Isentropic Analysis of a Simulated Hurricane
Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing
2016-01-01
Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.
Separation of acoustic waves in isentropic flow perturbations
International Nuclear Information System (INIS)
Henke, Christian
2015-01-01
The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given
Temperature anomalies of shock and isentropic waves of quark-hadron phase transition
Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.
2018-01-01
In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.
Energy Technology Data Exchange (ETDEWEB)
Mahura, A.; Jaffe, D.; Harris, J.
2003-07-01
The understanding of factors driving climate and ecosystem changes in the Arctic requires careful consideration of the sources, correlation and trends for anthropogenic pollutants. The database from the NOAA-CMDL Barrow Observatory (71deg.17'N, 156deg.47'W) is the longest and most complete record of pollutant measurements in the Arctic. It includes observations of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), carbon monoxide (CO), ozone (O{sub 3}), aerosol scattering coefficient ({sigma}{sub sp}), aerosol number concentration (NC{sub asl}), etc. The objectives of this study are to understand the role of long-range transport to Barrow in explaining: (1) the year-to-year variations, and (2) the trends in the atmospheric chemistry record at the NOAA-CMDL Barrow observatory. The key questions we try to answer are: 1. What is the relationship between various chemical species measured at Barrow Observatory, Alaska and transport pathways at various altitudes? 2. What are the trends of species and their relation to transport patterns from the source regions? 3. What is the impact of the Prudhoe Bay emissions on the Barrow's records? To answer on these questions we apply the following main research tools. First, it is an isentropic trajectory model used to calculate the trajectories arriving at Barrow at three altitudes of 0.5, 1.5 and 3 km above sea level. Second - clustering procedure used to divide the trajectories into groups based on source regions. Third - various statistical analysis tools such as the exploratory data analysis, two component correlation analysis, trend analysis, principal components and factor analysis used to identify the relationship between various chemical species vs. source regions as a function of time. In this study, we used the chemical data from the NOAA-CMDL Barrow observatory in combination with isentropic backward trajectories from gridded ECMWF data to understand the importance of various pollutant source regions on
International Nuclear Information System (INIS)
Mahura, A.; Jaffe, D.; Harris, J.
2003-01-01
The understanding of factors driving climate and ecosystem changes in the Arctic requires careful consideration of the sources, correlation and trends for anthropogenic pollutants. The database from the NOAA-CMDL Barrow Observatory (71deg.17'N, 156deg.47'W) is the longest and most complete record of pollutant measurements in the Arctic. It includes observations of carbon dioxide (CO 2 ), methane (CH 4 ), carbon monoxide (CO), ozone (O 3 ), aerosol scattering coefficient (σ sp ), aerosol number concentration (NC asl ), etc. The objectives of this study are to understand the role of long-range transport to Barrow in explaining: (1) the year-to-year variations, and (2) the trends in the atmospheric chemistry record at the NOAA-CMDL Barrow observatory. The key questions we try to answer are: 1. What is the relationship between various chemical species measured at Barrow Observatory, Alaska and transport pathways at various altitudes? 2. What are the trends of species and their relation to transport patterns from the source regions? 3. What is the impact of the Prudhoe Bay emissions on the Barrow's records? To answer on these questions we apply the following main research tools. First, it is an isentropic trajectory model used to calculate the trajectories arriving at Barrow at three altitudes of 0.5, 1.5 and 3 km above sea level. Second - clustering procedure used to divide the trajectories into groups based on source regions. Third - various statistical analysis tools such as the exploratory data analysis, two component correlation analysis, trend analysis, principal components and factor analysis used to identify the relationship between various chemical species vs. source regions as a function of time. In this study, we used the chemical data from the NOAA-CMDL Barrow observatory in combination with isentropic backward trajectories from gridded ECMWF data to understand the importance of various pollutant source regions on atmospheric composition in the Arctic. We
Directory of Open Access Journals (Sweden)
Živić Marija
2014-01-01
Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.
The isentropic relation in plasmas
International Nuclear Information System (INIS)
Burm, K T A L
2004-01-01
The isentropic relation from gas dynamics relates pressure, density and temperature. The use of this relation may ease the hydrodynamic modelling effort. Characteristic for the isentropic relation is the constant isentropic exponent. The isentropic exponent is also in the case of plasmas a constant as long as the ionization degree is between 5 and 80%. This constant is lower due to the extra degree of freedom which comes with ionization in plasmas. The occurrence of ionization means that plasmas are never isentropic. The isentropic relation itself is therefore adapted here to include plasmas within its concept. From the plasma isentropic relation a further extension is to include viscosity and heating. It is found that all extra non-isentropic inclusions further lower the (quasi-) isentropic exponent in the adapted isentropic relation
Bleck, R.; Sun, S.; Benjamin, S.; Brown, J. M.
2017-12-01
Two- to four-week predictions of stratospheric sudden warming events during the winter seasons of 1999-2014, carried out with a high-resolution icosahedral NWP model using potential temperature as vertical coordinate, are inspected for commonalities in the evolution of both minor and major warmings. Emphasis is on the evolution of the potential vorticity field at different levels in the stratosphere, as well as on the sign and magnitude of the vertical component of the Eliassen-Palm flux vector suggestive of wave forcing in either direction. Material is presented shedding light on the skill of the model (FIM, developed at NOAA/ESRL) in predicting stratospheric warmings generally 2 weeks in advance. With an icosahedral grid ideally suited for studying polar processes, and a vertical coordinate faithfully reproducing details in the evolution of the potential vorticity and EP flux vector fields, FIM is found to be a good tool for investigating the SSW mechanism.
A study of binder materials subjected to isentropic compression loading
International Nuclear Information System (INIS)
Hall, Clint Allen; Orler, E. Bruce; Sheffield, Steve A.; Gustavsen, Rick L.; Sutherland, Gerrit; Baer, Melvin R.; Hooks, D.E.
2005-01-01
Binders such as Estane, Teflon, Kel F and HTPB are typically used in heterogeneous explosives to bond polycrystalline constituents together as an energetic composite. Combined theoretical and experimental studies are underway to unravel the mechanical response of these materials when subjected to isentropic compression loading. Key to this effort is the determination of appropriate constitutive and EOS property data at extremely high stress-strain states as required for detailed mesoscale modeling. The Sandia Z accelerator and associated diagnostics provides new insights into mechanical response of these nonreactive constituents via isentropic ramp-wave compression loading. Several thicknesses of samples, varied from 0.3 to 1.2 mm, were subjected to a ramp load of ∼42 Kbar over 500 ns duration using the Sandia Z-machine. Profiles of transmitted ramp waves were measured at window interfaces using conventional VISAR. Shock physics analysis is then used to determine the nonlinear material response of the binder materials. In this presentation we discuss experimental and modeling details of the ramp wave loading ICE experiments designed specifically for binder materials.
Isentropic and non-isentropic sel-similar implosions
International Nuclear Information System (INIS)
Rodriguez, Manuel; Linan, Amable.
1978-01-01
The self-similar motion of an implosive shock at the instant close to the reflection time at the center of the sphere (or cylinder), before and after that reflection occurs, is described. The material is considered to be a perfect gas. A detailed analysis is given of the ordinary differential equations that describe the velocity, density and pressure distributions, obtaining the numerical solution for several values of sigma. Asymptotic solutions are given for small values of 1/sigma and (sigma - 1). Also, the self-similar process of the isentropic compression of a sphere (or cylinder), with initial conditions of uniform density and zero velocity, is given. An asimptotic solution, valid for large values of the maximum density ratio, is obtained. As a part of the solution, it is obtained the pressure-time dependence needed at the outer surface to get the self-similar solution. (author)
Isentropic Compression of Argon
International Nuclear Information System (INIS)
Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.
1997-01-01
We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal
Isentropic Compression of Iron with the Z Accelerator
International Nuclear Information System (INIS)
Asay, J.R.; Bernard, M.A.; Hall, C.A.; Hayes, D.B.; Holland, K.G.; McDaniel, D.H.; Rosenthal, S.E.; Spielman, R.B.; Stygar, W.A.
1999-01-01
Development of isentropic loading techniques is a long standing goal of the shock physics community. The authors have used the Sandia Z Accelerator to produce smoothly increasing pressure loading on planar iron specimens over time durations of 100 ns and for pressures to 300 Mbar. Free surface velocity measurements on the rear surface of the continuously loaded specimens were made on specimens 0.5-mm and 0.8-mm thick and clearly show the effects of wave evolution into the well known two-wave structure resulting from the α-var e psilon phase transition beginning at 125 kbar. The resulting wave profiles are analyzed with a rate-dependent, phase transition model to extract information on phase transformation kinetics for isentropic compression of iron. Comparison of the experiments and calculations demonstrate the value of isentropic loading for studying phase transition kinetics
DEFF Research Database (Denmark)
Frigaard, Peter; Andersen, Thomas Lykke
The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...
Free Piston Problem for Isentropic Gas Dynamics
Takeno, Shigeharu
1995-01-01
We consider the existence of the generalized solution for a free piston problem for isentropic gas dynamics. By the compensated compactness theory, we can show that an approximate solution converges to a generalized solution.
Thin Foil Acceleration Method for Measuring the Unloading Isentropes of Shock-Compressed Matter
International Nuclear Information System (INIS)
Asay, J.R.; Chhabildas, L.C.; Fortov, V.E.; Kanel, G.I.; Khishchenko, K.V.; Lomonosov, I.V.; Mehlhorn, T.; Razorenov, S.V.; Utkin, A.V.
1999-01-01
This work has been performed as part of the search for possible ways to utilize the capabilities of laser and particle beams techniques in shock wave and equation of state physics. The peculiarity of these techniques is that we have to deal with micron-thick targets and not well reproducible incident shock wave parameters, so all measurements should be of a high resolution and be done in one shot. Besides the Hugoniots, the experimental basis for creating the equations of state includes isentropes corresponding to unloading of shock-compressed matter. Experimental isentrope data are most important in the region of vaporization. With guns or explosive facilities, the unloading isentrope is recovered from a series of experiments where the shock wave parameters in plates of standard low-impedance materials placed behind the sample are measured [1,2]. The specific internal energy and specific volume are calculated from the measured p(u) release curve which corresponds to the Riemann integral. This way is not quite suitable for experiments with beam techniques where the incident shock waves are not well reproducible. The thick foil method [3] provides a few experimental points on the isentrope in one shot. When a higher shock impedance foil is placed on the surface of the material studied, the release phase occurs by steps, whose durations correspond to that for the shock wave to go back and forth in the foil. The velocity during the different steps, connected with the knowledge of the Hugoniot of the foil, allows us to determine a few points on the isentropic unloading curve. However, the method becomes insensitive when the low pressure range of vaporization is reached in the course of the unloading. The isentrope in this region can be measured by recording the smooth acceleration of a thin witness plate foil. With the mass of the foil known, measurements of the foil acceleration will give us the vapor pressure
NUMERICAL SIMULATION OF FLOW OVER TWO-DIMENSIONAL MOUNTAIN RIDGE USING SIMPLE ISENTROPIC MODEL
Directory of Open Access Journals (Sweden)
Siswanto Siswanto
2009-07-01
Full Text Available Model sederhana isentropis telah diaplikasikan untuk mengidentifikasi perilaku aliran masa udara melewati topografi sebuah gunung. Dalam model isentropis, temperature potensial θ digunakan sebagai koordinat vertikal dalam rezim aliran adiabatis. Medan angin dalam arah vertikal dihilangkan dalam koordinat isentropis sehingga mereduksi sistim tiga dimensi menjadi sistim dua dimensi lapisan θ. Skema komputasi beda hingga tengah telah digunakan untuk memformulasikan model adveksi. Paper ini membahas aplikasi sederhana dari model isentropis untuk mempelajari gelombang gravitasi dan fenomena angin gunung dengan desain komputasi periodik dan kondisi batas lateral serta simulasi dengan topografi yang berbeda. The aim of this work is to study turbulent flow over two-dimensional hill using a simple isentropic model. The isentropic model is represented by applying the potential temperature θ, as the vertical coordinate and is conversed in adiabatic flow regimes. This implies a vanishing vertical wind in isentropic coordinates which reduces the three dimensional system to a stack of two dimensional θ–layers. The equations for each isentropic layer are formally identical with the shallow water equation. A computational scheme of centered finite differences is used to formulate an advective model. This work reviews a simple isentropic model application to investigate gravity wave and mountain wave phenomena regard to different experimental design of computation and topographic height.
Generating Quasi-Isentropic Loading to Targets via Flier-Plate Technique
International Nuclear Information System (INIS)
Shen Qiang; Su Xiaopeng; Wang Chuanbin; Zhang Lianmeng; Hua Jinsong; Tan Hua
2008-01-01
The quasi-isentropic loading technique allows investigation of material properties in a high-pressure, low-temperature regime that is inaccessible by conventional shock wave experiments. In the present paper, the layered flier-plate and graded density flier-plate, which have different variations in the density gradient along the thickness direction but the same density range, were designed and fabricated. Impact experiments were then performed on a two-stage light gas gun. VISAR-measured results show that wave profiles with an initial jump followed by a slowly-rising front to the peak velocity amplitude are generated by using both types of the flier-plate, indicating that quasi-isentropic loading to the targets have been successfully realized. The process of quasi-isentropic loading can be seen as the successive overlap of a series of small shock waves by the transient layers in the flier-plate. It is obvious that the graded density flier-plate creates a more smoothly rising front, and the compression effect must be closer to isentropic loading than that of the layered flier-plate with the same density range
Isentropic expansion and related thermodynamic properties of non-ionic amphiphile-water mixtures.
Reis, João Carlos R; Douhéret, Gérard; Davis, Michael I; Fjellanger, Inger Johanne; Høiland, Harald
2008-01-28
A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed
Isentropic compression with the SPHINX machine
International Nuclear Information System (INIS)
D'almeida, T; Lasalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.
2013-01-01
The SPHINX machine is a generator of pulsed high power (Class 6 MA, 1 μs) that can be used in the framework of inertial fusion for achieving isentropic compression experiments. The magnetic field created by the current impulse generates a quasi-isentropic compression of a metallic liner. In order to optimize this mode of operation, the current impulse is shaped through a device called DLCM (Dynamic Load Current Multiplier). The DLCM device allows both the increase of the amplitude of the current injected into the liner and its shaping. Some preliminary results concerning an aluminium liner are reported. The measurement of the speed of the internal surface of the liner during its implosion and over a quite long trajectory has been possible by interferometry and the results agree well with simulations based on the experimental value of the current delivered to the liner
Parametric analysis of change in wave number of surface waves
Directory of Open Access Journals (Sweden)
Tadić Ljiljana
2015-01-01
Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.
Tracer Equivalent Latitude: A Diagnostic Tool for Isentropic Transport Studies.
Allen, Douglas R.; Nakamura, Noboru
2003-01-01
Area equivalent latitude based on potential vorticity (PV) is a widely used diagnostic for isentropic transport in the stratosphere and upper troposphere. Here, an alternate method for calculating equivalent latitude is explored, namely, a numerical synthesis of a PV-like tracer from a long-term integration of the advection-diffusion equation on isentropic surfaces. It is found that the tracer equivalent latitude (TrEL) behaves much like the traditional PV equivalent latitude (PVEL) despite the simplified governing physics; this is evidenced by examining the kinematics of the Arctic lower stratospheric vortex. Yet in some cases TrEL performs markedly better as a coordinate for long-lived trace species such as ozone. These instances include analysis of lower stratospheric ozone during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE) campaign and three-dimensional reconstruction of total column ozone during November-December 1999 from fitted ozone-equivalent latitude relationship. It is argued that the improvement is due to the tracer being free from the diagnostic errors and certain diabatic processes that affect PV. The sensitivity of TrEL to spatial and temporal resolution, advection scheme, and driving winds is also examined.
Stability of the isentropic Riemann solutions of the full multidimensional Euler system
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Kreml, Ondřej; Vasseur, A.
2015-01-01
Roč. 47, č. 3 (2015), s. 2416-2425 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * isentropic solutions * Riemann problem * rarefaction wave Subject RIV: BA - General Mathematics Impact factor: 1.486, year: 2015 http://epubs.siam.org/doi/abs/10.1137/140999827
Unified solver for fluid dynamics and aeroacoustics in isentropic gas flows
Pont, Arnau; Codina, Ramon; Baiges, Joan; Guasch, Oriol
2018-06-01
The high computational cost of solving numerically the fully compressible Navier-Stokes equations, together with the poor performance of most numerical formulations for compressible flow in the low Mach number regime, has led to the necessity for more affordable numerical models for Computational Aeroacoustics. For low Mach number subsonic flows with neither shocks nor thermal coupling, both flow dynamics and wave propagation can be considered isentropic. Therefore, a joint isentropic formulation for flow and aeroacoustics can be devised which avoids the need for segregating flow and acoustic scales. Under these assumptions density and pressure fluctuations are directly proportional, and a two field velocity-pressure compressible formulation can be derived as an extension of an incompressible solver. Moreover, the linear system of equations which arises from the proposed isentropic formulation is better conditioned than the homologous incompressible one due to the presence of a pressure time derivative. Similarly to other compressible formulations the prescription of boundary conditions will have to deal with the backscattering of acoustic waves. In this sense, a separated imposition of boundary conditions for flow and acoustic scales which allows the evacuation of waves through Dirichlet boundaries without using any tailored damping model will be presented.
Estimation of exit temperatures in the isentropic compression of real ...
African Journals Online (AJOL)
This paper presents the estimation of exit temperatures in the isentropic compression of real gases based on the Peng-Robinson equation of state and entropy balance method. The methods were applied to Ar, N2, CH4, CO2, C2H4 and C2H6. Data obtained revealed that isentropic exponent method provides useful results ...
ENTROPIES AND FLUX-SPLITTINGS FOR THE ISENTROPIC EULER EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The authors establish the existence of a large class of mathematical entropies (the so-called weak entropies) associated with the Euler equations for an isentropic, compressible fluid governed by a general pressure law. A mild assumption on the behavior of the pressure law near the vacuum is solely required. The analysis is based on an asymptotic expansion of the fundamental solution (called here the entropy kernel) of a highly singular Euler-Poisson-Darboux equation. The entropy kernel is only H lder continuous and its regularity is carefully investigated. Relying on a notion introduced earlier by the authors, it is also proven that, for the Euler equations, the set of entropy flux-splittings coincides with the set of entropies-entropy fluxes. These results imply the existence of a flux-splitting consistent with all of the entropy inequalities.
On the Extreme Wave Height Analysis
DEFF Research Database (Denmark)
Burcharth, H. F.; Liu, Zhou
1994-01-01
The determination of the design wave height is usually based on the statistical analysis of long-term extreme wave height measurements. After an introduction to the procedure of the extreme wave height analysis, the paper presents new development concerning various aspects of the extreme wave...... height analysis. Finally, the paper gives a practical example based on a data set of the hindcasted wave heights for a deep water location in the Mediterranean Sea....
Analysis of flexural wave cloaks
Directory of Open Access Journals (Sweden)
Alfonso Climente
2016-12-01
Full Text Available This work presents a comprehensive study of the cloak for bending waves theoretically proposed by Farhat et al. [see Phys. Rev. Lett. 103, 024301 (2009] and later on experimentally realized by Stenger et al. [see Phys. Rev. Lett. 108, 014301 (2012]. This study uses a semi-analytical approach, the multilayer scattering method, which is based in the Kirchoff-Love wave equation for flexural waves in thin plates. Our approach was unable to reproduce the predicted behavior of the theoretically proposed cloak. This disagreement is here explained in terms of the simplified wave equation employed in the cloak design, which employed unusual boundary conditions for the cloaking shell. However, our approach reproduces fairly well the measured displacement maps for the fabricated cloak, indicating the validity of our approach. Also, the cloak quality has been here analyzed using the so called averaged visibility and the scattering cross section. The results obtained from both analysis let us to conclude that there is room for further improvements of this type of flexural wave cloak by using better design procedures.
Excess molar volumes and isentropic compressibilities of binary ...
Indian Academy of Sciences (India)
Excess molar volume; binary liquid mixtures; isentropic compressibility; intermolecular interactions. ... mixtures are essential for fluid flow, mass flow and heat transfer processes in chemical ... Experimentally determined values of density(ρ).
Planetary Torque in 3D Isentropic Disks
International Nuclear Information System (INIS)
Fung, Jeffrey; Masset, Frédéric; Velasco, David; Lega, Elena
2017-01-01
Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential ( r s ), and that it has a weak dependence on the adiabatic index of the gaseous disk ( γ ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ , up to supersonic speeds for the smallest r s and γ in our study.
Planetary Torque in 3D Isentropic Disks
Energy Technology Data Exchange (ETDEWEB)
Fung, Jeffrey [Department of Astronomy, University of California at Berkeley, Campbell Hall, Berkeley, CA 94720-3411 (United States); Masset, Frédéric; Velasco, David [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, 62210 Cuernavaca, Mor. (Mexico); Lega, Elena, E-mail: jeffrey.fung@berkeley.edu [Université de la Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange UMR 7293, Nice (France)
2017-03-01
Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential ( r {sub s}), and that it has a weak dependence on the adiabatic index of the gaseous disk ( γ ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r {sub s} or γ , up to supersonic speeds for the smallest r {sub s} and γ in our study.
International Nuclear Information System (INIS)
Blake, B.; Zumbrun, K.; Lafitte, O.
2010-01-01
For the two-dimensional Navier Stokes equations of isentropic magnetohydrodynamics (MHD) with γ-law gas equation of state, γ≥1, and infinite electrical resistivity, we carry out a global analysis categorizing all possible viscous shock profiles. Precisely, we show that the phase portrait of the Crave ling-wave ODE generically consists of either two rest points connected by a viscous Lax profile, or else four rest points, two saddles and two nodes. In the latter configuration, which rest points are connected by profiles depends on the ratio of viscosities, and can involve Lax, over-compressive, or under-compressive shock profiles. Considered as three-dimensional solutions, under-compressive shocks are Lax-type (Alfven) waves. For the monatomic and diatomic cases γ=5/3 and γ=7/5, with standard viscosity ratio for a nonmagnetic gas, we find numerically that the the nodes are connected by a family of over-compressive profiles bounded by Lax profiles connecting saddles to nodes, with no under-compressive shocks occurring. We carry out a systematic numerical Evans function analysis indicating that all of these two-dimensional shock profiles are linearly and nonlinearly stable, both with respect to two- and three-dimensional perturbations. For the same gas constants, but different viscosity ratios, we investigate also cases for which under-compressive shocks appear; these are seen numerically to be stable as well, both with respect to two-dimensional and (in the neutral sense of convergence to nearby Riemann solutions) three-dimensional perturbations. (authors)
Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations
Chiodaroli, Elisabetta; Kreml, Ondřej
2018-04-01
We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.
Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.
2005-01-01
The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.
Trend analysis of the wave storminess: the wave direction
Casas Prat, M.; Sierra, J. P.; Mösso, C.; Sánchez-Arcilla, A.
2009-09-01
directionality. It is based on 44 year hindcast model data (1958-2001) of the HIPOCAS project, enabling to work with a longer time series compared to the existing measured ones. 41 nodes of this database are used, containing 3 hourly simulated data of significant wave height and wave direction, among other parameters. For storm definition, the Peak Over Threshold (POT) method is used with some additional duration requirements in order to analyse statistically independent events (Mendoza & Jiménez, 2006). Including both wave height and storm duration, the wave storminess is characterised by the energy content (Mendoza & Jiménez, 2004), being in turn log-transformed because of its positive scale. Separately, the wave directionality itself is analysed in terms of different sectors and approaching their probability of occurrence by counting events and using Bayesian inference (Agresti, 2002). Therefore, the original data is transformed into compositional data and, before performing the trend analysis, the isometric logratio (ilr) transformation (Egozcue et al., 2003) is done. In general, the trend analysis methodology consists in two steps: 1) trend detection and 2) trend quantification. For 1) the Mann Kendall test is used in order to identify the nodes with significant trend. For these selected nodes, the trend quantification is done, comparing two methods: 1) a simple linear regression analysis complemented with the bootstrap technique and 2) a Bayesian analysis, assuming normally distributed data with linearly increasing mean. Preliminary results show no significant trend for both annual mean and maximum energy content except for some nodes located to the Northern Catalan coast. Regarding the wave direction (but not only considering stormy conditions) there is a tendency of North direction to decrease whereas South and Southeast direction seems to increase.
Excess molar volumes and isentropic compressibilities of binary
Indian Academy of Sciences (India)
Excess molar volumes (E) and deviation in isentropic compressibilities (s) have been investigated from the density and speed of sound measurements of six binary liquid mixtures containing -alkanes over the entire range of composition at 298.15 K. Excess molar volume exhibits inversion in sign in one binary ...
Data analysis techniques for gravitational wave observations
Indian Academy of Sciences (India)
Astrophysical sources of gravitational waves fall broadly into three categories: (i) transient and bursts, (ii) periodic or continuous wave and (iii) stochastic. Each type of source requires a different type of data analysis strategy. In this talk various data analysis strategies will be reviewed. Optimal filtering is used for extracting ...
Extreme Wave Analysis by Integrating Model and Wave Buoy Data
Directory of Open Access Journals (Sweden)
Fabio Dentale
2018-03-01
Full Text Available Estimating the extreme values of significant wave height (HS, generally described by the HS return period TR function HS(TR and by its confidence intervals, is a necessity in many branches of coastal science and engineering. The availability of indirect wave data generated by global and regional wind and wave model chains have brought radical changes to the estimation procedures of such probability distribution—weather and wave modeling systems are routinely run all over the world, and HS time series for each grid point are produced and published after assimilation (analysis of the ground truth. However, while the sources of such indirect data are numerous, and generally of good quality, many aspects of their procedures are hidden to the users, who cannot evaluate the reliability and the limits of the HS(TR deriving from such data. In order to provide a simple engineering tool to evaluate the probability of extreme sea-states as well as the quality of such estimates, we propose here a procedure based on integrating HS time series generated by model chains with those recorded by wave buoys in the same area.
Release isentrope measurements with the LLNL electric gun
Energy Technology Data Exchange (ETDEWEB)
Gathers, G.R.; Osher, J.E.; Chau, H.H.; Weingart, R.C.; Lee, C.G.; Diaz, E.
1987-06-01
The liquid-vapor coexistence boundary is not well known for most metals because the extreme conditions near the critical point create severe experimental difficulties. The isentropes passing through the liquid-vapor region typically begin from rather large pressures on the Hugoniot. We are attempting to use the high velocities achievable with the Lawrence Livermore National Laboratory (LLNL) electric gun to obtain these extreme states in aluminum and measure the release isentropes by releasing into a series of calibrated standards with known Hugoniots. To achieve large pressure drops needed to explore the liquid-vapor region, we use argon gas for which Hugoniots have been calculated using the ACTEX code, as one of the release materials.
The VELOCE pulsed power generator for isentropic compression experiments
Energy Technology Data Exchange (ETDEWEB)
Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Asay, James Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Chantrenne, Sophie J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hickman, Randall John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Willis, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Shay, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Grine-Jones, Suzi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hall, Clint Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Baer, Melvin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center
2007-12-01
Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.
Contact discontinuities in multi-dimensional isentropic Euler equations
Czech Academy of Sciences Publication Activity Database
Březina, J.; Chiodaroli, E.; Kreml, Ondřej
2018-01-01
Roč. 2018 (2018), č. článku 94. ISSN 1072-6691 R&D Projects: GA ČR(CZ) GJ17-01694Y Institutional support: RVO:67985840 Keywords : isentropic Euler equations * non-uniqueness * Riemann problem Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/94/abstr.html
International Nuclear Information System (INIS)
DeMuth, S.F.; Watson, J.S.
1985-01-01
A model of compressible flow through an orifice, in the region of transition from free molecular to isentropic expansion flow, has been developed and tested for accuracy. The transitional or slip regime is defined as the conditions where molecular interactions are too many for free molecular flow modeling, yet not great enough for isentropic expansion flow modeling. Due to a lack of literature establishing a well-accepted model for predicting transitional flow, it was felt such work would be beneficial. The model is nonlinear and cannot be satisfactorily linearized for a linear regression analysis. Consequently, a computer routine was developed which minimized the sum of the squares of the residual flow for the nonlinear model. The results indicate an average accuracy within 15% of the measured flow throughout the range of test conditions. Furthermore, the results of the regression analysis indicate that the transitional regime lies between Knudsen numbers of approximately 2 and 45. 4 refs., 3 figs., 1 tab
Crack Detection with Lamb Wave Wavenumber Analysis
Tian, Zhenhua; Leckey, Cara; Rogge, Matt; Yu, Lingyu
2013-01-01
In this work, we present our study of Lamb wave crack detection using wavenumber analysis. The aim is to demonstrate the application of wavenumber analysis to 3D Lamb wave data to enable damage detection. The 3D wavefields (including vx, vy and vz components) in time-space domain contain a wealth of information regarding the propagating waves in a damaged plate. For crack detection, three wavenumber analysis techniques are used: (i) two dimensional Fourier transform (2D-FT) which can transform the time-space wavefield into frequency-wavenumber representation while losing the spatial information; (ii) short space 2D-FT which can obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation; (iii) local wavenumber analysis which can provide the distribution of the effective wavenumbers at different locations. All of these concepts are demonstrated through a numerical simulation example of an aluminum plate with a crack. The 3D elastodynamic finite integration technique (EFIT) was used to obtain the 3D wavefields, of which the vz (out-of-plane) wave component is compared with the experimental measurement obtained from a scanning laser Doppler vibrometer (SLDV) for verification purposes. The experimental and simulated results are found to be in close agreement. The application of wavenumber analysis on 3D EFIT simulation data shows the effectiveness of the analysis for crack detection. Keywords: : Lamb wave, crack detection, wavenumber analysis, EFIT modeling
Generation and Analysis of Random Waves
DEFF Research Database (Denmark)
Liu, Zhou; Frigaard, Peter
applied to hydrology, wind mechanics, ice mechanics, etc., not to mention the fact that spectral analysis comes originally from optics and electronics. The book intents to be a textbook for senior and graduate students who have interest in coastal and offshore structures. The only pre......Sea waves are the most important phenomenon to be considered in the design of coastal and offshore structures. It should be stressed that, even though all contents in the book are related to sea waves, they have a broader application in practice. For example, the extreme theory has also been......-requirement for the book is the knowledge of linear wave theory....
Isentropic compressibilities of (amide + water) mixtures: A comparative study
International Nuclear Information System (INIS)
Papamatthaiakis, Dimitris; Aroni, Fryni; Havredaki, Vasiliki
2008-01-01
The density and ultrasonic velocity of aqueous solutions of formamide (FA), N-methylformamide (NMF), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), pyrrolidin-2-one (PYR), N-methyl-2-pyrrolidinone (NMP), and their pure phases have been measured at 298.15 K and atmospheric pressure. Densities and ultrasonic velocities in pure amides have been also measured at the temperature range 288.15 K to 308.15 K for the computation of their thermal expansivities. Isentropic compressibility, intermolecular free length, relative association, apparent molar compressibility, as well as the excess quantities, ultrasonic velocity, isentropic compressibility, intermolecular free length, have been evaluated and fitted to the Redlich-Kister type equation. The deviation from ideal mixing law in ultrasonic velocity is positive while the deviations in isentropic compressibility and intermolecular free length are negative for all (amide + water) mixtures. This behavior reveals the nature and the magnitude of intermolecular interactions between the amide-water molecules. The sequence of superimposed curves of various ultrasonic parameters vs. the amide mole fraction is related to the strength of interactions between the unlike molecules and the role of -CH 3 substitution in amides. The comparison of ultrasonic to volumetric properties reveals differences on the position of the extrema and their relation with the degree of substitution while the interpretation of these differences is discussed. Two different approaches on the computation of excess functions, applied in this work, brought out a difference in the magnitude of deviations and a partial reversion to the sequence of amides curves suggesting a different estimation in terms of deviations from ideal mixing law and therefore of the relative molecular interactions
Patterns Formation in a Self-Gravitating Isentropic Gas
Humi, Mayer
2018-03-01
In this paper we consider a hydrodynamic model for the matter density distribution in a self gravitating, isentropic 2-d disk of gas where the isentropy coefficient is allowed to be a function of position. For this model we prove analytically the existence of steady state and time dependent solutions in which the matter density in the disk is oscillatory and pattern forming. This research is motivated in part by recent astronomical observations and Laplace conjecture (made in 1796) that planetary systems evolve from a family of isolated rings that are formed within a primitive interstellar gas cloud.
Testing, Analysis and Control of Wave Dragon, Wave Energy Converter
DEFF Research Database (Denmark)
Tedd, James
of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...
Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility
Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.
2011-12-01
Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials. We acknowledge the Omega staff at
Statistical analysis on extreme wave height
Digital Repository Service at National Institute of Oceanography (India)
Teena, N.V.; SanilKumar, V.; Sudheesh, K.; Sajeev, R.
-294. • WAFO (2000) – A MATLAB toolbox for analysis of random waves and loads, Lund University, Sweden, homepage http://www.maths.lth.se/matstat/wafo/,2000. 15 Table 1: Statistical results of data and fitted distribution for cumulative distribution...
Manual for wave generation and analysis
DEFF Research Database (Denmark)
Jakobsen, Morten Møller
This Manual is for the included wave generation and analysis software and graphical user interface. The package is made for Matlab and is meant for educational purposes. The code is free to use under the GNU Public License (GPL). It is still in development and should be considered as such. If you...
Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction
Directory of Open Access Journals (Sweden)
Wei Li
2016-05-01
Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.
Partial wave analysis using graphics processing units
Energy Technology Data Exchange (ETDEWEB)
Berger, Niklaus; Liu Beijiang; Wang Jike, E-mail: nberger@ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Lu, Shijingshan, 100049 Beijing (China)
2010-04-01
Partial wave analysis is an important tool for determining resonance properties in hadron spectroscopy. For large data samples however, the un-binned likelihood fits employed are computationally very expensive. At the Beijing Spectrometer (BES) III experiment, an increase in statistics compared to earlier experiments of up to two orders of magnitude is expected. In order to allow for a timely analysis of these datasets, additional computing power with short turnover times has to be made available. It turns out that graphics processing units (GPUs) originally developed for 3D computer games have an architecture of massively parallel single instruction multiple data floating point units that is almost ideally suited for the algorithms employed in partial wave analysis. We have implemented a framework for tensor manipulation and partial wave fits called GPUPWA. The user writes a program in pure C++ whilst the GPUPWA classes handle computations on the GPU, memory transfers, caching and other technical details. In conjunction with a recent graphics processor, the framework provides a speed-up of the partial wave fit by more than two orders of magnitude compared to legacy FORTRAN code.
Analysis of critically refracted longitudinal waves
Energy Technology Data Exchange (ETDEWEB)
Pei, Ning, E-mail: npei@iastate.edu; Bond, Leonard J., E-mail: npei@iastate.edu [Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50011 (United States)
2015-03-31
Fabrication processes, such as, welding, forging, and rolling can induce residual stresses in metals that will impact product performance and phenomena such as cracking and corrosion. To better manage residual stress tools are needed to map their distribution. The critically refracted ultrasonic longitudinal (LCR) wave is one such approach that has been used for residual stress characterization. It has been shown to be sensitive to stress and less sensitive to the effects of the texture of the material. Although the LCR wave is increasingly widely applied, the factors that influence the formation of the LCR beam are seldom discussed. This paper reports a numerical model used to investigate the transducers' parameters that can contribute to the directionality of the LCR wave and hence enable performance optimization when used for industrial applications. An orthogonal test method is used to study the transducer parameters which influence the LCR wave beams. This method provides a design tool that can be used to study and optimize multiple parameter experiments and it can identify which parameter or parameters are of most significance. The simulation of the sound field in a 2-D 'water-steel' model is obtained using a Spatial Fourier Analysis method. The effects of incident angle, standoff, the aperture and the center frequency of the transducer were studied. Results show that the aperture of the transducer, the center frequency and the incident angle are the most important factors in controlling the directivity of the resulting LCR wave fields.
The analysis of interfacial waves
International Nuclear Information System (INIS)
Galimov, Azat Yu.; Drew, Donald A.; Lahey, Richard T.; Moraga, Francisco J.
2005-01-01
We present analytical results for stable stratified wavy two-phase flow and functional forms for the various interfacial force densities in a two-fluid model. In particular, we have derived analytically the components of the non-drag interfacial force density [Drew, D.A., Passman, S.L., 1998. Theory of Multicomponent Fluids. Springer-Verlag, New York; Nigmatulin, T.R., Drew, D.A., Lahey, R.T., Jr., 2000. An analysis of wavy annular flow. In: International Conference on Multiphase Systems, ICMS'2000, Ufa, Russia, June 15-17], Reynolds stress tensor, and the term, (p-bar cl i -p-bar cl )-bar α cl , where p-bar cl i is interfacial average pressure, p-bar cl the average pressure, and α cl is the volume fraction of the continuous liquid phase. These functional forms should be useful for assessing two-fluid closure relations and Computational Multiphase Fluid Dynamics (CMFD) numerical models for stratified wavy flows. Moreover, it appears that this approach can be generalized to other flow regimes (e.g., annular flows)
Isentropic compression studies using the NHMFL single turn
Energy Technology Data Exchange (ETDEWEB)
Tasker, Douglas G [Los Alamos National Laboratory; Mielke, Charles [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory; Rickel, Dwight [Los Alamos National Laboratory
2010-10-19
Magnetic isentropic compression experiments (ICE) provide the most accurate shock free compression data for materials at megabar stresses. Recent ICE experiments performed on the Sandia Z-machine (Asay, 1999) and at the Los Alamos High Explosive Pulsed Power facility (Tasker, 2006) are providing our nation with data on material properties in extreme dynamic high stress environments. The LANL National High Magnetic Field Laboratory (NHMFL) can offer a less complex ICE experiment at high stresses (up to {approx}1Mbar) with a high sample throughput and relatively low cost. This is not to say that the NHMFL technique will replace the other methods but rather complement them. For example, NHMFL-ICE is ideal for the development of advanced diagnostics, e.g., to detect phase changes. We will discuss the physics of the NHMFL-ICE experiments and present data from the first proof-of-principle experiments that were performed in September 2010.
Sorghum cobalt analysis on not determined wave length with atomic ...
African Journals Online (AJOL)
This study was to know the better wave length on measuring cobalt content in forage sorghum hybrid (Sorghum bicolor) with an atomic absorption spectrophotometer. The analysis was on background correction mode with three wave lengths; 240.8, 240.7 (determined wave length or recommended wave length) and 240.6 ...
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
Attenuation Analysis of Lamb Waves Using the Chirplet Transform
Kerber, Florian; Sprenger, Helge; Niethammer, Marc; Luangvilai, Kritsakorn; Jacobs, Laurence J.
2010-01-01
Guided Lamb waves are commonly used in nondestructive evaluation to monitor plate-like structures or to characterize properties of composite or layered materials. However, the dispersive propagation and multimode excitability of Lamb waves complicate their analysis. Advanced signal processing
Energy Technology Data Exchange (ETDEWEB)
Maddox, B.R., E-mail: maddox3@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Park, H.-S., E-mail: park1@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lu, C.-H., E-mail: chiahuilu@gmail.com [University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093 (United States); Remington, B.A., E-mail: remington2@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Prisbrey, S., E-mail: prisbrey1@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Kad, B., E-mail: bkad@ucsd.edu [University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093 (United States); Luo, R., E-mail: luorwga@gmail.com [General Atomics, 3483 Dunhill Street, San Diego, CA 92121-1200 (United States); Meyers, M.A., E-mail: mameyers@eng.ucsd.edu [University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093 (United States)
2013-08-20
Abstarct: A new method of subjecting samples to high-amplitude laser pulses with durations in the ns range and recovering them for characterization is presented. It is applied to tantalum monocrystals and nanocrystals that are subjected to controlled and prescribed ramp loading configurations, creating a quasi-isentropic loading in the front that is retained up to 40 μm into the specimen. This is enabled by the use of a reservoir into which six laser beams impinge simultaneously, thereby creating plasma in a reservoir, from which the pulse is launched into the metal. This technique enables, with proper wave trapping devices, the recovery of the specimens for subsequent characterization. Successful experiments conducted in the Laboratory for Laser Energetics, U. of Rochester, generated pressure pulses with initial amplitudes ranging from 15 to 110 GPa and initial durations of ∼3 ns. The quasi-isotropic loading minimizes thermal effects at the front surface. The compression history of the recovered samples is measured using velocity interferometry from an Al-coated LiF witness target on the same shot driven by a separate, but equivalent set of laser beams. These experimental measurements are compared with computations using a radiation hydrodynamics code. Recovered samples are investigated using optical, scanning, and transmission electron microscopy. The laser damage to the surface is characterized.
A splitting method for the isentropic Baer-Nunziato two-phase flow model
Directory of Open Access Journals (Sweden)
Coquel Frédéric
2013-01-01
Full Text Available In the present work, we propose a fractional step method for computing approximate solutions of the isentropic Baer-Nunziato two-phase flow model. The scheme relies on an operator splitting method corresponding to a separate treatment of fast propagation phenomena due to the acoustic waves on the one hand and slow propagation phenomena due to the fluid motion on the other. The scheme is proved to preserve positive values of the statistical fractions and densities. We also provide two test-cases that assess the convergence of the method. Nous proposons ici une méthode à pas fractionnaires pour le calcul de solutions approchées pour la version isentropique du modèle diphasique de Baer-Nunziato. Le schéma s’appuie sur un splitting de l’opérateur temporel correspondant à la prise en compte différenciée des phéno-mènes de propagation rapide dus aux ondes acoustiques et des phénomènes de propagation lente dus aux ondes matérielles. On prouve que le schéma permet de préserver des valeurs positives pour les taux statistiques de présence des phases ainsi que pour les densités. Deux cas tests numériques permettent d’illustrer la convergence de la méthode.
International Nuclear Information System (INIS)
Moss, W.C.
1985-01-01
Quasi-isentropic (QI) compression can be achieved by loading a specimen with a low strain rate, long rise time uniaxial strain wave. Recent experimental data show that the quasi-isentrope of 6061-T6 aluminum lies a few percent above the principal Hugoniot, that is, at a given specific volume, the QI stress exceeds the principal Hugoniot stress. It has been suggested that this effect is due to material strength. Using Hugoniot data, shock-reshock, and shock-unload data for beryllium and 6061-T6 aluminum, we have constructed the quasi-isentropes as functions of specific volume. Our results show that the QI stress exceeds the principal Hugoniot stress above a Hugoniot stress of 8.4 GPa in beryllium, and between Hugoniot stresses of 3.8 and 21.4 GPa in aluminum. The effect is due to strength and implies that the QI yield strength can be large. Our calculations show that the QI yield strength is 0.9 GPa in aluminum at a QI stress of 9 GPa, and 5.2 GPa in beryllium at a QI stress of 35 GPa
Weinhold'length in an isentropic Ideal and quasi-Ideal Gas
Santoro, Manuel
2004-01-01
In this paper we study thermodynamic length of an isentropic Ideal and quasi-Ideal Gas using Weinhold metric in a two-dimensional state space. We give explicit relation between length at constant entropy and work.
Weinhold length in an isentropic ideal and quasi-ideal gas
International Nuclear Information System (INIS)
Santoro, Manuel
2005-01-01
In this paper, we study thermodynamic length of an isentropic ideal and quasi-ideal gas using Weinhold metric in a two-dimensional state space. We give explicit relation between length at constant entropy and work
Transition from isentropic to isothermal expansion in laser produced plasmas
Energy Technology Data Exchange (ETDEWEB)
Barrero, A; Santartin, J R
1980-07-01
The transition that the expansion flow of laser-produced plasmas experiences when ones moves from long, low intensity pulses (temperature vanishing at the Isentropic plasma-vacuum front, lying at finite distance) to short, intense ones (non-zero, uni- form temperature at the plasma-vacuum front, lying at infinity) is studied. For planar geometry and large Ion number Z{sub j} the transition occurs for d {phi} / d t {approx_equal} 0.14(27/8)k{sup 7}/2 Z{sub j}{sup 3}/2/m{sub j}{sup 3}/2 K; {phi}, k, m{sub j}, and K are laser intensity, Boltzmann s constant, ion mass, and Spitzer s heat conduction coefficient. This result remains valid for finite Z{sub j} though the numerical factor in d{phi} / d t is different. In spherical geometry a similar transition occurs even in steady conditions. Shorter wavelength lasers and higher Z{sub j} plasmas allow faster rising pulses below transition. (Author) 13 refs.
International Nuclear Information System (INIS)
Sharma, Rohit; Singh, Kuldip
2014-01-01
In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter
Potential and limitations of wave intensity analysis in coronary arteries
Siebes, M.; Kolyva, C.; Verhoeff, B.J.; Piek, J.J.; Spaan, J.A.
2009-01-01
Wave intensity analysis (WIA) is beginning to be applied to the coronary circulation both to better understand coronary physiology and as a diagnostic tool. Separation of wave intensity (WI) into forward and backward traveling components requires knowledge of pulse wave velocity at the point of
Assessing ground compaction via time lapse surface wave analysis
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.
2016-01-01
Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016
Trend analysis of wave storminess: wave direction and its impact on harbour agitation
Directory of Open Access Journals (Sweden)
M. Casas-Prat
2010-11-01
Full Text Available In the context of wave climate variability, long-term alterations in the wave storminess pattern of the Catalan coast (northwestern Mediterranean Sea are analysed in terms of wave energy content and wave direction, on the basis of wave hindcast data (from 44-year time series. In general, no significant temporal trends are found for annual mean and maximum energy. However, the same analysis carried out separately for different wave directions reveals a remarkable increase in the storm energy of events from the south, which is partly due to a rise in the annual percentage of such storms. A case study of Tarragona Port (on the southern Catalan coast highlights the importance of including changes in wave direction in the study of potential impacts of climate change. In particular, an increase in the frequency of storms from the south leads to greater agitation inside the Port.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
CFD Analysis of Water Solitary Wave Reflection
Directory of Open Access Journals (Sweden)
K. Smida
2011-12-01
Full Text Available A new numerical wave generation method is used to investigate the head-on collision of two solitary waves. The reflection at vertical wall of a solitary wave is also presented. The originality of this model, based on the Navier-Stokes equations, is the specification of an internal inlet velocity, defined as a source line within the computational domain for the generation of these non linear waves. This model was successfully implemented in the PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series code. The collision of two counter-propagating solitary waves is similar to the interaction of a soliton with a vertical wall. This wave generation method allows the saving of considerable time for this collision process since the counter-propagating wave is generated directly without reflection at vertical wall. For the collision of two solitary waves, numerical results show that the run-up phenomenon can be well explained, the solution of the maximum wave run-up is almost equal to experimental measurement. The simulated wave profiles during the collision are in good agreement with experimental results. For the reflection at vertical wall, the spatial profiles of the wave at fixed instants show that this problem is equivalent to the collision process.
Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers
Guo, Bowen
2017-06-01
Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.
Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.
Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng
2011-11-01
In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong
2016-06-01
According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.
A time-frequency analysis of wave packet fractional revivals
International Nuclear Information System (INIS)
Ghosh, Suranjana; Banerji, J
2007-01-01
We show that the time-frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time-domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. Our calculations are based on the model example of fractional revivals in a Rydberg wave packet of circular states. We end by providing an analytical investigation which fully agrees with our numerical observations on the utility of time-frequency analysis in the study of wave packet fractional revivals
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Dynamic response of single crystalline copper subjected to quasi-isentropic, gas-gun driven loading
International Nuclear Information System (INIS)
Jarmakani, H.; McNaney, J.M.; Kad, B.; Orlikowski, D.; Nguyen, J.H.; Meyers, M.A.
2007-01-01
A transmission electron microscopy study of quasi-isentropic gas-gun loading (peak pressures between 18 and 52 GPa) of [0 0 1] monocrystalline copper was carried out. The defect substructures at these different pressures were analyzed. Current experimental evidence suggests a deformation substructure that transitions from slip to twinning, where twinning occurs at the higher pressures (∼52 GPa), and heavily dislocated laths and dislocation cells take place at the intermediate and lower pressures. Evidence of stacking faults at the intermediate pressures was also found. Dislocation cell sizes decreased with increasing pressure and increased with distance away from the surface of impact. The results from the quasi-isentropic experiments are compared with those for flyer-plate and laser shock experiments reported in the literature. The Preston-Tonks-Wallace constitutive description is used to model both quasi-isentropic and shock compression experiments and predict the pressure at which the slip-twinning transition occurs in both cases. The model predicts a higher twinning transition pressure for isentropic than for shock experiments, and that twinning should not take place in the quasi-isentropic compression experiments given the loading paths investigated
Cosmography of KNdS black holes and isentropic phase transitions
International Nuclear Information System (INIS)
McInerney, James; Satishchandran, Gautam; Traschen, Jennie
2016-01-01
We present a new analysis of Kerr–Newman–deSitter black holes in terms of thermodynamic quantities that are defined in the observable portion of the Universe; between the black hole and cosmological horizons. In particular, we replace the mass m with a new ‘area product’ parameter X . The physical region of parameter space is found analytically and thermodynamic quantities are given by simple algebraic functions of these parameters. We find that different geometrical properties of the black holes are usefully distinguished by the sum of the black hole and cosmological entropies. The physical parameter space breaks into a region in which the total entropy, together with Λ, a and q uniquely specifies the black hole, and a region in which there is a two-fold degeneracy. In this latter region, there are isentropic pairs of black holes, having the same Λ, a , and q , but different X . The thermodynamic volumes and masses differ in such that there are high and low density branches. The partner spacetimes are related by a simple inversion of X , which has a fixed point at the state of maximal total entropy. We compute the compressibility at fixed total entropy and find that it diverges at the maximal entropy point. Hence a picture emerges of high and low density phases merging at this critical point. (paper)
Directory of Open Access Journals (Sweden)
Zinszner Jean-Luc
2015-01-01
Full Text Available Ceramic materials are commonly used as protective materials particularly due to their very high hardness and compressive strength. However, the microstructure of a ceramic has a great influence on its compressive strength and on its ballistic efficiency. To study the influence of microstructural parameters on the dynamic compressive behaviour of silicon carbides, isentropic compression experiments have been performed on two silicon carbide grades using a high pulsed power generator called GEPI. Contrary to plate impact experiments, the use of the GEPI device and of the lagrangian analysis allows determining the whole loading path. The two SiC grades studied present different Hugoniot elastic limit (HEL due to their different microstructures. For these materials, the experimental technique allowed evaluating the evolution of the equivalent stress during the dynamic compression. It has been observed that these two grades present a work hardening more or less pronounced after the HEL. The densification of the material seems to have more influence on the HEL than the grain size.
Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers
Guo, Bowen; Schuster, Gerard T.
2017-01-01
Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images
Theory analysis and simple calculation of travelling wave burnup scheme
International Nuclear Information System (INIS)
Zhang Jian; Yu Hong; Gang Zhi
2012-01-01
Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)
Mountain Wave Analysis Using Fourier Methods
National Research Council Canada - National Science Library
Roadcap, John R
2007-01-01
...) their requirements for only a coarse horizontal background state. Common traits of Fourier mountain wave models include use of the Boussinesq approximation and neglect of moisture and Coriolis terms...
Analysis of Z Pinch Shock Wave Experiments
International Nuclear Information System (INIS)
Asay, James; Budge, Kent G.; Chandler, Gordon; Fleming, Kevin; Hall, Clint; Holland, Kathleen; Konrad, Carl; Lawrence, Jeffery; Trott, Wayne; Trucano, Timothy
1999-01-01
In this paper, we report details of our computational study of two shock wave physics experiments performed on the Sandia Z machine in 1998. The novelty of these particular experiments is that they represent the first successful application of VISAR interferometry to diagnose shock waves generated in experimental payloads by the primary X-ray pulse of the machine. We use the Sandia shock-wave physics code ALEGRA to perform the simulations reported in this study. Our simulations are found to be in fair agreement with the time-resolved VISAR experimental data. However, there are also interesting and important discrepancies. We speculate as to future use of time-resolved shock wave data to diagnose details of the Z machine X-ray pulse in the future
Energy Technology Data Exchange (ETDEWEB)
Baudisch, H.
1968-03-15
The tables presented in this report contain the thermodynamic values of isentropic change of state for water in the two-phase region starting from the saturation line down to 0.01 at. The variables have been computed in the pressure range from 5-100 at. in equal pressure intervals of 5 at. and in the range from 100-170 at. in intervals of 10 at. Assuming a one-dimensional flow and a known saturation pressure, the dimensions of a discharge nozzle may be determined by interpolation of the calculated values for an isentropic discharge. 4 figs., 29 tabs., 23 refs.
3D Guided Wave Motion Analysis on Laminated Composites
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.
Wave drag as the objective function in transonic fighter wing optimization
Phillips, P. S.
1984-01-01
The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.
Analysis of Measured and Simulated Supraglottal Acoustic Waves.
Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A
2016-09-01
To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests
National Research Council Canada - National Science Library
Scheidler, Mike
2007-01-01
This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
DANWEC - Empirical Analysis of the Wave Climate at the Danish Wave Energy Centre
DEFF Research Database (Denmark)
Tetu, Amelie; Nielsen, Kim; Kofoed, Jens Peter
information on the DanWEC wave and current climate. In this paper an analysis of the wave climate of the DanWEC test site will be presented. This includes a description of the data quality control and filtration for analysis and the observations and data analysis. Relevant characteristics of the test site...... site for several Danish WECs. In 2013 DanWEC has received Greenlab funding from the EUDP programme to establish the site including more detailed information on its wave climate and bathymetry and seabed conditions. The project “Resource Assessment, Forecasts and WECs O&M strategies at DanWEC and beyond......, as for example scatter diagram (Hm0, Tz) will be analysed and wave power distribution given. Based on the data gathered so far a preliminary analysis of extreme events at the DanWEC test site will be presented. Deployment, control strategies and O&M strategies of wave energy converters are sensitive to the wave...
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo
2009-01-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...
Analysis of sediment particle velocity in wave motion based on wave flume experiments
Krupiński, Adam
2012-10-01
The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.
International Nuclear Information System (INIS)
Essers, J.A.
1983-01-01
The protection of nuclear power plants against external explosions of heavy gas clouds is a relevant topic of nuclear safety studies. The ultimate goal of such studies is to provide realistic inputs for the prediction of structure loadings and transient response. To obtain those inputs, relatively complex computer codes have been constructed to describe the propagation in air of strong perturbations due to unconfined gas cloud explosions. A detailed critical analysis of those codes is presented. In particular, the relative errors on wave speed, induced flow velocity, as well as on reflected wave speed and overpressure, respectively due to the use of a simplified non-linear isentropic approximation and of linear acoustic models, are estimated as functions of the overpressure of the incident pulse. The ability of the various models to accurately predict the time and distance required for sharp pressure front formation is discussed. Simple computer codes using implicit finite-difference discretizations are proposed to compare the results obtained with the various models for spherical wave propagation. Those codes are also useful to study the reflection of the waves on an outer spherical flexible wall and to investigate the effect of the elasticity and damping coefficients of the wall on the characteristics of the reflected pressure pulse
Barrelet zeros in partial wave analysis
International Nuclear Information System (INIS)
Baker, R.D.
1976-01-01
The formalism of Barrelet zeros is discussed. Spinless scattering is described to introduce the idea, then the more usual case of 0 - 1/2 + → 0 - 1/2 + scattering. The zeros are regarded here only as a means to an end, viz the partial waves. The extraction of these is given in detail, and ambiguities are discussed at length. (author)
Geodesics analysis of colliding gravitational shock waves
International Nuclear Information System (INIS)
Pozdeeva, E.
2011-01-01
Full text: (author)We consider collision of charged gravitational shock waves with infinite transverse extension (charged gravitational walls). We study the influence of the charges on the trapped surface formation in the charged walls collision. This consideration has applications in the in heavy ion collisions using a holographic approach in which the charge plays the role of the chemical potential
International Nuclear Information System (INIS)
Essers, J.A.
1987-01-01
A sophisticated computer code for the calculation of plane or spherical pressure waves and their reflection on a simplified rigid or flexible obstacle has been constructed. Different options: choice of explicit or implicit scheme, use of eulerian, isentropic or acoustic flow models, introduction of different artificial viscosities, use of uniform or non-uniform adaptive grids have been made available and validated by simple shock waves computations. The results from different numerical experiments are presented. They have been used to evaluate the values of artificial viscosity coefficients leading to acceptable pressure pulses. In particular, the following important conclusions have been confirmed: - the linear acoustic model leads to important errors except for extremely weak overpressures; - an excellent accuracy can be obtained with the non-linear isentropic model in a wide overpressure range; - as opposed to the eulerian and to the non-linear isentropic models, the acoustic model is completely uncapable of predicting the shock-up phenomenon, and can therefore lead to important errors in the prediction of the pulse shape even for very weak overpressures
Preliminary Analysis of a Submerged Wave Energy Device
Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.
2016-02-01
Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
Energy Technology Data Exchange (ETDEWEB)
Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)
2016-04-18
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.
Analysis of seismic waves and strong ground motion
International Nuclear Information System (INIS)
Simpson, I.C.; Sutton, R.
1976-10-01
A number of Western USA earthquake acceleration-time histories concerning events of magnitude less than 6 are considered and their Fourier spectra calculated. An analysis of some of the simpler types of seismic wave is given in order to consider the generation of a spatially dependent acceleration-time history suitable for input into a soil-structure program of analysis. Such an acceleration-time history is required by a comprehensive analysis of soil-structure interaction since the conventionally assumed model of vertically propagating seismic waves, which give rise to three spatially independent ground motions, can lead to over-conservative estimates of the building response in the high frequency range. The possible application is discussed of a given component of a recorded acceleration-time history to the base of structure under the assumption of surface Rayleigh waves or obliquely incident P and SV bulk waves. (author)
Optimizing detection and analysis of slow waves in sleep EEG.
Mensen, Armand; Riedner, Brady; Tononi, Giulio
2016-12-01
Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.
Dispersive Wave Analysis Using the Chirplet Transform
International Nuclear Information System (INIS)
Kerber, Florian; Luangvilai, Kritsakorn; Kuttig, Helge; Niethammer, Marc; Jacobs, Laurence J.
2007-01-01
Time-frequency representations (TFR) are a widely used tool to analyze signals of guided waves such as Lamb waves. As a consequence of the uncertainty principle, however, the resolution in time and frequency is limited for all existing TFR methods. Due to the multi-modal and dispersive character of Lamb waves, displacement or energy related quantities can only be allocated to individual modes when they are well-separated in the time-frequency plane.The chirplet transform (CT) has been introduced as a generalization of both the wavelet and Short-time Fourier transform (STFT). It offers additional degrees of freedom to adjust time-frequency atoms which can be exploited in a model-based approach to match the group delay of individual modes. Thus, more exact allocation of quantities of interest is possible.The objective of this research is to use a previously developed adaptive algorithm based on the CT for nondestructive evaluation. Both numerically and experimentally generated data for a single aluminum plate is analyzed to determine the accuracy and robustness of the new method in comparison the classical STFT
Energy Technology Data Exchange (ETDEWEB)
Bartels, J; Peters, D [Rostock Univ. (Germany). Inst. fuer Atmosphaerenphysik
1998-12-31
The poleward advection of upper-tropospheric air is investigated for poleward Rossby wave breaking events. During boreal winter months the isentropic deformations of the tropopause are examined using maps of Ertel`s potential vorticity (EPV) and contour advection (CA) calculations. The role of ambient baro-tropic flow is further examined by idealized numerical models. In the vicinity of the tropopause the characteristic Lagrangian transport of air masses for ECMWF-analysis data are compared with high resolution (T106) ECHAM4 experiments. (author) 3 refs.
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Peters, D. [Rostock Univ. (Germany). Inst. fuer Atmosphaerenphysik
1997-12-31
The poleward advection of upper-tropospheric air is investigated for poleward Rossby wave breaking events. During boreal winter months the isentropic deformations of the tropopause are examined using maps of Ertel`s potential vorticity (EPV) and contour advection (CA) calculations. The role of ambient baro-tropic flow is further examined by idealized numerical models. In the vicinity of the tropopause the characteristic Lagrangian transport of air masses for ECMWF-analysis data are compared with high resolution (T106) ECHAM4 experiments. (author) 3 refs.
Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.
2015-11-01
Exces volumes, VE, and excess isentropic compressibilities, κSE, have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.
Analysis of a cylindrical imploding shock wave
International Nuclear Information System (INIS)
Mishkin, E.A.; Fujimoto, Y.
1978-01-01
the self-similar solution of the gasdynamic equations of a strong cylindrical shock wave moving through an ideal gas, with γ = csub(p)/csub(v), is considered. These equations are greatly simplified following the transformation of the reduced velocity U 1 (xi) → U 1 = 1/2(γ + 1 ) (U + xi). The requirement of a single maximum pressure, dsub(xi)P = 0, leads to an analytical determination of the self-similarity exponent α(γ). For gases with γ = 2 + 3sup(1/2), this maximum ensues right at the shock front and the pressure distribution then decreases monotonically. The postulate of analyticity by Gelfand and Butler is shown to concur with the requirement dsub(xi)P 0. The saturated density of the gas left in the wake of the shock is computed and - U is shown to be the reduced velocity of sound at P = P sub(m). (author)
Reliability Analysis of Dynamic Stability in Waves
DEFF Research Database (Denmark)
Søborg, Anders Veldt
2004-01-01
exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......The assessment of a ship's intact stability is traditionally based on a semi-empirical deterministic concept that evaluates the characteristics of ship's calm water restoring leverarm curves. Today the ship is considered safe with respect to dynamic stability if its calm water leverarm curves...... accidents in the past. The rules therefore only leaves little room for evaluation and improvement of safety of a ship's dynamic stability. A few studies have evaluated the probability of ship stability loss in waves using Monte Carlo simulations. However, since this probability may be in the order of 10...
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo
2009-06-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.
Low-lying S-wave and P-wave dibaryons in a nodal structure analysis
International Nuclear Information System (INIS)
Liu Yuxin; Li Jingsheng; Bao Chengguang
2003-01-01
The inherent nodal surface structure analysis approach is proposed for six-quark clusters with u, d, and s quarks. The wave functions of the six-quark clusters are classified, and the contribution of the hidden-color channels are discussed. The quantum numbers and configurations of the wave functions of the low-lying dibaryons are obtained. The states [ΩΩ] (0,0 + ) , [ΩΩ] (0,2 - ) , [Ξ * Ω] (1/2,0 + ) , and [Σ * Σ * ] (0,4 - ) and the hidden-color channel states with the same quantum numbers are proposed to be the candidates of experimentally observable dibaryons
Analysis and optimization of Love wave liquid sensors.
Jakoby, B; Vellekoop, M J
1998-01-01
Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.
Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser
International Nuclear Information System (INIS)
Zhang Pin-Liang; Tang Xiu-Zhang; Li Ye-Jun; Wang Zhao; Tian Bao-Xian; Yin Qian; Lu Ze; Xiang Yi-Huai; Gao Zhi-Xing; Li Jing; Hu Feng-Ming; Gong Zi-Zheng
2015-01-01
The HEAVEN-I laser is used for direct drive quasi-isentropic compression up to ∼18 GPa in samples of aluminum without being temporal pulse shaped. The monotonically increasing loading is with a rise time over 17 ns. The compression history is well reproduced by the 1D radiation hydrodynamics simulation. We find that a small shock precursor where the backward integration method cannot process is formed at the beginning of illumination. We compare the loading process of HEAVEN-I with the typical profile (concave down, prefect pulse shape), the results show that a typical profile can obtain more slowly rising and higher pressure, and the shock precursor has significant effects on temperature and entropy production. However, it is demonstrated that the HEAVEN-I is an excellent optical source for direct laser-driven quasi-isentropic compression, even if it produces more temperature rise and entropy than the typical profile. (paper)
Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.
2018-05-01
A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.
International Nuclear Information System (INIS)
Boaga, J; Vignoli, G; Cassiani, G
2011-01-01
Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the
P-wave and surface wave survey for permafrost analysis in alpine regions
Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.
2012-04-01
In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing
Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS
Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua
2018-02-01
Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.
Characterization of rarefaction waves in van der Waals fluids
Yuen, Albert; Barnard, John J.
2015-12-01
We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.
Grundland, A. M.; Lalague, L.
1996-04-01
This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.
Analysis of Bending Waves in Phononic Crystal Beams with Defects
Directory of Open Access Journals (Sweden)
Yongqiang Guo
2018-01-01
Full Text Available Existing investigations on imperfect phononic crystal beams mainly concern periodic multi-span beams carrying either one or two channel waves with random or deterministic disorder in span-length. This paper studies the two channel bending waves in phononic crystal beams consisting of many phases of materials with defects introduced as one structural segment having different cross-sectional dimensions or material parameters. The method of reverberation-ray matrix (MRRM based on the Timoshenko beam theory, which can conduct high-frequency analysis, is extended for the theoretical analysis of dispersion and transmission of bending waves. The supercell technique and the Floquet–Bloch theorem are adopted for modeling the dispersion characteristics, and the whole finite structural model is used to calculate the transmission spectra. Experimental measurements and numerical calculations are provided to validate the displacement transmission obtained by the proposed MRRM, with the effect of damping on transmission spectra being concerned. The high-frequency calculation applicability of the proposed MRRM is also confirmed by comparing the present results with the corresponding ones either using the transfer matrix method (TMM or MRRM based on Euler—Bernoulli beam theory. The influences of defect size, defect form, and unit-cell number on the transmission spectra and the band structures are discussed. The drawn conclusions may be useful for designing or evaluating the defected phononic crystal beams in bending wave control. In addition, our conclusions are especially potential for identifying the defect location through bending wave signals.
Gravitational wave detection and data analysis for pulsar timing arrays
Haasteren, Rutger van
2011-01-01
Long-term precise timing of Galactic millisecond pulsars holds great promise for measuring long-period (months-to-years) astrophysical gravitational waves. In this work we develop a Bayesian data analysis method for projects called pulsar timing arrays; projects aimed to detect these gravitational
SLAC three-body partial wave analysis system
International Nuclear Information System (INIS)
Aston, D.; Lasinski, T.A.; Sinervo, P.K.
1985-10-01
We present a heuristic description of the SLAC-LBL three-meson partial wave model, and describe how we have implemented it at SLAC. The discussion details the assumptions of the model and the analysis, and emphasizes the methods we have used to prepare and fit the data. 28 refs., 12 figs., 1 tab
Data synthesis and display programs for wave distribution function analysis
Storey, L. R. O.; Yeh, K. J.
1992-01-01
At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.
Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank
Directory of Open Access Journals (Sweden)
Adria Moreno Miquel
2018-06-01
Full Text Available In this paper, the performance of different wave generation and absorption methods in computational fluid dynamics (CFD-based numerical wave tanks (NWTs is analyzed. The open-source CFD code REEF3D is used, which solves the Reynolds-averaged Navier–Stokes (RANS equations to simulate two-phase flow problems. The water surface is computed with the level set method (LSM, and turbulence is modeled with the k-ω model. The NWT includes different methods to generate and absorb waves: the relaxation method, the Dirichlet-type method and active wave absorption. A sensitivity analysis has been conducted in order to quantify and compare the differences in terms of absorption quality between these methods. A reflection analysis based on an arbitrary number of wave gauges has been adopted to conduct the study. Tests include reflection analysis of linear, second- and fifth-order Stokes waves, solitary waves, cnoidal waves and irregular waves generated in an NWT. Wave breaking over a sloping bed and wave forces on a vertical cylinder are calculated, and the influence of the reflections on the wave breaking location and the wave forces on the cylinder is investigated. In addition, a comparison with another open-source CFD code, OpenFOAM, has been carried out based on published results. Some differences in the calculated quantities depending on the wave generation and absorption method have been observed. The active wave absorption method is seen to be more efficient for long waves, whereas the relaxation method performs better for shorter waves. The relaxation method-based numerical beach generally results in lower reflected waves in the wave tank for most of the cases simulated in this study. The comparably better performance of the relaxation method comes at the cost of larger computational requirements due to the relaxation zones that have to be included in the domain. The reflections in the NWT in REEF3D are generally lower than the published results for
Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis
Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu
2014-01-01
Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.
A phase-plane analysis of localized frictional waves
Putelat, T.; Dawes, J. H. P.; Champneys, A. R.
2017-07-01
Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.
The next wave in metabolome analysis
DEFF Research Database (Denmark)
Nielsen, Jens; Oliver, S.
2005-01-01
The metabolome of a cell represents the amplification and integration of signals from other functional genomic levels, such as the transcriptome and the proteome. Although this makes metabolomics a useful tool for the high-throughput analysis of phenotypes, the lack of a direct connection...... to the genome makes it difficult to interpret metabolomic data. Nevertheless, functional genomics has produced examples of the use of metabolomics to elucidate the phenotypes of otherwise silent mutations. Despite several successes, we believe that future metabolomic studies must focus on the accurate...... measurement of the concentrations of unambiguously identified metabolites. The research community must develop databases of metabolite concentrations in cells that are grown in several well-defined conditions if metabolomic data are to be integrated meaningfully with data from the other levels of functional...
Data analysis algorithms for gravitational-wave experiments
International Nuclear Information System (INIS)
Bonifazi, P.; Ferrari, V.; Frasca, S.; Pallottino, G.V.; Pizzella, G.
1978-01-01
The analysis of the sensitivity of a gravitational-wave antenna system shows that the role of the algorithms used for the analysis of the experimental data is comparable to that of the experimental apparatus. After a discussion of the processing performed on the input signals by the antenna and the electronic instrumentation, we derive a mathematical model of the system. This model is then used as a basis for the discussion of a number of data analysis algorithms that include also the Wiener-Kolmogoroff optimum filter; the performances of the algorithms are presented in terms of signal-to-noise ratio and sensitivity to short bursts of resonant gravitational waves. The theoretical results are in good agreement with the experimental results obtained with a small cryogenic antenna (24 kg)
Wind energy: an application of Bernoulli's theorem generalized to isentropic flow of ideal gases
International Nuclear Information System (INIS)
De Luca, R; Desideri, P
2013-01-01
By considering the extension of Bernoulli's theorem to the case of the isentropic flow of ideal gases we conceive a small-scale wind–energy system able to work in the presence of low wind velocities in any direction. The flow of air inside a hyperbolically shaped pipe is studied using elementary physics concepts. The results obtained show that wind velocity in the system increases for decreasing cross-sectional areas, allowing a lower cut-in wind speed and an increase in the annual energy production of the device. (paper)
Simulation and Analysis of Converging Shock Wave Test Problems
Energy Technology Data Exchange (ETDEWEB)
Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-06-21
Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.
Risk analysis of breakwater caisson under wave attack using load surface approximation
Kim, Dong Hyawn
2014-12-01
A new load surface based approach to the reliability analysis of caisson-type breakwater is proposed. Uncertainties of the horizontal and vertical wave loads acting on breakwater are considered by using the so-called load surfaces, which can be estimated as functions of wave height, water level, and so on. Then, the first-order reliability method (FORM) can be applied to determine the probability of failure under the wave action. In this way, the reliability analysis of breakwaters with uncertainties both in wave height and in water level is possible. Moreover, the uncertainty in wave breaking can be taken into account by considering a random variable for wave height ratio which relates the significant wave height to the maximum wave height. The proposed approach is applied numerically to the reliability analysis of caisson breakwater under wave attack that may undergo partial or full wave breaking.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
International Nuclear Information System (INIS)
Moreno, Nicolás; Buchner, Richard; Vargas, Edgar F.
2015-01-01
Highlights: • Structural effects of the cations on surrounding water molecules are discussed. • Alkyl-chain geometry determines the hydration of Bu 4 N + isomers. • The “compactness” in the hydration shells varies significantly among the isomers. - Abstract: Values of apparent molar volume and isentropic compressibility of symmetric and asymmetric isomers of tetrabutylammonium bromide, namely tetra-n-butylammonium bromide, tetra-iso-butylammonium bromide, tetra-sec-butylammonium bromide, di-n-butyl-di-iso-butylammonium bromide and di-n-butyl-di-sec-butylammonium bromide, in aqueous solution were determined from density and speed of sound measurements. These properties were obtained as a function of molal concentration within the range of 0.01 < m/mol · kg −1 < 0.1 covering temperatures from 278.15 ⩽ T/K ⩽ 293.15. The partial molar volumes and the apparent isentropic molar compressibility at infinite dilution were calculated and their dependence on temperature examined. The results show that cations with sec-butyl chains have larger structural volumes compared to those with iso-butyl chains. In addition, cations with sec-butyl chains induce smaller structural changes in their hydration shell than the others
Modeling the Isentropic Head Value of Centrifugal Gas Compressor using Genetic Programming
Directory of Open Access Journals (Sweden)
Safiyullah Ferozkhan
2016-01-01
Full Text Available Gas compressor performance is vital in oil and gas industry because of the equipment criticality which requires continuous operations. Plant operators often face difficulties in predicting appropriate time for maintenance and would usually rely on time based predictive maintenance intervals as recommended by original equipment manufacturer (OEM. The objective of this work is to develop the computational model to find the isentropic head value using genetic programming. The isentropic head value is calculated from the OEM performance chart. Inlet mass flow rate and speed of the compressor are taken as the input value. The obtained results from the GP computational models show good agreement with experimental and target data with the average prediction error of 1.318%. The genetic programming computational model will assist machinery engineers to quantify performance deterioration of gas compressor and the results from this study will be then utilized to estimate future maintenance requirements based on the historical data. In general, this genetic programming modelling provides a powerful solution for gas compressor operators to realize predictive maintenance approach in their operations.
Quantitative subsurface analysis using frequency modulated thermal wave imaging
Subhani, S. K.; Suresh, B.; Ghali, V. S.
2018-01-01
Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.
An Analysis of Fundamental Mode Surface Wave Amplitude Measurements
Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.
2014-12-01
Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.
Global analysis of ICRF wave coupling on Tore Supra
International Nuclear Information System (INIS)
Goniche, M.; Bremond, S.; Colas, L.
2003-01-01
The Tore Supra tokamak is equipped with a multi-megawatt ion cyclotron range of frequency (ICRF) system for heating and current drive. The coupling of the fast wave to the plasma, characterized by the distributed coupling resistance along the radiating straps, is a crucial issue in order to launch large RF powers. Many factors can have an effect on ICRF wave coupling. Quantitative prediction from theoretical modelling requires the knowledge of the local inhomogeneous plasma density profile in front of the antenna for running sophisticated antenna codes. In this work, we have rather followed a 'global' approach, based on Tore Supra experimental results, for the parametric study of the coupling resistance. From a large data base covering seven experimental campaigns (∼2250 shots), a scaling law of the coupling resistance including the main parameters of the plasma and of the antenna configuration is established. This approach is found to be reliable for the analysis of coupling in the different scenarios: He/D 2 gas filling, gas/pellets for plasma fuelling, plasma leaning on inner wall/low field side limiter, limiter/ergodic divertor configuration, minority heating/direct electron heating. From one scenario to another, a significant variation of the coefficients of the scaling law is found. The study of these variations allows to get some insight on the main physical mechanisms which influence the ICRF wave coupling in a tokamak operation, such as the wall conditioning and recycling conditions, RF sheaths or frequency. (author)
Multi-channel Analysis of Passive Surface Waves (MAPS)
Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.
2017-12-01
Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be
Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics
International Nuclear Information System (INIS)
Kim, Min Soo; Sohn, Jeong Hyun; Kim, Jung Hee; Sung, Yong Jun
2016-01-01
The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system
Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics
Energy Technology Data Exchange (ETDEWEB)
Kim, Min Soo; Sohn, Jeong Hyun [Pukyong National Univ., Busan (Korea, Republic of); Kim, Jung Hee; Sung, Yong Jun [INGINE Inc., Seoul (Korea, Republic of)
2016-06-15
The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system.
Microwave and X-Ray emission during a isentropic expansion and its application to solar bursts
International Nuclear Information System (INIS)
Piazza, L.R.
1983-01-01
The gyro-synchrotron emission in microwaves and the free-free emission in X-rays of a plasma enclosed in a cylinder coincident with a magnetic force tube were calculated for an isentropic self-similar expansion, with plane and cylindrical symmetries. This expansion model was applied to a region of the low solar corona, and the results were compared to the emission observed in some simple solar events of low intensity. The calculations show satisfactory coincidence with the events in X-rays for energies around 10 29 ergs. The solar events analyzed in microwaves, which are not the same that were studied in X-rays, in general do not fit the theoretical results. The origin of the discrepancy is probably the formulation of the processes of emission applied to the expansion. (Author) [pt
Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system
Liu, Cunming; Peng, Yue-Jun
2017-06-01
We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.
Use of the MULTINEST algorithm for gravitational wave data analysis
International Nuclear Information System (INIS)
Feroz, Farhan; Hobson, Michael P; Gair, Jonathan R; Porter, Edward K
2009-01-01
We describe an application of the MULTINEST algorithm to gravitational wave data analysis. MULTINEST is a multimodal nested sampling algorithm designed to efficiently evaluate the Bayesian evidence and return posterior probability densities for likelihood surfaces containing multiple secondary modes. The algorithm employs a set of 'live' points which are updated by partitioning the set into multiple overlapping ellipsoids and sampling uniformly from within them. This set of 'live' points climbs up the likelihood surface through nested iso-likelihood contours and the evidence and posterior distributions can be recovered from the point set evolution. The algorithm is model independent in the sense that the specific problem being tackled enters only through the likelihood computation, and does not change how the 'live' point set is updated. In this paper, we consider the use of the algorithm for gravitational wave data analysis by searching a simulated LISA data set containing two non-spinning supermassive black hole binary signals. The algorithm is able to rapidly identify all the modes of the solution and recover the true parameters of the sources to high precision.
Use of the MULTINEST algorithm for gravitational wave data analysis
Energy Technology Data Exchange (ETDEWEB)
Feroz, Farhan; Hobson, Michael P [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Gair, Jonathan R [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Porter, Edward K [APC, UMR 7164, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France)
2009-11-07
We describe an application of the MULTINEST algorithm to gravitational wave data analysis. MULTINEST is a multimodal nested sampling algorithm designed to efficiently evaluate the Bayesian evidence and return posterior probability densities for likelihood surfaces containing multiple secondary modes. The algorithm employs a set of 'live' points which are updated by partitioning the set into multiple overlapping ellipsoids and sampling uniformly from within them. This set of 'live' points climbs up the likelihood surface through nested iso-likelihood contours and the evidence and posterior distributions can be recovered from the point set evolution. The algorithm is model independent in the sense that the specific problem being tackled enters only through the likelihood computation, and does not change how the 'live' point set is updated. In this paper, we consider the use of the algorithm for gravitational wave data analysis by searching a simulated LISA data set containing two non-spinning supermassive black hole binary signals. The algorithm is able to rapidly identify all the modes of the solution and recover the true parameters of the sources to high precision.
Experimental analysis of shock wave effects in copper
International Nuclear Information System (INIS)
Llorca, Fabrice; Buy, Francois; Farre, Jose
2002-01-01
This paper proposes the analysis of shock wave effects for a high purity copper. The method developed is based on the analysis of the mechanical behavior of as received and shocked materials. Shock effect is generated through plates impact tests performed in the range 9 GPa to 12 GPa on a single stage light gas gun. Therefore, as-received and impacted materials are characterized on quasi static and Split Hopkinson apparatus. The difference between measured stresses between as received and shocked materials allows to understand shock effects in the low pressure range of study. A specific modeling approach is engaged in order to give indications about the evolution of the microstructure of the materials
Quasi-static analysis of wave loadings on spine-based wave energy devices
Energy Technology Data Exchange (ETDEWEB)
Lockett, F.P.; Peatfield, A.M.; West, M.J.
1980-02-01
A report is given on the Wave Energy Research Programme at Lanchester Polytechnic. Results are presented for both theoretical and experimental scale models for wave loadings on circular and rectangular spines of various lengths. The results are in good agreement over the operational wave range for the 1/50 scale model and for the more limited data on the 1/10 scale model.
Analysis of waves in the plasma guided by a periodical vane-type slow wave structure
International Nuclear Information System (INIS)
Wu, T.J.; Kou, C.S.
2005-01-01
In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented
Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.
Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S
2015-05-15
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.
Dispersion analysis for waves propagated in fractured media
Energy Technology Data Exchange (ETDEWEB)
Lesniak, A; Niitsuma, H [Tohoku University, Sendai (Japan). Faculty of Engineering
1996-05-01
Dispersion of velocity is defined as a variation of the phase velocity with frequency. This paper describes the dispersion analysis of compressional body waves propagated in the heterogeneous fractured media. The new method proposed and discussed here permitted the evaluation of the variation in P wave arrival with frequency. For this processing method, any information about the attenuation of the medium are not required, and only an assumption of weak heterogeneity is important. It was shown that different mechanisms of dispersion can be distinguished and its value can be quantitatively estimated. Although the frequency used in this study was lower than those in most previous experiments reported in literature, the evaluated dispersion was large. It was suggested that such a large dispersion may be caused by the velocity structure of the media studied and by frequency dependent processes in a highly fractured zone. It was demonstrated that the present method can be used in the evaluation of subsurface fracture systems or characterization of any kind of heterogeneities. 10 refs., 6 figs.
Constraint likelihood analysis for a network of gravitational wave detectors
International Nuclear Information System (INIS)
Klimenko, S.; Rakhmanov, M.; Mitselmakher, G.; Mohanty, S.
2005-01-01
We propose a coherent method for detection and reconstruction of gravitational wave signals with a network of interferometric detectors. The method is derived by using the likelihood ratio functional for unknown signal waveforms. In the likelihood analysis, the global maximum of the likelihood ratio over the space of waveforms is used as the detection statistic. We identify a problem with this approach. In the case of an aligned pair of detectors, the detection statistic depends on the cross correlation between the detectors as expected, but this dependence disappears even for infinitesimally small misalignments. We solve the problem by applying constraints on the likelihood functional and obtain a new class of statistics. The resulting method can be applied to data from a network consisting of any number of detectors with arbitrary detector orientations. The method allows us reconstruction of the source coordinates and the waveforms of two polarization components of a gravitational wave. We study the performance of the method with numerical simulations and find the reconstruction of the source coordinates to be more accurate than in the standard likelihood method
IMPLODING IGNITION WAVES. I. ONE-DIMENSIONAL ANALYSIS
International Nuclear Information System (INIS)
Kushnir, Doron; Waxman, Eli; Livne, Eli
2012-01-01
We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R crit . An approximate analytic expression for R crit is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R crit ∼ 100 μm (spherical) and R crit ∼ 1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub- (but near) sonic velocities on scales >>R crit . Our suggested mechanism differs from that proposed by Zel'dovich et al., in which a fine-tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and reaction laws. An order of magnitude estimate of R crit within a white dwarf at the pre-detonation conditions believed to lead to Type Ia supernova explosions is 0.1 km, suggesting that our proposed mechanism may be relevant for DDT initiation in these systems. The relevance of our proposed ignition mechanism to DDT initiation may be tested by both experiments and numerical simulations.
Lagrangian analysis of nonlinear wave-wave interactions in bounded plasmas
International Nuclear Information System (INIS)
Carr, A.R.
1979-01-01
In a weakly turbulent nonlinear wave-supporting medium, one of the important nonlinear processes which may occur is resonant three-wave interaction. Whitham's averaged Lagrangian method provides a general formulation of wave evolution laws which is easily adapted to nonlinear dispersive media. In this thesis, the strength of nonlinear interactions between three coherent, axisymmetric, low frequency, magnetohydrodynamic (Alfven) waves propagating in resonance along a cold cylindrical magnetized plasma column is calculated. Both a uniform and a parabolic density distribution have been considered. To account for a non-zero plasma temperature, pressure effects have been included. Distinctive features of the work are the use of cylindrical geometry, the presence of a finite rather than an infinite axial magnetic field, the treatment of a parabolic density distribution, and the inclusion of both ion and electron contributions in all expressions. Two astrophysical applications of the presented theory have been considered. In the first, the possibility of resonant three-wave coupling between geomagnetic micropulsations, which propagate as Alfven or magnetosonic waves along the Earth's magnetic field lines, has been investigated. The second case is the theory of energy transport through the solar chromosphere by upward propagating magnetohydrodynamic waves, which may then couple to heavily damped waves in the corona, causing the observed excess heating in that region
Including the influence of waves in the overall slope stability analysis of rubble mound breakwaters
Mollaert, J.; Tavallali, A.
2016-01-01
An offshore breakwater is designed for the construction of a LNG-terminal. For the slope stability analysis of the rubble mound breakwater the existing and the extreme wave climate are considered. Pore water pressure variations exist in the breakwater and its permeable foundation. A wave trough combined with the moment of maximum wave run-up results in a decrease and increase of the pore water pressure, respectively. Therefore, the wave actions have on overall effect on the slope stability of...
Analysis of multidimensional measurements of electromagnetic waves in the Earth's magnetosphere
Pechal, Radim
2011-01-01
Title: Analysis of multidimensional measurements of electromagnetic waves in the Earth's magnetosphere Author: Radim Pechal Department: Department of Surface and Plasma Science Supervisor: doc. RNDr. Lubomír Přech, Dr. Supervisor's e-mail address: Abstract: The thesis introduces into basic knowledge of waves in plasma, especially waves in the Earth's magnetosphere. There are mentioned some space projects focused on chorus waves. The second part of this thesis is a la...
Analysis of wave directional spreading using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Deo, M.C.; Gondane, D.S.; SanilKumar, V.
describes how a representative spreading parameter could be arrived at from easily available wave parameters such as significant wave height and average zero-cross wave period, using the technique of neural networks. It is shown that training of the network...
Eigenmode analysis of compressional waves in the magnetosphere
International Nuclear Information System (INIS)
Cheng, C.Z.; Lin, C.S.
1987-04-01
A field-aligned eigenode analysis of compressional Alfven instabilities has been performed for a two component anisotropic plasma in a dipole magnetic field. The eigenmode equations are derived from the gyrokinetic equations in the long wavelength (k rho < 1) and low frequency (ω < ω/sub b/) limits, where rho is the hot particle gyroradius and ω/sub b/ is the hot particle bounce frequency. Two types of compressional instabilities are identified. One is the drift mirror mode which has an odd parity compressional magnetic component with respect to the magnetic equator. The other is the drift compressional mode with an even parity compressional magnetic component. For typical storm time plasma parameters neargeosynchronous orbit, the drift mirror mode is most unstable and the drift compressional mode is stable. The storm time compressional Pc 5 waves, observed by multiple satellites during November 14-15, 1979 [Takahashi et al., 1987], can be explained by the drift mirror instability
Poles of the Zagreb analysis partial-wave T matrices
Batinić, M.; Ceci, S.; Švarc, A.; Zauner, B.
2010-09-01
The Zagreb analysis partial-wave T matrices included in the Review of Particle Physics [by the Particle Data Group (PDG)] contain Breit-Wigner parameters only. As the advantages of pole over Breit-Wigner parameters in quantifying scattering matrix resonant states are becoming indisputable, we supplement the original solution with the pole parameters. Because of an already reported numeric error in the S11 analytic continuation [Batinić , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.57.1004 57, 1004(E) (1997); arXiv:nucl-th/9703023], we declare the old BATINIC 95 solution, presently included by the PDG, invalid. Instead, we offer two new solutions: (A) corrected BATINIC 95 and (B) a new solution with an improved S11 πN elastic input. We endorse solution (B).
Thermal analysis of gyrotron traveling-wave tube collector
International Nuclear Information System (INIS)
Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong
2013-01-01
In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)
Wave Analysis for West Coast of South Myanmar
Directory of Open Access Journals (Sweden)
Xu Yanan
2015-01-01
Full Text Available The characteristic of southern parts of Myanmar is tropical monsoon climate, and this area is affected by few typhoons. The wave height is changed with season, the field measured data shows that the aver-age monthly maximum wave height is in June. The wave height, swelling from Indian Ocean and spreading to research area, is small. The research adopts SWAN model to simulate the waves that are transformed from off-shore to nearshore Myanmar based on the meteorological data from ECMWF. The simulated results were com-pared with satellite data and field measured data, it showed that the trend between the curves is unified, and the extreme value of simulation is close to the measured value. The simulation presents wave distribution around Myanmar southern sea, it shows that the wave height and wave directions are affected by terrain refraction and island trains shielding. When the wave is from WSW direction, the wave will be decreased fast caused by island shielding, and the direction turns to W direction at northern coastline. When the wave comes from SSW direction, the island shielding will be weak, the wave will be decreased slowly, and the direction will turn to SW direction at southern coastline.
Analysis of Technical Feasibility of Traveling Wave Reactor
International Nuclear Information System (INIS)
Kim, Sang Ji; Yoo, Jae Woon; Bae, In Ho
2011-01-01
The status and trend of TWR, patent status and its major technical characteristics were examined in this study. Main technical features of traveling wave reactor can be characterized as a reactor operation without refueling up to the reactor life more than 60 years and TWR utilizes depleted uranium which would be produced from the enrichment process as a byproduct. Enriched fuel is only loaded to an igniter which is required for initiation of burning wave. In this study, quantitative analysis of TWR arising from the technical features was carried out in terms of resource utilization, safety and integrity, and proliferation resistance. In parallel with the concept review of TerraPower SWR design concepts, independent analysis of SWR design by altering a design specification and operation strategy was done in this study. The fuel rod design of SWR was also investigated based on the current database of fuel irradiation and performance. The technical issues of TWR or SWR which should be prior to detailed research and development can be summarized as follows: ·Strong physical protection is required during the shuffling or in-service inspection period to improve the proliferation resistance. ·New flow control logic or device is required for distributing the assembly-wise flow to be corresponded with power swing of fuel assembly. ·High integrity cladding material need to be developed for covering the high fast neutron fluence more than three times of current limit which result from the high burnup and long fuel cycle. The metal fuel under the high burnup condition should be validated through the irradiation test
DISPELLING ILLUSIONS OF REFLECTION: A NEW ANALYSIS OF THE 2007 MAY 19 CORONAL 'WAVE' EVENT
International Nuclear Information System (INIS)
Attrill, Gemma D. R.
2010-01-01
A new analysis of the 2007 May 19 coronal wave-coronal mass ejection-dimmings event is offered employing base difference extreme-ultraviolet (EUV) images. Previous work analyzing the coronal wave associated with this event concluded strongly in favor of purely an MHD wave interpretation for the expanding bright front. This conclusion was based to a significant extent on the identification of multiple reflections of the coronal wave front. The analysis presented here shows that the previously identified 'reflections' are actually optical illusions and result from a misinterpretation of the running difference EUV data. The results of this new multiwavelength analysis indicate that two coronal wave fronts actually developed during the eruption. This new analysis has implications for our understanding of diffuse coronal waves and questions the validity of the analysis and conclusions reached in previous studies.
Theory of magnetohydrodynamic waves: The WKB approximation revisited
International Nuclear Information System (INIS)
Barnes, A.
1992-01-01
Past treatments of the eikonal or WKB theory of the propagation of magnetohydrodynamics waves have assumed a strictly isentropic background. IF in fact there is a gradient in the background entropy, then in second order in the WKB ordering, adiabatic fluctuations (in the Lagrangian sense) are not strictly isentropic in the Eulerian sense. This means that in the second order of the WKB expansion, which determines the variation of wave amplitude along rays, the violation of isentropy must be accounted for. The present paper revisits the derivation of the WKB approximation for small-amplitude magnetohydrodynamic waves, allowing for possible spatial variation of the background entropy. The equation of variation of wave amplitude is rederived; it is a bilinear equation which, it turns out, can be recast in the action conservation form. It is shown that this action conservation equation is in fact equivalent to the action conservation law obtained from Lagrangian treatments
Structural Loads Analysis for Wave Energy Converters: Preprint
Energy Technology Data Exchange (ETDEWEB)
van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-09
This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluid dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process. The objective of this study is to verify the generalized body-modes approach in comparison to high-fidelity FSI simulations to accurately predict structural deflections and stress loads in a WEC. Two verification cases are considered, a free-floating barge and a fixed-bottom column. Details for both the generalized body-modes models and FSI models are first provided. Results for each of the models are then compared and discussed. Finally, based on the verification results obtained, future plans for incorporating the generalized body-modes method into the WEC simulation tool, WEC-Sim, and the overall WEC design process are discussed.
A wave parameters and directional spectrum analysis for extreme winds
Montoya Ramírez, Rubén Darío; Osorio Arias, Andres Fernando; Ortiz Royero, Juan Carlos; Ocampo-Torres, Francisco Javier
2013-01-01
In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefﬁcient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical compar...
Analysis of supercritical vapor explosions using thermal detonation wave theory
Energy Technology Data Exchange (ETDEWEB)
Shamoun, B.I.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)
1995-09-01
The interaction of certain materials such as Al{sub 2}O{sub 3} with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady state analysis of supercritical detonation in one-dimensional multiphase flow was applied to analyze experimental data of the KROTOS (26-30) set of experiments conducted at the Joint Research Center at Ispra, Italy. In this work we have applied a new method of solution which allows for partial fragmentation of the fuel in the shock adiabatic thermodynamic model. This method uses known experiment values of the shock pressure and propagation velocity to estimate the initial mixing conditions of the experiment. The fuel and coolant were both considered compressible in this analysis. In KROTOS 26, 28, 29, and 30 the measured values of the shock pressure by the experiment were found to be higher than 25, 50, 100, and 100 Mpa respectively. Using the above data for the wave velocity and our best estimate for the values of the pressure, the predicted minimum values of the fragmented mass of the fuel were found to be 0.026. 0.04, 0.057, and 0.068 kg respectively. The predicted values of the work output corresponding to the above fragmented masses of the fuel were found to be 40, 84, 126, and 150 kJ respectively, with predicted initial void fractions of 112%, 12.5%, 8%, and 6% respectively.
Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.
Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R
2012-08-07
Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.
The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release
Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.
2017-06-01
The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Isentropic Gas Flow for the Compressible Euler Equation in a Nozzle
Tsuge, Naoki
2013-08-01
We study the motion of isentropic gas in a nozzle. Nozzles are used to increase the thrust of engines or to accelerate a flow from subsonic to supersonic. Nozzles are essential parts for jet engines, rocket engines and supersonicwind tunnels. In the present paper, we consider unsteady flow, which is governed by the compressible Euler equation, and prove the existence of global solutions for the Cauchy problem. For this problem, the existence theorem has already been obtained for initial data away from the sonic state, (Liu in Commun Math Phys 68:141-172, 1979). Here, we are interested in the transonic flow, which is essential for engineering and physics. Although the transonic flow has recently been studied (Tsuge in J Math Kyoto Univ 46:457-524, 2006; Lu in Nonlinear Anal Real World Appl 12:2802-2810, 2011), these papers assume monotonicity of the cross section area. Here, we consider the transonic flow in a nozzle with a general cross section area. When we prove global existence, the most difficult point is obtaining a bounded estimate for approximate solutions. To overcome this, we employ a new invariant region that depends on the space variable. Moreover, we introduce a modified Godunov scheme. The corresponding approximate solutions consist of piecewise steady-state solutions of an auxiliary equation, which yield a desired bounded estimate. In order to prove their convergence, we use the compensated compactness framework.
Knudsen, P.; Ganni, V.
2017-12-01
Concurrent pressure drop and cooling of a super-critical or sub-cooled liquid stream can have the same effect as adiabatic expansion even though there is no work extraction. A practical implementation is as straight forward as counter-flow heat exchange with a colder fluid. The concurrent pressure drop need not be continuous with respect to the heat exchange, but may occur in a step-wise manner, in between heat exchange. Two aspects of this effect of pressure drop with heat transfer are examined; a thermodynamic and a practical process equivalent isentropic expansion efficiency. This real fluid phenomenon is useful to understand in applications where work extraction is either not practical or has not been developed. A super-critical helium supply, often around 3 bar and 4.5 K, being ultimately used as a superfluid (usually around 1.8 to 2.1 K) to cool a Niobium superconducting radio frequency cavity or a superconducting magnet is one such particular application. This paper examines the thermodynamic nature of this phenomenon.
Wave Analysis Study for the Punta Catalina Jetty, Dominican Republic
DEFF Research Database (Denmark)
Røge, Mads Sønderstrup; Andersen, Thomas Lykke; Burcharth, Hans Falk
This report deals with a two-dimensional test study to identify the largest significant wave height, the maximum wave height and the largest crest level along the Punta Catalina jetty in the Dominican Republic. The scale used for the model tests was 1:50. Unless otherwise specified all values given...
Analysis of wave equation in electromagnetic field by Proca equation
International Nuclear Information System (INIS)
Pamungkas, Oky Rio; Soeparmi; Cari
2017-01-01
This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)
Wave analysis at frictional interface: A case wise study
Srivastava, Akanksha; Chattopadhyay, Amares; Singh, Pooja; Singh, Abhishek Kumar
2018-03-01
The present article deals with the propagation of a Stoneley wave and with the reflection as well as refraction of an incident P -wave at the frictional bonded interface between an initially stressed isotropic viscoelastic semi-infinite superstratum and an initially stressed isotropic substratum as case I and case II, respectively. The complex form of the velocity equation has been derived in closed form for the propagation of a Stoneley wave in the said structure. The real and imaginary parts of the complex form of the velocity equation correspond to the phase velocity and damped velocity of the Stoneley wave. Phase and damped velocity have been analysed against the angular frequency. The expressions of the amplitude ratios of the reflected and refracted waves are deduced analytically. The variation of the amplitude ratios is examined against the angle of incidence of the P -wave. The influence of frictional boundary parameters, initial stress, viscoelastic parameters on the phase and damped velocities of the Stoneley wave and the amplitude ratios of the reflected as well as refracted P - and SV -wave have been revealed graphically through numerical results.
Multi-component joint analysis of surface waves
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Moura, R.M.M.; Moustafa, S.S.R.
2015-01-01
Roč. 119, AUG (2015), s. 128-138 ISSN 0926-9851 Institutional support: RVO:67985891 Keywords : surface waves * surface wave dispersion * seismic data acquisition * seismic data inversion * velocity spectrum Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.355, year: 2015
Bifurcation analysis and the travelling wave solutions of the Klein
Indian Academy of Sciences (India)
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl. 56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by ...
Physiology and analysis of the electrocardiographic T wave in mice
DEFF Research Database (Denmark)
Speerschneider, T; Thomsen, Morten Bækgaard
2013-01-01
The murine electrocardiogram (ECG) is a valuable tool in cardiac research, although the definition of the T wave has been a matter of debate for several years potentially leading to incomparable data. By this study, we seek to make a clear definition of the murine T wave. Moreover, we investigate...... the consequences of performing QT interval correction in anaesthetized mice....
Analysis and design of efficient planar leaky-wave antennas
Ettore, M.
2008-01-01
This thesis deals with the effective design of planar leaky-wave antennas. The work describes a methodology based on the polar expansion of Green's function representations to address very different geometrical configurations which might appear to have little in common. In fact leaky waves with
Modal analysis of wave propagation in dispersive media
Abdelrahman, M. Ismail; Gralak, B.
2018-01-01
Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914), 10.1002/andp.19143491002] by the presence of branches in the integral expression of the wave function. In this article a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
Transient space-time surface waves characterization using Gabor analysis
Energy Technology Data Exchange (ETDEWEB)
Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2009-11-01
Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.
Hayashi, Shuji; Yamada, Hirotsugu; Bando, Mika; Saijo, Yoshihito; Nishio, Susumu; Hirata, Yukina; Klein, Allan L; Sata, Masataka
2015-08-01
Left atrial (LA) strain analysis using speckle tracking echocardiography is useful for assessing LA function. However, there is no established procedure for this method. Most investigators have determined the electrocardiographic R-wave peak as the starting point for LA strain analysis. To test our hypothesis that P-wave onset should be used as the starting point, we measured LA strain using 2 different starting points and compared the strain values with the corresponding LA volume indices obtained by three-dimensional (3D) echocardiography. We enrolled 78 subjects (61 ± 17 years, 25 males) with and without various cardiac diseases in this study and assessed global longitudinal LA strain by two-dimensional speckle tracking strain echocardiography using EchoPac software. We used either R-wave peak or P-wave onset as the starting point for determining LA strains during the reservoir (Rres, Pres), conduit (Rcon, Pcon), and booster pump (Rpump, Ppump) phases. We determined the maximum, minimum, and preatrial contraction LA volumes, and calculated the LA total, passive, and active emptying fractions using 3D echocardiography. The correlation between Pres and LA total emptying fraction was better than the correlation between Rres and LA total emptying fraction (r = 0.458 vs. 0.308, P = 0.026). Pcon and Ppump exhibited better correlation with the corresponding 3D echocardiographic parameters than Rcon (r = 0.560 vs. 0.479, P = 0.133) and Rpump (r = 0.577 vs. 0.345, P = 0.003), respectively. LA strain in any phase should be analyzed using P-wave onset as the starting point rather than R-wave peak. © 2014, Wiley Periodicals, Inc.
Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline
Directory of Open Access Journals (Sweden)
Qaisar Hayat
2014-01-01
Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.
Diffusing wave spectroscopy applied to material analysis and process control
International Nuclear Information System (INIS)
Lloyd, Christopher James
1997-01-01
Diffusing Wave Spectroscopy (DWS) was studied as a method of laboratory analysis of sub-micron particles, and developed as a prospective in-line, industrial, process control sensor, capable of near real-time feedback. No sample pre-treatment was required and measurement was via a non-invasive, flexible, dip in probe. DWS relies on the concept of the diffusive migration of light, as opposed to the ballistic scatter model used in conventional dynamic light scattering. The specific requirements of the optoelectronic hardware, data analysis methods and light scattering model were studied experimentally and, where practical, theoretically resulting in a novel technique of analysis of particle suspensions and emulsions of volume fractions between 0.01 and 0.4. Operation at high concentrations made the technique oblivious to dust and contamination. A pure homodyne (autodyne) experimental arrangement described was resilient to environmental disturbances, unlike many other systems which utilise optical fibres or heterodyne operation. Pilot and subsequent prototype development led to a highly accurate method of size ranking, suitable for analysis of a wide range of suspensions and emulsions. The technique was shown to operate on real industrial samples with statistical variance as low as 0.3% with minimal software processing. Whilst the application studied was the analysis of TiO 2 suspensions, a diverse range of materials including polystyrene beads, cell pastes and industrial cutting fluid emulsions were tested. Results suggest that, whilst all sizing should be comparative to suitable standards, concentration effects may be minimised and even completely modelled-out in many applications. Adhesion to the optical probe was initially a significant problem but was minimised after the evaluation and use of suitable non stick coating materials. Unexpected behaviour in the correlation in the region of short decay times led to consideration of the effects of rotational diffusion
Analysis of Wave Reflection from Wave Energy Converters Installed as Breakwaters in Harbour
DEFF Research Database (Denmark)
Zanuttigh, B.; Margheritini, Lucia; Gambles, L.
2009-01-01
loads on the structure, i.e. better survivability. Nevertheless these devices must comply with the requirements of harbour protection structures and thus cope with problems due to reflection of incoming waves, i.e. dangerous sea states close to harbors entrances and intensified sediment scour, which can...
On the resolution of ECG acquisition systems for the reliable analysis of the P-wave
International Nuclear Information System (INIS)
Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Triventi, Michele; Bartolini, Pietro; Corazza, Ivan; Boriani, Giuseppe
2012-01-01
The analysis of the P-wave on surface ECG is widely used to assess the risk of atrial arrhythmias. In order to provide reliable results, the automatic analysis of the P-wave must be precise and reliable and must take into account technical aspects, one of those being the resolution of the acquisition system. The aim of this note is to investigate the effects of the amplitude resolution of ECG acquisition systems on the P-wave analysis. Starting from ECG recorded by an acquisition system with a less significant bit (LSB) of 31 nV (24 bit on an input range of 524 mVpp), we reproduced an ECG signal as acquired by systems with lower resolution (16, 15, 14, 13 and 12 bit). We found that, when the LSB is of the order of 128 µV (12 bit), a single P-wave is not recognizable on ECG. However, when averaging is applied, a P-wave template can be extracted, apparently suitable for the P-wave analysis. Results obtained in terms of P-wave duration and morphology revealed that the analysis of ECG at lowest resolutions (from 12 to 14 bit, LSB higher than 30 µV) could lead to misleading results. However, the resolution used nowadays in modern electrocardiographs (15 and 16 bit, LSB <10 µV) is sufficient for the reliable analysis of the P-wave. (note)
STATISTICAL ANALYSIS OF ACOUSTIC WAVE PARAMETERS NEAR SOLAR ACTIVE REGIONS
International Nuclear Information System (INIS)
Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.
2016-01-01
In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.
Numerical analysis of quasiperiodic perturbations for the Alfven wave
International Nuclear Information System (INIS)
Yamakoshi, Y.; Muto, K.; Yoshida, Z.
1994-01-01
The Alfven wave may have a localized eigenfunction when it propagates on a chaotic magnetic field. The Arnold-Beltrami-Childress (ABC) flow is a paradigm of chaotic stream lines and is a simple exact solution to the three-dimensional force-free plasma equilibrium equations. The three-dimensional structure of the magnetic field is represented by sinusoidal quasiperiodic modulation. The short wavelength Alfven wave equation for the ABC-flow magnetic field has a quasiperiodic potential term, which induces interference among ''Bragg-reflected'' waves with irregular phases. Then the eigenfunction decays at long distance and a point spectrum occurs. Two different types of short wavelength modes have numerically analyzed to demonstrate the existence of localized Alfven wave eigenmodes
Wavelet analysis of interfacial waves in cocurrent two-phase flow in horizontal duct
International Nuclear Information System (INIS)
Kondo, Masaya; Kukita, Yutaka
1996-07-01
Wavelet analysis was applied to spatially-growing interfacial waves in a cocurrent gas/liquid two-phase flow. The wave growth plays a key role in the transition from stratified-wavy to slug flow, which is an important phenomena in many engineering applications. Of particular interest to the present study was the quick growth or decay of particular waves which were observed in experiments together with the general growth of waves with distance in the flow direction. Among the several wavelet functions tested in the present study, the Morlet wavelet and the Gabor function were found to have spectral and spatial resolutions suitable to the analysis of interfacial wave data taken by the authors. The analysis revealed that 1) the spectral components composing the interfacial waves are propagating at different phase velocities which agree to the theoretical velocities of deep-water waves, 2) the group velocity of the waves also agrees to the deep-water theory, and 3) the quick growth and decay of particular waves occur as a result of the superposition of spectral components with different phase velocities. (author)
International Nuclear Information System (INIS)
Chou, C-P; Lee, T K; Ho, C-M
2009-01-01
We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.
Study of phase transitions in cerium in shock-wave experiments
Directory of Open Access Journals (Sweden)
Zhernokletov M.V.
2015-01-01
Full Text Available Cerium has a complex phase diagram that is explained by the presence of structure phase transitions. Planar gauges were used in various combinations in experiments for determination of sound velocity dependence on pressure in cerium by the technique of PVDF gauge. The data of time dependence on pressure profiles with use of x(t diagrams and the D(u relation for cerium allowed the definition of the Lagrangian velocity of the unloading wave CLagr and the Eulerian velocity CEul by taking into account the compression σ. These results accords with data obtained by using the technique of VISAR and a manganin-based gauge, and calculated pressure dependence of isentropic sound velocity according to the VNIITF EOS. Metallography analysis of post-experimental samples did not find any changes in a phase composition.
Energy Technology Data Exchange (ETDEWEB)
Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Cuneo, M. E.; Haill, T. A.; Davis, J.-P.; Brown, J. L.; Seagle, C. T. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Spielman, R. B. [Idaho State University, Pocatello, Idaho 83201 (United States)
2016-06-15
The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called “bricks,” that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.–Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel “current-adder” architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L{sub 2} norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.
The computation of pressure waves in shock tubes by a finite difference procedure
International Nuclear Information System (INIS)
Barbaro, M.
1988-09-01
A finite difference solution of one-dimensional unsteady isentropic compressible flow equations is presented. The computer program has been tested by solving some cases of the Riemann shock tube problem. Predictions are in good agreement with those presented by other authors. Some inaccuracies may be attributed to the wave smearing consequent of the finite-difference treatment. (author)
Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong
2017-12-01
The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.
Chang, Shi-Shing; Wu, John H.
1993-09-01
After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.
A comparative analysis of heat waves and associated mortality in St. Louis, Missouri--1980 and 1995.
Smoyer, K E
1998-08-01
This research investigates heat-related mortality during the 1980 and 1995 heat waves in St. Louis, Missouri. St. Louis has a long history of extreme summer weather, and heat-related mortality is a public health concern. Heat waves are defined as days with apparent temperatures exceeding 40.6 degrees C (105 degrees F). The study uses a multivariate analysis to investigate the relationship between mortality and heat wave intensity, duration, and timing within the summer season. The heat wave of 1980 was more severe and had higher associated mortality than that of 1995. To learn if changing population characteristics, in addition to weather conditions, contributed to this difference, changes in population vulnerability between 1980 and 1995 are evaluated under simulated heat wave conditions. The findings show that St. Louis remains at risk of heat wave mortality. In addition, there is evidence that vulnerability has increased despite increased air-conditioning penetration and public health interventions.
Statistical analysis of monochromatic whistler waves near the Moon detected by Kaguya
Directory of Open Access Journals (Sweden)
Y. Tsugawa
2011-05-01
Full Text Available Observations are presented of monochromatic whistler waves near the Moon detected by the Lunar Magnetometer (LMAG on board Kaguya. The waves were observed as narrowband magnetic fluctuations with frequencies close to 1 Hz, and were mostly left-hand polarized in the spacecraft frame. We performed a statistical analysis of the waves to identify the distributions of their intensity and occurrence. The results indicate that the waves were generated by the solar wind interaction with lunar crustal magnetic anomalies. The conditions for observation of the waves strongly depend on the solar zenith angle (SZA, and a high occurrence rate is recognized in the region of SZA between 40° to 90° with remarkable north-south and dawn-dusk asymmetries. We suggest that ion beams reflected by the lunar magnetic anomalies are a possible source of the waves.
Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint
Energy Technology Data Exchange (ETDEWEB)
Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-14
Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designing wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data
Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.
Espindola, Rafael Luz; Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.
Directory of Open Access Journals (Sweden)
Rafael Luz Espindola
Full Text Available This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon different wave energy converters (WEC over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.
Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young
2017-05-01
This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.
Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline
International Nuclear Information System (INIS)
Chen Yong; Huang Yi-Yong; Chen Xiao-Qian; Bai Yu-Zhu; Tan Xiao-Dong
2015-01-01
The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wall is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier–Bessel theory is proposed to semi-analytically solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are analyzed (paper)
Hamiltonian analysis of fast wave current drive in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Becoulet, A; Fraboulet, D; Giruzzi, G; Moreau, D; Saoutic, B [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chinardet, J [CISI Ingenierie, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)
1993-12-01
The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs.
Hamiltonian analysis of fast wave current drive in tokamak plasmas
International Nuclear Information System (INIS)
Becoulet, A.; Fraboulet, D.; Giruzzi, G.; Moreau, D.; Saoutic, B.
1993-12-01
The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs
Urban Heat Wave Vulnerability Analysis Considering Climate Change
JE, M.; KIM, H.; Jung, S.
2017-12-01
Much attention has been paid to thermal environments in Seoul City in South Korea since 2016 when the worst heatwave in 22 years. It is necessary to provide a selective measure by singling out vulnerable regions in advance to cope with the heat wave-related damage. This study aims to analyze and categorize vulnerable regions of thermal environments in the Seoul and analyzes and discusses the factors and risk factors for each type. To do this, this study conducted the following processes: first, based on the analyzed various literature reviews, indices that can evaluate vulnerable regions of thermal environment are collated. The indices were divided into climate exposure index related to temperature, sensitivity index including demographic, social, and economic indices, and adaptation index related to urban environment and climate adaptation policy status. Second, significant variables were derived to evaluate a vulnerable region of thermal environment based on the summarized indices in the above. this study analyzed a relationship between the number of heat-related patients in Seoul and variables that affected the number using multi-variate statistical analysis to derive significant variables. Third, the importance of each variable was calculated quantitatively by integrating the statistical analysis results and analytic hierarchy process (AHP) method. Fourth, a distribution of data for each index was identified based on the selected variables and indices were normalized and overlapped. Fifth, For the climate exposure index, evaluations were conducted as same as the current vulnerability evaluation method by selecting future temperature of Seoul predicted through the representative concentration pathways (RCPs) climate change scenarios as an evaluation variable. The results of this study can be utilized as foundational data to establish a countermeasure against heatwave in Seoul. Although it is limited to control heatwave occurrences itself completely, improvements
T-wave morphology analysis of competitive athletes
DEFF Research Database (Denmark)
Hong, L; Andersen, Lars Juel; Graff, Claus
2015-01-01
BACKGROUND: T-wave morphology has been shown to be more sensitive than QT and QTc interval to describe repolarization abnormalities. The electrocardiogram (ECG) performed in athletes may manifest abnormalities, including repolarization alterations. The aim of this study was to investigate...... the characteristics of T-wave morphology features in athletes. METHODS: Eighty male elite athletes, consisting of 40 Tour de France cyclists (age 27±5years), 40 soccer players (age 26±6years) and 40 healthy men (age 27±5years) were included. RESULTS: Sinus bradycardia, left ventricular (LV) hypertrophy, incomplete...... interval, and repolarization features than the control group. CONCLUSIONS: T-wave morphology of athletes is different from non-athletes, depending of the sport. Decreased potassium current in cardiomyocytes associated with LVH may contribute to these changes....
2005-03-01
picture at 22/00Z.............50 x Figure 24. Case 5 – wave parameters........................51 Figure 25. Evolution of energy density (arrow...equation or energy balance equation: . in nl ds F v F S S S S t ∂ + ∇ = ≡ + + ∂ r (1) where ( , ; , )F f x tθ r is the two dimensional...collected from an offshore directional Seawatch buoy, in the vicinity of Cape Silleiro, Rayo Silleiro 19 (“E1”), (Figure 3), was provided by the
Statistical analysis of s-wave neutron reduced widths
International Nuclear Information System (INIS)
Pandita Anita; Agrawal, H.M.
1992-01-01
The fluctuations of the s-wave neutron reduced widths for many nuclei have been analyzed with emphasis on recent measurements by a statistical procedure which is based on the method of maximum likelihood. It is shown that the s-wave neutron reduced widths of nuclei follow single channel Porter Thomas distribution (x 2 -distribution with degree of freedom ν = 1) for most of the cases. However there are apparent deviations from ν = 1 and possible explanation and significance of this deviation is given. These considerations are likely to modify the evaluation of neutron cross section. (author)
Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories
Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan
2017-10-01
Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.
Analysis of human skin tissue by millimeter-wave reflectometry
Smulders, P.F.M.
2013-01-01
Background/pupose: Millimeter-wave reflectometry is a potentially interesting technique to analyze the human skin in vivo in order to determine the water content locally in the skin. Purpose of this work is to investigate the possibility of skin-tissue differentiation. In addition, it addresses the
Analysis of flexural wave propagation in poroelastic composite ...
African Journals Online (AJOL)
DR OKE
dimensional solution for free vibration problem of homogeneous isotropic cylindrical ... Abousleiman and Cui (1998) presented poroelastic solutions in an inclined ...... The Biot-willis elastic coefficients for a sandstone, Journal of Applied Mechanics, Vol. ... Study of wave motions in fluid-saturated porous rocks, Journal of the ...
Distribution analysis of segmented wave sea clutter in littoral environments
CSIR Research Space (South Africa)
Strempel, MD
2015-10-01
Full Text Available are then fitted against the K-distribution. It is shown that the approach can accurately describe specific sections of the wave with a reduced error between actual and estimated distributions. The improved probability density function (PDF) representation...
Analysis of Wave Fields induced by Offshore Pile Driving
Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.
2015-12-01
Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.
Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion
Zhang, Sanzong; Schuster, Gerard T.; Luo, Yi
2012-01-01
way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity
Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Damkilde, Lars; Gao, Zhen
2013-01-01
to the relative stiff behavior of the arm the calculation can be reduced to a quasi-static analysis. The hydrodynamic and the structural analyses are thus performed separately. In order to reduce the computational time of the finite element calculation the main structure is modeled as a superelement......This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects...... the WEC to a jackup structure. The wave energy converter is characterized by having an operational and survival mode. The survival mode drastically reduces the exposure to waves and therfore to the wave loads. Structural response analysis of the Wavestar arm is carried out in this study. Due...
Origin and Structure of Nearshore Internal Tides and Waves: Data Analysis and Linear Theory
National Research Council Canada - National Science Library
Hendershott, Myrl
2001-01-01
Analysis of the data set obtained during the 1996-97 summer and autumn deployments of ADCP and T-logger internal wave antennas of Mission Beach, CA, was the principle activity during the reporting period...
Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials
Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.
2018-01-01
The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.
Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading
Seeram, Madhuri; Manohar, Y.
2018-06-01
In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.
Aeroacoustic directivity via wave-packet analysis of mean or base flows
Edstrand, Adam; Schmid, Peter; Cattafesta, Louis
2017-11-01
Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.
Statistical analysis of P-wave neutron reduced widths
International Nuclear Information System (INIS)
Joshi, G.C.; Agrawal, H.M.
2000-01-01
The fluctuations of the p-wave neutron reduced widths for fifty one nuclei have been analyzed with emphasis on recent measurements by a statistical procedure which is based on the method of maximum likelihood. It is shown that the p-wave neutron reduced widths of even-even nuclei fallow single channel Porter Thomas distribution (χ 2 -distribution with degree of freedom ν=1) for most of the cases where there are no intermediate structure. It is emphasized that the distribution in nuclei other than even-even may differ from a χ 2 -distribution with one degree of freedom. Possible explanation and significance of this deviation from ν=1 is given. (author)
Quasilinear analysis of absorption of ion Bernstein waves by electrons
International Nuclear Information System (INIS)
Cardinali, A.; Paoletti, F.; Bernabei, S.; Ono, M.
1995-01-01
The effects induced on plasma electrons by an externally launched ion Bernstein wave (IBW), in the presence of a lower hybrid wave (LHW) in the current drive regime, are studied by analytical integration of the IBW ray-tracing equations along with the amplitude transport equation (Poynting theorem). The electric field amplitude parallel and perpendicular to the external magnetic field, the quasilinear diffusion coefficient, and the modified electron distribution function are analytically calculated in the case of IBW. The analytical calculation is compared to the numerical solution obtained by using a 2-D Fokker-Planck code for the distribution function, without any approximation for the collision operator. The synergy between the IBW and LHW can be accounted for, and the absorption of the IBW power when the electron distribution function presents a tail generated by the LHW in the current drive regime can be calculated
DEFF Research Database (Denmark)
Ilic, C; Chadwick, A; Helm-Petersen, Jacob
2000-01-01
, non-phased locked methods are more appropriate. In this paper, the accuracy of two non-phased locked methods of directional analysis, the maximum likelihood method (MLM) and the Bayesian directional method (BDM) have been quantitatively evaluated using numerical simulations for the case...... of multidirectional waves with partial reflections. It is shown that the results are influenced by the ratio of distance from the reflector (L) to the length of the time series (S) used in the spectral analysis. Both methods are found to be capable of determining the incident and reflective wave fields when US > 0......Recent studies of advanced directional analysis techniques have mainly centred on incident wave fields. In the study of coastal structures, however, partially reflective wave fields are commonly present. In the near structure field, phase locked methods can be successfully applied. In the far field...
Sensitivity of a numerical wave model on wind re-analysis datasets
Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel
2017-03-01
Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.
Comparative analysis of winch-based wave energy converters
Nachev, Aleksandar
2017-01-01
Renewable energy sources are probably the future of the mankind. The main points advocating wave energy in particular include its huge potential, low environmental impact and availability around the globe. In order to harvest that energy, however, engineers have to overcome, among others, the corrosive sea environment and the unpredictable storms as well as secure funding for research and development. A lot of effort has been put into building and testing WECs after the oil crisis in the 1970...
Singular value decomposition methods for wave propagation analysis
Czech Academy of Sciences Publication Activity Database
Santolík, Ondřej; Parrot, M.; Lefeuvre, F.
2003-01-01
Roč. 38, č. 1 (2003), s. 10-1-10-13 ISSN 0048-6604 R&D Projects: GA ČR GA205/01/1064 Grant - others:Barrande(CZ) 98039/98055 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : wave propagation * singular value decomposition Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.832, year: 2003
Use of offshore mooring platform for sea wave motion analysis
International Nuclear Information System (INIS)
Cicconi, G.; Dagnino, I.; Papa, L.
1979-01-01
An offshore mooring platform for supertankers may often turn out to be an ideal solution for the problem of installing a meteorological station. Its location may be particularly desirable for the purpose of recording and analysing sea wave motion in deep water or in the intermediate zone between shallow and deep water. The preliminary results obtained through the operation of a subsurface sensor at the mooring platform off the harbour of Genova are reported. (author)
Use of offshore mooring platform for sea wave motion analysis
Energy Technology Data Exchange (ETDEWEB)
Cicconi, G.; Dagnino, I.; Papa, L. (Genova Univ. (Italy). Ist. Geofisica e Geodetico); Basano, L.; Ottonello, P. (Genoa Univ. (Italy))
An offshore mooring platform for supertankers may often turn out to be an ideal solution for the problem of installing a meteorological station. Its location may be particularly desirable for the purpose of recording and analysing sea wave motion in deep water or in the intermediate zone between shallow and deep water. The preliminary results obtained through the operation of a subsurface sensor at the mooring platform off the harbour of Genova are reported.
Analysis of Periodic Errors for Synthesized-Reference-Wave Holography
Directory of Open Access Journals (Sweden)
V. Schejbal
2009-12-01
Full Text Available Synthesized-reference-wave holographic techniques offer relatively simple and cost-effective measurement of antenna radiation characteristics and reconstruction of complex aperture fields using near-field intensity-pattern measurement. These methods allow utilization of advantages of methods for probe compensations for amplitude and phasing near-field measurements for the planar and cylindrical scanning including accuracy analyses. The paper analyzes periodic errors, which can be created during scanning, using both theoretical results and numerical simulations.
Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.
2018-04-01
Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.
Analysis of efficient preconditioned defect correction methods for nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter
2014-01-01
Robust computational procedures for the solution of non-hydrostatic, free surface, irrotational and inviscid free-surface water waves in three space dimensions can be based on iterative preconditioned defect correction (PDC) methods. Such methods can be made efficient and scalable to enable...... prediction of free-surface wave transformation and accurate wave kinematics in both deep and shallow waters in large marine areas or for predicting the outcome of experiments in large numerical wave tanks. We revisit the classical governing equations are fully nonlinear and dispersive potential flow...... equations. We present new detailed fundamental analysis using finite-amplitude wave solutions for iterative solvers. We demonstrate that the PDC method in combination with a high-order discretization method enables efficient and scalable solution of the linear system of equations arising in potential flow...
International Nuclear Information System (INIS)
Zhang, Y. S.; Cai, F.; Xu, W. M.
2011-01-01
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.
Investigation of interfacial wave structure using time-series analysis techniques
International Nuclear Information System (INIS)
Jayanti, S.; Hewitt, G.F.; Cliffe, K.A.
1990-09-01
The report presents an investigation into the interfacial structure in horizontal annular flow using spectral and time-series analysis techniques. Film thickness measured using conductance probes shows an interesting transition in wave pattern from a continuous low-frequency wave pattern to an intermittent, high-frequency one. From the autospectral density function of the film thickness, it appears that this transition is caused by the breaking up of long waves into smaller ones. To investigate the possibility of the wave structure being represented as a low order chaotic system, phase portraits of the time series were constructed using the technique developed by Broomhead and co-workers (1986, 1987 and 1989). These showed a banded structure when waves of relatively high frequency were filtered out. Although these results are encouraging, further work is needed to characterise the attractor. (Author)
International Nuclear Information System (INIS)
Sibiya, P.N.; Deenadayalu, N.
2008-01-01
This paper reports measurements of densities for the binary systems of an ionic liquid and an alkanol at T = (298.15, 303.15, and 313.15) K. The IL is trioctylmethylammonium bis(trifluoromethylsulfonyl)imide [OMA] + [Tf 2 N] - and the alkanols are methanol, or ethanol, or 1-propanol. The speed of sound at T = 298.15 K for the same binary systems was also measured. The excess molar volumes and the isentropic compressibilities for the above systems were then calculated from the experimental densities and the speed of sound, respectively. Redlich-Kister smoothing polynomial equation was used to fit the excess molar volume and the deviation in isentropic compressibility data. The partial molar volumes were determined from the Redlich-Kister coefficients. For all the systems studied, the excess molar volumes have both negative and positive values, while the deviations in isentropic compressibility are negative over the entire composition range
Vacillations induced by interference of stationary and traveling planetary waves
Salby, Murry L.; Garcia, Rolando R.
1987-01-01
The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.
Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy
Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.
2015-01-01
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615
A New Alternative in Urban Geophysics: Multi-Channel Analysis of Surface Waves (MASW) Method
International Nuclear Information System (INIS)
Ozcep, F.
2007-01-01
Geophysical studies are increasingly being applied to geotechnical investigations as they can identify soil properties and soil boundaries. Other advantage is that many of these methods are non-invasive and environment friendly. Soil stiffness is one of the critical material parameters considered during an early stage of most foundation construction. It is related directly to the stability of structural load, especially as it relates to possible earthquake hazard. Soil lacking sufficient stiffness for a given load can experience a significant reduction in strength under earthquake shaking resulting in liquefaction, a condition responsible for tremendous amounts of damage from earthquakes around the world The multichannel analysis of surface waves (MASW) method originated from the traditional seismic exploration approach that employs multiple (twelve or more) receivers placed along a linear survey line. Main advantage is its capability of recognizing different types of seismic waves based on wave propagation characteristics such as velocity and attenuation. The MASW method utilizes this capability to discriminate the fundamental-mode Rayleigh wave against all other types of surface and body waves generated not only from the active seismic source but also from the ambient site conditions. Dispersive characteristics of seismic waves are imaged from an objective 2-D wave field transformation. The present paper indicates results from MASW survey at different urban site in Turkey. MASW techniques will prove to be important tools for obtaining shear wave velocity and evaluating liquefaction potential, soil bearing capacity and soil amplification, etc. for future geophysical and geotechnical engineering community
Pasquet, S.; Wang, W.; Holbrook, W. S.; Bodet, L.; Carr, B.; Flinchum, B. A.
2017-12-01
Estimating porosity and saturation in the shallow subsurface over large lateral scales is vitally important for understanding the development and evolution of the Critical Zone (CZ). Because elastic properties (P- and S-wave velocities) are particularly sensitive to porosity and saturation, seismic methods (in combination with petrophysical models) are effective tools for mapping CZ architecture and processes. While many studies employ P-wave refraction methods, fewer use the surface waves that are typically also recorded in those same surveys. Here we show the value of exploiting surface waves to extract supplementary shear-wave velocity (Vs) information in the CZ. We use a new, user-friendly, open-source MATLAB-based package (SWIP) to invert surface-wave data and estimate lateral variations of Vs in the CZ. Results from synthetics show that this approach enables the resolution of physical property variations in the upper 10-15 m below the surface with lateral scales of about 5 m - a vast improvement compared to P-wave tomography alone. A field example at a Yellowstone hydrothermal system also demonstrates the benefits of including Vs in the petrophysical models to estimate not only porosity but also saturation, thus highlighting subsurface gas pathways. In light of these results, we strongly suggest that surface-wave analysis should become a standard approach in CZ seismic surveys.
Shimura, Tomoya; Mori, Nobuhito; Mase, Hajime
2015-01-01
Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of...
Reconstruction of Interfering Waves from Three Dimensional Analysis of Their Interference Pattern
Directory of Open Access Journals (Sweden)
M. T. Tavassoli
1997-04-01
Full Text Available Optical interferometry is being used as an efficient tool to analyse smooth surfaces for more than a century. Although, due to introduction of novel computer assisted analyzing techniques and array detectors, like CCD, the speed and the precision of processing have been increased tremendously, but the main equation involved is not changed. The main equation is the intensity distribution in the interference pattern of a plane reference wave and the required wave. In the paper it is shown that by analysis of the interference pattern of two unknown waves in three dimension (which is possible for coherent waves it is possible to reconstruct each wave separately. This approach has several useful applications, namely, on can do without reference plane wave in the interferometric surface analysis and, it is possible to reconstruct an unknown wave by making it to interfere with itself. This is very useful in determining the profile of laser beams and erasing the effect of atmospheric disturbances on observing astronomical objects.
Analysis of a plane stress wave by the moving least squares method
Directory of Open Access Journals (Sweden)
Wojciech Dornowski
2014-08-01
Full Text Available A meshless method based on the moving least squares approximation is applied to stress wave propagation analysis. Two kinds of node meshes, the randomly generated mesh and the regular mesh are used. The nearest neighbours’ problem is developed from a triangulation that satisfies minimum edges length conditions. It is found that this method of neighbours’ choice significantly improves the solution accuracy. The reflection of stress waves from the free edge is modelled using fictitious nodes (outside the plate. The comparison with the finite difference results also demonstrated the accuracy of the proposed approach.[b]Keywords[/b]: civil engineering, meshless method, moving least squares method, elastic waves
Symmetry analysis of many-body wave functions, with applications to the nuclear shell model
International Nuclear Information System (INIS)
Novoselsky, A.; Katriel, J.
1995-01-01
The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration
Gravitational-wave physics and astronomy an introduction to theory, experiment and data analysis
Creighton, Jolien D E
2011-01-01
This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitation
Development of an analysis code for pressure wave propagation, (1)
International Nuclear Information System (INIS)
Tanaka, Yoshihisa; Sakano, Kosuke; Shindo, Yoshihisa
1974-11-01
We analyzed the propagation of the pressure-wave in the piping system of SWAT-1B rig by using SWAC-5 Code. We carried out analyses on the following parts. 1) A straight pipe 2) Branches 3) A piping system The results obtained in these analyses are as follows. 1) The present our model simulates well the straight pipe and the branch with the same diameters. 2) The present our model simulates approximately the branch with the different diameters and the piping system. (auth.)
Linear and nonlinear analysis of density wave instability phenomena
International Nuclear Information System (INIS)
Ambrosini, Walter
1999-01-01
In this paper the mechanism of density-wave oscillations in a boiling channel with uniform and constant heat flux is analysed by linear and nonlinear analytical tools. A model developed on the basis of a semi-implicit numerical discretization of governing partial differential equations is used to provide information on the transient distribution of relevant variables along the channel during instabilities. Furthermore, a lumped parameter model and a distributed parameter model developed in previous activities are also adopted for independent confirmation of the observed trends. The obtained results are finally put in relation with the picture of the phenomenon proposed in classical descriptions. (author)
Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis
Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could
Coupled channel analysis of s-wave ππ and K anti-K photoproduction
International Nuclear Information System (INIS)
Chueng-Ryong Ji; Szczepaniak, A.; Kaminski, R.; Lesniak, L.; Williams, R.
1997-10-01
We present a coupled channel partial wave analysis of non-diffractive S-wave π + π - and K + K - photoproduction focusing on the K anti-K threshold. Final state interactions are included. We calculate total cross sections, angular and effective mass distributions in both ππ and K anti-K channels. Our results indicate that these processes are experimentally measurable and valuable information on the f 0 (980) resonance structure can be obtained. (author)
A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft
Directory of Open Access Journals (Sweden)
Sebastian Heimbs
2015-01-01
Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.
Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere
Mošna, Z.; Koucká Knížová, P.
2012-12-01
The present study mainly concerns the wave-like activity in the ionospheric sporadic E layer (Es) and in the lower lying stratosphere. The proposed analysis involves parameters describing the state of plasma in the sporadic E layer. Critical frequencies foEs and layer heights hEs were measured at the Pruhonice station (50°N, 14.5°E) during summer campaigns 2004, 2006 and 2008. Further, we use neutral atmosphere (temperature data at 10 hPa) data from the same time interval. The analysis concentrates on vertically propagating wave-like structures within distant atmospheric regions. By means of continuous wavelet transform (CWT) we have detected significant wave-like oscillation at periods covering tidal and planetary oscillation domains both in the Es layer parameters (some of them were reported earlier, for instance in works of Abdu et al., 2003; Pancheva and Mitchel, 2004; Pancheva et al., 2003; Šauli and Bourdillon, 2008) and in stratospheric temperature variations. Further analyses using cross wavelet transform (XWT) and wavelet coherence analysis (WTC) show that despite high wave-like activity in a wide period range, there are only limited coherent wave-like bursts present in both spectra. Such common coherent wave bursts occur on periods close to eigen-periods of the terrestrial atmosphere. We suppose that vertical coupling between atmospheric regions realized by vertically propagating planetary waves occurs predominantly on periods close to those of Rossby modes. Analysis of the phase shift between data from distant atmospheric regions reveals high variability and very likely supports the non-linear scenario of the vertical coupling provided by planetary waves.
Analysis of a time fractional wave-like equation with the homotopy analysis method
International Nuclear Information System (INIS)
Xu Hang; Cang Jie
2008-01-01
The time fractional wave-like differential equation with a variable coefficient is studied analytically. By using a simple transformation, the governing equation is reduced to two fractional ordinary differential equations. Then the homotopy analysis method is employed to derive the solutions of these equations. The accurate series solutions are obtained. Especially, when h f =h g =-1, these solutions are exactly the same as those results given by the Adomian decomposition method. The present work shows the validity and great potential of the homotopy analysis method for solving nonlinear fractional differential equations. The basic idea described in this Letter is expected to be further employed to solve other similar nonlinear problems in fractional calculus
Analysis of Peristaltic Waves & their Role in Migrating Physarum Plasmodia
Lewis, Owen; Guy, Robert
2017-11-01
The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using physarum plasmodia. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity.
Directory of Open Access Journals (Sweden)
E. A. K. Ford
2008-02-01
Full Text Available Data from the Fabry-Perot Interferometers at KEOPS (Sweden, Sodankylä (Finland, and Svalbard (Norway, have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (<1 h period that may be detected with confidence. The length of the dataset, which is usually determined by the length of the night, was the main factor influencing the number of long period waves (>5 h detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films
Hines, Jacqueline H. (Inventor)
2015-01-01
A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.
An analysis of beam parameters on proton-acoustic waves through an analytic approach.
Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin
2017-06-21
It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.
Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves
Institute of Scientific and Technical Information of China (English)
尹则高; 梁丙臣; 王乐
2013-01-01
The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.
A theoretical analysis of the weak shock waves propagating through a bubbly flow
International Nuclear Information System (INIS)
Jun, Gu Sik; Kim, Heuy Dong; Baek, Seung Cheol
2004-01-01
Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data
Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction
International Nuclear Information System (INIS)
Manley, D. Mark
2016-01-01
The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K"+ Λ.
Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction
Energy Technology Data Exchange (ETDEWEB)
Manley, D. Mark [Kent State Univ., Kent, OH (United States)
2016-09-08
The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K⁺ Λ.
SHOCK WAVE ANALYSIS OF THE CONSEQUENCES OF A REACTOR ACCIDENT
Energy Technology Data Exchange (ETDEWEB)
Klickman, A E; Nicholson, R B; Nims, J B
1963-06-15
The solution to the problem of transmission and attenuation of the shock wave resulting from a large reactor accident is demonstrated for a configuration typical of many reactors. The particular configuration is that of a spherical gas bubble surrounded by one or more concentric regions of compressible material. A systematic parameter study was made in which the physical characteristics of the compressible shield regions and the expansion characteristics of a gas were assumed to be parameters. Results for seven cases are shown, and similar cases with only one important difference are compared. From these comparisons it was concluded that under certain conditions alternative materials can be substituted for reactor materials in model experiments and TNT can be used as an energy source instead of uranium. In the outer crushable region the total mass of material is the important factor. (A.G.W.)
Use of energy analysis to evaluate the parameters of wave fields
Energy Technology Data Exchange (ETDEWEB)
Soldatov, V.N.; Sinitsyn, Ye.S.
1984-01-01
Algorithms are proposed and studied for energy analysis of the wave fields. A comparative evaluation is made of the resolution of the energy analysis methods. A method is examined for automated processing of the energograms allowing a search for an estimate of the parameters with significant acceleration of the computer calculations and saving of its working storage by designing multipurpose algorithms of data processing.
Auto-correlation analysis of wave heights in the Bay of Bengal
Indian Academy of Sciences (India)
Time series observations of significant wave heights in the Bay of Bengal were subjected to auto- correlation analysis to determine temporal variability scale. The analysis indicates an exponen- tial fall of auto-correlation in the first few hours with a decorrelation time scale of about six hours. A similar figure was found earlier ...
Melnick, Gary J.
1990-01-01
The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.
Directory of Open Access Journals (Sweden)
Hyebin Lee
2018-02-01
Full Text Available Wind-wave hybrid power generation systems have the potential to become a significant source of affordable renewable energy. However, their strong interactions with both wind- and wave-induced forces raise a number of technical challenges for modelling. The present study undertakes a numerical investigation on multi-body hydrodynamic interaction between a wind-wave hybrid floating platform and multiple wave energy converters (WECs in a frequency domain. In addition to the exact responses of the platform and the WECs, the power take-off (PTO mechanism was taken into account for analysis. The coupled hydrodynamic coefficients and wave exciting forces were obtained from WAMIT, the 3D diffraction/radiation solver based on the boundary element method. The overall performance of the multiple WECs is presented and compared with the performance of a single isolated WEC. The analysis showed significant differences in the dynamic responses of the WECs when the multi-body interaction was considered. In addition, the PTO damping effect made a considerable difference to the responses of the WECs. However, the platform response was only minimally affected by PTO damping. With regard to energy capture, the interaction effect of the designed multiple WEC array layout is evaluated. The WEC array configuration showed both constructive and destructive effects in accordance with the incident wave frequency and direction.
Lyu, Chao; Pedersen, Helle A.; Paul, Anne; Zhao, Liang; Solarino, Stefano
2017-07-01
It remains challenging to obtain absolute shear wave velocities of heterogeneities of small lateral extension in the uppermost mantle. This study presents a cross-section of Vs across the strongly heterogeneous 3-D structure of the western European Alps, based on array analysis of data from 92 broad-band seismic stations from the CIFALPS experiment and from permanent networks in France and Italy. Half of the stations were located along a dense sublinear array. Using a combination of these stations and off-profile stations, fundamental-mode Rayleigh wave dispersion curves were calculated using a combined frequency-time beamforming approach. We calculated dispersion curves for seven arrays of approximately 100 km aperture and 14 arrays of approximately 50 km aperture, the latter with the aim of obtaining a 2-D vertical cross-section of Vs beneath the western Alps. The dispersion curves were inverted for Vs(z), with crustal interfaces imposed from a previous receiver function study. The array approach proved feasible, as Vs(z) from independent arrays vary smoothly across the profile length. Results from the seven large arrays show that the shear velocity of the upper mantle beneath the European plate is overall low compared to AK135 with the lowest velocities in the internal part of the western Alps, and higher velocities east of the Alps beneath the Po plain. The 2-D Vs model is coherent with (i) a ∼100 km thick eastward-dipping European lithosphere west of the Alps, (ii) very high velocities beneath the Po plain, coherent with the presence of the Alpine (European) slab and (iii) a narrow low-velocity anomaly beneath the core of the western Alps (from the Briançonnais to the Dora Maira massif), and approximately colocated with a similar anomaly observed in a recent teleseismic P-wave tomography. This intriguing anomaly is also supported by traveltime variations of subvertically propagating body waves from two teleseismic events that are approximately located on
An Overview of Recent Advances in the Iterative Analysis of Coupled Models for Wave Propagation
Directory of Open Access Journals (Sweden)
D. Soares
2014-01-01
Full Text Available Wave propagation problems can be solved using a variety of methods. However, in many cases, the joint use of different numerical procedures to model different parts of the problem may be advisable and strategies to perform the coupling between them must be developed. Many works have been published on this subject, addressing the case of electromagnetic, acoustic, or elastic waves and making use of different strategies to perform this coupling. Both direct and iterative approaches can be used, and they may exhibit specific advantages and disadvantages. This work focuses on the use of iterative coupling schemes for the analysis of wave propagation problems, presenting an overview of the application of iterative procedures to perform the coupling between different methods. Both frequency- and time-domain analyses are addressed, and problems involving acoustic, mechanical, and electromagnetic wave propagation problems are illustrated.
Jiang, Lijian; Efendiev, Yalchin; Ginting, Victor
2010-01-01
In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.
Model-independent partial wave analysis using a massively-parallel fitting framework
Sun, L.; Aoude, R.; dos Reis, A. C.; Sokoloff, M.
2017-10-01
The functionality of GooFit, a GPU-friendly framework for doing maximum-likelihood fits, has been extended to extract model-independent {\\mathscr{S}}-wave amplitudes in three-body decays such as D + → h + h + h -. A full amplitude analysis is done where the magnitudes and phases of the {\\mathscr{S}}-wave amplitudes are anchored at a finite number of m 2(h + h -) control points, and a cubic spline is used to interpolate between these points. The amplitudes for {\\mathscr{P}}-wave and {\\mathscr{D}}-wave intermediate states are modeled as spin-dependent Breit-Wigner resonances. GooFit uses the Thrust library, with a CUDA backend for NVIDIA GPUs and an OpenMP backend for threads with conventional CPUs. Performance on a variety of platforms is compared. Executing on systems with GPUs is typically a few hundred times faster than executing the same algorithm on a single CPU.
Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate
Ebrahimi, Farzad; Dabbagh, Ali; Reza Barati, Mohammad
2016-12-01
The analysis of the wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanoplate is carried out in the framework of a refined higher-order plate theory. In order to take into account the small-scale influence, the nonlocal elasticity theory of Eringen is employed. Furthermore, the material properties of the nanoplate are considered to be variable through the thickness based on the power-law form. Nonlocal governing equations of the MEE-FG nanoplate have been derived using Hamilton's principle. The results of the present study have been validated by comparing them with previous researches. An analytical solution of governing equations is performed to obtain wave frequencies, phase velocities and escape frequencies. The effect of different parameters, such as wave number, nonlocal parameter, gradient index, magnetic potential and electric voltage on the wave dispersion characteristics of MEE-FG nanoscale plates is studied in detail.
Jiang, Lijian
2010-08-01
In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.
Bispectral analysis of nonlinear compressional waves in a two-dimensional dusty plasma crystal
International Nuclear Information System (INIS)
Nosenko, V.; Goree, J.; Skiff, F.
2006-01-01
Bispectral analysis was used to study the nonlinear interaction of compressional waves in a two-dimensional strongly coupled dusty plasma. A monolayer of highly charged polymer microspheres was suspended in a plasma sheath. The microspheres interacted with a Yukawa potential and formed a triangular lattice. Two sinusoidal pump waves with different frequencies were excited in the lattice by pushing the particles with modulated Ar + laser beams. Coherent nonlinear interaction of the pump waves was shown to be the mechanism of generating waves at the sum, difference, and other combination frequencies. However, coherent nonlinear interaction was ruled out for certain combination frequencies, in particular, for the difference frequency below an excitation-power threshold, as predicted by theory
Directory of Open Access Journals (Sweden)
Keqin Yan
2017-01-01
Full Text Available This chapter presents a reliability study for an offshore jacket structure with emphasis on the features of nonconventional modeling. Firstly, a random set model is formulated for modeling the random waves in an ocean site. Then, a jacket structure is investigated in a pushover analysis to identify the critical wave direction and key structural elements. This is based on the ultimate base shear strength. The selected probabilistic models are adopted for the important structural members and the wave direction is specified in the weakest direction of the structure for a conservative safety analysis. The wave height model is processed in a P-box format when it is used in the numerical analysis. The models are applied to find the bounds of the failure probabilities for the jacket structure. The propagation of this wave model to the uncertainty in results is investigated in both an interval analysis and Monte Carlo simulation. The results are compared in context of information content and numerical accuracy. Further, the failure probability bounds are compared with the conventional probabilistic approach.
Study on crack scattering in aluminum plates with Lamb wave frequency–wavenumber analysis
International Nuclear Information System (INIS)
Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A C
2013-01-01
The multimodal characteristic of Lamb waves makes the interpretation of Lamb wave signals difficult in either the time or frequency domain. In this work, we present our study of Lamb wave propagation characterization and crack scattering using frequency–wavenumber analysis. The aim is to investigate three dimensional (3D) Lamb wave behavior in the presence of crack damage via the application of frequency–wavenumber analysis. The analysis techniques are demonstrated using simulation examples of an aluminum plate with a through-thickness crack. Both in-plane and out-of-plane components are acquired through a 3D elastodynamic finite integration technique (EFIT), while the out-of-plane component is also experimentally obtained using a scanning laser Doppler vibrometer for verification purposes. The time–space wavefield is then transformed to the frequency–wavenumber domain by a two dimensional (2D) Fourier transform and the out-of-plane EFIT results are compared to experimental measurements. The experimental and simulated results are found to be in close agreement. The frequency–wavenumber representation of in-plane and out-of-plane components shows clear distinction among various Lamb wave modes that are present. However, spatial information is lost during this 2D transformation. A short space 2D Fourier transform is therefore adopted to obtain the frequency–wavenumber spectra at various spatial locations, resulting in a space–frequency–wavenumber representation of the signal. The space–frequency–wavenumber analysis has shown its potential for indicating crack presence. (paper)
Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes
Directory of Open Access Journals (Sweden)
V. F. Andrioli
2013-05-01
Full Text Available The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005 gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km. In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
Pierce gain analysis for a sheet beam in a rippled waveguide traveling-wave tube
International Nuclear Information System (INIS)
Carlsten, Bruce E.
2001-01-01
A Pierce-type mode analysis is presented for a planar electron beam in a rippled planar waveguide. This analysis describes the gain of a traveling-wave tube consisting of that geometry. The dispersion relation is given by the determinant of a matrix based on the coupling of different free-space modes through the boundary conditions. For the case of high-frequency, low-power amplifiers, the dispersion relation reduces to a simple cubic expression for the Compton regime, leading to three roots analogous to the Pierce solution of a standard traveling-wave tube. The analysis shows that this type of traveling-wave tube is capable of very high gain at extremely high frequencies
A two-step FEM-SEM approach for wave propagation analysis in cable structures
Zhang, Songhan; Shen, Ruili; Wang, Tao; De Roeck, Guido; Lombaert, Geert
2018-02-01
Vibration-based methods are among the most widely studied in structural health monitoring (SHM). It is well known, however, that the low-order modes, characterizing the global dynamic behaviour of structures, are relatively insensitive to local damage. Such local damage may be easier to detect by methods based on wave propagation which involve local high frequency behaviour. The present work considers the numerical analysis of wave propagation in cables. A two-step approach is proposed which allows taking into account the cable sag and the distribution of the axial forces in the wave propagation analysis. In the first step, the static deformation and internal forces are obtained by the finite element method (FEM), taking into account geometric nonlinear effects. In the second step, the results from the static analysis are used to define the initial state of the dynamic analysis which is performed by means of the spectral element method (SEM). The use of the SEM in the second step of the analysis allows for a significant reduction in computational costs as compared to a FE analysis. This methodology is first verified by means of a full FE analysis for a single stretched cable. Next, simulations are made to study the effects of damage in a single stretched cable and a cable-supported truss. The results of the simulations show how damage significantly affects the high frequency response, confirming the potential of wave propagation based methods for SHM.
International Nuclear Information System (INIS)
Sadeghi, Rahmat; Ziamajidi, Fatemeh
2007-01-01
The apparent specific volumes and isentropic compressibilities have been determined for polyvinylpyrrolidone in aqueous solutions of sodium citrate by density and sound velocity measurements at T = (283.15 to 308.15) K at atmospheric pressure. The results show a positive transfer volume of PVP from an aqueous solution to an aqueous sodium citrate solution. For low concentrations of PVP, the apparent specific volumes of PVP in water increased along with an increase in the polymer mass fraction, while in aqueous sodium citrate solutions decreased along with an increase in the polymer mass fraction. For high concentrations of PVP, the apparent specific volumes of PVP in water and in aqueous sodium citrate solutions were independent of the polymer mass fraction. The apparent specific isentropic compressibility of PVP is negative at T = (283.15 and 288.15) K, which imply that the water molecules around the PVP molecules are less compressible than the water molecules in the bulk solutions. The positive values of apparent specific isentropic compressibility at T = (298.15, 303.15, and 308.15) K imply that the water molecules around the PVP molecules are more compressible than the water molecules in the bulk solutions. Finally, it was found that the apparent specific isentropic compressibility of PVP increases as the concentration of sodium citrate increases
International Nuclear Information System (INIS)
Bernal, P.J.; Van Hook, W.A.
1986-01-01
The molar volumes, isobaric expansion coefficients, and isentropic compressibilities of solutions of a number of carbohydrates and their deuterated isomers were determined in H 2 O and D 2 O between 288.15 and 328.15 K and over a wide range of solute-to-solvent mole ratios. The results are discussed in terms of the specific hydration model. (author)
Partial wave analysis for folded differential cross sections
Machacek, J. R.; McEachran, R. P.
2018-03-01
The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.
Limit cycle analysis of nuclear coupled density wave oscillations
International Nuclear Information System (INIS)
Ward, M.E.
1985-01-01
An investigation of limit cycle behavior for the nuclear-coupled density wave oscillation (NCDWO) in a boiling water reactor (BWR) was performed. A simplified nonlinear model of BWR core behavior was developed using a two-region flow channel representation, coupled with a form of the point-kinetics equation. This model has been used to investigate the behavior of large amplitude NCDWO's through conventional time-integration solutions and through application of a direct relaxation-oscillation limit cycle solution in phase space. The numerical solutions demonstrate the potential for severe global power and flow oscillations in a BWR core at off-normal conditions, such as might occur during Anticipated Transients without Scram. Because of the many simplifying assumptions used, it is felt that the results should not be interpreted as an absolute prediction of core behavior, but as an indication of the potential for large oscillations and a demonstration of the corresponding limit cycle mechanisms. The oscillations in channel density drive the core power variations, and are reinforced by heat flux variations due to the changing fuel temperature. A global temperature increase occurs as energy is accumulated in the fuel, and limits the magnitude of the oscillations because as the average channel density decreases, the amplitude and duration of positive void reactivity at a given oscillation amplitude is lessened
Design and analysis of tubular permanent magnet linear wave generator.
Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng
2014-01-01
Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.
Design and Analysis of Tubular Permanent Magnet Linear Wave Generator
Directory of Open Access Journals (Sweden)
Jikai Si
2014-01-01
Full Text Available Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.
Quantum analysis of the direct measurement of light waves
International Nuclear Information System (INIS)
Saldanha, Pablo L
2014-01-01
In a beautiful experiment performed about a decade ago, Goulielmakis et al (2004 Science 305 1267–69) made a direct measurement of the electric field of light waves. However, they used a laser source to produce the light field, whose quantum state has a null expectation value for the electric field operator, so how was it possible to measure this electric field? Here we present a quantum treatment for the f:2f interferometer used to calibrate the carrier–envelope phase of the light pulses in the experiment. We show how the special nonlinear features of the f:2f interferometer can change the quantum state of the electromagnetic field inside the laser cavity to a state with a definite oscillating electric field, explaining how the ‘classical’ electromagnetic field emerges in the experiment. We discuss that this experiment was, to our knowledge, the first demonstration of an absolute coherent superposition of different photon number states in the optical regime. (paper)
Design and Analysis of Tubular Permanent Magnet Linear Wave Generator
Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng
2014-01-01
Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG. PMID:25050388
International Nuclear Information System (INIS)
Zeng, Huihui
2015-01-01
In this paper we establish the global existence of smooth solutions to vacuum free boundary problems of the one-dimensional compressible isentropic Navier–Stokes equations for which the smoothness extends all the way to the boundaries. The results obtained in this work include the physical vacuum for which the sound speed is C 1/2 -Hölder continuous near the vacuum boundaries when 1 < γ < 3. The novelty of this result is its global-in-time regularity which is in contrast to the previous main results of global weak solutions in the literature. Moreover, in previous studies of the one-dimensional free boundary problems of compressible Navier–Stokes equations, the Lagrangian mass coordinates method has often been used, but in the present work the particle path (flow trajectory) method is adopted, which has the advantage that the particle paths and, in particular, the free boundaries can be traced. (paper)
Veto analysis for gravitational wave burst signals in TAMA300 data using an ALF filter
International Nuclear Information System (INIS)
Akutsu, T; Ando, M; Kanda, N; Tatsumi, D; Telada, S; Miyoki, S; Ohashi, M
2006-01-01
Data taken by interferometers for gravitational waves include noises caused by instabilities of the interferometers. Veto analyses to remove false events caused by detectors are then necessary to detect real gravitational waves or to obtain a lower upper limit. In this paper, a veto analysis with an environmental monitor channel was implemented. We calculate the trigger rate of TAMA300 data and demonstrate the veto analysis using an alternative linear fit (ALF) filter. A threshold for the environmental monitor channel signals is set to be at 1% of the false dismissal rate. The result shows a 1/10-1/1000 reduction of trigger event rates
Influence of Sub-grid-Scale Isentropic Transports on McRAS Evaluations using ARM-CART SCM Datasets
Sud, Y. C.; Walker, G. K.; Tao, W. K.
2004-01-01
In GCM-physics evaluations with the currently available ARM-CART SCM datasets, McRAS produced very similar character of near surface errors of simulated temperature and humidity containing typically warm and moist biases near the surface and cold and dry biases aloft. We argued it must have a common cause presumably rooted in the model physics. Lack of vertical adjustment of horizontal transport was thought to be a plausible source. Clearly, debarring such a freedom would force the incoming air to diffuse into the grid-cell which would naturally bias the surface air to become warm and moist while the upper air becomes cold and dry, a characteristic feature of McRAS biases. Since, the errors were significantly larger in the two winter cases that contain potentially more intense episodes of cold and warm advective transports, it further reaffirmed our argument and provided additional motivation to introduce the corrections. When the horizontal advective transports were suitably modified to allow rising and/or sinking following isentropic pathways of subgrid scale motions, the outcome was to cool and dry (or warm and moisten) the lower (or upper) levels. Ever, crude approximations invoking such a correction reduced the temperature and humidity biases considerably. The tests were performed on all the available ARM-CART SCM cases with consistent outcome. With the isentropic corrections implemented through two different numerical approximations, virtually similar benefits were derived further confirming the robustness of our inferences. These results suggest the need for insentropic advective transport adjustment in a GCM due to subgrid scale motions.
Qualitative Resting Coronary Pressure Wave Form Analysis to Predict Fractional Flow Reserve.
Matsumura, Mitsuaki; Maehara, Akiko; Johnson, Nils P; Fearon, William F; De Bruyne, Bernard; Oldroyd, Keith G; Pijls, Nico H J; Jenkins, Paul; Ali, Ziad A; Mintz, Gary S; Stone, Gregg W; Jeremias, Allen
2018-03-27
To evaluate the predictability of resting distal coronary pressure wave forms for fractional flow reserve (FFR). Resting coronary wave forms were qualitatively evaluated for the presence of (i) dicrotic notch; (ii) diastolic dipping; and (iii) ventricularization. In a development cohort (n=88) a scoring system was developed that was then applied to a validation cohort (n=428) using a multivariable linear regression model to predict FFR and receiver operating characteristics (ROC) to predict FFR ≤0.8. In the development cohort, all 3 qualitative parameters were independent predictors of FFR. However, in a multivariable linear regression model in the validation cohort, qualitative wave form analysis did not further improve the ability of resting distal coronary to aortic pressure ratio (Pd/Pa) (p=0.80) or instantaneous wave-free ratio (iFR) (p=0.26) to predict FFR. Using ROC, the area under the curve of resting Pd/Pa (0.86 versus 0.86, P=0.08) and iFR (0.86 versus 0.86, P=0.26) did not improve by adding qualitative analysis. Qualitative coronary wave form analysis showed moderate classification agreement in predicting FFR but did not add substantially to the resting pressure gradients Pd/Pa and iFR; however, when discrepancies between quantitative and qualitative analyses are observed, artifact or pressure drift should be considered.
Near-Field Ground Motion Modal versus Wave Propagation Analysis
Directory of Open Access Journals (Sweden)
Artur Cichowicz
2010-01-01
Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.
A Critical Analysis and Validation of the Accuracy of Wave Overtopping Prediction Formulae for OWECs
Directory of Open Access Journals (Sweden)
David Gallach-Sánchez
2018-01-01
Full Text Available The development of wave energy devices is growing in recent years. One type of device is the overtopping wave energy converter (OWEC, for which the knowledge of the wave overtopping rates is a basic and crucial aspect in their design. In particular, the most interesting range to study is for OWECs with steep slopes to vertical walls, and with very small freeboards and zero freeboards where the overtopping rate is maximized, and which can be generalized as steep low-crested structures. Recently, wave overtopping prediction formulae have been published for this type of structures, although their accuracy has not been fully assessed, as the overtopping data available in this range is scarce. We performed a critical analysis of the overtopping prediction formulae for steep low-crested structures and the validation of the accuracy of these formulae, based on new overtopping data for steep low-crested structures obtained at Ghent University. This paper summarizes the existing knowledge about average wave overtopping, describes the physical model tests performed, analyses the results and compares them to existing prediction formulae. The new dataset extends the wave overtopping data towards vertical walls and zero freeboard structures. In general, the new dataset validated the more recent overtopping formulae focused on steep slopes with small freeboards, although the formulae are underpredicting the average overtopping rates for very small and zero relative crest freeboards.
Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator
Directory of Open Access Journals (Sweden)
Xiaoqiu Xu
2017-01-01
Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.
Analysis and Synthesis of WAVCIS Data for Characteristics of Waves and Currents on Louisiana Coast
Li, C.; Gibson, B.; Huang, W.; Luo, Y.; Milan, B.
2017-12-01
Texas-Louisiana coastal currents have been studied before, with a generally well-known pattern that is quasi steady except during the summer when it may weaken or reverse briefly. In the past decade, lot more efforts have been made and there is a large quantity of current velocity data accumulated. Among these data are those from the long-term mooring observations from the Wave Current-Surge Information System (WAVCIS), with a focus on the Louisiana coastal waters. More specifically, velocity and wave time series from current meters and pressure sensors or directional wave sensors at several locations on Louisiana coast provided unique opportunity to analyze and synthesize the characteristics of waves and currents on both east and west side of the Birdfoot Delta. In this study, we assembled all available WAVCIS data for a thorough analysis and synthesis of the characteristics of waves and coastal current in the area as a function of weather during different seasons. Year-to-year variabilities and seasonal variations are discussed. Spectrum, harmonic, and EOF analyses allowed a description and comparison of circulation patterns, wave and flow energy regimes, vertical shear of horizontal flows, tidal characteristics, synoptic weather effect, and severe weather impact. We provide basic statistics, as well as classifications of type of flows/circulations, and the major mechanisms that contribute to the variability.
Broyd, Christopher J; Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S; Francis, Darrel P; Parker, Kim; Hughes, Alun D; Mikhail, Ghada W; Mayet, Jamil; Davies, Justin E
2016-03-01
Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P Physiological Society.
Migration velocity analysis using pre-stack wave fields
Alkhalifah, Tariq Ali; Wu, Zedong
2016-01-01
Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform
Analysis and classification of ECG-waves and rhythms using circular statistics and vector strength
Directory of Open Access Journals (Sweden)
Janßen Jan-Dirk
2017-09-01
Full Text Available The most common way to analyse heart rhythm is to calculate the RR-interval and the heart rate variability. For further evaluation, descriptive statistics are often used. Here we introduce a new and more natural heart rhythm analysis tool that is based on circular statistics and vector strength. Vector strength is a tool to measure the periodicity or lack of periodicity of a signal. We divide the signal into non-overlapping window segments and project the detected R-waves around the unit circle using the complex exponential function and the median RR-interval. In addition, we calculate the vector strength and apply circular statistics as wells as an angular histogram on the R-wave vectors. This approach enables an intuitive visualization and analysis of rhythmicity. Our results show that ECG-waves and rhythms can be easily visualized, analysed and classified by circular statistics and vector strength.
Fundamental structure of steady plastic shock waves in metals
International Nuclear Information System (INIS)
Molinari, A.; Ravichandran, G.
2004-01-01
The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of
Fundamental structure of steady plastic shock waves in metals
Molinari, A.; Ravichandran, G.
2004-02-01
The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of
Numerical analysis of regular waves over an onshore oscillating water column
Energy Technology Data Exchange (ETDEWEB)
Davyt, D.P.; Teixeira, P.R.F. [Universidade Federal do Rio Grande (FURG), RS (Brazil)], E-mail: pauloteixeira@furg.br; Ramalhais, R. [Universidade Nova de Lisboa, Caparica (Portugal). Fac. de Ciencias e Tecnologia; Didier, E. [Laboratorio Nacional de Engenharia Civil, Lisboa (Portugal)], E-mail: edidier@lnec.pt
2010-07-01
The potential of wave energy along coastal areas is a particularly attractive option in regions of high latitude, such as the coasts of northern Europe, North America, New Zealand, Chile and Argentina where high densities of annual average wave energy are found (typically between 40 and 100 kW/m of wave front). Power estimated in the south of Brazil is 30kW/m, creating a possible alternative of source energy in the region. There are many types and designs of equipment to capture energy from waves under analysis, such as the oscillating water column type (OWC) which has been one of the first to be developed and installed at sea. Despite being one of the most analyzed wave energy converter devices, there are few case studies using numerical simulation. In this context, the numerical analysis of regular waves over an onshore OWC is the main objective of this paper. The numerical models FLUINCO and FLUENT are used for achieving this goal. The FLUINCO model is based on RANS equations which are discretized using the two-step semi-implicit Taylor-Galerkin method. An arbitrary Lagrangian Eulerian formulation is used to enable the solution of problems involving free surface movements. The FLUENT code (version 6.3.26) is based on the finite volume method to solve RANS equations. Volume of Fluid method (VOF) is used for modeling free surface flows. Time integration is achieved by a second order implicit scheme, momentum equations are discretized using MUSCL scheme and HRIC (High Resolution Interface Capturing) scheme is used for convective term of VOF transport equation. The case study consists of a 10.m deep channel with a 10 m wide chamber at its end. One meter high waves with different periods are simulated. Comparisons between FLUINCO and FLUENT results are presented. Free surface elevation inside the chamber; velocity distribution and streamlines; amplification factor (relation between wave height inside the chamber and incident wave height); phase angle (angular
Naumenko, Natalya F.
2014-09-01
A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.
Damage detection using piezoelectric transducers and the Lamb wave approach: I. System analysis
International Nuclear Information System (INIS)
Wang, X; Lu, Y; Tang, J
2008-01-01
Structural damage detection using piezoelectric transducers and the Lamb wave approach has been under intensive investigations. A commonly pursued topic is the selection of system parameters such that the detection performance can be optimized. Previous studies have indicated that the excitation center frequency plays a critical role, and suggested use of the 'sweet spot' frequency to maximize the peak wave amplitude ratio between the S 0 and the A 0 modes. In this paper, the analytical formulation of Lamb wave propagation on a narrow-strip beam excited and sensed by piezoelectric transducers is outlined first. Then, the antisymmetric and symmetric contents of the wave propagation response are analyzed in detail with respect to system parameters. In particular, the parametric influence on the 'sweet spot' frequency is investigated systematically. The complicated interaction of the wave components with respect to damage is illustrated through case studies. The analytical study is supported by numerical analysis using the finite element method and by experimental investigation. This research provides the mechanistic basis for robust damage detection using data processing and statistical analysis tools which is the focus of the second paper of this two-paper series
Energy Technology Data Exchange (ETDEWEB)
Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan
2015-09-09
The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.
Physics Structure Analysis of Parallel Waves Concept of Physics Teacher Candidate
International Nuclear Information System (INIS)
Sarwi, S; Linuwih, S; Supardi, K I
2017-01-01
The aim of this research was to find a parallel structure concept of wave physics and the factors that influence on the formation of parallel conceptions of physics teacher candidates. The method used qualitative research which types of cross-sectional design. These subjects were five of the third semester of basic physics and six of the fifth semester of wave course students. Data collection techniques used think aloud and written tests. Quantitative data were analysed with descriptive technique-percentage. The data analysis technique for belief and be aware of answers uses an explanatory analysis. Results of the research include: 1) the structure of the concept can be displayed through the illustration of a map containing the theoretical core, supplements the theory and phenomena that occur daily; 2) the trend of parallel conception of wave physics have been identified on the stationary waves, resonance of the sound and the propagation of transverse electromagnetic waves; 3) the influence on the parallel conception that reading textbooks less comprehensive and knowledge is partial understanding as forming the structure of the theory. (paper)
Sorghum cobalt analysis on not determined wave length with atomic ...
African Journals Online (AJOL)
Jane
2011-08-24
Aug 24, 2011 ... 2SamAn Inc, Nonsan, ChungcheongNam-do, Republic of Korea. 3Echo Information ... concentrations of 0.1 to 7 ppm can be quantitated. *Corresponding ... Eleven samples were air-dried and milled for Co analysis using an.
Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-01-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…
Analysis of 38 GHz mmWave Propagation Characteristics of Urban Scenarios
DEFF Research Database (Denmark)
Rodriguez Larrad, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard
2015-01-01
The 38 GHz mm-wave frequency band is a strong candidate for the future deployment of wireless systems. Compared to lower frequency bands, propagation in the 38 GHz band is relatively unexplored for access networks in urban scenarios. This paper presents a detailed measurement-based analysis of ur...
Tool to estimate optical metrics from summary wave-front analysis data in the human eye
Jansonius, Nomdo M.
Purpose Studies in the field of cataract and refractive surgery often report only summary wave-front analysis data data that are too condensed to allow for a retrospective calculation of metrics relevant to visual perception. The aim of this study was to develop a tool that can be used to estimate
Using Musical Intervals to Demonstrate Superposition of Waves and Fourier Analysis
LoPresto, Michael C.
2013-01-01
What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.
Lagrangian analysis of two-phase hydrodynamic and nuclear-coupled density-wave oscillations
International Nuclear Information System (INIS)
Lahey, R.T. Jr.; Yadigaroglu, G.
1974-01-01
The mathematical technique known as the ''method of characteristics'' has been used to construct an exact, analytical solution to predict the onset of density-wave oscillations in diabatic two-phase systems, such as Boiling Water Nuclear Reactors (BWR's). Specifically, heater wall dynamics, boiling boundary dynamics and nuclear kinetics have been accounted for in this analysis. Emphasis is placed on giving the reader a clear physical understanding of the phenomena of two-phase density-wave oscillations. Explanations are presented in terms of block diagram logic, and phasor representations of the various pressure drop perturbations are given. (U.S.)
O'Dea, A.; Haller, M. C.
2013-12-01
As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN
Migration velocity analysis using pre-stack wave fields
Alkhalifah, Tariq Ali
2016-08-25
Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform inversion. The migration velocity analysis part of the inversion often requires computing extended images, which is expensive when using conventional methods. As a result, we use pre-stack wavefield (the double-square-root formulation) extrapolation, which includes the extended information (subsurface offsets) naturally, to make the process far more efficient and stable. The combination of the forward and adjoint pre-stack wavefields provides us with update options that can be easily conditioned to improve convergence. We specifically use a modified differential semblance operator to split the extended image into a residual part for classic differential semblance operator updates and the image (Born) modelling part, which provides reflections for higher resolution information. In our implementation, we invert for the velocity and the image simultaneously through a dual objective function. Applications to synthetic examples demonstrate the features of the approach.
Finite Element Analysis of the Propagation of Acoustic Waves Along Waveguides Immersed in Water
Hladky-Hennion, A.-C.; Langlet, P.; de Billy, M.
1997-03-01
The finite element approach has previously been used, with the help of the ATILA code, to model the propagation of acoustic waves in waveguides [A.-C. Hladky-Hennion, Journal of Sound and Vibration, 194,119-136 (1996)]. In this paper an extension of the technique to the analysis of the propagation of acoustic waves in immersed waveguides is presented. In the proposed approach, the problem is reduced to a bidimensional problem, in which only the cross-section of the guide and the surrounding fluid domain are meshed by using finite elements. Then, wedges the top angles of which vary, are studied and the finite element results of the wedge wave speed are compared with experimental results. Finally, the conclusion indicates a way to extend this approach to waveguides of any cross-section.
Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint
Energy Technology Data Exchange (ETDEWEB)
Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.
2014-03-01
This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.
International Nuclear Information System (INIS)
Oscarsson, T.E.; Roennmark, K.G.
1990-01-01
In this paper the authors present an investigation of low-frequency waves observed on auroral field lines below the acceleration region by the Swedish satellite Viking. The measured frequency spectra are peaked at half the local proton gyrofrequency, and the waves are observed in close connection with precipitating electrons. In order to obtain information about the distribution of wave energy in wave vector space, they reconstruct the wave distribution function (WDF) from observed spectral densities. They use a new scheme that allows them to reconstruct simultaneously the WDF over a broad frequency band. The method also makes it possible to take into account available particle observations as well as Doppler shifts caused by the relative motion between the plasma and the satellite. The distribution of energy in wave vector space suggested by the reconstructed WDF is found to be consistent with what is expected from a plasma instability driven by the observed precipitating electrons. Furthermore, by using UV images obtained on Viking, they demonstrate that the wave propagation directions indicated by the reconstructed WDFs are consistent with a simple model of the presumed wave source in the electron precipitation region
Analysis of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals
Directory of Open Access Journals (Sweden)
Longfei Li
2016-04-01
Full Text Available Phononic crystals can be used to control elastic waves due to their frequency bands. This paper analyzes the passive and active control as well as the dispersion properties of longitudinal waves in rod-type piezoelectric phononic crystals over large frequency ranges. Based on the Love rod theory for modeling the longitudinal wave motions in the constituent rods and the method of reverberation-ray matrix (MRRM for deriving the member transfer matrices of the constituent rods, a modified transfer matrix method (MTMM is proposed for the analysis of dispersion curves by combining with the Floquet–Bloch principle and for the calculation of transmission spectra. Numerical examples are provided to validate the proposed MTMM for analyzing the band structures in both low and high frequency ranges. The passive control of longitudinal-wave band structures is studied by discussing the influences of the electrode’s thickness, the Poisson’s effect and the elastic rod inserts in the unit cell. The influences of electrical boundaries (including electric-open, applied electric capacity, electric-short and applied feedback control conditions on the band structures are investigated to illustrate the active control scheme. From the calculated comprehensive frequency spectra over a large frequency range, the dispersion properties of the characteristic longitudinal waves in rod-type piezoelectric phononic crystals are summarized.
Multichannel analysis of the surface waves of earth materials in some parts of Lagos State, Nigeria
Directory of Open Access Journals (Sweden)
Adegbola R.B.
2016-09-01
Full Text Available We present a method that utilizes multichannel analysis of surface waves (MASW, which was used to measure shear wave velocities, with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some local government areas in Lagos, Nigeria. MASW data were acquired using a 24-channel seismograph. The acquired data were processed and transformed into a two-dimensional (2-D structure reflective of the depth and surface wave velocity distribution within a depth of 0–15 m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/ borehole data that were acquired along the same profile. The comparison and correlation illustrate the accuracy and consistency of MASW-derived shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/ very low velocity data are reflective of organic clay/ peat materials and thus likely responsible for the failure, subsidence and weakening of structures within the study areas.
Directory of Open Access Journals (Sweden)
Franz Konstantin Fuss
2013-09-01
Full Text Available This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.
Born reflection kernel analysis and wave-equation reflection traveltime inversion in elastic media
Wang, Tengfei
2017-08-17
Elastic reflection waveform inversion (ERWI) utilize the reflections to update the low and intermediate wavenumbers in the deeper part of model. However, ERWI suffers from the cycle-skipping problem due to the objective function of waveform residual. Since traveltime information relates to the background model more linearly, we use the traveltime residuals as objective function to update background velocity model using wave equation reflected traveltime inversion (WERTI). The reflection kernel analysis shows that mode decomposition can suppress the artifacts in gradient calculation. We design a two-step inversion strategy, in which PP reflections are firstly used to invert P wave velocity (Vp), followed by S wave velocity (Vs) inversion with PS reflections. P/S separation of multi-component seismograms and spatial wave mode decomposition can reduce the nonlinearity of inversion effectively by selecting suitable P or S wave subsets for hierarchical inversion. Numerical example of Sigsbee2A model validates the effectiveness of the algorithms and strategies for elastic WERTI (E-WERTI).
Two-dimensional kinetic analysis on the ionization waves in a low current discharge
International Nuclear Information System (INIS)
Yamazaki, Tsutomu; Fujii, Masaharu; Noda, Shozou; Miura, Kousuke; Imazu, Shingo.
1982-01-01
In the research on the ionization waves produced in the positive column in a low pressure discharge, theoretical analyses have been made since long ago using mainly the fluid theory. However, the experimental properties that cannot be explained with the fluid theory have been found lately. For example, it has been shown experimentally that the product of longitudinal electric field E and the wavelength lambda of ionization waves becomes some specific values depending on the kinds of gas as one of the characteristics of the ionization waves produced in the positive column plasma in rare gas glow discharge, but these specific values of E-lambda cannot be explained with the fluid theory. In this paper, the perturbation component of electron energy distribution function accompanying ionization waves was derived from a two-dimensional Boltzmann equation which takes the radial non-uniformity into account, to consider the E-lambda values of ionization waves from the relative equation between electron density and the perturbation component of an electric field. The following results were obtained. The relative equation between electron density and the perturbation component of an electric field, which cannot be derived from the fluid theory, was able to be obtained; the values of E-lambda product agreed with the experimental results better than one-dimensional analysis; The steeper the shape of radial potential distribution, the more likely the resonance occurrence and the larger the E-lambda product; and so forth. (Wakatsuki, Y.)
Local full-wave energy and quasilinear analysis in nonuniform plasmas
International Nuclear Information System (INIS)
Smithe, D.N.
1989-01-01
The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetic analysis. An extension is presented to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character, it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern over the question of local energy for r.f.-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the r.f.-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities. (author)
EM wave propagation analysis in plasma covered radar absorbing material
Singh, Hema; Rawat, Harish Singh
2017-01-01
This book focuses on EM propagation characteristics within multilayered plasma-dielectric-metallic media. The method used for analysis is impedance transformation method. Plasma covered radar absorbing material is approximated as a multi-layered dielectric medium. The plasma is considered to be bounded homogeneous/inhomogeneous medium. The reflection coefficient and hence return loss is analytically derived. The role of plasma parameters, such as electron density, collision frequency, plasma thickness, and plasma density profile in the absorption behavior of multi-layered plasma-RAM structure is described. This book provides a clearer picture of EM propagation within plasma. The reader will get an insight of plasma parameters that play significant role in deciding the absorption characteristics of plasma covered surfaces.
Can P wave wavelet analysis predict atrial fibrillation after coronary artery bypass grafting?
Vassilikos, Vassilios; Dakos, George; Chouvarda, Ioanna; Karagounis, Labros; Karvounis, Haralambos; Maglaveras, Nikolaos; Mochlas, Sotirios; Spanos, Panagiotis; Louridas, George
2003-01-01
The purpose of this study was the evaluation of Morlet wavelet analysis of the P wave as a means of predicting the development of atrial fibrillation (AF) in patients who undergo coronary artery bypass grafting (CABG). The P wave was analyzed using the Morlet wavelet in 50 patients who underwent successful CABG. Group A consisted of 17 patients, 12 men and 5 women, of mean age 66.9 +/- 5.9 years, who developed AF postoperatively. Group B consisted of 33 patients, 29 men and 4 women, mean age 62.4 +/- 7.8 years, who remained arrhythmid-free. Using custom-designed software, P wave duration and wavelet parameters expressing the mean and maximum energy of the P wave were calculated from 3-channel digital recordings derived from orthogonal ECG leads (X, Y, and Z), and the vector magnitude (VM) was determined in each of 3 frequency bands (200-160 Hz, 150-100 Hz and 90-50 Hz). Univariate logistic-regression analysis identified a history of hypertension, the mean and maximum energies in all frequency bands along the Z axis, the mean and maximum energies (expressed by the VM) in the 200-160 Hz frequency band, and the mean energy in the 150-100 Hz frequency band along the Y axis as predictors for post-CABG AF. Multivariate analysis identified hypertension, ejection fraction, and the maximum energies in the 90-50 Hz frequency band along the Z and composite-vector axes as independent predictors. This multivariate model had a sensitivity of 91% and a specificity of 65%. We conclude that the Morlet wavelet analysis of the P wave is a very sensitive method of identifying patients who are likely to develop AF after CABG. The occurrence of post-CABG AF can be explained by a different activation pattern along the Z axis.
Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu
2018-03-01
Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.
Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case
Directory of Open Access Journals (Sweden)
Królak Andrzej
2005-03-01
Full Text Available The article reviews the statistical theory of signal detection in application to analysis of deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for the theory of signal detection and parameter estimation are presented. Several tools needed for both theoretical evaluation of the optimal data analysis methods and for their practical implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix, false alarm and detection probabilities, F-statistic, template placement, and fitting factor. These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms to efficiently implement the optimal data analysis techniques are discussed. Formulas are given for a general gravitational-wave signal that includes as special cases most of the deterministic signals of interest.
Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case
Directory of Open Access Journals (Sweden)
Piotr Jaranowski
2012-03-01
Full Text Available The article reviews the statistical theory of signal detection in application to analysis of deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for the theory of signal detection and parameter estimation are presented. Several tools needed for both theoretical evaluation of the optimal data analysis methods and for their practical implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix, false alarm and detection probabilities, ℱ-statistic, template placement, and fitting factor. These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms to efficiently implement the optimal data analysis techniques are discussed. Formulas are given for a general gravitational-wave signal that includes as special cases most of the deterministic signals of interest.
Morisaki, Soichiro; Yokoyama, Jun'ichi; Eda, Kazunari; Itoh, Yousuke
2016-01-01
We introduce a new analysis method to deal with stationary non-Gaussian noises in gravitational wave detectors in terms of the independent component analysis. First, we consider the simplest case where the detector outputs are linear combinations of the inputs, consisting of signals and various noises, and show that this method may be helpful to increase the signal-to-noise ratio. Next, we take into account the time delay between the inputs and the outputs. Finally, we extend our method to nonlinearly correlated noises and show that our method can identify the coupling coefficients and remove non-Gaussian noises. Although we focus on gravitational wave data analysis, our methods are applicable to the detection of any signals under non-Gaussian noises.
Partial wave analysis of KKPI system in D and E/IOTA region
International Nuclear Information System (INIS)
Chung, S.U.; Fernow, R.; Kirk, H.
1985-01-01
A partial wave analysis and a Dalitz plot analysis of high-statistics data from reaction π - p → K + K/sub S/π - n at 8.0 GeV/c show that the D(1285) is a J/sup PG/ = 1 ++ state and the E(1420) a J/sup PG/ = 0 -+ state both with a substantial deltaπ decay mode. The 1 ++ K*anti K wave exhibits a rapid rise near threshold but no evidence of a resonance in the E region. The assignment of J/sup PG/ = O -+ to the E is confirmed from a Dalitz-plot analysis of the reaction pp → K + K/sub S/π - X 0 . 11 refs., 5 figs
Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis
Guo, Bowen
2017-08-28
Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the
Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator
Directory of Open Access Journals (Sweden)
Jing Zhang
2018-03-01
Full Text Available Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC system with a tubular permanent magnet linear generator (TPMLG on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating principle of D-DWECs is introduced, and detailed analyses of the proposed D-DWEC’s floater system, wave force characteristics, and conversion efficiency conducted using computational fluid dynamics are presented. A TPMLG with an asymmetric slot structure is designed to increase the output electric power, and detailed analyses of the magnetic field distribution, detent force characteristics, and no-load and load performances conducted using finite element analysis are discussed. The TPMLG with an asymmetric slot, which produces the same power as the TPMLG with a symmetric slot, has one fifth detent force of the latter. An experiment system with a prototype of the TPMLG with a symmetric slot is used to test the simulation results. The experiment and analysis results agree well. Therefore, the proposed D-DWEC fulfills the requirements of WEC systems.
Directory of Open Access Journals (Sweden)
M. Ern
2009-01-01
Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights. Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO2 emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves. Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.
Directory of Open Access Journals (Sweden)
M. Ern
2009-01-01
Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights.
Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO_{2} emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves.
Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.
Stability analysis and reconstruction of wave distribution functions in warm plasmas
International Nuclear Information System (INIS)
Oscarsson, T.E.
1989-05-01
The purpose of this thesis is first to describe stability analysis and reconstruction of the wave distribution function (WDF) separately, and then to show how the two approaches can be combined in an investigation of satellite data. To demonstrate the type of stability investigation that is often used in space physics we study instabilities below the local proton gyrofrequency which are caused by anisotropic proton distributions. Arbitrary angles between the wavevector and the background magnetic field are considered, and effects of warm plasma on the wave propagation properties are included. We also comment briefly given on an often-used scheme for classifying instabilities. In our discussion on WDF analysis we develop a completely new and general method for reconstructing the WDF. Our scheme can be used to reconstruct the distribution function of waves in warm as well as cold plasma. Doppler effects introduced by satellite motion are included, and the reconstructions can be performed over a broad frequency range simultaneously. The applicability of our new WDF reconstruction method is studied in model problems and in an application to observations made by the Swedish satellite Viking. In the application to Viking data we combine stability and WDF analyses in a unique way that promises to become an important tool in future studies of wave-particle interactions in space plasmas. (author)
International Nuclear Information System (INIS)
Washizu, Masao; Tanabe, Yoshio.
1986-01-01
In a system handling the electromagnetic waves of large power such as the cavity resonator for a high energy accelerator and the high frequency heater for a nuclear fusion apparatus, the margin in the thermal and mechanical design of a wave guide system cannot be taken large, accordingly, the detailed analysis of electromagnetic waves is required. When the analysis in a general form is carried out, boundary element method may be a useful method of solution. This time, the authors carried out the formulation of steady electromagnetic wave problems by boundary element method, and it was shown that the formulation was able to be carried out under the physically clear boundary condition also in this case, and especially in the case of a perfect conductor system, a very simple form was obtained. In this paper, first, the techniques of formulation in a general case, and next, as a special case, the formulation for a perfect conductor system are described. Taking the analysis of the cavity resonators of cylindrical and rectangular parallelepiped forms as examples, the comparison with the analytical solution was carried out. (Kako, I.)
International Nuclear Information System (INIS)
Suck Salk, S.H.
1985-01-01
With the use of projection operators, the formal expressions of distorted-wave and coupled-channel-wave transition amplitudes for rearrangement collisions are derived. Use of projection operators (for the transition amplitudes) sharpens our understanding of the structural differences between the two transition amplitudes. The merit of each representation of the transition amplitudes is discussed. Derived perturbation potentials are found to have different structures. The rigorously derived distorted-wave Born-approximation (DWBA) transition amplitude is shown to be a generalization of the earlier DWBA expression obtained from the assumption of the dominance of elastic scattering in rearrangement collisions
Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform
Poggi, V.; Fäh, D.; Giardini, D.
2013-03-01
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.
Czech Academy of Sciences Publication Activity Database
Dragoescu, D.; Gheorghe, D.; Bendová, Magdalena; Wagner, Zdeněk
2015-01-01
Roč. 385, JAN 15 (2015), s. 105-109 ISSN 0378-3812 Institutional support: RVO:67985858 Keywords : speeds of sound * isentropic comprehenssibilities * refractive indices Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.846, year: 2015
Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin
2017-01-01
This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
Pallares, Elena; Espino, Manuel; Sánchez-Arcilla, Agustín
2013-04-01
The Catalan Coast is located in the North Western Mediterranean Sea. It is a region with highly heterogeneous wind and wave conditions, characterized by a microtidal environment, and economically very dependent from the sea and the coastal zone activities. Because some of the main coastal conflicts and management problems occur within a few kilometers of the land-ocean boundary, the level of resolution and accuracy from meteo-oceanographic predictions required is not currently available. The current work is focused on improving high resolution wave forecasting very near the coast. The SWAN wave model is used to simulate the waves in the area, and various buoy data and field campaigns are used to validate the results. The simulations are structured in four different domains covering all the North Western Mediterranean Sea, with a grid resolution from 9 km to 250 meters in coastal areas. Previous results show that the significant wave height is almost always underpredicted in this area, and the underprediction is higher during storm events. However, the error in the peak period and the mean period is almost always constantly under predicted with a bias between one and two seconds, plus some residual error. This systematic error represents 40% of the total error. To improve the initial results, the whiteccaping dissipation term is studied and modified. In the SWAN model, the whitecapping is mainly controlled by the steepness of the waves. Although the by default parameter is not depending on the wave number, there is a new formulation in the last SWAN version (40.81) to include it in the calculations. Previous investigations show that adjusting the dependence for the wave number improved the predictions for the wave energy at lower frequencies, solving the underprediction of the period mentioned before. In the present work different simulations are developed to calibrate the new formulation, obtaining important improvements in the results. For the significant wave
Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas
Energy Technology Data Exchange (ETDEWEB)
Roy S. Baty, F. Farassat, John A. Hargreaves
2007-05-25
Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.
Analysis of the high water wave volume for the Sava River near Zagreb
Trninic, Dusan
2010-05-01
The paper analyses volumes of the Sava River high water waves near Zagreb during the period: 1926-2008 (N = 83 years), which is needed for more efficient control of high and flood waters. The primary Sava flood control structures in the City of Zagreb are dikes built on both riverbanks, and the Odra Relief Canal with lateral spillway upstream from the City of Zagreb. Intensive morphological changes in the greater Sava area near Zagreb, and anthropological and climate variations and changes at the Sava catchment up to the Zagreb area require detailed analysis of the water wave characteristics. In one analysis, maximum annual volumes are calculated for high water waves with constant duration of: 10, 20, 30, 40, 50 and 60 days. Such calculations encompass total quantity of water (basic and surface runoff). The log Pearson III distribution is adapted for this series of maximum annual volumes. Based on the results obtained, the interrelations are established between the wave volume as function of duration and occurrence probability. In addition to the analysis of maximum volumes of constant duration, it is interesting to carry out the analyses of maximum volume in excess of the reference discharge since it is very important for the flood control. To determine the reference discharges, a discharge of specific duration is used from an average discharge duration curve. The adopted reference discharges have durations of 50, 40, 30, 20 and 10%. Like in the previous case, log Pearson III distribution is adapted to the maximum wave data series. For reference discharge Q = 604 m3/s (duration 10%), a linear trend is calculated of maximum annual volumes exceeding the reference discharge for the Sava near Zagreb during the analyzed period. The analysis results show a significant decrease trend. A similar analysis is carried out for the following three reference discharges: regular flood control measures at the Sava near Zagreb, which are proclaimed when the water level is 350 cm
Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling
2017-07-01
This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
Yue, Y.; Jiang, T.; Zhou, Q.
2017-12-01
In order to ensure the rationality and the safety of tunnel excavation, the advanced geological prediction has been become an indispensable step in tunneling. However, the extraction of signal and the separation of P and S waves directly influence the accuracy of geological prediction. Generally, the raw data collected in TSP system is low quality because of the numerous disturb factors in tunnel projects, such as the power interference and machine vibration interference. It's difficult for traditional method (band-pass filtering) to remove interference effectively as well as bring little loss to signal. The power interference, machine vibration interference and the signal are original variables and x, y, z component as observation signals, each component of the representation is a linear combination of the original variables, which satisfy applicable conditions of independent component analysis (ICA). We perform finite-difference simulations of elastic wave propagation to synthetic a tunnel seismic reflection record. The method of ICA was adopted to process the three-component data, and the results show that extract the estimates of signal and the signals are highly correlated (the coefficient correlation is up to more than 0.93). In addition, the estimates of interference that separated from ICA and the interference signals are also highly correlated, and the coefficient correlation is up to more than 0.99. Thus, simulation results showed that the ICA is an ideal method for extracting high quality data from mixed signals. For the separation of P and S waves, the conventional separation techniques are based on physical characteristics of wave propagation, which require knowledge of the near-surface P and S waves velocities and density. Whereas the ICA approach is entirely based on statistical differences between P and S waves, and the statistical technique does not require a priori information. The concrete results of the wave field separation will be presented in
Markfelder, Simon; Klingenberg, Christian
2018-03-01
In this paper we consider the isentropic compressible Euler equations in two space dimensions together with particular initial data. This data consists of two constant states, where one state lies in the lower and the other state in the upper half plane. The aim is to investigate whether there exists a unique entropy solution or if the convex integration method produces infinitely many entropy solutions. For some initial states this question has been answered by Feireisl and Kreml (J Hyperbolic Differ Equ 12(3):489-499, 2015), and also Chen and Chen (J Hyperbolic Differ Equ 4(1):105-122, 2007), where there exists a unique entropy solution. For other initial states Chiodaroli and Kreml (Arch Ration Mech Anal 214(3):1019-1049, 2014) and Chiodaroli et al. (Commun Pure Appl Math 68(7):1157-1190, 2015), showed that there are infinitely many entropy solutions. For still other initial states the question on uniqueness remained open and this will be the content of this paper. This paper can be seen as a completion of the aforementioned papers by showing that the solution is non-unique in all cases (except if the solution is smooth).
Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michal; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi
2015-01-01
The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.
Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michał; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi; Robinet, Florent; Schmidt, Patricia; Smith, Rory; Veitch, John; Wade, Madeline; Aoudia, Sofiane; Bose, Sukanta; Calderon Bustillo, Juan; Canizares, Priscilla; Capano, Colin; Clark, James; Colla, Alberto; Cuoco, Elena; Da Silva Costa, Carlos; Dal Canton, Tito; Evangelista, Edgar; Goetz, Evan; Gupta, Anuradha; Hannam, Mark; Keitel, David; Lackey, Benjamin; Logue, Joshua; Mohapatra, Satyanarayan; Piergiovanni, Francesco; Privitera, Stephen; Prix, Reinhard; Pürrer, Michael; Re, Virginia; Serafinelli, Roberto; Wade, Leslie; Wen, Linqing; Wette, Karl; Whelan, John; Palomba, C; Prodi, G
The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.
A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier
International Nuclear Information System (INIS)
Li, Ke; Cao, Miaomiao; Liu, Wenxin; Wang, Yong
2015-01-01
A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics
International Nuclear Information System (INIS)
Ohnuki, S.; Adachi, S.; Ohnuma, T.
1978-01-01
The radiation and reception characteristics of the oblate spheroidal antenna for electron plasma waves are theoretically investigated. The analysis is carried out as a boundary-value problem. The formulas for the radiation and reception characteristics such as radiation impedance, electron charge distributions, radiated wave potential, directional properties, and receiving voltage of the oblate spheroidal antenna are analytically obtained. As a result, it is concluded that the radiation and reception characteristics of the antennas are not uniquely determined by k/sub p/a (k/sub p/ is the wave number of an electron plasma wave, and a is the radius of the circular-plate antenna), but are determined by two out of three factors, k/sub p/a, zeta (radius divided by Debye length), and ω/ω/sub p/ (angular signal frequency to angular plasma frequency). This conclusion is in marked contrast to the conventional theory in which the charge distribution on the antenna is assumed a priori as uniform and, thus, the antenna characteristics are uniquely determined by k/sub p/a. It is claimed that the experimental results obtained hitherto support the present new theory
Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials
Energy Technology Data Exchange (ETDEWEB)
Wosko, Paul; Sundram, S. K.
2012-10-16
New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.
Geo-spatial multi-criteria analysis for wave energy conversion system deployment
Energy Technology Data Exchange (ETDEWEB)
Nobre, Ana; Pacheco, Miguel [Data Centre, Instituto Hidrografico, Portuguese Navy, Rua das Trinas 49, 1249-093 Lisboa (Portugal); Jorge, Raquel; Lopes, M.F.P.; Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais 1, 1049-001, Lisboa (Portugal)
2009-01-15
The growing requirements for renewable energy production lead to the development of a new series of systems, including wave energy conversion systems. Due to their sensitivity and the impact of the aggressive marine environment, the selection of the most adequate location for these systems is a major and very important task. Several factors, such as technological limitations, environmental conditions, administrative and logistic conditions, have to be taken into account in order to support the decision for best location. This paper describes a geo-spatial multi-criteria analysis methodology, based on geographic information systems technology, for identification of the best location to deploy a wave energy farm. This methodology is not conversion system dependent and therefore can be easily customized for different systems and implementation conditions. Selection factors can include, for example, ocean depth, sea bottom type, existing underwater cables, marine protected areas, ports location, shoreline, power grid location, military exercise areas, climatology of wave significant height, period and power. A case study demonstrating this methodology is presented, for an area offshore the Portuguese southwest coast. The system output allows a clear differential identification of the best spots for implementing a wave energy farm. It is not just a simple Boolean result showing valid and invalid locations, but a layer with a valued suitability for farm deployment. (author)
Geo-Spatial Multi-criteria Analysis for Wave Energy System Deployment
Energy Technology Data Exchange (ETDEWEB)
Nobre, Ana; Pacheco, Miguel (Instituto Hidrografico, Rua das Trinas, 49, Lisboa (PT)); Jorge, Raquel Lopes, M. F. P.; Gato, L. M. C. (IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, Lisboa (PT))
2007-07-01
The growing requirements for renewable energy production lead to the development of a new series of systems, including wave energy conversion systems. Due to their sensitivity and the impact of the aggressive marine environment, the selection of the most adequate location for these systems is a major and very important task. Several factors, such as technological limitations, environmental conditions, administrative and logistic conditions, have to be taken into account in order to support the decision for best location. This paper describes a geo-spatial multi-criteria analysis methodology, based on geographic information systems technology, for selection of the best location to deploy a wave energy farm. This methodology is not conversion system dependent and therefore can be easily customized for different systems and conditions. Selection factors can include, for example, ocean depth, bottom type, underwater cables, marine protected areas, ports location, shoreline, power grid location, military exercise areas, climatology of wave significant height, period and direction. A case study demonstrating this methodology is presented, for an area offshore the Portuguese southwest coast. The system output allows a clear identification of the best spots for a wave energy farm. It is not just a simple Boolean result showing valid and invalid locations, but a layer with a graded suitability for farm deployment.
Nucleon-nucleon partial-wave analysis to 1100 MeV
International Nuclear Information System (INIS)
Arndt, R.A.; Hyslop, J.S. III; Roper, L.D.
1987-01-01
Comprehensive analyses of nucleon-nucleon elastic-scattering data below 1100 MeV laboratory kinetic energy are presented. The data base from which an energy-dependent solution and 22 single-energy solutions are obtained consists of 7223 pp and 5474 np data. A resonancelike structure is found to occur in the 1 D 2 , 3 F 3 , 3 P 2 - 3 F 2 , and 3 F 4 - 3 H 4 partial waves; this behavior is associated with poles in the complex energy plane. The pole positions and residues are obtained by analytic continuation of the ''production'' piece of the T matrix obtained in the energy-dependent solution. The new phases differ somewhat from previously published VPIandSU solutions, especially in I = 0 waves above 500 MeV, where np data are very sparse. The partial waves are, however, based upon a significantly larger data base and reflect correspondingly smaller errors. The full data base and solution files can be obtained through a computer scattering analysis interactive dial-in (SAID) system at VPIandSU, which also exists at many institutions around the world and which can be transferred to any site with a suitable computer system. The SAID system can be used to modify solutions, plan experiments, and obtain any of the multitude of predictions which derive from partial-wave analyses of the world data base
Simulation and scaling analysis of a spherical particle-laden blast wave
Ling, Y.; Balachandar, S.
2018-05-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
Vanel, Florence O.; Baysal, Oktay
1995-01-01
Important characteristics of the aeroacoustic wave propagation are mostly encoded in their dispersion relations. Hence, a computational aeroacoustic (CAA) algorithm, which reasonably preserves these relations, was investigated. It was derived using an optimization procedure to ensure, that the numerical derivatives preserved the wave number and angular frequency of the differential terms in the linearized, 2-D Euler equations. Then, simulations were performed to validate the scheme and a compatible set of discretized boundary conditions. The computational results were found to agree favorably with the exact solutions. The boundary conditions were transparent to the outgoing waves, except when the disturbance source was close to a boundary. The time-domain data generated by such CAA solutions were often intractable until their spectra was analyzed. Therefore, the relative merits of three different methods were included in the study. For simple, periodic waves, the periodogram method produced better estimates of the steep-sloped spectra than the Blackman-Tukey method. Also, for this problem, the Hanning window was more effective when used with the weighted-overlapped-segment-averaging and Blackman-Tukey methods gave better results than the periodogram method. Finally, it was demonstrated that the representation of time domain-data was significantly dependent on the particular spectral analysis method employed.
Simulation and scaling analysis of a spherical particle-laden blast wave
Ling, Y.; Balachandar, S.
2018-02-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
Dynamic Analysis of Wind Power Turbine's Tower under the Combined Action of Winds and Waves
Institute of Scientific and Technical Information of China (English)
CHENG You-liang; QU Jiang-man; XUE Zhan-pu; JIANG Yan
2017-01-01
To deal with the dynamic response problem of offshore wind power tower under the combined action of winds and waves,finite element method is used to analyze the structure and flow field around the outside flange of the segmentation part.The changes of pressure distribution and vorticity about the outside flange are obtained.Focused on the analysis on the change of hydrostatic pressure and temperature of the tower cut surface,contour lines under the combined action of winds and waves are depicted.Results show that the surface of the offshore wind turbine tower presents instable temperature field when it suffers the action of winds and waves loads,the static pressure increases nonlinearly with the increase of altitude,the fluid vorticity around the outside flange follows an parabolic curve approximately.Results provide a reference for the actual monitoring data of the offshore wind turbine tower under the combined action of winds and waves,so as to ensure the normal operation of tower.
Parameter sensitivity and uncertainty analysis for a storm surge and wave model
Directory of Open Access Journals (Sweden)
L. A. Bastidas
2016-09-01
Full Text Available Development and simulation of synthetic hurricane tracks is a common methodology used to estimate hurricane hazards in the absence of empirical coastal surge and wave observations. Such methods typically rely on numerical models to translate stochastically generated hurricane wind and pressure forcing into coastal surge and wave estimates. The model output uncertainty associated with selection of appropriate model parameters must therefore be addressed. The computational overburden of probabilistic surge hazard estimates is exacerbated by the high dimensionality of numerical surge and wave models. We present a model parameter sensitivity analysis of the Delft3D model for the simulation of hazards posed by Hurricane Bob (1991 utilizing three theoretical wind distributions (NWS23, modified Rankine, and Holland. The sensitive model parameters (of 11 total considered include wind drag, the depth-induced breaking γB, and the bottom roughness. Several parameters show no sensitivity (threshold depth, eddy viscosity, wave triad parameters, and depth-induced breaking αB and can therefore be excluded to reduce the computational overburden of probabilistic surge hazard estimates. The sensitive model parameters also demonstrate a large number of interactions between parameters and a nonlinear model response. While model outputs showed sensitivity to several parameters, the ability of these parameters to act as tuning parameters for calibration is somewhat limited as proper model calibration is strongly reliant on accurate wind and pressure forcing data. A comparison of the model performance with forcings from the different wind models is also presented.
Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation
International Nuclear Information System (INIS)
Hod, Shahar
2009-01-01
It has long been known that null unstable geodesics are related to the characteristic modes of black holes--the so-called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability time scale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null rays is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation waves in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.
Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod
2018-05-29
Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.
Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion
Zhang, Sanzong
2012-11-04
The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.
International Nuclear Information System (INIS)
Sergeev, Alexey; Herman, Michael F.
2006-01-01
The behavior of an initial value representation surface hopping wave function is examined. Since this method is an initial value representation for the semiclassical solution of the time independent Schroedinger equation for nonadiabatic problems, it has computational advantages over the primitive surface hopping wave function. The primitive wave function has been shown to provide transition probabilities that accurately compare with quantum results for model problems. The analysis presented in this work shows that the multistate initial value representation surface hopping wave function should approach the primitive result in asymptotic regions and provide transition probabilities with the same level of accuracy for scattering problems as the primitive method
International Nuclear Information System (INIS)
Abbasbandy, S.
2009-01-01
Solitary wave solutions to the modified form of Camassa-Holm (CH) equation are sought. In this work, the homotopy analysis method (HAM), one of the most effective method, is applied to obtain the soliton wave solutions with and without continuity of first derivatives at crest
Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego
2010-05-01
The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Moustafa, S.S.R.; Al-Arifi, N.
2018-01-01
Roč. 175, č. 1 (2018), s. 67-88 ISSN 0033-4553 Institutional support: RVO:67985891 Keywords : surface wave dispersion * joint inversion of seismic data * Rayleigh waves * holistic analysis of surface waves Impact factor: 1.591, year: 2016
Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.
2014-12-01
Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.
The Coronal Analysis of SHocks and Waves (CASHeW) framework
Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste
2017-11-01
Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.
Dynamic analysis of the conditional oscillator underlying slow waves in thalamocortical neurons
Directory of Open Access Journals (Sweden)
Francois eDavid
2016-02-01
Full Text Available During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca2+ channels play a pivotal role in almost every type of neuronal oscillations, including slow (<1 Hz waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs, and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e. ITwindow is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states (grouped-delta slow waves requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.
Gialafos, Elias J; Dilaveris, Polychronis E; Synetos, Andreas G; Tsolakidis, George F; Papaioannou, Theodoros G; Andrikopoulos, George K; Richter, Dimitris J; Triposkiadis, Filippos; Gialafos, John E
2003-01-01
P wave analysis from the 12-lead ECG is a recent contribution of noninvasive electrocardiology. P wave analysis indices (maximum and minimum P wave duration, P wave dispersion [Pdis = Pmax-Pmin], adjusted P wave dispersion [APdis = Pdis/square root of measured leads], summated P wave duration [Psum], standard deviation of P wave duration [Psd], mean P wave duration [Pmean]) can predict atrial arrhythmias. However, the definitions of all these indices are based on few studies. The aim of this analysis was to define normal values of these indices and the examine possible associations between P wave indices and clinical variables. The study included 1,353 healthy men, 24 +/- 3 years of age, who answered a questionnaire and underwent a detailed physical examination and a digitized 12-lead surface ECG. All P wave indices were analyzed by two independent investigators. Mean values of the ECG indices were: Pmax: 96 +/- 11 ms, Pmin: 57 +/- 9 ms, Pdis: 38 +/- 10 ms, Psum: 924 +/- 96 ms, Psd: 12 +/- 3, APdis: 11 +/- 3 ms, and Pmean: 77 +/- 8 ms. Age was significantly related with Pmax (r = 0.277, P < 0.01), Pmin (r = 0.255, P < 0.001), Psum (r = 0.074, P < 0.01), and Pmean (r = 0.074, P < 0.01). All ECG indices were significantly associated with the R-R interval, and among each other. This study defined normal indices of wave duration and correlations among them. These markers may play an important predictive role in patients with atrial conduction abnormalities.
Partial wave analysis of the 18O(p,α0)15N reaction
International Nuclear Information System (INIS)
Wild, L.W.J.; Spicer, B.M.
1979-01-01
A partial wave analysis of the differential cross sections for the 18 O(p,α 0 ) 15 N reaction has been carried out applying the formalism of Blatt and Biedenharn (1952), made specific for this reaction. The differential cross sections, measured at 200 keV intervals from 6.6 to 10.4 MeV bombarding energy, were subjected to least-squares fitting to this specific analytic expression. Two resonances were given by the analysis, the 19 F states being at 14.71+-0.07 MeV (1/2 - ) and 14.80 + 0.07 MeV (1/2) +
Evaluation of arterial propagation velocity based on the automated analysis of the Pulse Wave Shape
International Nuclear Information System (INIS)
Clara, F M; Scandurra, A G; Meschino, G J; Passoni, L I
2011-01-01
This paper proposes the automatic estimation of the arterial propagation velocity from the pulse wave raw records measured in the region of the radial artery. A fully automatic process is proposed to select and analyze typical pulse cycles from the raw data. An adaptive neuro-fuzzy inference system, together with a heuristic search is used to find a functional approximation of the pulse wave. The estimation of the propagation velocity is carried out via the analysis of the functional approximation obtained with the fuzzy model. The analysis of the pulse wave records with the proposed methodology showed small differences compared with the method used so far, based on a strong interaction with the user. To evaluate the proposed methodology, we estimated the propagation velocity in a population of healthy men from a wide range of ages. It has been found in these studies that propagation velocity increases linearly with age and it presents a considerable dispersion of values in healthy individuals. We conclude that this process could be used to evaluate indirectly the propagation velocity of the aorta, which is related to physiological age in healthy individuals and with the expectation of life in cardiovascular patients.
International Nuclear Information System (INIS)
Laye epouse Granier, Agnes
1986-01-01
This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr
Acoustically Generated Flows in Flexural Plate Wave Sensors: a Multifield Analysis
Sayar, Ersin; Farouk, Bakhtier
2011-11-01
Acoustically excited flows in a microchannel flexural plate wave device are explored numerically with a coupled solid-fluid mechanics model. The device can be exploited to integrate micropumps with microfluidic chips. A comprehensive understanding of the device requires the development of coupled two or three-dimensional fluid structure interactive (FSI) models. The channel walls are composed of layers of ZnO, Si3N4 and Al. An isothermal equation of state for the fluid (water) is employed. The flexural motions of the channel walls and the resulting flowfields are solved simultaneously. A parametric analysis is performed by varying the values of the driving frequency, voltage of the electrical signal and the channel height. The time averaged axial velocity is found to be proportional to the square of the wave amplitude. The present approach is superior to the method of successive approximations where the solid-liquid coupling is weak.
Partial wave analysis of ι/η(1430) from DM2
International Nuclear Information System (INIS)
Augustin, J.E.; Cosme, G.; Couchot, F.; Fulda, F.; Grosdidier, G.; Jean-Marie, B.; Lepeltier, V.; Mane, M.; Szklarz, G.; Jousset, J.; Ajaltouni, Z.; Falvard, A.; Michel, B.; Montret, J.C.
1989-12-01
A Partial Wave Analysis of the ι/η (1430) region from the study of the radiative decays J/Ψ → γ K S 0 K ± π -+ and J/Ψ → γ K ± K -+ π 0 is presented. Pseudoscalar dominance appears clearly with two dynamical components. The main one which proceeds via δ/a 0 (980) π is centered at 1460 MeV/c 2 , while the second one with K*(892) K dynamics is peaked at a lower mass (1420 MeV/c 2 ) close to its kinematical threshold. In addition, the higher part of the mass spectrum contains a significant contribution from the 1 ++ K*(892)K wave
Partial wave analysis of DM2 data in the η(1430) energy range
International Nuclear Information System (INIS)
Augustin, J.E.; Cosme, G.; Couchot, F.; Fulda, F.; Grosdidier, G.; Jean-Marie, B.; Lepeltier, V.; Szklarz, G.; Bisello, D.; Busetto, G.; Castro, A.; Pescara, L.; Sartori, P.; Stanco, L.; Ajaltouni, Z.; Falvard, A.; Jousset, J.; Michel, B.; Montret, J.C.
1990-10-01
Partial Wave Analysis of the J/ψ → γK S 0 K ± π -+ , γK ± K -+ π 0 decays in the ι/η(1430) mass range shows a clear pseudoscalar dominance, with two dynamical components. The main one, centered at ∼ 1460 MeV/c 2 , proceeds via a 0 (980)π dynamics, while the second one with K*(892)K dynamics is peaked at ∼ 1420 MeV/c 2 , close to its threshold. In addition, the higher part of the mass spectrum contains a significant contribution from the 1 ++ K*(892)K wave. In the PWA of the J/ψ → γηπ + π - channel a resonant a 0 π production is observed slightly below 1400 MeV/c 2
Partial wave analysis of anti pp → anti ΛΛ
International Nuclear Information System (INIS)
Bugg, D.V.
2004-01-01
A partial wave analysis of PS185 data for anti pp → anti ΛΛ is presented. A 3 S 1 cusp is identified in the inverse process anti ΛΛ→ anti p p at threshold, using detailed balance to deduce cross sections from anti pp → anti ΛΛ. Partial wave amplitudes for anti pp 3 P 0 , 3 F 3 , 3 D 3 and 3 G 3 exhibit a behaviour very similar to resonances observed in Crystal Barrel data. With this identification, the anti pp → anti ΛΛ data then provide evidence for a new I=0, J PC =1 - resonance with mass M = 2290 ±20 MeV, Γ= 275 ±35 MeV, coupling to both 3 S 1 and 3 D 1 . (orig.)
Screening of Available Tools for Dynamic Mooring Analysis of Wave Energy Converters
Directory of Open Access Journals (Sweden)
Jonas Bjerg Thomsen
2017-06-01
Full Text Available The focus on alternative energy sources has increased significantly throughout the last few decades, leading to a considerable development in the wave energy sector. In spite of this, the sector cannot yet be considered commercialized, and many challenges still exist, in which mooring of floating wave energy converters is included. Different methods for assessment and design of mooring systems have been described by now, covering simple quasi-static analysis and more advanced and sophisticated dynamic analysis. Design standards for mooring systems already exist, and new ones are being developed specifically forwave energy converter moorings, which results in other requirements to the chosen tools, since these often have been aimed at other offshore sectors. The present analysis assesses a number of relevant commercial software packages for full dynamic mooring analysis in order to highlight the advantages and drawbacks. The focus of the assessment is to ensure that the software packages are capable of fulfilling the requirements of modeling, as defined in design standards and thereby ensuring that the analysis can be used to get a certified mooring system. Based on the initial assessment, the two software packages DeepC and OrcaFlex are found to best suit the requirements. They are therefore used in a case study in order to evaluate motion and mooring load response, and the results are compared in order to provide guidelines for which software package to choose. In the present study, the OrcaFlex code was found to satisfy all requirements.
Analysis of monochromatic signals by using data from the detector of Allegro gravitational waves
International Nuclear Information System (INIS)
Oliveira, Fernanda Gomes de
2010-01-01
The present work is developed in the searching for monochromatic gravitational waves signals in ALLEGRO's data. We have two procedures for data analysis based on the periodogram of Welch, which a method for the detection of monochromatic signals in the middle of noise which basically makes power spectrum estimates using averaged modified periodograms. By using this method it was possible to obtain a power spectrum for the data which reinforce peaks due to monochromatic signals. The two procedures of analysis for the years 1997 and 1999, were focused on monitoring a peak that appears in the spectral density of ALLEGRO's detector, so called 'mystery mode' (near 887 Hz). We look for variations in the frequency of the mystery mode that agree with the variation of the Doppler effect. In the rst analysis we have used by the variation of daily and annual Doppler shift. For the second one, we have only searched annual Doppler shift. We have applied the periodogram of Welch in both tests in the raw data of the detector in the search for a real signal and we found some peaks that can be candidates of gravitational radiation only the second analysis. In order to test the method we used in both analysis a simulated gravitational wave signal modulated by the Doppler effect injected in the data. We detected in both methods the artificial signal of GW simulated. Therefore we have reason to conclude that both methods are efficient in the search for monochromatic signals. (author)
Analysis of Energy Overshoot of High Frequency Waves with Wavelet Transform
Institute of Scientific and Technical Information of China (English)
WEN Fan
2000-01-01
A study is made on the overshoot phenomena in wind-generated waves. The surface displace ments of time-growing waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland＇s. It is found that high frequency wave components experience much stronger energy overshoot in the evolution.The energy of high frequency waves decreases greatly after overshoot
International Nuclear Information System (INIS)
Dalton, G.J.; Alcorn, R.; Lewis, T.
2010-01-01
The performance and economic viability of the Pelamis wave energy converter (WEC) has been investigated over a 20 year project time period using 2007 wave energy data from various global locations: Ireland, Portugal, USA and Canada. Previous reports assessing the Pelamis quote a disparate range of financial returns for the Pelamis, necessitating a comparative standardised assessment of wave energy economic indicators. An Excel model (NAVITAS) was created for this purpose which estimated the annual energy output of Pelamis for each location using wave height (H s ) and period (T z ) data, and produced financial results dependant on various input parameters. The economic indicators used for the analysis were cost of electricity (COE), net present value (NPV) and internal rate of return (IRR), modelled at a tariff rate of EUR0.20/kWh. Analysis of the wave energy data showed that the highest annual energy output (AEO) and capacity for the Pelamis was the Irish site, as expected. Portugal returned lower AOE similar to the lesser North American sites. Monthly energy output was highest in the winter, and was particularly evident in the Irish location. Moreover, the difference between the winter wave energy input and the Pelamis energy output for Ireland was also significant as indicated by the capture width, suggesting that Pelamis design was not efficiently capturing all the wave energy states present during that period. Modelling of COE for the various case study locations showed large variation in returns, depending on the number of WEC modelled and the initial cost input and learning curve. COE was highest when modelling single WEC in comparison to multiples, as well as when using 2004 initial costs in comparison to 2008 costs (at which time price of materials peaked). Ireland returned the lowest COE of EUR0.05/kWh modelling over 100 WEC at 2004 cost of materials, and EUR0.15/kWh at 2008 prices. Although favourable COE were recorded from some of the modelled scenarios
Ren, Wei-Wei; Li, Xiao-Long; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Xu, Hui-Xiong
2018-04-13
To evaluate a special kind of ultrasound (US) shear wave elastography for differential diagnosis of breast lesions, using a new qualitative analysis (i.e. the elasticity score in the travel time map) compared with conventional quantitative analysis. From June 2014 to July 2015, 266 pathologically proven breast lesions were enrolled in this study. The maximum, mean, median, minimum, and standard deviation of shear wave speed (SWS) values (m/s) were assessed. The elasticity score, a new qualitative feature, was evaluated in the travel time map. The area under the receiver operating characteristic (AUROC) curves were plotted to evaluate the diagnostic performance of both qualitative and quantitative analyses for differentiation of breast lesions. Among all quantitative parameters, SWS-max showed the highest AUROC (0.805; 95% CI: 0.752, 0.851) compared with SWS-mean (0.786; 95% CI:0.732, 0.834; P = 0.094), SWS-median (0.775; 95% CI:0.720, 0.824; P = 0.046), SWS-min (0.675; 95% CI:0.615, 0.731; P = 0.000), and SWS-SD (0.768; 95% CI:0.712, 0.817; P = 0.074). The AUROC of qualitative analysis in this study obtained the best diagnostic performance (0.871; 95% CI: 0.825, 0.909, compared with the best parameter of SWS-max in quantitative analysis, P = 0.011). The new qualitative analysis of shear wave travel time showed the superior diagnostic performance in the differentiation of breast lesions in comparison with conventional quantitative analysis.
International Nuclear Information System (INIS)
Abdul Rahim Samsuddin; Abdul Ghani Rafek; Umar Hamzah; Suharsono; Khairul Anuar Mohd Nayan
2008-01-01
Spectral analysis of surface waves (SASW) is a seismic method that uses the dispersive characteristics of Rayleigh waves propagating through layered material to evaluate S-wave velocity profile. The SASW is an in situ non intrusive method for geotechnical site characterization which is cost effective as compared to the conventional drilling method. In this study, a total of 20 stations from 13 sites were selected. A software (WINSASW 2.0) was used for the inversion process to produce S-wave velocity versus depth profiles. These profiles were then separately analyzed in relation to several engineering rock mass geological parameters such as stiffness, rock quality designation (RQD), anisotropy and the excavability properties. The analysis of the SASW data was based on the assumption that the rock mass is an isotropic homogeneous material with various intensity of discontinuity which influenced the velocity of surface wave propagation within the rock mass. Measurement of dynamic soil properties was carried out employing the shear wave velocities and the N values of the Standard Penetration Test (N SPT ) from borehole data. A new linear equation V s = 4.44 N SPT + 213.84 which relates S-wave and N SPT was deduced. An empirical equation is also proposed to calculate Rock Quality Designation (RQD) values based on S-wave velocity derived from SASW and that of ultrasonic tests. The result of this equation was found to be less than 10% in comparison to the RQD obtained from actual borehole data. An isotropic analysis of the rock mass was carried out using S-wave velocities derived from SASW measurements in four directions. The plots of S-wave - ultrasonic velocity ratio versus ultrasonic velocity were used to evaluate the excavability properties of rock mass. Five classes of rock mass excavability curves were finally proposed in relation to easy digging, easy ripping, hard ripping, hydraulic breaking and blasting. (author)
Heat conduction analysis of multi-layered FGMs considering the finite heat wave speed
International Nuclear Information System (INIS)
Rahideh, H.; Malekzadeh, P.; Golbahar Haghighi, M.R.
2012-01-01
Highlights: ► Using a layerwise-incremental differential quadrature for heat transfer of FGMs. ► Superior accuracy with fewer degrees of freedom of the method with respect to FEM. ► Considering multi-layered functionally graded materials. ► Hyperbolic heat transfer analysis of thermal system with heat generation. ► Showing the effect of heat wave speed on thermal characteristic of the system. - Abstract: In this work, the heat conduction with finite wave heat speed of multi-layered domain made of functionally graded materials (FGMs) subjected to heat generation is simulated. For this purpose, the domain is divided into a set of mathematical layers, the number of which can be equal or greater than those of the physical layers. Then, in each mathematical layer, the non-Fourier heat transfer equations are employed. Since, the governing equations have variable coefficients due to FGM properties, as an efficient and accurate method the differential quadrature method (DQM) is adopted to discretize both spatial and temporal domains in each layer. This results in superior accuracy with fewer degrees of freedom than conventional finite element method (FEM). To verify this advantages through some comparison studies, a finite element solution are also obtained. After demonstrating the convergence and accuracy of the method, the effects of heat wave speed for two different set of boundary conditions on the temperature distribution and heat flux of the domain are studied.
Study of clay behaviour around a heat source by frequency spectrum analysis of seismic waves
International Nuclear Information System (INIS)
Sloovere, P. de.
1993-01-01
Wave propagated into soft rock is not completely described by purely linear elastic theory. Through spectrum analysis of wave, one can see that several frequencies are selected by the ground. ME2i uses this method to check grouting, piles a.s.o. The Mol experiment (on Radioactive Waste Disposal) aims to prove that little changes into heated clay can be detected by 'frequential seismic'. A cross-hole investigation system has been installed and tests have been performed for two years with a shear-hammer named MARGOT built to work inside horizontal boreholes: - Before heating the tests show the same results every time: . main frequency at 330 hertz; . maximal frequency at 520 hertz; - During heating: . the rays at 330 and 520 hertz disappear; . The frequencies in the range 100 - 300 hertz are prevailing; - After heating spectra have again their original shape. These results show that the effect is clear around an heated zone. The next steps should be: - Interpretation with computer's codes treating of wave propagation into a viscoelastic body; - Experimentations: . at the opening of a new gallery; . on big samples; . on granites and salt. 9 refs., 4 appendices
Directory of Open Access Journals (Sweden)
F. S. Kuo
2007-02-01
Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.
2015-10-01
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Surface Wave Analysis of Regional Earthquakes in the Eastern Rift System (Africa)
Oliva, S. J. C.; Guidarelli, M.; Ebinger, C. J.; Roecker, S. W.; Tiberi, C.
2015-12-01
The Northern Tanzania Divergence (NTD), the youngest part of the East African Rift System, presents the opportunity to obtain insights about the birth and early stages of rifting before it progresses to mature rifting and seafloor spreading. This region is particularly interesting because the Eastern rift splits into three arms in this area and develops in a region of thick and cold lithosphere, amid the Archaean Tanzanian craton and the Proterozoic orogenic belt (the Masai block). We analyzed about two thousand seismic events recorded by the 39 broadband stations of the CRAFTI network during its two-year deployment in the NTD area in 2013 to 2014. We present the results of surface wave tomographic inversion obtained from fundamental-mode Rayleigh waves for short periods (between 4 to 14 seconds). Group velocity dispersion curves obtained via multiple filter analysis are path-averaged and inverted to produce 0.1º x 0.1º nodal grid tomographic maps for discrete periods using a 2D generalization of the Backus and Gilbert method. To quantify our results in terms of S-wave velocity structure the average group velocity dispersion curves are then inverted, using a linearized least-squares inversion scheme, in order to obtain the shear wave velocity structure for the upper 20 km of the crust. Low velocity anomalies are observed in the region 50 km south of Lake Natron, as well as in the area of the Ngorongoro crater. The implications of our results for the local tectonics and the development of the rifting system will be discussed in light of the growing geophysical database from this region.
Analysis and Computation of Acoustic and Elastic Wave Equations in Random Media
Motamed, Mohammad
2014-01-06
We propose stochastic collocation methods for solving the second order acoustic and elastic wave equations in heterogeneous random media and subject to deterministic boundary and initial conditions [1, 4]. We assume that the medium consists of non-overlapping sub-domains with smooth interfaces. In each sub-domain, the materials coefficients are smooth and given or approximated by a finite number of random variable. One important example is wave propagation in multi-layered media with smooth interfaces. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems [2, 3], the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence is only algebraic. A fast spectral rate of convergence is still possible for some quantities of interest and for the wave solutions with particular types of data. We also show that the semi-discrete solution is analytic with respect to the random variables with the radius of analyticity proportional to the grid/mesh size h. We therefore obtain an exponential rate of convergence which deteriorates as the quantity h p gets smaller, with p representing the polynomial degree in the stochastic space. We have shown that analytical results and numerical examples are consistent and that the stochastic collocation method may be a valid alternative to the more traditional Monte Carlo method. Here we focus on the stochastic acoustic wave equation. Similar results are obtained for stochastic elastic equations.
Mechanical design and analysis of a low beta squeezed half-wave resonator
He, Shou-Bo; Zhang, Cong; Yue, Wei-Ming; Wang, Ruo-Xu; Xu, Meng-Xin; Wang, Zhi-Jun; Huang, Shi-Chun; Huang, Yu-Lu; Jiang, Tian-Cai; Wang, Feng-Feng; Zhang, Sheng-Xue; He, Yuan; Zhang, Sheng-Hu; Zhao, Hong-Wei
2014-08-01
A superconducting squeezed type half-wave resonator (HWR) of β=0.09 has been developed at the Institute of Modern Physics, Lanzhou. In this paper, a basic design is presented for the stiffening structure for the detuning effect caused by helium pressure and Lorentz force. The mechanical modal analysis has been investigated the with finite element method (FEM). Based on these considerations, a new stiffening structure is proposed for the HWR cavity. The computation results concerning the frequency shift show that the low beta HWR cavity with new stiffening structure has low frequency sensitivity coefficient df/dp and Lorentz force detuning coefficient KL, and stable mechanical properties.
On continuous ambiguities in model-independent partial wave analysis - 1
International Nuclear Information System (INIS)
Nikitin, I.N.
1995-01-01
A problem of amplitude reconstruction in terms of the given angular distribution is considered. Solution of this problem is not unique. A class of amplitudes, correspondent to one and the same angular distribution, forms a region in projection onto a finite set of spherical harmonics. An explicit parametrization of a boundary of the region is obtained. A shape of the region of ambiguities is studied in particular example. A scheme of partial-wave analysis, which describes all solutions in the limits of the region, is proposed. 5 refs., 5 figs
Analysis of stress in reactor core vessel under effect of pressure lose shock wave
International Nuclear Information System (INIS)
Li Yong; Liu Baoting
2001-01-01
High Temperature gas cooled Reactor (HTR-10) is a modular High Temperature gas cooled Reactor of the new generation. In order to analyze the safety characteristics of its core vessel in case of large rupture accident, the transient performance of its core vessel under the effect of pressure lose shock wave is studied, and the transient pressure difference between the two sides of the core vessel and the transient stresses in the core vessel is presented in this paper, these results can be used in the safety analysis and safety design of the core vessel of HTR-10. (author)
International Nuclear Information System (INIS)
Wen, S.-B.; Mao Xianglei; Greif, Ralph; Russo, Richard E.
2007-01-01
By fitting simulation results with experimentally measured trajectories of the shock wave and the vapor/background gas contact surface, we found that inclusion of ionization energy in the analysis leads to a change in the evolution of the pressure, mass density, electron number density, and temperature of the vapor plume. The contribution of ionization energy to both the plasma and shock wave has been neglected in most studies of laser ablation. Compared to previous simulations, the densities, pressures, and temperatures are lower shortly after the laser pulse ( 50 ns). The predicted laser energy conversion ratio also showed about a 20% increase (from 35% to 45%) when the ionization energy is considered. The changes in the evolution of the physical quantities result from the retention of the ionization energy in the vapor plume, which is then gradually transformed to kinetic and thermal energies. When ionization energy is included in the simulation, the vapor plume attains higher expansion speeds and temperatures for a longer time after the laser pulse. The better determination of the temperature history of the vapor plume not only improves the understanding of the expansion process of the laser induced vapor plume but also is important for chemical analysis. The accurate temperature history provides supplementary information which enhances the accuracy of chemical analysis based on spectral emission measurements (e.g., laser induced breakdown spectroscopy)
Directory of Open Access Journals (Sweden)
JOEL Arnault
2013-03-01
Full Text Available The case study of a mountain wave triggered by the Antarctic Peninsula on 6 October 2005, which has already been documented in the literature, is chosen here to quantify the associated gravity wave forcing on the large-scale flow, with a budget analysis of the horizontal wind components and horizontal kinetic energy. In particular, a numerical simulation using the Weather Research and Forecasting (WRF model is compared to a control simulation with flat orography to separate the contribution of the mountain wave from that of other synoptic processes of non-orographic origin. The so-called differential budgets of horizontal wind components and horizontal kinetic energy (after subtracting the results from the simulation without orography are then averaged horizontally and vertically in the inner domain of the simulation to quantify the mountain wave dynamical influence at this scale. This allows for a quantitative analysis of the simulated mountain wave's dynamical influence, including the orographically induced pressure drag, the counterbalancing wave-induced vertical transport of momentum from the flow aloft, the momentum and energy exchanges with the outer flow at the lateral and upper boundaries, the effect of turbulent mixing, the dynamics associated with geostrophic re-adjustment of the inner flow, the deceleration of the inner flow, the secondary generation of an inertia–gravity wave and the so-called baroclinic conversion of energy between potential energy and kinetic energy.
Orms, Natalie; Rehn, Dirk R; Dreuw, Andreas; Krylov, Anna I
2018-02-13
Density-based wave function analysis enables unambiguous comparisons of the electronic structure computed by different methods and removes ambiguity of orbital choices. We use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high- and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such as polyradicals. We show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of the bonding pattern.
Hobiger, Manuel; Cornou, Cécile; Bard, Pierre-Yves; Le Bihan, Nicolas; Imperatori, Walter
2016-10-01
We introduce the MUSIQUE algorithm and apply it to seismic wavefield recordings in California. The algorithm is designed to analyse seismic signals recorded by arrays of three-component seismic sensors. It is based on the MUSIC and the quaternion-MUSIC algorithms. In a first step, the MUSIC algorithm is applied in order to estimate the backazimuth and velocity of incident seismic waves and to discriminate between Love and possible Rayleigh waves. In a second step, the polarization parameters of possible Rayleigh waves are analysed using quaternion-MUSIC, distinguishing retrograde and prograde Rayleigh waves and determining their ellipticity. In this study, we apply the MUSIQUE algorithm to seismic wavefield recordings of the San Jose Dense Seismic Array. This array has been installed in 1999 in the Evergreen Basin, a sedimentary basin in the Eastern Santa Clara Valley. The analysis includes 22 regional earthquakes with epicentres between 40 and 600 km distant from the array and covering different backazimuths with respect to the array. The azimuthal distribution and the energy partition of the different surface wave types are analysed. Love waves dominate the wavefield for the vast majority of the events. For close events in the north, the wavefield is dominated by the first harmonic mode of Love waves, for farther events, the fundamental mode dominates. The energy distribution is different for earthquakes occurring northwest and southeast of the array. In both cases, the waves crossing the array are mostly arriving from the respective hemicycle. However, scattered Love waves arriving from the south can be seen for all earthquakes. Combining the information of all events, it is possible to retrieve the Love wave dispersion curves of the fundamental and the first harmonic mode. The particle motion of the fundamental mode of Rayleigh waves is retrograde and for the first harmonic mode, it is prograde. For both modes, we can also retrieve dispersion and ellipticity
DEFF Research Database (Denmark)
Marschler, Christian; Sieber, Jan; Berkemer, Rainer
2014-01-01
We introduce a general formulation for an implicit equation-free method in the setting of slow-fast systems. First, we give a rigorous convergence result for equation-free analysis showing that the implicitly defined coarse-level time stepper converges to the true dynamics on the slow manifold...... against the direction of traffic. Equation-free analysis enables us to investigate the behavior of the microscopic traffic model on a macroscopic level. The standard deviation of cars' headways is chosen as the macroscopic measure of the underlying dynamics such that traveling wave solutions correspond...... to equilibria on the macroscopic level in the equation-free setup. The collapse of the traffic jam to the free flow then corresponds to a saddle-node bifurcation of this macroscopic equilibrium. We continue this bifurcation in two parameters using equation-free analysis....
Directory of Open Access Journals (Sweden)
Huan-Feng Duan
2017-10-01
Full Text Available This paper investigates the impacts of non-uniformities of pipe diameter (i.e., an inhomogeneous cross-sectional area along pipelines on transient wave behavior and propagation in water supply pipelines. The multi-scale wave perturbation method is firstly used to derive analytical solutions for the amplitude evolution of transient pressure wave propagation in pipelines, considering regular and random variations of cross-sectional area, respectively. The analytical analysis is based on the one-dimensional (1D transient wave equation for pipe flow. Both derived results show that transient waves can be attenuated and scattered significantly along the longitudinal direction of the pipeline due to the regular and random non-uniformities of pipe diameter. The obtained analytical results are then validated by extensive 1D numerical simulations under different incident wave and non-uniform pipe conditions. The comparative results indicate that the derived analytical solutions are applicable and useful to describe the wave scattering effect in complex pipeline systems. Finally, the practical implications and influence of wave scattering effects on transient flow analysis and transient-based leak detection in urban water supply systems are discussed in the paper.
International Nuclear Information System (INIS)
Adams, T; Buskulic, D; Germain, V; Marion, F; Mours, B; Guidi, G M; Montani, M; Piergiovanni, F; Wang, G
2016-01-01
The multi-band template analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences. MBTA runs with a low computational cost, and can identify candidate GW events online with a sub-minute latency. The low computational running cost of MBTA also makes it useful for data quality studies. Events detected by MBTA online can be used to alert astronomical partners for electromagnetic follow-up. We outline the current status of MBTA and give details of recent pipeline upgrades and validation tests that were performed in preparation for the first advanced detector observing period. The MBTA pipeline is ready for the outset of the advanced detector era and the exciting prospects it will bring. (paper)
International Nuclear Information System (INIS)
Koo, Dae Seo; Cheong, Yong Moo; Jung, Hyun Kyu; Park, Chi Seung; Park, Jae Suck; Choi, H. R.; Jung, S. S.
2006-07-01
In order to apply the guided ultrasonic techniques to the pipes in nuclear power plants, the cases of defective pipes of nuclear power plants, were investigated. It was confirmed that geometric factors of pipes, such as location, shape, and allowable space were impertinent for the application of guided ultrasonic techniques to pipes of nuclear power plants. The quality of pipes, supports, signals analysis of weldment/defects, acquisition of accurate defects signals also make difficult to apply the guided ultrasonic techniques to pipes of nuclear power plants. Thus, a piping mock-up representing the pipes in the nuclear power plants were designed and fabricated. The artificial flaws will be fabricated on the piping mock-up. The signals of guided ultrasonic waves from the artificial flaws will be analyzed. The guided ultrasonic techniques will be applied to the inspection of pipes of nuclear power plants according to the basis of signals analysis of artificial flaws in the piping mock-up
Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.
2018-05-01
The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.
Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona
Energy Technology Data Exchange (ETDEWEB)
Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, Beijing, 100871, China, E-mail: jshept@gmail.com (China); Zhang, Lei [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Vocks, Christian [Leibniz-Institut für Astrophysik Potsdam, 14482, Potsdam (Germany); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, 24118 Kiel (Germany); Peter, Hardi [Max Plank Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany)
2016-03-25
We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.
Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping
2015-10-01
We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.
Directory of Open Access Journals (Sweden)
Haejoon Jung
2018-01-01
Full Text Available As an intrinsic part of the Internet of Things (IoT ecosystem, machine-to-machine (M2M communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Kazumichi [Division of Mechanical and Space Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Kodama, Tetsuya [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Takahira, Hiroyuki, E-mail: kobakazu@eng.hokudai.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan)
2011-10-07
In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.
International Nuclear Information System (INIS)
Kobayashi, Kazumichi; Kodama, Tetsuya; Takahira, Hiroyuki
2011-01-01
In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.
Kobayashi, Kazumichi; Kodama, Tetsuya; Takahira, Hiroyuki
2011-10-01
In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance.
Jung, Haejoon; Lee, In-Ho
2018-01-12
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.
Directory of Open Access Journals (Sweden)
Koichi Narahara
2012-01-01
Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.
International Nuclear Information System (INIS)
Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong
2011-01-01
In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.
MmWave Vehicle-to-Infrastructure Communication :Analysis of Urban Microcellular Networks
2017-05-01
Vehicle-to-infrastructure (V2I) communication may provide high data rates to vehicles via millimeterwave (mmWave) microcellular networks. This report uses stochastic geometry to analyze the coverage of urban mmWave microcellular networks. Prior work ...
International Nuclear Information System (INIS)
Hedwig, Gavin R.; Jameson, Geoffrey B.; Hoiland, Harald
2011-01-01
Highlights: → Solution densities and sound speeds were measured for aqueous solutions of thymidine. → Partial molar volumetric properties at infinite dilution and T = 298.15 K were derived. → The partial molar isentropic and isothermal compressions are of opposite signs. → The partial molar heat capacity for thymidine at infinite dilution was determined. - Abstract: Solution densities have been determined for aqueous solutions of thymidine at T = (288.15, 298.15, 303.15, and 313.15) K. The partial molar volumes at infinite dilution, V 2 0 , obtained from the density data were used to derive the partial molar isobaric expansion at infinite dilution for thymidine at T = 298.15 K, E 2 0 {E 2 0 =(∂V 2 0 /∂T) p }. The partial molar heat capacity at infinite dilution for thymidine, C p,2 0 , at T = 298.15 K has also been determined. Sound speeds have been measured for aqueous solutions of thymidine at T = 298.15 K. The partial molar isentropic compression at infinite dilution, K S,2 0 , and the partial molar isothermal compression at infinite dilution, K T,2 0 {K T,2 0 =-(∂V 2 0 /∂P) T }, have been derived from the sound speed data. The V 2 0 , E 2 0 , C p,2 0 , and K S,2 0 results for thymidine are critically compared with those available from the literature.
International Nuclear Information System (INIS)
Erckmann, V.; Gasparino, U.; Giannone, L.
1992-01-01
ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a≤18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T e modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs
Warped frequency transform analysis of ultrasonic guided waves in long bones
De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.
2010-03-01
Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.
Paul, Jonathan D.; Eakin, Caroline M.
2017-07-01
Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.
Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves
Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua
2017-09-01
In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.
Analysis and computation of the elastic wave equation with random coefficients
Motamed, Mohammad
2015-10-21
We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics of some given quantities of interest. We study the convergence rate of the error in the stochastic collocation method. In particular, we show that, the rate of convergence depends on the regularity of the solution or the quantity of interest in the stochastic space, which is in turn related to the regularity of the deterministic data in the physical space and the type of the quantity of interest. We demonstrate that a fast rate of convergence is possible in two cases: for the elastic wave solutions with high regular data; and for some high regular quantities of interest even in the presence of low regular data. We perform numerical examples, including a simplified earthquake, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo sampling method for approximating quantities with high stochastic regularity.
Theoretical analysis of four wave mixing in quantum dot optical amplifiers
DEFF Research Database (Denmark)
Berg, Tommy Winther; Mørk, Jesper
2003-01-01
The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing.......The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing....
Stochastic Geometric Coverage Analysis in mmWave Cellular Networks with a Realistic Channel Model
DEFF Research Database (Denmark)
Rebato, Mattia; Park, Jihong; Popovski, Petar
2017-01-01
Millimeter-wave (mmWave) bands have been attracting growing attention as a possible candidate for next-generation cellular networks, since the available spectrum is orders of magnitude larger than in current cellular allocations. To precisely design mmWave systems, it is important to examine mmWa...
Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas
Liu, Yechi
2018-06-01
The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.
Analysis and Synthesis of Leaky-Wave Devices in Planar Technology
Martinez Ros, Alejandro Javier
The work developed along this doctoral thesis has been focused on the analysis and synthesis of microwave devices in planar technology. In particular, several types of devices based on the radiation mechanism of leaky waves have been studied. Typically, the radiation properties in leaky-wave devices are determined by the complex propagation constant of the leaky mode, wherein the phase constant is responsible for the pointing angle and the leakage rate for the intensity of the radiated fields. In this manner, by controlling both amplitude and phase of the leaky mode, an effective control over the device's radiation diagram can be obtained. Moreover, with the purpose of efficiently obtaining the leaky mode's radiation properties as function of the main geometrical parameters of the structure, several modal tools based on the transverse resonance analysis of the structure have been performed. In order to demonstrate this simultaneous control over the complex propagation constant in planar technology, several types of leaky-wave devices, including antennas (LWAs), multiplexors and near-field focusing systems, have been designed and manufactured in the technology of substrate integrated waveguide (SIW). This recently proposed technology, allows the design of devices based on classical waveguide technology with standard manufacturing techniques used for printed circuit board (PCB) designs. In this way, most of the parts that form a communication system can be integrated into a single substrate, thus reducing its cost and providing a more robust and compact device, which has less losses compared to other planar technologies such as the microstrip. El trabajo llevado a cabo durante la realizacion de esta tesis doctoral, se ha centrado en el analisis y sintesis de dispositivos de microondas en tecnologia planar. En concreto, se han estudiado diferentes tipos de dispositivos basados en radiacion por ondas de fuga "leaky waves", en los cuales las propiedades de radiacion
Time-domain analysis of frequency dependent inertial wave forces on cylinders
DEFF Research Database (Denmark)
Krenk, Steen
2013-01-01
a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave......-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... the reduction of the resonant part of the response for natural structural frequencies above the dominating wave frequency....
Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele
2016-04-01
Concordia Ship Wreck. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7). [3]Nieto Borge, J., Rodriguez, G.R., Hessner, K., González, P.I., (2004). Inversion of Marine Radar Images for Surface Wave Analysis. J. Atmos. Oceanic Technol. 21, 1291-1300. [4] Fucile, F., Ludeno, G., Serafino, F.,Bulian, G., Soldovieri, F., Lugni, C. "Some challenges in recovering wave features from a wave radar system". Paper submitted to the International Ocean and Polar Engineering Conference, ISOPE, Rhodes 2016
PyPWA: A partial-wave/amplitude analysis software framework
Salgado, Carlos
2016-05-01
The PyPWA project aims to develop a software framework for Partial Wave and Amplitude Analysis of data; providing the user with software tools to identify resonances from multi-particle final states in photoproduction. Most of the code is written in Python. The software is divided into two main branches: one general-shell where amplitude's parameters (or any parametric model) are to be estimated from the data. This branch also includes software to produce simulated data-sets using the fitted amplitudes. A second branch contains a specific realization of the isobar model (with room to include Deck-type and other isobar model extensions) to perform PWA with an interface into the computer resources at Jefferson Lab. We are currently implementing parallelism and vectorization using the Intel's Xeon Phi family of coprocessors.
Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael
2011-02-01
In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
An analysis of JET fast-wave heating and current drive experiments directly related to ITER
Energy Technology Data Exchange (ETDEWEB)
Bhatnagar, V P; Eriksson, L; Gormezano, C; Jacquinot, J; Kaye, A; Start, D F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking
1994-07-01
The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs.
International Nuclear Information System (INIS)
Yeh, Y.S.; Chang, T.H.; Wu, T.S.
2004-01-01
A comparative analysis between the fundamental and second cyclotron harmonics of gyrotron backward-wave oscillators (gyro-BWOs) is presented. The simulation results reveal that nonlinear field contraction is a common feature for both harmonic interactions. Besides, the electron transit angle, used to characterize the axial modes of the fundamental harmonic TE 11 mode at the start-oscillation conditions, is found to be applicable even for the second harmonic TE 21 mode. Each axial mode of either the fundamental harmonic TE 11 or the second harmonic TE 21 modes is maintained at a constant value of the electron transit angle while changing the operating parameters, such as magnetic field and beam voltage. Extensive numerical calculations are conducted for the start-oscillation currents and tuning properties. Moreover, single-mode operating regimes are suggested where the second harmonic TE 21 gyro-BWO could generate a considerable output power, comparing with the fundamental harmonic TE 11 gyro-BWO
Variability of signal-to-noise ratio and the network analysis of gravitational wave burst signals
International Nuclear Information System (INIS)
Mohanty, S D; Rakhmanov, M; Klimenko, S; Mitselmakher, G
2006-01-01
The detection and estimation of gravitational wave burst signals, with a priori unknown polarization waveforms, requires the use of data from a network of detectors. Maximizing the network likelihood functional over all waveforms and sky positions yields point estimates for them as well as a detection statistic. However, the transformation from the data to estimates can become ill-conditioned over parts of the sky, resulting in significant errors in estimation. We modify the likelihood procedure by introducing a penalty functional which suppresses candidate solutions that display large signal-to-noise ratio (SNR) variability as the source is displaced on the sky. Simulations show that the resulting network analysis method performs significantly better in estimating the sky position of a source. Further, this method can be applied to any network, irrespective of the number or mutual alignment of detectors
International Nuclear Information System (INIS)
Zeuch, W.R.; Wang, C.Y.
1985-01-01
This paper presents some of the current capabilities of the three-dimensional piping code SHAPS and demonstrates their usefulness in handling analyses encountered in typical LMFBR studies. Several examples demonstrate the utility of the SHAPS code for problems involving fluid-structure interactions and seismic-related events occurring in three-dimensional piping networks. Results of two studies of pressure wave propagation demonstrate the dynamic coupling of pipes and elbows producing global motion and rigorous treatment of physical quantities such as changes in density, pressure, and strain energy. Results of the seismic analysis demonstrate the capability of SHAPS to handle dynamic structural response within a piping network over an extended transient period of several seconds. Variation in dominant stress frequencies and global translational frequencies were easily handled with the code. 4 refs., 10 figs
An analysis of JET fast-wave heating and current drive experiments directly related to ITER
International Nuclear Information System (INIS)
Bhatnagar, V.P.; Eriksson, L.; Gormezano, C.; Jacquinot, J.; Kaye, A.; Start, D.F.H.
1994-01-01
The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs
Numerical Analysis of a Large Floating Wave Energy Converter with Adjustable Structural Geometry
DEFF Research Database (Denmark)
Ferri, Francesco; Pecher, Arthur Francois Serge; Kofoed, Jens Peter
2015-01-01
by the structural loads in extreme conditions. TheWeptos is a large floating WEC, with multiple absorbers, which has proven to be a serious candidate for the renewable energy market, due to both relevant power performance and reduced cost if compared with other WECs. The scope of this article is to compare two......The current cost of energy (CoE) from wave energy converters (WECs) is still significantly higher than other renewable energy resources, thus the sector has not yet reached a competitive level. WECs have a relative small turnover compared to the high capital cost, which to a large extent is driven...... different configurations of the Weptos machine, using the cost of energy (CoE) as a base of comparison. The numerical results are obtained via a multi-body analysis carried out in frequency domain....
Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak
International Nuclear Information System (INIS)
Tan Yi; Gao Zhe; He Yexi
2009-01-01
Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak are presented. Two candidate antenna concepts, folded and unfolded, are analyzed and compared with each other. In the frequency range of Alfven resonance the impedance spectrums of both two concept antennas for major modes are numerically calculated in a 1-D MHD framework. The folded concept is chosen for engineering design. The antenna system is designed to be simple and requires least modification to the vacuum vessel. The definition of the antenna shape is guided by the analyses with constraints of existing hardware layouts. Each antenna unit consists of two stainless steel straps with a thickness of 1 mm. A number of boron nitride tiles are assembled together as the side limiters for plasma shielding. Estimation shows that the structure is robust enough to withstand the electromagnetic force and the heat load for typical discharge duty cycles.
International Nuclear Information System (INIS)
Calvert, W.
1987-01-01
For more than thirty years the intense decametric radio emissions from Jupiter (DAM) and the corresponding auroral kilometric radiation from the Earth (AKR) have remained major radio science mysteries. Part of the problem, aside from their inherent complexity, has been the difficulty of measuring their source location and emission properties from limited observations. Progress has been made on this problem by locating the source directly, i.e., by analysis of the faraday rotation observed with Voyager as the wave path crossed the Io plasma torus, and indirectly by comparing the peak frequencies of the decametric emission with that at the foot of the Io flux tube. Progress was also made on the general question of how the emissions originate by finding properties of both the AKR and DAM which would imply emission by natural radio lasing
International Nuclear Information System (INIS)
Alomari, A. K.; Noorani, M. S. M.; Nazar, R.
2008-01-01
We employ the homotopy analysis method (HAM) to obtain approximate analytical solutions to the heat-like and wave-like equations. The HAM contains the auxiliary parameter ħ, which provides a convenient way of controlling the convergence region of series solutions. The analysis is accompanied by several linear and nonlinear heat-like and wave-like equations with initial boundary value problems. The results obtained prove that HAM is very effective and simple with less error than the Adomian decomposition method and the variational iteration method
Geological structure analysis in Central Java using travel time tomography technique of S waves
International Nuclear Information System (INIS)
Palupi, I. R.; Raharjo, W.; Nurdian, S. W.; Giamboro, W. S.; Santoso, A.
2016-01-01
Java is one of the islands in Indonesia that is prone to the earthquakes, in south of Java, there is the Australian Plate move to the Java island and press with perpendicular direction. This plate movement formed subduction zone and cause earthquakes. The earthquake is the release of energy due to the sudden movement of the plates. When an earthquake occurs, the energy is released and record by seismometers in the waveform. The first wave recorded is called the P waves (primary) and the next wave is called S waves (secondary). Both of these waves have different characteristics in terms of propagation and direction of movement. S wave is composed of waves of Rayleigh and Love waves, with each direction of movement of the vertical and horizontal, subsurface imaging by using S wave tomography technique can describe the type of the S wave through the medium. The variation of wave velocity under Central Java (esearch area) is ranging from -10% to 10% at the depth of 20, 30 and 40 km, the velocity decrease with the depth increase. Moho discontinuity is lies in the depth of 32 km under the crust, it is indicates there is strong heterogenity in Moho. (paper)
A meta-analysis of third wave mindfulness-based cognitive behavioral therapies for older people.
Kishita, Naoko; Takei, Yuko; Stewart, Ian
2017-12-01
The aim of this study is to review the effectiveness of third wave mindfulness-based cognitive behavioral therapies (CBTs) for depressive or anxiety symptomatology in older adults across a wide range of physical and psychological conditions. Electronic literature databases were searched for articles, and random-effects meta-analysis was conducted. Ten studies met the inclusion criteria, of which nine reported the efficacy of interventions on depressive symptoms and seven on anxiety symptoms. Effect-size estimates suggested that mindfulness-based CBT is moderately effective on depressive symptoms in older adults (g = 0.55). The results demonstrated a similar level of overall effect size for anxiety symptoms (g = 0.58). However, there was a large heterogeneity, and publication bias was evident in studies reporting outcomes on anxiety symptoms, and thus, this observed efficacy for late-life anxiety may not be robust. The quality of the included studies varied. Only one study used an active psychological control condition. There were a limited number of studies that used an intent-to-treat (last observation carried forward method) analysis and reported appropriate methods for clinical trials (e.g., treatment-integrity reporting). Third wave mindfulness-based CBT may be robust in particular for depressive symptoms in older adults. We recommend that future studies (i) conduct randomized controlled trials with intent-to-treat to compare mindfulness-based CBT with other types of psychotherapy in older people and (ii) improve study quality by using appropriate methods for checking treatment adherence, randomization, and blinding of assessors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Faizah Bawadi, Nor; Anuar, Shamilah; Rahim, Mustaqqim A.; Mansor, A. Faizal
2018-03-01
A conventional and seismic method for determining the ultimate pile bearing capacity was proposed and compared. The Spectral Analysis of Surface Wave (SASW) method is one of the non-destructive seismic techniques that do not require drilling and sampling of soils, was used in the determination of shear wave velocity (Vs) and damping (D) profile of soil. The soil strength was found to be directly proportional to the Vs and its value has been successfully applied to obtain shallow bearing capacity empirically. A method is proposed in this study to determine the pile bearing capacity using Vs and D measurements for the design of pile and also as an alternative method to verify the bearing capacity from the other conventional methods of evaluation. The objectives of this study are to determine Vs and D profile through frequency response data from SASW measurements and to compare pile bearing capacities obtained from the method carried out and conventional methods. All SASW test arrays were conducted near the borehole and location of conventional pile load tests. In obtaining skin and end bearing pile resistance, the Hardin and Drnevich equation has been used with reference strains obtained from the method proposed by Abbiss. Back analysis results of pile bearing capacities from SASW were found to be 18981 kN and 4947 kN compared to 18014 kN and 4633 kN of IPLT with differences of 5% and 6% for Damansara and Kuala Lumpur test sites, respectively. The results of this study indicate that the seismic method proposed in this study has the potential to be used in estimating the pile bearing capacity.
Using the gauge condition to simplify the elastodynamic analysis of guided wave propagation
Directory of Open Access Journals (Sweden)
Md Yeasin BHUIYAN
2016-09-01
Full Text Available In this article, gauge condition in elastodynamics is explored more to revive its potential capability of simplifying wave propagation problems in elastic medium. The inception of gauge condition in elastodynamics happens from the Navier-Lame equations upon application of Helmholtz theorem. In order to solve the elastic wave problems by potential function approach, the gauge condition provides the necessary conditions for the potential functions. The gauge condition may be considered as the superposition of the separate gauge conditions of Lamb waves and shear horizontal (SH guided waves respectively, and thus, it may be resolved into corresponding gauges of Lamb waves and SH waves. The manipulation and proper choice of the gauge condition does not violate the classical solutions of elastic waves in plates; rather, it simplifies the problems. The gauge condition allows to obtain the analytical solution of complicated problems in a simplified manner.
Study of NΣ cusp in p+p → p+K{sup +}+Λ with partial wave analysis
Energy Technology Data Exchange (ETDEWEB)
Lu, S.; Muenzer, R.; Epple, E.; Fabbietti, L. [Excellenz Cluster Universe, Technische Universitaet Muenchen (Germany); Ritman, J.; Roderburg, E.; Hauenstein, F. [FZ Juelich (Germany); Collaboration: Hades and FOPI Collaboration
2016-07-01
In the last years, an analysis of exclusive reaction of p+p → p+K{sup +}+Λ has been carried out using Bonn-Gatchina Partial Wave Analysis. In a combined analysis of data from Hades, Fopi, Disto and Cosy-TOF, an energy dependent production process is determined. This analysis has shown that a sufficient description of the p+p → p+K{sup +}+Λ is quite challenging due to the presence of resonances N* and interference, which requires Partial Wave Analysis. A pronounced narrow structure is observed in its projection on the pΛ-invariant mass. This peak structure, which appears around the NΣ threshold, has a strongly asymmetric structure and is interpreted a NΣ cusp effect. In this talk, the results from a combined analysis will be shown, with a special focus on the NΣ cusp structure and a description using Flatte parametrization.
Chiral dynamics, S-wave contributions and angular analysis in D → ππl anti ν
Energy Technology Data Exchange (ETDEWEB)
Shi, Yu-Ji; Wang, Wei; Zhao, Shuai [Shanghai Jiao-Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai (China)
2017-07-15
We present a theoretical analysis of the D{sup -} → π{sup +}π{sup -}l anti ν and anti D{sup 0} → π{sup +}π{sup 0}l anti ν decays. We construct a general angular distribution which can include arbitrary partial waves of ππ. Retaining the S-wave and P-wave contributions we study the branching ratios, forward-backward asymmetries and a few other observables. The P-wave contribution is dominated by ρ{sup 0} resonance, and the S-wave contribution is analyzed using the unitarized chiral perturbation theory. The obtained branching fraction for D → ρlν, at the order 10{sup -3}, is consistent with the available experimental data. The S-wave contribution has a branching ratio at the order of 10{sup -4}, and this prediction can be tested by experiments like BESIII and LHCb. Future measurements can also be used to examine the π-π scattering phase shift. (orig.)
Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing
2012-04-01
An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.
Sun glitter imaging analysis of submarine sand waves in HJ-1A/B satellite CCD images
Zhang, Huaguo; He, Xiekai; Yang, Kang; Fu, Bin; Guan, Weibing
2014-11-01
Submarine sand waves are a widespread bed-form in tidal environment. Submarine sand waves induce current convergence and divergence that affect sea surface roughness thus become visible in sun glitter images. These sun glitter images have been employed for mapping sand wave topography. However, there are lots of effect factors in sun glitter imaging of the submarine sand waves, such as the imaging geometry and dynamic environment condition. In this paper, several sun glitter images from HJ-1A/B in the Taiwan Banks are selected. These satellite sun glitter images are used to discuss sun glitter imaging characteristics in different sensor parameters and dynamic environment condition. To interpret the imaging characteristics, calculating the sun glitter radiance and analyzing its spatial characteristics of the sand wave in different images is the best way. In this study, a simulated model based on sun glitter radiation transmission is adopted to certify the imaging analysis in further. Some results are drawn based on the study. Firstly, the sun glitter radiation is mainly determined by sensor view angle. Second, the current is another key factor for the sun glitter. The opposite current direction will cause exchanging of bright stripes and dark stripes. Third, brightness reversal would happen at the critical angle. Therefore, when using sun glitter image to obtain depth inversion, one is advised to take advantage of image properties of sand waves and to pay attention to key dynamic environment condition and brightness reversal.
International Nuclear Information System (INIS)
Choi, Seok Ki; Kim, Seong O
2011-01-01
A 600 MWe demonstration reactor being developed at KAERI employs a once-through helically coiled steam generator. The helically coiled steam generator is compact and is efficient for heat transfer, however, it may suffer from the two-phase instability. It is well known that the density wave instability is the main source of instability among various types of instabilities in a helically coiled S/G in a LMR. In the present study a simple method for analysis of the density wave two phase instability in a liquid metal reactor S/G is proposed and the method is applied to the analysis of density wave instability in a S/G of 600MWe liquid metal reactor
International Nuclear Information System (INIS)
Nagel, H.
1986-01-01
The flow induced valve operation is calculated for single and two-phase flow conditions by the fluid dynamic computer code DYVRO and results are compared to experimental data. The analysis show that the operational behaviour of the valves is not only dependent on the condition of the induced flow, but also the pipe flow can cause a feedback as a result of the induced pressure waves. For the calculation of pressure wave propagation in pipes of which the operation of flow induced valves has a considerable influence it is therefore necessary to have a coupled analysis of the pressure wave propagation and the operational behaviour of the valves. The analyses of the fast transient transfer from steam to two-phase flow show a good agreement with experimental data. Hence even these very high loads on pipes resulting from such fluid dynamic transients can be calculated realistically. (orig.)
Non-iterative determination of the stress-density relation from ramp wave data through a window
Dowling, Evan; Fratanduono, Dayne; Swift, Damian
2017-06-01
In the canonical ramp compression experiment, a smoothly-increasing load is applied the surface of the sample, and the particle velocity history is measured at interfaces two or more different distances into the sample. The velocity histories are used to deduce a stress-density relation by correcting for perturbations caused by reflected release waves, usually via the iterative Lagrangian analysis technique of Rothman and Maw. We previously described a non-iterative (recursive) method of analysis, which was more stable and orders of magnitude faster than iteration, but was subject to the limitation that the free surface velocity had to be sampled at uniform intervals. We have now developed more general recursive algorithms suitable for analyzing ramp data through a finite-impedance window. Free surfaces can be treated seamlessly, and the need for uniform velocity sampling has been removed. These calculations require interpolation of partially-released states using the partially-constructed isentrope, making them slower than the previous free-surface scheme, but they are still much faster than iterative analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Collision Analysis at 60-GHz mmWave Mesh Networks: The Case With Blockage and Shadowing
Lyu, Kangjia
2018-05-01
This thesis can be viewed as two parts. The first part focuses on performance analysis of millimeter wave (mmWave) communications. We investigate how the interference behaves in the outdoor mesh network operating at 60-GHz when block age and shadowing are present using the probability of collision as a metric, under both the protocol model and the physical model. In contrast with results reported in mmWave mesh networks at 60-GHz that advocates that interference has only a marginal effect, our results show that for a short-range link of 100 m, the collision probability gets considerably larger (beyond 0.1) at the signal-to-interference-plus-noise ratio (SINR) of interest (for example, the reference value is chosen as 15 dB for uncoded quadrature phase shift keying (QPSK)). Compensation or compromise should be made in order to maintain a low probability of collision, either by reducing transmitter node density which is to the detriment of the network connectivity, or by switching to a compact linear antenna array with more at-top elements, which places more stringent requirements in device integration techniques. The second part of this thesis focuses on finding the optimal unmanned aerial vehicle (UAV) deployment in the sense that it can maximize over specific network connectivity. We have introduced a connectivity measure based on the commonly used network connectivity metric, which is refered to as global soft connectivity. This measure can be easily extended to account for different propagation models, such as Rayleigh fading and Nakagami fading. It can also be modified to incorporate the link state probability and beam alignment errors in highly directional networks. As can be shown, under the line-of-sight (LOS) and Rayleigh fading assumptions, the optimization regarding the global soft connectivity can be expressed as a weighted sum of the square of link distances between the nodes within the network, namely the ground-to-ground links, the UAV-to-UAV links
Directory of Open Access Journals (Sweden)
Philippe Schnurle
2006-01-01
Full Text Available A 2.5-D combined seismic reflection and refraction survey has been conducted in the accretionary complex offshore of southwestern Taiwan where BSRs (Bottom Simulating Reflectors are highly concentrated and geochemical signals for the presence of gas hydrate are strong. In this study, we perform velocity analysis of the 6 4-component OBS (Ocean-Bottom Seismometer records along the southernmost transect of this seismic experiment. We utilize 3 independent methods in order to accurately determine the acoustic and shear-wave velocities of the sediments: 1-D Root Mean Square (RMS analysis of the P-P and P-S reflected events on individual datumed components, 2-D inversion of the P-P and P-S reflected and refracted events along the in-line transect, and 3-D acoustic inversion of the first arrivals. The principal sources of bias in the determination of the velocities are the 3-dimentional nature of the topography and the complexity of the underlying structures. The three methods result in consistent velocity profiles. Rapid lateral and vertical variations of the velocities are observed. We then investigate the large scale gas hydrate content through rock physic modeling: at the vertical of each OBS, shear-waves velocities are utilized to estimate the water-filled porosities, and the acoustic velocities predicted for a set of gas hydrate, quartz and clay contents are compared to the observed profiles.
International Nuclear Information System (INIS)
Ishida, Hitoshi; Meshii, Toshiyuki
2010-01-01
This study proposes an element size selection method named the 'Impact-Meshing (IM) method' for a finite element waves propagation analysis model, which is characterized by (1) determination of element division of the model with strain energy in the whole model, (2) static analysis (dynamic analysis in a single time step) with boundary conditions which gives a maximum change of displacement in the time increment and inertial (impact) force caused by the displacement change. In this paper, an example of application of the IM method to 3D ultrasonic wave propagation problem in an elastic solid is described. These examples showed an analysis result with a model determined by the IM method was convergence and calculation time for determination of element subdivision was reduced to about 1/6 by the IM Method which did not need determination of element subdivision by a dynamic transient analysis with 100 time steps. (author)
Dynamic analysis of floating wave energy generation system with mooring system
International Nuclear Information System (INIS)
Choi, Gyu Seok; Sohn, Jeong Hyun
2013-01-01
In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load
Stability analysis of Hasegawa space-charge waves in a plasma waveguide with collisional ion beam
Lee, Myoung-Jae; Jung, Young-Dae
2017-12-01
The dispersion relation for the Hasegawa space-charge wave propagating in a cylindrical waveguide dusty plasma containing collision-dominated ion stream is derived by using the fluid equations and the Poisson equation which lead to a Bessel equation. The solution of Bessel equation is null at the boundary and then the roots of the Bessel function would characterize the property of space-charge wave propagation. We have found that the Hasegawa space-charge wave can be excited for a large axial wave number. The growth rate of excitation increases as the order of the roots of the Bessel function increases. The growth rate decreases with an increase of the radius of cylindrical waveguide as well as with an increase of the collision frequency. We found that the disturbance of wave can be damped only for small wave numbers.
Statistical Analysis of Power Production from OWC Type Wave Energy Converters
DEFF Research Database (Denmark)
Martinelli, L.; Zanuttigh, B.; Kofoed, Jens Peter
2009-01-01
Oscillating Water Column based wave energy plants built so far have experienced a low efficiency in the conversion of the bidirectional oscillating flow. A new concept is considered here, the LeanCon Wave Energy Converter (WEC), that unifies the flow direction by use of non-return valves...... (wave period, wave height). Average performance and stochastic variability is thus obtained for any sea state and therefore also for the annual wave climate of interest. An example application of a LeanCon unit is carried out for a location off-shore Cagliari (Italy). Conclusions provide economic......, into a unidirectional flow, making the use of more efficient air turbines possible. Hereby, a more steady flow is also obtained. The general objective of this note is to examine, the power take off (PTO) efficiency under irregular wave conditions, for WECs with flow redirection. Final practical aim is to identify...
Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave
Directory of Open Access Journals (Sweden)
Wei Yi-wen
2015-06-01
Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.
Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator
Jing Zhang; Haitao Yu; Zhenchuan Shi
2018-01-01
Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC) must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC) system with a tubular permanent magnet linear generator (TPMLG) on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating pr...
A Temporal and Spatial Analysis of Wave-Generated Foam Patterns in the Surf Zone
2017-01-10
generated turbulence in laboratory wave tanks (Ting and Nelson 2011, Ting 2013, Ting and Reimnitz 2015). However, these techniques have yet to be adapted...These turbulent properties are important to categorize because they drive processes like sediment transport, water clarity, and the transport of...bubbles. In a wave tank , Nadaoka et al. (1989) observed that in the wave breaking region two types of eddies develop, namely horizontal eddies and ODEs
Sobisevich, A. L.; Presnov, D. A.; Sobisevich, L. E.; Shurup, A. S.
2018-03-01
The results of analysis of wave modes in the ambient noise induced in the layered structure "lithosphere-hydrosphere-ice sheet" are presented. It is shown that instrumental monitoring over background noises in an ice-covered shallow sea allows us to apply methods of seismic tomography in order to determine the structural parameters of a layered geophysical media.
International Nuclear Information System (INIS)
Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B
2009-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.
Sridhar, A.; Kouznetsova, V.; Geers, M.G.D.
2017-01-01
This work presents a novel multiscale semi-analytical technique for the acoustic plane wave analysis of (negative) dynamic mass density type local resonance metamaterials with complex micro-structural geometry. A two step solution strategy is adopted, in which the unit cell problem at the
Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan
2014-01-01
A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using
Energy Technology Data Exchange (ETDEWEB)
Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)
2016-08-15
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
International Nuclear Information System (INIS)
Ritboon, Atirach; Daengngam, Chalongrat; Pengpan, Teparksorn
2016-01-01
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
Directory of Open Access Journals (Sweden)
Zhong-ye Tian
2014-01-01
Full Text Available The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due to the traveling wave resonance. A new traveling wave excitation method that can simplify the multisupport excitation process into a two-support excitation process is developed.
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Noise characteristics analysis of short wave infrared InGaAs focal plane arrays
Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei
2017-09-01
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.
Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy
Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar
2018-03-01
Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.
Individual IOL Surface Topography Analysis by the WaveMaster Reflex UV
Directory of Open Access Journals (Sweden)
Marc Kannengießer
2013-01-01
Full Text Available Purpose. In order to establish inspection routines for individual intraocular lenses (IOLs, their surfaces have to be measured separately. Currently available measurement devices lack this functionality. The purpose of this study is to evaluate a new topography measurement device based on wavefront analysis for measuring individual regular and freeform IOL surfaces, the “WaveMaster Reflex UV” (Trioptics, Wedel, Germany. Methods. Measurements were performed on IOLs with increasingly complex surface geometries: spherical surfaces, surfaces modelled by higher-order Zernike terms, and freeform surfaces from biometrical patient data. Two independent parameters were measured: the sample’s radius of curvature (ROC and its residual (difference of sample topography and its best-fit sphere. We used a quantitative analysis method by calculating the residuals’ root-mean-square (RMS and peak-to-Valley (P2V values. Results. The sample’s best-fit ROC differences increased with the sample’s complexity. The sample’s differences of RMS values were 80 nm for spherical surfaces, 97 nm for higher-order samples, and 21 nm for freeform surfaces. Graphical representations of both measurement and design topographies were recorded and compared. Conclusion. The measurements of spherical surfaces expectedly resulted in better values than those of freeform surfaces. Overall, the wavefront analysing method proves to be an effective method for evaluating individual IOL surfaces.
International Nuclear Information System (INIS)
Nuno Almirantearena, F; Introzzi, A; Clara, F; Burillo Lopez, P
2007-01-01
In this work we use 53 Arterial Diameter Variation (ADV) waves extracted from radial artery of normotense males, along with the values of variables that represent the ADV wave, obtained by means of multivariate analysis. Then, we specify the linguistic variables and the linguistic terms. The variables are fuzzified using triangular and trapezoidal fuzzy numbers. We analyze the fuzziness of the linguistic terms by applying discrete and continuous fuzzy entropies. Finally, we infer which variable presents the greatest disorder associated to the loss of arterial elasticity in radial artery
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface
International Nuclear Information System (INIS)
Saini, Neeti; Jangra, Sunil K.; Yadav, J.S.; Sharma, Dimple; Sharma, V.K.
2011-01-01
Research highlights: → Densities, ρ and speeds of sound, u of tetrahydropyran (i) + pyridine or α-, β- or γ-picoline (j) binary mixtures at 298.15, 303.15 and 308.15 K and excess molar enthalpies, H E of the same set of mixtures at 308.15 K have been measured as a function of composition. → The observed densities and speeds of sound values have been employed to determine excess molar volumes, V E and excess isentropic compressibilities, κ S E . → Topology of the constituents of mixtures has been utilized (Graph theory) successfully to predict V E , H E and κ S E data of the investigated mixtures. → Thermodynamic data of the various mixtures have also been analyzed in terms of Prigogine-Flory-Patterson (PFP) theory. - Abstract: Densities, ρ and speeds of sound, u of tetrahydropyran (i) + pyridine or α-, β- or γ- picoline (j) binary mixtures at 298.15, 303.15 and 308.15 K and excess molar enthalpies, H E of the same set of mixtures at 308.15 K have been measured as a function of composition using an anton Parr vibrating-tube digital density and sound analyzer (model DSA 5000) and 2-drop micro-calorimeter, respectively. The resulting density and speed of sound data of the investigated mixtures have been utilized to predict excess molar volumes, V E and excess isentropic compressibilities, κ S E . The observed data have been analyzed in terms of (i) Graph theory; (ii) Prigogine-Flory-Patterson theory. It has been observed that V E , H E and κ S E data predicted by Graph theory compare well with their experimental values.
Toward 3D structural information from quantitative electron exit wave analysis
International Nuclear Information System (INIS)
Borisenko, Konstantin B; Moldovan, Grigore; Kirkland, Angus I; Wang, Amy; Van Dyck, Dirk; Chen, Fu-Rong
2012-01-01
Simulations show that using a new direct imaging detector and accurate exit wave restoration algorithms allows nearly quantitative restoration of electron exit wave phase, which can be regarded as only qualitative for conventional indirect imaging cameras. This opens up a possibility of extracting accurate information on 3D atomic structure of the sample even from a single projection.
Analysis of stress wave propagation in an elasto-viscoplastic plate
International Nuclear Information System (INIS)
Nakagawa, Noritoshi; Kawai, Ryoji; Urushi, Norio.
1986-01-01
Stress waves which propagate in the body are reflected at the boundary, and due to the interaction of the reflected stress waves, the focussing of stress waves will take place and a high stress level can be caused. The focussing of stress waves due to the reflection from the boundary may bring about fracture of the body, so that this is an important problem from a viewpoint of dynamic strength of structures. In this paper the process of stress wave focussing and the strain-rate dependence of constitutive equation in elastic and plastic regions are investigated. In the case where an in-plane step load uniformly acts on the straight edge of the plate with a semi-circular boundary, the propagation of stress waves in the plate was numerically analyzed by the finite element method, applying viscoelastic, elasto-plastic and elasto-viscoplastic constitutive equations. As the result, the process of focussing of stress waves due to reflection from the semi-circular boundary was observed and the difference in propagation behaviour of stress waves was discussed in materials represented by some kinds of constitutive equations. (author)
Finite element analysis of surface acoustic waves in high aspect ratio electrodes
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim
2008-01-01
This paper elaborates on how the finite element method is employed to model surface acoustic waves generated by high aspect ratio electrodes and their interaction with optical waves in a waveguide. With a periodic model it is shown that these electrodes act as a mechanical resonator which slows...
A computational test facility for distributed analysis of gravitational wave signals
International Nuclear Information System (INIS)
Amico, P; Bosi, L; Cattuto, C; Gammaitoni, L; Punturo, M; Travasso, F; Vocca, H
2004-01-01
In the gravitational wave detector Virgo, the in-time detection of a gravitational wave signal from a coalescing binary stellar system is an intensive computational task. A parallel computing scheme using the message passing interface (MPI) is described. Performance results on a small-scale cluster are reported
Analysis of Wave Velocity Patterns in Black Cherry Trees and its Effect on Internal Decay Detection
Guanghui Li; Xiping Wang; Jan Wiedenbeck; Robert J. Ross
2013-01-01
In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...
Feasibility analysis of real-time physical modeling using WaveCore processor technology on FPGA
Verstraelen, Martinus Johannes Wilhelmina; Pfeifle, Florian; Bader, Rolf
2015-01-01
WaveCore is a scalable many-core processor technology. This technology is specifically developed and optimized for real-time acoustical modeling applications. The programmable WaveCore soft-core processor is silicon-technology independent and hence can be targeted to ASIC or FPGA technologies. The
International Nuclear Information System (INIS)
Ishida, Hitoshi; Meshii, Toshiyuki
2008-01-01
This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Castillo, F.; Wehner, M. F.; Gilless, J. K.
2017-12-01
California agriculture is an important economic activity for the state. California leads the nation in farms sales since 1950. In addition, agricultural employment in California reached approximately 410,000. Production of many fruits and vegetables is labor intensive and labor costs represent anywhere from 20% to 40% of total production costs. In additon, agricutlural production growth has been the highest for labor intensive crops such as berries (all types) and nuts. Given the importance of the agricultural sector and the labor component whithin it, the analysis of the impact of climate change on the agricultural sector of California becomes imperative. Heat waves are a weather related extreme that impact labor productivity, specially outdoor labor producitivity. We use crop production function analysis that incorporates socio economic variables such as crop prices, total acreage, production levels and harvest timiline with climate related variables such as an estimated Heat Index (HI) to analize the impact of heat waves on crop production via an impact on labor productivity for selected crops in the Central and Imperial Valleys in California. The analysis finds that the impact of heat waves varies by the degree of labor intensity of the crop and the relative intensity of the heat wave.
Directory of Open Access Journals (Sweden)
Bawadi Nor Faizah
2016-01-01
Full Text Available Research in the important parameters for modeling the dynamic behavior of soils has led to rapid development of the small strain stiffness and damping ratio for use in the seismic method. It is because, the experimental determination of the damping ratio is problematic, especially for hard soils sample. Many researchers have proved that the surface wave method is a reliable tool to determine shear wave velocity and damping ratio profiles at a site with very small strains level. Surface wave methods based on Rayleigh waves propagation and the resulting attenuation curve can become erroneous when higher modes contribute to the soil’s response. In this study, two approaches has been used to determine the shear strain amplitude and damping ratio of residual soils at small strain level using Spectral Analysis of Surface Wave (SASW method. One is to derive shear strain amplitude from the frequency-response curve and the other is to derive damping ratio from travel-time data. Then, the results are compared to the conventional method.
Directory of Open Access Journals (Sweden)
Jürgen Dorbritz
2013-03-01
When looking at wave one and wave two in comparison (i.e. a time period of one year, profound changes have already occurred regarding continuation or breakup. From those bilocal relationships found in wave one, more than half of the age-group questioned had not changed their chosen relationship type. The smaller portion of respondents had separated and thus ended bilocality (just over 10 %. The remaining bilocal relationships had increased their level of institutionalisation by becoming spouses or cohabitants. As regarding the development from wave one to wave two, it becomes apparent through the results of a multivariate analysis that the general circumstances of older respondents should be judged differently than those of younger ones. The work-related constellation between the two partners, spatial proximity, educational homogamy, previous experience in cohabitating and intentions in regard to separation or moving in together are explaining factors for the continuation of a bilocal relationship, the set-up of a shared household or a breakup.
Velikanova, Yu. V.; Vinogradova, M. R.; Mitlina, L. A.
2018-06-01
The amplitude-frequency characteristics (AFCs) of magnetostatic waves in the films of magnesium-manganese ferrospinels with nanostructured inhomogeneities are discussed. A common effect, observed in the film AFCs under different process conditions, is the `oscillations of propagation' of magnetostatic waves as a function of the frequency. The oscillation pattern is thought to depend on the inhomogeneous exchange parameters and the surface anisotropy constants. The wave instability is characterized by the resonant interaction of the dipole magnetostatic waves with the surface spin waves. It is shown that the ferrospinel films with periodic nanostructured inhomogeneities of 30-40 nm could be treated as magnon crystals. An inclusion of the inhomogeneity into consideration allows one to provide reasoning for the formation of the rejection bands within the range 9-12 GHz, whose frequencies correspond to Bragg frequencies.
International Nuclear Information System (INIS)
Chatterji, Shourov; Lazzarini, Albert; Stein, Leo; Sutton, Patrick J.; Searle, Antony; Tinto, Massimo
2006-01-01
The sensitivity of current searches for gravitational-wave bursts is limited by non-Gaussian, nonstationary noise transients which are common in real detectors. Existing techniques for detecting gravitational-wave bursts assume the output of the detector network to be the sum of a stationary Gaussian noise process and a gravitational-wave signal. These techniques often fail in the presence of noise nonstationarities by incorrectly identifying such transients as possible gravitational-wave bursts. Furthermore, consistency tests currently used to try to eliminate these noise transients are not applicable to general networks of detectors with different orientations and noise spectra. In order to address this problem we introduce a fully coherent consistency test that is robust against noise nonstationarities and allows one to distinguish between gravitational-wave bursts and noise transients in general detector networks. This technique does not require any a priori knowledge of the putative burst waveform
Statistical Analysis of Langmuir Waves Associated with Type III Radio Bursts: I. Wind Observations
Directory of Open Access Journals (Sweden)
Vidojević S.
2011-12-01
Full Text Available Interplanetary electron beams are unstable in the solar wind and they generate Langmuir waves at the local plasma frequency or its harmonic. Radio observations of the waves in the range 4-256 kHz, observed in 1994-2010 with the WAVES experiment onboard the WIND spacecraft, are statistically analyzed. A subset of 36 events with Langmuir waves and type III bursts occurring at the same time was selected. After removal of the background, the remaining power spectral density is modeled by the Pearson system of probability distributions (types I, IV and VI. The Stochastic Growth Theory (SGT predicts log-normal distribution for the power spectrum density of the Langmuir waves. Our results indicate that SGT possibly requires further verification.
International Nuclear Information System (INIS)
Huneke, J; Kuhn, T; Axt, V M
2010-01-01
The influence of strain waves traveling across a quantum dot structure on its optical response is studied for two different situations: First, a strain wave is created by the optical excitation of a single quantum dot near a surface which, after reflection at the surface, reenters the dot; second, a phonon wave packet is emitted by the excitation of a nearby second dot and then travels across the quantum dot. Pump-probe type excitations are simulated for quantum dots in the strong confinement limit. We show that the optical signals allow us to monitor crossing strain waves for both structures in the real-time response as well as in the corresponding pump-probe spectra. In the time-derivative of the phase of the polarization a distinct trace reflects the instantaneous shifts of the transition energy during the passage while in the spectra pronounced oscillations reveal the passage of the strain waves.
Kyprianou, A.E.
2000-01-01
Recently Harris using probabilistic methods alone has given new proofs for the known existence asymptotics and unique ness of travelling wave solutions to the KPP equation Following in this vein we outline alternative probabilistic proofs for wave speeds exceeding the critical minimal wave speed
Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters
Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei
2016-12-01
The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.
A new ULF wave analysis for Seismo-Electromagnetics using CPMN/MAGDAS data
Yumoto, K.; Ikemoto, S.; Cardinal, M. G.; Hayakawa, M.; Hattori, K.; Liu, J. Y.; Saroso, S.; Ruhimat, M.; Husni, M.; Widarto, D.; Ramos, E.; McNamara, D.; Otadoy, R. E.; Yumul, G.; Ebora, R.; Servando, N.
The Space Environment Research Center of Kyushu University has obtained geomagnetic data in the Circum-pan Pacific Magnetometer Network (CPMN) region for over 10 years, and has recently deployed a new real-time Magnetic Data Acquisition System (MAGDAS) in the CPMN region and an FM-CW radar network along the 210° magnetic meridian (MM) for space weather research and applications. This project intends to get the MAGDAS network fully operational and provide data for studies on space and lithosphere weather. In connection with this project, we propose a new ultra-low frequency (ULF) wave analysis method to study ULF anomalies associated with large earthquakes using magnetic data. From a case study of the 1999/05/12 Kushiro earthquake with magnitude M = 6.4, we found a peculiar increase of H-component power ratio AR/ AM of Pc 3 magnetic pulsations a few weeks before the earthquake, where AR is the power obtained at Rikubetsu station ( r = 61 km) near the epicenter and AM is the power obtained at a remote reference station, Moshiri ( r = 205 km). It is also found that the H-component power ratio AD/ AY of Pc 3 increased three times just a few weeks before the earthquake and after one week decreased to the normal level, where AD is one-day power at Rikubetsu station and AY is the one-year-average power.
Analysis on Human Blockage Path Loss and Shadow Fading in Millimeter-Wave Band
Directory of Open Access Journals (Sweden)
Hongmei Zhao
2017-01-01
Full Text Available Millimeter-wave (Mm-w is the trend of communication development in the future; users who carry mobile communication equipment could be blocked by others in a crowded population environment. Based on Shooting and Bouncing Ray (SBR method and setting up different orientation receivers (RX, population density, and people fabric property at 28 GHz and 38 GHz, simulating experimental scene similar to station square by Wireless Insite software, we use least square method to do linear-regression analysis for path loss and build path loss model. The result shows that the path loss index has a certain change in the different frequency, orientation receivers, population density, and people fabric. The path loss index of RouteC1 and RouteA2 has an obvious change in the central transmitter (TX. Each route shadow fading obeys Gaussian distribution whose mean is 0. This paper’s result has a theoretical guiding for designing the communication system in a crowded population environment.
Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves
Directory of Open Access Journals (Sweden)
Leyre Echevarria Icaza
2016-03-01
Full Text Available The urban heat island effect is often associated with large metropolises. However, in the Netherlands even small cities will be affected by the phenomenon in the future (Hove et al., 2011, due to the dispersed or mosaic urbanisation patterns in particularly the southern part of the country: the province of North Brabant. This study analyses the average night time land surface temperature (LST of 21 North-Brabant urban areas through 22 satellite images retrieved by Modis 11A1 during the 2006 heat wave and uses Landsat 5 Thematic Mapper to map albedo and normalized difference temperature index (NDVI values. Albedo, NDVI and imperviousness are found to play the most relevant role in the increase of night-time LST. The surface cover cluster analysis of these three parameters reveals that the 12 “urban living environment” categories used in the region of North Brabant can actually be reduced to 7 categories, which simplifies the design guidelines to improve the surface thermal behaviour of the different neighbourhoods thus reducing the Urban Heat Island (UHI effect in existing medium size cities and future developments adjacent to those cities.
Automatic Wave Equation Migration Velocity Analysis by Focusing Subsurface Virtual Sources
Sun, Bingbing
2017-11-03
Macro velocity model building is important for subsequent pre-stack depth migration and full waveform inversion. Wave equation migration velocity analysis (WEMVA) utilizes the band-limited waveform to invert for the velocity. Normally, inversion would be implemented by focusing the subsurface offset common image gathers (SOCIGs). We re-examine this concept with a different perspective: In subsurface offset domain, using extended Born modeling, the recorded data can be considered as invariant with respect to the perturbation of the position of the virtual sources and velocity at the same time. A linear system connecting the perturbation of the position of those virtual sources and velocity is derived and solved subsequently by Conjugate Gradient method. In theory, the perturbation of the position of the virtual sources is given by the Rytov approximation. Thus, compared to the Born approximation, it relaxes the dependency on amplitude and makes the proposed method more applicable for real data. We demonstrate the effectiveness of the approach by applying the proposed method on both isotropic and anisotropic VTI synthetic data. A real dataset example verifies the robustness of the proposed method.
General partial wave analysis of the decay of a hyperon of spin 1/2
International Nuclear Information System (INIS)
Lee, T.D.; Yang, C.N.
1983-01-01
This note is to consider the general problem of the decay of a hyperon of spin 1/2 into a pion and a nucleon under the general assumption of possible violations of parity conservation, charge-conjugation invariance, and time-reversal invariance. The discussion is in essence a partial wave analysis of the decay phenomena and is independent of the dynamics of the decay. Nonrelativistic approximations are not made on either of the decay products. In the reference system in which the hyperon is at rest there are two possible final states of the pion-nucleon system:s/sub 1/2/ and p/sub 1/2/. Denoting the amplitudes of these two states by A and B, one observes that the decay is physically characterized by three real constants specifying the magnitudes and the relative phase between these amplitudes. One of these constants can be taken to be absolute value a 2 + absolute value B 2 , and is evidently proportional to the decay probability per unit time. The other two constants are best defined in terms of experimentally measurable quantities. They discuss three types of experiments: (a) The angular distribution of the decay pion from a completely polarized hyperon at rest. (b) The longitudinal polarization of the nucleon emitted in the decay of unpolarized hyperons at rest. (c) Transverse polarization of the nucleon emitted in a given direction in the decay of a polarized hyperon
Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan
2018-05-01
We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.
Goldstein, Janna; Veitch, John; Sesana, Alberto; Vecchio, Alberto
2018-04-01
Super-massive black hole binaries are expected to produce a gravitational wave (GW) signal in the nano-Hertz frequency band which may be detected by pulsar timing arrays (PTAs) in the coming years. The signal is composed of both stochastic and individually resolvable components. Here we develop a generic Bayesian method for the analysis of resolvable sources based on the construction of `null-streams' which cancel the part of the signal held in common for each pulsar (the Earth-term). For an array of N pulsars there are N - 2 independent null-streams that cancel the GW signal from a particular sky location. This method is applied to the localisation of quasi-circular binaries undergoing adiabatic inspiral. We carry out a systematic investigation of the scaling of the localisation accuracy with signal strength and number of pulsars in the PTA. Additionally, we find that source sky localisation with the International PTA data release one is vastly superior than what is achieved by its constituent regional PTAs.
Thermal analysis of a transmission line for Traveling Wave Tube TWT
International Nuclear Information System (INIS)
Chbiki, Mounir; Laraqi, Najib; Jarno, Jean-François; Herrewyn, Jacques; Silva Botelho, Tony da
2012-01-01
A new analytical method has been developed to study the delay line of Traveling Waves Tubes (TWT). Our study is focused on the analysis of the hot lines shrinking phenomenon. In the studied case, unlike brazed configuration, the contact areas are not perfect, resulting in a diminution of the heat transfer process. In this work, we highlight the influence of the macro-constriction on the heat transfer rate in the various parts of a TWT the geometry of which is also relatively complex. We propose in this work an analytical study of the thermal behavior of a transmission line in established regime. First, we determine the individual thermal resistance of each component. Secondly, we estimate the global resistance of the device according to the geometrical parameters and the respective conductivities of the various elements of this line. In this analytical model, we proceed to parametric studies in order to determine the geometrical configurations that will provide the lowest global thermal resistance. We will emphasize the potential gain according to the used materials and the increase of contact areas.
Automatic Wave Equation Migration Velocity Analysis by Focusing Subsurface Virtual Sources
Sun, Bingbing; Alkhalifah, Tariq Ali
2017-01-01
Macro velocity model building is important for subsequent pre-stack depth migration and full waveform inversion. Wave equation migration velocity analysis (WEMVA) utilizes the band-limited waveform to invert for the velocity. Normally, inversion would be implemented by focusing the subsurface offset common image gathers (SOCIGs). We re-examine this concept with a different perspective: In subsurface offset domain, using extended Born modeling, the recorded data can be considered as invariant with respect to the perturbation of the position of the virtual sources and velocity at the same time. A linear system connecting the perturbation of the position of those virtual sources and velocity is derived and solved subsequently by Conjugate Gradient method. In theory, the perturbation of the position of the virtual sources is given by the Rytov approximation. Thus, compared to the Born approximation, it relaxes the dependency on amplitude and makes the proposed method more applicable for real data. We demonstrate the effectiveness of the approach by applying the proposed method on both isotropic and anisotropic VTI synthetic data. A real dataset example verifies the robustness of the proposed method.
Estimation of the convergence order of rigorous coupled-wave analysis for OCD metrology
Ma, Yuan; Liu, Shiyuan; Chen, Xiuguo; Zhang, Chuanwei
2011-12-01
In most cases of optical critical dimension (OCD) metrology, when applying rigorous coupled-wave analysis (RCWA) to optical modeling, a high order of Fourier harmonics is usually set up to guarantee the convergence of the final results. However, the total number of floating point operations grows dramatically as the truncation order increases. Therefore, it is critical to choose an appropriate order to obtain high computational efficiency without losing much accuracy in the meantime. In this paper, the convergence order associated with the structural and optical parameters has been estimated through simulation. The results indicate that the convergence order is linear with the period of the sample when fixing the other parameters, both for planar diffraction and conical diffraction. The illuminated wavelength also affects the convergence of a final result. With further investigations concentrated on the ratio of illuminated wavelength to period, it is discovered that the convergence order decreases with the growth of the ratio, and when the ratio is fixed, convergence order jumps slightly, especially in a specific range of wavelength. This characteristic could be applied to estimate the optimum convergence order of given samples to obtain high computational efficiency.
International Nuclear Information System (INIS)
Rhee, Hyun Me; Kim, Min Kyu; Sheen, Dong Hoon; Choi, In Kil
2013-01-01
The accident which was caused by a tsunami and the Great East-Japan earthquake in 2011 occurred at the Fukushima Nuclear Power Plant (NPP) site. It is obvious that the NPP accident could be incurred by the tsunami. Therefore a Probabilistic Tsunami Hazard Analysis (PTHA) for an NPP site should be required in Korea. The PTHA methodology is developed on the PSHA (Probabilistic Seismic Hazard Analysis) method which is performed by using various tsunami sources and their weights. In this study, the fault sources of northwestern part of Japan were used to analyze as the tsunami sources. These fault sources were suggested by the Atomic Energy Society of Japan (AESJ). To perform the PTHA, the calculations of maximum and minimum wave elevations from the result of tsunami simulations are required. Thus, in this study, tsunami wave propagation analysis were performed for developing the future study of the PTHA
Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox
Karimpour, Arash; Chen, Qin
2017-09-01
There are a number of well established methods in the literature describing how to assess and analyze measured wind wave data. However, obtaining reliable results from these methods requires adequate knowledge on their behavior, strengths and weaknesses. A proper implementation of these methods requires a series of procedures including a pretreatment of the raw measurements, and adjustment and refinement of the processed data to provide quality assurance of the outcomes, otherwise it can lead to untrustworthy results. This paper discusses potential issues in these procedures, explains what parameters are influential for the outcomes and suggests practical solutions to avoid and minimize the errors in the wave results. The procedure of converting the water pressure data into the water surface elevation data, treating the high frequency data with a low signal-to-noise ratio, partitioning swell energy from wind sea, and estimating the peak wave frequency from the weighted integral of the wave power spectrum are described. Conversion and recovery of the data acquired by a pressure transducer, particularly in depth-limited water like estuaries and lakes, are explained in detail. To provide researchers with tools for a reliable estimation of wind wave parameters, the Ocean Wave Analyzing toolbox, OCEANLYZ, is introduced. The toolbox contains a number of MATLAB functions for estimation of the wave properties in time and frequency domains. The toolbox has been developed and examined during a number of the field study projects in Louisiana's estuaries.
Using PVDF for wavenumber-frequency analysis and excitation of guided waves
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
2018-04-01
The role of transducers in nondestructive evaluation using ultrasonic guided waves cannot be overstated. Energy conversion from electrical to mechanical for actuation and then back to electrical for signal processing broadly describes transduction, but there are many other aspects of transducers that determine their effectiveness. Recently we have reported on polyvinylidene difluoride (PVDF) array sensors that enable determination of the wavenumber spectrum, which enables modal content in the received signal to be characterized. Modal content is an important damage indicator because, for example, mode conversion is a frequent consequence of wave interaction with defects. Some of the positive attributes of PVDF sensors are: broad frequency bandwidth, compliance for use on curved surfaces, limited influence on the passing wave, minimal cross-talk between elements, low profile, low mass, and inexpensive. The anisotropy of PVDF films also enables them to receive either Lamb waves or shear horizontal waves by proper alignment of the material principal coordinate axes. Placing a patterned set of electrodes on the PVDF film provides data from an array of elements. A linear array of elements is used to enable a 2D fast Fourier transform to determine the wavenumber spectrum of both Lamb waves and shear horizontal waves in an aluminum plate. Moreover, since PVDF film can sustain high voltage excitation, high power pulsers can be used to improve the signal-to-noise ratio. The capability of PVDF as a transmitter has been demonstrated with high voltage excitation.
International Nuclear Information System (INIS)
Takashima, Keisuke; Adamovich, Igor V.; Xiong Zhongmin; Kushner, Mark J.; Starikovskaia, Svetlana; Czarnetzki, Uwe; Luggenhoelscher, Dirk
2011-01-01
Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time ∼1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.
Nonlocal analysis of the excitation of the geodesic acoustic mode by drift waves
DEFF Research Database (Denmark)
Guzdar, P.N.; Kleva, R.G.; Chakrabarti, N.
2009-01-01
The geodesic acoustic modes (GAMs) are typically observed in the edge region of toroidal plasmas. Drift waves have been identified as a possible cause of excitation of GAMs by a resonant three wave parametric process. A nonlocal theory of excitation of these modes in inhomogeneous plasmas typical...... of the edge region of tokamaks is presented in this paper. The continuum GAM modes with coupling to the drift waves can create discrete "global" unstable eigenmodes localized in the edge "pedestal" region of the plasma. Multiple resonantly driven unstable radial eigenmodes can coexist on the edge pedestal....
Extreme wave impacts on monopiles: Re-analysis of experimental data by a coupled CFD solver
DEFF Research Database (Denmark)
Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe
2017-01-01
Two different numerical models, OceanWave3D and a coupled solver, OceanWave3D-OpenFOAM (Waves2Foam), are used to reproduce extreme events in one sea state. The events are chosen as, the measured event that generates the largest peak moment (exceedance probability of 0.05%) and one event with a sl...... agreement with the measurements. The secondary load cycles are observed in the measured force and bending moment time series and the reproduced times series using OpenFOAM....
Energy Technology Data Exchange (ETDEWEB)
Sonnad, Kiran G., E-mail: kgs52@cornell.edu [CLASSE, Cornell University, Ithaca, NY (United States); Hammond, Kenneth C. [Department of Physics, Harvard University, Cambridge, MA (United States); Schwartz, Robert M. [CLASSE, Cornell University, Ithaca, NY (United States); Veitzer, Seth A. [Tech-X Corporation, Boulder, CO (United States)
2014-08-01
The use of transverse electric (TE) waves has proved to be a powerful, noninvasive method for estimating the densities of electron clouds formed in particle accelerators. Results from the plasma simulation program VSim have served as a useful guide for experimental studies related to this method, which have been performed at various accelerator facilities. This paper provides results of the simulation and modeling work done in conjunction with experimental efforts carried out at the Cornell electron storage ring “Test Accelerator” (CESRTA). This paper begins with a discussion of the phase shift induced by electron clouds in the transmission of RF waves, followed by the effect of reflections along the beam pipe, simulation of the resonant standing wave frequency shifts and finally the effects of external magnetic fields, namely dipoles and wigglers. A derivation of the dispersion relationship of wave propagation for arbitrary geometries in field free regions with a cold, uniform cloud density is also provided.
Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain
Ponce L., Ernesto; Ponce S., Daniel
2008-11-01
Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.
Analysis and computation of the elastic wave equation with random coefficients
Motamed, Mohammad; Nobile, Fabio; Tempone, Raul
2015-01-01
We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics
DEFF Research Database (Denmark)
Yde, Anders; Pedersen, Mads Mølgaard; Bellew, Sarah Bellew
This report presents results from the PSO project 2011-1-10668 entitled Poseidon 2. The project is a continuation of the previous PSO project entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines. Floating Power Plant has developed the technology...... for a novel, floating, wave- and wind-energy hybrid device. To test the technology they have scaled the design to P37, a 37 m wide test platform that has been undergoing offshore testing for four complete test phases (totaling more than 2 years). The test platform provides electricity to the grid from both...... wind and wave energy, however its purpose is purely for research and development. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the test periods has been used for evaluating...
Juretzek, Carina; Hadziioannou, Céline
2014-05-01
Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.
Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis
Guo, Bowen
2017-01-01
Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating