipping points could be reached and MISI triggered.

  11. The strata and palaeo-geomorphology framework at the end of neoproterozoic and development mode of source rocks at the beginning of Cambrian in Tarim Basin, China

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-12-01

    Full Text Available Referred to the new recognition from petroleum exploration of the Sinian to Cambrian in South China, it could be considered that the distribution of the early Cambrian source rocks was controlled by the palaeo-geomorphology at the end of Neoproterozoic in the Tarim Basin. Based on the zircon U-Pb dating of pyroclastic rock samples from the clastic rock stratum under the bottom of Cambrian carbonate rocks, the stratigraphic correlation of the Sinian to Cambrian was conducted to build the palaeo-geomorphology framework at the end of Neoproterozoic in Tarim Basin. Lastly, according to the development mode of source rocks at the beginning of Cambrian, the distribution of source rocks was predicted initially through the division of seismic facies. The youngest zircon concordia age of pyroclastic rocks from the bottom of well Tong 1 is 707±8Ma. It was revealed by the strata framework of the Sinian to Cambrian, the palaeo-geomorphology at the end of Neoproterozoic in Tarim Basin was characterized by an uplift highland in Bachu-Tazhong area, the south north high-low, and the west is higher than the east. The distribution of source rocks in the bottom of the Cambrian on the palaeo-platform and slopes was coincident with the Upper Sinian dolomite basically. But the contemporaneous sediment happened to be absent or changed in sedimentary facies on the uplift and its edges. From the seismic facies of the strata under the bottom of Cambrian, it could be concluded that source rocks in the type of the Xishanbraque Group (∈1xs was limited in the Manjiaer Depression, while the source rocks in the type of the Yuertusi Group (∈1y are widely distributed in south of Tabei Uplift, east Awat Depression, and even the Maigt Slope. However, among the west Awat Depression and western Tanguzibasi Depression, and the middle area of the Bachu-Tazhong Uplifts, the contemporaneous source rocks may have changed into sedimentary facies of tidal flat and lagoon, instead of

  12. Insights into Spatial Sensitivities of Ice Mass Response to Environmental Change from the SeaRISE Ice Sheet Modeling Project I: Antarctica

    Science.gov (United States)

    Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako; Aschwanden, Andy; Bueler, Ed; Choi, Hyengu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; hide

    2013-01-01

    Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.

  13. Oil exploration and production offshore Sakhalin Island

    Energy Technology Data Exchange (ETDEWEB)

    Reed, I.C. [Sakhalin Energy Investment Company, Yuzhno-Sakhalinsk (Russian Federation)

    2006-11-15

    The offshore oil and gas exploration that is currently taking place on Sakhalin Island was discussed, with particular reference to the status of Sakhalin Energy and the challenges facing oil and exportation from the ice covered waters of Russia's Sea of Okhotsk. Sakhalin Energy, an incorporated joint venture of a consortium of companies, completed a feasibility study for oil production off the east coast of Sakhalin Island in December 1992. Sakhalin Energy has two fields, namely the Piltun Astokhskoye and Lunskoye fields. The Piltun Astokhskoye field is currently under production via the Molikpaq platform and the Lunskoye field and northern part of Piltun Astokhskoye field are currently being developed under the Phase 2 project. Since 1999, Sakhalin Energy has been producing oil from a caisson structure drilling rig which was fitted with ice protection shielding around the waterline in order to comply with Russian requirements. Production is via an undersea pipeline to a Single Anchor Leg Mooring (SALM) unit and then to a Floating Storage and Offloading unit (FSO). A brief outline of the structure was presented along with current ice management procedures and arrangements. In order to maximize the length of the production season, ice management is used to enable an early start and a late end to production. It was noted that great care is taken to ensure that the operations in ice are carried out with consideration of the environmentally sensitive area that is home to the endangered Western Gray Whale and Stellar Sea Eagle. 3 refs., 1 tab., 7 figs.

  14. THE STATISTICAL MODEL OF PRESSURE RIDGE MORPHOMETRY ON THE NORTHEAST SHELF OF SAKHALIN ISLAND

    Directory of Open Access Journals (Sweden)

    E. U. Mironov

    2012-01-01

    Full Text Available The work presents characteristics on geometry and inner structure of ice ridges investigated at offshore the northeast coast of SakhalinIsland. A formula was obtained which allows one to calculate the ice ridge keel depth by the height of its sail. Plots of the probability distribution density for ice ridge characteristics are given. A model of morphometry of a mean statistical ice ridge was constructed, and its mass is determined. Factors influencing the hydrostatic ice ridge equilibrium are considered.

  15. The Potsdam Parallel Ice Sheet Model (PISM-PIK – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    M. A. Martin

    2011-09-01

    Full Text Available We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK. The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  16. Ice sheet-ocean interactions and sea level change

    Science.gov (United States)

    Heimbach, Patrick

    2014-03-01

    Mass loss from the Greenland and Antarctic ice sheets has increased rapidly since the mid-1990s. Their combined loss now accounts for about one-third of global sea level rise. In Greenland, a growing body of evidence points to the marine margins of these glaciers as the region from which this dynamic response originated. Similarly, ice streams in West Antarctica that feed vast floating ice shelves have exhibited large decadal changes. We review observational evidence and present physical mechanisms that might explain the observed changes, in particular in the context of ice sheet-ocean interactions. Processes involve cover 7 orders of magnitudes of scales, ranging from mm boundary-layer processes to basin-scale coupled atmosphere-ocean variability. We discuss observational needs to fill the gap in our mechanistic understanding.

  17. Submarine glacial landforms and interactions with volcanism around Sub-Antarctic Heard and McDonald Islands

    Science.gov (United States)

    Picard, K.; Watson, S. J.; Fox, J. M.; Post, A.; Whittaker, J. M.; Lucieer, V.; Carey, R.; Coffin, M. F.; Hodgson, D.; Hogan, K.; Graham, A. G. C.

    2017-12-01

    Unravelling the glacial history of Sub-Antarctic islands can provide clues to past climate and Antarctic ice sheet stability. The glacial history of many sub-Antarctic islands is poorly understood, including the Heard and McDonald Islands (HIMI) located on the Kerguelen Plateau in the southern Indian Ocean. The geomorphologic development of HIMI has involved a combination of construction via hotspot volcanism and mechanical erosion caused by waves, weather, and glaciers. Today, the 2.5 km2 McDonald Islands are not glacierised; in contrast, the 368 km2 Heard Island has 12 major glaciers, some extending from the summit of 2813 m to sea level. Historical accounts from Heard Island suggest that the glaciers were more extensive in the 1850s to 1870s, and have retreated at least 12% (33.89 km2) since 1997. However, surrounding bathymetry suggests a much more extensive previous glaciation of the HIMI region that encompassed 9,585 km2, likely dating back at least to the Last Glacial Maximum (LGM) ca. 26.5 -19 ka. We present analyses of multibeam bathymetry and backscatter data, acquired aboard RV Investigator in early 2016, that support the previous existence of an extensive icecap. These data reveal widespread ice-marginal and subglacial features including moraines, over-deepened troughs, drumlins and crag-and-tails. Glacial landforms suggest paleo-ice flow directions and a glacial extent that are consistent with previously documented broad scale morphological features. We identify >660 iceberg keel scours in water depths ranging from 150 - 530 m. The orientations of the iceberg keel scours reflect the predominantly east-flowing Antarctic Circumpolar Current and westerly winds in the region. 40Ar/39Ar dating of volcanic rocks from submarine volcanoes around McDonald Islands suggests that volcanism and glaciation coincided. The flat-topped morphology of these volcanoes may result from lava-ice interaction or erosion by glaciers post eruption during a time of extensive ice

  18. Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica

    Science.gov (United States)

    Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.

  19. Interactions between surface waters in King George Island, Antarctica - a stable isotope perspective

    Science.gov (United States)

    Perşoiu, Aurel; Bădăluşă, Carmen

    2017-04-01

    In this paper we present a first study of the isotopic composition of surface waters in the southern peninsulas (Barton, Fildes, Weaver and Potter) of King George Island, Antarctica. We have collected > 200 samples of snow and snowmelt, water (lake, river and spring), ice (glacier ice and permafrost) from the four peninsulas in February 2016 and analyzed them for their oxygen and hydrogen stable isotopic composition. Samples from lake water (50+) indicate a clear west-east depletion trend, suggesting a rain-out process as air masses are moving westward (and are progressively depleted in heavy isotopes) from their origin in the Drake Passage. In both Fildes and Barton Peninsulas, permafrost samples have the heaviest isotopic composition, most probably due to preferential incorporation of heavy isotopes in the ice during freezing (and no fractionation during melting). As permafrost melts, the resulting water mixes with isotopically lighter infiltrated snowmelt, and thus the groundwater has a lower isotopic composition. Further, lake and river (the later fed by lakes) water has the lightest isotopic composition, being derived mostly from the melting of light snow and glacier ice. It seems feasible to separate isotopically water in lakes/rivers (largely fed by melting multi-year glaciers and snow) and water from melting of snow/ground ice This preliminary study suggests that it is possible to separate various water sources in the southern peninsulas of King George Island, and this separation could be used to study permafrost degradation, as well as feeding and migration patterns in the bird fauna, with implications for protection purposes. Acknowledgments. The National Institute of Research and Development for Biological Sciences (Bucharest, Romania) and the Korean polar institute financially supported fieldwork in King George Island. We thank the personal at King Sejong (South Korea), Belingshaussen (Russia) and Carlini (Argentina) stations in King George Island for

  20. Identification of contrasting seasonal sea ice conditions during the Younger Dryas

    Science.gov (United States)

    Cabedo-Sanz, P.; Belt, S. T.; Knies, J.

    2012-12-01

    The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider palaeoenvironmental conditions for different regions of the Arctic over various timescales [e.g. 1, 2]. The current study focuses on high-resolution palaeo sea ice reconstructions for northern Norway during the last ca. 15 cal. kyr BP. Within this study, particular emphasis has been placed on the identification of the sea ice conditions during the Younger Dryas and the application of different biomarker-based proxies to both identify and quantify seasonal sea ice conditions. Firstly, the appearance of the specific sea ice diatom proxy IP25 at ca. 12.9 cal. kyr BP in a marine sediment core (JM99-1200) obtained from Andfjorden has provided an unambiguous but qualitative measure of seasonal sea ice and thus the onset of the Younger Dryas stadial. The near continuous occurrence of IP25 for the next ca. 1400 yr demonstrates seasonal sea ice during this interval, although variable abundances suggest that the recurrent conditions in the early-mid Younger Dryas (ca. 12.9 - 11.9 cal. kyr BP) changed significantly from stable to highly variable sea ice conditions at ca. 11.9 cal. kyr BP and this instability in sea ice prevailed for the subsequent ca. 400 yr. At ca. 11.5 cal. kyr BP, IP25 disappeared from the record indicating ice-free conditions that signified the beginning of the Holocene. Similarly, a high resolution record from the Kveithola Through, western Barents Sea, showed clearly higher IP25 concentrations during the Younger Dryas stadial compared to the Holocene. For both marine records, the IP25 concentrations were also combined with those of the open water phytoplankton biomarker brassicasterol to generate PBIP25 data from which more quantitative measurements of sea ice were determined. The contrasting seasonal sea ice conditions during the Younger Dryas were further verified

  1. Ice forces on marine structures. Volume 2, discussion

    Energy Technology Data Exchange (ETDEWEB)

    Marcellus, R W; Morrison, T B; Allyn, N F.B.; Croasdale, K R; Iyer, H S; Tseng, J

    1988-01-01

    A comprehensive state-of-the-art review is provided of the current methodologies in use for estimating the impact of ice forces on various kinds of marine structures: vertical sided or sloping stationary structures, floating structures, and artificial islands. Introductory chapters present ice statistics from selected Canadian marine regions, the failure modes and mechanical properties of ice, and general principles of ice/structure interactions. The methods for calculating ice loads are basically alternative methods for predicting the behavior of ice under different loading conditions; as such, none of the models have been successful in predicting the behavior of ice under all loading conditions. Currently the only reliable method for accurately predicting ice forces on marine structures is to use large-scale empirical data for ice of the same state as that predicted for design. Extrapolation from ice behavioral data at a smaller scale or ice of a different state is generally required. In comparison to current uncertainties, reasonably accurate estimates of upper bound static ice forces can be made, and a design approach using this upper bound force is appropriate for very massive rigid structures and in designing for overall global stability. The periodicity of ice forces also needs to be considered in terms of dynamic amplification of structure deformation, potential liquefaction of soils, and fatigue life. In certain cases, the deflection of the structure can change the ice failure process and therefore change the level and nature of the ice force. 221 refs., 171 figs., 19 tabs.

  2. The effect of sea ice on the solar energy budget in the astmosphere-sea ice-ocean system: A model study

    Science.gov (United States)

    Jin, Z.; Stamnes, Knut; Weeks, W. F.; Tsay, Si-Chee

    1994-01-01

    A coupled one-dimensional multilayer and multistream radiative transfer model has been developed and applied to the study of radiative interactions in the atmosphere, sea ice, and ocean system. The consistent solution of the radiative transfer equation in this coupled system automatically takes into account the refraction and reflection at the air-ice interface and allows flexibility in choice of stream numbers. The solar radiation spectrum (0.25 micron-4.0 micron) is divided into 24 spectral bands to account adequately for gaseous absorption in the atmosphere. The effects of ice property changes, including salinity and density variations, as well as of melt ponds and snow cover variations over the ice on the solar energy distribution in the entire system have been studied quantitatively. The results show that for bare ice it is the scattering, determined by air bubbles and brine pockets, in just a few centimeters of the top layer of ice that plays the most important role in the solar energy absorption and partitioning in the entire system. Ice thickness is important to the energy distribution only when the ice is thin, while the absorption in the atmosphere is not sensitive to ice thickness exceeds about 70 cm. The presence of clouds moderates all the sensitivities of the absorptive amounts in each layer to the variations in the ice properties and ice thickness. Comparisons with observational spectral albedo values for two simple ice types are also presented.

  3. Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillation

    NARCIS (Netherlands)

    Chylek, P.; Folland, C.K.; Frankcombe, L.M.; Dijkstra, H.A.; Lesins, G.; Dubey, M.

    2012-01-01

    [1] The Greenland δ18O ice core record is used as a proxy for Greenland surface air temperatures and to interpret Atlantic Multidecadal Oscillation (AMO) variability. An analysis of annual δ18O data from six Arctic ice cores (five from Greenland and one from Canada's Ellesmere Island) suggests a

  4. Oceanographic Data collected during the Islands in the Stream Expedition on NOAA Ship Gordon Gunter in the North Atlantic Ocean and the Gulf of Mexico between 2001-05-10 to 2001-10-04 (NCEI Accession 0104416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Islands in the Stream expedition explored protected and unprotected deep water coral reefs and hard-bottom communities throughout the Gulf of Mexico and South...

  5. Vertical Land Movements and Sea Level Changes around South Georgia Island

    OpenAIRE

    Teferle, Felix Norman; Hunegnaw, Addisu; Abraha, Kibrom Ebuy; Woodworth, Phil; Williams, Simon; Hibbert, Angela; Smalley, Robert; Dalziel, Ian; Lawver, Larry

    2018-01-01

    South Georgia Island in the Southern Atlantic Ocean is a key location for the seismic, geomagnetic and oceanic global monitoring networks. In its sub-Antarctic location, the island is largely covered by mountain glaciers which have been reported to be retreating due to climatic change. Furthermore, during past glaciation periods the island and its shelf area have been ice covered as was revealed by scarring of the sub-oceanic topography. Together with ongoing tectonics along the North Scotia ...

  6. Aufeis accumulations in stream bottoms in arctic and subarctic environments as a possible indicator of geologic structure: Chapter F in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    Science.gov (United States)

    Wanty, Richard B.; Wang, Bronwen; Vohden, Jim; Day, Warren C.; Gough, Larry P.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    Thick accumulations of ice, called “aufeis,” form during winter along stream and river valleys in arctic and subarctic regions. In high-gradient alpine streams, aufeis forms mostly as a result of ground-water discharge into the stream channel. The ice occludes this discharge, perturbing the steady-state condition, and causing an incremental rise in the local water table until discharge occurs higher on the stream bank above the previously formed ice. Successive freezing of onlapping ice layers can lead to aufeis accumulations several meters thick.

  7. Late Quaternary glaciation history of northernmost Greenland - Evidence of shelf-based ice

    DEFF Research Database (Denmark)

    Larsen, Nicolaj K.; Kjær, Kurt H.; Funder, Svend Visby

    2010-01-01

    We present the mapping of glacial landforms and sediments from northernmost Greenland bordering 100 km of the Arctic Ocean coast. One of the most important discoveries is that glacial landforms, sediments, including till fabric measurements, striae and stoss-lee boulders suggest eastward ice......-flow along the coastal plain. Volcanic erratic boulders document ice-transport from 80 to 100 km west of the study area. We argue that these findings are best explained by local outlet glaciers from the Greenland Ice Sheet and local ice caps that merged to form a shelf-based ice in the Arctic Ocean...... and possibly confirming an extensive ice shelf in the Lincoln Sea between Greenland and Ellesmere Island. It is speculated that the shelf-based ice was largely affected by the presence of thick multiyear sea ice in the Arctic Ocean that prevented it from breaking up and forced the outlet glaciers to flow...

  8. Modelling large-scale ice-sheet-climate interactions at the last glacial inception

    Science.gov (United States)

    Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.

    2010-05-01

    In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.

  9. Coastal-change and glaciological map of the Ross Island area, Antarctica

    Science.gov (United States)

    Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S.

    2010-01-01

    Reduction in the area and volume of Earth?s two polar ice sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. The Ross Island area map is bounded by long 141? E. and 175? E. and by lat 76? S. and 81? S. The map covers the part of southern Victoria Land that includes the northwestern Ross Ice Shelf, the McMurdo Ice Shelf, part of the polar plateau and Transantarctic Mountains, the McMurdo Dry Valleys, northernmost Shackleton Coast, Hillary Coast, the southern part of Scott Coast, and Ross Island. Little noticeable change has occurred in the ice fronts on the map, so the focus is on glaciological features. In the western part of the map area, the polar plateau of East Antarctica, once thought to be a featureless region, has subtle wavelike surface forms (megadunes) and flow traces of glaciers that originate far inland and extend to the coast or into the Ross Ice Shelf. There are numerous outlet glaciers. Glaciers drain into the McMurdo Dry Valleys, through the Transantarctic Mountains into the Ross Sea, or into the Ross Ice Shelf. Byrd Glacier is the largest. West of the Transantarctic Mountains are areas of blue ice, readily identifiable on Landsat images, that have been determined to be prime areas for finding meteorites. Three subglacial lakes have been identified in the map area. Because McMurdo Station, the main U.S. scientific research station in Antarctica, is located on Ross Island in the map area, many of these and other features in the area have been studied extensively. The paper version of this map is

  10. CEDEX research activities in Antarctica. Aquatic ecosystems in Byers Peninsula (Livingston Island, maritime Antarctica)

    International Nuclear Information System (INIS)

    Toro, M.; Quesada, A.; Camacho, A.; Oliva, M.; Alcami, A.; Antoniades, D.; Banon, M.; Fassnacht, S.; Fernandez-Valiente, E.; Galan, L.; Giralt, S.; Granados, I.; Justel, A.; Liu, E. J.; Lopez-Bravo, A.; Martinez-Cortizas, A.; Pla-Rabes, S.; Rastrojo, A.; Rico, E.; Rochera, C.; Van de Vijver, B.; Velazquez, D.; Villaescusa, J. A.; Vicent, W. F.

    2015-01-01

    Since 2001 CEDEX has taken part in many Antarctic joint research projects with different institutions from Spain and other countries, developing scientific activities in the International Camp of Byers Peninsular (Livingston Island, South Shetland Islands, Antarctica). This place was designed as an Antarctic Specially Protected Area (No.126) because the importance and value of its terrestrial and aquatic habitats. It is one of the largest ice-free areas of maritime Antarctica, with the highest diversity of environments and geological, hydrological and biological processes in the whole region, all of them in a pristine state. Byers Peninsula is considered the most significant limnological area in the Antarctic Peninsula region because it hosts a high number of lakes, ponds and streams, with an exceptional fauna and flora diversity, including the most singular, representative or endemic Antarctic species. Furthermore, the lakes sedimentary record is one of the widest and complete archives in Antarctic Peninsula region for the palaeocological and climatic study of the Holocene. Because Byers Peninsula is an Antarctic biodiversity hotspot, and it is located in one of the areas in the Earth where global warming is being more significant, it must be considered as a suitable international reference site for limnetic, terrestrial and coastal studies, and long term monitoring programmes. (Author)

  11. Solar ice; Sonne und Eis

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, Simon

    2012-07-01

    Fishing and fish marketing are the major sources of income at Santo Antao, the biggest of the Cape Verde Islands off Africa's west coast. In the coastal village of Monte Trigo, ice for keeping the fish fresh is now produced by a photovoltaic plant. As the Alliance for Rural Electrification recently reported, the community now gets its power from a 27.3 kW local power grid.

  12. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    Directory of Open Access Journals (Sweden)

    F. Pattyn

    2012-05-01

    Full Text Available Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing. Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.

  13. Isolating and identifying atmospheric ice-nucleating aerosols: a new technique

    Science.gov (United States)

    Kreidenweis, S. M.; Chen, Y.; Rogers, D. C.; DeMott, P. J.

    Laboratory studies examined two key aspects of the performance of a continuous-flow diffusion chamber (CFD) instrument that detects ice nuclei (IN) concentrations in air samples: separating IN from non-IN, and collecting IN aerosols to determine chemical composition. In the first study, submicron AgI IN particles were mixed in a sample stream with submicron non-IN salt particles, and the sample stream was processed in the CFD at -19°C and 23% supersaturation with respect to ice. Examination of the residual particles from crystals nucleated in the CFD confirmed that only AgI particles served as IN in the mixed stream. The second study applied this technique to separate and analyze IN and non-IN particles in a natural air sample. Energy-dispersive X-ray analyses (EDS) of the elemental composition of selected particles from the IN and non-IN fractions in ambient air showed chemical differences: Si and Ca were present in both, but S, Fe and K were also detected in the non-IN fraction.

  14. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier

    OpenAIRE

    Smith, J.A.; Andersen, T.J.; Shortt, M.; Gaffney, A.M.; Truffer, M.; Stanton, T.P.; Bindschadler, R.; Dutrieux, P.; Jenkins, A.; Hillenbrand, C.-D.; Ehrmann, W.; Corr, H.F.J.; Farley, N.; Crowhurst, S.; Vaughan, D.G.

    2016-01-01

    The article of record as published may be found at http://dx.doi.org/10.1038/nature20136 The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Under...

  15. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2005-01-01

    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  16. The refreezing of melt ponds on Arctic sea ice

    Science.gov (United States)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David

    2015-02-01

    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  17. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance.

    OpenAIRE

    Bradley, S.L.; Hindmarsh, R.C.A.; Whitehouse, P.L.; Bentley, M.J.; King, M.A.

    2015-01-01

    Many ice-sheet reconstructions assume monotonic Holocene retreat for the West Antarctic Ice Sheet, but an increasing number of glaciological observations infer that some portions of the ice sheet may be readvancing, following retreat behind the present-day margin. A readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice streams grounded on beds that deepen inland; and (ii) the inability of models of glacial...

  18. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  19. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data

    Science.gov (United States)

    Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.

    2013-01-01

    Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.

  20. A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet

    Directory of Open Access Journals (Sweden)

    H. Jeofry

    2018-04-01

    Full Text Available We present a new digital elevation model (DEM of the bed, with a 1 km gridding, of the Weddell Sea (WS sector of the West Antarctic Ice Sheet (WAIS. The DEM has a total area of ∼ 125 000 km2 covering the Institute, Möller and Foundation ice streams, as well as the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS through the NASA Operation IceBridge (OIB program in 2012, 2014 and 2016. We also improve bed elevation information from the single largest existing dataset in the region, collected by the British Antarctic Survey (BAS Polarimetric radar Airborne Science Instrument (PASIN in 2010–2011, from the relatively crude measurements determined in the field for quality control purposes used in Bedmap2. While the gross form of the new DEM is similar to Bedmap2, there are some notable differences. For example, the position and size of a deep subglacial trough (∼ 2 km below sea level between the ice-sheet interior and the grounding line of the Foundation Ice Stream have been redefined. From the revised DEM, we are able to better derive the expected routing of basal water and, by comparison with that calculated using Bedmap2, we are able to assess regions where hydraulic flow is sensitive to change. Given the potential vulnerability of this sector to ocean-induced melting at the grounding line, especially in light of the improved definition of the Foundation Ice Stream trough, our revised DEM will be of value to ice-sheet modelling in efforts to quantify future glaciological changes in the region and, from this, the potential impact on global sea level. The new 1 km bed elevation product of the WS sector can be found at https://doi.org/10.5281/zenodo.1035488.

  1. A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet

    Science.gov (United States)

    Jeofry, Hafeez; Ross, Neil; Corr, Hugh F. J.; Li, Jilu; Morlighem, Mathieu; Gogineni, Prasad; Siegert, Martin J.

    2018-04-01

    We present a new digital elevation model (DEM) of the bed, with a 1 km gridding, of the Weddell Sea (WS) sector of the West Antarctic Ice Sheet (WAIS). The DEM has a total area of ˜ 125 000 km2 covering the Institute, Möller and Foundation ice streams, as well as the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS) through the NASA Operation IceBridge (OIB) program in 2012, 2014 and 2016. We also improve bed elevation information from the single largest existing dataset in the region, collected by the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) in 2010-2011, from the relatively crude measurements determined in the field for quality control purposes used in Bedmap2. While the gross form of the new DEM is similar to Bedmap2, there are some notable differences. For example, the position and size of a deep subglacial trough (˜ 2 km below sea level) between the ice-sheet interior and the grounding line of the Foundation Ice Stream have been redefined. From the revised DEM, we are able to better derive the expected routing of basal water and, by comparison with that calculated using Bedmap2, we are able to assess regions where hydraulic flow is sensitive to change. Given the potential vulnerability of this sector to ocean-induced melting at the grounding line, especially in light of the improved definition of the Foundation Ice Stream trough, our revised DEM will be of value to ice-sheet modelling in efforts to quantify future glaciological changes in the region and, from this, the potential impact on global sea level. The new 1 km bed elevation product of the WS sector can be found at https://doi.org/10.5281/zenodo.1035488" target="_blank">https://doi.org/10.5281/zenodo.1035488.

  2. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    Science.gov (United States)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic

  3. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    Science.gov (United States)

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used

  4. Influence of Meteorological Regimes on Cloud Microphysics Over Ross Island, Antarctica

    Science.gov (United States)

    Glennon, C.; Wang, S. H.; Scott, R. C.; Bromwich, D. H.; Lubin, D.

    2017-12-01

    The Antarctic provides a sharp contrast in cloud microphysics from the high Arctic, due to orographic lifting and resulting strong vertical motions induced by mountain ranges and other varying terrain on several spatial scales. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) deployed advanced cloud remote sensing equipment to Ross Island, Antarctica, from December 2015 until January 2016. This equipment included scanning and zenith radars operating in the Ka and X bands, a high spectral resolution lidar (HSRL), and a polarized micropulse lidar (MPL). A major AWARE objective is to provide state-of-the-art data for improving cloud microphysical parameterizations in climate models. To further this objective we have organized and classified the local Ross Island meteorology into distinct regimes using k-means clustering on ERA-Interim reanalysis data. We identify synoptic categories producing unique regimes of cloud cover and cloud microphysical properties over Ross Island. Each day of observations can then be associated with a specific meteorological regime, thus assisting modelers with identifying case studies. High-resolution (1 km) weather forecasts from the Antarctic Mesoscale Prediction System (AMPS) are sorted into these categories. AMPS-simulated anomalies of cloud fraction, near-surface air temperature, and vertical velocity at 500-mb are composited and compared with ground-based radar and lidar-derived cloud properties to identify mesoscale meteorological processes driving Antarctic cloud formation. Synoptic lows over the Ross and Amundsen Seas drive anomalously warm conditions at Ross Island by injecting marine air masses inland over the West Antarctic Ice Sheet (WAIS). This results in ice and mixed-phase orographic cloud systems arriving at Ross Island from the south to southeast along the Transantarctic Mountains. In contrast, blocking over the Amundsen Sea region brings classical liquid-dominated mixed-phase and

  5. Analysis of volcano rock from Canary islands

    International Nuclear Information System (INIS)

    Sitek, J.; Sedlackova, K.; Dekan, J.

    2013-01-01

    In this work we have analyzed the basalt rock from Lanzarote, which is the easternmost island of the Canary Islands lying in the Atlantic Ocean and has a volcanic origin. It was born through fiery eruptions and has solidified lava streams as well as extravagant rock formations. We compared our results with composition of basalt rocks from some other places on the Earth. Different iron oxides created on the volcanic rocks during their weathering on the Earth surface has been also analyzed. (authors)

  6. Past and present stability of the Weddell Sea sector of the Antarctic Ice Sheet

    Science.gov (United States)

    Whitehouse, P. L.; Vieli, A.; Jamieson, S.; Bentley, M.; Hein, A.; Sugden, D.

    2016-12-01

    The contribution of the Weddell Sea sector of the Antarctic Ice Sheet to sea-level rise since the Last Glacial Maximum (LGM), along with the processes controlling the past and ongoing dynamics of this sector, are poorly known. Of particular concern is the fact that significant portions of the present-day grounding line are unstably located on bathymetry that deepens towards the interior of the continent. We present new modelling results, constrained by field evidence relating to past ice extent and thickness along the Foundation Ice Stream and Thiel Trough, which suggest that the post-LGM sea-level contribution from this sector was modest, and that the grounding line is unlikely to have been located at the continental shelf break for a prolonged period during the last glacial cycle. Poorly-constrained ice shelf and ocean processes are found to play a crucial role in controlling the past configuration and stability of this sector of the ice sheet. In particular, we find that we cannot rule out a scenario in which the grounding line of the Foundation Ice Stream retreated behind present during deglaciation, and has since re-advanced. This work complements a number of recent studies, based on independent data sets, that explore the possibility that grounding line re-advance occurred within the Weddell Sea sector during the mid-to-late Holocene. If this hypothesis is correct, then current glacial isostatic adjustment models, and hence contemporary estimates of ice mass balance derived from GRACE data, will be significantly biased. Piecing together, and understanding, the reason for recent changes in ice dynamics is crucial for determining the contemporary stability of the Weddell Sea sector of the Antarctic Ice Sheet.

  7. Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods

    Science.gov (United States)

    Davis, A. D.

    2015-12-01

    The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity

  8. Perennial water stratification and the role of freshwater in the mass balance of Arctic ice shelves and multiyear landfast sea ice

    International Nuclear Information System (INIS)

    Jeffries, M.O.

    1991-01-01

    A number of the ice shelves of northern Ellesmere Island in the Canadian High Arctic owe their origin to multiyear landfast sea ice (MLSI) growth during the post-Hypsithermal cooling ca. 3,000-4,000 BP. Since they grew in response to an arctic-wide climatic deterioration and contain evidence of occasional post-4,000 BP climatic ameliorations, they may be expected to be sensitive to future global climate changes manifested in the High Arctic. The purpose of this paper is to examine ice-ocean interactions and feedbacks, and the response of the ice shelves and the MLSI to the improved summer climate of the last ca. 100 years, and implications for the future. There is good evidence that there has been a negative surface mass balance since the turn of the century. Mass balance measurements on the Ward Hunt Ice Shelf between 1966 and 1985 indicate a total ice loss of 1.371 m at a mean annual rate of 68.5 mm. The interannual pattern of accumulation and ablation and the long-term losses on the ice shelf are similar to other Canadian High Arctic glacier mass balance records. It is evident from water and ice core records of salinity, δ 18 0 and tritium, that perennial water stratification is common below and behind the ice shelves and MLSI. The coastal waters are highly stratified, with anything from 0.5 m to 41.0 m of freshwater interposed between the overlying ice and underlying seawater. The primary source of the freshwater is summer run-off of snow-meltwater from the adjacent land and from the ice itself. There is minimal mixing between the influent freshwater and seawater, and the freshwater is either dammed behind the ice shelves and the MLSI, with subsequent under-ice freshwater outflows, or pooled in under-ice depressions

  9. Spatial Patterns of Long-Term Erosion Rates Beneath the Marine West Antarctic Ice Sheet: Insights into the Physics of Continental Scale Glacial Erosion from a Comparison with the Ice-Velocity Field

    Science.gov (United States)

    Howat, I. M.; Tulaczyk, S.; Mac Gregor, K.; Joughin, I.

    2001-12-01

    As part of the effort to build quantitative models of glacial erosion and sedimentation, it is particularly important to construct scaled relations between erosion, transport, and sedimentation rates and appropriate glaciological variables (e.g., ice velocity). Recent acquisition of bed topography and ice velocity data for the marine West Antarctic Ice Sheet (WAIS)[Joughin et al., 1999; Lythe et al., in press] provides an unprecedented opportunity to investigate continental-scale patterns of glacial erosion and their relationship to the ice velocity field. Utilizing this data, we construct a map of estimated long-term erosion rates beneath the WAIS. In order to calculate long-term erosion rates from the available data, we assume that: (1) the ice sheet has been present for ~5 mill. years, (2) the initial topography beneath the WAIS was that of a typical ( ~200 m.b.s.l.) continental shelf, and (3) the present topography is near local isostatic equilibrium (Airy type). The map of long-term erosion rates constructed in this fashion shows an intriguing pattern of relatively high rates (of the order of 0.1 mm/yr) concentrated beneath modern ice stream tributaries (ice velocity ~100 m/yr), but much lower erosion rates (of the order of 0.01 mm/yr) beneath both the modern fast-moving ice streams ( ~400 m/yr.) and the slow-moving parts of the ice sheet ( ~10 m/yr). This lack of clear correlation between the estimated erosion rates and ice velocity is somewhat unexpected given that both observational and theoretical studies have shown that bedrock erosion rates beneath mountain glaciers can often be calculated by multiplying the basal sliding velocity by a constant (typically of the order of ~10^-4)(Humphrey and Raymond, 1993 and Mac Gregor et al., 2000). We obtain an improved match between estimated erosion rates and bed topography by calculating erosion rates using horizontal gradients within the ice velocity field rather than the magnitude of ice velocity, as consistent

  10. Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)

    Science.gov (United States)

    Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.

    2017-07-01

    Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.

  11. Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions

    Science.gov (United States)

    Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.

    2014-11-01

    Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.

  12. Notes on the geochemical survey for uranium in Mindoro Island, Philippines

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Fernandez, L.G.; Villamater, D.T.; Seguis, J.E.; Ibe, M.G.

    1981-03-01

    Geochemical reconnaisance using stream sediment and heavy-mineral concentrates panned from coarse alluvium has been carried out in Mindoro Island, one of the oldest and diverse geologic terrains in the Philippines. A total of 135 selected sampling points situated near accessible areas along the periphery of the island were sampled. The samples were collected at a density of one sample per 53 sq. km. A set minus 80 mesh stream sediment fraction and heavy-mineral concentrates was obtained from each sampling point. Mobile or extractable and total uranium were determined. A large uranium anomaly was delineated over the Carboniferous Mindoro Metamorphics as well as in areas underlain by Early Tertiary sedimentary formations. Another group of anomalies were outlined in the southern part of the island underlain by Jurassic Mansalay Formation and Early to Middle Tertiary sedimentary rocks with associated limestone and coal measures. (author)

  13. Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic.

    Science.gov (United States)

    Piwosz, Kasia; Wiktor, Józef Maria; Niemi, Andrea; Tatarek, Agnieszka; Michel, Christine

    2013-08-01

    Sea ice, a characteristic feature of polar waters, is home to diverse microbial communities. Sea-ice picoeukaryotes (unicellular eukaryotes with cell size Arctic first-year sea ice. Here, we investigated the abundance of all picoeukaryotes, and of 11 groups (chlorophytes, cryptophytes, bolidophytes, haptophytes, Pavlovaphyceae, Phaeocystis spp., pedinellales, stramenopiles groups MAST-1, MAST-2 and MAST-6 and Syndiniales Group II) at 13 first-year sea-ice stations localized in Barrow Strait and in the vicinity of Cornwallis Island, Canadian Arctic Archipelago. We applied Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization to identify selected groups at a single cell level. Pavlovaphyceae and stramenopiles from groups MAST-2 and MAST-6 were for the first time reported from sea ice. Total numbers of picoeukaryotes were significantly higher in the vicinity of Cornwallis Island than in Barrow Strait. Similar trend was observed for all the groups except for haptophytes. Chlorophytes and cryptophytes were the dominant plastidic, and MAST-2 most numerous aplastidic of all the groups investigated. Numbers of total picoeukaryotes, chlorophytes and MAST-2 stramenopiles were positively correlated with the thickness of snow cover. All studied algal and MAST groups fed on bacteria. Presence of picoeukaryotes from various trophic groups (mixotrophs, phagotrophic and parasitic heterotrophs) indicates the diverse ecological roles picoeukaryotes have in sea ice. Yet, >50% of total sea-ice picoeukaryote cells remained unidentified, highlighting the need for further study of functional and phylogenetic sea-ice diversity, to elucidate the risks posed by ongoing Arctic changes.

  14. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture

    Science.gov (United States)

    Quiquet, Aurélien; Roche, Didier M.

    2017-04-01

    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.

  15. Caisson structures in the Beaufort Sea 1982-1990 : characteristics, instrumentation and ice loads

    Energy Technology Data Exchange (ETDEWEB)

    Timco, G.W.; Johnston, M.E. [National Research Council of Canada, Ottawa, ON (Canada). Canadian Hydraulics Centre

    2002-11-01

    This report presents a comprehensive overview of the instrumentation, characteristics and measured ice loads on the caisson structures used for exploratory drilling in the Canadian Beaufort Sea during the 1970s and 1980s. The focus was placed on the Tarsiut Caissons, the Single Steel Drilling Caisson (SSDC), the Caisson Retained Island (CRI), and the Molikpaq. Details on the ice-load measuring instrumentation were provided for each of the drill sites featuring an ice-load measurement program. The results of global loads on the structures were presented as a Line Load (global load per width of the structure) and the Global Pressure (line load per ice thickness). The authors showed that global loads were a function of the ice macrostructure (level first-year sea ice, multi-year ice, first-year ridges, hummock fields, isolated floes). A general increase in the Line Load with increasing ice thickness was revealed through analysis. There was considerable scatter in the data, and the authors explained it by examining the failure mode of the ice during the interaction process. 36 refs., 4 tabs., 57 figs.

  16. Low-flow characteristics of streams in the Puget Sound region, Washington

    Science.gov (United States)

    Hidaka, F.T.

    1973-01-01

    relatively impermeable igneous, sedimentary, and metamorphic rocks or by relatively impermeable glacial till. Melt water from snow and ice influences the index for streams which originate at glaciers, and result in fairly large indexes--0.25 or greater. The slope index is influenced principally by the character of the geologic materials that underlie the basin. The largest slope indexes were computed for small streams that drain areas underlain by compact glacial till or consolidated sedimentary rocks. In contrast, lowland streams that flow through areas underlain by unconsolidated alluvia and glacial deposits have the smallest indexes. Small slope indexes also are characteristic of glacial streams and show the moderating effect of the snow and ice storage in the high mountain basins. The spacing indexes are similar to the slope indexes in that they are affected by the character of the geologic materials underlying a basin. The largest spacing indexes are characteristic of small streams whose basins are underlain by glacial till or by consolidated sedimentary rocks. The smallest indexes were computed for some lowland streams draining areas underlain by permeable glacial and alluvial sediments. The indexes do not appear to have a definite relation to each other. The low-flow-yield indexes are not related to either the slope or spacing indexes because snow and ice storage has a great influence on the low-flow-yield index, while the character of the geologic materials influences the slope and spacing indexes. A relation exists between the slope and spacing indexes but many anomalies occur that cannot be explained by the geology of the basins.

  17. Surface energy balance and turbulence measurements on Warszawa Icefield, King George Island, West Antarctica

    Science.gov (United States)

    Falk, U.; Sala, H.; Braun, M.

    2012-12-01

    The Antarctic Peninsula is amongst the fastest warming places on Earth and further temperature increase is to be expected. It has undergone rapid environmental changes in the past decades. Exceptional rates of surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, surface lowering and rapid retreat of glaciers, break-up and disintegration of ice shelves. The South Shetland Islands are located on the northern tip of the Antarctic Peninsula and are especially vulnerable to climate change due to their maritime climate. For King George Island we have compiled a unique data set comprising direct measurements of evaporation and sensible heat flux by eddy covariance on the Warszawa Icefield over 1.5 years from November 2010 to 2012 in combination with a fully equipped automated weather station measuring long- and short-wave radiation components, profiles of temperature, humidity and wind velocities as well as glacier ice temperatures. The combination with the eddy covariance data allows for analysis of variability and seasonality of surface energy balance components on a glacier for one and a half years. Repeat measurements of snow accumulation and surface lowering along transects on the glacier and at different locations on King George Island are used for analysis of multi-sensor satellite data to identify melt patterns and bare ice areas during summer within the source area of the ground measurements. In combination with long-term time series of weather data, these data give indication of the sensitivity of the ice cap to the ongoing changes. This research is part of the ESF project IMCOAST funded by BMBF. Field work was carried out at the Dallmann laboratory (Carlini station, King George Island/Isla 25 de Mayo) in cooperation of the Instituto Antartico Argentino (Argentina) and the Alfred-Wegener Institute of Marine and Polar Research (Germany).

  18. Antarctic Mass Loss from GRACE from Space- and Time-Resolved Modeling with Slepian Functions

    Science.gov (United States)

    Simons, F. J.; Harig, C.

    2013-12-01

    The melting of polar ice sheets is a major contributor to global sea-level rise. Antarctica is of particular interest since most of the mass loss has occurred in West Antarctica, however updated glacial isostatic adjustment (GIA) models and recent mass gains in East Antarctica have reduced the continent-wide integrated decadal trend of mass loss. Here we present a spatially and temporally resolved estimation of the Antarctic ice mass change using Slepian localization functions. With a Slepian basis specifically for Antarctica, the basis functions maximize their energy on the continent and we can project the geopotential fields into a sparse set of orthogonal coefficients. By fitting polynomial functions to the limited basis coefficients we maximize signal-to-noise levels and need not perform smoothing or destriping filters common to other approaches. In addition we determine an empirical noise covariance matrix from the GRACE data to estimate the uncertainty of mass estimation. When applied to large ice sheets, as in our own recent Greenland work, this technique is able to resolve both the overall continental integrated mass trend, as well as the spatial distribution of the mass changes over time. Using CSR-RL05 GRACE data between Jan. 2003 and Jan 2013, we estimate the regional accelerations in mass change for several sub-regions and examine how the spatial pattern of mass has changed. The Amundsen Sea coast of West Antarctica has experienced a large acceleration in mass loss (-26 Gt/yr^2). While mass loss is concentrated near Pine Island and Thwaites glaciers, it has also increased along the coast further towards the Ross ice shelf.

  19. Notes on the radiometric and geochemical survey of Leyte Island

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1982-01-01

    Radioactivity measurements using the Scintrex GIS-4 portable scintillometer were conducted along the periphery of the island. These radiometric readings as well as sediments were obtained along the streams draining into the sea. A total of 174 stream sediments samples were collected. Minus 80 mesh sediment fraction was analyzed for mobile or extractable uranium. Results indicated that the background values of radioactivity and uranium in stream sediments were 25 counts per second (cps) and 0.3 ppm, respectively. The San Isidro and Vilaba areas which are located in the northern part of Leyte have greater than 3 times above background radioactivity and uranium in the stream sediments. (author)

  20. Recovery of biogas as a source of renewable energy from ice-cream production residues and wastewater.

    Science.gov (United States)

    Demirel, Burak; Orok, Murat; Hot, Elif; Erkişi, Selin; Albükrek, Metin; Onay, Turgut T

    2013-01-01

    Proper management of waste streams and residues from agro-industry is very important to prevent environmental pollution. In particular, the anaerobic co-digestion process can be used as an important tool for safe disposal and energy recovery from agro-industry waste streams and residues. The primary objective of this laboratory-scale study was to determine whether it was possible to recover energy (biogas) from ice-cream production residues and wastewater, through a mesophilic anaerobic co-digestion process. A high methane yield of 0.338 L CH4/gCOD(removed) could be achieved from anaerobic digestion of ice-cream wastewater alone, with almost 70% of methane in biogas, while anaerobic digestion of ice-cream production residue alone did not seem feasible. When wastewater and ice-cream production residue were anaerobically co-digested at a ratio of 9:1 by weight, the highest methane yield of 0.131 L CH4/gCOD(removed) was observed. Buffering capacity seemed to be imperative in energy recovery from these substrates in the anaerobic digestion process.

  1. Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands

    Science.gov (United States)

    Dutton, Andrea; Webster, Jody M.; Zwartz, Dan; Lambeck, Kurt; Wohlfarth, Barbara

    2015-01-01

    In the search for a record of eustatic sea level change on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its location with respect to the former margins of Northern Hemisphere ice sheets that wax and wane on orbital cycles, the local-or relative-sea level history is predicted to lie within a few meters of the globally averaged eustatic signal during the Last Interglacial period. We have surveyed and dated Last Interglacial fossil corals to ascertain peak sea level and hence infer maximum retreat of polar ice sheets during this time interval. We observe a pattern of gradually rising sea level in the Seychelles between ˜129 and 125 thousand years ago (ka), with peak eustatic sea level attained after 125 ka at 7.6 ± 1.7 m higher than present. After accounting for thermal expansion and loss of mountain glaciers, this sea-level budget would require ˜5-8 m of polar ice sheet contribution, relative to today's volume, of which only ˜2 m came from the Greenland ice sheet. This result clearly identifies the Antarctic ice sheet as a significant source of melt water, most likely derived from one of the unstable, marine-based sectors in the West and/or East Antarctic ice sheet. Furthermore, the establishment of a +5.9 ± 1.7 m eustatic sea level position by 128.6 ± 0.8 ka would require that partial AIS collapse was coincident with the onset of the sea level highstand.

  2. Interaction modifiers in artificial spin ices

    Science.gov (United States)

    Ã-stman, Erik; Stopfel, Henry; Chioar, Ioan-Augustin; Arnalds, Unnar B.; Stein, Aaron; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2018-04-01

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order1-6, collective low-energy dynamics7,8 and emergent magnetic properties5, 9,10 in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane11. We show that by placing these on the vertices of square artificial spin-ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.

  3. Trophic basis of production for a mayfly in a North Island, New Zealand, forest stream : contributions of benthic versus hyporheic habitats and implications for restoration

    International Nuclear Information System (INIS)

    Collier, K.J.; Wright-Stow, A.E.; Smith, B.J.

    2004-01-01

    The leptophlebiid mayfly Acanthophlebia cruentata (Hudson) is restricted to the North Island and some associated offshore islands of northern New Zealand where it commonly occurs in benthic and hyporheic habitats of forested streams. We investigated: (1) life history; (2) secondary production in benthic and hyporheic habitats; and (3) major energy sources contributing to nutrition and production of this species in a pristine forest stream. Most nymphal size classes were present throughout the year, and emergence extended over several months, peaking from February to April. Despite apparently having extended emergence and recruitment periods, Acanthophlebia exhibited a predominantly univoltine life history. Annual benthic production (calculated by the size-frequency method) was 0.318 g dry mass (DM) m -2 year -1 , compared to 4.601 g DM m -2 year -1 in high-density benthic habitats at the tails of pools, and 34.476 g m -3 year -1 for colonisation baskets set at 15-45 cm deep in the substratum. On a habitat weighted basis averaged out over the entire sampling reach, it was estimated that 76% of annual production occurred in hyporheic habitats >10 cm below the streambed surface. Gut contents were dominated by fine particulate matter (FPM) ≤75 μm and larger inorganic material on all dates in individuals from both benthic and hyporheic habitats. Fungi were relatively abundant in guts of benthic animals collected on some dates, whereas spores and pollen were relatively common food items in both habitats on occasions. Analysis of the trophic basis of production, based on gut contents and assumed assimilation and net production efficiencies, indicated that benthic secondary production was supported largely by fungi (48% of production) and FPM (37%), whereas FPM supported a higher level of hyporheic production (52%) than fungi (27%). Although stable carbon isotope values suggested dependence on epilithon, the enriched δ 15 N values for this food source implicated the

  4. Ice Forces on Offshore Wind Power Plants. Descriptions of mechanisms and recommendations for dimensioning; Islaster paa vindkraftverk till havs. Beskrivning av mekanismer och rekommendationer foer dimensionering

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, Lars [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Water Environment Transport

    2002-02-01

    Mechanisms for ice-loads on off-shore wind power plants are described, The ice-loads are due to thermal expansion, water level variations, drifting ice and ice-reefing. Ice accretion is briefly treated. Ice instance, ice thickness, ice retention time, water level variations and stream velocities in Swedish waters are compiled. The main text deals with recommendations for dimensioning wind power plants at sea. In the appendices, a thorough review of the physical and mechanical properties of ice is presented.

  5. Off-stream Pumped Storage Hydropower plant to increase renewable energy penetration in Santiago Island, Cape Verde

    Science.gov (United States)

    Barreira, Inês; Gueifão, Carlos; Ferreira de Jesus, J.

    2017-04-01

    In order to reduce the high dependence on imported fuels and to meet the ongoing growth of electricity demand, Cape Verde government set the goal to increase renewable energy penetration in Santiago Island until 2020. To help maximize renewable energy penetration, an off-stream Pumped Storage Hydropower (PSH) plant will be installed in Santiago, in one of the following locations: Chã Gonçalves, Mato Sancho and Ribeira dos Picos. This paper summarizes the studies carried out to find the optimal location and connection point of the PSH plant in Santiago’s electricity network. This goal was achieved by assessing the impact of the PSH plant, in each location, on power system stability. The simulation tool PSS/E of Siemens was used to study the steady-state and dynamic behavior of the future (2020) Santiago MV grid. Different scenarios of demand and renewable resources were created. Each hydro unit of the PSH plant was modeled as an adjustable speed reversible turbine employing a DFIM. The results show that Santiago’s grid with the PSH plant in Chã Gonçalves is the one that has the best performance.

  6. The color of melt ponds on Arctic sea ice

    Science.gov (United States)

    Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg

    2018-04-01

    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi 1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.

  7. BUMPER: the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction

    Science.gov (United States)

    Holden, Phil; Birks, John; Brooks, Steve; Bush, Mark; Hwang, Grace; Matthews-Bird, Frazer; Valencia, Bryan; van Woesik, Robert

    2017-04-01

    We describe the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. The principal motivation for a Bayesian approach is that the palaeoenvironment is treated probabilistically, and can be updated as additional data become available. Bayesian approaches therefore provide a reconstruction-specific quantification of the uncertainty in the data and in the model parameters. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring 2 seconds to build a 100-taxon model from a 100-site training-set on a standard personal computer. We apply the model's probabilistic framework to generate thousands of artificial training-sets under ideal assumptions. We then use these to demonstrate both the general applicability of the model and the sensitivity of reconstructions to the characteristics of the training-set, considering assemblage richness, taxon tolerances, and the number of training sites. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. In all of these applications an identically configured model is used, the only change being the input files that provide the training-set environment and taxon-count data.

  8. The Flooding of Long Island Sound

    Science.gov (United States)

    Thomas, E.; Varekamp, J. C.; Lewis, R. S.

    2007-12-01

    Between the Last Glacial Maximum (22-19 ka) and the Holocene (10 ka) regions marginal to the Laurentide Ice Sheets saw complex environmental changes from moraines to lake basins to dry land to estuaries and marginal ocean basins, as a result of the interplay between the topography of moraines formed at the maximum extent and during stages of the retreat of the ice sheet, regional glacial rebound, and global eustatic sea level rise. In New England, the history of deglaciation and relative sea level rise has been studied extensively, and the sequence of events has been documented in detail. The Laurentide Ice Sheet reached its maximum extent (Long Island) at 21.3-20.4 ka according to radiocarbon dating (calibrated ages), 19.0-18.4 ka according to radionuclide dating. Periglacial Lake Connecticut formed behind the moraines in what is now the Long Island Sound Basin. The lake drained through the moraine at its eastern end. Seismic records show that a fluvial system was cut into the exposed lake beds, and a wave-cut unconformity was produced during the marine flooding, which has been inferred to have occurred at about 15.5 ka (Melt Water Pulse 1A) through correlation with dated events on land. Vibracores from eastern Long Island Sound penetrate the unconformity and contain red, varved lake beds overlain by marine grey sands and silts with a dense concentration of oysters in life position above the erosional contact. The marine sediments consist of intertidal to shallow subtidal deposits with oysters, shallow-water foraminifera and litoral diatoms, overlain by somewhat laminated sandy silts, in turn overlain by coarser-grained, sandy to silty sediments with reworked foraminifera and bivalve fragments. The latter may have been deposited in a sand-wave environment as present today at the core locations. We provide direct age control of the transgression with 30 radiocarbon dates on oysters, and compared the ages with those obtained on macrophytes and bulk organic carbon in

  9. Advances in river ice hydrology 1999-2003

    Science.gov (United States)

    Morse, Brian; Hicks, Faye

    2005-01-01

    In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable

  10. Chemical composition, mixing state, size and morphology of Ice nucleating particles at the Jungfraujoch research station, Switzerland

    Science.gov (United States)

    Ebert, Martin; Worringen, Annette; Kandler, Konrad; Weinbruch, Stephan; Schenk, Ludwig; Mertes, Stephan; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nilius, Björn; Danielczok, Anja; Bingemer, Heinz

    2014-05-01

    An intense field campaign from the Ice Nuclei Research Unit (INUIT) was performed in January and February of 2013 at the High-Alpine Research Station Jungfraujoch (3580 m a.s.l., Switzerland). Main goal was the assessment of microphysical and chemical properties of free-tropospheric ice-nucelating particles. The ice-nucleating particles were discriminated from the total aerosol with the 'Fast Ice Nucleation CHamber' (FINCH; University Frankfurt) and the 'Ice-Selective Inlet' (ISI, Paul Scherer Institute) followed by a pumped counter-stream virtual impactor. The separated ice-nucleating particles were then collected with a nozzle-type impactor. With the 'FRankfurt Ice nuclei Deposition freezinG Experiment' (FRIDGE), aerosol particles are sampled on a silicon wafer, which is than exposed to ice-activating conditions in a static diffusion chamber. The locations of the growing ice crystals are recorded for later analysis. Finally, with the ICE Counter-stream Virtual Impactor (ICE-CVI) atmospheric ice crystals are separated from the total aerosol and their water content is evaporated to retain the ice residual particles, which are then collected also by impactor sampling. All samples were analyzed in a high-resolution scanning electron microscope. By this method, for each particle its size, morphology, mixing-state and chemical composition is obtained. In total approximately 1700 ice nucleating particles were analyzed. Based on their chemical composition, the particles were classified into seven groups: silicates, metal oxides, Ca-rich particles, (aged) sea-salt, soot, sulphates and carbonaceous matter. Sea-salt is considered as artifact and is not regarded as ice nuclei here. The most frequent ice nucleating particles/ice residuals at the Jungfraujoch station are silicates > carbonaceous particles > metal oxides. Calcium-rich particles and soot play a minor role. Similar results are obtained by quasi-parallel measurements with an online single particle laser ablation

  11. Estimating ice-affected streamflow by extended Kalman filtering

    Science.gov (United States)

    Holtschlag, D.J.; Grewal, M.S.

    1998-01-01

    An extended Kalman filter was developed to automate the real-time estimation of ice-affected streamflow on the basis of routine measurements of stream stage and air temperature and on the relation between stage and streamflow during open-water (ice-free) conditions. The filter accommodates three dynamic modes of ice effects: sudden formation/ablation, stable ice conditions, and eventual elimination. The utility of the filter was evaluated by applying it to historical data from two long-term streamflow-gauging stations, St. John River at Dickey, Maine and Platte River at North Bend, Nebr. Results indicate that the filter was stable and that parameters converged for both stations, producing streamflow estimates that are highly correlated with published values. For the Maine station, logarithms of estimated streamflows are within 8% of the logarithms of published values 87.2% of the time during periods of ice effects and within 15% 96.6% of the time. Similarly, for the Nebraska station, logarithms of estimated streamflows are within 8% of the logarithms of published values 90.7% of the time and within 15% 97.7% of the time. In addition, the correlation between temporal updates and published streamflows on days of direct measurements at the Maine station was 0.777 and 0.998 for ice-affected and open-water periods, respectively; for the Nebraska station, corresponding correlations were 0.864 and 0.997.

  12. River predisposition to ice jams: a simplified geospatial model

    Directory of Open Access Journals (Sweden)

    S. De Munck

    2017-07-01

    Full Text Available Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence. Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases. Results, limitations, and potential improvements are discussed.

  13. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  14. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  15. Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet

    Science.gov (United States)

    Rooney, Alan D.; Selby, David; Llyod, Jeremy M.; Roberts, David H.; Luckge, Andreas; Sageman, Bradley B.; Prouty, Nancy G.

    2016-01-01

    High-resolution Os isotope stratigraphy can aid in reconstructing Pleistocene ice sheet fluctuation and elucidating the role of local and regional weathering fluxes on the marine Os residence time. This paper presents new Os isotope data from ocean cores adjacent to the West Greenland ice sheet that have excellent chronological controls. Cores MSM-520 and DA00-06 represent distal to proximal sites adjacent to two West Greenland ice streams. Core MSM-520 has a steadily decreasing Os signal over the last 10 kyr (187Os/188Os = 1.35–0.81). In contrast, Os isotopes from core DA00-06 (proximal to the calving front of Jakobshavn Isbræ) highlight four stages of ice stream retreat and advance over the past 10 kyr (187Os/188Os = 2.31; 1.68; 2.09; 1.47). Our high-resolution chemostratigraphic records provide vital benchmarks for ice-sheet modelers as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from regional and global settings serve to emphasize the overwhelming effect weathering sources have on seawater Os isotope composition. Further, these findings demonstrate that the residence time of Os is shorter than previous estimates of ∼104 yr.

  16. Positive-Buoyancy Rover for Under Ice Mobility

    Science.gov (United States)

    Leichty, John M.; Klesh, Andrew T.; Berisford, Daniel F.; Matthews, Jaret B.; Hand, Kevin P.

    2013-01-01

    A buoyant rover has been developed to traverse the underside of ice-covered lakes and seas. The rover operates at the ice/water interface and permits direct observation and measurement of processes affecting freeze- over and thaw events in lake and marine environments. Operating along the 2- D ice-water interface simplifies many aspects of underwater exploration, especially when compared to submersibles, which have difficulty in station-keeping and precision mobility. The buoyant rover consists of an all aluminum body with two aluminum sawtooth wheels. The two independent body segments are sandwiched between four actuators that permit isolation of wheel movement from movement of the central tether spool. For normal operations, the wheels move while the tether spool feeds out line and the cameras on each segment maintain a user-controlled fixed position. Typically one camera targets the ice/water interface and one camera looks down to the lake floor to identify seep sources. Each wheel can be operated independently for precision turning and adjustments. The rover is controlled by a touch- tablet interface and wireless goggles enable real-time viewing of video streamed from the rover cameras. The buoyant rover was successfully deployed and tested during an October 2012 field campaign to investigate methane trapped in ice in lakes along the North Slope of Alaska.

  17. Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, L., E-mail: eleocarol@fcnym.unlp.edu.ar [Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata - UNLP, Calle 64 y Diag. 113, 1900 La Plata, Buenos Aires (Argentina); Carol, E. [Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata - UNLP, Calle 64 y Diag. 113, 1900 La Plata, Buenos Aires (Argentina); Kruse, E. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Hidrología General de la Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Calle 64 #3, 1900 La Plata, Buenos Aires (Argentina)

    2016-10-01

    The hydrochemistry of minor elements and traces such as bromide, lithium, strontium, uranium and selenium, together with the chemical analysis of major ions, has been used in the study of salinization process. This process occurs in a semi-confined aquifer that corresponds to a Pliocene–Pleistocene fluvial environment. The semi-confined aquifer is located in the littoral of the cities of Ensenada and Berisso, in the region of the middle Río de la Plata estuary, Argentina. Groundwater salinization was detected in the semi-confined aquifer in the coastal plain area, with salt contents that increase from the loess plain towards the river. The content of major ions that predominate in sea water (Cl{sup −}, Na{sup +} and Mg{sup 2+}), as well as the Cl{sup −}/Br{sup −} and U vs. Cl{sup −} ratios, demonstrates that such salinization is related to sea water, which shows no correspondence with estuary water. In the salinized area, Li, Sr and Se enrichments occur, and are used as tracers of the average time that a substance remains in solution in sea water in the aquifer. The study of such minor ions together with the geological evolution of the area made it possible to recognize that the salt water in the semi-confined aquifer corresponds to a palaeo-intrusion of sea water associated with the Pleistocene–Holocene ingressions caused by the climate changes occurring during the Quaternary. - Highlights: • The semi-confined aquifer in a sector of the Río de la Plata estuary is salinized. • Saline content is higher in the aquifer than in the estuary. • Minor elements indicate the occurrence of palaeo-seawater intrusion. • Palaeo-seawater intrusion may be associated with interglacial fluctuations.

  18. Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina)

    International Nuclear Information System (INIS)

    Santucci, L.; Carol, E.; Kruse, E.

    2016-01-01

    The hydrochemistry of minor elements and traces such as bromide, lithium, strontium, uranium and selenium, together with the chemical analysis of major ions, has been used in the study of salinization process. This process occurs in a semi-confined aquifer that corresponds to a Pliocene–Pleistocene fluvial environment. The semi-confined aquifer is located in the littoral of the cities of Ensenada and Berisso, in the region of the middle Río de la Plata estuary, Argentina. Groundwater salinization was detected in the semi-confined aquifer in the coastal plain area, with salt contents that increase from the loess plain towards the river. The content of major ions that predominate in sea water (Cl"−, Na"+ and Mg"2"+), as well as the Cl"−/Br"− and U vs. Cl"− ratios, demonstrates that such salinization is related to sea water, which shows no correspondence with estuary water. In the salinized area, Li, Sr and Se enrichments occur, and are used as tracers of the average time that a substance remains in solution in sea water in the aquifer. The study of such minor ions together with the geological evolution of the area made it possible to recognize that the salt water in the semi-confined aquifer corresponds to a palaeo-intrusion of sea water associated with the Pleistocene–Holocene ingressions caused by the climate changes occurring during the Quaternary. - Highlights: • The semi-confined aquifer in a sector of the Río de la Plata estuary is salinized. • Saline content is higher in the aquifer than in the estuary. • Minor elements indicate the occurrence of palaeo-seawater intrusion. • Palaeo-seawater intrusion may be associated with interglacial fluctuations.

  19. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  20. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    Science.gov (United States)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).

  1. Identification of early Llandovery (Silurian) anoxic palaeo-depressions at the western margin of the Murzuq Basin (southwest Libya), based on gamma-ray spectrometry in surface exposures

    Czech Academy of Sciences Publication Activity Database

    Fello, N.; Lüning, S.; Štorch, Petr; Redfern, J.

    2006-01-01

    Roč. 11, č. 3 (2006), s. 101-118 ISSN 1025-6059 R&D Projects: GA ČR GA205/99/1322 Institutional research plan: CEZ:AV0Z30130516 Keywords : postglacial anoxy * early Llandovery * Murzuq Basin * palaeo-depressions * gamma-spectrometry Subject RIV: DB - Geology ; Mineralogy

  2. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica

    Science.gov (United States)

    Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit

    2018-05-01

    Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a

  3. Evolution of Meltwater on the McMurdo Ice Shelf, Antarctica During Two Summer Melt Seasons

    Science.gov (United States)

    Macdonald, G. J.; Banwell, A. F.; Willis, I.; Mayer, D. P.; Hansen, E. K.; MacAyeal, D. R.

    2017-12-01

    Ice shelves surround > 50% of Antarctica's coast and their response to climate change is key to the ice sheet's future and global sea-level rise. Observations of the development and drainage of 2750 lakes prior to the collapse of the Larsen B Ice Shelf, combined with our understanding of ice-shelf flexure/fracture, suggest that surface meltwater plays a key role in ice-shelf stability, although the present state of knowledge remains limited. Here, we report results of an investigation into the seasonal evolution of meltwater on the McMurdo Ice Shelf (MIS) during the 2015/16 and 2016/17 austral summers using satellite remote sensing, complemented by ground survey. Although the MIS is relatively far south (78° S), it experiences relatively high ablation rates in the west due to adiabatically warmed winds, making it a useful example of how meltwater could evolve on more southerly ice shelves in a warming climate. We calculate the areas and depths of ponded surface meltwater on the ice shelf at different stages of the two melt seasons using a modified NDWI approach and water-depth algorithm applied to both Landsat 8 and Worldview imagery. Data from two automatic weather stations on the ice shelf are used to drive a positive degree-day model to compare our observations of surface water volumes with modelled meltwater production. Results suggest that the spatial and temporal variations in surface meltwater coverage on the ice shelf vary not only with climatic conditions but also in response to other important processes. First, a rift that widens and propagates between the two melt seasons intercepts meltwater streams, redirecting flow and facilitating ponding elsewhere. Second, some lakes from previous years remain frozen over and become pedestalled, causing streams to divert around their perimeter. Third, surface debris conditions also cause large-scale spatial variation in melt rates and the flow and storage of water.

  4. Influence of the Palaeo-Landslides on the Project of Rehabilitation of a National Road in the Southern Carpathian Area

    Science.gov (United States)

    Mihailescu, Daniel; Milutinovici, Emilia

    2017-12-01

    The mountain Paduchiosu is a part of the Southern Carpathians, in the South-Eastern Bucegi National Park. Significant palaeo-landslides occur on the Eastern slope of the mountain Paduchiosu, affecting the DN 71 alignment, between Valea Dorului and Valea Carpinis, on a length of approx. 10 km [1]. The palaeo-landslides occur along the tectonic contacts of various cretaceous formations. The landslides occur both at the level of Quaternary deposits, forming the alteration layer of the old geological formations (alluvial, deluvial and colluvial soil deposits), and at the level of Pre-Quaternary geological formations, whose structure is clayey-marl, or within the harder rocky formations, with seams of clayey - marl nature also. Two large palaeo-landslides can be distinguished: landslide I, affecting the national road alignment between pk 96 and 101+500, with sliding orientation towards South and South-West and landslide II, affecting the analysed alignment between pk 102+500 and 106 (with sliding orientation towards East and North-East). The landslides are significant and very old. The main cause of occurrence of these landslides is the tectonic nature of the area. The two main landslides occur on large surfaces. Generally, the sliding plan is under the „fissure clay” level, so it tends to be 12 to15 m deep. Numerous reactivations occur within their congestion, on narrow or large surfaces. Many of the reactivations occur due to the malfunctions of the systems of rainfall draining and taking over from the national road that runs South to North on the Southern slope of the mountain Paduchiosu. There are no underground waters, but considering the change of the natural water drainage due to the existing road works, there are areas where the drainage is impeded or slowed, leading to the water infiltration and rocks moistening under the deluvial formation. The local reactivations may also be influenced by the unarranged torrential valleys. The project of rehabilitation of

  5. Effect of ice formation and streamflow on salmon incubation habitat in the lower Bradley River, Alaska

    Science.gov (United States)

    Rickman, R.L.

    1996-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate salmon egg incubation habitat. The study that determined this minimum flow did not account for the effects of ice formation on habitat. An investigation was made during periods of ice formation. Hydraulic properties and field water-quality data were measured in winter only from March 1993 to April 1995 at six transects in the lower Bradley River. Discharge in the lower Bradley River ranged from 42.6 to 73.0 cubic feet per second (average 57 cubic feet per second) with ice conditions ranging from near ice free to 100 percent ice cover. Stream water velocity and depth were adequate for habitat protection for all ice conditions and discharges. No relation was found between percent ice cover and mean velocity and depth for any given discharge and no trends were found with changes in discharge for a given ice condition. Velocity distribution within each transect varied significantly from one sampling period to the next. Mean depth and velocity at flows of 40 cubic feet per second or less could not be predicted. No consistent relation was found between the amount of wetted perimeter and percent ice cover. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface and intragravel-water dissolved-oxygen levels were adequate for all flows and ice conditions. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Excellent oxygen exchange was indicated throughout the study reach. Stranding potential of salmon fry was found to be low throughout the study reach. The limiting factors for determining the minimal acceptable flow limit appear to be stream-water velocity and depth, although specific limits could not be estimated because of the high flows that occurred during this study.

  6. The ESR dating of fossil enamel samples from palaeo-anthropological and Palaeolithic sites of Early Pleistocene

    International Nuclear Information System (INIS)

    Chen Qi; Chen Tiemei; Li Jiuqiang

    1999-01-01

    The following problems regarding the ESR dating of fossil enamel samples from palaeo-anthropological and Palaeolithic sites of Early Pleistocene are discussed: 1) the applicability of exponential fitting in the additive method for reliable AD determination; 2) the thermo-stability of the g = 2.0018 line of hydroxyapatite and its influence on apparent ESR ages; 3) the right selection of U-uptake models; and 4) the effect of high U-content in enamel on the ESR ages. It is concluded that the ESR-EU ages of Early Pleistocene enamel samples can only be regarded as the lower limit of the true ages if no appropriate corrections for the factors discussed above are made

  7. Error estimates for ice discharge calculated using the flux gate approach

    Science.gov (United States)

    Navarro, F. J.; Sánchez Gámez, P.

    2017-12-01

    Ice discharge to the ocean is usually estimated using the flux gate approach, in which ice flux is calculated through predefined flux gates close to the marine glacier front. However, published results usually lack a proper error estimate. In the flux calculation, both errors in cross-sectional area and errors in velocity are relevant. While for estimating the errors in velocity there are well-established procedures, the calculation of the error in the cross-sectional area requires the availability of ground penetrating radar (GPR) profiles transverse to the ice-flow direction. In this contribution, we use IceBridge operation GPR profiles collected in Ellesmere and Devon Islands, Nunavut, Canada, to compare the cross-sectional areas estimated using various approaches with the cross-sections estimated from GPR ice-thickness data. These error estimates are combined with those for ice-velocities calculated from Sentinel-1 SAR data, to get the error in ice discharge. Our preliminary results suggest, regarding area, that the parabolic cross-section approaches perform better than the quartic ones, which tend to overestimate the cross-sectional area for flight lines close to the central flowline. Furthermore, the results show that regional ice-discharge estimates made using parabolic approaches provide reasonable results, but estimates for individual glaciers can have large errors, up to 20% in cross-sectional area.

  8. Mass budget of Queen Elizabeth Islands glaciers and ice caps, Canada, from 1992 to present

    Science.gov (United States)

    Millan, R.; Rignot, E. J.; Mouginot, J.

    2015-12-01

    Recent studies indicate to say that the Canadian Artic Archipelago's mass loss has increased in recent years. However the role of ice dynamics changes in this area is not well known. In this study, we present a comprehensive velocity mapping of the CAA using ALOS/PALSAR, RADARSAT-1, ERS1 and Landsat data between 1992 and 2015. Glaciers speed are calculated using a speckle and feature tracking algorithm.The results reveals that three large marine-terminating glaciers have accelerated significantly after 2010, while most others have slowed down or retreated to a sill to become similar to land-terminating glaciers. By combining the velocities of these glaciers with ice thickness measurements from NASA's Operation IceBridge, we calculate their ice discharge. The fluxes of these glaciers increased significantly since 2000 with a marked increase after 2011. The comparison of ice discharge with the surface mass balance from RACMO-2, shows that these glaciers came out of balance after 2011, which is also a time period where their discharge almost doubled. The analysis of RACMO-2 reveals an increase in runoff between 1970's and today and a precipitation with no significant trend. We digitalize the calving front positions of the glaciers and show an increasing rate retreat since 1976. We conclude that global pattern of velocity changes shows that the mass losses due to surface mass balance will likely going to raise in the coming years and that ice discharge will have a smaller part in the contribution of the CAA to sea level rise.

  9. Glacier seismology: eavesdropping on the ice-bed interface

    Science.gov (United States)

    Walter, F.; Röösli, C.

    2015-12-01

    Glacier sliding plays a central role in ice dynamics. A number of remote sensing and deep drilling initiatives have therefore focused on the ice-bed interface. Although these techniques have provided valuable insights into bed properties, they do not supply theorists with data of sufficient temporal and spatial resolution to rigorously test mathematical sliding laws. As an alternative, passive seismic techniques have gained popularity in glacier monitoring. Analysis of glacier-related seismic sources ('icequakes') has become a useful technique to study inaccessible regions of the cryosphere, including the ice-bed interface. Seismic monitoring networks on the polar ice sheets have shown that ice sliding is not only a smooth process involving viscous deformation and regelation of basal ice layers. Instead, ice streams exhibit sudden slip episodes over their beds and intermittent phases of partial or complete stagnation. Here we discuss new and recently published discoveries of basal seismic sources beneath various glacial bodies. We revisit basal seismicity of hard-bedded Alpine glaciers, which is not the result of pure stick-slip motion. Sudden changes in seismicity suggest that the local configuration of the subglacial drainage system undergoes changes on sub daily time scales. Accordingly, such observations place constraints on basal resistance and sliding of hard-bedded glaciers. In contrast, certain clusters of stick-slip dislocations associated with micro seismicity beneath the Greenland ice sheet undergo diurnal variations in magnitudes and inter event times. This is best explained with a soft till bed, which hosts the shear dislocations and whose strength varies in response to changes in subglacial water pressure. These results suggest that analysis of basal icequakes is well suited for characterizing glacier and ice sheet beds. Future studies should address the relative importance between "smooth" and seismogenic sliding in different glacial environments.

  10. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    Science.gov (United States)

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  11. High geothermal heat flux measured below the West Antarctic Ice Sheet

    Science.gov (United States)

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  12. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    Science.gov (United States)

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE Ac ) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE Ac -located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  13. Caltech water-ice dusty plasma: preliminary results

    Science.gov (United States)

    Bellan, Paul; Chai, Kilbyoung

    2013-10-01

    A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.

  14. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    Science.gov (United States)

    Tierno, Pietro

    Artificial spin-ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  15. Greenland deep boreholes inform on sliding and deformation of the basal ice

    Science.gov (United States)

    Dahl-Jensen, D.

    2017-12-01

    Repeated measurements of the deformation of the deep boreholes on the Greenland ice sheet informs on the basal sliding, near basal deformation and in general on the horizontal velocity through the ice. Results of the logging of the boreholes at Dye3, GRIP, NGRIP, NEEM and Camp Century through the last 40 years by the Danish Ice and Climate group will be presented and discussed. The results on the flow will be compared with the information on ice properties, impurity load and bedrock entrained material from the deep ice cores and the radio echo sounding images near the drill sites.The results show that the basal movement often happens in an impurity rich zone above the bedrock while pure basal sliding is limited even in the presence of basal water and significant basal melt.Most of the deep ice core sites are located close to ice divides where the surface velocity is limited so significant basal sliding is not expected. Exceptions are the surface velocities at Camp Century and Dye 3, both being 13 m/yr.Finally, the ongoing deep drilling at EGRIP will shortly be presented where we are drilling in the center of the North East Greenland Ice Stream (NEGIS).

  16. DEFINITION OF DENSITY OF THE THERMAL STATIONARY STREAMS ON A SURFACES OF A SLEEVE OF CYLINDER COMBUSTION ENGINE BY A METHOD OF OPTIMUM FILTRATION KALMANA

    Directory of Open Access Journals (Sweden)

    ZARENBIN V. G.

    2016-01-01

    Full Text Available Problem statement. At research warmly intensity and thermal weariness of internal combustion engines (ICE the knowledge and the analysis of local temperatures and thermal streams in the basic details forming the chamber of combustion is defining. Theoretically the problem consists in the decision of the equation of heat conductivity at the set features of course of thermal processes on border of bodies. Thus there is a problem of accuracy of the decision since it depends on accuracy of the task of real boundary conditions which can be received only by means of physical experiment and corresponding metrological maintenance. Unlike temperature the thermal stream cannot be measured directly, therefore it define on a difference of temperatures (thermal gradient a method or a calorimetric method. Definition of density of streams with the help as named gauges of a thermal stream when the measured temperatures are used at the decision of a return problem of heat conductivity for chosen thermometric an element is most extended. In this case, except the requirement of one-dimensionality of distribution of temperatures, linearity and the minimum distortion of temperature fields of thermal system, there are considerable difficulties of calculation derivative of the measured temperature. To perspective it is possible to carry methods of researches which it is accepted to name cybernetic diagnostics or identification of systems. Their essence consists that the deformed information on object is compared to its mathematical model and then are defined its condition, parameters or entrance influences by minimization of square-law function are nonviscous. In work definition of density of thermal stationary streams on surfaces of a sleeve of cylinder ICE by a method of optimum filtration Kalmana and also an estimation of their reliability and accuracy is made. Possibility of application of filtration Kalmana is shown at experimental researches in ICE. The purpose

  17. Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics

    Science.gov (United States)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric Y.; Seroussi, Helene L.; Morlighem, Mathieu; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves.We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS.We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45mmyr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  18. Future Antarctic bed topography and its implications for ice sheet dynamics

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-06-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  19. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    Science.gov (United States)

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.

    2016-01-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  20. Surveying Drifting Icebergs and Ice Islands: Deterioration Detection and Mass Estimation with Aerial Photogrammetry and Laser Scanning

    Directory of Open Access Journals (Sweden)

    Anna J. Crawford

    2018-04-01

    Full Text Available Icebergs and ice islands (large, tabular icebergs are challenging targets to survey due to their size, mobility, remote locations, and potentially difficult environmental conditions. Here, we assess the precision and utility of aerial photography surveying with structure-from-motion multi-view stereo photogrammetry processing (SfM and vessel-based terrestrial laser scanning (TLS for iceberg deterioration detection and mass estimation. For both techniques, we determine the minimum amount of change required to reliably resolve iceberg deterioration, the deterioration detection threshold (DDT, using triplicate surveys of two iceberg survey targets. We also calculate their relative uncertainties for iceberg mass estimation. The quality of deployed Global Positioning System (GPS units that were used for drift correction and scale assignment was a major determinant of point cloud precision. When dual-frequency GPS receivers were deployed, DDT values of 2.5 and 0.40 m were calculated for the TLS and SfM point clouds, respectively. In contrast, values of 6.6 and 3.4 m were calculated when tracking beacons with lower-quality GPS were used. The SfM dataset was also more precise when used for iceberg mass estimation, and we recommend further development of this technique for iceberg-related end-uses.

  1. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjaer, Kurt H.; Bevis, Michael

    2014-01-01

    The Greenland ice sheet has been one of the largest contributors to global sea-level rise over the past 20 years, accounting for 0.5 mm yr(-1) of a total of 3.2 mm yr(-1). A significant portion of this contribution is associated with the speed-up of an increased number of glaciers in southeast...... and northwest Greenland. Here, we show that the northeast Greenland ice stream, which extends more than 600 km into the interior of the ice sheet, is now undergoing sustained dynamic thinning, linked to regional warming, after more than a quarter of a century of stability. This sector of the Greenland ice sheet...... is of particular interest, because the drainage basin area covers 16% of the ice sheet (twice that of Jakobshavn Isbrae) and numerical model predictions suggest no significant mass loss for this sector, leading to an under-estimation of future global sea-level rise. The geometry of the bedrock and monotonic trend...

  2. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  3. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica

    Science.gov (United States)

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Robert A.; Reid, Phillip; Sumner, Michael; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-08-01

    Investigating ecological relationships between predators and their environment is essential to understand the response of marine ecosystems to climate variability and change. This is particularly true in polar regions, where sea ice (a sensitive climate variable) plays a crucial yet highly dynamic and variable role in how it influences the whole marine ecosystem, from phytoplankton to top predators. For mesopredators such as seals, sea ice both supports a rich (under-ice) food resource, access to which depends on local to regional coverage and conditions. Here, we investigate sex-specific relationships between the foraging strategies of southern elephant seals (Mirounga leonina) in winter and spatio-temporal variability in sea ice concentration (SIC) and coverage in East Antarctica. We satellite-tracked 46 individuals undertaking post-moult trips in winter from Kerguelen Islands to the peri-Antarctic shelf between 2004 and 2014. These data indicate distinct general patterns of sea ice usage: while females tended to follow the sea ice edge as it extended northward, the males remained on the continental shelf despite increasing sea ice. Seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was longer for females in late autumn in the outer part of the pack ice, ∼150-370 km south of the ice edge. Within persistent regions of compact sea ice, females had a longer foraging activity (i) in the highest sea ice concentration at their position, but (ii) their foraging activity was longer when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km). The high spatio-temporal variability of sea ice around female positions is probably a key factor allowing them to exploit these concentrated patches. Despite lack of information on prey availability, females may exploit mesopelagic finfishes and squids that concentrate near the ice-water interface or within the water column (from

  5. Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break

    Science.gov (United States)

    Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon

    2017-04-01

    The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a

  6. Continuous water quality monitoring to determine the cause of coral reef ecosystem degradation for coastal windward Oahu streams during 2002 (NODC Accession 0001070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Kaneohe and Waimanalo streams on the windward side of the island of Oahu in the Hawaiian Islands have been hardened to prevent flooding. The hardening process has...

  7. Continuous water quality monitoring to determine the cause of coral reef ecosystem degradation for coastal Windward Oahu streams during 2002 (NODC Accession 0001070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Kaneohe and Waimanalo streams on the windward side of the island of Oahu in the Hawaiian Islands have been hardened to prevent flooding. The hardening process has...

  8. Abiotic production of iodine molecules in irradiated ice

    Science.gov (United States)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  9. A stream temperature model for the Peace-Athabasca River basin

    Science.gov (United States)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  10. Assimilation of MODIS Ice Surface Temperature and Albedo into the Snow and Ice Model CROCUS Over the Greenland Ice Sheet Along the K-transect Stations

    Science.gov (United States)

    Navari, M.; Margulis, S. A.; Bateni, S. M.; Alexander, P. M.; Tedesco, M.

    2016-12-01

    Estimating the Greenland Ice Sheet (GrIS) surface mass balance (SMB) is an important component of current and future projections of sea level rise. In situ measurement provides direct estimates of the SMB, but are inherently limited by their spatial extent and representativeness. Given this limitation, physically based regional climate models (RCMs) are critical for understanding GrIS physical processes and estimating of the GrIS SMB. However, the uncertainty in estimates of SMB from RCMs is still high. Surface remote sensing (RS) has been used as a complimentary tool to characterize various aspects related to the SMB. The difficulty of using these data streams is that the links between them and the SMB terms are most often indirect and implicit. Given the lack of in situ information, imperfect models, and under-utilized RS data it is critical to merge the available data in a systematic way to better characterize the spatial and temporal variation of the GrIS SMB. This work proposes a data assimilation (DA) framework that yields temporally-continuous and physically consistent SMB estimates that benefit from state-of-the-art models and relevant remote sensing data streams. Ice surface temperature (IST) is the most important factor that regulates partitioning of the net radiation into the subsurface snow/ice, sensible and latent heat fluxes and plays a key role in runoff generation. Therefore it can be expected that a better estimate of surface temperature from a data assimilation system would contribute to a better estimate of surface mass fluxes. Albedo plays an important role in the surface energy balance of the GrIS. However, even advanced albedo modules are not adequate to simulate albedo over the GrIS. Therefore, merging remotely sensed albedo product into a physically based model has a potential to improve the estimates of the GrIS SMB. In this work a MODIS-derived IST and a 16-day albedo product are independently assimilated into the snow and ice model CROCUS

  11. Modes of supraglacial lake drainage and dynamic ice sheet response

    Science.gov (United States)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice

  12. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    Science.gov (United States)

    Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Grosse, Guido; Gaglioti, Benjamin V.; Heim, Kurt C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high- ground ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones effectively insulates channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2°C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m/s, yet channel runs still move water rapidly

  13. Stream Response to an Extreme Defoliation Event

    Science.gov (United States)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  14. A synthesis of the basal thermal state of the Greenland Ice Sheet

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  15. A synthesis of the basal thermal state of the Greenland Ice Sheet.

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène

    2016-08-10

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  16. Revision of Sciaphila (Triuridaceae in Taiwan

    Directory of Open Access Journals (Sweden)

    Tsung-Hsin Hsieh

    2003-12-01

    Full Text Available The genus Sciaphila (Triuridaceae is revised based on comparative morphological and palynological studies in Taiwan. Four species are recognized, i. E. Sciaphila arfakiana Becc., S. Maculata Miers, S. ramosa Fukuy. & T. Suzuki, and S. secundiflora Thwaites ex Benth. Sciaphila arfakiana and S. maculata are new record to Flora of Taiwan and S. secundiflora distributed in Kueishan Island is a new distribution. SEM micrographs of pollen grains, a key to species, species descriptions, and taxonomic notes are provided.

  17. The evolution of the western rift area of the Fimbul Ice Shelf, Antarctica

    Directory of Open Access Journals (Sweden)

    A. Humbert

    2011-10-01

    Full Text Available This paper studies the evolution of a zone in the Fimbul Ice Shelf that is characterised by large crevasses and rifts west of Jutulstraumen, an outlet glacier flowing into Fimbulisen. High-resolution radar imagery and radio echo sounding data were used to study the surface and internal structure of this rift area and to define zones of similar characteristics. The western rift area is dominated by two factors: a small ice rumple that leads to basal crevasses and disturbs the homogeneity of the ice, and a zone with fibre-like blocks. Downstream of the rumple we found down-welling of internal layers and local thinning, which we explain as a result of basal crevasses due to the basal drag at the ice rumple. North of Ahlmannryggen the ice loses its lateral constraint and forms individual blocks, which are deformed like fibres under shear, where the ice stream merges with slower moving ice masses of the western side. There, the ice loses its integrity, which initiates the western rift system. The velocity difference between the slow moving western part and the fast moving extension of Jutulstraumen produces shear stress that causes the rifts to form tails and expand them to the major rifts of up to 30 km length.

  18. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity

    Science.gov (United States)

    Neel, Carr B.; Steinmetz, Charles P.

    1952-01-01

    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  19. Late summer and fall use of stream margins by young-of year brown trout in a high-elevation stream

    Science.gov (United States)

    La Voie, W. J.; Hubert, W.A.

    1997-01-01

    We determined the relative abundance of young-of-year (YOY) brown trout (Salmo trutta) from late summer to fall during day and night in stream margin habitats of Douglas Creek, Wyoming. No significant differences in relative abundance were observed from August 14 through October 26. Few YOY brown trout were observed during the day over the entire sampling period, but significantly greater numbers were seen at night. Within stream margins, YOY brown trout of 36-75 mm total length primarily resided in concealment cover among interstices of cobbie during the day and emerged at night. Because no significant change in relative abundance was observed throughout the study period, we conclude that a shift to winter habitat did not occur up until three days prior to ice formation when the diurnal range in water temperature was 2.5-7.5??C.

  20. A New Biomarker Proxy for Palaeo-pCO2 Reconstruction in Ancient Sediments

    Science.gov (United States)

    Pancost, R. D.; Magness, S.; Maxwell, J. R.

    2001-12-01

    The carbon isotopic composition of marine organic matter has commonly been used in chemostratigraphy or as a proxy for ancient pCO2 levels. Both of these goals require that the source of organic matter be well defined, and in the case of palaeo-pCO2 investigations, the organic matter must be derived ultimately from aquatic photoautotrophs. However, additional sources, including terrestrial biomass, heterotrophs, or bacteria, can also contribute to total organic carbon (TOC). In the past decade, numerous workers have attempted to refine organic carbon isotope records using the isotopic composition of individual compounds (biomarkers) rather than the TOC. The appeal of this approach is that by examining specific biomarkers, a signal diagnostic for photoautotrophic organisms can be obtained. For compound-specific isotope analyses to be most effective, the compounds analysed must have a relatively specific source. Among the most commonly used biomarkers in palaeo-pCO2 investigations are alkenones, long-chain ketones derived exclusively from certain species of haptophyte algae. However, alkenones are absent in rocks older than the Jurassic and either absent or present in low abundances in rocks older than the Miocene. Thus, in older rocks, other biomarkers, including steranes (derived from eukaryotic sterols), phytane (presumably derived from chlorophyll), and n-alkanes (derived from algal macromolecules), are used. Unfortunately, these compounds can have alternative sources and become less reliable as isotopic proxies for photoautotrophs with increasing thermal maturity and complexity of the hydrocarbon distribution. Here we propose the use of a maleimides (1H-pyrrole-2,5-diones) as a new biomarker class for evaluating past changes in photoautotroph carbon isotopic compositions. Maleimides have three key advantages over other biomarkers in ancient rocks. First, they are degradation products of chlorophyll and have no known alternative origins in marine sediments

  1. Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations

    Science.gov (United States)

    Kauker, F.; Kaminski, T.; Ricker, R.; Toudal-Pedersen, L.; Dybkjaer, G.; Melsheimer, C.; Eastwood, S.; Sumata, H.; Karcher, M.; Gerdes, R.

    2015-10-01

    The recent thinning and shrinking of the Arctic sea ice cover has increased the interest in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed ice thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 ice thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF ice concentration and sea surface temperature products. We investigate the skill of predictions of the summer ice conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort Sea) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying scaling factor.

  2. The Potsdam Parallel Ice Sheet Model (PISM-PIK – Part 1: Model description

    Directory of Open Access Journals (Sweden)

    R. Winkelmann

    2011-09-01

    Full Text Available We present the Potsdam Parallel Ice Sheet Model (PISM-PIK, developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009. Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011 and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP. A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011.

  3. Value Streams in Microgrids: A literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Center for Energy and Innovative Technologies (CET) (Austria); Cardoso, Gonçalo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mashayekh, Salman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Forget, Thibault [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); MINES Paris Tech. (France); DeForest, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Agarwal, Ankit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Schönbein, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Freiburg (Germany)

    2015-10-01

    Microgrids are an increasingly common component of the evolving electricity grids with the potential to improve local reliability, reduce costs, and increase penetration rates for distributed renewable generation. The additional complexity of microgrids often leads to increased investment costs, creating a barrier for widespread adoption. These costs may result directly from specific needs for islanding detection, protection systems and power quality assurance that would otherwise be avoided in simpler system configurations. However, microgrids also facilitate additional value streams that may make up for their increased costs and improve the economic viability of microgrid deployment. This paper analyses the literature currently available on research relevant to value streams occurring in microgrids that may contribute to offset the increased investment costs. A review on research related to specific microgrid requirements is also presented.

  4. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints

    Science.gov (United States)

    Ruppel, Carolyn D.; Herman, Bruce M.; Brothers, Laura L.; Hart, Patrick E.

    2016-01-01

    Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ∼500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.

  5. Basal Settings Control Fast Ice Flow in the Recovery/Slessor/Bailey Region, East Antarctica

    DEFF Research Database (Denmark)

    Diez, Anja; Matsuoka, Kenichi; Ferraccioli, Fausto

    2018-01-01

    The region of Recovery Glacier, Slessor Glacier, and Bailey Ice Stream, East Antarctica, has remained poorly explored, despite representing the largest potential contributor to future global sea level rise on a centennial to millennial time scale. Here we use new airborne radar data to improve...

  6. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  7. A special kind of sandstone-type uranium deposit related to Jurassic palaeochannel systems in the northeastern Ordos Basin, China

    International Nuclear Information System (INIS)

    Li Ziying; Fang Xiheng; Xia Yuliang; Sun Ye; Jiao Yangquan; Chen Anping; Zhang Ke

    2010-01-01

    Dongsheng sandstone-type uranium deposit is a large one discovered in recent years in the northeastern Ordos Basin, China. It is a special kind of sandstone-type uranium deposit,different from other ordinary sandstone-type deposits because of its unique signatures. It is generally controlled by a transitional zone between greenish and grayish sandstones, both of those two kinds of sandstones now indicate reduced geochemical environments. The greenish color of the palaeo-oxidized sandstones mainly results from chloritization and epidotization related to oil and gas secondary reduction processes. The deposit genetically is different from ordinary sandstone uranium deposits,which is of more complex origin,undergoing not only palaeo-oxidization mineralization process, but also oil-gas fluid and hydrothermal reworking processes. It is spatially related to Jurassic Zhiluo Formation with braided palaeo channel systems. The uranium mineralization zone with higher grade usually exists in the branching area of the distributary channels of main braided streams, whose sandstone heterogeneity shows a transfer sedimentary facies from the braided stream sedimentary system to the braided delta sedimentary system. Statistical results show that medium and fine-grained sandstones are the most favorable rock types for uranium mineralization. (authors)

  8. Large-scale environmental controls on microbial biofilms in high-alpine streams

    Directory of Open Access Journals (Sweden)

    T. J. Battin

    2004-01-01

    Full Text Available Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal, groundwater-fed (krenal and snow-fed (rhithral streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.

  9. Reconstructing plateau icefields: Evaluating empirical and modelled approaches

    Science.gov (United States)

    Pearce, Danni; Rea, Brice; Barr, Iestyn

    2013-04-01

    Glacial landforms are widely utilised to reconstruct former glacier geometries with a common aim to estimate the Equilibrium Line Altitudes (ELAs) and from these, infer palaeoclimatic conditions. Such inferences may be studied on a regional scale and used to correlate climatic gradients across large distances (e.g., Europe). In Britain, the traditional approach uses geomorphological mapping with hand contouring to derive the palaeo-ice surface. Recently, ice surface modelling enables an equilibrium profile reconstruction tuned using the geomorphology. Both methods permit derivation of palaeo-climate but no study has compared the two methods for the same ice-mass. This is important because either approach may result in differences in glacier limits, ELAs and palaeo-climate. This research uses both methods to reconstruct a plateau icefield and quantifies the results from a cartographic and geometrical aspect. Detailed geomorphological mapping of the Tweedsmuir Hills in the Southern Uplands, Scotland (c. 320 km2) was conducted to examine the extent of Younger Dryas (YD; 12.9 -11.7 cal. ka BP) glaciation. Landform evidence indicates a plateau icefield configuration of two separate ice-masses during the YD covering an area c. 45 km2 and 25 km2. The interpreted age is supported by new radiocarbon dating of basal stratigraphies and Terrestrial Cosmogenic Nuclide Analysis (TCNA) of in situ boulders. Both techniques produce similar configurations however; the model results in a coarser resolution requiring further processing if a cartographic map is required. When landforms are absent or fragmentary (e.g., trimlines and lateral moraines), like in many accumulation zones on plateau icefields, the geomorphological approach increasingly relies on extrapolation between lines of evidence and on the individual's perception of how the ice-mass ought to look. In some locations this results in an underestimation of the ice surface compared to the modelled surface most likely due to

  10. Warm versus Cold Water Island Tourism: A Review of Policy Implications

    Directory of Open Access Journals (Sweden)

    Godfrey Baldacchino

    2006-11-01

    Full Text Available Not sun, sea, sand but ice, isolation, indigenous people: the critical exploration of extreme tourism in cold water locations has barely started. Cold water island locations tend to have harsh, pristine and fragile natural environments, characterized by wide open spaces. They become contexts for an exceptional and expensive form of vigorous, outdoor, adventure or cultural tourism, and direct encounters with nature. The nature and practices of the tourism industry suggest a more sustainable form of island tourism, very different from what is experienced on the warm, tropical and exotic island stereotype.This paper critically reviews some of the salient contrasts between the ‘hot’ and ‘cold’ versions of island tourism. It discusses how, on many ‘cold water’ island locations, sound strategic management, limited civilian ‘buy in’, low populations and an absence of pluralism in political life, can conspire with climate and relative inaccessibility to limit tourism to a small scale, low-impact industry with a relatively high, locally-retained value added. Some ‘warm water’ islands are trying to follow this model for tourism development, with mixed results.

  11. Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes basal shear distributions inferred from surface observations - surface ice velocities (Joughin et al., 2010, Rignot et al., 2011), bed and...

  12. Airborne Surveys of Snow Depth over Arctic Sea Ice

    Science.gov (United States)

    Kwok, R.; Panzer, B.; Leuschen, C.; Pang, S.; Markus, T.; Holt, B.; Gogineni, S.

    2011-01-01

    During the spring of 2009, an ultrawideband microwave radar was deployed as part of Operation IceBridge to provide the first cross-basin surveys of snow thickness over Arctic sea ice. In this paper, we analyze data from three approx 2000 km transects to examine detection issues, the limitations of the current instrument, and the regional variability of the retrieved snow depth. Snow depth is the vertical distance between the air \\snow and snow-ice interfaces detected in the radar echograms. Under ideal conditions, the per echogram uncertainty in snow depth retrieval is approx 4 - 5 cm. The finite range resolution of the radar (approx 5 cm) and the relative amplitude of backscatter from the two interfaces limit the direct retrieval of snow depths much below approx 8 cm. Well-defined interfaces are observed over only relatively smooth surfaces within the radar footprint of approx 6.5 m. Sampling is thus restricted to undeformed, level ice. In early April, mean snow depths are 28.5 +/- 16.6 cm and 41.0 +/- 22.2 cm over first-year and multiyear sea ice (MYI), respectively. Regionally, snow thickness is thinner and quite uniform over the large expanse of seasonal ice in the Beaufort Sea, and gets progressively thicker toward the MYI cover north of Ellesmere Island, Greenland, and the Fram Strait. Snow depth over MYI is comparable to that reported in the climatology by Warren et al. Ongoing improvements to the radar system and the utility of these snow depth measurements are discussed.

  13. Three-Mile Island Program

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1983-01-01

    Activities associated with the Three-Mile Island (TMI) Program were of two types. One involved providing technical review and guidance for specific recovery efforts at TMI, whereas the second was concerned more directly with providing technical assistance to recovery operations through detailed analyses and experimental activities. The work was divided into four elements: Task I - coordination of and participation in the operation of the Technical Advisory Group (TAG) for the cleanup of aqueous streams at TMI; Task II - participation in the Technical Assistance and Advisory Group (TAAG) on TMI operations; Task III - chemical development and other technical support to TMI recovery operations; and Task IV - development of inorganic sorbents for the decontamination of aqueous streams. At the program review that was conducted approximately mid-fiscal year, it was decided to curtail the Task IV activities in favor of studies of more-urgent problems. Technical progress for each of the tasks of this program is presented

  14. Tidal influences on a future evolution of the Filchner-Ronne Ice Shelf cavity in the Weddell Sea, Antarctica

    Science.gov (United States)

    Mueller, Rachael D.; Hattermann, Tore; Howard, Susan L.; Padman, Laurie

    2018-02-01

    Recent modeling studies of ocean circulation in the southern Weddell Sea, Antarctica, project an increase over this century of ocean heat into the cavity beneath Filchner-Ronne Ice Shelf (FRIS). This increase in ocean heat would lead to more basal melting and a modification of the FRIS ice draft. The corresponding change in cavity shape will affect advective pathways and the spatial distribution of tidal currents, which play important roles in basal melting under FRIS. These feedbacks between heat flux, basal melting, and tides will affect the evolution of FRIS under the influence of a changing climate. We explore these feedbacks with a three-dimensional ocean model of the southern Weddell Sea that is forced by thermodynamic exchange beneath the ice shelf and tides along the open boundaries. Our results show regionally dependent feedbacks that, in some areas, substantially modify the melt rates near the grounding lines of buttressed ice streams that flow into FRIS. These feedbacks are introduced by variations in meltwater production as well as the circulation of this meltwater within the FRIS cavity; they are influenced locally by sensitivity of tidal currents to water column thickness (wct) and non-locally by changes in circulation pathways that transport an integrated history of mixing and meltwater entrainment along flow paths. Our results highlight the importance of including explicit tidal forcing in models of future mass loss from FRIS and from the adjacent grounded ice sheet as individual ice-stream grounding zones experience different responses to warming of the ocean inflow.

  15. Laurentide ice sheet meltwater routing along the Iro-Mohawk River, eastern New York, USA

    Science.gov (United States)

    Porreca, Charles; Briner, Jason P.; Kozlowski, Andrew

    2018-02-01

    The rerouting of meltwater as the configuration of ice sheets evolved during the last deglaciation is thought to have led to some of the most significant perturbations to the climate system in the late Quaternary. However, the complex pattern of ice sheet meltwater drainage off the continents, and the timing of rerouting events, remains to be fully resolved. As the Laurentide Ice Sheet (LIS) retreated north of the Adirondack Uplands of northeastern New York State during the last deglaciation, a large proglacial lake, Lake Iroquois, found a lower outlet that resulted in a significant flood event. This meltwater rerouting event, from outflow via the Iro-Mohawk River valley (southern Adirondack Mountains) to the spillway at Covey Hill (northeastern Adirondack Mountains), is hypothesized to have taken place 13.2 ka and disturbed meridional circulation in the North Atlantic Ocean. However, the timing of the rerouting event is not certain because the event has not been directly dated. With improving the history of Lake Iroquois drainage in mind, we obtained cosmogenic 10Be exposure ages on a strath terrace on Moss Island, along the Iro-Mohawk River spillway. We hypothesize that Moss Island's strath terrace became abandoned during the rerouting event. Six 10Be ages from the strath surface average 14.8 ± 1.3 ka, which predates the previously published bracketing radiocarbon ages of 13.2 ka. Several possibilities for the discrepancy exist: (1) the 10Be age accurately represents the timing of a decrease in discharge through the Iro-Mohawk River spillway; (2) the age is influenced by inheritance. The 10Be ages from glacially sculpted surfaces on Moss Island above the strath terrace predate the deglaciation of the site by 5 to 35 ky; and (3) the abandonment of the Moss Island strath terrace relates to knickpoint migration and not the final abandonment of the Iro-Mohawk River as the Lake Iroquois spillway. Further study and application of cosmogenic 10Be exposure dating in the

  16. Status of endangered and threatened caribou on Canada's arctic islands

    Directory of Open Access Journals (Sweden)

    Anne Gunn

    2000-04-01

    Full Text Available Caribou (Rangifer tarandus on the Canadian Arctic Islands occur as several populations which are nationally classified as either endangered or threatened. On the western High Arctic (Queen Elizabeth Islands, Peary caribou (R. t. pearyi declined to an estimated 1100 caribou in 1997. This is the lowest recorded abundance since the first aerial survey in 1961 when a high of ca. 24 363 caribou was estimated on those islands. Peary caribou abundance on the eastern Queen Elizabeth Islands is almost unknown. On the southern Arctic Islands, three caribou populations declined by 95-98% between 1973 and 1994 but our information is unclear about the numerical trends for the two other populations. Diagnosis of factors driving the declines is complicated by incomplete information but also because the agents driving the declines vary among the Arctic's different climatic regions. The available evidence indicates that severe winters caused Peary caribou die-offs on the western Queen Elizabeth Islands. On Banks Island, harvesting together with unfavourable snow/ice conditions in some years accelerated the decline. On northwestern Victoria Island, harvesting apparently explains the decline. The role of wolf predation is unknown on Banks and notthwest Victoria islands, although wolf sightings increased during the catibou declines. Reasons for the virtual disappearance of arctic-island caribou on Prince of Wales and Somerset islands are uncertain. Recovery actions have started with Inuit and Inuvialuit reducing their harvesting but it is too soon to evaluate the effect of those changes. Recovery of Peary caribou on the western Queen Elizabeth Islands is uncertain if the current trends toward warmer temperatures and higher snowfall persist.

  17. Bathymetry of the waters surrounding the Elizabeth Islands, Massachusetts

    Science.gov (United States)

    Pendleton, Elizabeth A.; Andrews, Brian D.; Ackerman, Seth D.; Twichell, Dave

    2014-01-01

    The Elizabeth Islands in Massachusetts that separate Vineyard Sound from Buzzards Bay are the remnants of a moraine (unconsolidated glacial sediment deposited at an ice sheet margin; Oldale and O’Hara, 1984). The most recent glacial ice retreat in this region occurred between 25,000 and 20,000 years ago, and the subsequent rise in sea level that followed deglaciation caused differences in the seafloor character between Buzzards Bay and Vineyard Sound. The relatively rough seafloor of Vineyard Sound reflects widespread exposure of glacial material. Shoals mark the location of recessional ice contact material, and deep channels illustrate where meltwater drainage incised glacial deposits. Following ice retreat from the Elizabeth Islands, a glacial lake formed across the mouth of Buzzards Bay, when the lake drained, it scoured two deep channels at the southern end of the bay. Sea level rise began to inundate Vineyard Sound and Buzzards Bay about 8,000 years ago and continues to modify the modern seafloor (Robb and Oldale, 1977). Fine-grained marine and estuarine sediments were deposited in the partially protected setting of Buzzards Bay. These deposits, up to 10 meters in thickness, buried the high-relief glacial landscape and created the generally smooth modern seafloor. In contrast, the Vineyard Sound of today experiences strong tidal currents, which largely prevent the deposition of fine-grained material and constantly rework the glacial sand and gravel within shoals. The seafloor of the sound largely reflects the contours of the ancient glaciated landscape that existed before sea level began to rise. The bathymetric data used to create the hillshaded relief image of the seafloor were collected by the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management and supplemented with National Oceanic and Atmospheric Administration hydrographic survey data. The map shows the detailed bathymetry of Buzzards Bay and Vineyard

  18. Sediments in Arctic sea ice: Implications for entrainment, transport and release

    Science.gov (United States)

    Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn

    1994-01-01

    maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.

  19. Ice, Ice, Baby!

    Science.gov (United States)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  20. The melt pond fraction and spectral sea ice albedo retrieval from MERIS data: validation and trends of sea ice albedo and melt pond fraction in the Arctic for years 2002-2011

    Science.gov (United States)

    Istomina, L.; Heygster, G.; Huntemann, M.; Schwarz, P.; Birnbaum, G.; Scharien, R.; Polashenski, C.; Perovich, D.; Zege, E.; Malinka, A.; Prikhach, A.; Katsev, I.

    2014-10-01

    The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which has consequences on the heat balance and mass balance of sea ice. An algorithm to retrieve melt pond fraction and sea ice albedo (Zege et al., 2014) from the MEdium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, ship borne and in situ campaign data. The result show the best correlation for landfast and multiyear ice of high ice concentrations (albedo: R = 0.92, RMS = 0.068, melt pond fraction: R = 0.6, RMS = 0.065). The correlation for lower ice concentrations, subpixel ice floes, blue ice and wet ice is lower due to complicated surface conditions and ice drift. Combining all aerial observations gives a mean albedo RMS equal to 0.089 and a mean melt pond fraction RMS equal to 0.22. The in situ melt pond fraction correlation is R = 0.72 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the ASPeCT protocol, which is the reason for discrepancy between the satellite value and observed value: mean R = 0.21, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and ice has been developed to assist with the validation on swath data. The case studies and trend analysis for the whole MERIS period (2002-2011) show pronounced and reasonable spatial features of melt pond fractions and sea ice albedo. The most prominent feature is the melt onset shifting towards spring (starting already in weeks 3 and 4 of June) within the multiyear ice area, north to the Queen Elizabeth Islands and North Greenland.

  1. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    Science.gov (United States)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  2. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    Science.gov (United States)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    bodies of water cooler using these floating materials could help avoid scenarios like the overheated lakes and streams that led to millions of fish killed this summer in Washington State. Third, Ice911's materials can later be removed if no longer needed, and could be repurposed to another area in need.

  3. Geology and ground-water resources of the island of Niihau, Hawaii

    Science.gov (United States)

    Stearns, Harold T.; Macdonald, Gordon A.

    1947-01-01

    Niihau lies 171/2 miles southwest of Kauai. Its area is 72 square miles, and its highest point has an altitude of 1,281 feet. The population is about 180, chiefly Hawaiians. The annual rainfall at Kiekie, the ranch headquarters, generally ranges between 18 and 26 inches. The chief industries are the raising of sheep and cattle and production of honey. The island is privately owned.The main mass of the island is composed of a deeply weathered remnant of a basalt dome of Tertiary age, cut by a dike complex trending NE-SW. These Tertiary rocks are herein named the Paniau volcanic series. The central vent lay about 2 miles out to sea to the east of the present island. The dome, after deep gulches were cut into it by stream erosion and it was cliffed all around by the sea, was partly submerged. During Pleistocene time a broad wave-cut platform on the north, west, and south sides was built above sea level and widened by the eruption of lavas and tuffs, from 9 vents now visible and other vents now buried, to form a low coastal plain. These Pleistocene volcanic rocks are named the Kiekie volcanic series. Ash from Lehua Island, a Pleistocene tuff cone, has been drifted into duties on the north end of Niihau. Lithified dunes that extend below sea level, and the small outcrops of emerged fossiliferous limestone above sea level, indicate the plus 100-foot, minus 60-foot, plus 25-foot, and plus 5-foot eustatic stands of the sea correlative with changes in the volume of the polar ice caps and concurrent changes in the configuration of ocean basins.Calcareous dune and beach deposits, short stretches of nullipore reef and beach rock, and playa and alluvial deposits constitute the Recent rocks.No perennial streams exist on the island but about a dozen playa lakes, fresh or brackish during rainy weather, lie on the plain. The domestic water supply is rain caught from roofs. Only three wells on the island yield water with less than 25 grains of salt per gallon (260 parts per million

  4. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  5. Effects of river ice on bank morphology and riparian vegetation along Peace River, Clayhurst to Fort Vermilion

    International Nuclear Information System (INIS)

    Uunila, L.S.

    1997-01-01

    The effects of river ice and related flooding on the bank morphology and riparian vegetation along 655 km of the Peace River from Clayhurst, British Columbia to Fort Vermilion, Alberta were studied. The river has been regulated for hydroelectric power generation since 1968 and has experienced changes in the hydrologic and ice regimes. The rate of channel adjustments under the new hydrologic regime vary longitudinally, and depend greatly on the succession of riparian vegetation. This study was conducted to determine how much of the variation in both channel adjustment and rate of riparian succession is a result of allogenic effects of ice jams. The direct physical effects of ice and the indirect effects of ice jam flooding on the channel margin were investigated. Long term ice jam severity was found to generally peak well downstream of the principal observation point. The morphology of the channel at the severe ice jam locations fit the classical ice jam criteria of confined tight meanders with several mid-channel islands and shoals. Vegetation damage was the most visible impact to the riparian environment along the Peace River. 27 refs., 1 tab., 8 figs

  6. Genomic island excisions in Bordetella petrii

    Directory of Open Access Journals (Sweden)

    Levillain Erwan

    2009-07-01

    Full Text Available Abstract Background Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs. These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds. Results During in vitro culture of Bordetella petrii colony variants appear frequently. We show that this variability can be attributed to the presence of a large number of metastable mobile genetic elements on its chromosome. In fact, the genome sequence of B. petrii revealed the presence of at least seven large genomic islands mostly encoding accessory metabolic functions involved in the degradation of aromatic compounds and detoxification of heavy metals. Four of these islands (termed GI1 to GI3 and GI6 are highly related to ICEclc of Pseudomonas knackmussii sp. strain B13. Here we present first data about the molecular characterization of these islands. We defined the exact borders of each island and we show that during standard culture of the bacteria these islands get excised from the chromosome. For all but one of these islands (GI5 we could detect circular intermediates. For the clc-like elements GI1 to GI3 of B. petrii we provide evidence that tandem insertion of these islands which all encode highly related integrases and attachment sites may also lead to incorporation of genomic DNA which originally was not part of the island and to the formation of huge composite islands. By integration of a tetracycline resistance cassette into GI3 we found this island to be rather unstable and to be lost from

  7. Revisited Inventory of Glaciers on Axel Heiberg Island, Nunavut

    Science.gov (United States)

    Thomson, L.; Osinski, G.

    2009-05-01

    As documented in the IPCC's Climate Change 2007 report, the high latitude regions of the Northern Hemisphere are experiencing the highest rates of warming. Given that 35% of the global glacial ice exists within the Arctic Archipelago, this region provides an excellent laboratory for monitoring the anticipated degree of glacial recession [1]. Evidence of arctic warming through negative mass balance trends has been detected in several studies already [e.g., 2]. Here, we show the importance and value of historical records in the task of monitoring glacial retreat. A highly detailed inventory developed by S. Ommanney in 1969 [3], has been revisited and transformed into digital format for the purposes of integration with modern inventories. The Ommanney inventory covers the entirety of Axel Heiberg Island , NU, and includes details often lacking in present day inventories, including orientations (accumulation and ablation zones), elevations (highest, lowest, elevation of the snowline, and the mean elevations of both the accumulation and ablation areas), length (of the ablation area, exposed ice, and of the total glacier including debris cover), area (of the ablation area, exposed ice, and of the total glacier), accumulation area ratio (AAR), depth, volume, and a six digit code which gives qualitative details on glacier attributes. This report is one of the most thorough and comprehensive glacier inventory report ever published in Canada. More recent inventories used for comparison include the glacier extents created by the National Topographic System based on photography from 1980-1987, as well as extents developed by Dr. Luke Copland for the Global Land Ice Measurements from Space (GLIMS) database using 1999-2000 satellite imagery. Our preliminary results show that approximately 90% of ice bodies under 0.2km on Axel Heiberg Island have disappeared entirely in the 40 year period of interest. The issue of glacier definition will be discussed as a possible cause of these

  8. Imitation modeling of ice dams (case study of Tom’ River, Western Siberia

    Directory of Open Access Journals (Sweden)

    V. A. Zemtsov

    2014-01-01

    Full Text Available The factors of ice jam formations in the lower flow of the Tom River (Siberia are investigated. A length of the main channel under investigation is about 120 km. Approaches to solution of the problem of the jam formation control and, as a consequence, the jam induced floods are considered on the basis of the imitative computer modeling of stream dynamics and ice jams. The simulation makes it possible to analyze different scenarios of initial forcing and to predict reactions of the river bed system to the effects. On the basis of 1D models developed in the HEC-RAS 4.0 modeling system for the Tom River at the city of Tomsk we investigated a possibility of the ice jam localization, probability of which at different parts of river flow varies in time according to change of the river water discharge, stream hydraulics, and ice cover thickness. The 2D hydrodynamic model of the Tom River channel system in the SMS 9.2 modeling system has been developed. It allows simulating effects of ice jams located in different sections of the river flow on the run-off redistribution between the main channel and other river branches. It makes possible to estimate hazards and risks of ice jam floods and probable effects of ice jams on formation of the river channel system. As a result it becomes possible to regulate the safe spring ice transit through populated areas.Analysis of factors of the ice jam formations has demonstrated that due to increasing anthropogenic influence changes of hydro-meteorological and geomorphologic conditions lead to more frequent occurrence of jam floods for the last 25 years as compared to previous 40-year period. The imitative computer models are proposed to be used for planning anti-jam measures since they make possible to create a whole system of the channel structure, a relief of channel and floodplain, a flow velocity field including dangerous hydrologic processes. Similar system would allow predicting both consequences of local

  9. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    Science.gov (United States)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  10. Modeling the heating and melting of sea ice through light absorption by microalgae

    Science.gov (United States)

    Zeebe, Richard E.; Eicken, Hajo; Robinson, Dale H.; Wolf-Gladrow, Dieter; Dieckmann, Gerhard S.

    1996-01-01

    In sea ice of polar regions, high concentrations of microalgae are observed during the spring. Algal standing stocks may attain peak values of over 300 mg chl a m-2 in the congelation ice habitat. As of yet, the effect of additional heating of sea ice through conversion of solar radiation into heat by algae has not been investigated in detail. Local effects, such as a decrease in albedo, increasing melt rates, and a decrease of the physical strength of ice sheets may occur. To investigate the effects of microalgae on the thermal regime of sea ice, a time-dependent, one-dimensional thermodynamic model of sea ice was coupled to a bio-optical model. A spectral one-stream model was employed to determine spectral attenuation by snow, sea ice, and microalgae. Beer's law was assumed to hold for every wavelength. Energy absorption was obtained by calculating the divergence of irradiance in every layer of the model (Δz = 1 cm). Changes in sea ice temperature profiles were calculated by solving the heat conduction equation with a finite difference scheme. Model results indicate that when algal biomass is concentrated at the bottom of congelation ice, melting of ice resulting from the additional conversion of solar radiation into heat may effectively destroy the algal habitat, thereby releasing algal biomass into the water column. An algal layer located in the top of the ice sheet induced a significant increase in sea ice temperature (ΔT > 0.3 K) for snow depths less than 5 cm and algal standing stocks higher than 150 mg chl a m-2. Furthermore, under these conditions, brine volume increased by 21% from 181 to 219 parts per thousand, which decreased the physical strength of the ice.

  11. Lake sediment-based Late Holocene glacier reconstruction reveals medieval retreat and two-phase Little Ice Age on subantarctic South Georgia

    Science.gov (United States)

    van der Bilt, W. G. M.; Bakke, J.; Werner, J.; Paasche, O.; Rosqvist, G. N.; Vatle, S. S.

    2016-12-01

    Southern Ocean climate is rapidly changing. Yet beyond the instrumental period (± 100 years), our comprehension of climate variability in the region is restricted by a lack of high-resolution paleoclimate records. Alpine glaciers, ubiquitous on Southern Ocean islands, may provide such data as they rapidly respond to climate shifts, recording attendant changes in extent by variations in glacial erosion. Rock flour, the fine-grained fraction of this process, is suspended in meltwater streams and transfers this signal to the sediments of downstream lakes, continuously recording glacier history. Here, we use this relationship and present the first reconstruction of the Late Holocene (1250 cal. yr BP - present) glacier history of the Southern Ocean island of South Georgia, using sediments from the glacier-fed Middle Hamberg lake. Variations are resolved on multi-centennial scales due to robust chronological control. To fingerprint a glacial erosion signal, we employed a set of routinely used physical, geochemical and magnetic parameters. Using Titanium counts, validated against changes in sediment density and grain size distribution, we continuously reconstruct glacier variations over the past millennium. Refining local moraine evidence and supporting evidence from other Southern Hemisphere sites, this study shows a progressive diminishing of consecutive Late Holocene advances. These include a two-stage Little Ice Age, in agreement with other Southern Hemisphere glacier evidence. The presented record furthermore captures an unreported retreat phase behind present limits around 500 cal. yr BP.

  12. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-12-01

    Full Text Available With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2 uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W in the Canadian High Arctic. Results show relatively low surface water (1–10 m nitrate (<1.3 µM and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1, total alkalinity (mean±SD=2134±11.09 µmol kg−1 and under-ice pCO2sw (mean±SD=286±17 µatm. These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season.

  13. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    Science.gov (United States)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa L.; Bentley, Michael J.; King, Matt A.

    2015-03-01

    Many ice-sheet reconstructions assume monotonic Holocene retreat for the West Antarctic Ice Sheet, but an increasing number of glaciological observations infer that some portions of the ice sheet may be readvancing, following retreat behind the present-day margin. A readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice streams grounded on beds that deepen inland; and (ii) the inability of models of glacial isostatic adjustment to match present-day uplift rates. By combining a suite of ice loading histories that include a readvance with a model of glacial isostatic adjustment we report substantial improvements to predictions of present-day uplift rates, including reconciling one problematic observation of land sinking. We suggest retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery has since led to shallowing, ice sheet re-grounding and readvance. The paradoxical existence of grounding lines in apparently unstable configurations on reverse bed slopes may be resolved by invoking the process of unstable advance, in accordance with our load modelling.

  14. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  15. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ice monitoring program in support of Sakhalin Energy's offshore oil production

    Energy Technology Data Exchange (ETDEWEB)

    Pilkington, R. [CANATEC Associates International Ltd., Calgary, AB (Canada); Keinonen, A. [AKAC Inc., Victoria, BC (Canada); Tambovsky, V.; Ryabov, S. [Environmental Company of Sakhalin, Yuzhno-Sakhalinsk (Russian Federation); Pishchalnik, V. [Russian Academy of Science, Yuzhno-Sakhalinsk (Russian Federation)]|[Far East Geological Inst., Yuzhno-Sakhalinsk (Russian Federation). Sakhalin Dept.; Sheikin, I. [Arctic and Antarctic Research Inst., St. Petersburg (Russian Federation); Brovin, A. [ABIC Service Ltd., Calgary, AB (Canada)

    2006-11-15

    The Sakhalin Energy Investment Company (SEIC) has been producing oil at the Molikpaq platform off the east coast of Sakhalin Island since 1999. The Molikpaq oil production occurs during the open water summer season. When ice begins to form in late November, an Ice Management Team begins to monitor conditions at the site to ensure a safe operation. This paper described the ice monitoring program designed to provide extensive ice and environmental data to support risk management and allow the planning of safe oil production operations using a Single Anchor Leg Mooring( SALM) system, Floating Storage and Offloading System (FSO), and export tankers in ice. The following 2 key aspects of the in-ice operations were covered: ice management to protect the offshore loading operation on a minute by minute basis in moving ice, and also ice forecasting, to determine when any unmanageable ice might approach the tanker loading site and cause the shut down of operations in the fall and during the startup of operations in the spring. The forecasting of ice drift, ice formation and growth in the fall and ice decay in the spring were discussed. It was noted that in the last few years, the date on which ice first appears is getting later. Operations cease for the winter before the ice is forecast to become a problem for the operations. The Ice Management Team returns to the site in May when the ice melts and and is no longer harmful to the operations. The Ice Management Team consists of 9 individuals with several years of operational ice experience. Their tasks include data collection from satellite images; helicopter ice reconnaissance; ice breaker ice maps; radar ice maps and ice drift; and, ice drift analysis using terra MODIS satellite images. A daily or twice daily weather forecast is provided by a commercial weather forecasting company. These forecasts provide the winds, gusts, cloud cover, air temperature, wind wave and swell for every 6 hours for the first 3 days, then every

  17. Emerging Use of Dual Channel Infrared for Remote Sensing of Sea Ice

    Science.gov (United States)

    Lewis, N. S.; Serreze, M. C.; Gallaher, D. W.; Koenig, L.; Schaefer, K. M.; Campbell, G. G.; Thompson, J. A.; Grant, G.; Fetterer, F. M.

    2017-12-01

    Using GOES-16 data as a proxy for overhead persistent infrared, we examine the feasibility of using a dual channel shortwave / midwave infrared (SWIR/MWIR) approach to detect and chart sea ice in Hudson Bay through a series of images with a temporal scale of less than fifteen minutes. While not traditionally exploited for sea ice remote sensing, the availability of near continuous shortwave and midwave infrared data streams over the Arctic from overhead persistent infrared (OPIR) satellites could provide an invaluable source of information regarding the changing Arctic climate. Traditionally used for the purpose of missile warning and strategic defense, characteristics of OPIR make it an attractive source for Arctic remote sensing as the temporal resolution can provide insight into ice edge melt and motion processes. Fundamentally, the time series based algorithm will discern water/ice/clouds using a SWIR/MWIR normalized difference index. Cloud filtering is accomplished through removing pixels categorized as clouds while retaining a cache of previous ice/water pixels to replace any cloud obscured (and therefore omitted) pixels. Demonstration of the sensitivity of GOES-16 SWIR/MWIR to detect and discern water/ice/clouds provides a justification for exploring the utility of military OPIR sensors for civil and commercial applications. Potential users include the scientific community as well as emergency responders, the fishing industry, oil and gas industries, and transportation industries that are seeking to exploit changing conditions in the Arctic but require more accurate and timely ice charting products.

  18. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  19. Data from renewable energy assessments for resort islands in the South China Sea.

    Science.gov (United States)

    Basir Khan, M Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-03-01

    Renewable energy assessments for resort islands in the South China Sea were conducted that involves the collection and analysis of meteorological and topographic data. The meteorological data was used to assess the PV, wind and hydropower system potentials on the islands. Furthermore, the reconnaissance study for hydro-potentials were conducted through topographic maps in order to determine the potential sites suitable for development of run-of-river hydropower generation. The stream data was collected for 14 islands in the South China Sea with a total of 51 investigated sites. The data from this study are related to the research article "Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea" published in Energy (Khan et al., 2015) [1].

  20. Eulerian Method for Ice Crystal Icing

    NARCIS (Netherlands)

    Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    In this study, an ice accretion method aimed at ice crystal icing in turbofan engines is developed and demonstrated for glaciated as well as mixed-phase icing conditions. The particle trajectories are computed by an Eulerian trajectory method. The effects of heat transfer and phase change on the

  1. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    Science.gov (United States)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last

  2. Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)

    Science.gov (United States)

    Schnell, R. C.

    2009-12-01

    Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to

  3. Historic hydrovolcanism at Deception Island (Antarctica): implications for eruption hazards

    Science.gov (United States)

    Pedrazzi, Dario; Németh, Károly; Geyer, Adelina; Álvarez-Valero, Antonio M.; Aguirre-Díaz, Gerardo; Bartolini, Stefania

    2018-01-01

    Deception Island (Antarctica) is the southernmost island of the South Shetland Archipelago in the South Atlantic. Volcanic activity since the eighteenth century, along with the latest volcanic unrest episodes in the twentieth and twenty-first centuries, demonstrates that the volcanic system is still active and that future eruptions are likely. Despite its remote location, the South Shetland Islands are an important touristic destination during the austral summer. In addition, they host several research stations and three summer field camps. Deception Island is characterised by a Quaternary caldera system with a post-caldera succession and is considered to be part of an active, dispersed (monogenetic), volcanic field. Historical post-caldera volcanism on Deception Island involves monogenetic small-volume (VEI 2-3) eruptions such forming cones and various types of hydrovolcanic edifices. The scientific stations on the island were destroyed, or severely damaged, during the eruptions in 1967, 1969, and 1970 mainly due to explosive activity triggered by the interaction of rising (or erupting) magma with surface water, shallow groundwater, and ice. We conducted a detailed revision (field petrology and geochemistry) of the historical hydrovolcanic post-caldera eruptions of Deception Island with the aim to understand the dynamics of magma-water interaction, as well as characterise the most likely eruptive scenarios from future eruptions. We specifically focused on the Crimson Hill (estimated age between 1825 and 1829), and Kroner Lake (estimated age between 1829 and 1912) eruptions and 1967, 1969, and 1970 events by describing the eruption mechanisms related to the island's hydrovolcanic activity. Data suggest that the main hazards posed by volcanism on the island are due to fallout, ballistic blocks and bombs, and subordinate, dilute PDCs. In addition, Deception Island can be divided into five areas of expected activity due to magma-water interaction, providing additional

  4. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  5. The impact of isolation: evolutionary processes in Hoplitomeryx

    NARCIS (Netherlands)

    van der Geer, A.A.E.

    2014-01-01

    The Late Miocene palaeo-island of Gargano, today part of mainland southern Italy, was home to a strongly endemic, strongly disharmonic and depauperate fauna consisting entirely of deer-like ruminants, rodents, pikas, an otter and insectivores, besides reptiles, amphibians and a peculiar avifauna.

  6. Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctica

    Czech Academy of Sciences Publication Activity Database

    Elster, Josef; Komárek, O.

    2003-01-01

    Roč. 15, č. 2 (2003), s. 189-201 ISSN 0954-1020 R&D Projects: GA ČR GA205/94/0156; GA MŠk ME 576; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : environmental parameters * King George Island * meltwater streams Subject RIV: EF - Botanics Impact factor: 1.265, year: 2003

  7. High-resolution dynamical downscaling of re-analysis data over the Kerguelen Islands using the WRF model

    Science.gov (United States)

    Fonseca, Ricardo; Martín-Torres, Javier

    2018-03-01

    We have used the Weather Research and Forecasting (WRF) model to simulate the climate of the Kerguelen Islands (49° S, 69° E) and investigate its inter-annual variability. Here, we have dynamically downscaled 30 years of the Climate Forecast System Reanalysis (CFSR) over these islands at 3-km horizontal resolution. The model output is found to agree well with the station and radiosonde data at the Port-aux-Français station, the only location in the islands for which observational data is available. An analysis of the seasonal mean WRF data showed a general increase in precipitation and decrease in temperature with elevation. The largest seasonal rainfall amounts occur at the highest elevations of the Cook Ice Cap in winter where the summer mean temperature is around 0 °C. Five modes of variability are considered: conventional and Modoki El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Subtropical IOD (SIOD) and Southern Annular Mode (SAM). It is concluded that a key mechanism by which these modes impact the local climate is through interaction with the diurnal cycle in particular in the summer season when it has a larger magnitude. One of the most affected regions is the area just to the east of the Cook Ice Cap extending into the lower elevations between the Gallieni and Courbet Peninsulas. The WRF simulation shows that despite the small annual variability, the atmospheric flow in the Kerguelen Islands is rather complex which may also be the case for the other islands located in the Southern Hemisphere at similar latitudes.

  8. Arctic Sea Ice Trafficability - New Strategies for a Changing Icescape

    Science.gov (United States)

    Dammann, Dyre Oliver

    substantial thickness variability results in the need to raise thickness thresholds by 50%. If sea ice is thick enough for safe travel, then the efficiency of travel is relevant and is influenced by the roughness of the ice surface. Here, I develop a technique to derive trafficability measures from ice roughness using polarimetric and interferometric synthetic aperture radar (SAR). Validated using Structure-from-Motion analysis of imagery obtained from an unmanned aerial system near Utqiagvik, Alaska, I demonstrate the ability of these SAR techniques to map both topography and roughness with potential to guide trail construction efforts towards more trafficable ice. Even when the ice is sufficiently thick to ensure safe travel, potential for fracturing can be a serious hazard through the ability of cracks to compromise load-bearing capacity. Therefore, I have created a state-of-the-art technique using interferometric SAR to assess ice stability with capability of assessing internal ice stress and potential for failure. In an analysis of ice deformation and potential hazards for the Northstar Island ice road near Prudhoe Bay on Alaska's North Slope I have identified a zone of high relative fracture intensity potential that conformed with road inspections and hazard assessments by the operator. Through this work I have investigated the intersection between ice use and geophysics, demonstrating that quantitative evaluation of a given region in the ice use assessment framework developed here can aid in tactical routing of ice trails and roads as well as help inform long-term strategic decision-making regarding the future of Arctic operations on or near sea ice.

  9. REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO2 ICE CLOUDS

    International Nuclear Information System (INIS)

    Kitzmann, D.

    2016-01-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO 2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone

  10. Glaciotectonic deformation and reinterpretation of the Worth Point stratigraphic sequence: Banks Island, NT, Canada

    Science.gov (United States)

    Vaughan, Jessica M.; England, John H.; Evans, David J. A.

    2014-05-01

    Hill-hole pairs, comprising an ice-pushed hill and associated source depression, cluster in a belt along the west coast of Banks Island, NT. Ongoing coastal erosion at Worth Point, southwest Banks Island, has exposed a section (6 km long and ˜30 m high) through an ice-pushed hill that was transported ˜ 2 km from a corresponding source depression to the southeast. The exposed stratigraphic sequence is polydeformed and comprises folded and faulted rafts of Early Cretaceous and Late Tertiary bedrock, a prominent organic raft, Quaternary glacial sediments, and buried glacial ice. Three distinct structural domains can be identified within the stratigraphic sequence that represent proximal to distal deformation in an ice-marginal setting. Complex thrust sequences, interfering fold-sets, brecciated bedrock and widespread shear structures superimposed on this ice-marginally deformed sequence record subsequent deformation in a subglacial shear zone. Analysis of cross-cutting relationships within the stratigraphic sequence combined with OSL dating indicate that the Worth Point hill-hole pair was deformed during two separate glaciotectonic events. Firstly, ice sheet advance constructed the hill-hole pair and glaciotectonized the strata ice-marginally, producing a proximal to distal deformation sequence. A glacioisostatically forced marine transgression resulted in extensive reworking of the strata and the deposition of a glaciomarine diamict. A readvance during this initial stage redeformed the strata in a subglacial shear zone, overprinting complex deformation structures and depositing a glaciotectonite ˜20 m thick. Outwash channels that incise the subglacially deformed strata record a deglacial marine regression, whereas aggradation of glaciofluvial sand and gravel infilling the channels record a subsequent marine transgression. Secondly, a later, largely non-erosive ice margin overrode Worth Point, deforming only the most surficial units in the section and depositing a

  11. Death age, seasonality, taphonomy and colonization of seal carcasses from Ulu Peninsula, James Ross Island, Antarctic Peninsula

    Czech Academy of Sciences Publication Activity Database

    Nývlt, D.; Nývltová Fišáková, Miriam; Barták, M.; Stachoň, Z.; Pavel, V.; Mlčoch, B.; Láska, K.

    2016-01-01

    Roč. 28, č. 1 (2016), s. 3-16 ISSN 0954-1020 Institutional support: RVO:68081758 Keywords : James Ross Island * preservation state * Prince Gustav Channel * sea ice * seal behaviour Subject RIV: EH - Ecology, Behaviour Impact factor: 1.461, year: 2016

  12. Streamlined islands and the English Channel megaflood hypothesis

    Science.gov (United States)

    Collier, J. S.; Oggioni, F.; Gupta, S.; García-Moreno, D.; Trentesaux, A.; De Batist, M.

    2015-12-01

    Recognising ice-age catastrophic megafloods is important because they had significant impact on large-scale drainage evolution and patterns of water and sediment movement to the oceans, and likely induced very rapid, short-term effects on climate. It has been previously proposed that a drainage system on the floor of the English Channel was initiated by catastrophic flooding in the Pleistocene but this suggestion has remained controversial. Here we examine this hypothesis through an analysis of key landform features. We use a new compilation of multi- and single-beam bathymetry together with sub-bottom profiler data to establish the internal structure, planform geometry and hence origin of a set of 36 mid-channel islands. Whilst there is evidence of modern-day surficial sediment processes, the majority of the islands can be clearly demonstrated to be formed of bedrock, and are hence erosional remnants rather than depositional features. The islands display classic lemniscate or tear-drop outlines, with elongated tips pointing downstream, typical of streamlined islands formed during high-magnitude water flow. The length-to-width ratio for the entire island population is 3.4 ± 1.3 and the degree-of-elongation or k-value is 3.7 ± 1.4. These values are comparable to streamlined islands in other proven Pleistocene catastrophic flood terrains and are distinctly different to values found in modern-day rivers. The island geometries show a correlation with bedrock type: with those carved from Upper Cretaceous chalk having larger length-to-width ratios (3.2 ± 1.3) than those carved into more mixed Paleogene terrigenous sandstones, siltstones and mudstones (3.0 ± 1.5). We attribute these differences to the former rock unit having a lower skin friction which allowed longer island growth to achieve minimum drag. The Paleogene islands, although less numerous than the Chalk islands, also assume more perfect lemniscate shapes. These lithologies therefore reached island

  13. What was the transport mode of large boulders in the Campine Plateau and the lower Meuse valley during the mid-Pleistocene?

    Science.gov (United States)

    De Brue, Hanne; Poesen, Jean; Notebaert, Bastiaan

    2015-01-01

    The Campine Plateau in northeastern Belgium, a remnant of an alluvial fan deposited by the Meuse River during the mid-Pleistocene, is characterised by the presence of boulders with maximum dimensions of up to 2 m, embedded in a gravel matrix. These boulders originated in the Ardennes region and are generally assumed to have been transported by ice-rafting processes. This paper investigates for the first time quantitatively the possibility of purely hydraulic transport of the boulders, taking into account channel and flow characteristics in the boulder provenance area during the mid-Pleistocene. Empirical transport relations that describe incipient motion thresholds in nonuniform river beds as a function of the relative grain size, or the ratio between the grain size of interest and the median grain size of the channel bed, are applied in order to calculate critical water depths for transport of boulders of various sizes. Results indicate that hydraulic transport of boulders with intermediate diameters < 1 m could have occurred within limited reaches of the palaeoriver, more specifically in the palaeo-Amblève tributary; whereas the small slope gradient of the palaeo-Meuse most probably inhibited boulder movement by hydraulic forces only. Although calculations of the ice volume required to lift a boulder to the water surface and comparison of the ice floe's dimensions with palaeochannel morphology do suggest that ice rafting is theoretically possible, several alternative, more probable transport mechanisms for the larger boulders of the Campine Plateau are proposed, requiring much smaller critical ice volumes and water depths than ice-rafting processes or purely hydraulic transport. These hypotheses include decreased bed friction and effective boulder density caused by a limited ice layer attached to the river bed and the boulder, hence lowering hydraulic transport thresholds, as well as the formation of ice jams and dams inducing catastrophic flooding and

  14. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  15. Mercury and methylmercury dynamics in the hyporheic zone of an Oregon stream

    Science.gov (United States)

    Hinkle, Stephen R.; Bencala, Kenneth E.; Wentz, Dennis A.; Krabbenhoft, David P.

    2014-01-01

    The role of the hyporheic zone in mercury (Hg) cycling has received limited attention despite the biogeochemically active nature of this zone and, thus, its potential to influence Hg behavior in streams. An assessment of Hg geochemistry in the hyporheic zone of a coarse-grained island in the Coast Fork Willamette River in Oregon, USA, illustrates the spatially dynamic nature of this region of the stream channel for Hg mobilization and attenuation. Hyporheic flow through the island was evident from the water-table geometry and supported by hyporheic-zone chemistry distinct from that of the bounding groundwater system. Redox-indicator species changed abruptly along a transect through the hyporheic zone, indicating a biogeochemically reactive stream/hyporheic-zone continuum. Dissolved organic carbon (DOC), total Hg, and methylmercury (MeHg) concentrations increased in the upgradient portion of the hyporheic zone and decreased in the downgradient region. Total Hg (collected in 2002 and 2003) and MeHg (collected in 2003) were correlated with DOC in hyporheic-zone samples: r2=0.63 (total Hg-DOC, 2002), 0.73 (total Hg-DOC, 2003), and 0.94 (MeHg-DOC, 2003). Weaker Hg/DOC association in late summer 2002 than in early summer 2003 may reflect seasonal differences in DOC reactivity. Observed correlations between DOC and both total Hg and MeHg reflect the importance of DOC for Hg mobilization, transport, and fate in this hyporheic zone. Correlations with DOC provide a framework for conceptualizing and quantifying Hg and MeHg dynamics in this region of the stream channel, and provide a refined conceptual model of the role hyporheic zones may play in aquatic ecosystems.

  16. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  17. Analysis of Arctic Sea ice coverage in 2012 using multi-source scatterometer data

    Science.gov (United States)

    Zhai, M.

    2013-12-01

    Arctic sea ice extent, regarded as an indicator of climate change, has been declining for the past few decades and reached the lowest ice extent in satellite record during the summer of 2012. Scatterometers can be used in sea ice identification, due to its ability to measure the backscatter characteristics of surface coverage. Thus, daily scatterometer data can be used in Arctic sea ice monitoring. In this paper, we compared the similarity and difference of three different scatterometer datasets, including ASCAT(METOP-A/B Advanced scatterometer) data, OSCAT(Oceansat-2 scatterometer)data and China's HY-2 scatterometer data, and then evaluated their performance in Artic sea ice investigation. We also constructed the sea ice coverage time series in 2012 using different scatterometer data and analyzed its temporal and spatial variation. Preliminary Results show that the maximum extent was set on 19 March, 2012. Cracks started to appear in Arctic sea ice coverage near New Siberian Islands on 18,May. Later, melt process accelerates in July and August. The northeast passage is not open until late August. On 18 September, the extent reached the minimum level and the refreezing process began. The duration of melting season is slightly shorter than the average level over the period of 1978 to 2012(ERS-1/2 scattermeter and Quickscat scatterometer data are used as supplementary records). The record low extent is likely resulted from (1)Arctic dipole pressure pattern, bringing in warm southerly winds and enhancing arctic ice discharge in Fram Strait and (2)relatively warm conditions over the Arctic areas.

  18. Geochemical and sedimentological properties of Heinrich layers H2 and H1 off the Hudson Strait ice-surging source areas: ice-rafting vs water-laid down depositional mechanisms

    Science.gov (United States)

    Nuttin, L.; Hillaire-Marcel, C.

    2012-12-01

    The ~9 m-long core HU08-029-004PC was raised from the lower Labrador Sea slope (2674 m water-depth), approximately 180 km off Hudson Strait shelf edge. It yielded a high resolution record spanning the last 35 ka. The sequence includes layers with abundant detrital carbonates produced by glacial erosion of Paleozoic rocks and released into the Labrador Sea through ice streaming processes in Hudson Strait and Ungava Bay. These layers are assigned to 'Heinrich events' 3 (at core bottom), 2 and 1. Sedimentological properties and U and Th isotope measurements are used to document depositional mechanisms and durations of these layers. Data suggest: i) intense ice-rafting deposition (IRD) due to iceberg calving at the ice-stream edge, as illustrated by the coarse fraction content of the layers, and ii) sub-glacial meltwater flushing over the Hudson Strait sill, carrying fine silt-size, carbonate-rich glacial flour to the shelf-edge. Such suspended sediment pulses led to the spreading of turbidites mostly into the deep Labrador Sea, through the NAMOC system. Others late-glacial events, such as the ~ 8.2 ka final drainage of Lake Agassiz, are also recorded in the study core, whereas the H0 layer, exclusively observed in the western Labrador Sea is missing. CAT-scan images, mineralogical data, carbonate abundance, %>106 μm fraction (mostly IRD here), U-Th isotope data and 14C ages of planktic foraminifera assemblages (Neogloboquadrina pachyderma, l.) are used to further document H2 (760 to 700 cm) and H1 (588 to 488 cm). The H-layers contain up to 60% of fine detrital carbonates (about 2/3 calcite, 1/3 dolomite). Whereas the fine calcitic material points to sediment sources (basal till/water-laid glacial sediments) in the Hudson Strait and Ungava Bay, i.e., originating from the glacial erosion of Paleozoic carbonates from the area, the dolomitic component might have several origins (from Proterozoic and Paleozoic limestones in the Hudson Bay and Strait, to northwestern

  19. The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

    Science.gov (United States)

    Bertler, Nancy A. N.; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Daniel B.; Winstrup, Mai; Vallelonga, Paul T.; Lee, James E.; Brook, Ed J.; Severinghaus, Jeffrey P.; Fudge, Taylor J.; Keller, Elizabeth D.; Baisden, W. Troy; Hindmarsh, Richard C. A.; Neff, Peter D.; Blunier, Thomas; Edwards, Ross; Mayewski, Paul A.; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle A.; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D.; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J.; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G.; Delmonte, Barbara; Eling, Lukas; Ellis, Aja; Ganesh, Shruthi; Golledge, Nicholas R.; Haines, Skylar; Handley, Michael; Hawley, Robert L.; Hogan, Chad M.; Johnson, Katelyn M.; Korotkikh, Elena; Lowry, Daniel P.; Mandeno, Darcy; McKay, Robert M.; Menking, James A.; Naish, Timothy R.; Noerling, Caroline; Ollive, Agathe; Orsi, Anaïs; Proemse, Bernadette C.; Pyne, Alexander R.; Pyne, Rebecca L.; Renwick, James; Scherer, Reed P.; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B.; Steig, Eric J.; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero-Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A.; Winton, V. Holly L.; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin

    2018-02-01

    High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

  20. Data from renewable energy assessments for resort islands in the South China Sea

    Science.gov (United States)

    Basir Khan, M. Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh

    2015-01-01

    Renewable energy assessments for resort islands in the South China Sea were conducted that involves the collection and analysis of meteorological and topographic data. The meteorological data was used to assess the PV, wind and hydropower system potentials on the islands. Furthermore, the reconnaissance study for hydro-potentials were conducted through topographic maps in order to determine the potential sites suitable for development of run-of-river hydropower generation. The stream data was collected for 14 islands in the South China Sea with a total of 51 investigated sites. The data from this study are related to the research article “Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea” published in Energy (Khan et al., 2015) [1]. PMID:26779562

  1. Glacial–interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements

    Directory of Open Access Journals (Sweden)

    E. Capron

    2013-05-01

    Full Text Available Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial–interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML – a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas–ice depth offset during the Laschamp event (~41 ka and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model–δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification

  2. Surface and Subsurface Meltwater Ponding and Refreezing on the Bach Ice Shelf, Antarctic Peninsula

    Science.gov (United States)

    Willis, I.; Haggard, E.; Benedek, C. L.; MacAyeal, D. R.; Banwell, A. F.

    2017-12-01

    There is growing concern about the stability and fate of Antarctic ice shelves, as four major ice shelves on the Antarctic Peninsula have completely disintegrated since the 1950s. Their collapse has been linked to the southward movement of the -9 oC mean annual temperature isotherm. The proximal causes of ice shelf instability are not fully known, but an increase in surface melting leading to water ponding and ice flexure, fracture and calving has been implicated. Close to the recently collapsed Wilkins Ice Shelf, the Bach Ice Shelf (72°S 72°W) may be at risk from break up in the near future. Here, we document the changing surface hydrology of the Bach Ice Shelf between 2001 and 2017 using Landsat 7 & 8 imagery. Extensive surface water is identified across the Bach Ice Shelf and its tributary glaciers. Two types of drainage system are observed, drainage into firn via simple stream networks and drainage into the ocean via more complex networks. There are differences between the surface hydrology on the ice shelf and the tributary glaciers, as well as variations within and between summer seasons linked to surface air temperature fluctuations. We also document the changing subsurface hydrology of the ice shelf between 2014 and 2017 using Sentinel 1 A/B SAR imagery. Forty-five subsurface features are identified and analysed for their patterns and temporal evolution. Fourteen of the features show similar characteristics to previously-identified buried lakes and some occur in areas associated with surface lakes in previous years. The buried lakes show seasonal variability in area and surface backscatter, which varies with surface air temperature, and are consistent with the presence, enlargement and contraction of liquid water bodies. Buried lakes are an overlooked source of water loading on ice shelves, which may contribute to ice shelf flexure and potential fracture.

  3. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    Science.gov (United States)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the

  4. Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic.

    Science.gov (United States)

    Yergeau, Etienne; Michel, Christine; Tremblay, Julien; Niemi, Andrea; King, Thomas L; Wyglinski, Joanne; Lee, Kenneth; Greer, Charles W

    2017-02-08

    Climate change has resulted in an accelerated decline of Arctic sea ice since 2001 resulting in primary production increases and prolongation of the ice-free season within the Northwest Passage. The taxonomic and functional microbial community composition of the seawater and sea ice of the Canadian Arctic is not very well known. Bacterial communities from the bottom layer of sea ice cores and surface water from 23 locations around Cornwallis Island, NU, Canada, were extensively screened. The bacterial 16S rRNA gene was sequenced for all samples while shotgun metagenomics was performed on selected samples. Bacterial community composition showed large variation throughout the sampling area both for sea ice and seawater. Seawater and sea ice samples harbored significantly distinct microbial communities, both at different taxonomic levels and at the functional level. A key difference between the two sample types was the dominance of algae in sea ice samples, as visualized by the higher relative abundance of algae and photosynthesis-related genes in the metagenomic datasets and the higher chl a concentrations. The relative abundance of various OTUs and functional genes were significantly correlated with multiple environmental parameters, highlighting many potential environmental drivers and ecological strategies.

  5. Spatial extent and dynamics of dam impacts on tropical island freshwater fish assemblages

    Science.gov (United States)

    Cooney, Patrick B.; Kwak, Thomas J.

    2013-01-01

    Habitat connectivity is vital to the persistence of migratory fishes. Native tropical island stream fish assemblages composed of diadromous species require intact corridors between ocean and riverine habitats. High dams block fish migration, but low-head artificial barriers are more widespread and are rarely assessed for impacts. Among all 46 drainages in Puerto Rico, we identified and surveyed 335 artificial barriers that hinder fish migration to 74.5% of the upstream habitat. We also surveyed occupancy of native diadromous fishes (Anguillidae, Eleotridae, Gobiidae, and Mugilidae) in 118 river reaches. Occupancy models demonstrated that barriers 2 meters (m) high restricted nongoby fish migration and extirpated those fish upstream of 4-m barriers. Gobies are adapted to climbing and are restricted by 12-m barriers and extirpated upstream of 32-m barriers. Our findings quantitatively illustrate the extensive impact of low-head structures on island stream fauna and provide guidance for natural resource management, habitat restoration, and water development strategies.

  6. Rate of ice accumulation during ice storms

    Energy Technology Data Exchange (ETDEWEB)

    Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The rate of glaze ice accumulation is the result of a complex process dependent on numerous meteorological and physical factors. The aim of this paper was to estimate the distribution rate of glaze ice accumulation on conductors in southern Quebec for use in the design of mechanical and electrical de-icing devices. The analysis was based on direct observations of ice accumulation collected on passive ice meters. The historical database of Hydro-Quebec, which contains observations at over 140 stations over period of 25 years, was used to compute accumulation rates. Data was processed so that each glaze ice event was numbered in a chronological sequence. Each event consisted of the time series of ice accumulations on each of the 8 cylinders of the ice meters, as well as on 5 of its surfaces. Observed rates were converted to represent the average ice on a 30 mm diameter conductor at 30 m above ground with a span of 300 m. Observations were corrected to account for the water content of the glaze ice as evidenced by the presence of icicles. Results indicated that despite significant spatial variations in the expected severity of ice storms as a function of location, the distribution function for rates of accumulation were fairly similar and could be assumed to be independent of location. It was concluded that the observations from several sites could be combined in order to obtain better estimates of the distribution of hourly rates of ice accumulation. However, the rates were highly variable. For de-icing strategies, it was suggested that average accumulation rates over 12 hour periods were preferable, and that analyses should be performed for other time intervals to account for the variability in ice accumulation rates over time. In addition, accumulation rates did not appear to be highly correlated with average wind speed for maximum hourly accumulation rates. 3 refs., 2 tabs., 10 figs.

  7. One Isotope, Two Tales: using plant and cosmogenic 14C to constrain Holocene glacier activity on Baffin Island.

    Science.gov (United States)

    Pendleton, S.; Miller, G. H.; Lifton, N. A.; Young, N. E.

    2017-12-01

    As the cryosphere continues to undergo rapid and accelerating change, it is more important than ever to understand past glacier activity to predict the future of the cryosphere. However, continuous Holocene glacier records are notoriously difficult to reconstruct because an advancing glacier will re-incorporate previous deposits so that moraines typically only record the farthest downvalley glacier expansion. Here we combine dates of ice margin advance from in situ dead vegetation with in situ cosmogenic 14C (in situ 14C) from preserved bedrock surfaces at the same locations to further constrain the timing of ice-free episodes during the Holocene following deglaciation on southern Baffin Island. Radiocarbon ages from recently exposed in situ plants suggest that ice last advanced over sample locations at 9.4, 9.2, 9.0, and 3.7 ka and that they remained ice covered until modern times. Associated in situ 14C inventories are variable, but well above background levels, suggesting some amount of Holocene in situ 14C production. Using plant 14C ages representing the beginning of ice coverage and in situ 14C inventories representative of exposure prior to ice coverage, a simple model of cosmogenic in situ 14C production (accounting for muon production through ice) provides constraints timing and duration of ice-free times at sample locations prior to their most recent burial. Using conservative Holocene ice thicknesses, the locations buried at 9.4, 9.2, and 9.0 ka require, at minimum, 1000 years of pre-burial exposure to match the observed in situ 14C inventory. This suggests these locations were ice free by at least 10 ka and likely earlier. The in situ 14C inventory at the location buried at 3.7 ka limits prior exposure to 2000 years, suggesting that this location experienced more complex Holocene ice cover/burial history. These pilot data show that valuable information regarding periods of exposure is contained within in situ 14C inventories. Additional paired plant and

  8. CEDEX research activities in Antarctica. Aquatic ecosystems in Byers Peninsula (Livingston Island, maritime Antarctica); Actividad investigadora del CEDEX en la Antartida. Ecosistemas acuaticos de la Peninsula Byers (Isla Livingston, Antartida)

    Energy Technology Data Exchange (ETDEWEB)

    Toro, M.; Quesada, A.; Camacho, A.; Oliva, M.; Alcami, A.; Antoniades, D.; Banon, M.; Fassnacht, S.; Fernandez-Valiente, E.; Galan, L.; Giralt, S.; Granados, I.; Justel, A.; Liu, E. J.; Lopez-Bravo, A.; Martinez-Cortizas, A.; Pla-Rabes, S.; Rastrojo, A.; Rico, E.; Rochera, C.; Van de Vijver, B.; Velazquez, D.; Villaescusa, J. A.; Vicent, W. F.

    2015-07-01

    Since 2001 CEDEX has taken part in many Antarctic joint research projects with different institutions from Spain and other countries, developing scientific activities in the International Camp of Byers Peninsular (Livingston Island, South Shetland Islands, Antarctica). This place was designed as an Antarctic Specially Protected Area (No.126) because the importance and value of its terrestrial and aquatic habitats. It is one of the largest ice-free areas of maritime Antarctica, with the highest diversity of environments and geological, hydrological and biological processes in the whole region, all of them in a pristine state. Byers Peninsula is considered the most significant limnological area in the Antarctic Peninsula region because it hosts a high number of lakes, ponds and streams, with an exceptional fauna and flora diversity, including the most singular, representative or endemic Antarctic species. Furthermore, the lakes sedimentary record is one of the widest and complete archives in Antarctic Peninsula region for the palaeocological and climatic study of the Holocene. Because Byers Peninsula is an Antarctic biodiversity hotspot, and it is located in one of the areas in the Earth where global warming is being more significant, it must be considered as a suitable international reference site for limnetic, terrestrial and coastal studies, and long term monitoring programmes. (Author)

  9. Accelerating Thermokarst Transforms Ice-Cored Terrain Triggering a Downstream Cascade to the Ocean

    Science.gov (United States)

    Rudy, A. C. A.; Lamoureux, S. F.; Kokelj, S. V.; Smith, I. R.; England, J. H.

    2017-11-01

    Recent climate warming has activated the melt-out of relict massive ice in permafrost-preserved moraines throughout the western Canadian Arctic. This ice that has persisted since the last glaciation, buried beneath as little as 1 m of overburden, is now undergoing accelerated permafrost degradation and thermokarst. Here we document recent and intensifying thermokarst activity on eastern Banks Island that has increased the fluvial transport of sediments and solutes to the ocean. Isotopic evidence demonstrates that a major contribution to discharge is melt of relict ground ice, resulting in a significant hydrological input from thermokarst augmenting summer runoff. Accelerated thermokarst is transforming the landscape and the summer hydrological regime and altering the timing of terrestrial to marine and lacustrine transfers over significant areas of the western Canadian Arctic. The intensity of the landscape changes demonstrates that regions of cold, continuous permafrost are undergoing irreversible alteration, unprecedented since deglaciation ( 13 cal kyr B.P.).

  10. Robust wavebuoys for the marginal ice zone: Experiences from a large persistent array in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Martin J. Doble

    2017-08-01

    Full Text Available An array of novel directional wavebuoys was designed and deployed into the Beaufort Sea ice cover in March 2014, as part of the Office of Naval Research 'Marginal Ice Zone' experiment. The buoys were designed to drift with the ice throughout the year and monitor the expected breakup and retreat of the ice cover, forced by waves travelling into the ice from open water. Buoys were deployed from fast-and-light air-supported ice camps, based out of Sachs Harbour on Canada’s Banks Island, and drifted westwards with the sea ice over the course of spring, summer and autumn, as the ice melted, broke up and finally re-froze. The buoys transmitted heave, roll and pitch timeseries at 1 Hz sample frequency over the course of up to eight months, surviving both convergent ice dynamics and significant waves-in-ice events. Twelve of the 19 buoys survived until their batteries were finally exhausted during freeze-up in late October/November. Ice impact was found to have contaminated a significant proportion of the Kalman-filter-derived heave records, and these bad records were removed with reference to raw x/y/z accelerations. The quality of magnetometer-derived buoy headings at the very high magnetic field inclinations close to the magnetic pole was found to be generally acceptable, except in the case of four buoys which had probably suffered rough handling during transport to the ice. In general, these new buoys performed as expected, though vigilance as to the veracity of the output is required.

  11. REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO{sub 2} ICE CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kitzmann, D., E-mail: daniel.kitzmann@csh.unibe.ch [Center for Space and Habitability, University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland)

    2016-02-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO{sub 2} dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.

  12. 10Be application to soil development on Marion Island, southern Indian Ocean

    International Nuclear Information System (INIS)

    Haussmann, N.; Aldahan, A.; Boelhouwers, J.; Possnert, G.

    2010-01-01

    Marion Island, located in the southern Indian Ocean, constitutes the summit of an active shield volcano. It is a small terrestrial environment where glacially abraded bedrock became exposed c x 10 kyr ago. These conditions provide an interesting possibility for the assessment of 10 Be accumulation rates and their application to soil erosion studies on the island. 10 Be concentrations were measured in precipitation, soil profiles and an Azorella selago cushion plant. The data reveal a 10 Be precipitation flux several times higher than model prediction. Estimation of the 10 Be accumulation based on the soil inventory suggests a span between 2000 and 7000 yr. This time span is not in accordance with the accepted notion that the island was covered with ice about 10,000 yr ago and suggests either removal of 10 Be from the soil profile, an overestimated Holocene 10 Be-flux or a delayed soil development history. Our results provide new data on 10 Be concentrations from the sub-Antarctic islands and contribute towards enlarging the southern-hemisphere 10 Be database.

  13. Characterization of an IceTop tank for the IceCube surface extension IceVeto

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Julian; Auffenberg, Jan; Hansmann, Bengt; Rongen, Martin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceTop is an air-shower detector located at the South Pole on the surface above the IceCube detector. It consists of 81 detector stations with two Cherenkov tanks each. The tanks are filled with clear ice and instrumented with two photomultipliers. IceTop detects cosmic-ray induced air-showers above an energy threshold of ∝300 TeV. Muons and neutrinos from these air-showers are the main background for astrophysical neutrino searches with IceCube. The usage of IceTop to veto air-showers largely reduces this background in the field of view. To enlarge the field of view an extension of the surface detector, IceVeto, is planned. Therefore, we investigate the properties of an original IceTop tank as a laboratory reference for the development of new detection module designs. First results of these measurements are presented.

  14. Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data

    Science.gov (United States)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.

    2015-12-01

    The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.

  15. Comet 169P/NEAT(=2002 EX12): The Parent Body of the α-Capricornid Meteoroid Stream

    Science.gov (United States)

    Kasuga, Toshihiro; Balam, David D.; Wiegert, Paul A.

    2010-12-01

    The Jupiter-family comet 169P/NEAT (previously known as asteroid 2002 EX12) has a dynamical association with the α-Capricornid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission to ~4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of disintegration of the parent at every return.

  16. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    Science.gov (United States)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  17. Late Pliocene/Pleistocene changes in Arctic sea-ice cover: Biomarker and dinoflagellate records from Fram Strait/Yermak Plateau (ODP Sites 911 and 912)

    Science.gov (United States)

    Stein, Ruediger; Fahl, Kirsten; Matthiessen, Jens

    2014-05-01

    have been important for general cooling and ice-sheet build-up. (4) Maxima in sea ice occurred near 3.3, 2.7, 2.1, 1.7 and during the last 1.2 Ma whereas between about 2.6 and 2.2 Ma the sea-ice cover was surprisingly reduced. The IP25 maxima are similar to those determined for the late Holocene. (5) Both, dinoflagellate and IP25/PIP25 data indicate that also during the Late Pliocene Warming Event at least occasionally sea ice must have occurred. (6) This low-resolution pilot study motivates to carry out further detailed high-resolution sea-ice biomarker research on ODP/IODP material in order to prove or disprove these preliminary interpretations. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38, 16-27. Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach. Earth Planetary Science Letters 306, 137-148.

  18. Turbidity on the Shallow Reef off Kaulana and Hakioawa Watersheds, North Coast of Kaho`olawe, Hawai`iMeasurements of Turbidity and Ancillary Data on Winds, Waves, Precipitation, and Stream flow Discharge, November 2005 to June 2008

    Science.gov (United States)

    Presto, M. Katherine; Storlazzi, Curt D.; Field, Michael E.; Abbott, Lyman L.

    2010-01-01

    The island of Kaho`olawe has particular cultural and religious significance for native Hawaiians. Once known as Kanaloa, the island was a center for native Hawaiian navigation. In the mid-20th century, the island was used as a bombing range by the U.S. Navy, and that practice, along with the foraging by feral goats, led to a near-complete decimation of vegetation. The loss of ground cover led to greatly increased erosion and run-off of sediment-laden water onto the island's adjacent coral reefs. Litigation in 1990 ended the U.S. Navy's use of the island as a bombing range, and in 1994 the island was transferred to the Kaho`olawe Island Reserve Commission (KIRC), http://kahoolawe.hawaii.gov/. As a result of the litigation, the U.S. Navy began a 10-year clean-up effort that was the foundation for the present restoration effort by KIRC (Slay, 2009). The restoration effort is centered on revegetating the island, reducing erosion, and limiting run-off onto adjacent reefs. Restoration efforts to mitigate sediment runoff to streams and gulches by restoring native vegetation and minimizing erosion have focused on two watersheds, Kaulana and Hakioawa, on the northeast and northwest sides of the island, respectively. Stream flow and sediment gages were installed by the U.S. Geological Survey Pacific Islands Water Science Center in each of the watersheds, and a weather station was established upland of the watersheds. For this study, turbidity monitors were installed on the insular shelf off the two watersheds to monitor the overall quality of reef waters and their changes in response to rain and stream flow discharge events.

  19. Analytical Models of Exoplanetary Atmospheres. IV. Improved Two-stream Radiative Transfer for the Treatment of Aerosols

    International Nuclear Information System (INIS)

    Heng, Kevin; Kitzmann, Daniel

    2017-01-01

    We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.

  20. Analytical Models of Exoplanetary Atmospheres. IV. Improved Two-stream Radiative Transfer for the Treatment of Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin; Kitzmann, Daniel, E-mail: kevin.heng@csh.unibe.ch, E-mail: daniel.kitzmann@csh.unibe.ch [University of Bern, Center for Space and Habitability, Gesellschaftsstrasse 6, CH-3012, Bern (Switzerland)

    2017-10-01

    We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.

  1. Transport of bedload sediment and channel morphology of a southeast Alaska stream.

    Science.gov (United States)

    Margaret A. Estep; Robert L. Beschta

    1985-01-01

    During 1980-81, transport of bedload sediment and channel morphology were determined at Trap Bay Creek, a third-order stream that drains a 13.5-square kilometer watershed on Chichagof island in southeast Alaska. Bedload sediment was sampled for 10 storms: peak flows ranged from 0.6 to 19.0 cubic meters per second, and transport rates ranged from 4 to 4400 kilograms per...

  2. Patterns of ice nuclei from natural water sources in the mountains of Tirol, Austria

    Science.gov (United States)

    Baloh, Philipp; Hanlon, Regina; Pietsch, Renee; Anderson, Christopher; Schmale, David G., III; Grothe, Hinrich

    2017-04-01

    Heterogeneous ice nucleation—the process by which particles can nucleate ice between 0 and -35°C—is important for generating artificial snow. Though abiotic and biotic ice nuclei are present in many different natural and managed ecosystems, little is known about their nature, sources, and ecological roles. We collected samples of water and snow from the mountains of Tyrol, Austria in June, July, and November, 2016. The collected water was mostly from sources with minimal anthropogenic pollution, since most of the water from the sampled streams came from glacial melt. The samples were filtered through a 0.22μm filter, and microorganisms were cultured on different types of media. Resulting colonies were tested for their ice nucleation ability using a droplet freezing assay and identified to the level of the species. The unfiltered water and the filtered water will be subjected to additional assays using cryo microscopy and vibrational microscopy (IR and Raman- spectroscopy). Preliminary analyses suggested that the percentage of ice-nucleating microbes varied with season; greater percentages of ice nucleating microbes were present during colder months. The glacial melt also varies strongly over the year with the fraction of mineral dust suspended in it which serves as an inorganic ice nucleation agent. Further investigation of these samples may help to show the combined ice nuleation abilities of biological and non biological particles present in the mountains of Tirol, Austria. Future work may shed light on how the nucleation properties of the natural water changes with the time of the year and what may be responsible for these changes.

  3. The IceProd (IceCube Production) Framework

    International Nuclear Information System (INIS)

    Díaz-Vélez, J C

    2014-01-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations and data. IceProd runs as a separate layer on top of middleware or cluster job schedulers and can take advantage of a variety of computing resources including grids such as EGI, OSG, and NorduGrid as well as local clusters running batch systems like HT Condor, PBS, and SGE. This is accomplished by a set of dedicated daemons which process job submission in a coordinated fashion through the use of middleware plug-ins that serve to abstract the details of job submission and job management. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. We describe several aspects of IceProd's design and it's applications in collaborative computing environments. We also briefly discuss design aspects of a second generation IceProd, currently being tested in IceCube.

  4. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  5. The Ross Sea Dipole – temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

    Directory of Open Access Journals (Sweden)

    N. A. N. Bertler

    2018-02-01

    Full Text Available High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE ice core. Comparison of this record with climate reanalysis data for the 1979–2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons, with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

  6. Glacial isostatic stress shadowing by the Antarctic ice sheet

    Science.gov (United States)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  7. Mauritius since the last ice age: paleoecology and climate of an oceanic island

    NARCIS (Netherlands)

    de Boer, E.J.

    2014-01-01

    Four centuries of human occupation has left Mauritius with <5% of its original vegetation cover. Consequently, little is known about floral and faunal distribution patterns and long-term ecological processes of this oceanic island. By using paleoecological techniques we record the impact of

  8. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  9. Combined diurnal variations of discharge and hydrochemistry of the Isunnguata Sermia outlet, Greenland Ice Sheet

    Science.gov (United States)

    Graly, Joseph; Harrington, Joel; Humphrey, Neil

    2017-05-01

    In order to examine daily cycles in meltwater routing and storage in the Isunnguata Sermia outlet of the Greenland Ice Sheet, variations in outlet stream discharge and in major element hydrochemistry were assessed over a 6-day period in July 2013. Over 4 days, discharge was assessed from hourly photography of the outlet from multiple vantages, including where midstream naled ice provided a natural gauge. pH, electrical conductivity, suspended sediment, and major element and anion chemistry were measured in samples of stream water collected every 3 h.Photography and stream observations reveal that although river width and stage have only slight diurnal variation, there are large diurnal changes in discharge shown by the doubling in width of what we term the active channel, which is characterized by large standing waves and fast flow. The concentration of dissolved solutes follows a sinusoidal diurnal cycle, except for large and variable increases in dissolved solutes during the stream's waning flow. Solute concentrations vary by ˜ 30 % between diurnal minima and maxima. Discharge maxima and minima lag temperature and surface melt by 3-7 h; diurnal solute concentration minima and maxima lag discharge by 3-6 h.This phase shift between discharge and solute concentration suggests that during high flow, water is either encountering more rock material or is stored in longer contact with rock material. We suggest that expansion of a distributed subglacial hydrologic network into seldom accessed regions during high flow could account for these phenomena, and for a spike of partial silicate reaction products during waning flow, which itself suggests a pressure threshold-triggered release of stored water.

  10. Concentrating small particles in protoplanetary disks through the streaming instability

    Science.gov (United States)

    Yang, C.-C.; Johansen, A.; Carrera, D.

    2017-10-01

    Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

  11. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    Science.gov (United States)

    Bentley, Michael J.; Ó Cofaigh, Colm; Anderson, John B.; Conway, Howard; Davies, Bethan; Graham, Alastair G. C.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Jamieson, Stewart S. R.; Larter, Robert D.; Mackintosh, Andrew; Smith, James A.; Verleyen, Elie; Ackert, Robert P.; Bart, Philip J.; Berg, Sonja; Brunstein, Daniel; Canals, Miquel; Colhoun, Eric A.; Crosta, Xavier; Dickens, William A.; Domack, Eugene; Dowdeswell, Julian A.; Dunbar, Robert; Ehrmann, Werner; Evans, Jeffrey; Favier, Vincent; Fink, David; Fogwill, Christopher J.; Glasser, Neil F.; Gohl, Karsten; Golledge, Nicholas R.; Goodwin, Ian; Gore, Damian B.; Greenwood, Sarah L.; Hall, Brenda L.; Hall, Kevin; Hedding, David W.; Hein, Andrew S.; Hocking, Emma P.; Jakobsson, Martin; Johnson, Joanne S.; Jomelli, Vincent; Jones, R. Selwyn; Klages, Johann P.; Kristoffersen, Yngve; Kuhn, Gerhard; Leventer, Amy; Licht, Kathy; Lilly, Katherine; Lindow, Julia; Livingstone, Stephen J.; Massé, Guillaume; McGlone, Matt S.; McKay, Robert M.; Melles, Martin; Miura, Hideki; Mulvaney, Robert; Nel, Werner; Nitsche, Frank O.; O'Brien, Philip E.; Post, Alexandra L.; Roberts, Stephen J.; Saunders, Krystyna M.; Selkirk, Patricia M.; Simms, Alexander R.; Spiegel, Cornelia; Stolldorf, Travis D.; Sugden, David E.; van der Putten, Nathalie; van Ommen, Tas; Verfaillie, Deborah; Vyverman, Wim; Wagner, Bernd; White, Duanne A.; Witus, Alexandra E.; Zwartz, Dan

    2014-09-01

    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.

  12. Data from renewable energy assessments for resort islands in the South China Sea

    Directory of Open Access Journals (Sweden)

    M. Reyasudin Basir Khan

    2016-03-01

    Full Text Available Renewable energy assessments for resort islands in the South China Sea were conducted that involves the collection and analysis of meteorological and topographic data. The meteorological data was used to assess the PV, wind and hydropower system potentials on the islands. Furthermore, the reconnaissance study for hydro-potentials were conducted through topographic maps in order to determine the potential sites suitable for development of run-of-river hydropower generation. The stream data was collected for 14 islands in the South China Sea with a total of 51 investigated sites. The data from this study are related to the research article “Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea” published in Energy (Khan et al., 2015 [1]. Keywords: South China Sea, Solar radiation,wind speed, rainfall, microhydropower, PV system, Wind energy generation system

  13. Relationship between ice water path and downward longwave radiation for clouds optically thin in the infrared: Observations and model calculations

    Science.gov (United States)

    Uttal, Taneil; Matrosov, Sergey Y.; Snider, Jack B.; Kropfli, Robert A.

    1994-01-01

    A vertically pointing 3.2-cm radar is used to observe altostratus and cirrus clouds as they pass overhead. Radar reflectivities are used in combination with an empirical Z(sub i)-IWC (ice water content) relationship developed by Sassen (1987) to parameterize IWC, which is then integrated to obtain estimates of ice water path (IWP). The observed dataset is segregated into all-ice and mixed-phase periods using measurements of integrated liquid water paths (LWP) detected by a collocated, dual-channel microwave radiometer. The IWP values for the all ice periods are compared to measurements of infrared (IR) downward fluxes measured by a collocated narrowband (9.95-11.43 microns) IR radiometer, which results in scattergrams representing the observed dependence of IR fluxes on IWP. A two-stream model is used to calculate the infrared fluxes expected from ice clouds with boundary conditions specified by the actual clouds, and similar curves relating IWP and infrared fluxes are obtained. The model and observational results suggest that IWP is one of the primary controls on infrared thermal fluxes for ice clouds.

  14. Chlorinated pesticides in stream sediments from organic, integrated and conventional farms

    International Nuclear Information System (INIS)

    Shahpoury, Pourya; Hageman, Kimberly J.; Matthaei, Christoph D.; Magbanua, Francis S.

    2013-01-01

    To determine if current sheep/beef farming practices affect pesticide residues in streams, current-use and legacy chlorinated pesticides were quantified in 100 sediment samples from 15 streams on the South Island of New Zealand. The study involved five blocks of three neighboring farms, with each block containing farms managed by organic, integrated and conventional farming practices. Significantly higher concentrations of dieldrin, ∑ endosulfans, ∑ current-use pesticides, and ∑ chlorinated pesticides were measured in sediments from conventional farms compared to organic and integrated farms. However, streams in the latter two farming categories were not pesticide-free and sometimes contained relatively high concentrations of legacy pesticides. Comparison of measured pesticide concentrations with sediment quality guidelines showed that, regardless of farming practice, mean pesticide concentrations were below the recommended toxicity thresholds. However, up to 23% of individual samples contained chlorpyrifos, endosulfan sulfate, ∑ DDT, dieldrin, or ∑ chlordane concentrations above these thresholds. -- Highlights: •Pesticides were measured in streams in organic, integrated, and conventional farms. •Higher concentrations of some pesticides were found in conventional sites. •Streams in organic and integrated sites were not pesticide free. •Mean pesticide concentrations were below the recommended toxicity thresholds. -- Higher concentrations of several chlorinated pesticides were found in conventional farms; however, organic and integrated practices were not pesticide-free

  15. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.

    1999-01-01

    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  16. Ice shelf fracture parameterization in an ice sheet model

    Science.gov (United States)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  17. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    Science.gov (United States)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  18. Sequence-Based Characterization of Tn5801-Like Genomic Islands in Tetracycline-Resistant Staphylococcus pseudintermedius and Other Gram-positive Bacteria from Humans and Animals

    DEFF Research Database (Denmark)

    de Vries, Lisbeth Elvira; Hasman, Henrik; Jurado Rabadán, Sonia

    2016-01-01

    Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study was to investi......Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study......-like GIs appear to be relatively common in tetracycline-resistant S. pseudintermedius in Denmark. Almost identical Tn5801-like GIs were identified in different Gram-positive species of pet and human origin, suggesting that horizontal transfer of these elements has occurred between S. pseudintermedius...

  19. Water-supply potential of major streams and the Upper Floridan Aquifer in the vicinity of Savannah, Georgia

    Science.gov (United States)

    Garza, Reggina; Krause, Richard E.

    1997-01-01

    Surface- and ground-water resources in the Savannah, Georgia, area were evaluated for potential water-supply development. Stream-discharge and water-quality data were analyzed for two major streams considered to be viable water-supply sources. A ground-water flow model was developed to be used in conjunction with other previously calibrated models to simulate the effects of additional pumpage on water levels near areas of saltwater intrusion at Brunswick and seawater encroachment at Hilton Head Island. Hypothetical scenarios also were simulated involving redistributions and small increases, and decreases in pumpage.

  20. Method for maintenance of ice beds of ice condenser containment

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Hardin, R.T. Jr.

    1987-01-01

    This patent describes a method of maintaining ice baskets associated with a nuclear reactor system and disposed in an array of plural such ice baskets, supported in generally vertically oriented and parallel relationship by a lattice support structure which extends between the individual ice baskets and includes lateral supports adjacent the tops of the comprising: selecting an ice basket of the array requiring replenishment of the ice therewithin due to sublimation voids within the ice charges in the basket; isolating the selected ice basket; drilling a hole downwardly through the ice charges in the ice basket in general parallel axial relationship with respect to the cylindrical sidewall of the ice basket, utilizing a rotary drill bit connected through an auger to a rotary drive means; maintaining the rotary drive means in a fixed axial position and reversing the direction of rotation thereof for driving the auger in reverse rotation; and supplying ice in particulate form to the vicinity of the auger and conveying the particulate ice through the drilled hole by continued, reverse rotation of the auger so as to fill the sublimated voids in communication with the drilled hole, from the lowest and through successively higher such voids in the ice charges within the ice basket, and withdrawing the auger from the drilled hole as the voids are filled

  1. Magnetic islands in the near geomagnetic tail and its implications for the mechanism of 1054 UT CDAW 6 substorm

    Science.gov (United States)

    Lin, N.; Walker, R. J.; Mcpherron, R. L.; Kivelson, M. G.

    1990-01-01

    During the 1054 UT CDAW 6 substorm event, two ISEE spacecraft observed dynamic changes in the magnetic field and in the flux of energetic particles in the near-earth plasma sheet. In the substorm growth phase, the magnetic field at both ISEE spacecraft became tail-like. Following expansion phase onset, two small scale magnetic islands were observed moving tailward at a velocity of about 580 km/s. The passage of these two magnetic islands was coincident with bursts of tailward streaming energetic particles. The length of the magnetic loops was estimated to have been about 2 to 3 earth radii while the height of the loops was less than 0.5 earth radii. The magnetic islands were produced by multipoint reconnection processes in the near tail plasma sheet which may have been associated with the formation of the near-earth neutral line and the subsequent formation of a large scale plasmoid. The near-earth neutral line retreated tailward later in the expansion phase, as suggested by the reversal of the streaming of energetic particles.

  2. Coastal-change and glaciological map of the Ronne Ice Shelf area, Antarctica, 1974-2002

    Science.gov (United States)

    Ferrigno, Jane G.; Foley, K.M.; Swithinbank, C.; Williams, R.S.; Dalide, L.M.

    2005-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level may severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet could cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). In spite of its importance, the mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is poorly known; it is not known for certain whether the ice sheet is growing or shrinking. In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic part of the Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (in press) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b, 2004). The mass balance of the East Antarctic part of the Antarctic ice sheet is unknown, but thought to be in near equilibrium. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation's (1990) Division of Polar Pro-grams. On the basis of these recommendations, the U.S. Geo-logical Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner

  3. Unravelling source regions of ice rafted debris within three NE Atlantic marine sediment cores during the deglacial interval: a multi-proxy approach

    Science.gov (United States)

    Small, David; Hibbert, Fiona; Austin, Bill

    2010-05-01

    Ice-rafted debris (IRD) within marine sediments of the North Atlantic provide an important archive of glacial activity on adjacent landmasses and attest to the activity of multiple calving ice margins during the last glacial cycle. IRD records therefore provide a means to reconstruct ice sheet dynamics and their interaction with the climate system, providing evidence of both the source of the ice and the location of melting (e.g. Ruddiman, 1977; Bond and Lotti, 1995). The complex interaction of the circum-Atlantic ice sheets and limitations of individual techniques often hinders firm source designations (i.e. IRD may be derived from multiple sources which cannot be differentiated by, for example, visual characterisation). Initial work identified diagnostic grain types that could be attributed to source areas of palaeo ice-sheets (eg: Bond & Lotti 1995) however, for the BIS, "diagnostic" basalt may be derived from sources to the east and west of the cores (Hibbert et al 2009, Scourse et al 2009). We therefore, utilise a multi-proxy approach to investigate the deglacial dynamics of the last British Ice Sheet (BIS) using inter alia lithic characterisation, fluxes of IRD to the core sites, magnetic susceptibility and a magnetic un-mixing model. A novel application of major element geochemistry of garnets contained within ice-rafted debris of the three high resolution marine sediment cores is presented. Garnets can be used to infer provenance (e.g. Oliver 2001) as major element composition may be assigned to specific metamorphic terranes. The IRD present within these cores is believed to be predominantly sourced from the BIS (cf: Knutz et al 2001, Hibbert et al 2009). This assertion is tested through multiple analytical techniques used and replication of records across the Hebridean shelf into the deep ocean. References • Bond, G.C. & Lotti, R., 1995. Iceberg discharges into the North Atlantic on millennial timescales during the last glaciation. Science 267. pp. 1005

  4. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    Science.gov (United States)

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter

    2016-02-01

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.

  5. Amundsen Sea simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters

    Science.gov (United States)

    Nakayama, Y.; Menemenlis, D.; Schodlok, M.; Heimbach, P.; Nguyen, A. T.; Rignot, E. J.

    2016-12-01

    Ice shelves and glaciers of the West Antarctic Ice Sheet are thinning and melting rapidly in the Amundsen Sea (AS). This is thought to be caused by warm Circumpolar Deep Water (CDW) that intrudes via submarine glacial troughs located at the continental shelf break. Recent studies, however, point out that the depth of thermocline, or thickness of Winter Water (WW, potential temperature below -1 °C located above CDW) is critical in determining the melt rate, especially for the Pine Island Glacier (PIG). For example, the basal melt rate of PIG, which decreased by 50% during summer 2012, has been attributed to thickening of WW. Despite the possible importance of WW thickness on ice shelf melting, previous modeling studies in this region have focused primarily on CDW intrusion and have evaluated numerical simulations based on bottom or deep CDW properties. As a result, none of these models have shown a good representation of WW for the AS. In this study, we adjust a small number of model parameters in a regional Amundsen and Bellingshausen Seas configuration of the Massachusetts Institute of Technology general circulation model (MITgcm) to better fit the available observations during the 2007-2010 period. We choose this time period because summer observations during these years show small interannual variability in the eastern AS. As a result of adjustments, our model shows significantly better match with observations than previous modeling studies, especially for WW. Since density of sea water depends largely on salinity at low temperature, this is crucial for assessing the impact of WW on PIG melt rate. In addition, we conduct several sensitivity studies, showing the impact of surface heat loss on the thickness and properties of WW. We also discuss some preliminary results pertaining to further optimization using the adjoint method. Our work is a first step toward improved representation of ice-shelf ocean interactions in the ECCO (Estimating the Circulation and

  6. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    Science.gov (United States)

    Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic

  7. Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes

    Directory of Open Access Journals (Sweden)

    J. Álvarez-Solas

    2011-11-01

    Full Text Available Heinrich events, identified as enhanced ice-rafted detritus (IRD in North Atlantic deep sea sediments (Heinrich, 1988; Hemming, 2004 have classically been attributed to Laurentide ice-sheet (LIS instabilities (MacAyeal, 1993; Calov et al., 2002; Hulbe et al., 2004 and assumed to lead to important disruptions of the Atlantic meridional overturning circulation (AMOC and North Atlantic deep water (NADW formation. However, recent paleoclimate data have revealed that most of these events probably occurred after the AMOC had already slowed down or/and NADW largely collapsed, within about a thousand years (Hall et al., 2006; Hemming, 2004; Jonkers et al., 2010; Roche et al., 2004, implying that the initial AMOC reduction could not have been caused by the Heinrich events themselves.

    Here we propose an alternative driving mechanism, specifically for Heinrich event 1 (H1; 18 to 15 ka BP, by which North Atlantic ocean circulation changes are found to have strong impacts on LIS dynamics. By combining simulations with a coupled climate model and a three-dimensional ice sheet model, our study illustrates how reduced NADW and AMOC weakening lead to a subsurface warming in the Nordic and Labrador Seas resulting in rapid melting of the Hudson Strait and Labrador ice shelves. Lack of buttressing by the ice shelves implies a substantial ice-stream acceleration, enhanced ice-discharge and sea level rise, with peak values 500–1500 yr after the initial AMOC reduction. Our scenario modifies the previous paradigm of H1 by solving the paradox of its occurrence during a cold surface period, and highlights the importance of taking into account the effects of oceanic circulation on ice-sheets dynamics in order to elucidate the triggering mechanism of Heinrich events.

  8. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  9. Ice shelf fracture parameterization in an ice sheet model

    Directory of Open Access Journals (Sweden)

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  10. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  11. Europa Kinetic Ice Penetrator System for Hyper Velocity Instrument Deposition

    Science.gov (United States)

    Robinson, Tessa

    Landing of a payload on any celestial body has only used a soft landing system. These systems use retro rockets and atmospheric components to match velocity and then overcome local gravity in order to land on the surface. This is a proposed system for depositing instrumentation on an icy surface at hypervelocity using the properties of different projectiles and ejecta properties that would negate the need for a soft landing system. This system uses two projectiles, a cylinder with inner aerodynamic surfaces and a payload section with a conical nose and aerodynamic surfaces. The cylinder lands first, creates a region of fractured ice, and directs that fractured material into a collimated ejecta stream. The payload travels through the ejecta and lands in the fractured region. The combination of the ejecta stream and the softened target material reduces the impact acceleration to within survivable levels.

  12. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  13. Glacier History of the Northern Antarctic Peninsula Region Since the End of the Last Ice Age and Implications for Southern Hemisphere Westerly-Climate Changes

    Science.gov (United States)

    Kaplan, M. R.; Schaefer, J. M.; Strelin, J. A.; Peltier, C.; Southon, J. R.; Lepper, K. E.; Winckler, G.

    2017-12-01

    For the area around James Ross Island, we present new cosmogenic 10Be exposure ages on glacial deposits, and 14C ages on associated fossil materials. These data allow us to reconstruct in detail when and how the Antarctic Peninsula Ice Sheet retreated around the Island as the last Ice Age ended, and afterward when local land-based glaciers fluctuated. Similar to other studies, we found widespread deglaciation during the earliest Holocene, with fjords and bays becoming ice free between about 11,000 and 8,000 years ago. After 7,000 years ago, neoglacial type advances initiated. Then, both expansions and ice free periods occurred from the middle to late Holocene. We compare the new glacier record to those in southern Patagonia, which is on the other side of the Drake Passage, and published Southern Ocean marine records, in order to infer past middle to high latitude changes in the Southern Hemisphere Westerlies. Widespread warmth in the earliest Holocene, to the north and south of the Drake Passage, led to small glacier systems in Patagonia and wide-ranging glacier recession around the northern Antarctic Peninsula. We infer that this early Holocene period of overall glacier recession - from Patagonia to the northern Peninsula - was caused by a persistent far-southerly setting of the westerlies and accompanying warm climates. Subsequently, during the middle Holocene renewed glacier expansions occurred on both sides of the Drake Passage, which reflects that the Westerlies and associated colder climate systems were generally more equatorward. From the middle to late Holocene, glacier expansions and ice free periods (and likely related ice shelf behavior) document how the Westerlies and associated higher-latitude climate systems varied.

  14. Assessing, understanding, and conveying the state of the Arctic sea ice cover

    Science.gov (United States)

    Perovich, D. K.; Richter-Menge, J. A.; Rigor, I.; Parkinson, C. L.; Weatherly, J. W.; Nghiem, S. V.; Proshutinsky, A.; Overland, J. E.

    2003-12-01

    Recent studies indicate that the Arctic sea ice cover is undergoing significant climate-induced changes, affecting both its extent and thickness. Satellite-derived estimates of Arctic sea ice extent suggest a reduction of about 3% per decade since 1978. Ice thickness data from submarines suggest a net thinning of the sea ice cover since 1958. Changes (including oscillatory changes) in atmospheric circulation and the thermohaline properties of the upper ocean have also been observed. These changes impact not only the Arctic, but the global climate system and are likely accelerated by such processes as the ice-albedo feedback. It is important to continue and expand long-term observations of these changes to (a) improve the fundamental understanding of the role of the sea ice cover in the global climate system and (b) use the changes in the sea ice cover as an early indicator of climate change. This is a formidable task that spans a range of temporal and spatial scales. Fortunately, there are numerous tools that can be brought to bear on this task, including satellite remote sensing, autonomous buoys, ocean moorings, field campaigns and numerical models. We suggest the integrated and coordinated use of these tools during the International Polar Year to monitor the state of the Arctic sea ice cover and investigate its governing processes. For example, satellite remote sensing provides the large-scale snapshots of such basic parameters as ice distribution, melt zone, and cloud fraction at intervals of half a day to a week. Buoys and moorings can contribute high temporal resolution and can measure parameters currently unavailable from space including ice thickness, internal ice temperature, and ocean temperature and salinity. Field campaigns can be used to explore, in detail, the processes that govern the ice cover. Numerical models can be used to assess the character of the changes in the ice cover and predict their impacts on the rest of the climate system. This work

  15. Ice volume and climate changes from a 6000 year sea-level record in French Polynesia.

    Science.gov (United States)

    Hallmann, N; Camoin, G; Eisenhauer, A; Botella, A; Milne, G A; Vella, C; Samankassou, E; Pothin, V; Dussouillez, P; Fleury, J; Fietzke, J

    2018-01-18

    Mid- to late-Holocene sea-level records from low-latitude regions serve as an important baseline of natural variability in sea level and global ice volume prior to the Anthropocene. Here, we reconstruct a high-resolution sea-level curve encompassing the last 6000 years based on a comprehensive study of coral microatolls, which are sensitive low-tide recorders. Our curve is based on microatolls from several islands in a single region and comprises a total of 82 sea-level index points. Assuming thermosteric contributions are negligible on millennial time scales, our results constrain global ice melting to be 1.5-2.5 m (sea-level equivalent) since ~5500 years before present. The reconstructed curve includes isolated rapid events of several decimetres within a few centuries, one of which is most likely related to loss from the Antarctic ice sheet mass around 5000 years before present. In contrast, the occurrence of large and flat microatolls indicates periods of significant sea-level stability lasting up to ~300 years.

  16. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Directory of Open Access Journals (Sweden)

    Alonso Ramírez

    2014-06-01

    Full Text Available Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial variability in stream physicochemistry in a highly urbanized watershed in Puerto Rico. The main objective of the study was to describe stream physicochemical characteristics and relate them to urban intensity, e.g., percent impervious surface cover, and watershed infrastructure, e.g., road and pipe densities. The Río Piedras Watershed in the San Juan Metropolitan Area, Puerto Rico, is one of the most urbanized regions on the island. The Río Piedras presented high solute concentrations that were related to watershed factors, such as percent impervious cover. Temporal variability in ion concentrations lacked seasonality, as did all other parameters measured except water temperature, which was lower during winter and highest during summer, as expected based on latitude. Spatially, stream physicochemistry was strongly related to watershed percent impervious cover and also to the density of urban infrastructure, e.g., roads, pipe, and building densities. Although the watershed is serviced by a sewage collection system, illegal discharges and leaky infrastructure are probably responsible for the elevated ion concentration found. Overall, the Río Piedras is an example of the response of a tropical urban watershed after major sewage inputs are removed, thus highlighting the importance of proper infrastructure maintenance and management of runoff to control ion concentrations in tropical streams.

  17. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  18. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay

    Directory of Open Access Journals (Sweden)

    P. Itkin

    2017-10-01

    Full Text Available Ice retreat in the eastern Eurasian Arctic is a consequence of atmospheric and oceanic processes and regional feedback mechanisms acting on the ice cover, both in winter and summer. A correct representation of these processes in numerical models is important, since it will improve predictions of sea ice anomalies along the Northeast Passage and beyond. In this study, we highlight the importance of winter ice dynamics for local summer sea ice anomalies in thickness, volume and extent. By means of airborne sea ice thickness surveys made over pack ice areas in the south-eastern Laptev Sea, we show that years of offshore-directed sea ice transport have a thinning effect on the late-winter sea ice cover. To confirm the preconditioning effect of enhanced offshore advection in late winter on the summer sea ice cover, we perform a sensitivity study using a numerical model. Results verify that the preconditioning effect plays a bigger role for the regional ice extent. Furthermore, they indicate an increase in volume export from the Laptev Sea as a consequence of enhanced offshore advection, which has far-reaching consequences for the entire Arctic sea ice mass balance. Moreover we show that ice dynamics in winter not only preconditions local summer ice extent, but also accelerate fast-ice decay.

  19. Subglacial drainage patterns of Devon Island, Canada: detailed comparison of rivers and subglacial meltwater channels

    Science.gov (United States)

    Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R.; Zanetti, Michael; Kukko, Antero

    2018-04-01

    Subglacial meltwater channels (N-channels) are attributed to erosion by meltwater in subglacial conduits. They exert a major control on meltwater accumulation at the base of ice sheets, serving as drainage pathways and modifying ice flow rates. The study of exposed relict subglacial channels offers a unique opportunity to characterize the geomorphologic fingerprint of subglacial erosion as well as study the structure and characteristics of ice sheet drainage systems. In this study we present detailed field and remote sensing observations of exposed subglacial meltwater channels in excellent preservation state on Devon Island (Canadian Arctic Archipelago). We characterize channel cross section, longitudinal profiles, and network morphologies and establish the spatial extent and distinctive characteristics of subglacial drainage systems. We use field-based GPS measurements of subglacial channel longitudinal profiles, along with stereo imagery-derived digital surface models (DSMs), and novel kinematic portable lidar data to establish a detailed characterization of subglacial channels in our field study area, including their distinction from rivers and other meltwater drainage systems. Subglacial channels typically cluster in groups of ˜ 10 channels and are oriented perpendicular to active or former ice margins. Although their overall direction generally follows topographic gradients, channels can be oblique to topographic gradients and have undulating longitudinal profiles. We also observe that the width of first-order tributaries is 1 to 2 orders of magnitude larger than in Devon Island river systems and approximately constant. Furthermore, our findings are consistent with theoretical expectations drawn from analyses of flow driven by gradients in effective water pressure related to variations in ice thickness. Our field and remote sensing observations represent the first high-resolution study of the subglacial geomorphology of the high Arctic, and provide

  20. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected

  1. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  2. Little Ice Age glacial geomorphology and sedimentology of Portage Glacier, South-Central Alaska

    Directory of Open Access Journals (Sweden)

    Carlos Córdova

    2009-06-01

    Full Text Available The study of glacial landforms and deposits is important, as it isdifficult to observe processes under modern glaciers and ice-sheets. Thus landscapes and sediments that are the product of present glaciation can give insight into processes that occurred during Pleistocene times. This study investigates the genesis of little ice age glacial landforms present in Portage Glacier, South-Central Alaska. The present day moraine morphology and sedimentology in Portage Glacier valley reveals the presence of two types of till and moraines. The clast-rich sandy diamicton present on the 1852 moraine is interpreted to be a basal till indicating this feature is a pushmoraine representing an advance or a standstill position of Portage Glacier in 1852. The moderately sorted gray sandy boulder gravel present on the 1900 and 1922 moraines is interpreted to be an ice-marginal deposit (ablation till with a mixture of supraglacial and glaciofluvial sediments deposited by slumping and stream sortingprocesses. All of these features are interpreted to be ablation moraines representing glacier retreat and moraine building in 1900 and1922.

  3. ESR/U-series chronology of the Lower Palaeolithic palaeo-anthropological site of Visogliano, Trieste, Italy

    International Nuclear Information System (INIS)

    Falgueres, C.; Bahain, J.J.; Yokoyama, Y.; Tozzi, C.; Boschian, G.; Dolo, J.M.; Mercier, N.; Valladas, H.

    2008-01-01

    The Visogliano shelter, in north-eastern Italy, is an important Middle Pleistocene occupation site where human remains were found together with an archaic lithic industry, including choppers, chopping tools and a few proto-bifaces. It is of utmost importance to try to document this period, when a second wave of settlement colonised Western Europe, carrying new flaking techniques and tools. Combined ESR/U-series analyses, integrated with bio-stratigraphical and environmental data, define a chronological frame for the layers from which the artefacts were unearthed. The lower levels, including human remains, can be dated to the 350-500 kyr time span, in agreement with micro-mammal and stratigraphical studies. These data make Visogliano one of the oldest palaeo-anthropological sites in Italy, where human remains are directly associated with proto-bifaces, choppers and chopping tools. In Western Europe, Visogliano is contemporaneous to the G soil of the Arago Cave, France, with which it shares several similarities in faunal assemblages and radiometric data, and which contains human remains also. These data make Visogliano as one of the oldest sites in Europe where the Acheulian culture is observed. (authors)

  4. Torque and Axial Loading Physics for Measuring Atmospheric Icing Load and Icing Rate

    OpenAIRE

    Mughal, Umair Najeeb; Virk, Muhammad Shakeel

    2015-01-01

    Measuring icing load and icing rate are important parameters for an atmospheric icing sensor. A new icing sensor has recently been designed and developed at Narvik University College for measuring atmospheric icing rate, icing load and icing type. Unlike the existing atmospheric icing sensors commercially available in market, which uses the axial loading for measuring icing load and icing rate, this new sensory system measures icing load and icing rate using the torque loading physics. The pe...

  5. A Novel Ice Storm Experiment for Evaluating the Ecological Impacts of These Extreme Weather Events

    Science.gov (United States)

    Driscoll, C. T.; Campbell, J. L.; Rustad, L.; Fahey, T.; Fahey, R. T.; Garlick, S.; Groffman, P.; Hawley, G. J.; Schaberg, P. G.

    2017-12-01

    Ice storms are among the most destructive natural disturbances in some regions of the world, and are an example of an extreme weather event that can profoundly disrupt ecosystem function. Despite potential dire consequences of ice storms on ecosystems and society, we are poorly positioned to predict responses because severe ice storms are infrequent and understudied. Since it is difficult to determine when and where ice storms will occur, most previous research has consisted of ad hoc attempts to characterize impacts in the wake of major icing events. To evaluate ice storm effects in a more controlled manner, we conducted a novel ice storm manipulation experiment at the Hubbard Brook Experimental Forest in New Hampshire. Water was sprayed above the forest canopy in sub-freezing conditions to simulate a glaze ice event. Treatments included replicate plots that received three levels of radial ice thickness (6, 13, and 19 mm) and reference plots that were not sprayed. Additionally, two of the mid-level treatment plots received ice applications in back-to-back years to evaluate effects associated with ice storm frequency. Measures of the forest canopy, including hemispherical photography, photosynthetically active radiation, and ground-based LiDAR, indicated that the ice loads clearly damaged vegetation and opened up the canopy, allowing more light to penetrate. These changes in the canopy were reflected in measurements of fine and coarse woody debris that were commensurate with the level of icing. Soil respiration declined in the most heavily damaged plots, which we attribute to changes in root activity. Although soil solution nitrogen showed clear seasonal patterns, there was no treatment response. These results differ from the severe regional natural ice storm of 1998, which caused large leaching losses of nitrate in soil solutions and stream water during the growing season after the event, due to lack of uptake by damaged vegetation. It is not yet clear why there

  6. Arctic Sea Ice Freeboard from Icebridge Acquisitions in 2009: Estimates and Comparisons with ICEsat

    Science.gov (United States)

    Kwok, R.; Cunningham, Glenn F.; Manizade, S. S.; Krabill, W. B.

    2012-01-01

    During the spring of 2009, the Airborne Topographic Mapper (ATM) system on the IceBridge mission acquired cross-basin surveys of surface elevations of Arctic sea ice. In this paper, the total freeboard derived from four 2000 km transects are examined and compared with those from the 2009 ICESat campaign. Total freeboard, the sum of the snow and ice freeboards, is the elevation of the air-snow interface above the local sea surface. Prior to freeboard retrieval, signal dependent range biases are corrected. With data from a near co-incident outbound and return track on 21 April, we show that our estimates of the freeboard are repeatable to within 4 cm but dependent locally on the density and quality of sea surface references. Overall difference between the ATM and ICESat freeboards for the four transects is 0.7 (8.5) cm (quantity in bracket is standard deviation), with a correlation of 0.78 between the data sets of one hundred seventy-eight 50 km averages. This establishes a level of confidence in the use of ATM freeboards to provide regional samplings that are consistent with ICESat. In early April, mean freeboards are 41 cm and 55 cm over first year and multiyear sea ice (MYI), respectively. Regionally, the lowest mean ice freeboard (28 cm) is seen on 5 April where the flight track sampled the large expanse of seasonal ice in the western Arctic. The highest mean freeboard (71 cm) is seen in the multiyear ice just west of Ellesmere Island from 21 April. The relatively large unmodeled variability of the residual sea surface resolved by ATM elevations is discussed.

  7. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry

    Directory of Open Access Journals (Sweden)

    R. Timmermann

    2010-12-01

    Full Text Available Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic topography data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional surveys and maps into a global data set. We use the S-2004 global 1-min bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to capture the best of both data sets. High-resolution gridded data for ice shelf topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI, British Antarctic Survey (BAS and Lamont-Doherty Earth Observatory (LDEO, gridded, and blended into the existing bathymetry map. The resulting global 1-min Refined Topography data set (RTopo-1 contains self-consistent maps for upper and lower ice surface heights, bedrock topography, and surface type (open ocean, grounded ice, floating ice, bare land surface. The data set is available in NetCDF format from the PANGAEA database at doi:10.1594/pangaea.741917.

  8. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  9. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    Science.gov (United States)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  10. Sea ice roughness: the key for predicting Arctic summer ice albedo

    Science.gov (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  11. Wave–ice interactions in the neXtSIM sea-ice model

    Directory of Open Access Journals (Sweden)

    T. D. Williams

    2017-09-01

    Full Text Available In this paper we describe a waves-in-ice model (WIM, which calculates ice breakage and the wave radiation stress (WRS. This WIM is then coupled to the new sea-ice model neXtSIM, which is based on the elasto-brittle (EB rheology. We highlight some numerical issues involved in the coupling and investigate the impact of the WRS, and of modifying the EB rheology to lower the stiffness of the ice in the area where the ice has broken up (the marginal ice zone or MIZ. In experiments in the absence of wind, we find that wind waves can produce noticeable movement of the ice edge in loose ice (concentration around 70 % – up to 36 km, depending on the material parameters of the ice that are used and the dynamical model used for the broken ice. The ice edge position is unaffected by the WRS if the initial concentration is higher (≳ 0.9. Swell waves (monochromatic waves with low frequency do not affect the ice edge location (even for loose ice, as they are attenuated much less than the higher-frequency components of a wind wave spectrum, and so consequently produce a much lower WRS (by about an order of magnitude at least.In the presence of wind, we find that the wind stress dominates the WRS, which, while large near the ice edge, decays exponentially away from it. This is in contrast to the wind stress, which is applied over a much larger ice area. In this case (when wind is present the dynamical model for the MIZ has more impact than the WRS, although that effect too is relatively modest. When the stiffness in the MIZ is lowered due to ice breakage, we find that on-ice winds produce more compression in the MIZ than in the pack, while off-ice winds can cause the MIZ to be separated from the pack ice.

  12. High density amorphous ice and its phase transition to ice XII

    International Nuclear Information System (INIS)

    Kohl, I.

    2001-07-01

    1998 Lobban et al. reported the neutron diffraction data of a new phase of ice, called ice XII, which formed at 260 K on compression of water within the domain of ice V at a pressure of 0.5 GPa. Surprisingly ice XII forms as an incidental product in the preparation of high-density amorphous ice (HDA) on compression of hexagonale ice (ice Ih) at 77 K up to pressures = 1.3 GPa. A decisive experimental detail is the use of an indium container: when compressing ice Ih in a pressure vessel with indium linings, then reproducibly HDA (high density amorphous ice) forms, but without indium randomly scattered relative amounts of ice XII and HDA form. Ice XII forms on compression of ice Ih at 77 K only via HDA, and not directly from ice Ih. Its formation requires a sudden pronounced apparent pressure drop of ca 0.18 GPa at pressures ca 1.1 GPa. These apparent pressure drops can be caused by buildup friction between the piston and the pressure vessel and its sudden release on further compression. I propose that shock-waves generated by apparent pressure drops cause transient local heating and that this induces nucleation and crystal growth. A specific reproducible method to prepare ice XII is heating HDA in a pressure vessel with indium linings at constant pressures (or constant volume). The ice XII (meta-)stability domain extends between ca 158 and 212 K from ca 0.7 to ca 1.5 GPa. DSC (differential scanning calorimetry) and x-ray powder diffraction revealed, that on heating at atmospheric pressure ice XII transforms directly into cubic ice (ice Ic) at 154 K (heating rate 10 K min - 1) and not into an amorphous form before transition to ice Ic. The enthalpy of the ice XII - ice Ic transition is -1.21 ± 0.07 kJ mol -1 . An estimation of the Gibbs free energy at atmospheric pressure and about 140 K results that ice XII is thermodynamically more stable than ice VI. In the heating curve of ice XII a reversible endothermic step can be found at the onset temperature (heating rate

  13. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  14. Open-Source Python Modules to Estimate Level Ice Thickness from Ice Charts

    Science.gov (United States)

    Geiger, C. A.; Deliberty, T. L.; Bernstein, E. R.; Helfrich, S.

    2012-12-01

    A collaborative research effort between the University of Delaware (UD) and National Ice Center (NIC) addresses the task of providing open-source translations of sea ice stage-of-development into level ice thickness estimates on a 4km grid for the Interactive Multisensor Snow and Ice Mapping System (IMS). The characteristics for stage-of-development are quantified from remote sensing imagery with estimates of level ice thickness categories originating from World Meteorological Organization (WMO) egg coded ice charts codified since the 1970s. Conversions utilize Python scripting modules which transform electronic ice charts with WMO egg code characteristics into five level ice thickness categories, in centimeters, (0-10, 10-30, 30-70, 70-120, >120cm) and five ice types (open water, first year pack ice, fast ice, multiyear ice, and glacial ice with a reserve slot for deformed ice fractions). Both level ice thickness categories and ice concentration fractions are reported with uncertainties propagated based on WMO ice stage ranges which serve as proxy estimates for standard deviation. These products are in preparation for use by NCEP, CMC, and NAVO by 2014 based on their modeling requirements for daily products in near-real time. In addition to development, continuing research tests the value of these estimated products against in situ observations to improve both value and uncertainty estimates.

  15. Ecological study of avian malaria vectors on the island of Minami-Daito, Japan.

    Science.gov (United States)

    Tsuda, Yoshio; Matsui, Shin; Saito, Atsushi; Akatani, Kana; Sato, Yukita; Takagi, Masaoki; Murata, Koichi

    2009-09-01

    The seasonal prevalence and spatial distribution of mosquitoes were examined as part of an avian malaria study on the oceanic island of Minami-Daito Island, Japan. Because dry ice was not available in this study, yeast-generated CO2 was used to attract biting mosquitoes. Adult mosquitoes were collected biweekly using battery-operated traps enhanced with yeast-generated CO2 and a gravid trap from March 2006 to February 2007. The CO2-baited traps were distributed in 4 different habitats: sugar cane field, forest and vegetation ring, residential area, and swamp area. At 3 collection sites beside sugar cane fields, traps were fixed at 2 different heights (3 and 6 m above the ground). A total of 1,437 mosquitoes of the following 9 species were collected: Culex quinquefasciatus, Aedes albopictus, Coquillettidia sp., Mansonia uniformis, Culex rubithoracis, Armigeres subalbatus, Lutzia fuscanus, Aedes daitensis, and Aedes togoi. Among them, Cx. quinquefasciatus, Ae. albopictus, and Coquillettidia sp. were dominant. The high density and wide distribution of Cx. quinquefasciatus throughout the island suggested the importance of this species as a principal vector of avian malaria on the island.

  16. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  17. Safe Loads on Ice Sheets (Ice Engineering. Number 13)

    National Research Council Canada - National Science Library

    Haynes, F. D; Carey, Kevin L; Cattabriga, Gioia

    1996-01-01

    Every winter, ice sheets that grow on lakes and rivers in northern states are used for ice roads, ice bridges, construction platforms, airstrips, and recreational activities, It becomes very important...

  18. Implications for the crustal Architecture in West Antarctica revealed by the means of depth-to-the-bottom of the magnetic source (DBMS) mapping and 3D FEM geothermal heat flux models

    Science.gov (United States)

    Dziadek, Ricarda; Gohl, Karsten; Kaul, Norbert

    2017-04-01

    The West Antarctic Rift System (WARS) is one of the largest rift systems in the world, which displays unique coupled relationships between tectonic processes and ice sheet dynamics. Palaeo-ice streams have eroded troughs across the Amundsen Sea Embayment (ASE) that today route warm ocean deep water to the West Antarctic Ice Sheet (WAIS) grounding zone and reinforce dynamic ice sheet thinning. Rift basins, which cut across West Antarctica's landward-sloping shelves, promote ice sheet instability. Young, continental rift systems are regions with significantly elevated geothermal heat flux (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 m.y. to reach long-term thermal equilibrium. The GHF in this region is, especially on small scales, poorly constrained and suspected to be heterogeneous as a reflection of the distribution of tectonic and volcanic activity along the complex branching geometry of the WARS, which reflects its multi-stage history and structural inheritance. We investigate the crustal architecture and the possible effects of rifting history from the WARS on the ASE ice sheet dynamics, by the use of depth-to-the-bottom of the magnetic source (DBMS) estimates. These are based on airborne-magnetic anomaly data and provide an additional insight into the deeper crustal properties. With the DBMS estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM models in 2D and 3D. On balance, and by comparison to global values, we find average GHF of 90 mWm-2 with spatial variations due to crustal heterogeneities and volcanic activities. This estimate is 30% more than commonly used in ice sheet models in the ASE region.

  19. ESTIMATION OF THE WANDA GLACIER (SOUTH SHETLANDS SEDIMENT EROSION RATE USING NUMERICAL MODELLING

    Directory of Open Access Journals (Sweden)

    Kátia Kellem Rosa

    2013-09-01

    Full Text Available Glacial sediment yield results from glacial erosion and is influenced by several factors including glacial retreat rate, ice flow velocity and thermal regime. This paper estimates the contemporary subglacial erosion rate and sediment yield of Wanda Glacier (King George Island, South Shetlands. This work also examines basal sediment evacuation mechanisms by runoff and glacial erosion processes during the subglacial transport. This is small temperate glacier that has seen retreating for the last decades. In this work, we examine basal sediment evacuation mechanisms by runoff and analyze glacial erosion processes occurring during subglacial transport. The glacial erosion rate at Wanda Glacier, estimated using a numerical model that consider sediment evacuated to outlet streams, ice flow velocity, ice thickness and glacier area, is 1.1 ton m yr-1.

  20. Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin

    Science.gov (United States)

    Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.

    2017-12-01

    The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.

  1. Dark ice dynamics of the south-west Greenland Ice Sheet

    Science.gov (United States)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  2. Modulation of Sea Ice Melt Onset and Retreat in the Laptev Sea by the Timing of Snow Retreat in the West Siberian Plain

    Science.gov (United States)

    Crawford, A. D.; Stroeve, J.; Serreze, M. C.; Rajagopalan, B.; Horvath, S.

    2017-12-01

    As much of the Arctic Ocean transitions to ice-free conditions in summer, efforts have increased to improve seasonal forecasts of not only sea ice extent, but also the timing of melt onset and retreat. This research investigates the potential of regional terrestrial snow retreat in spring as a predictor for subsequent sea ice melt onset and retreat in Arctic seas. One pathway involves earlier snow retreat enhancing atmospheric moisture content, which increases downwelling longwave radiation over sea ice cover downstream. Another pathway involves manipulation of jet stream behavior, which may affect the sea ice pack via both dynamic and thermodynamic processes. Although several possible connections between snow and sea ice regions are identified using a mutual information criterion, the physical mechanisms linking snow retreat and sea ice phenology are most clearly exemplified by variability of snow retreat in the West Siberian Plain impacting melt onset and sea ice retreat in the Laptev Sea. The detrended time series of snow retreat in the West Siberian Plain explains 26% of the detrended variance in Laptev Sea melt onset (29% for sea ice retreat). With modest predictive skill and an average time lag of 53 (88) days between snow retreat and sea ice melt onset (retreat), West Siberian Plains snow retreat is useful for refining seasonal sea ice predictions in the Laptev Sea.

  3. Landscape-seascape dynamics in the isthmus between Sørkapp Land and the rest of Spitsbergen: Will a new big Arctic island form?

    Science.gov (United States)

    Ziaja, Wieslaw; Ostafin, Krzysztof

    2015-05-01

    Transformation of the glaciated isthmus between Sørkapp Land and the rest of Spitsbergen since 1900 is described. The landscape-seascape dynamics depends on the glacial recession determined by climate warming after the Little Ice Age (i.e., since the beginning of the twentieth century, and especially since the 1980s). The isthmus has been narrowed from 28 km in 1899-1900 to 6.2 km in 2013, and lowered by 60-200 m from 1936 to 2005. Two isthmus' glaciers will have melted, given the current thermic conditions, by 2030-2035. It cannot be ruled out that Sørkapp Land will become an island after that period, because the altitude of the glaciers' bedrock is close to the sea level. The disappearance of this huge ice mass, even without origin of a sound and island, will lead to a great transformation of the landscape and the ecosystem.

  4. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Micro-organisms.

    Science.gov (United States)

    Hasan, Muhammad; Fayter, Alice E R; Gibson, Matthew I

    2018-06-22

    All modern molecular biology and microbiology is underpinned not only by the tools to handle and manipulate microorganisms, but also those to store, bank and transport them. Glycerol is the current gold-standard cryoprotectant but it is intrinsically toxic to most micro-organisms: only a fraction of cells survive freezing and the presence of glycerol can impact down-stream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of micro-organisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, with successful cryopreservation at just 1.1 weight percent of additive. The mechanism of protection is demonstrated to be linked to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram negative, Gram positive and Mycobacteria strains. This represents a step-change in how micro-organisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

  5. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  6. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    Science.gov (United States)

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  7. Heat flux variations over sea-ice observed at the coastal area of the Sejong Station, Antarctica

    Science.gov (United States)

    Park, S.; Choi, T.; Kim, S.

    2012-12-01

    This study presents variations of sensible heat flux and latent heat flux over sea-ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from June to November was divided into three parts: "Freezing", "Frozen", and "Melting" periods based on daily monitoring of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. The division of periods enabled us to look into the heat flux variations depending on the sea-ice conditions. Over freezing sea surface during the freezing period of late June, daily mean sensible heat flux was -11.9 Wm-2 and daily mean latent heat flux was +16.3 Wm-2. Over the frozen sea-ice, daily mean sensible heat flux was -10.4 Wm-2 while daily mean latent heat flux was +2.4 Wm-2. During the melting period of mid-October to early November, magnitudes of sensible heat flux increased to -14.2 Wm-2 and latent heat flux also increased to +13.5 Wm-2. In short, latent heat flux was usually upward over sea-ice most of the time while sensible heat flux was downward from atmosphere to sea-ice. Magnitudes of the fluxes were small but increased when freezing or melting of sea-ice was occurring. Especially, latent heat flux increased five to six times compared to that of "frozen" period implying that early melting of sea-ice may cause five to six times larger supply of moisture to the atmosphere.

  8. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    Science.gov (United States)

    China, Swarup; Alpert, Peter A.; Zhang, Bo; Schum, Simeon; Dzepina, Katja; Wright, Kendra; Owen, R. Chris; Fialho, Paulo; Mazzoleni, Lynn R.; Mazzoleni, Claudio; Knopf, Daniel A.

    2017-03-01

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition between samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. This study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.

  9. Retreat of Stephenson Glacier, Heard Island, from Remote Sensing and Field Observations

    Science.gov (United States)

    Mitchell, W.; Schmieder, R.

    2017-12-01

    Heard Island (Australian sub-Antarctic territory, 53 S, 73.5 E) is a volcanic island mantled in glaciers, and a UNESCO World Heritage Site both for its geology and ecology. Lying to the south of the Antarctic Convergence, the changes in response to climate seen on Heard Island are likely to be a bellwether for areas further south. Beginning in 1999, American satellites (Landsat 7, EO-1, and Landsat 8) have produced images of the island on a roughly weekly basis. Although the island is often shrouded in clouds, clear images of at least portions of the island are plentiful enough to create a nearly-annual record of the toe of Stephenson Glacier. During this period, Stephenson Glacier retreated by nearly 5 km, and lost 50% of its area. As a result of this retreat, a portion of the glacier now could be classified as a separate glacier. Additionally, in 2016, terrestrial photographs of Stephenson Glacier were taken during a three-week expedition to Heard Island, which accessed the Stephenson Glacier area by boat via the proglacial Stephenson Lagoon. During that work, sonar indicated some depths in the lagoon exceeding 100 m. Much of the loss in glacier length and area occurred during the mid- and late-2000s, with retreat rates slowing toward 2017. At this time, the glacier has retreated so that the main toe is not far from the base of a tall ice falls, while another toe—perhaps now a separate glacier—is land-based. This type of retreat pattern, fast over water and slower on land, is typical of other tidewater glaciers. Further monitoring of Stephenson Glacier and other glaciers on Heard Island will continue using Landsat 8.

  10. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions.

    Science.gov (United States)

    Rode, Karyn D; Wilson, Ryan R; Regehr, Eric V; St Martin, Michelle; Douglas, David C; Olson, Jay

    2015-01-01

    Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.

  11. Coastal-Change and Glaciological Map of the Northern Ross Ice Shelf Area, Antarctica: 1962-2004

    Science.gov (United States)

    Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S.

    2007-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level could severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet would cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). The mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is highly complex, responding differently to different conditions in each region (Vaughan, 2005). In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Thomas and others (2004), on the basis of aircraft and satellite laser altimetry surveys, believe the thinning may be accelerating. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (2004) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b; 2004). The mass balance of the East Antarctic ice sheet is thought by Davis and others (2005) to be strongly positive on the basis of the change in satellite altimetry measurements made between 1992 and 2003. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation?s (1990) Division of Polar

  12. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    Science.gov (United States)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  13. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters.

    Science.gov (United States)

    1980-09-01

    N. and Tabata , T., Ice study in the Gulf of Peschanskii, I.S., Ice science and ice technology, Bothnia, III: observations on large grains of ice...ice and by Sterrett, K.F., The arctic environment and the hitting ice floes. Results of these measurements have arctic surface effect vehicle, Cold...ice growth, temperature 26-3673 effects, ice cover thickness. 28-557 Determining contact stresses when a ship’s stem hits the ice, Kheisin, D.E

  14. Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

    Science.gov (United States)

    Langlois, A.; Royer, A.; Montpetit, B.; Johnson, C. A.; Brucker, L.; Dolant, C.; Richards, A.; Roy, A.

    2015-12-01

    With the current changes observed in the Arctic, an increase in occurrence of rain-on-snow (ROS) events has been reported in the Arctic (land) over the past few decades. Several studies have established that strong linkages between surface temperatures and passive microwaves do exist, but the contribution of snow properties under winter extreme events such as rain-on-snow events (ROS) and associated ice layer formation need to be better understood that both have a significant impact on ecosystem processes. In particular, ice layer formation is known to affect the survival of ungulates by blocking their access to food. Given the current pronounced warming in northern regions, more frequent ROS can be expected. However, one of the main challenges in the study of ROS in northern regions is the lack of meteorological information and in-situ measurements. The retrieval of ROS occurrence in the Arctic using satellite remote sensing tools thus represents the most viable approach. Here, we present here results from 1) ROS occurrence formation in the Peary caribou habitat using an empirically developed ROS algorithm by our group based on the gradient ratio, 2) ice layer formation across the same area using a semi-empirical detection approach based on the polarization ratio spanning between 1978 and 2013. A detection threshold was adjusted given the platform used (SMMR, SSM/I and AMSR-E), and initial results suggest high-occurrence years as: 1981-1982, 1992-1993; 1994-1995; 1999-2000; 2001-2002; 2002-2003; 2003-2004; 2006-2007; 2007-2008. A trend in occurrence for Banks Island and NW Victoria Island and linkages to caribou population is presented.

  15. Influence of winter sea-ice motion on summer ice cover in the Arctic

    Directory of Open Access Journals (Sweden)

    Noriaki Kimura

    2013-11-01

    Full Text Available Summer sea-ice cover in the Arctic varies largely from year to year owing to several factors. This study examines one such factor, the relationship between interannual difference in winter ice motion and ice area in the following summer. A daily-ice velocity product on a 37.5-km resolution grid is prepared using the satellite passive microwave sensor Advanced Microwave Scanning Radiometer—Earth Observing System data for the nine years of 2003–2011. Derived daily-ice motion reveals the dynamic modification of the winter ice cover. The winter ice divergence/convergence is strongly related to the summer ice cover in some regions; the correlation coefficient between the winter ice convergence and summer ice area ranges between 0.5 and 0.9 in areas with high interannual variability. This relation implies that the winter ice redistribution controls the spring ice thickness and the summer ice cover.

  16. Lithology and chronology of ice-sheet fluctuations (magnetic susceptibility of cores from the western Ross Sea)

    Science.gov (United States)

    Jennings, Anne E.

    1993-01-01

    The goals of the marine geology part of WAIS include reconstructing the chronology and areal extent of ice-sheet fluctuations and understanding the climatic and oceanographic influences on ice-sheet history. As an initial step toward attaining these goals, down-core volume magnetic susceptibility (MS) logs of piston cores from three N-S transects in the western Ross Sea are compared. The core transects are within separate petrographic provinces based on analyses of till composition. The provinces are thought to reflect the previous locations of ice streams on the shelf during the last glaciation. Magnetic susceptibility is a function of magnetic mineral composition, sediment texture, and sediment density. It is applied in the western Ross Sea for two purposes: (1) to determine whether MS data differentiates the three transects (i.e., flow lines), and thus can be used to make paleodrainage reconstructions of the late Wisconsinan ice sheet; and (2) to determine whether the MS data can aid in distinguishing basal till diamictons from diamictons of glacial-marine origin and thus, aid paleoenvironmental interpretations. A comparison of the combined data of cores in each transect is presented.

  17. Whole-stream metabolism of a perennial spring-fed aufeis field in Alaska, with coincident surface and subsurface flow

    Science.gov (United States)

    Hendrickson, P. J.; Gooseff, M. N.; Huryn, A. D.

    2017-12-01

    Aufeis (icings or naleds) are seasonal arctic and sub-arctic features that accumulate through repeated overflow and freeze events of river or spring discharge. Aufeis fields, defined as the substrate on which aufeis form and the overlaying ice, have been studied to mitigate impacts on engineering structures; however, ecological characteristics and functions of aufeis fields are poorly understood. The perennial springs that supply warm water to aufeis fields create unique fluvial habitats, and are thought to act as winter and summer oases for biota. To investigate ecosystem function, we measured whole-stream metabolism at the Kuparuk River Aufeis (North Slope, AK), a large ( 5 km2) field composed of cobble substrate and predominately subsurface flow dynamics. The single-station open channel diel oxygen method was utilized at several dissolved oxygen (DO) stations located within and downstream of the aufeis field. DO loggers were installed in August 2016, and data downloaded summer 2017. Daily ecosystem respiration (ER), gross primary production (GPP) and reaeration rates were modeled using BASE, a package freely available in the open-source software R. Preliminary results support net heterotrophy during a two-week period of DO measurements in the fall season when minimum ice extent is observed. GPP, ER, and net metabolism are greater at the upstream reach near the spring source (P/R = 0.53), and decrease as flow moves downstream. As flow exits the aufeis field, surface and subsurface flow are incorporated into the metabolism model, and indicate the stream system becomes dependent on autochthonous production (P/R = 0.91). Current work is directed towards spring and summer discharge and metabolic parameter estimation, which is associated with maximum ice extent and rapid melting of the aufeis feature.

  18. A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf

    Directory of Open Access Journals (Sweden)

    L. Favier

    2012-01-01

    Full Text Available The West Antarctic ice sheet is confined by a large area of ice shelves, fed by inland ice through fast flowing ice streams. The dynamics of the grounding line, which is the line-boundary between grounded ice and the downstream ice shelf, has a major influence on the dynamics of the whole ice sheet. However, most ice sheet models use simplifications of the flow equations, as they do not include all the stress components, and are known to fail in their representation of the grounding line dynamics. Here, we present a 3-D full Stokes model of a marine ice sheet, in which the flow problem is coupled with the evolution of the upper and lower free surfaces, and the position of the grounding line is determined by solving a contact problem between the shelf/sheet lower surface and the bedrock. Simulations are performed using the open-source finite-element code Elmer/Ice within a parallel environment. The model's ability to cope with a curved grounding line and the effect of a pinning point beneath the ice shelf are investigated through prognostic simulations. Starting from a steady state, the sea level is slightly decreased to create a contact point between a seamount and the ice shelf. The model predicts a dramatic decrease of the shelf velocities, leading to an advance of the grounding line until both grounded zones merge together, during which an ice rumple forms above the contact area at the pinning point. Finally, we show that once the contact is created, increasing the sea level to its initial value does not release the pinning point and has no effect on the ice dynamics, indicating a stabilising effect of pinning points.

  19. A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

    Science.gov (United States)

    Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas

    2016-08-01

    Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition (δ13C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO2 mixing ratios and atmospheric δ13C and δ18O-CO2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8-13 g operated at -45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO2 and ±0.09 ‰ for δ13C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO2 and δ13C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO2 and 0.11 ‰ for δ13C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement

  20. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...