WorldWideScience

Sample records for ischemic cardiac tissue

  1. Inhibition of miR-15 Protects Against Cardiac Ischemic Injury

    Science.gov (United States)

    Hullinger, Thomas G.; Montgomery, Rusty L.; Seto, Anita G.; Dickinson, Brent A.; Semus, Hillary M.; Lynch, Joshua M.; Dalby, Christina M.; Robinson, Kathryn; Stack, Christianna; Latimer, Paul A.; Hare, Joshua M.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Rationale Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. Objective This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. Methods and Results Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. Conclusions Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury. PMID:22052914

  2. Ischemic Conditioning as a Hemostatic Intervention in Surgery and Cardiac Procedures: A Systematic Review

    DEFF Research Database (Denmark)

    Krag, Andreas Engel; Hvas, Anne-Mette

    2017-01-01

    did not increase operative bleeding. In conclusion, ischemic conditioning reduced platelet activity without increasing the risk of bleeding in patients undergoing surgery or cardiac procedures. Limited evidence supports the proposal that ischemic conditioning reduces the incidence of arterial......Ischemic conditioning induced by nonlethal cycles of tissue ischemia and reperfusion attenuates ischemia–reperfusion injury. The objective of this study is to systematically review the effects of local and remote ischemic conditioning on laboratory parameters of hemostasis and the clinical outcomes......, thromboembolism, and bleeding were extracted for qualitative synthesis. In total, 69 studies were included; of these, 53 were randomized controlled trials (RCTs) and 11 were meta-analyses. Local and remote ischemic conditioning reduced platelet activation in patients undergoing cardiac procedures. Local ischemic...

  3. Ischemic Stroke Due to Cardiac Involvement: Emery Dreifuss Patient

    Directory of Open Access Journals (Sweden)

    Ersin Kasım Ulusoy

    2015-08-01

    Full Text Available Emery-Dreifuss muscular dystrophy (EDMD is a hereditary disease. It is characterized by early-onset contractures, slowly progressive weakness, fatigue related to skapulo-humero-peroneal muscle weakness, cardiomyopathy which develops in adulthood and cardiac conduction system block. Cardiac involvement has a prognostic significance in patients with EDMD and even sudden cardiac death may be the first clinical presentation. In this article, an EDMD patient with ischemic stroke clinic who didn’t have regular cardiac follow-up was reported and the importance of the treatment of cardiac diseases which could play a role in ischemic stroke etiology and the implantation of pace-maker was mentioned.

  4. Cardiac rehabilitation improves the ischemic burden in patients with ischemic heart disease who are not suitable for revascularization

    Energy Technology Data Exchange (ETDEWEB)

    El Demerdash, Salah [Department of Cardiology, Ain Shams University Hospital, Cairo (Egypt); Khorshid, Hazem, E-mail: hazemkhorshid@yahoo.com [Department of Cardiology, Ain Shams University Hospital, Cairo (Egypt); Salah, Iman; Abdel-Rahman, Mohamed A. [Department of Cardiology, Ain Shams University Hospital, Cairo (Egypt); Salem, Alaa M. [Department of Internal Medicine, Medical Division, National Research Centre, Cairo (Egypt)

    2015-07-15

    Background: Ischemic heart diseases including stable angina & acute events, represent a huge burden on both the individual & the society and represent an important source of disability. Aim: We aimed to identify the effect of cardiac rehabilitation program (CRP) on the ischemic burden in patients with ischemic heart disease (IHD) unsuitable for coronary revascularization. Methods: The study included 40 patients with IHD who were not suitable for coronary revascularization either by PCI or CABG (due to unsuitable coronary anatomy, co morbidities, high surgical/procedural risk or patient preference). All patients were subjected to sophisticated CRP protocols, including patient education, nutritional, medical, psychological and sexual counseling and group smoking cessation. All patients participated in low intensity exercise program twice weekly. The patient’s symptoms, vitals and medications were evaluated at each visit and clinical and laboratory data, echocardiography and stress myocardial perfusion imaging (SPECT) were evaluated before and 3 months after the end of the study. Results: The mean age was 56.8 ± 3.1 years and only 2 patients (5%) were females. 22 (55%) patients were diabetic, 21 (53%) were hypertensive and 30 (75%) were smokers. It was found that 3 months after completion of CRP, there was a significant decrease in BMI (30.3 ± 2.9 vs. 31.2 ± 1.9, p < 0.001), and mean blood pressure (93.4 ± 11 vs. 105 ± 10.6 mmHg, p < 0.001). There was also a favorable effect on lipid profile and a significant improvement of the functional capacity in terms of NYHA functional class (2.1 ± 0.62 vs. 1.4 ± 0.6, p < 0.001). Despite that wall motion score index did not significantly change after CRP, there was a strong trend toward a better ejection fraction (53.7 ± 7.8 vs. 54.5 ± 6.3 %, p = 0.06) and significant improvement of Canadian cardiovascular class (1.42 ± 0.6 vs. 1.95 ± 0.5, p < 0.001) post CRP. Importantly, the difference between the SPECT

  5. Cardiac rehabilitation improves the ischemic burden in patients with ischemic heart disease who are not suitable for revascularization

    International Nuclear Information System (INIS)

    El Demerdash, Salah; Khorshid, Hazem; Salah, Iman; Abdel-Rahman, Mohamed A.; Salem, Alaa M.

    2015-01-01

    Background: Ischemic heart diseases including stable angina & acute events, represent a huge burden on both the individual & the society and represent an important source of disability. Aim: We aimed to identify the effect of cardiac rehabilitation program (CRP) on the ischemic burden in patients with ischemic heart disease (IHD) unsuitable for coronary revascularization. Methods: The study included 40 patients with IHD who were not suitable for coronary revascularization either by PCI or CABG (due to unsuitable coronary anatomy, co morbidities, high surgical/procedural risk or patient preference). All patients were subjected to sophisticated CRP protocols, including patient education, nutritional, medical, psychological and sexual counseling and group smoking cessation. All patients participated in low intensity exercise program twice weekly. The patient’s symptoms, vitals and medications were evaluated at each visit and clinical and laboratory data, echocardiography and stress myocardial perfusion imaging (SPECT) were evaluated before and 3 months after the end of the study. Results: The mean age was 56.8 ± 3.1 years and only 2 patients (5%) were females. 22 (55%) patients were diabetic, 21 (53%) were hypertensive and 30 (75%) were smokers. It was found that 3 months after completion of CRP, there was a significant decrease in BMI (30.3 ± 2.9 vs. 31.2 ± 1.9, p < 0.001), and mean blood pressure (93.4 ± 11 vs. 105 ± 10.6 mmHg, p < 0.001). There was also a favorable effect on lipid profile and a significant improvement of the functional capacity in terms of NYHA functional class (2.1 ± 0.62 vs. 1.4 ± 0.6, p < 0.001). Despite that wall motion score index did not significantly change after CRP, there was a strong trend toward a better ejection fraction (53.7 ± 7.8 vs. 54.5 ± 6.3 %, p = 0.06) and significant improvement of Canadian cardiovascular class (1.42 ± 0.6 vs. 1.95 ± 0.5, p < 0.001) post CRP. Importantly, the difference between the SPECT

  6. The application of remote ischemic conditioning in cardiac surgery [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Zeljko J. Bosnjak

    2017-06-01

    Full Text Available Perioperative myocardial ischemia and infarction are the leading causes of morbidity and mortality following anesthesia and surgery. The discovery of endogenous cardioprotective mechanisms has led to testing of new methods to protect the human heart. These approaches have included ischemic pre-conditioning, per-conditioning, post-conditioning, and remote conditioning of the myocardium. Pre-conditioning and per-conditioning include brief and repetitive periods of sub-lethal ischemia before and during prolonged ischemia, respectively; and post-conditioning is applied at the onset of reperfusion. Remote ischemic conditioning involves transient, repetitive, non-lethal ischemia and reperfusion in one organ or tissue (remote from the heart that renders myocardium more resistant to lethal ischemia/reperfusion injury. In healthy, young hearts, many conditioning maneuvers can significantly increase the resistance of the heart against ischemia/reperfusion injury. The large multicenter clinical trials with ischemic remote conditioning have not been proven successful in cardiac surgery thus far. The lack of clinical success is due to underlying risk factors that interfere with remote ischemic conditioning and the use of cardioprotective agents that have activated the endogenous cardioprotective mechanisms prior to remote ischemic conditioning. Future preclinical research using remote ischemic conditioning will need to be conducted using comorbid models.

  7. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  8. EVALUATION CARDIAC RESYNCHRONIZATION THERAPY IN PATIENTS WITH CHRONIC ISCHEMIC HEART FAILURE

    Directory of Open Access Journals (Sweden)

    A. J. Fishman

    2011-01-01

    Full Text Available Objective — studying dyssynchrony characteristics and evaluation correction effectiveness in patients with chronic heart failure (CHF of ischemic origin.Materials and methods. The study included 125 patients with chronic heart failure of ischemic etiology, 28 of them — with coronary heart disease (CHD who had undergone aorto-and / or mammarokoronary bypass and / or percutaneous coronary intervention, 42 — with coronary artery disease and postinfarction cardiosclerosis, 32 — with arrhythmic variant of coronary artery disease, 23 — with stable angina without evidence of arrhythmia. Among included patients, biventricular pacemakers were implanted for 17 patients. All patients underwent echocardiography with determination of the parameters of dyssynchrony.Results and conclusion. Among patients with CHF ischemic symptoms dyssynchrony was diagnosed in 36 (28.8 % cases. Statistically significant association between patients with cardiac arrhythmias and dyssynchrony was determined. At the same time the incidence of dyssynchrony was not associated with various forms of ischemic heart disease, and did not depend on the anamnesis of cardiac surgery. Dependence of the frequency of occurrence of dyssynchrony on the severity of CHF was revealed. Patients selected for implantation of biventricular pacemakers, especially in view of echocardiographic signs of dyssynchrony had significant improvement after providing cardiac resynchronization therapy. Effect of the treatment does not depend on the atrial fibrillation rhythm presence.

  9. Conditioning techniques and ischemic reperfusion injury in relation to on-pump cardiac surgery

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Ottas, Konstantin Alex; Andreasen, Charlotte

    2014-01-01

    OBJECTIVES: The objective was to investigate the potential protective effects of two conditioning methods, on myocardial ischemic and reperfusion injury in relation to cardiac surgery. DESIGN: Totally 68 patients were randomly assigned to either a control group (n = 23), a remote ischemic...

  10. Cardiac MRI in ischemic heart disease

    International Nuclear Information System (INIS)

    Ishida, Masaki; Kato, Shingo; Sakuma, Hajime

    2009-01-01

    Considerable progress has been made in cardiac magnetic resonance imaging (MRI). Cine MRI is recognized as the most accurate method for evaluating ventricular function. Late gadolinium-enhanced MRI can clearly delineate subendocardial infarction, and the assessment of transmural extent of infarction on MRI is widely useful for predicting myocardial viability. Stress myocardial perfusion MRI allows for detection of subendocardial myocardial ischemia, and the diagnostic accuracy of stress perfusion MRI is superior to stress perfusion single-photon emission computed tomography in patients with multivessel coronary artery disease (CAD). In recent years, image quality, volume coverage, acquisition speed and arterial contrast of 3-dimensional coronary magnetic resonance angiography (MRA) have been substantially improved with use of steady-state free precession sequences and parallel imaging techniques, permitting the acquisition of high-quality, whole-heart coronary MRA within a reasonably short imaging time. It is now widely recognized that cardiac MRI has tremendous potential for the evaluation of ischemic heart disease. However, cardiac MRI is technically complicated and its use in clinical practice is relatively limited. With further improvements in education and training, as well as standardization of appropriate study protocols, cardiac MRI will play a central role in managing patients with CAD. (author)

  11. Ischemic preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts.

    Science.gov (United States)

    Sundset, Rune; Cooper, Marie; Mikalsen, Svein-Ole; Ytrehus, Kirsti

    2004-01-01

    Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.

  12. DIGE proteome analysis reveals suitability of ischemic cardiac in vitro model for studying cellular response to acute ischemia and regeneration.

    Directory of Open Access Journals (Sweden)

    Sina Haas

    Full Text Available Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy.With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research.

  13. Living cardiac patch: the elixir for cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2012-12-01

    A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.

  14. Relationship between Cardiac Troponin and Thrombo-Inflammatory Molecules in Prediction of Outcome after Acute Ischemic Stroke

    DEFF Research Database (Denmark)

    Csecsei, Peter; Pusch, Gabriella; Ezer, Erzsebet

    2018-01-01

    BACKGROUND: In patients with acute ischemic stroke (AIS) without cardiovascular complications, we investigated the association of serum concentration of cardiac troponin (high-sensitivity cardiac troponin T [hs-cTnT]) with thrombo-inflammatory markers. METHODS: Thirty-five patients with first......-ever AIS were prospectively examined. Serum hs-cTnT was measured 6 and 24 hours after stroke, whereas S100B, high-sensitivity C-reactive protein (hsCRP), soluble CD40 ligand, tissue plasminogen activator (tPA), monocyte chemoattractant protein-1 (MCP-1), and P-selectin were measured 6 and 72 hours after...... stroke. Severity of stroke was assessed by the National Institutes of Health Stroke Scale (NIHSS) on admission, 24 hours later, and at discharge. RESULTS: Concentration of MCP-1 at 6 hours was higher in the serum of patients with worsened NIHSS by 24 hours (P = .009). Concentration of hs-cTnT at both 6...

  15. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update

    Directory of Open Access Journals (Sweden)

    Fernanda Boldrini Assunção

    2016-02-01

    Full Text Available Abstract Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI and cardiac computed tomography (CCT are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies.

  16. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Fernanda Boldrini; Oliveira, Diogo Costa Leandro de; Nacif, Marcelo Souto, E-mail: msnacif@gmail.com [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Escola de Medicina; Souza, Vitor Frauches [Complexo Hospitalar de Niteroi (CHN), Niteroi, RJ (Brazil)

    2016-01-15

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complimentarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies. (author)

  17. Ischemic Optic Neuropathy in Cardiac Surgery: Incidence and Risk Factors in the United States from the National Inpatient Sample 1998 to 2013.

    Science.gov (United States)

    Rubin, Daniel S; Matsumoto, Monica M; Moss, Heather E; Joslin, Charlotte E; Tung, Avery; Roth, Steven

    2017-05-01

    Ischemic optic neuropathy is the most common form of perioperative visual loss, with highest incidence in cardiac and spinal fusion surgery. To date, potential risk factors have been identified in cardiac surgery by only small, single-institution studies. To determine the preoperative risk factors for ischemic optic neuropathy, the authors used the National Inpatient Sample, a database of inpatient discharges for nonfederal hospitals in the United States. Adults aged 18 yr or older admitted for coronary artery bypass grafting, heart valve repair or replacement surgery, or left ventricular assist device insertion in National Inpatient Sample from 1998 to 2013 were included. Risk of ischemic optic neuropathy was evaluated by multivariable logistic regression. A total of 5,559,395 discharges met inclusion criteria with 794 (0.014%) cases of ischemic optic neuropathy. The average yearly incidence was 1.43 of 10,000 cardiac procedures, with no change during the study period (P = 0.57). Conditions increasing risk were carotid artery stenosis (odds ratio, 2.70), stroke (odds ratio, 3.43), diabetic retinopathy (odds ratio, 3.83), hypertensive retinopathy (odds ratio, 30.09), macular degeneration (odds ratio, 4.50), glaucoma (odds ratio, 2.68), and cataract (odds ratio, 5.62). Female sex (odds ratio, 0.59) and uncomplicated diabetes mellitus type 2 (odds ratio, 0.51) decreased risk. The incidence of ischemic optic neuropathy in cardiac surgery did not change during the study period. Development of ischemic optic neuropathy after cardiac surgery is associated with carotid artery stenosis, stroke, and degenerative eye conditions.

  18. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  19. Current views on neurostimulation in the treatment of cardiac ischemic syndromes.

    Science.gov (United States)

    Jessurun, G A; DeJongste, M J; Blanksma, P K

    1996-08-01

    Most clinicians are still unacquainted with the beneficial effects of neurostimulation as an additional therapeutic strategy for severe angina pectoris. Patients with therapeutically refractory angina pectoris suffer from chest discomfort during minimal exercise, despite maximal tolerated antianginal drug therapy (at least 2 out of a beta-blocker, calcium-antagonist or long-acting nitrate). In these patients, revascularization procedures, such as a percutaneous transluminal coronary angioplasty or coronary artery bypass surgery, are often technically impossible because of diffuse coronary artery disease or should be withheld as a consequence of absolute contraindications such as severe left ventricular dysfunction. All patients have inoperable multivessel disease, experienced one or more myocardial infarctions, and were treated by earlier invasive interventions. This group of patients are severely physically and psychologically disabled by their intractable angina pectoris. Available published data and the neurostimulation experience of the authors are reviewed in relation to the treatment of cardiac ischemic syndromes. We conclude that neurostimulation is an effective therapeutic adjuvant for patients with severe angina pectoris unresponsive to standard treatment. This treatment modality appears to be safe, and a promising tool for other ischemic cardiac syndromes.

  20. Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors.

    Science.gov (United States)

    Patel, Hemal H; Head, Brian P; Petersen, Heidi N; Niesman, Ingrid R; Huang, Diane; Gross, Garrett J; Insel, Paul A; Roth, David M

    2006-07-01

    The role of caveolae, membrane microenvironments enriched in signaling molecules, in myocardial ischemia is poorly defined. In the current study, we used cardiac myocytes prepared from adult rats to test the hypothesis that opioid receptors (OR), which are capable of producing cardiac protection in vivo, promote cardiac protection in cardiac myocytes in a caveolae-dependent manner. We determined protein expression and localization of delta-OR (DOR) using coimmunohistochemistry, caveolar fractionation, and immunoprecipitations. DOR colocalized in fractions with caveolin-3 (Cav-3), a structural component of caveolae in muscle cells, and could be immunoprecipitated by a Cav-3 antibody. Immunohistochemistry confirmed plasma membrane colocalization of DOR with Cav-3. Cardiac myocytes were subjected to simulated ischemia (2 h) or an ischemic preconditioning (IPC) protocol (10 min ischemia, 30 min recovery, 2 h ischemia) in the presence and absence of methyl-beta-cyclodextrin (MbetaCD, 2 mM), which binds cholesterol and disrupts caveolae. We also assessed the cardiac protective effects of SNC-121 (SNC), a selective DOR agonist, on cardiac myocytes with or without MbetaCD and MbetaCD preloaded with cholesterol. Ischemia, simulated by mineral oil layering to inhibit gas exchange, promoted cardiac myocyte cell death (trypan blue staining), a response blunted by SNC (37 +/- 3 vs. 59 +/- 3% dead cells in the presence and absence of 1 muM SNC, respectively, P protective effects of IPC or SNC, resulting in cell death comparable to that of the ischemic group. By contrast, SNC-induced protection was not abrogated in cells incubated with cholesterol-saturated MbetaCD, which maintained caveolae structure and function. These findings suggest a key role for caveolae, perhaps through enrichment of signaling molecules, in contributing to protection of cardiac myocytes from ischemic damage.

  1. Complete cardiac regeneration in a mouse model of myocardial infarction.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Adamowicz-Brice, Martyna; Khadayate, Sanjay; Tiefenthaler, Viktoria; Metzler, Bernhard; Aitman, Tim; Penninger, Josef M

    2012-12-01

    Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated

  2. Major depression and first-time hospitalization with ischemic heart disease, cardiac procedures and mortality in the general population

    DEFF Research Database (Denmark)

    Gasse, Christiane; Laursen, Thomas M; Baune, Bernhard T

    2014-01-01

    -59 years of age and during the first weeks following psychiatric admission. Our findings support recent cardiovascular disease prevention guidelines on assessing depression among other psychosocial factors in patients at increased cardiovascular disease (CVD) risk.......Objective: We investigated the association between unipolar depression and incident hospital admissions due to ischemic heart disease, invasive cardiac procedures and mortality independent of other medical illnesses.Methods: A population-based cohort of 4.6 million persons aged 15 years or older...... with depression (women: IRR: 1.38; MRR: 2.35; men: IRR: 1.42; MRR: 2.67). One-year mortality after new ischemic heart disease was elevated by 34% in women and men. By contrast, overall rates of invasive cardiac procedures following cardiac hospitalizations were significantly decreased by 34% in persons...

  3. Phosphorus nuclear magnetic resonance studies on normoxic and ischemic cardiac tissue.

    Science.gov (United States)

    Gadian, D G; Hoult, D I; Radda, G K; Seeley, P J; Chance, B; Barlow, C

    1976-12-01

    The intact heart of a young rat was excised rapidly and cooled to 0 degree C; its energy-rich compounds were examined by 31P Fourier Transform nuclear magnetic resonance. The heart showed the characteristic spectrum of sugar phosphates, inorganic phosphate, phosphocreatine, and magniesium phates, inorganic phosphate, phosphocreatine, and magnesium ATP, characteristics of the energizing state of the nonbeating tissue. Warming to 30 degrees C imposes an energy load upon the heart consistent with short-term resumption of beating, concomitant intracellular acidosis, and decomposition of all detectable energy-rich compounds. The intracellular acidity causes a shift from pH 7.0 to 6.0. The effects of possible interferences with this pH measurement are considered. The method appears to have wide usefulness in cardiac infarct models for detecting the fraction of the total volume occupied by the infarct and for studying the effect of various proposed therapies upon this infarcted volume.

  4. MRI in ischemic heart disease

    International Nuclear Information System (INIS)

    Hazirolan, T.

    2012-01-01

    Full text: The role of magnetic resonance imaging in the evaluation of ischemic heart disease has increased over the last years. Cardiac MRI is the only imaging modality that provides 'one stop shop' assessment. Information about ventricular function, myocardial ischemia and myocardial viability can be obtained in a single cardiac MRI session. Additionally, Cardiac MRI has become a gold standard method in evaluation of myocardial viability and in assessment of ventricular mass and function. As a result, cardiac MRI enable radiologist to comprehensively assess ischemic heart disease. The aim of this presentation is to provide the reader a state-of-the art on how the newest cardiac MRI techniques can be used to study ischemic heart disease patients.

  5. Diagnostic Accuracy of a New Cardiac Electrical Biomarker for Detection of Electrocardiogram Changes Suggestive of Acute Myocardial Ischemic Injury

    Science.gov (United States)

    Schreck, David M; Fishberg, Robert D

    2014-01-01

    Objective A new cardiac “electrical” biomarker (CEB) for detection of 12-lead electrocardiogram (ECG) changes indicative of acute myocardial ischemic injury has been identified. Objective was to test CEB diagnostic accuracy. Methods This is a blinded, observational retrospective case-control, noninferiority study. A total of 508 ECGs obtained from archived digital databases were interpreted by cardiologist and emergency physician (EP) blinded reference standards for presence of acute myocardial ischemic injury. CEB was constructed from three ECG cardiac monitoring leads using nonlinear modeling. Comparative active controls included ST voltage changes (J-point, ST area under curve) and a computerized ECG interpretive algorithm (ECGI). Training set of 141 ECGs identified CEB cutoffs by receiver-operating-characteristic (ROC) analysis. Test set of 367 ECGs was analyzed for validation. Poor-quality ECGs were excluded. Sensitivity, specificity, and negative and positive predictive values were calculated with 95% confidence intervals. Adjudication was performed by consensus. Results CEB demonstrated noninferiority to all active controls by hypothesis testing. CEB adjudication demonstrated 85.3–94.4% sensitivity, 92.5–93.0% specificity, 93.8–98.6% negative predictive value, and 74.6–83.5% positive predictive value. CEB was superior against all active controls in EP analysis, and against ST area under curve and ECGI by cardiologist. Conclusion CEB detects acute myocardial ischemic injury with high diagnostic accuracy. CEB is instantly constructed from three ECG leads on the cardiac monitor and displayed instantly allowing immediate cost-effective identification of patients with acute ischemic injury during cardiac rhythm monitoring. PMID:24118724

  6. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  7. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  8. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    Science.gov (United States)

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  9. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    International Nuclear Information System (INIS)

    Magnusson, Lisa U.; Lundqvist, Annika; Asp, Julia; Synnergren, Jane; Johansson, Cecilia Thalén; Palmqvist, Lars; Jeppsson, Anders; Hultén, Lillemor Mattsson

    2012-01-01

    Highlights: ► We found a 17-fold upregulation of ALOX15 in the ischemic heart. ► Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. ► We observed increased levels of proinflammatory markers in ischemic heart tissue. ► Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1α (HIF-1α) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1α mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield important insights into the underlying association between hypoxia and inflammation in the human ischemic heart disease.

  10. Modulation of Cardiac Autonomic Dysfunction in Ischemic Stroke following Ayurveda (Indian System of Medicine Treatment

    Directory of Open Access Journals (Sweden)

    Sriranjini Sitaram Jaideep

    2014-01-01

    Full Text Available Objectives. Cardiac autonomic dysfunction in stroke has implications on morbidity and mortality. Ayurveda (Indian system of medicine describes stroke as pakshaghata. We intended to study the effect of Ayurveda therapies on the cardiac autonomic dysfunction. Methods. Fifty patients of ischemic stroke (middle cerebral artery territory (mean age 39.26 ± 9.88 years; male 43, female 7 were recruited within one month of ictus. All patients received standard allopathic medications as advised by neurologist. In addition, patients were randomized to receive physiotherapy (Group I or Ayurveda treatment (Group II for 14 days. Continuous electrocardiogram and finger arterial pressure were recorded for 15 min before and after treatments and analyzed offline to obtain heart rate and blood pressure variability and baroreflex sensitivity (BRS. Results were analysed by RMANOVA. Results. Patients in Group II showed statistically significant improvement in cardiac autonomic parameters. The standard deviation of normal to normal intervals,and total and low frequency powers were significantly enhanced (F=8.16, P=0.007, F=9.73, P=0.004, F=13.51, and P=0.001, resp.. The BRS too increased following the treatment period (F=10.129, P=0.004. Conclusions. The current study is the first to report a positive modulation of cardiac autonomic activity after adjuvant Ayurveda treatment in ischemic stroke. Further long term studies are warranted.

  11. Postmortem mRNA expression patterns in left ventricular myocardial tissues and their implications for forensic diagnosis of sudden cardiac death.

    Science.gov (United States)

    Son, Gi Hoon; Park, Seong Hwan; Kim, Yunmi; Kim, Ji Yeon; Kim, Jin Wook; Chung, Sooyoung; Kim, Yu-Hoon; Kim, Hyun; Hwang, Juck-Joon; Seo, Joong-Seok

    2014-03-01

    Sudden cardiac death (SCD), which is primarily caused by lethal heart disorders resulting in structural and arrhythmogenic abnormalities, is one of the prevalent modes of death in most developed countries. Myocardial ischemia, mainly due to coronary artery disease, is the most common type of heart disease leading to SCD. However, postmortem diagnosis of SCD is frequently complicated by obscure histological evidence. Here, we show that certain mRNA species, namely those encoding hemoglobin A1/2 and B (Hba1/2 and Hbb, respectively) as well as pyruvate dehydrogenase kinase 4 (Pdk4), exhibit distinct postmortem expression patterns in the left ventricular free wall of SCD subjects when compared with their expression patterns in the corresponding tissues from control subjects with non-cardiac causes of death. Hba1/2 and Hbb mRNA expression levels were higher in ischemic SCD cases with acute myocardial infarction or ischemic heart disease without recent infarction, and even in cardiac death subjects without apparent pathological signs of heart injuries, than control subjects. By contrast, Pdk4 mRNA was expressed at lower levels in SCD subjects. In conclusion, we found that altered myocardial Hba1/2, Hbb, and Pdk4 mRNA expression patterns can be employed as molecular signatures of fatal cardiac dysfunction to forensically implicate SCD as the primary cause of death.

  12. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  13. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies.

    Science.gov (United States)

    Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.

  14. Atrial Fibrillation in Patients with Transient Ischemic Attack in Accordance with the Tissue-Based Definition.

    Science.gov (United States)

    Scheef, Björn; Al-Khaled, Mohamed

    2016-06-01

    Transient ischemic attack (TIA) management requires a cardiac evaluation with a Holter electrocardiogram (ECG), preferably a long-term (24 h) electrocardiogram (LT-ECG), to detect atrial fibrillation (AF), which places patients at higher risk of cerebrovascular events. The aim of this study was to determine the frequency of AF using ECG and LT-ECG in patients with tissue-based TIA. During a three-year period (starting in 2011), all consecutive patients with tissue-based TIA (no evidence of infarction by brain imaging) were included and prospectively evaluated. Of 861 patients (mean age, 70 ± 13 years; 49.7% women), 854 patients (99.2%) had an ECG at admission, and 338 patients (39.3%) underwent 24-h LT-ECG monitoring during hospitalization. Patients who underwent LT-ECG monitoring were significantly younger (68 vs. 71 years; P=0.001) and experienced longer symptom duration (143 vs. 79 minutes; P=0.024) compared with those who did not. Furthermore, they had lower rates of unilateral weakness (32% vs. 39%; P=0.034) and previous strokes (18% vs. 26%; P=0.007). The LT-ECG investigation was also associated with longer hospitalization (7.9 vs. 5.7 days; Phypertension (OR, 3.1; 95% CI: 1-8.9; P=0.041) and increased glucose level >6.05 mmol/L) on admission (OR, 1.9; 95% CI: 1-3.5; P=0.036). Cardiac evaluation with LT-ECG appears to increase the rate of detected AF and may lead to a change in secondary prophylaxis in patients with tissue-based TIA.

  15. Role of infarct location and pre-existing depression on cardiac baroreceptor sensitivity in subacute ischemic stroke

    NARCIS (Netherlands)

    De Vos, Aurelie; De Keyser, Jacques; De Raedt, Sylvie

    Reduced cardiac baroreceptor sensitivity (BRS) after acute stroke is associated with worse outcome. The underlying mechanisms of reduced BRS are unclear. We evaluated cross correlation BRS (xBRS) in 184 patients with suspected acute ischemic stroke within 72 h of symptom onset. Among these patients,

  16. Engineering Cardiac Muscle Tissue: A Maturating Field of Research.

    Science.gov (United States)

    Weinberger, Florian; Mannhardt, Ingra; Eschenhagen, Thomas

    2017-04-28

    Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair. © 2017 American Heart Association, Inc.

  17. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    International Nuclear Information System (INIS)

    Li, Zhao; Jin, Zhu-Qiu

    2012-01-01

    Highlights: ► Cardiac tight junctions are present between coronary endothelial cells. ► Ischemic preconditioning preserves the structural and functional integrity of tight junctions. ► Myocardial edema is prevented in hearts subjected to ischemic preconditioning. ► Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood–heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs–Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in

  18. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhao [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States); Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC

  19. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.

    Science.gov (United States)

    Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-10-01

    Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.

  20. miRNAs as therapeutic targets in ischemic heart disease.

    Science.gov (United States)

    Frost, Robert J A; van Rooij, Eva

    2010-06-01

    Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.

  1. Influence of cardiac decentralization on cardioprotection.

    Directory of Open Access Journals (Sweden)

    John G Kingma

    Full Text Available The role of cardiac nerves on development of myocardial tissue injury after acute coronary occlusion remains controversial. We investigated whether acute cardiac decentralization (surgical modulates coronary flow reserve and myocardial protection in preconditioned dogs subject to ischemia-reperfusion. Experiments were conducted on four groups of anesthetised, open-chest dogs (n = 32: 1- controls (CTR, intact cardiac nerves, 2- ischemic preconditioning (PC; 4 cycles of 5-min IR, 3- cardiac decentralization (CD and 4- CD+PC; all dogs underwent 60-min coronary occlusion and 180-min reperfusion. Coronary blood flow and reactive hyperemic responses were assessed using a blood volume flow probe. Infarct size (tetrazolium staining was related to anatomic area at risk and coronary collateral blood flow (microspheres in the anatomic area at risk. Post-ischemic reactive hyperemia and repayment-to-debt ratio responses were significantly reduced for all experimental groups; however, arterial perfusion pressure was not affected. Infarct size was reduced in CD dogs (18.6 ± 4.3; p = 0.001, data are mean ± 1 SD compared to 25.2 ± 5.5% in CTR dogs and was less in PC dogs as expected (13.5 ± 3.2 vs. 25.2 ± 5.5%; p = 0.001; after acute CD, PC protection was conserved (11.6 ± 3.4 vs. 18.6 ± 4.3%; p = 0.02. In conclusion, our findings provide strong evidence that myocardial protection against ischemic injury can be preserved independent of extrinsic cardiac nerve inputs.

  2. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    Science.gov (United States)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  3. Traction force microscopy of engineered cardiac tissues.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit

    2018-01-01

    Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.

  4. Mitochondria as Key Targets of Cardioprotection in Cardiac Ischemic Disease: Role of Thyroid Hormone Triiodothyronine

    Directory of Open Access Journals (Sweden)

    Francesca Forini

    2015-03-01

    Full Text Available Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/ reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48–72 h after the insult, the subacute phase (from 72 h to 7–10 days and chronic stage (from 10–14 days to one month after the insult. As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3.

  5. Mitochondria as key targets of cardioprotection in cardiac ischemic disease: role of thyroid hormone triiodothyronine.

    Science.gov (United States)

    Forini, Francesca; Nicolini, Giuseppina; Iervasi, Giorgio

    2015-03-19

    Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/ reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48-72 h after the insult), the subacute phase (from 72 h to 7-10 days) and chronic stage (from 10-14 days to one month after the insult). As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3).

  6. Mechanostimulation Protocols for Cardiac Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marco Govoni

    2013-01-01

    Full Text Available Owing to the inability of self-replacement by a damaged myocardium, alternative strategies to heart transplantation have been explored within the last decades and cardiac tissue engineering/regenerative medicine is among the present challenges in biomedical research. Hopefully, several studies witness the constant extension of the toolbox available to engineer a fully functional, contractile, and robust cardiac tissue using different combinations of cells, template bioscaffolds, and biophysical stimuli obtained by the use of specific bioreactors. Mechanical forces influence the growth and shape of every tissue in our body generating changes in intracellular biochemistry and gene expression. That is why bioreactors play a central role in the task of regenerating a complex tissue such as the myocardium. In the last fifteen years a large number of dynamic culture devices have been developed and many results have been collected. The aim of this brief review is to resume in a single streamlined paper the state of the art in this field.

  7. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    Science.gov (United States)

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  8. Remote Ischemic Conditioning and Renal Protection.

    Science.gov (United States)

    Giannopoulos, Georgios; Vrachatis, Dimitrios A; Panagopoulou, Vasiliki; Vavuranakis, Manolis; Cleman, Michael W; Deftereos, Spyridon

    2017-07-01

    Over the course of the last 2 decades, the concept of remote ischemic conditioning (RIC) has attracted considerable research interest, because RIC, in most of its embodiments offers an inexpensive way of protecting tissues against ischemic damage inflicted by a number of medical conditions or procedures. Acute kidney injury (AKI) is a common side effect in the context of various medical procedures, and RIC has been suggested as a means of reducing its incidence. Outcomes regarding kidney function have been reported in numerous studies that evaluated the effects of RIC in a variety of settings (eg, cardiac surgery, interventions requiring intravenous administration of contrast media). Although several individual studies have implied a beneficial effect of RIC in preserving kidney function, 3 recently published randomized controlled trials evaluating more than 1000 patients each (Effect of Remote Ischemic Preconditioning in the Cardiac Surgery, Remote Ischaemic Preconditioning for Heart Surgery, and ERICCA) were negative. However, AKI or any other index of renal function was not a stand-alone primary end point in any of these trials. On the other hand, a range of meta-analyses (each including thousands of participants) have reported mixed results, with the most recent among them showing benefit from RIC, pinpointing at the same time a number of shortcomings in published studies, adversely affecting the quality of available data. The present review provides a critical appraisal of the current state of this field of research. It is the opinion of the authors of this review that there is a clear need for a common clinical trial framework for ischemic conditioning studies. If the current babel of definitions, procedures, outcomes, and goals persists, it is most likely that soon ischemic conditioning will be "yesterday's news" with no definitive conclusions having been reached in terms of its real clinical utility.

  9. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models.

    Science.gov (United States)

    Nathaniel, Thomas I; Williams-Hernandez, Ashley; Hunter, Anan L; Liddy, Caroline; Peffley, Dennis M; Umesiri, Francis E; Imeh-Nathaniel, Adebobola

    2015-05-01

    The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply. Copyright

  10. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  11. Optical spectroscopy for the detection of ischemic tissue injury

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Fitzgerald, Jason [Sacramento, CA; Troppmann, Christoph [Sacramento, CA; Michalopoulou, Andromachi [Athens, GR

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  12. Pathological links between stroke and cardiac arrest

    Institute of Scientific and Technical Information of China (English)

    Shaila Ghanekar; Sydney Corey; Trenton Lippert; Cesar V.Borlongan

    2017-01-01

    There may be a pathological connection between cardiac failure and ischemic stroke.In this article we describe pertinent research that demonstrates subsequent death of cardiac and neural myocytes in the post ischemic stroke brain.Current stroke therapy overlooks the connection between cardiac and cerebrovascular events and fails to address the shared risk factors.Current pre-clinical stroke investigations have provided evidence that suggests the presence of an indirect cell death pathway in which toxic molecules emanate from the stroke brain and trigger cardiac cell death.On the other hand,other studies highlight the presence of a reverse cell death cascade in which toxic molecules from the heart,following cardiac arrest,travel to the brain and induce ischemic cell death.Further examination of these putative cell death pathways between ischemic stroke and cardiac arrest will prompt the advancement of innovative treatments specifically targeting both diseases,leading to ameliorated clinical results of patients diagnosed with heart failure and ischemic stroke.

  13. The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue

    Science.gov (United States)

    Zhang, Juan; Tang, Jun; Ma, Jun; Luo, Jin Ming; Yang, Xian Qing

    2018-02-01

    Rotating spiral waves in cardiac tissue are implicated in life threatening cardiac arrhythmias. Experimental and theoretical evidences suggest the inhomogeneities in cardiac tissue play a significant role in the dynamics of spiral waves. Based on a modified 2D cardiac tissue model, the interaction of inhomogeneity on the nearby rigidly rotating spiral wave is numerically studied. The adjacent area of the inhomogeneity is divided to two areas, when the initial rotating center of the spiral tip is located in the two areas, the spiral tip will be attracted and anchor on the inhomogeneity finally, or be repulsed away. The width of the area is significantly dependent on the intensity and size of the inhomogeneity. Our numerical study sheds some light on the mechanism of the interaction of inhomogeneity on the spiral wave in cardiac tissue.

  14. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Surface-modified polymers for cardiac tissue engineering.

    Science.gov (United States)

    Moorthi, Ambigapathi; Tyan, Yu-Chang; Chung, Tze-Wen

    2017-09-26

    Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought. Such new approaches are developed to induce tissue regeneration following injury. Hence, regenerative medicine plays a key role in treating CVD. Recently, the extrinsic stimulation of cardiac regeneration has involved the use of potential polymers to stimulate stem cells toward the differentiation of cardiomyocytes as a new therapeutic intervention in cardiac tissue engineering (CTE). The therapeutic potentiality of natural or synthetic polymers and cell surface interactive factors/polymer surface modifications for cardiac repair has been demonstrated in vitro and in vivo. This review will discuss the recent advances in CTE using polymers and cell surface interactive factors that interact strongly with stem cells to trigger the molecular aspects of the differentiation or formulation of cardiomyocytes for the functional repair of heart injuries or cardiac defects.

  16. Preferential cephalic redistribution of left ventricular cardiac output during therapeutic hypothermia for perinatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Hochwald, Ori; Jabr, Mohammad; Osiovich, Horacio; Miller, Steven P; McNamara, Patrick J; Lavoie, Pascal M

    2014-05-01

    To determine the relationship between left ventricular cardiac output (LVCO), superior vena cava (SVC) flow, and brain injury during whole-body therapeutic hypothermia. Sixteen newborns with moderate or severe hypoxic-ischemic encephalopathy were studied using echocardiography during and immediately after therapeutic hypothermia. Measures were also compared with 12 healthy newborns of similar postnatal age. Newborns undergoing therapeutic hypothermia also had cerebral magnetic resonance imaging as part of routine clinical care on postnatal day 3-4. LVCO was markedly reduced (mean ± SD 126 ± 38 mL/kg/min) during therapeutic hypothermia, whereas SVC flow was maintained within expected normal values (88 ± 27 mL/kg/min) such that SVC flow represented 70% of the LVCO. The reduction in LVCO during therapeutic hypothermia was mainly accounted by a reduction in heart rate (99 ± 13 vs 123 ± 17 beats/min; P newborns without brain injury (P = .013). Newborns with perinatal hypoxic-ischemic encephalopathy showed a preferential systemic-to-cerebral redistribution of cardiac blood flow during whole-body therapeutic hypothermia, which may reflect a lack of cerebral vascular adaptation in newborns with more severe brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. 3D whole-heart myocardial tissue analysis

    NARCIS (Netherlands)

    van den Broek, HT; de Jong, Leon; Doevendans, Pieter A.; Chamuleau, Steven A.J.; van Slochteren, Frebus J.; Van Es, René

    2017-01-01

    Cardiac regenerative therapies aim to protect and repair the injured heart in patients with ischemic heart disease. By injecting stem cells or other biologicals that enhance angio- or vasculogenesis into the infarct border zone (IBZ), tissue perfusion is improved, and the myocardium can be protected

  18. Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Saeid Kargozar

    2017-12-01

    Full Text Available Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers, in regards to repair and regenerate injured tissues of cardiac and pulmonary systems.

  19. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury.

    Directory of Open Access Journals (Sweden)

    Jianqin Ye

    Full Text Available BACKGROUND: Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI. However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear. METHODOLOGY/PRINCIPAL FINDING: Using "middle aged" mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1(+CD45(- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1 in Sca-1(+CD45(- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1(+CD45(- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate that cloned Sca-1(+CD45(- cells derived from CSs from infarcted "middle aged" hearts are enriched for second heart field (i.e., Isl-1(+ precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.

  20. Metabolic Prosthesis for Oxygenation of Ischemic Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias [ORNL

    2009-01-01

    This communication discloses new ideas and preliminary results on the development of a "metabolic prosthesis" for local oxygenation of ischemic tissue under physiological neutral conditions. We report for the first time the selective electrolysis of physiological saline by repetitively pulsed charge-limited electrolysis for the production of oxygen and suppression of free chlorine. For example, using 800 A amplitude current pulses and <200 sec pulse durations, we demonstrated prompt oxygen production and delayed chlorine production at the surface of a shiny 0.85 mm diameter spherical platinum electrode. The data, interpreted in terms of the ionic structure of the electric double layer, suggest a strategy for in situ production of metabolic oxygen via a new class of "smart" prosthetic implants for dealing with ischemic disease such as diabetic retinopathy. We also present data indicating that drift of the local pH of the oxygenated environment can be held constant using a feedback-controlled three electrode electrolysis system that chooses anode and cathode pair based on pH data provided by local microsensors. The work is discussed in the context of diabetic retinopathy since surgical techniques for multielectrode prosthetic implants aimed at retinal degenerative diseases have been developed.

  1. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  2. Delayed contrast-enhanced MRI: use in myocardial viability assessment and other cardiac pathology

    International Nuclear Information System (INIS)

    Bogaert, J.; Dymarkowski, S.

    2005-01-01

    As in other organs, tissue characterization is important for many cardiac diseases. For example, in ischemic heart disease, differentiation between reversibly and irreversibly damaged myocardium in patients with a prior myocardial infarction is crucial in determining disease severity, functional recovery and patient outcome. With the recent advent of the single inversion-recovery contrast-enhanced magnetic resonance imaging (MRI) sequence (delayed contrast-enhanced MRI), contrast between normal and abnormal tissues could be significantly enhanced compared with the conventional cardiac MRI sequences, enabling even subtle abnormalities to be visualized. Together with other advances in cardiac MRI (e.g. functional imaging, coronary artery imaging), MRI has become one of the preferred non-invasive modalities to study cardiac diseases. In this paper an overview of the versatility of delayed contrast-enhanced MRI for investigating cardiac diseases is given. (orig.)

  3. Cardiac tissue engineering using perfusion bioreactor systems

    Science.gov (United States)

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  4. Comprehensive cardiac rehabilitation for secondary prevention after transient ischemic attack or mild stroke: I: feasibility and risk factors.

    Science.gov (United States)

    Prior, Peter L; Hachinski, Vladimir; Unsworth, Karen; Chan, Richard; Mytka, Sharon; O'Callaghan, Christina; Suskin, Neville

    2011-11-01

    Comprehensive cardiac rehabilitation (CCR), which integrates structured lifestyle interventions and medications, reduces morbidity and mortality among cardiac patients. CCR has not typically been used with cerebrovascular populations, despite important commonalities with heart patients. We tested feasibility and effectiveness of 6-month outpatient CCR for secondary prevention after transient ischemic attack or mild, nondisabling stroke. This article presents risk factors. A future article will discuss psychological outcomes. Consecutive consenting subjects having sustained a transient ischemic attack or mild, nondisabling stroke within the previous 12 months (mean, 11.5 weeks; event-to-CCR entry) with ≥1 vascular risk factor, were recruited from a stroke prevention clinic providing usual care. We measured 6-month CCR outcomes following a prospective cohort design. Of 110 subjects recruited from January 2005 to April 2006, 100 subjects (mean age, 64.9 years; 46 women) entered and 80 subjects completed CCR. We obtained favorable, significant intake-to-exit changes in: aerobic capacity (+31.4%; Pstroke, offering a promising model for vascular protection across chronic disease entities. We know of no similar previous investigation, and are now conducting a randomized trial.

  5. Passive opium smoking does not have beneficial effect on plasma lipids and cardiovascular indices in hypercholesterolemic rabbits with ischemic and non-ischemic hearts.

    Science.gov (United States)

    Najafipour, Hamid; Joukar, Siyavash; Malekpour-Afshar, Reza; Mirzaeipour, Fateme; Nasri, Hamid Reza

    2010-02-03

    To scientifically test a traditionally belief of some Asian countries residents that opium may prevent or have ameliorating effects on cardiovascular diseases (CVD) we investigated the effect of passive opium smoking (POS) on plasma lipids and some cardiovascular parameters in hypercholesterolemic rabbits with ischemic and non-ischemic hearts. 40 rabbits were fed for 2 weeks with cholesterol-enriched diet and divided to control (CTL), short-term opium (SO) and long-term opium (LO) groups. SO and LO groups were exposed to POS for 3 days and 4 weeks respectively. ECG, blood pressure (BP) and left ventricular pressure recorded and serum lipid and cardiac troponin I levels were measured. Isoproterenol (ISO) injected for induction of cardiac ischemia and after 4h the above variables were measured along with cardiac histopathology assessment. HDL cholesterol decreased significantly in LO compared to CTL group (35+/-5 vs 53+/-5mg/dl). Groups treated with ISO showed significantly higher increments in troponin I level (POpium exposure caused a trend of increase in blood pressure, LDL cholesterol and ECG disturbances, attenuated ISO induced myonecrosis but augmented tissue congestion and hemorrhage. POS can be considered as a CVD risk factor. Opium does not reduce BP or cholesterol level, as is anticipated by its users. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia

    Directory of Open Access Journals (Sweden)

    Landoni Giovanni

    2009-01-01

    Full Text Available Volatile anaesthetic agents have direct protective properties against ischemic myocardial damage. The implementation of these properties during clinical anaesthesia can provide an additional tool in the treatment or prevention, or both, of ischemic cardiac dysfunction in the perioperative period. A recent meta-analysis showed that desflurane and sevoflurane reduce postoperative mortality and incidence of myocardial infarction following cardiac surgery, with significant advantages in terms of postoperative cardiac troponin release, need for inotrope support, time on mechanical ventilation, intensive care unit and overall hospital stay. Multicentre, randomised clinical trials had previously demonstrated that the use of desflurane can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalisation following coronary artery bypass graft surgery either with and without cardiopulmonary bypass. The American College of Cardiology/American Heart Association Guidelines recommend volatile anaesthetic agents during non-cardiac surgery for the maintenance of general anaesthesia in patients at risk for myocardial infarction. Nonetheless, e vidence in non-coronary surgical settings is contradictory and will be reviewed in this paper together with the mechanisms of cardiac protection by volatile agents.

  7. Prolonged Cardiac Monitoring to Detect Atrial Fibrillation after Cryptogenic Stroke or Transient Ischemic Attack: A Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Dahal, Khagendra; Chapagain, Bikas; Maharjan, Raju; Farah, Hussam W; Nazeer, Ayesha; Lootens, Robert J; Rosenfeld, Alan

    2016-07-01

    The cause of ischemic stroke or transient ischemic attack (TIA) remains unclear after initial cardiac monitoring in approximately one-third of patients. Randomized controlled trials (RCTs) showed that the prolonged cardiac monitoring of patients with cryptogenic stroke or TIA increased detection of atrial fibrillation (AF). We aimed to perform a meta-analysis of all RCTs that evaluated the prolonged monitoring ≥7 days in patients with cryptogenic stroke or TIA. We searched PubMed, EMBASE, Cochrane CENTRAL, and relevant references for RCTs without language restriction (inception through December 2014) and performed meta-analysis using random effects model. Detection of AF, use of anticoagulation at follow-up, recurrent stroke or TIA, and mortality were major outcomes. Four RCTs with 1149 total patients were included in the meta-analysis. Prolonged cardiac monitoring ≥7 days compared to shorter cardiac monitoring of ≤48 hours duration increased the detection of AF (≥30 seconds duration) in patients after cryptogenic stroke or TIA (13.8% vs. 2.5%; odds ratio [OR], 6.4; 95% confidence interval [CI], 3.50-11.73; P vs. 5.2%; 5.68[3.3-9.77]; P stroke or TIA (0.78[0.40-1.55]; P = 0.48; I(2) , 0%) and mortality (1.33[0.29-6.00]; P = 0.71; I(2) , 0%] were observed between two strategies. Prolonged cardiac monitoring improves detection of atrial fibrillation and anti-coagulation use after cryptogenic stroke or TIA and therefore should be considered instead of shorter duration of cardiac monitoring. © 2015 Wiley Periodicals, Inc.

  8. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  9. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  10. Genetics of Atrial Fibrillation and Possible Implications for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Robin Lemmens

    2011-01-01

    Full Text Available Atrial fibrillation is the most common cardiac arrhythmia mainly caused by valvular, ischemic, hypertensive, and myopathic heart disease. Atrial fibrillation can occur in families suggesting a genetic background especially in younger subjects. Additionally recent studies have identified common genetic variants to be associated with atrial fibrillation in the general population. This cardiac arrhythmia has important public health implications because of its main complications: congestive heart failure and ischemic stroke. Since atrial fibrillation can result in ischemic stroke, one might assume that genetic determinants of this cardiac arrhythmia are also implicated in cerebrovascular disease. Ischemic stroke is a multifactorial, complex disease where multiple environmental and genetic factors interact. Whether genetic variants associated with a risk factor for ischemic stroke also increase the risk of a particular vascular endpoint still needs to be confirmed in many cases. Here we review the current knowledge on the genetic background of atrial fibrillation and the consequences for cerebrovascular disease.

  11. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    Science.gov (United States)

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  12. Elimination of spiral waves in cardiac tissue by multiple electrical shocks

    NARCIS (Netherlands)

    Panfilov, A.V.; Müller, Stefan C.; Zykov, Vladimir S.; Keener, James P.

    1999-01-01

    We study numerically the elimination of a spiral wave in cardiac tissue by application of multiple shocks of external current. To account for the effect of shocks we apply a recently developed theory for the interaction of the external current with cardiac tissue. We compare two possible feedback

  13. Cardiac rhythm disturbance in athletes with cardiac connective tissue dysplasia syndrome

    Directory of Open Access Journals (Sweden)

    Shahrjerdi Sh

    2007-06-01

    Full Text Available Background: Cardiac connective tissue dysplasia syndrome consists of mitral valve prolapse (MVP, anomalously located chordae tendinae of the left ventricle, or a combination of the two. MVP is marked by the displacement of an abnormally thickened mitral valve leaflet into the left atrium during systole. The nonclassic form of MVP carries a low risk of complications. Patients with severe classic MVP can suffer from mitral regurgitation (MR, infective endocarditis, and, infrequently, sudden death from cardiac arrest. Anomalously located left ventricular chordae tendinae are fibrous or fibromuscular bands that stretch across the left ventricle from the septum to the free wall. They have been associated with murmurs and arrhythmias. The purpose of this study is to assess the performance, as measured by the physical working capacity (PWC170 and maximal oxygen consumption (VO2 max, in athletes with cardiac connective tissue dysplasia syndrome. Methods: Of the 183 male athletes studied, 158 had cardiac connective tissue dysplasia syndrome and 25 were normal, healthy controls. Their mean age was 16.23 (± 5.48 years and mean training time was 5.2 (±- 4.6 years. Athletes with cardiac connective tissue dysplasia syndrome were divided to four groups. Group 1 consisted of those with MVP; Group 2 had patients with an additional cord in left ventricle; Group 3 was made up of athletes with a combination of MVP and additional cord; Group 4 contained athletes with a combination of MVP and MR. All sportsmen were studied by echocardiograph, veloergometer, and those with arrhythmias were studied and recorded using a Holter monitor. Results: The most common form of this syndrome in our study groups was MVP. The PWC170and VO2 max among the athletes with the combination of MVP+MR (Group 4 was lower than that of athletes in other groups (P<0.05. The most common arrhythmia among the athletes with anomalously located left ventricular chordae, Group 2, was Wolf

  14. Fabrication and characterization of bio-engineered cardiac pseudo tissues

    Energy Technology Data Exchange (ETDEWEB)

    Xu Tao; Boland, Thomas [Department of Bioengineering, 420 Rhodes Hall, Clemson University, Clemson, SC 29634 (United States); Baicu, Catalin; Aho, Michael; Zile, Michael, E-mail: tboland@clemson.ed [Department of Medicine, Medical University of South Carolina, Charleston, SC 29425 (United States)

    2009-09-15

    We report on fabricating functional three-dimensional (3D) tissue constructs using an inkjet based bio-prototyping method. With the use of modified inkjet printers, contractile cardiac hybrids that exhibit the forms of the 3D rectangular sheet and even the 'half heart' (with two connected ventricles) have been fabricated by arranging alternate layers of biocompatible alginate hydrogels and mammalian cardiac cells according to pre-designed 3D patterns. In this study, primary feline adult and H1 cardiomyocytes were used as model cardiac cells. Alginate hydrogels with controlled micro-shell structures were built by spraying cross-linkers in micro-drops onto un-gelled alginic acid. The cells remained viable in constructs as thick as 1 cm due to the programmed porosity. Microscopic and macroscopic contractile functions of these cardiomyocyte constructs were observed in vitro. These results suggest that the inkjet bio-prototyping method could be used for hierarchical design of functional cardiac pseudo tissues, balanced with porosity for mass transport and structural support.

  15. Fabrication and characterization of bio-engineered cardiac pseudo tissues

    International Nuclear Information System (INIS)

    Xu Tao; Boland, Thomas; Baicu, Catalin; Aho, Michael; Zile, Michael

    2009-01-01

    We report on fabricating functional three-dimensional (3D) tissue constructs using an inkjet based bio-prototyping method. With the use of modified inkjet printers, contractile cardiac hybrids that exhibit the forms of the 3D rectangular sheet and even the 'half heart' (with two connected ventricles) have been fabricated by arranging alternate layers of biocompatible alginate hydrogels and mammalian cardiac cells according to pre-designed 3D patterns. In this study, primary feline adult and H1 cardiomyocytes were used as model cardiac cells. Alginate hydrogels with controlled micro-shell structures were built by spraying cross-linkers in micro-drops onto un-gelled alginic acid. The cells remained viable in constructs as thick as 1 cm due to the programmed porosity. Microscopic and macroscopic contractile functions of these cardiomyocyte constructs were observed in vitro. These results suggest that the inkjet bio-prototyping method could be used for hierarchical design of functional cardiac pseudo tissues, balanced with porosity for mass transport and structural support.

  16. Safety and feasibility of post-stroke care and exercise after minor ischemic stroke or transient ischemic attack: MotiveS & MoveIT

    NARCIS (Netherlands)

    Boss, H.M.; Van Schaik, S.M.; Deijle, I.A.; de Melker, E.C.; van den Berg, B.M.; Scherder, E.J.A.; Bosboom, W.M.J.; Weinstein, H.C.; van den Berg-Vos, R.M.

    2014-01-01

    Background: Despite the beneficial effect of cardiac rehabilitation after myocardial infarction, a rehabilitation program to improve cardiorespiratory fitness and influence secondary prevention has not been implemented for ischemic stroke and transient ischemic attack (TIA). Objective: To

  17. S100B protein in serum is elevated after global cerebral ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Bao-di Sun; Hong-mei Liu; Shi-nan Nie

    2013-01-01

    BACKGROUND:S100B protein in patients with cardiac arrest,hemorrhagic shock and other causes of global cerebral ischemic injury will be dramatically increased.Ischemic brain injury may elevate the level of serum S100 B protein and the severity of brain damage.METHODS:This article is a critical and descriptive review on S100 B protein in serum after ischemic brain injury.We searched Pubmed database with key words or terms such as 'S100B protein', 'cardiac arrest', 'hemorrhagic shock' and 'ischemia reperfusion injury' appeared in the last five years.RESULTS:S100B protein in patients with cardiac arrest,hemorrhagic shock and other causes of ischemic brain injury will be dramatically increased.Ischemic brain injury elevated the level of serum S100 B protein,and the severity of brain damage.CONCLUSION:The level of S100 B protein in serum is elevated after ischemic brain injury,but its mechanism is unclear.

  18. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.

    Science.gov (United States)

    Navaei, Ali; Saini, Harpinder; Christenson, Wayne; Sullivan, Ryan Tanner; Ros, Robert; Nikkhah, Mehdi

    2016-09-01

    The development of advanced biomaterials is a crucial step to enhance the efficacy of tissue engineering strategies for treatment of myocardial infarction. Specific characteristics of biomaterials including electrical conductivity, mechanical robustness and structural integrity need to be further enhanced to promote the functionalities of cardiac cells. In this work, we fabricated UV-crosslinkable gold nanorod (GNR)-incorporated gelatin methacrylate (GelMA) hybrid hydrogels with enhanced material and biological properties for cardiac tissue engineering. Embedded GNRs promoted electrical conductivity and mechanical stiffness of the hydrogel matrix. Cardiomyocytes seeded on GelMA-GNR hybrid hydrogels exhibited excellent cell retention, viability, and metabolic activity. The increased cell adhesion resulted in abundance of locally organized F-actin fibers, leading to the formation of an integrated tissue layer on the GNR-embedded hydrogels. Immunostained images of integrin β-1 confirmed improved cell-matrix interaction on the hybrid hydrogels. Notably, homogeneous distribution of cardiac specific markers (sarcomeric α-actinin and connexin 43), were observed on GelMA-GNR hydrogels as a function of GNRs concentration. Furthermore, the GelMA-GNR hybrids supported synchronous tissue-level beating of cardiomyocytes. Similar observations were also noted by, calcium transient assay that demonstrated the rhythmic contraction of the cardiomyocytes on GelMA-GNR hydrogels as compared to pure GelMA. Thus, the findings of this study clearly demonstrated that functional cardiac patches with superior electrical and mechanical properties can be developed using nanoengineered GelMA-GNR hybrid hydrogels. In this work, we developed gold nanorod (GNR) incorporated gelatin-based hydrogels with suitable electrical conductivity and mechanical stiffness for engineering functional cardiac tissue constructs (e.g. cardiac patches). The synthesized conductive hybrid hydrogels properly

  19. Differential Temporal Evolution Patterns in Brain Temperature in Different Ischemic Tissues in a Monkey Model of Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Zhihua Sun

    2012-01-01

    Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.

  20. Future cardiac events in patients with ischemic ECG changes during adenosine infusion as a myocardial stress agent and normal cardiac scan.

    Science.gov (United States)

    Amer, Hamid; Niaz, Khalid; Hatazawa, Jun; Gasmelseed, Ahmed; Samiri, Hussain Al; Al Othman, Maram; Hammad, Mai Al

    2017-11-01

    We sought to determine the prognostic importance of adenosine-induced ischemic ECG changes in patients with normal single-photon emission computed tomography myocardial perfusion images (MPI). We carried out a retrospective analysis of 765 patients undergoing adenosine MPI between January 2013 and January 2015. Patients with baseline ECG abnormalities and/or abnormal scan were excluded. Overall, 67 (8.7%) patients had ischemic ECG changes during adenosine infusion in the form of ST depression of 1 mm or more. Of these, 29 [43% (3.8% of all patients)] had normal MPI (positive ECG group). An age-matched and sex-matched group of 108 patients with normal MPI without ECG changes served as control participants (negative ECG group). During a mean follow-up duration of 33.3±6.1 months, patients in the positive ECG group did not have significantly more adverse cardiac events than those in the negative ECG group. One (0.9%) patient in the negative ECG group had a nonfatal myocardial infarction (0.7% annual event rate after a negative MPI). Also in this group, two (1.8%) patients admitted with a diagnosis of CAD where they have been ruled out by angiography. A fourth case in this, in the negative ECG group, was admitted because of heart failure that proved to be secondary to a pulmonary cause and not CAD. A case only in the positive ECG group was admitted as a CAD that was ruled out by coronary angiography. Patients with normal myocardial perfusion scintigraphy in whom ST-segment depression develops during adenosine stress test appear to have no increased risk for future cardiac events compared with similar patients without ECG evidence of ischemia.

  1. A hybrid stimulation strategy for suppression of spiral waves in cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Xu Binbin, E-mail: xubinbin@hotmail.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Jacquir, Sabir, E-mail: sjacquir@u-bourgogne.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Laurent, Gabriel; Bilbault, Jean-Marie [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Binczak, Stephane, E-mail: stbinc@u-bourgogne.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France)

    2011-08-15

    Highlights: > Simulation of a cardiac tissue by a modified 2D FitzHugh-Nagumo model. > Stimulation of monophasic impulsions from a grid of electrodes to the cardiac tissue. > Propose a method by modifying the tissue's sodium channels and electrical stimulation. > The method leading to suppress spiral waves without generating new ones. > Optimal parameters of a successful suppression of spiral waves are investigated. - Abstract: Atrial fibrillation (AF) is the most common cardiac arrhythmia whose mechanisms are thought to be mainly due to the self perpetuation of spiral waves (SW). To date, available treatment strategies (antiarrhythmic drugs, radiofrequency ablation of the substrate, electrical cardioversion) to restore and to maintain a normal sinus rhythm have limitations and are associated with AF recurrences. The aim of this study was to assess a way of suppressing SW by applying multifocal electrical stimulations in a simulated cardiac tissue using a 2D FitzHugh-Nagumo model specially convenient for AF investigations. We identified stimulation parameters for successful termination of SW. However, SW reinduction, following the electrical stimuli, leads us to develop a hybrid strategy based on sodium channel modification for the simulated tissue.

  2. [Case of acute ischemic stroke due to cardiac myxoma treated by intravenous thrombolysis and endovascular therapy].

    Science.gov (United States)

    Kamiya, Yuki; Ichikawa, Hiroo; Mizuma, Keita; Itaya, Kazuhiro; Shimizu, Yuki; Kawamura, Mitsuru

    2014-01-01

    A 48-year-old woman with no previous neurological diseases was transferred to our hospital because of sudden-onset unconsciousness. On arrival, she showed consciousness disturbance (E1V1M3 on the Glasgow Coma Scale), tetraplegia, right conjugate deviation and bilateral pathological reflexes. These symptoms resulted in a NIH stroke scale score of 32. Brain diffusion-weighted MR imaging (DWI) showed multiple hyper-intense lesions, and MR angiography revealed occlusions of the basilar artery (BA) and superior branch of the right middle cerebral artery (MCA). Transthoracic echocardiography disclosed a 51 × 24 mm myxoma in the left atrium. These findings led to diagnosis of acute ischemic stroke due to embolization from cardiac myxoma. Thrombolytic therapy with intravenous tissue plasminogen activator (IV tPA) was started 120 min after onset because there were no contraindications for this treatment. However, the symptoms did not resolve, and thus endovascular therapy was performed immediately after IV tPA. Angiography of the left vertebral artery initially showed BA occlusion, but a repeated angiogram resulted in spontaneous recanalization of the BA. However, the left posterior cerebral artery remained occluded by a residual embolus. Subsequently, occlusion found in the superior branch of the right MCA was treated by intra-arterial local thrombolysis using urokinase and thrombectomy with a foreign body retrieval device, but the MCA remained occluded. DWI after endovascular therapy showed new hyper-intense lesions in the bilateral medial thalamus and left occipital cortex. Clinically, neurological status did not improve, with a score of 5 on the modified Rankin Scale. IV tPA can be used for stroke due to cardiac myxoma, but development of brain aneurysms and metastases caused by myxoma is a concern. Given the difficulty of predicting an embolus composite from a thrombus or tumor particle, aspiration thrombectomy may be safer and more effective for stroke due to cardiac

  3. Comparison of Image Processing Techniques for Nonviable Tissue Quantification in Late Gadolinium Enhancement Cardiac Magnetic Resonance Images.

    Science.gov (United States)

    Carminati, M Chiara; Boniotti, Cinzia; Fusini, Laura; Andreini, Daniele; Pontone, Gianluca; Pepi, Mauro; Caiani, Enrico G

    2016-05-01

    The aim of this study was to compare the performance of quantitative methods, either semiautomated or automated, for left ventricular (LV) nonviable tissue analysis from cardiac magnetic resonance late gadolinium enhancement (CMR-LGE) images. The investigated segmentation techniques were: (i) n-standard deviations thresholding; (ii) full width at half maximum thresholding; (iii) Gaussian mixture model classification; and (iv) fuzzy c-means clustering. These algorithms were applied either in each short axis slice (single-slice approach) or globally considering the entire short-axis stack covering the LV (global approach). CMR-LGE images from 20 patients with ischemic cardiomyopathy were retrospectively selected, and results from each technique were assessed against manual tracing. All methods provided comparable performance in terms of accuracy in scar detection, computation of local transmurality, and high correlation in scar mass compared with the manual technique. In general, no significant difference between single-slice and global approach was noted. The reproducibility of manual and investigated techniques was confirmed in all cases with slightly lower results for the nSD approach. Automated techniques resulted in accurate and reproducible evaluation of LV scars from CMR-LGE in ischemic patients with performance similar to the manual technique. Their application could minimize user interaction and computational time, even when compared with semiautomated approaches.

  4. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    OpenAIRE

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-s...

  5. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues

    Science.gov (United States)

    Faber, James E.; Zhang, Hua; Lassance-Soares, Roberta M.; Prabhakar, Pranay; Najafi, Amir H.; Burnett, Mary Susan; Epstein, Stephen E.

    2011-01-01

    Objective Aging is a major risk factor for increased ischemic tissue injury. Whether collateral rarefaction and impaired remodeling contribute to this is unknown. We quantified the number and diameter of native collaterals, and their remodeling in 3-, 16-, 24-, and 31-months-old mice. Methods and Results Aging caused an “age-dose-dependent” greater drop in perfusion immediately after femoral artery ligation, followed by a diminished recovery of flow and increase in tissue injury. These effects were associated with a decline in collateral number, diameter and remodeling. Angiogenesis was also impaired. Mechanistically, these changes were not accompanied by reduced recruitment of T-cells or macrophages to remodeling collaterals. However, eNOS signaling was dysfunctional, as indicated by increased protein nitrosylation and less phosphorylated eNOS and VASP in collateral wall cells. The cerebral circulation exhibited a similar age-dose-dependent loss of collateral number and diameter and increased tortuosity, resulting in an increase in collateral resistance and infarct volume (e.g., 6- and 3-fold, respectively, in 24-months-old mice) after artery occlusion. This was not associated with rarefaction of similarly-sized arterioles. Collateral remodeling was also reduced. Conclusions Our findings demonstrate that aging causes rarefaction and insufficiency of the collateral circulation in multiple tissues, resulting in more severe ischemic tissue injury. PMID:21617137

  6. Migraine with Ischemic Stroke in a Young Male with Hyperhomocysteinemia and Connective Tissue Dysplasia

    Directory of Open Access Journals (Sweden)

    S.K. Yevtushenko

    2014-08-01

    Full Text Available Case report of migraine with ischemic stroke on the background of hyperhomocysteinemia in a young male with connective tissue dysplasia is given in the article. The clinical picture, results of magnetic resonance imaging, tomography, genetic and somatic examination are described.

  7. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    Science.gov (United States)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  8. Cardiac tissue slices: preparation, handling, and successful optical mapping.

    Science.gov (United States)

    Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian

    2015-05-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.

  9. Assessment of biodistribution of 131-IPPA in cardiac and non-cardiac tissues in laboratory animals by imaging

    International Nuclear Information System (INIS)

    Moradkani, S.; Sadadi, F.; Matloubi, M.; Jalilian, A. R.; Shafaie, K.; Karimian, A. R.; Daneshvari, S.

    2007-01-01

    The main substrate of myocardial metabolism is fatty acids which constitutes the principal agent for myocardial consumption and provides almost 60-80% of the energy utilized by the heart in the resting state. Evaluation of cardiac metabolism is important for the assessment of some of cardiac disorders such as Ischemic Heart disease (IHD), cardiomyopathy (functional disorders) and Hypertensive cardiac disorders. Today, almost in all of the developed countries, PET is the first step for diagnosis and assessment of cardiac metabolic disorders. It is, however, too expensive to be used in all centers and are not available in all countries. In this regards, 123-IPPA was introduced as a substitute of PET system for evaluation of cardiac function (metabolism) and it is a complementary method for other Para-clinical methods. We decided to have a preliminary study on IPPA and due to the lack of 123-I, we had to use 131-I. The labeling of IPPA by 131-I, purification and sterilization of 131-1PPA done by the Chemistry Group of Cyclotron Ward and the bio-kinetic and imaging of rat, mice (Laboratory Animals) were performed in the Nuclear Medicine Group. After injection of a proper dose of this radiotracer, the imaging was performed in an appropriate time. In our first images, there were intensive accumulation of tracer in animals' thyroid glands, though after the intake of Lugol solution, the thyroid did not appear and we had a number of excellent images of animal heart that was the target organ

  10. Role of nuclear medicine in ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, Kohei; Nishimura, Tsunehiko; Uehara, Toshiisa; Naito, Hiroaki; Omine, Hiromi; Kozuka, Takahiro [National Cardiovascular Center, Suita, Osaka (Japan)

    1982-08-01

    With the progress in gamma camera and computer system, nuclear medicine has been applied for diagnostic tool in ischemic heart disease. There are two devices for cardiac images; (1) Radionuclide angiocardiography (RNA) by in vivo sup(99m)Tc-RBC labeling (2) Myocardial imaging by /sup 201/Tlcl. RNA can evaluate the kinesis of wall motion of left ventricle with gated pool scan and also detect reserve of cardiac function with exercise study. Myocardial imaging at rest can identify myocardial necrosis and the imaging in exercise can detect myocardial ischemia. The elaborateness and reproducibility of cardiac image in nuclear medicine will play the great role to evaluate clinical stage of ischemic heart disease by not only imaging but also functional diagnosis.

  11. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P; Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore (Singapore); Ghasemi-Mobarakeh, Laleh, E-mail: nnimpp@nus.edu.s [Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of)

    2011-10-15

    A bioengineered construct that matches the chemical, mechanical, biological properties and extracellular matrix morphology of native tissue could be suitable as a cardiac patch for supporting the heart after myocardial infarction. The potential of utilizing a composite nanofibrous scaffold of poly(dl-lactide-co-glycolide)/gelatin (PLGA/Gel) as a biomimetic cardiac patch is studied by culturing a population of cardiomyocyte containing cells on the electrospun scaffolds. The chemical characterization and mechanical properties of the electrospun PLGA and PLGA/Gel nanofibers were studied by Fourier transform infrared spectroscopy, scanning electron microscopy and tensile measurements. The biocompatibility of the scaffolds was also studied and the cardiomyocytes seeded on PLGA/Gel nanofibers were found to express the typical functional cardiac proteins such as alpha-actinin and troponin I, showing the easy integration of cardiomyocytes on PLGA/Gel scaffolds. Our studies strengthen the application of electrospun PLGA/Gel nanofibers as a bio-mechanical support for injured myocardium and as a potential substrate for induction of endogenous cardiomyocyte proliferation, ultimately reducing the cardiac dysfunction and improving cardiac remodeling.

  12. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  13. Impact of cardiac support device combined with slow-release prostacyclin agonist in a canine ischemic cardiomyopathy model.

    Science.gov (United States)

    Kubota, Yasuhiko; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Watabe, Hiroshi; Daimon, Takashi; Sakai, Yoshiki; Akita, Toshiaki; Sawa, Yoshiki

    2014-03-01

    The cardiac support device supports the heart and mechanically reduces left ventricular (LV) diastolic wall stress. Although it has been shown to halt LV remodeling in dilated cardiomyopathy, its therapeutic efficacy is limited by its lack of biological effects. In contrast, the slow-release synthetic prostacyclin agonist ONO-1301 enhances reversal of LV remodeling through biological mechanisms such as angiogenesis and attenuation of fibrosis. We therefore hypothesized that ONO-1301 plus a cardiac support device might be beneficial for the treatment of ischemic cardiomyopathy. Twenty-four dogs with induced anterior wall infarction were assigned randomly to 1 of 4 groups at 1 week postinfarction as follows: cardiac support device alone, cardiac support device plus ONO-1301 (hybrid therapy), ONO-1301 alone, or sham control. At 8 weeks post-infarction, LV wall stress was reduced significantly in the hybrid therapy group compared with the other groups. Myocardial blood flow, measured by positron emission tomography, and vascular density were significantly higher in the hybrid therapy group compared with the cardiac support device alone and sham groups. The hybrid therapy group also showed the least interstitial fibrosis, the greatest recovery of LV systolic and diastolic functions, assessed by multidetector computed tomography and cardiac catheterization, and the lowest plasma N-terminal pro-B-type natriuretic peptide levels (P < .05). The combination of a cardiac support device and the prostacyclin agonist ONO-1301 elicited a greater reversal of LV remodeling than either treatment alone, suggesting the potential of this hybrid therapy for the clinical treatment of ischemia-induced heart failure. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  14. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  15. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Bhaarathy, V.; Venugopal, J.; Gandhimathi, C.; Ponpandian, N.; Mangalaraj, D.; Ramakrishna, S.

    2014-01-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  16. Intracellular pH in Gastric and Rectal Tissue Post Cardiac Arrest

    Science.gov (United States)

    Fisher, Elaine M.; Steiner, Richard P.; LaManna, Joseph C.

    We directly measured pHi using the pH sensitive dye, neutral red. We defined pHi for rectal and gastric tissue in whole tissue and by layer under control and arrest conditions. Fifteen minutes of arrest was not sufficient time to alter the pHi at the rectal or gastric site. On initial inspection, the stomach may be more sensitive to ischemic changes than the rectum. Understanding the mechanism by which PCO2 generation is used to track clinical changes is vital to the early detection of tissue dysoxia in order to effectively treat and manage critically ill patients.

  17. The role of insulin-like growth factor during a postischemic period - new insights into pathophysiologic pathways in cardiac tissue

    NARCIS (Netherlands)

    Palmen, Meindert; Twickler, Marcel T.; Daemen, Mat J.; Cramer, Maarten Jan; Doevendans, Pieter A.

    2005-01-01

    Despite an improvement in the therapeutic strategies available for an acute ischemic event, cardiac disease is still the principal cause of morbidity and mortality in Western societies. A shift from acute towards more chronic heart disease due to atherosclerotic disease has been recognized.

  18. Diffusion-weighted MRI in acute posterior ischemic optic neuropathy

    International Nuclear Information System (INIS)

    Srinivasan, Sivasubramanian; Moorthy, Srikant; Sreekumar, KP; Kulkarni, Chinmay

    2012-01-01

    Blindness following surgery, especially cardiac surgery, has been reported sporadically, the most common cause being ischemic optic neuropathy. The role of MRI in the diagnosis of this condition is not well established. We present a case of postoperative posterior ischemic optic neuropathy that was diagnosed on diffusion-weighted MRI

  19. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering

    NARCIS (Netherlands)

    Castilho, Miguel; Feyen, Dries; Flandes-Iparraguirre, María; Hochleitner, Gernot; Groll, Jürgen; Doevendans, Pieter A.F.; Vermonden, Tina; Ito, Keita; Sluijter, Joost P G; Malda, Jos

    2017-01-01

    Current limitations in cardiac tissue engineering revolve around the inability to fully recapitulate the structural organization and mechanical environment of native cardiac tissue. This study aims at developing organized ultrafine fiber scaffolds with improved biocompatibility and architecture in

  20. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering

    NARCIS (Netherlands)

    Castilho, Miguel; Feyen, Dries; Flandes-Iparraguirre, María; Hochleitner, Gernot; Groll, Jürgen; Doevendans, Pieter A.F.; Vermonden, Tina; Ito, Keita; Sluijter, Joost P.G.; Malda, Jos

    Current limitations in cardiac tissue engineering revolve around the inability to fully recapitulate the structural organization and mechanical environment of native cardiac tissue. This study aims at developing organized ultrafine fiber scaffolds with improved biocompatibility and architecture in

  1. Melt electrospinning writing of poly-Hydroxymethylglycolide-co-ε-Caprolactone-based scaffolds for cardiac tissue engineering

    NARCIS (Netherlands)

    Castilho, M.; Feyen, D.; Flandes-Iparraguirre, M.; Hochleitner, G.; Groll, J.; Doevendans, P.A.F.; Vermonden, T.; Ito, K.; Sluijter, J.P.G.; Malda, J.

    2017-01-01

    Current limitations in cardiac tissue engineering revolve around the inability to fully recapitulate the structural organization and mechanical environment of native cardiac tissue. This study aims at developing organized ultrafine fiber scaffolds with improved biocompatibility and architecture in

  2. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  3. Coronary flow response to remote ischemic preconditioning is preserved in old cardiac patients.

    Science.gov (United States)

    Santillo, Elpidio; Migale, Monica; Balestrini, Fabrizio; Postacchini, Demetrio; Bustacchini, Silvia; Lattanzio, Fabrizia; Antonelli-Incalzi, Raffaele

    2017-10-20

    The effect of remote ischemic preconditioning (RIPC) on coronary flow in elderly cardiac patients has not been investigated yet. Thus, we aimed to study the change of coronary flow subsequent to RIPC in old patients with heart diseases and to identify its main correlates. Ninety-five elderly patients (aged ≥ 65 years) accessing cardiac rehabilitation ward underwent transthoracic ultrasound evaluation of peak diastolic flow velocity of left anterior descending artery. Measurements of coronary flow velocity were performed on baseline and after an RIPC protocol (three cycles of 5 min ischemia of right arm alternating 5 min reperfusion). Differences between subjects with coronary flow velocity change over or equal the 75° percentile (high-responders) and subjects with a coronary flow velocity change under the 75° percentile (low-responders) were assessed. In enrolled elderly heart patients, coronary flow velocity significantly augmented from baseline after RIPC [0.23 m/s (0.18-0.28) vs 0.27 m/s (0.22-0.36); p < 0.001 by Wilcoxon test]. High-responders to RIPC were significantly younger and in better functional status than low-responders. Heart failure resulted as the main variable associated with impairment of RIPC responsiveness (R 2  = 0.202; p = 0.002)]. Our sample of old cardiac patients presented a significant median increment of coronary flow velocity after RIPC. The magnitude of the observed change of coronary flow velocity was comparable to that previously described in healthy subjects. The coronary response to RIPC was attenuated by heart failure. Further research should define whether such RIPC responsiveness is associated with cardioprotection and carries prognostic implications.

  4. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS cells, which once differentiated allow for the enrichment of Nkx2-5(+ cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+ cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological

  5. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts

    Directory of Open Access Journals (Sweden)

    F Di Meglio

    2009-08-01

    Full Text Available The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR. The amount of proteins characteristic for cardiac cells (a-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively inclines toward an increase in both a-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart.

  6. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  7. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  8. Cardiac magnetic resonance radiofrequency tissue tagging for diagnosis of constrictive pericarditis: A proof of concept study.

    Science.gov (United States)

    Power, John A; Thompson, Diane V; Rayarao, Geetha; Doyle, Mark; Biederman, Robert W W

    2016-05-01

    Invasive cardiac catheterization is the venerable "gold standard" for diagnosing constrictive pericarditis. However, its sensitivity and specificity vary dramatically from center to center. Given the ability to unequivocally define segments of the pericardium with the heart via radiofrequency tissue tagging, we hypothesize that cardiac magnetic resonance has the capability to be the new gold standard. All patients who were referred for cardiac magnetic resonance evaluation of constrictive pericarditis underwent cardiac magnetic resonance radiofrequency tissue tagging to define visceral-parietal pericardial adherence to determine constriction. This was then compared with intraoperative surgical findings. Likewise, all preoperative cardiac catheterization testing was reviewed in a blinded manner. A total of 120 patients were referred for clinical suspicion of constrictive pericarditis. Thirty-nine patients were defined as constrictive pericarditis positive solely via radiofrequency tissue-tagging cardiac magnetic resonance, of whom 21 were positive, 4 were negative, and 1 was equivocal for constrictive pericarditis, as defined by cardiac catheterization. Of these patients, 16 underwent pericardiectomy and were surgically confirmed. There was 100% agreement between cardiac magnetic resonance-defined constrictive pericarditis positivity and postsurgical findings. No patients were misclassified by cardiac magnetic resonance. In regard to the remaining constrictive pericarditis-positive patients defined by cardiac magnetic resonance, 10 were treated medically, declined, were ineligible for surgery, or were lost to follow-up. Long-term follow-up of those who were constrictive pericarditis negative by cardiac magnetic resonance showed no early or late crossover to the surgery arm. Cardiac magnetic resonance via radiofrequency tissue tagging offers a unique, efficient, and effective manner of defining clinically and surgically relevant constrictive pericarditis

  9. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    Science.gov (United States)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  10. MR imaging of ischemic penumbra

    International Nuclear Information System (INIS)

    Abe, Osamu; Aoki, Shigeki; Shirouzu, Ichiro; Kunimatsu, Akira; Hayashi, Naoto; Masumoto, Tomohiko; Mori, Harushi; Yamada, Haruyasu; Watanabe, Makoto; Masutani, Yoshitaka; Ohtomo, Kuni

    2003-01-01

    Cerebral ischemic stroke is one of the most fatal diseases despite current advances in medical science. Recent demonstration of efficacy using intravenous and intra-arterial thrombolysis demands therapeutic intervention tailored to the physiologic state of the individual tissue and stratification of patients according to the potential risks for therapies. In such an era, the role of the neuroimaging becomes increasingly important to evaluate the extent and location of tissues at risk of infarction (ischemic penumbra), to distinguish it from unsalvageable infarcted tissues or doomed hemorrhagic parenchyma. In this review, we present briefly the current role and limitation of computed tomography and conventional magnetic resonance imaging (MRI). We also present the possible applications of advanced MR techniques, such as diffusion and perfusion imaging, concentrating on the delineation or detection of ischemic penumbra

  11. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.

    Science.gov (United States)

    Wang, Ling; Wu, Yaobin; Hu, Tianli; Guo, Baolin; Ma, Peter X

    2017-09-01

    Mimicking the nanofibrous structure similar to extracellular matrix and conductivity for electrical propagation of native myocardium would be highly beneficial for cardiac tissue engineering and cardiomyocytes-based bioactuators. Herein, we developed conductive nanofibrous sheets with electrical conductivity and nanofibrous structure composed of poly(l-lactic acid) (PLA) blending with polyaniline (PANI) for cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Incorporating of varying contents of PANI from 0wt% to 3wt% into the PLA polymer, the electrospun nanofibrous sheets showed enhanced conductivity while maintaining the same fiber diameter. These PLA/PANI conductive nanofibrous sheets exhibited good cell viability and promoting effect on differentiation of H9c2 cardiomyoblasts in terms of maturation index and fusion index. Moreover, PLA/PANI nanofibrous sheets enhanced the cell-cell interaction, maturation and spontaneous beating of primary cardiomyocytes. Furthermore, the cardiomyocytes-laden PLA/PANI conductive nanofibrous sheets can form 3D bioactuators with tubular and folding shapes, and spontaneously beat with much higher frequency and displacement than that on cardiomyocytes-laden PLA nanofibrous sheets. Therefore, these PLA/PANI conductive nanofibrous sheets with conductivity and extracellular matrix like nanostructure demonstrated promising potential in cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Cardiomyocytes-based bioactuators have been paid more attention due to their spontaneous motion by integrating cardiomyocytes into polymer structures, but developing suitable scaffolds for bioactuators remains challenging. Electrospun nanofibrous scaffolds have been widely used in cardiac tissue engineering because they can mimic the extracellular matrix of myocardium. Developing conductive nanofibrous scaffolds by electrospinning would be beneficial for cardiomyocytes-based bioactuators, but such scaffolds have been

  12. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.

    Science.gov (United States)

    Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I

    2014-10-01

    For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch. Copyright

  13. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

    Directory of Open Access Journals (Sweden)

    Lijuan Chen

    Full Text Available Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.

  14. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  15. Gene expression in cardiac tissues from infants with idiopathic conotruncal defects

    Directory of Open Access Journals (Sweden)

    Lofland Gary K

    2011-01-01

    Full Text Available Abstract Background Tetralogy of Fallot (TOF is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot. Methods We employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions and compared gene expression patterns to normally developing subjects. Results We detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation. However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, p = 0.017 and Notch, p = 0.003 appeared to be generally suppressed. Conclusions The suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.

  16. Imaging of cerebral ischemic edema and neuronal death

    Energy Technology Data Exchange (ETDEWEB)

    Kummer, Ruediger von [Universitaetsklinikum Carl Gustav Carus, Institut fuer Diagnostische und Interventionelle Neuroradiologie, Dresden (Germany); Dzialowski, Imanuel [Elblandklinikum Meissen, Neurologische Rehabilitationsklinik Grossenhain, Meissen (Germany)

    2017-06-15

    In acute cerebral ischemia, the assessment of irreversible injury is crucial for treatment decisions and the patient's prognosis. There is still uncertainty how imaging can safely differentiate reversible from irreversible ischemic brain tissue in the acute phase of stroke. We have searched PubMed and Google Scholar for experimental and clinical papers describing the pathology and pathophysiology of cerebral ischemia under controlled conditions. Within the first 6 h of stroke onset, ischemic cell injury is subtle and hard to recognize under the microscope. Functional impairment is obvious, but can be induced by ischemic blood flow allowing recovery with flow restoration. The critical cerebral blood flow (CBF) threshold for irreversible injury is ∝15 ml/100 g x min. Below this threshold, ischemic brain tissue takes up water in case of any residual capillary flow (ionic edema). Because tissue water content is linearly related to X-ray attenuation, computed tomography (CT) can detect and measure ionic edema and, thus, determine ischemic brain infarction. In contrast, diffusion-weighted magnetic resonance imaging (DWI) detects cytotoxic edema that develops at higher thresholds of ischemic CBF and is thus highly sensitive for milder levels of brain ischemia, but not specific for irreversible brain tissue injury. CT and MRI are complimentary in the detection of ischemic stroke pathology and are valuable for treatment decisions. (orig.)

  17. Cardiac Time Intervals by Tissue Doppler Imaging M-Mode

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Mogelvang, Rasmus; de Knegt, Martina Chantal

    2016-01-01

    PURPOSE: To define normal values of the cardiac time intervals obtained by tissue Doppler imaging (TDI) M-mode through the mitral valve (MV). Furthermore, to evaluate the association of the myocardial performance index (MPI) obtained by TDI M-mode (MPITDI) and the conventional method of obtaining...

  18. Phosphoproteomic profiling of human myocardial tissues distinguishes ischemic from non-ischemic end stage heart failure.

    Directory of Open Access Journals (Sweden)

    Matthew A Schechter

    Full Text Available The molecular differences between ischemic (IF and non-ischemic (NIF heart failure are poorly defined. A better understanding of the molecular differences between these two heart failure etiologies may lead to the development of more effective heart failure therapeutics. In this study extensive proteomic and phosphoproteomic profiles of myocardial tissue from patients diagnosed with IF or NIF were assembled and compared. Proteins extracted from left ventricular sections were proteolyzed and phosphopeptides were enriched using titanium dioxide resin. Gel- and label-free nanoscale capillary liquid chromatography coupled to high resolution accuracy mass tandem mass spectrometry allowed for the quantification of 4,436 peptides (corresponding to 450 proteins and 823 phosphopeptides (corresponding to 400 proteins from the unenriched and phospho-enriched fractions, respectively. Protein abundance did not distinguish NIF from IF. In contrast, 37 peptides (corresponding to 26 proteins exhibited a ≥ 2-fold alteration in phosphorylation state (p<0.05 when comparing IF and NIF. The degree of protein phosphorylation at these 37 sites was specifically dependent upon the heart failure etiology examined. Proteins exhibiting phosphorylation alterations were grouped into functional categories: transcriptional activation/RNA processing; cytoskeleton structure/function; molecular chaperones; cell adhesion/signaling; apoptosis; and energetic/metabolism. Phosphoproteomic analysis demonstrated profound post-translational differences in proteins that are involved in multiple cellular processes between different heart failure phenotypes. Understanding the roles these phosphorylation alterations play in the development of NIF and IF has the potential to generate etiology-specific heart failure therapeutics, which could be more effective than current therapeutics in addressing the growing concern of heart failure.

  19. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  20. Association of Right Ventricular Pressure and Volume Overload with Non-Ischemic Septal Fibrosis on Cardiac Magnetic Resonance.

    Directory of Open Access Journals (Sweden)

    Jiwon Kim

    Full Text Available Non-ischemic fibrosis (NIF on cardiac magnetic resonance (CMR has been linked to poor prognosis, but its association with adverse right ventricular (RV remodeling is unknown. This study examined a broad cohort of patients with RV dysfunction, so as to identify relationships between NIF and RV remodeling indices, including RV pressure load, volume and wall stress.The population comprised patients with RV dysfunction (EF 6-fold more common in the highest, vs. the lowest, common tertile of PASP and RV size (p<0.001.Among wall stress components, NIF was independently associated with RV chamber dilation and afterload, supporting the concept that NIF is linked to adverse RV chamber remodeling.

  1. New concepts in cardiac imaging 1985

    Energy Technology Data Exchange (ETDEWEB)

    Pohost, G.M.; Higgins, C.B.; Morganroth, J.; Ritchie, J.L.; Schelbert, H.R.

    1985-01-01

    This book presents 5 specialists work on reviewing and editing the area of applications for cardiac imaging: Contents: Ultrasound Methods; 1. Echocardiography in Valvular Heart Disease, 2. Echocardiography in Ischemic Heart Disease, 3. Current Status of Doppler Ultrasound for Assessing Regurgitant Valvular Lesions, Radionuclide Methods; 4. Cardiovascular Nuclear Medicine, 5. Single Photon Emission Computed Tomography (SPECT): Validation and Application for Myocardial Perfusion Imaging, 6. Assessment of Regional Myocardial Perfusion with Positron Emission Tomography, 7. Assessment of Regional Myocardial Substrate Metabolism with Positron Emission Tomography, X-Ray Imaging Techniques; 8. The Evaluation of Left Ventricular Function in Ischemic Heart Disease by Digital Subtraction Angigraphy, 9. Digital Angiography in the Assessment of Coronary Artery Disease, 10. Cardiac Computed Tomography: Its Potential Use in Evaluation of Ischemic Heart Disease, Magnetic Methods; 11. NMR Evaluation of the Cardiovascular System, 12. Magnetic Resonance Imaging of the Heart.

  2. New concepts in cardiac imaging 1985

    International Nuclear Information System (INIS)

    Pohost, G.M.; Higgins, C.B.; Morganroth, J.; Ritchie, J.L.; Schelbert, H.R.

    1985-01-01

    This book presents 5 specialists work on reviewing and editing the area of applications for cardiac imaging: Contents: Ultrasound Methods; 1. Echocardiography in Valvular Heart Disease, 2. Echocardiography in Ischemic Heart Disease, 3. Current Status of Doppler Ultrasound for Assessing Regurgitant Valvular Lesions, Radionuclide Methods; 4. Cardiovascular Nuclear Medicine, 5. Single Photon Emission Computed Tomography (SPECT): Validation and Application for Myocardial Perfusion Imaging, 6. Assessment of Regional Myocardial Perfusion with Positron Emission Tomography, 7. Assessment of Regional Myocardial Substrate Metabolism with Positron Emission Tomography, X-Ray Imaging Techniques; 8. The Evaluation of Left Ventricular Function in Ischemic Heart Disease by Digital Subtraction Angigraphy, 9. Digital Angiography in the Assessment of Coronary Artery Disease, 10. Cardiac Computed Tomography: Its Potential Use in Evaluation of Ischemic Heart Disease, Magnetic Methods; 11. NMR Evaluation of the Cardiovascular System, 12. Magnetic Resonance Imaging of the Heart

  3. Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting.

    Science.gov (United States)

    Ong, Chin Siang; Fukunishi, Takuma; Nashed, Andrew; Blazeski, Adriana; Zhang, Huaitao; Hardy, Samantha; DiSilvestre, Deborah; Vricella, Luca; Conte, John; Tung, Leslie; Tomaselli, Gordon; Hibino, Narutoshi

    2017-07-02

    This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials, using only cells. Cardiomyocytes, endothelial cells and fibroblasts are first isolated, counted and mixed at desired cell ratios. They are co-cultured in individual wells in ultra-low attachment 96-well plates. Within 3 days, beating spheroids form. These spheroids are then picked up by a nozzle using vacuum suction and assembled on a needle array using a 3D bioprinter. The spheroids are then allowed to fuse on the needle array. Three days after 3D bioprinting, the spheroids are removed as an intact patch, which is already spontaneously beating. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.

  4. Dynamic changes in plasma tissue plasminogen activator, plasminogen activator inhibitor-1 and beta-thromboglobulin content in ischemic stroke.

    Science.gov (United States)

    Zhuang, Ping; Wo, Da; Xu, Zeng-Guang; Wei, Wei; Mao, Hui-ming

    2015-07-01

    The aim of this paper is to investigate the corresponding variations of plasma tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) activities, and beta-thromboglobulin (β-TG) content in patients during different stages of ischemic stroke. Ischemic stroke is a common disease among aging people and its occurrence is associated with abnormalities in the fibrinolytic system and platelet function. However, few reports focus on the dynamic changes in the plasma fibrinolytic system and β-TG content in patients with ischemic stroke. Patients were divided into three groups: acute, convalescent and chronic. Plasma t-PA and PAI-1 activities were determined by chromogenic substrate analysis and plasma β-TG content was detected by radioimmunoassay. Patients in the acute stage of ischemic stroke had significantly increased levels of t-PA activity and β-TG content, but PAI-1 activity was significantly decreased. Negative correlations were found between plasma t-PA and PAI-1 activities and between plasma t-PA activity and β-TG content in patients with acute ischemic stroke. There were significant differences in plasma t-PA and PAI-1 activities in the aged control group, as well as in the acute, convalescent and chronic groups. It can be speculated that the increased activity of t-PA in patients during the acute stage was the result of compensatory function, and that the increase in plasma β-TG level not only implies the presence of ischemic stroke but is likely a cause of ischemic stroke. During the later stages of ischemic stroke, greater attention is required in monitoring levels of PAI-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Relative cerebral blood volume as a marker of durable tissue-at-risk viability in hyperacute ischemic stroke.

    Science.gov (United States)

    Cortijo, Elisa; Calleja, Ana Isabel; García-Bermejo, Pablo; Mulero, Patricia; Pérez-Fernández, Santiago; Reyes, Javier; Muñoz, Ma Fe; Martínez-Galdámez, Mario; Arenillas, Juan Francisco

    2014-01-01

    Selection of best responders to reperfusion therapies could be aided by predicting the duration of tissue-at-risk viability, which may be dependant on collateral circulation status. We aimed to identify the best predictor of good collateral circulation among perfusion computed tomography (PCT) parameters in middle cerebral artery (MCA) ischemic stroke and to analyze how early MCA response to intravenous thrombolysis and PCT-derived markers of good collaterals interact to determine stroke outcome. We prospectively studied patients with acute MCA ischemic stroke treated with intravenous thrombolysis who underwent PCT before treatment showing a target mismatch profile. Collateral status was assessed using a PCT source image-based score. PCT maps were quantitatively analyzed. Cerebral blood volume (CBV), cerebral blood flow, and Tmax were calculated within the hypoperfused volume and in the equivalent region of unaffected hemisphere. Occluded MCAs were monitored by transcranial Duplex to assess early recanalization. Main outcome variables were brain hypodensity volume and modified Rankin scale score at day 90. One hundred patients with MCA ischemic stroke imaged by PCT received intravenous thrombolysis, and 68 met all inclusion criteria. A relative CBV (rCBV) >0.93 emerged as the only predictor of good collaterals (odds ratio, 12.6; 95% confidence interval, 2.9-55.9; P=0.001). Early MCA recanalization was associated with better long-term outcome and lower infarct volume in patients with rCBV<0.93, but not in patients with high rCBV. None of the patients with rCBV<0.93 achieved good outcome in absence of early recanalization. High rCBV was the strongest marker of good collaterals and may characterize durable tissue-at-risk viability in hyperacute MCA ischemic stroke.

  6. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    Science.gov (United States)

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  7. Association of Geographical Factors With Administration of Tissue Plasminogen Activator for Acute Ischemic Stroke

    OpenAIRE

    Kunisawa, Susumu; Morishima, Toshitaka; Ukawa, Naoto; Ikai, Hiroshi; Otsubo, Tetsuya; Ishikawa, Koichi B.; Yokota, Chiaki; Minematsu, Kazuo; Fushimi, Kiyohide; Imanaka, Yuichi

    2013-01-01

    Background Intravenous tissue plasminogen activator (tPA) is an effective treatment for acute ischemic stroke if administered within a few hours of stroke onset. Because of this time restriction, tPA administration remains infrequent. Ambulance use is an effective strategy for increasing tPA administration but may be influenced by geographical factors. The objectives of this study are to investigate the relationship between tPA administration and ambulance use and to examine how patient trave...

  8. Three-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography.

    Science.gov (United States)

    Haraguchi, Yuji; Hasegawa, Akiyuki; Matsuura, Katsuhisa; Kobayashi, Mari; Iwana, Shin-Ichi; Kabetani, Yasuhiro; Shimizu, Tatsuya

    2017-01-01

    Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.

  9. The protective effect of ischemic preconditioning on rat testis

    Directory of Open Access Journals (Sweden)

    Ciralik Harun

    2007-12-01

    Full Text Available Abstract Background It has been demonstrated that brief episodes of sublethal ischemia-reperfusion, so-called ischemic preconditioning, provide powerful tissue protection in different tissues such as heart, brain, skeletal muscle, lung, liver, intestine, kidney, retina, and endothelial cells. Although a recent study has claimed that there are no protective effects of ischemic preconditioning in rat testis, the protective effects of ischemic preconditioning on testicular tissue have not been investigated adequately. The present study was thus planned to investigate whether ischemic preconditioning has a protective effect on testicular tissue. Methods Rats were divided into seven groups that each contained seven rats. In group 1 (control group, only unilateral testicular ischemia was performed by creating a testicular torsion by a 720 degree clockwise rotation for 180 min. In group 2, group 3, group 4, group 5, group 6, and group 7, unilateral testicular ischemia was performed for 180 min following different periods of ischemic preconditioning. The ischemic preconditioning periods were as follows: 10 minutes of ischemia with 10 minutes of reperfusion in group 2; 20 minutes of ischemia with 10 minutes of reperfusion in group 3; 30 minutes of ischemia with 10 minutes of reperfusion in group 4; multiple preconditioning periods were used (3 × 10 min early phase transient ischemia with 10 min reperfusion in all episodes in group 5; multiple preconditioning periods were used (5, 10, and 15 min early phase transient ischemia with 10 min reperfusion in all episodes in group 6; and, multiple preconditioning periods were used (10, 20, and 30 min early phase transient ischemia with 10 min reperfusion in all episodes in group 7. After the ischemic protocols were carried out, animals were sacrificed by cervical dislocation and testicular tissue samples were taken for biochemical measurements (protein, malondialdehyde, nitric oxide and histological examination

  10. Simulation of electrochemical processes in cardiac tissue based on cellular automaton

    International Nuclear Information System (INIS)

    Avdeev, S A; Bogatov, N M

    2014-01-01

    A new class of cellular automata using special accumulative function for nonuniformity distribution is presented. Usage of this automata type for simulation of excitable media applied to electrochemical processes in human cardiac tissue is shown

  11. Cardiac time intervals by tissue Doppler imaging M-mode echocardiography

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor

    2016-01-01

    for myocardial myocytes to achieve an LV pressure equal to that of aorta increases, resulting in a prolongation of the isovolumic contraction time (IVCT). Furthermore, the ability of myocardial myocytes to maintain the LV pressure decreases, resulting in reduction in the ejection time (ET). As LV diastolic...... of whether the LV is suffering from impaired systolic or diastolic function. A novel method of evaluating the cardiac time intervals has recently evolved. Using tissue Doppler imaging (TDI) M-mode through the mitral valve (MV) to estimate the cardiac time intervals may be an improved method reflecting global...

  12. Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury.

    Science.gov (United States)

    Moore, Scott M; Zhang, Hua; Maeda, Nobuyo; Doerschuk, Claire M; Faber, James E

    2015-07-01

    Collaterals lessen tissue injury in occlusive disease. However, aging causes progressive decline in their number and smaller diameters in those that remain (collateral rarefaction), beginning at 16 months of age in mice (i.e., middle age), and worse ischemic injury-effects that are accelerated in even 3-month-old eNOS(-/-) mice. These findings have found indirect support in recent human studies. We sought to determine whether other cardiovascular risk factors (CVRFs) associated with endothelial dysfunction cause collateral rarefaction, investigate possible mechanisms, and test strategies for prevention. Mice with nine different models of CVRFs of 4-12 months of age were assessed for number and diameter of native collaterals in skeletal muscle and brain and for collateral-dependent perfusion and ischemic injury after arterial occlusion. Hypertension caused collateral rarefaction whose severity increased with duration and level of hypertension, accompanied by greater hindlimb ischemia and cerebral infarct volume. Chronic treatment of wild-type mice with L-N (G)-nitro-arginine methylester caused similar rarefaction and worse ischemic injury which were not prevented by lowering arterial pressure with hydralazine. Metabolic syndrome, hypercholesterolemia, diabetes mellitus, and obesity also caused collateral rarefaction. Neither chronic statin treatment nor exercise training lessened hypertension-induced rarefaction. Chronic CVRF presence caused collateral rarefaction and worse ischemic injury, even at relatively young ages. Rarefaction was associated with increased proliferation rate of collateral endothelial cells, effects that may promote accelerated endothelial cell senescence.

  13. Real time assessment of RF cardiac tissue ablation with optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Sharareh, S

    2008-03-20

    An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, catheter-tissue proximity, lesion formation, depth of penetration of the lesion, formation of char during the ablation, formation of coagulum around the ablation site, differentiation of ablated from healthy tissue, and recognition of micro-bubble formation in the tissue.

  14. Optimizing Cardiac Out-Put to Increase Cerebral Penumbral Perfusion in Large Middle Cerebral Artery Ischemic Lesion—OPTIMAL Study

    Directory of Open Access Journals (Sweden)

    Hannah Fuhrer

    2017-08-01

    Full Text Available IntroductionIn unsuccessful vessel recanalization, clinical outcome of acute stroke patients depends on early improvement of penumbral perfusion. So far, mean arterial blood pressure (MAP is the target hemodynamic parameter. However, the correlations of MAP to cardiac output (CO and cerebral perfusion are volume state dependent. In severe subarachnoid hemorrhage, optimizing CO leads to a reduction of delayed ischemic neurological deficits and improvement of clinical outcome. This study aims to investigate the effect of standard versus advanced cardiac monitoring with optimization of CO on the clinical outcome in patients with large ischemic stroke.Methods and analysisThe OPTIMAL study is a prospective, multicenter, open, into two arms (1:1 randomized, controlled trial. Sample size estimate: sample sizes of 150 for each treatment group (300 in total ensure an 80% power to detect a difference of 16% of a dichotomized level of functional clinical outcome at 3 months at a significance level of 0.05. Study outcomes: the primary endpoint is the functional outcome at 3 months. The secondary endpoints include functional outcome at 6 months follow-up, and complications related to hemodynamic monitoring and therapies.DiscussionThe results of this trial will provide data on the safety and efficacy of advanced hemodynamic monitoring on clinical outcome.Ethics and disseminationThe trial was approved by the leading ethics committee of Freiburg University, Germany (438/14, 2015 and the local ethics committees of the participating centers. The study is performed in accordance with the Declaration of Helsinki and the guidelines of Good Clinical Practice. It is registered in the German Clinical Trial register (DRKS; DRKS00007805. Dissemination will include submission to peer-reviewed professional journals and presentation at congresses. Hemodynamic monitoring may be altered in a specific stroke patient cohort if the study shows that advanced monitoring is

  15. Practical textbook of cardiac CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae-Hwan (ed.) [ASAN Medical Center, Seoul (Korea, Republic of). Dept. of Radiology

    2015-04-01

    Guide to the interpretation of cardiac CT and MRI for the purposes of diagnosis, treatment planning, and follow-up. Emphasis on applications in a wide range of real clinical situations. Numerous informative illustrations. Summarizing sections permitting rapid retrieval of information. QR codes allowing access to references, additional figures, and motion pictures from the internet. This up-to-date textbook comprehensively reviews all aspects of cardiac CT and MRI and demonstrates the value of these techniques in clinical practice. A wide range of applications are considered, including imaging of atherosclerotic and non-atherosclerotic coronary artery disease, coronary revascularization, ischemic heart disease, non-ischemic cardiomyopathy, valvular heart disease, cardiac tumors, and pericardial disease. The numerous high-quality images illustrate how to interpret cardiac CT and MRI correctly for the purposes of diagnosis, treatment planning, and follow-up. Helpful summarizing sections in every chapter will facilitate rapid retrieval of information. This book will be of great value to radiologists and cardiologists seeking a reliable guide to the optimal use of cardiac CT and MRI in real clinical situations.

  16. Practical textbook of cardiac CT and MRI

    International Nuclear Information System (INIS)

    Lim, Tae-Hwan

    2015-01-01

    Guide to the interpretation of cardiac CT and MRI for the purposes of diagnosis, treatment planning, and follow-up. Emphasis on applications in a wide range of real clinical situations. Numerous informative illustrations. Summarizing sections permitting rapid retrieval of information. QR codes allowing access to references, additional figures, and motion pictures from the internet. This up-to-date textbook comprehensively reviews all aspects of cardiac CT and MRI and demonstrates the value of these techniques in clinical practice. A wide range of applications are considered, including imaging of atherosclerotic and non-atherosclerotic coronary artery disease, coronary revascularization, ischemic heart disease, non-ischemic cardiomyopathy, valvular heart disease, cardiac tumors, and pericardial disease. The numerous high-quality images illustrate how to interpret cardiac CT and MRI correctly for the purposes of diagnosis, treatment planning, and follow-up. Helpful summarizing sections in every chapter will facilitate rapid retrieval of information. This book will be of great value to radiologists and cardiologists seeking a reliable guide to the optimal use of cardiac CT and MRI in real clinical situations.

  17. The Correlation between Left and Right Ventricular Ejection Fractions in Patients with Ischemic Heart Disease, Documented by Cardiac Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Ali Eshraghi

    2016-03-01

    Full Text Available Introduction: The correlation between right and left ventricular ejection fractions (RVEF and LVEF, respectively has been studied in only a small number of patients with a marked decrease in RVEF and LVEF. The aim of the present study was to compare LVEF and RVEF in patients with ischemic heart disease. RVEF and LVEF were measured by Cardiovascular Magnetic Resonance (CMR imaging. Materials and Methods: This observational study was done in Ghaem general hospital in 2014.  LVEF and RVEF were measured in a series of 33 patients with ischemic heart disease, undergoing CMR for the evaluation of myocardial viability. The correlation between RVEF and LVEF in patients with ischemic heart disease was studied, using Pearson product-moment correlation coefficient analysis.   This study was done in Ghaem general hospital in 2014 with simple sapling. Results: Right ventricular end diastolic volume (186.33±58.90 and left ventricular end diastolic volume (121.72±61.64 were significantly correlated (r=0.223, P=0.005. Moreover, there was a significant correlation between right ventricular end systolic volume (88.18±40.90 and left ventricular end systolic volume (140.96±35.33 (r=0.329, P=0.000. The most significant association was observed between RVEF and LVEF (r=0.913, P=0.000. Conclusion: Based on the findings, RVEF and LVEF were significantly correlated in patients with ischemic heart disease, although this association was not always present in all cardiac patients. The cause of this discrepancy is still unknown.

  18. Involvement of adenosine and standardization of aqueous extract of garlic (Allium sativum Linn.) on cardioprotective and cardiodepressant properties in ischemic preconditioning and myocardial ischemia-reperfusion induced cardiac injury

    Science.gov (United States)

    Sharma, Ashish Kumar; Munajjam, Arshee; Vaishnav, Bhawna; Sharma, Richa; Sharma, Ashok; Kishore, Kunal; Sharma, Akash; Sharma, Divya; Kumari, Rita; Tiwari, Ashish; Singh, Santosh Kumar; Gaur, Samir; Jatav, Vijay Singh; Srinivasan, Barthu Parthi; Agarwal, Shyam Sunder

    2012-01-01

    The present study investigated the effect of garlic (Allium sativum Linn.) aqueous extracts on ischemic preconditioning and ischemia-reperfusion induced cardiac injury, as well as adenosine involvement in ischemic preconditioning and garlic extract induced cardioprotection. A model of ischemia-reperfusion injury was established using Langendorff apparatus. Aqueous extract of garlic dose was standardized (0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.07%, 0.05%, 0.03%, 0.01%), and the 0.05% dose was found to be the most effective. Higher doses (more than 0.05%) were highly toxic, causing arrhythmia and cardiodepression, whereas the lower doses were ineffective. Garlic exaggerated the cardioprotective effect of ischemic preconditioning. The cardioprotective effect of ischemic preconditioning and garlic cardioprotection was significantly attenuated by theophylline (1,000 µmol/L) and 8-SPT (10 mg/kg, i.p.) and expressed by increased myocardial infarct size, increased LDH level, and reduced nitrite and adenosine levels. These findings suggest that adenosine is involved in the pharmacological and molecular mechanism of garlic induced cardioprotection and mediated by the modulation of nitric oxide. PMID:23554727

  19. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization.

    Science.gov (United States)

    Lasher, Richard A; Hitchcock, Robert W; Sachse, Frank B

    2009-08-01

    This work presents a methodology for modeling of cardiac tissue micro-structure. The approach is based on catheter-based confocal imaging systems, which are emerging as tools for diagnosis in various clinical disciplines. A limitation of these systems is that a fluorescent marker must be available in sufficient concentration in the imaged region. We introduce a novel method for the local delivery of fluorescent markers to cardiac tissue based on a hydro-gel carrier brought into contact with the tissue surface. The method was tested with living rabbit cardiac tissue and applied to acquire three-dimensional image stacks with a standard inverted confocal microscope and two-dimensional images with a catheter-based confocal microscope. We processed these image stacks to obtain spatial models and quantitative data on tissue microstructure. Volumes of atrial and ventricular myocytes were 4901 +/- 1713 and 10 299 +/-3598 mum (3) (mean+/-sd), respectively. Atrial and ventricular myocyte volume fractions were 72.4 +/-4.7% and 79.7 +/- 2.9% (mean +/-sd), respectively. Atrial and ventricular myocyte density was 165 571 +/- 55 836 and 86 957 +/- 32 280 cells/mm (3) (mean+/-sd), respectively. These statistical data and spatial descriptions of tissue microstructure provide important input for modeling studies of cardiac tissue function. We propose that the described methodology can also be used to characterize diseased tissue and allows for personalized modeling of cardiac tissue.

  20. [Preditive clinical factors for epileptic seizures after ischemic stroke].

    Science.gov (United States)

    Fukujima, M M; Cardeal, J O; Lima, J G

    1996-06-01

    Preditive clinical factors for epileptic seizures after ischemic stroke. Clinical features of 35 patients with ischemic stroke who developed epilepsy (Group 1) were compared with those of 35 patients with ischemic stroke without epilepsy (Group 2). The age of the patients did not differ between the groups. There were more men than women and more white than other races in both groups. Diabetes melitus, hypertension, transient ischemic attack, previous stroke, migraine, Chagas disease, cerebral embolism of cardiac origin and use of oral contraceptive did not differ between the groups. Smokers and alcohol users were more frequent in Group 1 (p < 0.05). Most patients of Group 1 presented with hemiparesis; none presented cerebellar or brainstem involvement. Perhaps strokes in smokers have some different aspects, that let them more epileptogenic than in non smokers.

  1. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure

    Science.gov (United States)

    Finosh, G.T.; Jayabalan, Muthu

    2012-01-01

    Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed. PMID:23507781

  2. Drug Delivery to the Ischemic Brain

    Science.gov (United States)

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  3. Combined lysis of thrombus with ultrasound and systemic tissue plasminogen activator for emergent revascularization in acute ischemic stroke (CLOTBUST-ER)

    DEFF Research Database (Denmark)

    Schellinger, Peter D; Alexandrov, Andrei V; Barreto, Andrew D

    2015-01-01

    events. CONCLUSIONS: Since intravenous recombinant tissue-plasminogen-activator remains the only medical therapy to reverse ischemic stroke applicable in the emergency department, our trial will determine if the additional use of transcranial ultrasound improves functional outcomes in patients...

  4. Optimal iodine staining of cardiac tissue for X-ray computed tomography.

    Science.gov (United States)

    Butters, Timothy D; Castro, Simon J; Lowe, Tristan; Zhang, Yanmin; Lei, Ming; Withers, Philip J; Zhang, Henggui

    2014-01-01

    X-ray computed tomography (XCT) has been shown to be an effective imaging technique for a variety of materials. Due to the relatively low differential attenuation of X-rays in biological tissue, a high density contrast agent is often required to obtain optimal contrast. The contrast agent, iodine potassium iodide ([Formula: see text]), has been used in several biological studies to augment the use of XCT scanning. Recently I2KI was used in XCT scans of animal hearts to study cardiac structure and to generate 3D anatomical computer models. However, to date there has been no thorough study into the optimal use of I2KI as a contrast agent in cardiac muscle with respect to the staining times required, which has been shown to impact significantly upon the quality of results. In this study we address this issue by systematically scanning samples at various stages of the staining process. To achieve this, mouse hearts were stained for up to 58 hours and scanned at regular intervals of 6-7 hours throughout this process. Optimal staining was found to depend upon the thickness of the tissue; a simple empirical exponential relationship was derived to allow calculation of the required staining time for cardiac samples of an arbitrary size.

  5. Impaired cardiac ischemic tolerance in spontaneously hypertensive rats is attenuated by adaptation to chronic and acute stress.

    Science.gov (United States)

    Ravingerová, T; Bernátová, I; Matejíková, J; Ledvényiová, V; Nemčeková, M; Pecháňová, O; Tribulová, N; Slezák, J

    2011-01-01

    Chronic hypertension may have a negative impact on the myocardial response to ischemia. On the other hand, intrinsic ischemic tolerance may persist even in the pathologically altered hearts of hypertensive animals, and may be modified by short- or long-term adaptation to different stressful conditions. The effects of long-term limitation of living space (ie, crowding stress [CS]) and brief ischemia-induced stress on cardiac response to ischemia/reperfusion (I/R) injury are not yet fully characterized in hypertensive subjects. The present study was designed to test the influence of chronic and acute stress on the myocardial response to I/R in spontaneously hypertensive rats (SHR) compared with their effects in normotensive counterparts. In both groups, chronic, eight-week CS was induced by caging five rats per cage in cages designed for two rats (200 cm(2)/rat), while controls (C) were housed four to a cage in cages designed for six animals (480 cm(2)/rat). Acute stress was evoked by one cycle of I/R (5 min each, ischemic preconditioning) before sustained I/R in isolated Langendorff-perfused hearts of normotensive and SHR rats. At baseline conditions, the effects of CS were manifested only as a further increase in blood pressure in SHR, and by marked limitation of coronary perfusion in normotensive animals, while no changes in heart mechanical function were observed in any of the groups. Postischemic recovery of contractile function, severity of ventricular arrhythmias and lethal injury (infarction size) were worsened in the hypertrophied hearts of C-SHR compared with normotensive C. However, myo-cardial stunning and reperfusion-induced ventricular arrhythmias were attenuated by CS in SHR, which was different from deterioration of I/R injury in the hearts of normotensive animals. In contrast, ischemic preconditioning conferred an effective protection against I/R in both groups, although the extent of anti-infarct and anti-arrhythmic effects was lower in SHR. Both

  6. A gold nanoparticle coated porcine cholecyst-derived bioscaffold for cardiac tissue engineering.

    Science.gov (United States)

    Nair, Reshma S; Ameer, Jimna Mohamed; Alison, Malcolm R; Anilkumar, Thapasimuthu V

    2017-09-01

    Extracellular matrices of xenogeneic origin have been extensively used for biomedical applications, despite the possibility of heterogeneity in structure. Surface modification of biologically derived biomaterials using nanoparticles is an emerging strategy for improving topographical homogeneity when employing these scaffolds for sophisticated tissue engineering applications. Recently, as a tissue engineering scaffold, cholecyst derived extracellular matrix (C-ECM) has been shown to have several advantages over extracellular matrices derived from other organs such as jejunum and urinary bladder. This study explored the possibility of adding gold nanoparticles, which have a large surface area to volume ratio on C-ECM for achieving homogeneity in surface architecture, a requirement for cardiac tissue engineering. In the current study, gold nanoparticles (AuNPs) were synthesized and functionalised for conjugating with a porcine cholecystic extracellular matrix scaffold. The conjugation of nanoparticles to C-ECM was achieved by 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide/N-hydroxysuccinimide chemistry and further characterized by Fourier transform infrared spectroscopy, environmental scanning electron microscopy, energy dispersive X-ray spectroscopy and thermogravimetric analysis. The physical properties of the modified scaffold were similar to the original C-ECM. Biological properties were evaluated by using H9c2 cells, a cardiomyoblast cell line commonly used for cellular and molecular studies of cardiac cells. The modified scaffold was found to be a suitable substrate for the growth and proliferation of the cardiomyoblasts. Further, the non-cytotoxic nature of the modified scaffold was established by direct contact cytotoxicity testing and live/dead staining. Thus, the modified C-ECM appears to be a potential biomaterial for cardiac tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Towards optical spectroscopic anatomical mapping (OSAM) for lesion validation in cardiac tissue (Conference Presentation)

    Science.gov (United States)

    Singh-Moon, Rajinder P.; Zaryab, Mohammad; Hendon, Christine P.

    2017-02-01

    Electroanatomical mapping (EAM) is an invaluable tool for guiding cardiac radiofrequency ablation (RFA) therapy. The principle roles of EAM is the identification of candidate ablation sites by detecting regions of abnormal electrogram activity and lesion validation subsequent to RF energy delivery. However, incomplete lesions may present interim electrical inactivity similar to effective treatment in the acute setting, despite efforts to reveal them with pacing or drugs, such as adenosine. Studies report that the misidentification and recovery of such lesions is a leading cause of arrhythmia recurrence and repeat procedures. In previous work, we demonstrated spectroscopic characterization of cardiac tissues using a fiber optic-integrated RF ablation catheter. In this work, we introduce OSAM (optical spectroscopic anatomical mapping), the application of this spectroscopic technique to obtain 2-dimensional biodistribution maps. We demonstrate its diagnostic potential as an auxiliary method for lesion validation in treated swine preparations. Endocardial lesion sets were created on fresh swine cardiac samples using a commercial RFA system. An optically-integrated catheter console fabricated in-house was used for measurement of tissue optical spectra between 600-1000nm. Three dimensional, Spatio-spectral datasets were generated by raster scanning of the optical catheter across the treated sample surface in the presence of whole blood. Tissue optical parameters were recovered at each spatial position using an inverse Monte Carlo method. OSAM biodistribution maps showed stark correspondence with gross examination of tetrazolium chloride stained tissue specimens. Specifically, we demonstrate the ability of OSAM to readily distinguish between shallow and deeper lesions, a limitation faced by current EAM techniques. These results showcase the OSAMs potential for lesion validation strategies for the treatment of cardiac arrhythmias.

  8. [The protective action of nimodipine on the ischemic myocardium].

    Science.gov (United States)

    Tsorin, I B; Kazanova, G V; Kirsanova, G Iu; Chirkova, E Iu; Chichkanov, G G

    1992-01-01

    The experiments with unconscious cats and dogs have demonstrated that the calcium antagonist nimodipine has a profound anti-ischemic property. The drug reduces the average value of ST-segment elevation in multiple epicardial ECG leads, during acute myocardial ischemia. Nimodipine maintains cardiac pump and contractile functions, elevates ATP levels in the arbitrarily intact and ischemic myocardium of the left ventricle during 40-min occlusion and 60-min reperfusion of the coronary artery. The protective action of the drug is unassociated with enhanced collateral coronary circulation.

  9. Micro and Nano-mediated 3D Cardiac Tissue Engineering

    Science.gov (United States)

    2010-10-01

    dilated cardiomyopathy . Critical Care Medicine. 2009;37:1197-1205 21. Leor J. Bioengineered cardiac grafts: A new approach to repair the infarcted...chamber and while the atrium “helps” during inner flow. Since increase of amplitude as response to synchronism is a measure of contraction and dilation ...optimal pump function in canine hearts. Journal of the American College of Cardiology. 2003;41:1218-1226 4. Storaa C. Tissue motion imaging of the left

  10. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    Science.gov (United States)

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  11. Radiopharmaceuticals for diagnosis of ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Komarek, P; Chalabala, M [Institut pro Dalsi Vzdelavani Lekaru a Farmaceutu, Prague (Czechoslovakia)

    1982-01-01

    Radiopharmaceuticals used for diagnosing ischemic heart disease in the experimental and clinical practice are reviewed. The mechanism of their retention by the heart muscle is briefly described. The respective radiopharmaceuticals are divided into preparations imaging disorders in the blood supply of the cardiac muscle, diagnosing the myocardial infarction, and evaluating the contractility of the heart.

  12. Ischemic stroke due to embolic heart diseases and associated factors in Benin hospital setting.

    Science.gov (United States)

    Gnonlonfoun, Dieudonné; Adjien, Constant; Gnimavo, Ronald; Goudjinou, Gérard; Hotcho, Corine; Nyangui Mapaga, Jennifer; Sowanou, Arlos; Gnigone, Pupchen; Domingo, Rodrigue; Houinato, Dismand

    2018-04-15

    Poor access to cardiovascular checkups is a major cause of ignorance of embolic heart diseases as the etiology for ischemic stroke. Study ischemic strokes due to embolic heart diseases and their associated factors. It was a cross-sectional, prospective, descriptive and analytical study conducted from November 1, 2014 to August 31, 2015 on 104 patients with ischemic stroke confirmed through brain imaging. Embolic heart diseases included arrhythmia due to atrial fibrillation (AF), atrial flutter, myocardial infarction (MI), heart valve diseases and atrial septal aneurysm (ASA). The dependent variable was embolic heart disease while independent variables encompassed socio-demographic factors, patients' history, and lifestyle. Data analysis was carried out through SAS 9.3. The rate of embolic heart diseases (EHD) as etiology for ischemic stroke was 26% (28/104). AF accounted for 69% of embolic heart diseases and 22.8% of etiologies for ischemic stroke. Ischemic strokes prevalence was 3.5%, 2.5% and 1.2% respectively for heart valve diseases, MI and ASA. The associated factor was age (p=0.000). The diagnosis of a potential cardiac source of embolism is essential because of therapeutic and prognostic implications. Wherefore, there is need for cardiovascular examination particularly Holter ECG and cardiac ultrasound examination which are not always accessible to our populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations.

    Science.gov (United States)

    Wang, Bo; Wang, Guangjun; To, Filip; Butler, J Ryan; Claude, Andrew; McLaughlin, Ronald M; Williams, Lakiesha N; de Jongh Curry, Amy L; Liao, Jun

    2013-09-03

    Recently, we developed an optimal decellularization protocol to generate 3D porcine myocardial scaffolds, which preserve the natural extracellular matrix structure, mechanical anisotropy, and vasculature templates and also show good cell recellularization and differentiation potential. In this study, a multistimulation bioreactor was built to provide coordinated mechanical and electrical stimulation for facilitating stem cell differentiation and cardiac construct development. The acellular myocardial scaffolds were seeded with mesenchymal stem cells (10(6) cells/mL) by needle injection and subjected to 5-azacytidine treatment (3 μmol/L, 24 h) and various bioreactor conditioning protocols. We found that after 2 days of culturing with mechanical (20% strain) and electrical stimulation (5 V, 1 Hz), high cell density and good cell viability were observed in the reseeded scaffold. Immunofluorescence staining demonstrated that the differentiated cells showed a cardiomyocyte-like phenotype by expressing sarcomeric α-actinin, myosin heavy chain, cardiac troponin T, connexin-43, and N-cadherin. Biaxial mechanical testing demonstrated that positive tissue remodeling took place after 2 days of bioreactor conditioning (20% strain + 5 V, 1 Hz); passive mechanical properties of the 2 day and 4 day tissue constructs were comparable to those of the tissue constructs produced by stirring reseeding followed by 2 weeks of static culturing, implying the effectiveness and efficiency of the coordinated simulations in promoting tissue remodeling. In short, the synergistic stimulations might be beneficial not only for the quality of cardiac construct development but also for patients by reducing the waiting time in future clinical scenarios.

  14. Cardiac Time Intervals Measured by Tissue Doppler Imaging M-mode

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Møgelvang, Rasmus; Schnohr, Peter

    2016-01-01

    function was evaluated in 1915 participants by using both conventional echocardiography and tissue Doppler imaging (TDI). The cardiac time intervals, including the isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT), and ejection time (ET), were obtained by TDI M-mode through the mitral......). Additionally, they displayed a significant dose-response relationship, between increasing severity of elevated blood pressure and increasing left ventricular mass index (P

  15. Newer concepts in the pathophysiology of ischemic heart disease.

    Science.gov (United States)

    Kirk, E S; Factor, S; Sonnenblick, E H

    1984-11-01

    Thus the thrust of these studies suggests that blood flow is the overwhelming factor in determining the consequences of the imbalance of oxygen supply and demand. Moreover, the factors that determine the requirements for tissue survival in the presence of deep ischemia are not the same as those shown for the normal myocardium in figure 1. In deep ischemia, contraction ceases, and metabolism shifts from aerobic to anaerobic pathways. Survival rather than contractile function then becomes the agenda. Not only does supply tend to overshadow demand in determining extent of transmural necrosis, but the anatomical pattern of supply precisely delineates the region at risk following a coronary occlusion as well as the ultimate extent of infarction. These views are summarized in the model presented in figures 12 and 13. The anatomic distribution of the ligated artery determines the lateral limits of the ischemic region (Fig. 12) and thus the lateral extension of necrosis (Fig. 13). The extension of the necrosis across the heart wall depends largely on the status of perfusion within the ischemic region. Extension of an infarct, should it occur, has to be explained by other mechanisms. These might include: (i) vascular obstruction in adjacent vascular systems that were not involved in the first occlusion, (ii) relative ischemia in the normal tissue surrounding the ischemic tissue due to an increased wall stress at the demarcation between contracting and noncontracting tissue, or (9) interruption of vessels supplying large interdigitations of normal tissue within the originally ischemic tissue due to changes associated with the process of infarction of ischemia. Alternatively, much that is called extension of infarction may involve more of the wall transmurally without lateral extension. Additional features of the development of myocardial infarction in figures 12 and 13 include: (i) the development of collateral vessel function resulting in an increased capacity to supply the

  16. Kinetics of Tc-99m hexakis t-butyl isonitrile in normal and ischemic canine myocardium

    International Nuclear Information System (INIS)

    Williams, S.J.; Dragotakos, D.L.

    1989-01-01

    Hexakis 99m Tc-tertiary butyl isonitrile ( 99m Tc-TBI) was studied as a cardiac perfusion imaging agent in nine dogs with partial occlusion of the LAD. Thirty min after applying the stenosis, 99m Tc-TBI was injected into the right atrium (RA) in five dogs and left atrium (LA) in four dogs. Normal and ischemic zone regional myocardial 99m Tc-TBI activities were monitored continuously for 4 h. Dogs with LA injections had minimal and equivalent 4 h fractional clearance from the normal and ischemic zones. Dogs with RA injections had minimal, but significantly lower 4 h fractional 99m Tc clearances in the ischemic zone (0.08±0.08) compared to the normal zone (0.16±0.07, P 99m Tc-TBI a promising cardiac perfusion imaging agent. (orig.)

  17. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A [Hijiyanna Park, Hiroshima JP; Nakashima, N; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction; (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically; and apparently is not associated with any cardiac abnormality; and (3) focal cardiac myocytolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by non-bacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  18. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A; Nakashima, T; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction, (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically, and apparently is not associated with any cardiac abnormality, and (3) focal cardiac myochtolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by nonbacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  19. Remote Ischemic Preconditioning and Outcomes of Cardiac Surgery.

    OpenAIRE

    Hausenloy, DJ; Candilio, L; Evans, R; Ariti, C; Jenkins, DP; Kolvekar, S; Knight, R; Kunst, G; Laing, C; Nicholas, J; Pepper, J; Robertson, S; Xenou, M; Clayton, T; Yellon, DM

    2015-01-01

    : Whether remote ischemic preconditioning (transient ischemia and reperfusion of the arm) can improve clinical outcomes in patients undergoing coronary-artery bypass graft (CABG) surgery is not known. We investigated this question in a randomized trial. : We conducted a multicenter, sham-controlled trial involving adults at increased surgical risk who were undergoing on-pump CABG (with or without valve surgery) with blood cardioplegia. After anesthesia induction and before surgical incision, ...

  20. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    Directory of Open Access Journals (Sweden)

    Richard A Lasher

    2012-12-01

    Full Text Available Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06 but less than half of the native postnatal day 12 (0.90 ± 0.06 and adult (0.91 ± 0.04 myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal

  1. Exercise mediates the association between positive affect and 5-year mortality in patients with ischemic heart disease

    DEFF Research Database (Denmark)

    Hoogwegt, Madelein T; Versteeg, Henneke; Hansen, Tina B

    2013-01-01

    Background- Positive affect has been associated with better prognosis in patients with ischemic heart disease, but the underlying mechanisms remain unclear. We examined whether positive affect predicted time to first cardiac-related hospitalization and all-cause mortality, and whether exercise me...... between positive affect and mortality. Interventions aimed at increasing both positive affect and exercise may have better results with respect to patients' prognosis and psychological well-being than interventions focusing on 1 of these factors alone.......Background- Positive affect has been associated with better prognosis in patients with ischemic heart disease, but the underlying mechanisms remain unclear. We examined whether positive affect predicted time to first cardiac-related hospitalization and all-cause mortality, and whether exercise...... mediated this relationship in patients with established ischemic heart disease. Methods and Results- The sample comprised 607 patients with ischemic heart disease from Holbæk Hospital, Denmark. In 2005, patients completed the Global Mood Scale (GMS) to assess positive affect and a purpose-designed question...

  2. Refining the ischemic penumbra with topography.

    Science.gov (United States)

    Thirugnanachandran, Tharani; Ma, Henry; Singhal, Shaloo; Slater, Lee-Anne; Davis, Stephen M; Donnan, Geoffrey A; Phan, Thanh

    2018-04-01

    It has been 40 years since the ischemic penumbra was first conceptualized through work on animal models. The topography of penumbra has been portrayed as an infarcted core surrounded by penumbral tissue and an extreme rim of oligemic tissue. This picture has been used in many review articles and textbooks before the advent of modern imaging. In this paper, we review our understanding of the topography of the ischemic penumbra from the initial experimental animal models to current developments with neuroimaging which have helped to further define the temporal and spatial evolution of the penumbra and refine our knowledge. The concept of the penumbra has been successfully applied in clinical trials of endovascular therapies with a time window as long as 24 h from onset. Further, there are reports of "good" outcome even in patients with a large ischemic core. This latter observation of good outcome despite having a large core requires an understanding of the topography of the penumbra and the function of the infarcted regions. It is proposed that future research in this area takes departure from a time-dependent approach to a more individualized tissue and location-based approach.

  3. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  4. Relationship Between Ischemic Heart Disease and Sexual Satisfaction.

    Science.gov (United States)

    Ghanbari Afra, Leila; Taghadosi, Mohsen; Gilasi, Hamid Reza

    2015-06-10

    Ischemic heart disease is a life-threatening condition. Considerable doubts exist over the effects of this disease on patients' sexual activity and satisfaction. The aim of this study was to evaluate the relationship between ischemic heart disease and sexual satisfaction. In a retrospective cohort study, the convenience sample of 150 patients exposure with ischemic heart disease and 150 people without exposure it was drawn from Shahid Beheshti hospital, Kashan, Iran. Sampling was performed from March to September 2014. We employed the Larson's Sexual Satisfaction Questionnaire for gathering the data. Data were analyzed using descriptive statistics and Chi-square, t-test and linear regression analysis. The means of sexual satisfaction in patients exposure with ischemic heart disease and among the subjects without exposure it were 101.47±13.42 and 100.91±16.52, respectively. There was no significant difference between the two groups regarding sexual satisfaction. However, sexual satisfaction was significantly correlated with gender and the use of cardiac medications (P valuepay closer attention to patient education about sexual issues.

  5. Intermittent fasting attenuates inflammasome activity in ischemic stroke.

    Science.gov (United States)

    Fann, David Yang-Wei; Santro, Tomislav; Manzanero, Silvia; Widiapradja, Alexander; Cheng, Yi-Lin; Lee, Seung-Yoon; Chunduri, Prasad; Jo, Dong-Gyu; Stranahan, Alexis M; Mattson, Mark P; Arumugam, Thiruma V

    2014-07-01

    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Regional evidence of modulation of cardiac adiponectin level in dilated cardiomyopathy: pilot study in a porcine animal model

    Directory of Open Access Journals (Sweden)

    Caselli Chiara

    2012-11-01

    Full Text Available Abstract Background The role of systemic and myocardial adiponectin (ADN in dilated cardiomyopathy is still debated. We tested the regulation of both systemic and myocardial ADN and the relationship with AMP-activated protein kinase (AMPK activity in a swine model of non-ischemic dilated cardiomyopathy. Methods and results Cardiac tissue was collected from seven instrumented adult male minipigs by pacing the left ventricular (LV free wall (180 beats/min, 3 weeks, both from pacing (PS and opposite sites (OS, and from five controls. Circulating ADN levels were inversely related to global and regional cardiac function. Myocardial ADN in PS was down-regulated compared to control (p Conclusions Paradoxically, circulating ADN did not show any cardioprotective effect, confirming its role as negative prognostic biomarker of heart failure. Myocardial ADN was reduced in PS compared to control in an AMPK-independent fashion, suggesting the occurrence of novel mechanisms by which reduced cardiac ADN levels may regionally mediate the decline of cardiac function.

  7. Urgent carotid stenting before cardiac surgery in a young male patient with acute ischemic stroke caused by aortic and carotid dissection

    Directory of Open Access Journals (Sweden)

    Popović Rade

    2016-01-01

    Full Text Available Introduction. Acute aortic dissection (AD is the most common life-threatening disorder affecting the aorta. Neurological symptoms are present in 17-40% of cases. The management of these patients is controversial. Case report. We presented a 37-year-old man admitted for complaining of left-sided weak-ness. Symptoms appeared two hours before admission. The patient had no headache, neither thoracic pain. Neurological examination showed mild confusion, left-sided hemiplegia, National Institutes of Health Stroke Scale (NIHSS score was 10. Ischemic stroke was suspected, brain multislice computed tomography (MSCT and angiography were performed and right intrapetrous internal carotid artery dissection noted. Subsequent color Doppler ultrasound of the carotid arteries showed dissection of the right common carotid artery (CCA. The patient underwent thoracic and abdominal MSCT aortography which showed ascending aortic dissection from the aortic root, propagating in the brachiocephalic artery and the right CCA. Digital subtraction angiography was performed subsequently and two stents were successfully implanted in the brachiocephalic artery and the right CCA prior to cardiac surgery, only 6 hours after admission. The ascending aorta was reconstructed with graft interposition and the aortic valve re-suspended. The patient was hemodynamically stable and with no neurologic deficit after surgery. Unfortinately, at the operative day 6, mediastinitis developed and after intensive treatment the patients died 35 days after admission. Conclusion. In young patients with suspected stroke and oscillatory neurological impairment urgent MSCT angiography of the brain and neck and/or Doppler sonography of the carotid and vertebral artery are mandatory to exclude carotid and aortic dissection. The prompt diagnosis permits urgent carotid stenting and cardiosurgery. To the best of our knowledge, this is the first published case of immediate carotid stenting in acute ischemic

  8. Assessment of left ventricular filling in various heart disease, especially in ischemic heart disease, by ECG-gated cardiac blood pool scintigraphy

    International Nuclear Information System (INIS)

    Nakagawa, Hiroaki

    1986-01-01

    Using ECG-gated cardiac blood pool scintigraphy (BPS), left ventricular (LV) diastolic function was evaluated in various heart disease, especially in ischemic heart disease (IHD). LV function indices (2 systolic and 9 diastolic) were obtained from LV time activity curve derived from BPS. Among various diastolic indices, peak filling rate (PFR) and 2 other indices were significantly influenced by heart rate (HR), so corrected values for HR were used for this study. Various degrees of disturbance in diastolic filling were found in many cases without systolic impairment. According to the mechanism responsible for diastolic impairment, LV time activity curve showed a characteristic pattern. In IHD, filling disturbance in early diastole was observed before the impairment of systolic contraction developed, so it was thought to be an early predictor of cardiac failure. In the scar region of myocardial infarction (MI), decrease in regional ejection fraction and asynchrony in wall motion were shown, and these resulted in marked deterioration of early diastolic filling. On the other hand in angina pectoris (AP), such systolic disorders were not shown in the ischemic region perfused by stenotic coronary artery, although the disturbance of regional filling was found. The exercise capacity in AP was more related to the impairment in diastolic function at resting state than in systolic function, and furthermore the reserve of diastolic function as well as of systolic function was shown to be an important determinant of exercise capacity in AP. As HR increased, increase of PFR and decrease in time to peak filling was found, which was thought to be a sort of compensation for the shortening diastolic time due to increase in HR during exercise. Such compensation was decreased in AP with reduced exercise capacity. (J.P.N.)

  9. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Science.gov (United States)

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  10. Insertable cardiac event recorder in detection of atrial fibrillation after cryptogenic stroke: an audit report.

    Science.gov (United States)

    Etgen, Thorleif; Hochreiter, Manfred; Mundel, Markus; Freudenberger, Thomas

    2013-07-01

    Atrial fibrillation (AF) is the most frequent risk factor in ischemic stroke but often remains undetected. We analyzed the value of insertable cardiac event recorder in detection of AF in a 1-year cohort of patients with cryptogenic ischemic stroke. All patients with cryptogenic stroke and eligibility for oral anticoagulation were offered the insertion of a cardiac event recorder. Regular follow-up for 1 year recorded the incidence of AF. Of the 393 patients with ischemic stroke, 65 (16.5%) had a cryptogenic stroke, and in 22 eligible patients, an event recorder was inserted. After 1 year, in 6 of 22 patients (27.3%), AF was detected. These preliminary data show that insertion of cardiac event recorder was eligible in approximately one third of patients with cryptogenic stroke and detected in approximately one quarter of these patients new AF.

  11. Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue.

    Science.gov (United States)

    Popa, Mirel-Adrian; Mihai, Maria-Cristina; Constantin, Alina; Şuică, Viorel; Ţucureanu, Cătălin; Costache, Raluca; Antohe, Felicia; Dubey, Raghvendra K; Simionescu, Maya

    2018-01-01

    The use of mesenchymal stem cells (MSC) as a therapeutic tool in cardiovascular diseases is promising. Since androgens exert some beneficial actions on the cardiovascular system, we tested our hypothesis that this hormone could promote MSC-mediated repair processes, also. Cultured MSCs isolated from Wharton's jelly were exposed to 30 nM dihydrotestosterone (DHT) for 1 or 4 days and the effects of the hormone on their growth/migration/adhesion and the underlying mechanisms were assessed. Results were obtained by real-time cell impedance measurements, and DNA quantification showed that DHT increased MSC proliferation by ~30%. As determined by xCELLigence system, DHT augmented (~2 folds) the migration of MSC toward cardiac tissue slices (at 12 h), and this effect was blocked by flutamide, an androgen receptor (AR) antagonist. Exposure of cells to DHT, upregulated the gene and protein expression of AR , EMMPRIN and MMP-9 and downregulated the expression of MMP-2 DHT significantly induced the release of nitric oxide by MSC (≥2-fold) and flutamide blocked this effect. When MSCs were co-cultured with cardiac slices, immunohistochemical analysis and qRT-PCR showed that the integration of DHT-stimulated MSC was significantly higher than that of in controls. In conclusion, our findings provide the first evidence that DHT promotes MSC growth, migration and integration into the cardiac slices. The modulating effects of DHT were associated with upregulation of ARs and of key molecules known to promote tissue remodeling and angiogenesis. Our findings suggest that priming of MSC with DHT may potentially increase their capability to regenerate cardiac tissue; in vivo studies are needed to confirm our in vitro findings. © 2018 Society for Endocrinology.

  12. Optimized Heart Sampling and Systematic Evaluation of Cardiac Therapies in Mouse Models of Ischemic Injury: Assessment of Cardiac Remodeling and Semi-Automated Quantification of Myocardial Infarct Size.

    Science.gov (United States)

    Valente, Mariana; Araújo, Ana; Esteves, Tiago; Laundos, Tiago L; Freire, Ana G; Quelhas, Pedro; Pinto-do-Ó, Perpétua; Nascimento, Diana S

    2015-12-02

    Cardiac therapies are commonly tested preclinically in small-animal models of myocardial infarction. Following functional evaluation, post-mortem histological analysis is essential to assess morphological and molecular alterations underlying the effectiveness of treatment. However, non-methodical and inadequate sampling of the left ventricle often leads to misinterpretations and variability, making direct study comparisons unreliable. Protocols are provided for representative sampling of the ischemic mouse heart followed by morphometric analysis of the left ventricle. Extending the use of this sampling to other types of in situ analysis is also illustrated through the assessment of neovascularization and cellular engraftment in a cell-based therapy setting. This is of interest to the general cardiovascular research community as it details methods for standardization and simplification of histo-morphometric evaluation of emergent heart therapies. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  13. Cardiac tissue Doppler imaging in sports medicine.

    Science.gov (United States)

    Krieg, Anne; Scharhag, Jürgen; Kindermann, Wilfried; Urhausen, Axel

    2007-01-01

    The differentiation of training-induced cardiac adaptations from pathological conditions is a key issue in sports cardiology. As morphological features do not allow for a clear delineation of early stages of relevant pathologies, the echocardiographic evaluation of left ventricular function is the technique of first choice in this regard. Tissue Doppler imaging (TDI) is a relatively recent method for the assessment of cardiac function that provides direct, local measurements of myocardial velocities throughout the cardiac cycle. Although it has shown a superior sensitivity in the detection of ventricular dysfunction in clinical and experimental studies, its application in sports medicine is still rare. Besides technical factors, this may be due to a lack in consensus on the characteristics of ventricular function in relevant conditions. For more than two decades there has been an ongoing debate on the existence of a supernormal left ventricular function in athlete's heart. While results from traditional echocardiography are conflicting, TDI studies established an improved diastolic function in endurance-trained athletes with athlete's heart compared with controls.The influence of anabolic steroids on cardiac function also has been investigated by standard echocardiographic techniques with inconsistent results. The only TDI study dealing with this topic demonstrated a significantly impaired diastolic function in bodybuilders with long-term abuse of anabolic steroids compared with strength-trained athletes without abuse of anabolic steroids and controls, respectively.Hypertrophic cardiomyopathy is the most frequent cause of sudden death in young athletes. However, in its early stages, it is difficult to distinguish from athlete's heart. By means of TDI, ventricular dysfunction in hypertrophic cardiomyopathy can be disclosed even before the development of left ventricular hypertrophy. Also, a differentiation of left ventricular hypertrophy due to hypertrophic

  14. Thrombolysis with Intravenous Tissue Plasminogen Activator (rt-PA) Predicts Favorable Discharge Disposition in Patients with Acute Ischemic Stroke

    Science.gov (United States)

    Ifejika-Jones, Nneka L.; Harun, Nusrat; Mohammed-Rajput, Nareesa A.; Noser, Elizabeth A.; Grotta, James C.

    2011-01-01

    Background and Purpose Acute ischemic stroke patients receiving IV tissue plasminogen activator (rt-PA) within 3 hours of symptom onset are 30% more likely to have minimal disability at three months. During hospitalization, short-term disability is subjectively measured by discharge disposition, whether to home, Inpatient Rehabilitation (IR), Skilled Nursing Facility (SNF) or Subacute Care (Sub). There are no studies assessing the role of rt-PA use as a predictor of post-stroke disposition. Methods Retrospective analysis of all ischemic stroke patients admitted to the University of Texas Houston Medical School (UTHMS) Stroke Service between Jan 2004 and Oct 2009. Baseline demographics and National Institute of Health Stroke Scale (NIHSS) score were collected. Cerebrovascular disease risk factors were used for risk stratification. Results Home vs. IR, SNF, Sub Of 2225 acute ischemic stroke patients, 1019 were discharged home, 1206 to another level of care. Patients who received rt-PA therapy were 1.9 times more likely to be discharged home (P = stroke patients, 719 patients were discharged to acute IR, 371 were discharged to SNF, 116 to Sub. There were no differences in disposition between patients who received rt-PA therapy. Conclusions Stroke patients who receive IV rt-PA for acute ischemic stroke are more 1.9 times more likely to be discharged directly home after hospitalization. This study is limited by its retrospective nature and the undetermined role of psychosocial factors related to discharge. PMID:21293014

  15. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  16. Accumulation of polymorphonuclear leukocytes in reperfused ischemic canine myocardium: relation with tissue viability assessed by fluorine-18-2-deoxyglucose uptake

    International Nuclear Information System (INIS)

    Wijns, W.; Melin, J.A.; Leners, N.

    1988-01-01

    Polymorphonuclear leukocytes may participate in reperfusion injury. Whether leukocytes affect viable or only irreversibly injured tissue is not known. Therefore, we assessed the accumulation of 111In-labeled leukocytes in tissue samples characterized as either ischemic but viable or necrotic by metabolic, histochemical, and ultrastructural criteria. Six open-chest dogs received left anterior descending coronary occlusion for 2 hr followed by 4 hr reperfusion. Myocardial blood flow was determined by microspheres and autologous 111In-labeled leukocytes were injected intravenously. Fluorine-18-2-deoxyglucose, a tracer of exogenous glucose utilization, was injected 3 hr after reperfusion. The dogs were killed 4 hr after reperfusion. The risk and the necrotic regions were assessed following in vivo dye injection and postmortem tetrazolium staining. Myocardial samples were obtained in the ischemic but viable, necrotic and normal zones, and counted for 111In and 18F activity. Compared to normal, leukocytes were entrapped in necrotic regions (111In activity: 207 +/- 73%) where glucose uptake was decreased (26 +/- 15%). A persistent glucose uptake, marker of viability, was mainly seen in risk region (135 +/- 85%) where leukocytes accumulation was moderate in comparison to normal zone (146 +/- 44%). Thus, the glucose uptake observed in viable tissue is mainly related to myocytes metabolism and not to leukocytes metabolism

  17. Contemporary Management of Ischemic Mitral Regurgitation: a Review.

    Science.gov (United States)

    Sandoval, Yader; Sorajja, Paul; Harris, Kevin M

    2018-02-28

    Ischemic mitral regurgitation occurs relatively frequently in patients with coronary artery disease and is associated with an increased long term risk. The pathophysiology of ischemic mitral regurgitation is vexing, and poses both diagnostic and therapeutic challenges, leading to the need for a comprehensive, multidisciplinary approach. The management is largely focused on medical therapy, and for those eligible, coronary revascularization and/or cardiac resynchronization therapy may be considered. In select patients, mitral valve surgery or catheter-based therapy may be undertaken with careful consideration of the underlying pathophysiology, surgical risk, and expected long-term outcomes. The appropriate evaluation of patients with ischemic mitral regurgitation involves a careful multidisciplinary approach that carefully considers symptomatology, the etiology and severity of the mitral regurgitation, as well as the assessment of comorbidities and operative risk to individualize the care of these patients. Copyright © 2018. Published by Elsevier Inc.

  18. Prevalence and Prognostic Significance of Runs of Premature Atrial Complexes in Ischemic Stroke Patients

    DEFF Research Database (Denmark)

    Høeg Vinther, Kristina; Tveskov, Claus; Möller, Sören

    2016-01-01

    BACKGROUND AND PURPOSE: Runs of premature atrial complexes (PACs) are common in stroke patients and perceived to be clinically insignificant, but their prognostic significance is unclear. This study investigated the association between runs of PACs in ischemic stroke patients and the risk...... of recurrent ischemic strokes/transient ischemic attacks (TIAs) or death. METHODS: The study included consecutive patients admitted with an ischemic stroke from August 2008 to April 2011. Patients with known and newly detected atrial fibrillation were excluded. Runs of PACs were defined as 3 or more PACs...... lasting less than 30 seconds during 48 hours of continuous inpatient cardiac telemetry. The patients were followed for 4 years or until death, whichever came first. They were stratified according to stroke severity. The combined primary endpoint was a recurrent ischemic stroke/TIA or death. RESULTS...

  19. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Baei, Payam [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Cardiovascular Engineering Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Jalili-Firoozinezhad, Sasan [Department of Biomedicine and Surgery, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel (Switzerland); Department of Bioengineeringand IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Rajabi-Zeleti, Sareh [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad [Cardiovascular Engineering Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Baharvand, Hossein, E-mail: Baharvand@royaninstitute.org [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Developmental Biology, University of Science and Culture, ACECR, Tehran (Iran, Islamic Republic of); Aghdami, Nasser, E-mail: Nasser.Aghdami@royaninstitute.org [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Injectable hydrogels that resemble electromechanical properties of the myocardium are crucial for cardiac tissue engineering prospects. We have developed a facile approach that uses chitosan (CS) to generate a thermosensitive conductive hydrogel with a highly porous network of interconnected pores. Gold nanoparticles (GNPs) were evenly dispersed throughout the CS matrix in order to provide electrical cues. The gelation response and electrical conductivity of the hydrogel were controlled by different concentrations of GNPs. The CS-GNP hydrogels were seeded with mesenchymal stem cells (MSCs) and cultivated for up to 14 days in the absence of electrical stimulations. CS-GNP scaffolds supported viability, metabolism, migration and proliferation of MSCs along with the development of uniform cellular constructs. Immunohistochemistry for early and mature cardiac markers showed enhanced cardiomyogenic differentiation of MSCs within the CS-GNP compared to the CS matrix alone. The results of this study demonstrate that incorporation of nanoscale electro-conductive GNPs into CS hydrogels enhances the properties of myocardial constructs. These constructs could find utilization for regeneration of other electroactive tissues. - Highlights: • Thermosensitive electro-conductive hydrogels were prepared from CS and GNPs. • Gelation time and conductivity were tuned by varying concentration of GNPs. • CS-2GNP with gelation time of 25.7 min and conductivity of 0.13 S·m{sup −1} was selected for in vitro studies. • CS-2GNP supported active metabolism, migration and proliferation of MSCs. • Expression of cardiac markers increased about two-fold in CS-2GNP compared to CS.

  20. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Baei, Payam; Jalili-Firoozinezhad, Sasan; Rajabi-Zeleti, Sareh; Tafazzoli-Shadpour, Mohammad; Baharvand, Hossein; Aghdami, Nasser

    2016-01-01

    Injectable hydrogels that resemble electromechanical properties of the myocardium are crucial for cardiac tissue engineering prospects. We have developed a facile approach that uses chitosan (CS) to generate a thermosensitive conductive hydrogel with a highly porous network of interconnected pores. Gold nanoparticles (GNPs) were evenly dispersed throughout the CS matrix in order to provide electrical cues. The gelation response and electrical conductivity of the hydrogel were controlled by different concentrations of GNPs. The CS-GNP hydrogels were seeded with mesenchymal stem cells (MSCs) and cultivated for up to 14 days in the absence of electrical stimulations. CS-GNP scaffolds supported viability, metabolism, migration and proliferation of MSCs along with the development of uniform cellular constructs. Immunohistochemistry for early and mature cardiac markers showed enhanced cardiomyogenic differentiation of MSCs within the CS-GNP compared to the CS matrix alone. The results of this study demonstrate that incorporation of nanoscale electro-conductive GNPs into CS hydrogels enhances the properties of myocardial constructs. These constructs could find utilization for regeneration of other electroactive tissues. - Highlights: • Thermosensitive electro-conductive hydrogels were prepared from CS and GNPs. • Gelation time and conductivity were tuned by varying concentration of GNPs. • CS-2GNP with gelation time of 25.7 min and conductivity of 0.13 S·m"−"1 was selected for in vitro studies. • CS-2GNP supported active metabolism, migration and proliferation of MSCs. • Expression of cardiac markers increased about two-fold in CS-2GNP compared to CS.

  1. Antiarrhythmic effect of heat adaptation in ischemic and reperfusion injury to the heart.

    Science.gov (United States)

    Monastyrskaya, E A; Belkina, L M; Manukhina, E B; Malyshev, I Yu

    2007-01-01

    Study on a model of 6-day dosed adaptation to heat in rats showed that this adaptation decreased the severity of cardiac arrhythmias during ischemic and reperfusion injury. The duration of arrhythmias decreased not only in the ischemic period, but also under conditions of reperfusion. Adaptation delayed the development of arrhythmias during ischemia, decreased the number of animals with late reperfusion arrhythmias, and improved recovery of the heart after ischemia and reperfusion.

  2. Advances of 11C-flumazenil receptor imaging in ischemic penumbra

    International Nuclear Information System (INIS)

    Zhang Jun

    2004-01-01

    The ischemic penumbra is the target of therapy for ischemic stroke patients, so it is extremely important to investigate an imaging technique that may identify accurately the viability of cerebral tissues early. The neuroreceptor imaging with positron emission tomography has achieved some successes in this study field, in particular, the 11 C-flumazenil receptor imaging, which can not only differentiate between the neurons of functional impairment and those of morphological destruction, and then distinguish the ischemic penumbra from the irreversible damage tissues, but predict the malignant course of cerebral infarction. Consequently, these will help to select the patients benefiting from the intervention therapy and plan effectively the therapeutic strategies. (authors)

  3. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  4. Atorvastatin reduces cardiac and adipose tissue inflammation in rats with metabolic syndrome.

    Science.gov (United States)

    Yamada, Yuichiro; Takeuchi, Shino; Yoneda, Mamoru; Ito, Shogo; Sano, Yusuke; Nagasawa, Kai; Matsuura, Natsumi; Uchinaka, Ayako; Murohara, Toyoaki; Nagata, Kohzo

    2017-08-01

    Statins are strong inhibitors of cholesterol biosynthesis and help to prevent cardiovascular disease. They also exert additional pleiotropic effects that include an anti-inflammatory action and are independent of cholesterol, but the molecular mechanisms underlying these additional effects have remained unclear. We have now examined the effects of atorvastatin on cardiac and adipose tissue inflammation in DahlS.Z-Lepr fa /Lepr fa (DS/obese) rats, which we previously established as a model of metabolic syndrome (MetS). DS/obese rats were treated with atorvastatin (6 or 20mgkg -1 day -1 ) from 9 to 13weeks of age. Atorvastatin ameliorated cardiac fibrosis, diastolic dysfunction, oxidative stress, and inflammation as well as adipose tissue inflammation in these animals at both doses. The high dose of atorvastatin reduced adipocyte hypertrophy to a greater extent than did the low dose. Atorvastatin inhibited the up-regulation of peroxisome proliferator-activated receptor γ gene expression in adipose tissue as well as decreased the serum adiponectin concentration in DS/obese rats. It also activated AMP-activated protein kinase (AMPK) as well as inactivated nuclear factor-κB (NF-κB) in the heart of these animals. The down-regulation of AMPK and NF-κB activities in adipose tissue of DS/obese rats was attenuated and further enhanced, respectively, by atorvastatin treatment. The present results suggest that the anti-inflammatory effects of atorvastatin on the heart and adipose tissue are attributable at least partly to increased AMPK activity and decreased NF-κB activity in this rat model of MetS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3β signaling

    International Nuclear Information System (INIS)

    Tateishi, Kento; Ashihara, Eishi; Honsho, Shoken; Takehara, Naofumi; Nomura, Tetsuya; Takahashi, Tomosaburo; Ueyama, Tomomi; Yamagishi, Masaaki; Yaku, Hitoshi; Matsubara, Hiroaki; Oh, Hidemasa

    2007-01-01

    Recent evidence suggested that human cardiac stem cells (hCSCs) may have the clinical application for cardiac repair; however, their characteristics and the regulatory mechanisms of their growth have not been fully investigated. Here, we show the novel property of hCSCs with respect to their origin and tissue distribution in human heart, and demonstrate the signaling pathway that regulates their growth and survival. Telomerase-active hCSCs were predominantly present in the right atrium and outflow tract of the heart (infant > adult) and had a mesenchymal cell-like phenotype. These hCSCs expressed the embryonic stem cell markers and differentiated into cardiomyocytes to support cardiac function when transplanted them into ischemic myocardium. Inhibition of Akt pathway impaired the hCSC proliferation and induced apoptosis, whereas inhibition of glycogen synthase kinase-3 (GSK-3) enhanced their growth and survival. We conclude that hCSCs exhibit mesenchymal features and that Akt/GSK-3β may be crucial modulators for hCSC maintenance in human heart

  6. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    Science.gov (United States)

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  7. Effects of Ischemic Preconditioning of Different Intraoperative Ischemic Times of Vascularized Bone Graft Rabbit Models

    Directory of Open Access Journals (Sweden)

    Ahmad Sukari Halim

    2013-11-01

    Full Text Available BackgroundIschemic preconditioning has been shown to improve the outcomes of hypoxic tolerance of the heart, brain, lung, liver, jejunum, skin, and muscle tissues. However, to date, no report of ischemic preconditioning on vascularized bone grafts has been published.MethodsSixteen rabbits were divided into four groups with ischemic times of 2, 6, 14, and 18 hours. Half of the rabbits in each group underwent ischemic preconditioning. The osteomyocutaneous flaps consisted of the tibia bone, from which the overlying muscle and skin were raised. The technique of ischemic preconditioning involved applying a vascular clamp to the pedicle for 3 cycles of 10 minutes each. The rabbits then underwent serial plain radiography and computed tomography imaging on the first, second, fourth, and sixth postoperative weeks. Following this, all of the rabbits were sacrificed and histological examinations were performed.ResultsThe results showed that for clinical analysis of the skin flaps and bone grafts, the preconditioned groups showed better survivability. In the plain radiographs, except for two non-preconditioned rabbits with intraoperative ischemic times of 6 hours, all began to show early callus formation at the fourth week. The computed tomography findings showed more callus formation in the preconditioned groups for all of the ischemic times except for the 18-hour group. The histological findings correlated with the radiological findings. There was no statistical significance in the difference between the two groups.ConclusionsIn conclusion, ischemic preconditioning improved the survivability of skin flaps and increased callus formation during the healing process of vascularized bone grafts.

  8. Mechanism of troponin elevations in patients with acute ischemic stroke

    DEFF Research Database (Denmark)

    Jensen, Jesper K.; Atar, Dan; Mickley, Hans

    2007-01-01

    the introduction of troponin in the diagnosis of acute myocardial infarction, this marker has been measured in a number of other conditions as well. One of these conditions is acute ischemic stroke, causing diagnostic dilemmas for clinicians. Because various electrocardiographic alterations have also been reported...... in these patients, it has been suggested that elevated troponin levels are somehow neurologically mediated, thus not caused by direct cardiac release. In conclusion, this review examines the available studies that systematically measured troponin in patients with acute ischemic stroke to properly interpret troponin...... elevations in these patients Udgivelsesdato: 2007-Mar-15...

  9. Cardiac Outcomes After Ischemic Stroke or Transient Ischemic Attack: Effects of Pioglitazone in Patients With Insulin Resistance Without Diabetes Mellitus.

    Science.gov (United States)

    Young, Lawrence H; Viscoli, Catherine M; Curtis, Jeptha P; Inzucchi, Silvio E; Schwartz, Gregory G; Lovejoy, Anne M; Furie, Karen L; Gorman, Mark J; Conwit, Robin; Abbott, J Dawn; Jacoby, Daniel L; Kolansky, Daniel M; Pfau, Steven E; Ling, Frederick S; Kernan, Walter N

    2017-05-16

    Insulin resistance is highly prevalent among patients with atherosclerosis and is associated with an increased risk for myocardial infarction (MI) and stroke. The IRIS trial (Insulin Resistance Intervention after Stroke) demonstrated that pioglitazone decreased the composite risk for fatal or nonfatal stroke and MI in patients with insulin resistance without diabetes mellitus, after a recent ischemic stroke or transient ischemic attack. The type and severity of cardiac events in this population and the impact of pioglitazone on these events have not been described. We performed a secondary analysis of the effects of pioglitazone, in comparison with placebo, on acute coronary syndromes (MI and unstable angina) among IRIS participants. All potential acute coronary syndrome episodes were adjudicated in a blinded fashion by an independent clinical events committee. The study cohort was composed of 3876 IRIS participants, mean age 63 years, 65% male, 89% white race, and 12% with a history of coronary artery disease. Over a median follow-up of 4.8 years, there were 225 acute coronary syndrome events, including 141 MIs and 84 episodes of unstable angina. The MIs included 28 (19%) with ST-segment elevation. The majority of MIs were type 1 (94, 65%), followed by type 2 (45, 32%). Serum troponin was 10× to 100× upper limit of normal in 49 (35%) and >100× upper limit of normal in 39 (28%). Pioglitazone reduced the risk of acute coronary syndrome (hazard ratio, 0.71; 95% confidence interval, 0.54-0.94; P =0.02). Pioglitazone also reduced the risk of type 1 MI (hazard ratio, 0.62; 95% confidence interval, 0.40-0.96; log-rank P =0.03), but not type 2 MI (hazard ratio, 1.05; 95% confidence interval, 0.58-1.91; P =0.87). Similarly, pioglitazone reduced the risk of large MIs with serum troponin >100× upper limit of normal (hazard ratio, 0.44; 95% confidence interval, 0.22-0.87; P =0.02), but not smaller MIs. Among patients with insulin resistance without diabetes mellitus

  10. Inhibition of Notch signaling by Dll4-Fc promotes reperfusion of acutely ischemic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ren [Department of Pathology, University of Southern California, Los Angeles (United States); Trindade, Alexandre [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Sun, Zhanfeng [Department of Vascular Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang (China); Kumar, Ram; Weaver, Fred A. [Department of Surgery, University of Southern California, Los Angeles (United States); Krasnoperov, Valery; Naga, Kranthi [Vasgene Therapeutics, Los Angeles, CA (United States); Duarte, Antonio [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Gill, Parkash S., E-mail: parkashg@usc.edu [Department of Pathology, University of Southern California, Los Angeles (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Low dose Dll4-Fc increases vascular proliferation and overall perfusion. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in hindlimb ischemia model. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in skin flap model. Black-Right-Pointing-Pointer Dll4 heterozygous deletion promotes vascular injury recovery. Black-Right-Pointing-Pointer Dll4 overexpression delays vascular injury recovery. -- Abstract: Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the density of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.

  11. Ischemic necrosis and osteochondritis

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    Osteonecrosis indicates that ischemic death of the cellular constituents of bone and marrow has occurred. Historically, this first was thought to be related to sepsis in the osseous segments. However, continued studies led to the use of the term aseptic necrosis. Subsequent observations indicated that the necrotic areas of bone were not only aseptic, but were also avascular. This led to the terms ischemic necrosis, vascular necrosis and bone infarction. Ischemic necrosis of bone is discussed in this chapter. It results from a significant reduction in or obliteration of blood supply to the affected area. The various bone cells, including osteocytes, osteoclasts, and osteoblasts, usually undergo anoxic death in 12 to 48 hours after blood supply is cut off. The infarct that has thus developed in three-dimensional and can be divided into a number of zones: a central zone of cell death; an area of ischemic injury, most severe near the zone of cell death, and lessening as it moves peripherally; an area of active hyperemia and the zone of normal unaffected tissue. Once ischemic necrosis has begun, the cellular damage provokes an initial inflammatory response, which typically is characterized by vasodilatation, transudation of fluid and fibrin, and local infiltration of flammatory cells. This response can be considered the first stage in repair of the necrotic area

  12. Wnt/β-Catenin Signaling during Cardiac Development and Repair

    Directory of Open Access Journals (Sweden)

    Jan W. Buikema

    2014-05-01

    Full Text Available Active Wnt/β-catenin signaling is essential for proper cardiac specification, progenitor expansion and myocardial growth. During development, the mass of the embryonic heart increases multiple times to achieve the dimensions of adult ventricular chambers. Cell division in the embryonic heart is fairly present, whereas cell turnover in the adult myocardium is extremely low. Understanding of embryonic cardiomyocyte cell-replication, therefore, could improve strategies for cardiac regenerative therapeutics. Here, we review which role Wnt signaling plays in cardiac development and highlight a selection of attempts that have been made to modulate Wnt signaling after cardiac ischemic injury to improve cardiac function and reduce infarct size.

  13. Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism.

    Directory of Open Access Journals (Sweden)

    Veronique Michaud

    2010-12-01

    Full Text Available Tissue-specific expression of CYP450s can regulate the intracellular concentration of drugs and explain inter-subject variability in drug action. The overall objective of our study was to determine in a large cohort of samples, mRNA levels and CYP450 activity expressed in the human heart.CYP450 mRNA levels were determined by RTPCR in left ventricular samples (n = 68 of explanted hearts from patients with end-stage heart failure. Samples were obtained from ischemic and non-ischemic hearts. In some instances (n = 7, samples were available from both the left and right ventricles. A technique for the preparation of microsomes from human heart tissue was developed and CYP450-dependent activity was determined using verapamil enantiomers as probe-drug substrates.Our results show that CYP2J2 mRNA was the most abundant isoform in all human heart left ventricular samples tested. Other CYP450 mRNAs of importance were CYP4A11, CYP2E1, CYP1A1 and CYP2C8 mRNAs while CYP2B6 and CYP2C9 mRNAs were present at low levels in only some of the hearts analyzed. CYP450 mRNAs did not differ between ischemic and non-ischemic hearts and appeared to be present at similar levels in the left and right ventricles. Incubation of verapamil with heart microsomes led to the formation of nine CYP450-dependent metabolites: a major finding was the observation that stereoselectivity was reversed compared to human liver microsomes, in which the R-enantiomer is metabolized to a greater extent.This study determined cardiac mRNA levels of various CYP450 isozymes involved in drug metabolism and demonstrated the prevalent expression of CYP2J2 mRNA. It revealed that cardiomyocytes can efficiently metabolize drugs and that cardiac CYP450s are highly relevant with regard to clearance of drugs in the heart. Our results support the claim that drug metabolism in the vicinity of a drug effector site can modulate drug effects.

  14. Probucol Attenuates Cyclophosphamide-induced Oxidative Apoptosis, p53 and Bax Signal Expression in Rat Cardiac Tissues

    Directory of Open Access Journals (Sweden)

    Yousif A. Asiri

    2010-01-01

    Full Text Available Cyclophosphamide (CP is a widely used drug in cancer chemotherapy and immunosuppression, which could cause toxicity of the normal cells due to its toxic metabolites. Probucol, a cholesterol-lowering drug, acts as potential inhibitor of DNA damage and shows to protect against doxorubicin-induced cardiomyopathy by enhancing the endogenous antioxidant system including glutathione peroxidase, catalase and superoxide dismutase. This study examined the possible protective effects of probucol, a lipid-lowering compound with strong antioxidant properties, against CPinduced cardiotoxicity. This objective could be achieved through studying the gene expression-based on the possible protective effects of probucol against CP-induced cardiac failure in rats. Adult male Wistar albino rats were assigned into four treatment groups: Animals in the first (control and second (probucol groups were injected intraperitoneally with corn oil and probucol (61 mg/kg/day, respectively, for two weeks. Animals in the third (CP and fourth (probucol plus CP groups were injected with the same doses of corn oil and probucol (61 mg/kg/day, respectively, for one week before and one week after a single dose of CP (200 mg/kg, I.P.. The p53, Bax, Bcl2 and oxidative genes signal expression were measured by real time PCR. CP-induced cardiotoxicity was clearly observed by a significant increase in serum creatine phosphokinase isoenzyme (CK-MB (117%, lactate dehydrogenase (LDH (64%, free (69% and esterified cholesterol (42% and triglyceride (69% compared to control group. In cardiac tissues, CP significantly increases the mRNA expression levels of apoptotic genes, p53 with two-fold and Bax with 1.6-fold, and decreases the anti-apoptotic gene Bcl2 with 0.5-fold. Moreover, CP caused downregulation of antioxidant genes, glutathione peroxidase, catalase, and superoxide dismutase and increased the lipid peroxidation and decreased adenosine triphosphate (ATP (40% and ATP/ADP (44% in cardiac

  15. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model

    International Nuclear Information System (INIS)

    Barbosa, Carlos R Hall

    2003-01-01

    We present a detailed description of a cellular automata model for the propagation of action potential in a planar cardiac tissue, which is very fast and easy to use. The model incorporates anisotropy in the electrical conductivity and a spatial variation of the refractory time. The transmembrane potential distribution is directly derived from the cell states, and the intracellular and extracellular potential distributions are calculated for the particular case of a plane wavefront. Once the potential distributions are known, the associated current densities are calculated by Ohm's law, and the magnetic field is determined at a plane parallel to the cardiac tissue by applying the law of Biot and Savart. The results obtained for propagation speed and for magnetic field amplitude with the cellular automata model are compared with values predicted by the bidomain formulation, for various angles between wavefront propagation and fibre direction, characterizing excellent agreement between the models

  16. Improving the Translation of Animal Ischemic Stroke Studies to Humans

    OpenAIRE

    Jickling, Glen C; Sharp, Frank R

    2014-01-01

    Despite testing more than 1026 therapeutic strategies in models ischemic stroke and 114 therapies in human ischemic stroke, only one agent tissue plasminogen activator has successfully been translated to clinical practice as a treatment for acute stroke. Though disappointing, this immense body of work has led to a rethinking of animal stroke models and how to better translate therapies to patients with ischemic stroke. Several recommendations have been made, including the STAIR recommendation...

  17. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: new developments and challenges.

    Science.gov (United States)

    Finosh, G T; Jayabalan, Muthu

    2012-01-01

    Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed.

  18. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes.

    Science.gov (United States)

    Zimmermann, W H; Fink, C; Kralisch, D; Remmers, U; Weil, J; Eschenhagen, T

    2000-04-05

    A technique is presented that allows neonatal rat cardiac myocytes to form spontaneously and coherently beating 3-dimensional engineered heart tissue (EHT) in vitro, either as a plane biconcaval matrix anchored at both sides on Velcro-coated silicone tubes or as a ring. Contractile activity was monitored in standard organ baths or continuously in a CO(2) incubator for up to 18 days (=26 days after casting). Long-term measurements showed an increase in force between days 8 and 18 after casting and stable forces thereafter. At day 10, the twitch amplitude (TA) of electrically paced EHTs (average length x width x thickness, 11 x 6 x 0.4 mm) was 0.51 mN at length of maximal force development (L(max)) and a maximally effective calcium concentration. EHTs showed typical features of neonatal rat heart: a positive force-length and a negative force-frequency relation, high sensitivity to calcium (EC(50) 0.24 mM), modest positive inotropic (increase in TA by 46%) and pronounced positive lusitropic effect of isoprenaline (decrease in twitch duration by 21%). Both effects of isoprenaline were sensitive to the muscarinic receptor agonist carbachol in a pertussis toxin-sensitive manner. Adenovirus-mediated gene transfer of beta-galactosidase into EHTs reached 100% efficiency. In summary, EHTs retain many of the physiological characteristics of rat cardiac tissue and allow efficient gene transfer with subsequent force measurement. Copyright 2000 John Wiley & Sons, Inc.

  19. Transient Ischemic Attack and Ischemic Stroke in Danon Disease with Formation of Left Ventricular Apical Thrombus despite Normal Systolic Function

    Directory of Open Access Journals (Sweden)

    Takeshi Tsuda

    2017-01-01

    Full Text Available Danon disease is a rare X-linked dominant skeletal and cardiac muscle disorder presenting with hypertrophic cardiomyopathy, Wolf-Parkinson-White syndrome, skeletal myopathy, and mild intellectual disability. Early morbidity and mortality due to heart failure or sudden death are known in Danon disease, more in males than in females. Here, we present a 17-year-old female adolescent with Danon disease and severe concentric hypertrophy with normal left ventricular (LV systolic function, who has been complaining of intermittent headache and weakness for about 3 years, initially diagnosed with hemiplegic migraine. Subsequently, her neurological manifestation progressed to transient ischemic attack (TIA and eventually to ischemic stroke confirmed by CT scan with 1-day history of expressive aphasia followed by persistent left side weakness and numbness. Detailed echocardiogram for the first time revealed a small LV apical thrombus with unchanged severe biventricular hypertrophy and normal systolic function. This unexpected LV apical thrombus may be associated with a wide spectrum of neurological deficits ranging from TIA to ischemic stroke in Danon disease. Possibility of cerebral ischemic events should be suspected in Danon disease when presenting with neurological deficits even with normal systolic function. Careful assessment for LV apical thrombus is warranted in such cases.

  20. Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance.

    Directory of Open Access Journals (Sweden)

    Chunhu Gu

    Full Text Available Reactive aldehydes can initiate protein oxidative damage which may contribute to heart senescence. Sirtuin 1 (SIRT1 is considered to be a potential interventional target for I/R injury management in the elderly. We hypothesized that aldehyde mediated carbonyl stress increases susceptibility of aged hearts to ischemia/reperfusion (I/R injury, and elucidate the underlying mechanisms with a focus on SIRT1. Male C57BL/6 young (4-6 mo and aged (22-24 mo mice were subjected to myocardial I/R. Cardiac aldehyde dehydrogenase (ALDH2, SIRT1 activity and protein carbonyls were assessed. Our data revealed that aged heart exhibited increased endogenous aldehyde/carbonyl stress due to impaired ALDH2 activity concomitant with blunted SIRT1 activity (P<0.05. Exogenous toxic aldehydes (4-HNE exposure in isolated cardiomyocyte verified that aldehyde-induced carbonyl modification on SIRT1 impaired SIRT1 activity leading to worse hypoxia/reoxygenation (H/R injury, which could all be rescued by Alda-1 (ALDH2 activator (all P<0.05. However, SIRT1 inhibitor blocked the protective effect of Alda-1 on H/R cardiomyocyte. Interestingly, myocardial I/R leads to higher carbonylation but lower activity of SIRT1 in aged hearts than that seen in young hearts (P<0.05. The application of Alda-1 significantly reduced the carbonylation on SIRT1 and markedly improved the tolerance to in vivo I/R injury in aged hearts, but failed to protect Sirt1(+/- knockout mice against myocardial I/R injury. This was verified by Alda-1 treatment improved postischemic contractile function recovery in ex vivo perfused aged but not in Sirt1(+/- hearts. Thus, aldehyde/carbonyl stress is accelerated in aging heart. These results provide a new insight that impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury. ALDH2 activation can restore this aging-related myocardial ischemic intolerance.

  1. Effects of edaravone on early outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen activator.

    Science.gov (United States)

    Wada, Tomoki; Yasunaga, Hideo; Inokuchi, Ryota; Horiguchi, Hiromasa; Fushimi, Kiyohide; Matsubara, Takehiro; Nakajima, Susumu; Yahagi, Naoki

    2014-10-15

    We investigated whether edaravone could improve early outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen activator (rtPA). We conducted a retrospective cohort study using the Japanese Diagnosis Procedure Combination database. We identified patients admitted with a primary diagnosis of ischemic stroke from 1 July 2010 to 31 March 2012 and treated with rtPA on the same day of stroke onset or the following day. Thereafter, we selected those who received edaravone on the same day of rtPA administration (edaravone group), and those who received rtPA without edaravone (control group). The primary outcomes were modified Rankin Scale (mRS) scores at discharge. One-to-one propensity-score matching was performed between the edaravone and control groups. An ordinal logistic regression analysis for mRS scores at discharge was performed with adjustment for possible variables as well as clustering of patients within hospitals using a generalized estimating equation. We identified 6336 eligible patients for inclusion in the edaravone group (n=5979; 94%) and the control group (n=357; 6%) as the total population. In 356 pairs of the propensity-matched population, the ordinal logistic regression analysis showed that edaravone was significantly associated with lower mRS scores of patients at discharge (adjusted odds ratio: 0.74; 95% confidence interval: 0.57-0.96). Edaravone may improve early outcomes in acute ischemic stroke patients treated with rtPA. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Diagnostic value and prognostic implications of early cardiac magnetic resonance in survivors of out-of-hospital cardiac arrest.

    Science.gov (United States)

    Zorzi, Alessandro; Susana, Angela; De Lazzari, Manuel; Migliore, Federico; Vescovo, Giovanni; Scarpa, Daniele; Baritussio, Anna; Tarantini, Giuseppe; Cacciavillani, Luisa; Giorgi, Benedetta; Basso, Cristina; Iliceto, Sabino; Bucciarelli Ducci, Chiara; Corrado, Domenico; Marra, Martina Perazzolo

    2018-03-15

    In patients who survived out-of-hospital cardiac arrest (OHCA), it is crucial to establish the underlying cause and its potential reversibility. The purpose of this study was to assess the incremental diagnostic and prognostic role of early cardiac magnetic resonance (CMR) in survivors of OHCA. Among 139 consecutive OHCA patients, the study enrolled 44 patients (median age 43 years; 84% male) who underwent coronary angiography and CMR ≤7 days after admission. The CMR protocol included T2-weighted sequences for myocardial edema and late gadolinium enhancement (LGE) sequences for myocardial fibrosis. Coronary angiography identified obstructive coronary artery disease in 18 of 44 patients in whom CMR confirmed the diagnosis of ischemic heart disease by demonstrating subendocardial or transmural LGE. The presence of myocardial edema allowed differentiation between acute myocardial ischemia (n = 12) and postinfarction myocardial scar (n = 6). Among the remaining 26 patients without obstructive coronary artery disease, CMR in 19 (73%) showed dilated cardiomyopathy in 5, myocarditis in 4, mitral valve prolapse associated with LGE in 3, ischemic scar in 2, idiopathic nonischemic scar in 2, arrhythmogenic cardiomyopathy in 1, hypertrophic cardiomyopathy in 1, and takotsubo cardiomyopathy in 1. In this subgroup of 26 patients, 6 (23%) had myocardial edema. During mean follow-up of 36 ± 17 months, all 18 patients with myocardial edema had an uneventful outcome, whereas 9 of 26 (35%) without myocardial edema experienced sudden arrhythmic death (n = 1), appropriate defibrillator interventions (n = 5), and nonarrhythmic death (n = 3; P = .006). In survivors of OHCA, early CMR with a comprehensive tissue characterization protocol provided additional diagnostic and prognostic value. The identification of myocardial edema was associated with a favorable long-term outcome. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  3. Smartphone electrographic monitoring for atrial fibrillation in acute ischemic stroke and transient ischemic attack.

    Science.gov (United States)

    Tu, Hans T; Chen, Ziyuan; Swift, Corey; Churilov, Leonid; Guo, Ruibing; Liu, Xinfeng; Jannes, Jim; Mok, Vincent; Freedman, Ben; Davis, Stephen M; Yan, Bernard

    2017-10-01

    Rationale Paroxysmal atrial fibrillation is a common and preventable cause of devastating strokes. However, currently available monitoring methods, including Holter monitoring, cardiac telemetry and event loop recorders, have drawbacks that restrict their application in the general stroke population. AliveCor™ heart monitor, a novel device that embeds miniaturized electrocardiography (ECG) in a smartphone case coupled with an application to record and diagnose the ECG, has recently been shown to provide an accurate and sensitive single lead ECG diagnosis of atrial fibrillation. This device could be used by nurses to record a 30-s ECG instead of manual pulse taking and automatically provide a diagnosis of atrial fibrillation. Aims To compare the proportion of patients with paroxysmal atrial fibrillation detected by AliveCor™ ECG monitoring with current standard practice. Sample size 296 Patients. Design Consecutive ischemic stroke and transient ischemic attack patients presenting to participating stroke units without known atrial fibrillation will undergo intermittent AliveCor™ ECG monitoring administered by nursing staff at the same frequency as the vital observations of pulse and blood pressure until discharge, in addition to the standard testing paradigm of each participating stroke unit to detect paroxysmal atrial fibrillation. Study outcome Proportion of patients with paroxysmal atrial fibrillation detected by AliveCor™ ECG monitoring compared to 12-lead ECG, 24-h Holter monitoring and cardiac telemetry. Discussion Use of AliveCor™ heart monitor as part of routine stroke unit nursing observation has the potential to be an inexpensive non-invasive method to increase paroxysmal atrial fibrillation detection, leading to improvement in stroke secondary prevention.

  4. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice

    Directory of Open Access Journals (Sweden)

    Hsu Cheng-chin

    2009-08-01

    Full Text Available Abstract Background Caffeic acid (CA and ellagic acid (EA are phenolic acids naturally occurring in many plant foods. Cardiac protective effects of these compounds against dyslipidemia, hypercoagulability, oxidative stress and inflammation in diabetic mice were examined. Methods Diabetic mice were divided into three groups (15 mice per group: diabetic mice with normal diet, 2% CA treatment, or 2% EA treatment. One group of non-diabetic mice with normal diet was used for comparison. After 12 weeks supplement, mice were sacrificed, and the variation of biomarkers for hypercoagulability, oxidative stress and inflammation in cardiac tissue of diabetic mice were measured. Results The intake of CA or EA significantly increased cardiac content of these compounds, alleviated body weight loss, elevated plasma insulin and decreased plasma glucose levels in diabetic mice (p p p p p p p Conclusion These results support that CA and EA could provide triglyceride-lowering, anti-coagulatory, anti-oxidative, and anti-inflammatory protection in cardiac tissue of diabetic mice. Thus, the supplement of these agents might be helpful for the prevention or attenuation of diabetic cardiomyopathy.

  5. Ischemic stroke and transient ischemic attack in young adults: risk factors, diagnostic yield, neuroimaging, and thrombolysis.

    Science.gov (United States)

    Ji, Ruijun; Schwamm, Lee H; Pervez, Muhammad A; Singhal, Aneesh B

    2013-01-01

    Approximately 10% to 14% of ischemic strokes occur in young adults. To investigate the yield of diagnostic tests, neuroimaging findings, and treatment of ischemic strokes in young adults. We retrospectively reviewed data from our Get with the Guidelines-Stroke database from 2005 through 2010. University hospital tertiary stroke center. A total of 215 consecutive inpatients aged 18 to 45 years with ischemic stroke/transient ischemic attack. The mean (SD) age was 37.5 (7) years; 51% were male. There were high incidence rates of hypertension (20%), diabetes mellitus (11%), dyslipidemia (38%), and smoking (34%). Relevant abnormalities were shown on cerebral angiography in 136 of 203 patients, on cardiac ultrasonography in 100 of 195, on Holter monitoring in 2 of 192; and on hypercoagulable panel in 30 of 189 patients. Multiple infarcts were observed in 31% and were more prevalent in individuals younger than age 35 years. Relevant arterial lesions were frequently detected in the middle cerebral artery (23%), internal carotid artery (13%), and vertebrobasilar arteries (13%). Cardioembolic stroke occurred in 47% (including 17% with isolated patent foramen ovale), and 11% had undetermined stroke etiology. The median National Institutes of Health Stroke Scale score was 3 (interquartile range, 0-9) and 81% had good outcome at hospital discharge. Of the 29 patients receiving thrombolysis (median National Institutes of Health Stroke Scale score, 14; interquartile range, 9-17), 55% had good outcome at hospital discharge and none developed symptomatic brain hemorrhage. This study shows the contemporary profile of ischemic stroke in young adults admitted to a tertiary stroke center. Stroke etiology can be determined in nearly 90% of patients with modern diagnostic tests. The causes are heterogeneous; however, young adults have a high rate of traditional vascular risk factors. Thrombolysis appears safe and short-term outcomes are favorable.

  6. Atrial fibrillation is not uncommon among patients with ischemic stroke and transient ischemic stroke in China.

    Science.gov (United States)

    Yang, Xiaomeng; Li, Shuya; Zhao, Xingquan; Liu, Liping; Jiang, Yong; Li, Zixiao; Wang, Yilong; Wang, Yongjun

    2017-12-04

    Atrial fibrillation (AF) is reported to be a less frequent cause of ischemic stroke in China than in Europe and North America, but it is not clear whether this is due to underestimation. Our aim was to define the true frequency of AF-associated stroke, to determine the yield of 6-day Holter ECG to detect AF in Chinese stroke patients, and to elucidate predictors of newly detected AF. Patients with acute ischemic stroke or transient ischemic attack (TIA) were enrolled in a prospective, multicenter cohort study of 6-day Holter monitoring within 7 days after stroke onset at 20 sites in China between 2013 and 2015. Independent predictors of newly-detected AF were determined by multivariate analysis. Among 1511 patients with ischemic stroke and TIA (mean age 63 years, 33.1% women), 305 (20.2%) had either previously known (196, 13.0%) or AF newly-detected by electrocardiography (53, 3.5%) or by 6-day Holter monitoring (56/1262, 4.4%). A history of heart failure (OR = 4.70, 95%CI, 1.64-13.5), advanced age (OR = 1.06, 95%CI, 1.04-1.09), NIHSS at admission (OR = 1.06, 95%CI, 1.02-1.10), blood high density lipoprotein (HDL) (OR = 1.52, 95%CI, 1.09-2.13), together with blood triglycerides (OR = 0.64, 95%CI, 0.45-0.91) were independently associated with newly-detected AF. Contrary to previous reports, AF-associated stroke is frequent (20%) in China if systemically sought. Prolonged noninvasive cardiac rhythm monitoring importantly increases AF detection in patients with recent ischemic stroke and TIA in China. Advanced age, history of heart failure, and higher admission NIHSS and higher level of HDL were independent indicators of newly-detected AF. NCT02156765 (June 5, 2014).

  7. Anticoagulant treatment in patients with atrial fibrillation and ischemic stroke

    DEFF Research Database (Denmark)

    Brunner-Frandsen, Nicole; Dammann Andersen, Andreas; Ashournia, Hamoun

    2015-01-01

    BACKGROUND: Atrial fibrillation (AF) is the most common cardiac dysrhythmia, with a lifetime risk of 25%, and it is a well-known independent risk factor for ischemic stroke. Over the last 15 years, efforts have been made to initiate relevant treatment in patients with AF. A retrospective study...... was set up to clarify whether this effort has resulted in a decreased proportion of patients with known AF experiencing an ischemic stroke. METHODS: Patients admitted to the Department of Neurology, Vejle Hospital, Denmark, with ischemic stroke from January 1997 to December 2012 were included in the study....... RESULTS: A total of 4134 patients were included in the study. Overall, the yearly proportion of patients with known AF varied between 9% and 18%. No significant change was observed (P = .511). The proportion of patients with known AF treated with anticoagulants at the time of the stroke and the proportion...

  8. Basic and clinical research advances in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Yuan-yuan MA

    2018-01-01

    Full Text Available Stroke is the most common cerebrovascular disease worldwide, which seriously affects life quality of survivals and results in huge economic burden of families and society. In terms of clinical treatment for ischemic stroke, apart from thrombolytic therapy with recombinant tissue-type plasminogen activator (rt-PA, the occurrence and successful application of endovascular thrombectomy in patients of ischemic stroke is a major breakthrough. Meanwhile, many novel clinical drugs for ischemic stroke therapy have entered into clinical trials. Most of basic and clinical researches have showed promising results in ischemic stroke therapy. This review mainly summarizes the progress of research during the period of Twelfth Five-Year Plan for National Economic and Social Development on treatment of ischemic stroke, including omics technologies, gene therapy, microRNA (miRNA interference and stem cell therapy. Stem cell therapy has shown great potential since many clinical trials have been completed or are ongoing. The development and mutual transformation of basic and clinical research will provide valuable and comprehensive information for the precise treatment of ischemic stroke.

  9. Impact of in Vivo Ischemic Time on RNA Quality

    DEFF Research Database (Denmark)

    Olsen, Jesper; Kierkeby, Lene T.; Eiholm, Susanne

    2015-01-01

    immediately following the tumor removal. The time from clamping the main arterial supply to resection and removal of the tumor was used to estimate the in vivo ischemic time. We did not observe a significant difference in RNA quality between normal tissue and tumor tissue. We observed a significant......Considerable effort has been made to improve differentiated diagnostics as well as personalized treatment for colorectal cancer patients. High-quality fresh frozen tissue is often required to investigate relevant molecular signatures in these patients. In RNA expression studies, the “RNA integrity...... number” is widely accepted as a reliable marker of RNA quality. Here, we investigate the feasibility of obtaining high-quality tissue from a colon cancer biobank and the impact of in vivo ischemic time and various technical and clinicopathological factors on RNA quality. Biopsies were obtained...

  10. The Myocardial Unfolded Protein Response during Ischemic Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Edward B. Thorp

    2012-01-01

    Full Text Available Heart failure is a progressive and disabling disease. The incidence of heart failure is also on the rise, particularly in the elderly of industrialized societies. This is in part due to an increased ageing population, whom initially benefits from improved, and life-extending cardiovascular therapy, yet ultimately succumb to myocardial failure. A major cause of heart failure is ischemia secondary to the sequence of events that is dyslipidemia, atherosclerosis, and myocardial infarction. In the case of heart failure postmyocardial infarction, ischemia can lead to myocardial cell death by both necrosis and apoptosis. The extent of myocyte death postinfarction is associated with adverse cardiac remodeling that can contribute to progressive heart chamber dilation, ventricular wall thinning, and the onset of loss of cardiac function. In cardiomyocytes, recent studies indicate that myocardial ischemic injury activates the unfolded protein stress response (UPR and this is associated with increased apoptosis. This paper focuses on the intersection of ischemia, the UPR, and cell death in cardiomyocytes. Targeting of the myocardial UPR may prove to be a viable target for the prevention of myocyte cell loss and the progression of heart failure due to ischemic injury.

  11. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields.

    Directory of Open Access Journals (Sweden)

    Fei Xie

    Full Text Available Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart.We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium ("penetrating needles" configuration and one circular electrode each on epi- and endocardium, opposing each other ("epi-endo" configuration.For thick tissues (10 mm and moderate anisotropy ratio (a = 2, we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10 leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria and higher anisotropy ratio (a = 10, the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist.These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the fiber orientation is not consistent

  12. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields.

    Science.gov (United States)

    Xie, Fei; Zemlin, Christian W

    2016-01-01

    Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart. We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium ("penetrating needles" configuration) and one circular electrode each on epi- and endocardium, opposing each other ("epi-endo" configuration). For thick tissues (10 mm) and moderate anisotropy ratio (a = 2), we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10) leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria) and higher anisotropy ratio (a = 10), the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist. These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the fiber orientation is not consistent across the

  13. Ischemic preconditioning protects against ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Xiao-meng Ma

    2016-01-01

    Full Text Available In this study, we hypothesized that an increase in integrin αv ß 3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αv ß 3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αv ß 3 and vascular endothelial growth factor levels in the brain following ischemia.

  14. Late Thrombolytic Treatment In A Patient With Ischemic Stroke Caused By Biatrial Thrombus

    Directory of Open Access Journals (Sweden)

    Halit CINARKA

    2015-07-01

    Full Text Available Venous thromboembolism is a preventable disease when necessary precautions are taken and it occurs along with deep vein thrombosis and pulmonary embolism. Mortality related to venous thromboembolism may be high in the acute phase of the disease and it may become chronic. Intracardiac thrombus may be detected in some venous thromboemboli cases. Cardiac embolism is responsible for most of the ischemic strokes which can be very mortal or may cause serious morbidity when they are not treated in time. In this report, we aimed to present the results of late antithrombolytic treatment in a 77-year old patient who developed deep vein thrombosis, biatrial thrombosis and ischemic stroke following hydrocephalus shunt operation.   Key words: Venous thromboembolism; ischemic stroke; thrombolytic therapy

  15. Does intravenous administration of recombinant tissue plasminogen activator for ischemic stroke can cause inferior myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Mostafa Almasi

    2016-06-01

    Full Text Available Recombinant tissue plasminogen activator (rTPA is one of the main portions of acute ischemic stroke management, but unfortunately has some complications. Myocardial infarction (MI is a hazardous complication of administration of intravenous rTPA that has been reported recently. A 78-year-old lady was admitted for elective coronary artery bypass graft surgery. On the second day of admission, she developed acute left hemiparesis and intravenous rTPA was administered within 120 minutes. Three hours later, she has had chest pain. Rescue percutaneous coronary intervention was performed on right coronary artery due to diagnosis of inferior MI, and the symptoms were resolved.

  16. Determination of cardiac risk by dipyridamole-thallium imaging before peripheral vascular surgery

    International Nuclear Information System (INIS)

    Boucher, C.A.; Brewster, D.C.; Darling, R.C.; Okada, R.D.; Strauss, H.W.; Pohost, G.M.

    1985-01-01

    To evaluate the severity of coronary artery disease in patients with severe peripheral vascular disease requiring surgery, preoperative dipyridamole-thallium imaging was performed in 54 stable patients with suspected coronary artery disease. Of the 54 patients, 48 had peripheral vascular surgery as scheduled without coronary angiography, of whom 8 (17 per cent) had postoperative cardiac ischemic events. The occurrence of these eight cardiac events could not have been predicted preoperatively by any clinical factors but did correlate with the presence of thallium redistribution. Eight of 16 patients with thallium redistribution had cardiac events, whereas there were no such events in 32 patients whose thallium scan either was normal or showed only persistent defects (P less than 0.0001). Six other patients also had thallium redistribution but underwent coronary angiography before vascular surgery. All had severe multivessel coronary artery disease, and four underwent coronary bypass surgery followed by uncomplicated peripheral vascular surgery. These data suggest that patients without thallium redistribution are at a low risk for postoperative ischemic events and may proceed to have vascular surgery. Patients with redistribution have a high incidence of postoperative ischemic events and should be considered for preoperative coronary angiography and myocardial revascularization in an effort to avoid postoperative myocardial ischemia and to improve survival. Dipyridamole-thallium imaging is superior to clinical assessment and is safer and less expensive than coronary angiography for the determination of cardiac risk

  17. Major Cardiac Events After Non-cardiac Surgery.

    Science.gov (United States)

    Sousa, Gabriela; Lopes, Ana; Reis, Pedro; Carvalho, Vasco; Santos, Alice; Abelha, Fernando José

    2016-08-01

    Postoperative cardiovascular complications might be difficult to assess and are known to be associated with longer hospital stay and increased costs as well as higher morbidity and mortality rates. The aim of this study was to evaluate the predictors for major cardiac events (MCE) after non-cardiac surgery. The study included 4398 patients who were admitted to the Surgical Intensive Care Unit between January 1, 2006 and July 19, 2013. Acute physiology and chronic health evaluation II score and simplified acute physiology score (SAPS II) were calculated, and all variables entered as parameters were evaluated independently. Multivariate logistic regression analysis was performed to assess the independent factors for MCE. A total of 107 people experienced MCE. The independent predictors for postoperative MCE were higher fraction of inspired oxygen (FiO2) (odds ratio [OR] 38.97; 95 % confidence interval [CI] 10.81-140.36), history of ischemic heart disease (OR 3.38; 95 % CI 2.12-5.39), history of congestive heart disease (OR 2.39; 95 % CI 1.49-3.85), history of insulin therapy for diabetes (OR 2.93; 95 % CI 1.66-5.19), and increased SAPS II (OR 1.03; 95 % CI 1.01-1.05). Having a MCE was associated with a longer length of stay in the surgical intensive care unit (OR 1.01, 95 % CI 1.00-1.01). FiO2, ischemic heart disease, congestive heart disease, insulin therapy for diabetes, SAPS II, and length of stay in the surgical intensive care unit were independent predictors for MCE.

  18. Is beta-thalassemia trait a protective factor against ischemic cerebrovascular accidents?

    Science.gov (United States)

    Karimi, Mehran; Borhani Haghighi, Afshin; Yazdani, Maryam; Raisi, Hamideh; Giti, Rahil; Namazee, Mohammad Reza

    2008-01-01

    In this research, we sought to determine the association between beta-thalassemia trait and ischemic cerebrovascular accident (CVA). In acase-control study, 148 patients with thromboembolic cerebrovascular events were evaluated for the presence of hypertension, diabetes mellitus, hyperlipidemia, and beta-thalassemia trait. A total of 156 age- and sex-matched patients with no cardiac or cerebrovascular diseases, serving as the control group, were also investigated for the above-mentioned risk factors. We found that 6.1% of patients with ischemic CVA and 12.2% of the control group had beta-thalassemia trait (P = .066). In male patients, the negative association between ischemic CVA and presence of beta-thalassemia trait was significant (P = .008). In patients, the prevalence of hypertension was also significantly different between those with and without beta-thalassemia trait (P = .01); those with beta-thalassemia trait had a lower mean blood pressure than those without the trait. beta-Thalassemia trait may have a protective effect against ischemic CVA that might be caused by the lower arterial blood pressure observed in those with this trait.

  19. Accordion-like honeycombs for tissue engineering of cardiac anisotropy

    Science.gov (United States)

    Engelmayr, George C.; Cheng, Mingyu; Bettinger, Christopher J.; Borenstein, Jeffrey T.; Langer, Robert; Freed, Lisa E.

    2008-12-01

    Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (pthe formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.

  20. Role of homocysteine in the ischemic stroke nad development of ischemic tolerance

    Directory of Open Access Journals (Sweden)

    Jan Lehotsky

    2016-11-01

    Full Text Available Homocysteine (Hcy is a toxic, sulfur-containing intermediate of methionine metabolism. Hyperhomocysteinemia (hHcy, as a consequence of impaired Hcy metabolism or defects in crucial co-factors that participate in its recycling, is assumed as an independent human stroke risk factor. Neural cells are sensitive to prolonged hHcy treatment, because Hcy cannot be metabolized either by the transsulfuration pathway or by the folate/vitamin B12 independent remethylation pathway. Its detrimental effect after ischemia-induced damage includes accumulation of reactive oxygen species (ROS and posttranslational modifications of proteins via homocysteinylation and thiolation. Ischemic preconditioning (IPC is an adaptive response of the CNS to sub-lethal ischemia, which elevates tissues tolerance to subsequent ischemia. The main focus of this review is on the recent data on homocysteine metabolism and mechanisms of its neurotoxicity. In this context, the review documents an increased oxidative stress and functional modification of enzymes involved in redox balance in experimentally induced hyperhomocysteinemia. It also gives an interpretation whether hyperhomocysteinemia alone or in combination with IPC affects the ischemia-induced neurodegenerative changes as well as intracellular signalling. Studies document that hHcy alone significantly increased Fluoro-Jade C- and TUNEL-positive cell neurodegeneration in the rat hippocampus as well as in the cortex. IPC, even if combined with hHcy, could still preserve the neuronal tissue from the lethal ischemic effects. This review also describes the changes in the mitogen-activated protein kinase (MAPK protein pathways following ischemic injury and IPC. These studies provide evidence for the interplay and tight integration between ERK and p38 MAPK signalling mechanisms in response to the hHcy and also in association of hHcy with ischemia/IPC challenge in the rat brain. Further investigations of the protective factors

  1. Pre-Ischemic Treadmill Training for Prevention of Ischemic Brain Injury via Regulation of Glutamate and Its Transporter GLT-1

    Directory of Open Access Journals (Sweden)

    Jingchun Guo

    2012-07-01

    Full Text Available Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1 protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate.

  2. The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack: advances and uncertainties

    Science.gov (United States)

    Cerasuolo, Joshua O.; Cipriano, Lauren E.; Sposato, Luciano A.

    2017-01-01

    Purpose of review Atrial fibrillation is being increasingly diagnosed after ischemic stroke and transient ischemic attack (TIA). Patient characteristics, frequency and duration of paroxysms, and the risk of recurrent ischemic stroke associated with atrial fibrillation detected after stroke and TIA (AFDAS) may differ from atrial fibrillation already known before stroke occurrence. We aim to summarize major recent advances in the field, in the context of prior evidence, and to identify areas of uncertainty to be addressed in future research. Recent findings Half of all atrial fibrillations in ischemic stroke and TIA patients are AFDAS, and most of them are asymptomatic. Over 50% of AFDAS paroxysms last less than 30 s. The rapid initiation of cardiac monitoring and its duration are crucial for its timely and effective detection. AFDAS comprises a heterogeneous mix of atrial fibrillation, possibly including cardiogenic and neurogenic types, and a mix of both. Over 25 single markers and at least 10 scores have been proposed as predictors of AFDAS. However, there are considerable inconsistencies across studies. The role of AFDAS burden and its associated risk of stroke recurrence have not yet been investigated. Summary AFDAS may differ from atrial fibrillation known before stroke in several clinical dimensions, which are important for optimal patient care strategies. Many questions remain unanswered. Neurogenic and cardiogenic AFDAS need to be characterized, as it may be possible to avoid some neurogenic cases by initiating timely preventive treatments. AFDAS burden may differ in ischemic stroke and TIA patients, with distinctive diagnostic and treatment implications. The prognosis of AFDAS and its risk of recurrent stroke are still unknown; therefore, it is uncertain whether AFDAS patients should be treated with oral anticoagulants. PMID:27984303

  3. Automated prediction of tissue outcome after acute ischemic stroke in computed tomography perfusion images

    Science.gov (United States)

    Vos, Pieter C.; Bennink, Edwin; de Jong, Hugo; Velthuis, Birgitta K.; Viergever, Max A.; Dankbaar, Jan Willem

    2015-03-01

    Assessment of the extent of cerebral damage on admission in patients with acute ischemic stroke could play an important role in treatment decision making. Computed tomography perfusion (CTP) imaging can be used to determine the extent of damage. However, clinical application is hindered by differences among vendors and used methodology. As a result, threshold based methods and visual assessment of CTP images has not yet shown to be useful in treatment decision making and predicting clinical outcome. Preliminary results in MR studies have shown the benefit of using supervised classifiers for predicting tissue outcome, but this has not been demonstrated for CTP. We present a novel method for the automatic prediction of tissue outcome by combining multi-parametric CTP images into a tissue outcome probability map. A supervised classification scheme was developed to extract absolute and relative perfusion values from processed CTP images that are summarized by a trained classifier into a likelihood of infarction. Training was performed using follow-up CT scans of 20 acute stroke patients with complete recanalization of the vessel that was occluded on admission. Infarcted regions were annotated by expert neuroradiologists. Multiple classifiers were evaluated in a leave-one-patient-out strategy for their discriminating performance using receiver operating characteristic (ROC) statistics. Results showed that a RandomForest classifier performed optimally with an area under the ROC of 0.90 for discriminating infarct tissue. The obtained results are an improvement over existing thresholding methods and are in line with results found in literature where MR perfusion was used.

  4. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Le, Nguyen Uyen Chi; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study.

  5. Radioisotope heart examination during exercise to diagnose ischemic heart disease

    International Nuclear Information System (INIS)

    Farsky, S.

    1986-01-01

    The radioisotope exercise test is discussed and its benefits characterized for the diagnosis of ischemic heart disease, namely the use of 99m Tc in scintiscanning heart ventricles and of 201 Tl in scintiscanning myocardial perfusion. The exercise ventricular function and perfusion scintigraphies are compared with the common exercise ECG examination, and their superior sensitivity and specificity emphasized. Considering the constraints of scintigraphic imaging, indications are outlined for patients including those with suspect serious ischemic heart disease in whom the exercise ECG test has been negative or inconclusive, patients with the so-called nondiagnostic ECG, patients with atypical symptoms, and healthy individuals for whom the exercise ECG test indicated with respect to their occupation has been positive. Both radionuclide imaging techniques are complementary and are shown to be valuable not only in improving the diagnosis of ischemic heart disease but also in identifying the high-risk patients in whom cardiac surgery is to be considered. (L.O.)

  6. Mesenchymal Stem/Stromal Cells from Discarded Neonatal Sternal Tissue: In Vitro Characterization and Angiogenic Properties

    Directory of Open Access Journals (Sweden)

    Shuyun Wang

    2016-01-01

    Full Text Available Autologous and nonautologous bone marrow mesenchymal stem/stromal cells (MSCs are being evaluated as proangiogenic agents for ischemic and vascular disease in adults but not in children. A significant number of newborns and infants with critical congenital heart disease who undergo cardiac surgery already have or are at risk of developing conditions related to inadequate tissue perfusion. During neonatal cardiac surgery, a small amount of sternal tissue is usually discarded. Here we demonstrate that MSCs can be isolated from human neonatal sternal tissue using a nonenzymatic explant culture method. Neonatal sternal bone MSCs (sbMSCs were clonogenic, had a surface marker expression profile that was characteristic of bone marrow MSCs, were multipotent, and expressed pluripotency-related genes at low levels. Neonatal sbMSCs also demonstrated in vitro proangiogenic properties. Sternal bone MSCs cooperated with human umbilical vein endothelial cells (HUVECs to form 3D networks and tubes in vitro. Conditioned media from sbMSCs cultured in hypoxia also promoted HUVEC survival and migration. Given the neonatal source, ease of isolation, and proangiogenic properties, sbMSCs may have relevance to therapeutic applications.

  7. Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Staniak, Henrique Lane; Sharovsky, Rodolfo [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Pereira, Alexandre Costa [Hospital das Clínicas - Universidade de São Paulo, São Paulo, SP (Brazil); Castro, Cláudio Campi de; Benseñor, Isabela M.; Lotufo, Paulo A. [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Faculdade de Medicina - Universidade de São Paulo, São Paulo, SP (Brazil); Bittencourt, Márcio Sommer, E-mail: msbittencourt@mail.harvard.edu [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-01-15

    Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure.

  8. Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

    International Nuclear Information System (INIS)

    Staniak, Henrique Lane; Sharovsky, Rodolfo; Pereira, Alexandre Costa; Castro, Cláudio Campi de; Benseñor, Isabela M.; Lotufo, Paulo A.; Bittencourt, Márcio Sommer

    2014-01-01

    Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure

  9. Construction and Development of a Cardiac Tissue-Specific and Hypoxia-Inducible Expression Vector

    Directory of Open Access Journals (Sweden)

    Shahrooz Ghaderi

    2018-03-01

    Full Text Available Purpose: Cardiovascular gene therapy is a sophisticated approach, thanks to the safety of vectors, stable transgene expression, delivery method, and different layers of the heart. To date, numerous expression vectors have been introduced in biotechnology and biopharmacy industries in relation to genetic manipulation. Despite the rapid growth of these modalities, they must be intelligently designed, addressing the cardiac-specific transgene expression and less side effects. Herein, we conducted a pilot project aiming to design a cardiac-specific hypoxia-inducible expression cassette. Methods: We explored a new approach to design an expression cassette containing cardiac specific enhancer, hypoxia response elements (HRE, cardiac specific promoter, internal ribosome entry site (IRES, and beta globin poly A sequence to elicit specific and inducible expression of the gene of interest. Enhanced green fluorescent protein (eGFP was sub-cloned by BglII and NotI into the cassette. The specificity and inducible expression of the cassette was determined in both mouse myoblast C2C12 and mammary glandular tumor 4T1 as ‘twin’ cells. eGFP expression was evaluated by immunofluorescence microscope and flow cytometry at 520 nm emission peak. Results: Our data revealed that the designed expression cassette provided tissue specific and hypoxia inducible (O2<1% transgene expression. Conclusion: It is suggested that cardiac-specific enhancer combined with cardiac-specific promoter are efficient for myoblast specific gene expression. As well, this is for the first time that HRE are derived from three well known hypoxia-regulated promoters. Therefore, there is no longer need to overlap PCR process for one repeated sequence just in one promoter.

  10. Role of Epinephrine and Extracorporeal Membrane Oxygenation in the Management of Ischemic Refractory Ventricular Fibrillation

    Directory of Open Access Journals (Sweden)

    Jason A. Bartos, MD, PhD

    2017-06-01

    Full Text Available Summary: Extracorporeal membrane oxygenation (ECMO is used in cardiopulmonary resuscitation (CPR of refractory cardiac arrest. The authors used a 2 × 2 study design to compare ECMO versus CPR and epinephrine versus placebo in a porcine model of ischemic refractory ventricular fibrillation (VF. Pigs underwent 5 min of untreated VF and 10 min of CPR, and were randomized to receive epinephrine versus placebo for another 35 min. Animals were further randomized to left anterior descending artery (LAD reperfusion at minute 45 with ongoing CPR versus venoarterial ECMO cannulation at minute 45 of CPR and subsequent LAD reperfusion. Four-hour survival was improved with ECMO whereas epinephrine showed no effect. Key Words: advanced cardiopulmonary life support, cardiac arrest, cardiopulmonary resuscitation, ECMO, extracorporeal membrane oxygenation, ischemic refractory ventricular fibrillation, ST-segment elevation myocardial infarction, ventricular fibrillation

  11. Paradoxical centrally increased diffusivity in perinatal arterial ischemic stroke

    International Nuclear Information System (INIS)

    Stence, Nicholas V.; Mirsky, David M.; Deoni, Sean C.L.; Armstrong-Wells, Jennifer

    2016-01-01

    Restricted diffusion on acute MRI is the diagnostic standard for perinatal arterial ischemic stroke. In a subset of children with perinatal arterial ischemic stroke, primarily those with large infarct volumes, we noted a core of centrally increased diffusivity with a periphery of restricted diffusion. Given the paradoxical diffusion-weighted imaging (DWI) appearance observed in some children with perinatal arterial ischemic stroke, we sought to determine its significance and hypothesized that: (1) centrally increased diffusivity is associated with larger infarcts in perinatal arterial ischemic stroke and (2) this tissue is irreversibly injured (infarcted). We reviewed all perinatal arterial ischemic stroke cases in a prospective cohort study from Aug. 1, 2000, to Jan. 1, 2012. Infarct volumes were measured by drawing regions of interest around the periphery of the area of restricted diffusion on DWI. The Mann-Whitney U test was used to compare means between groups. Of 25 eligible cases, centrally increased diffusivity was seen in 4 (16%). Cases with centrally increased diffusivity had larger average infarct volumes (mean 117,182 mm 3 vs. 36,995 mm 3 ; P = 0.008), higher average apparent diffusion coefficient (ADC) values in the infarct core (1,679 x 10 -6 mm 2 /s vs. 611 x 10 -6 mm 2 /s, P < 0.0001), and higher ADC ratio (1.2 vs. 0.5, P < 0.0001). At last clinical follow-up, children with perinatal arterial ischemic stroke and centrally increased diffusivity were more often treated for ongoing seizures (75% vs. 0%; P < 0.001) than those without. Centrally increased diffusivity was associated with larger stroke volume and the involved tissue was confirmed to be infarcted on follow-up imaging. Radiologists should be aware of this unusual appearance of perinatal arterial ischemic stroke in order to avoid underestimating infarct volume or making an incorrect early diagnosis. (orig.)

  12. Paradoxical centrally increased diffusivity in perinatal arterial ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Stence, Nicholas V.; Mirsky, David M.; Deoni, Sean C.L. [University of Colorado Anschutz School of Medicine, Department of Radiology, Aurora, CO (United States); Children' s Hospital Colorado, Department of Radiology, Aurora, CO (United States); Armstrong-Wells, Jennifer [University of Colorado Anschutz School of Medicine, Department of Pediatrics (Neurology) and OB/GYN, Aurora, CO (United States); University of Colorado Hemophilia and Thrombosis Center, Aurora, CO (United States)

    2016-01-15

    Restricted diffusion on acute MRI is the diagnostic standard for perinatal arterial ischemic stroke. In a subset of children with perinatal arterial ischemic stroke, primarily those with large infarct volumes, we noted a core of centrally increased diffusivity with a periphery of restricted diffusion. Given the paradoxical diffusion-weighted imaging (DWI) appearance observed in some children with perinatal arterial ischemic stroke, we sought to determine its significance and hypothesized that: (1) centrally increased diffusivity is associated with larger infarcts in perinatal arterial ischemic stroke and (2) this tissue is irreversibly injured (infarcted). We reviewed all perinatal arterial ischemic stroke cases in a prospective cohort study from Aug. 1, 2000, to Jan. 1, 2012. Infarct volumes were measured by drawing regions of interest around the periphery of the area of restricted diffusion on DWI. The Mann-Whitney U test was used to compare means between groups. Of 25 eligible cases, centrally increased diffusivity was seen in 4 (16%). Cases with centrally increased diffusivity had larger average infarct volumes (mean 117,182 mm{sup 3} vs. 36,995 mm{sup 3}; P = 0.008), higher average apparent diffusion coefficient (ADC) values in the infarct core (1,679 x 10{sup -6} mm{sup 2}/s vs. 611 x 10{sup -6} mm{sup 2}/s, P < 0.0001), and higher ADC ratio (1.2 vs. 0.5, P < 0.0001). At last clinical follow-up, children with perinatal arterial ischemic stroke and centrally increased diffusivity were more often treated for ongoing seizures (75% vs. 0%; P < 0.001) than those without. Centrally increased diffusivity was associated with larger stroke volume and the involved tissue was confirmed to be infarcted on follow-up imaging. Radiologists should be aware of this unusual appearance of perinatal arterial ischemic stroke in order to avoid underestimating infarct volume or making an incorrect early diagnosis. (orig.)

  13. Effect of alternate energy substrates on mammalian brain metabolism during ischemic events.

    Science.gov (United States)

    Koppaka, S S; Puchowicz; LaManna, J C; Gatica, J E

    2008-01-01

    Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolism in blood-perfused brain tissue, which considers the astrocyte-neuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

  14. Preliminary applied study of assessment ischemic/viable myocardium by 99Tcm-HL91

    International Nuclear Information System (INIS)

    Liu Gang; Wu Hua

    2004-01-01

    Objective: To investigate the representation of 99 Tc m -HL91 in the ischemic myocardium, evaluate the diagnosis value of 99 Tc m -HL91 on hypoxic but viable myocardium. Methods: Six patients with cardiac infarction all underwent 99 Tc m -MIBI SPECT and 99 Tc m -HL91 SPECT. Average radioactivity of ischemic area and normal area were respectively obtained by ROI (2 x 2 pixels) on heart minor axis of images, And the radioactivity ratios of target (ischemic area)-to-non target(normal area)were calculated. Results: In image of 99 Tc m -HL91 SPECT, two patients who's radioactivity coloboma of 99 Tc m -MIBI image could be filled with 99 Tc m -HL91, four patients were not caught sight of obvious filling up. Conclusion 99 Tc m -HL91 can be selectively uptaken by ischemic and hypoxic but viable myocardium. it combination of 99 Tc m -MIBI SPECT may be good for accurate diagnosis and differentiation of viable myocardium. (authors)

  15. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury.

    Science.gov (United States)

    Sawicki, Konrad Teodor; Shang, Meng; Wu, Rongxue; Chang, Hsiang-Chun; Khechaduri, Arineh; Sato, Tatsuya; Kamide, Christine; Liu, Ting; Naga Prasad, Sathyamangla V; Ardehali, Hossein

    2015-07-31

    Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a novel approach for protection against the

  16. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain......Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding...

  17. Total donor ischemic time: relationship to early hemodynamics and intensive care morbidity in pediatric cardiac transplant recipients.

    Science.gov (United States)

    Rodrigues, Warren; Carr, Michelle; Ridout, Deborah; Carter, Katherine; Hulme, Sara Louise; Simmonds, Jacob; Elliott, Martin; Hoskote, Aparna; Burch, Michael; Brown, Kate L

    2011-11-01

    Single-center studies have failed to link modest increases in total donor ischemic time to mortality after pediatric orthotopic heart transplant. We aimed to investigate whether prolonged total donor ischemic time is linked to pediatric intensive care morbidity after orthotopic heart transplant. Retrospective cohort review. Tertiary pediatric transplant center in the United Kingdom. Ninety-three pediatric orthotopic heart transplants between 2002 and 2006. Total donor ischemic time was investigated for association with early post-orthotopic heart transplant hemodynamics and intensive care unit morbidities. Of 43 males and 50 females with median age 7.2 (interquartile range 2.2, 13.0) yrs, 62 (68%) had dilated cardiomyopathy, 20 (22%) had congenital heart disease, and nine (10%) had restrictive cardiomyopathy. The mean total donor ischemic time was 225.9 (sd 65.6) mins. In the first 24 hrs after orthotopic heart transplant, age-adjusted mean arterial blood pressure increased (p total donor ischemic time was significantly associated with lower mean arterial blood pressure (p care unit (p = .004), and longer post-orthotopic heart transplant stay in hospital (p = .02). Total donor ischemic time was not related to levels of mean pulmonary arterial pressure (p = .62), left atrial pressure (p = .38), or central venous pressure (p = .76) early after orthotopic heart transplant. Prolonged total donor ischemic time has an adverse effect on the donor organ, contributing to lower mean arterial blood pressure, as well as more prolonged ventilation and intensive care unit and hospital stays post-orthotopic heart transplant, reflecting increased morbidity.

  18. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.

    Science.gov (United States)

    Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael

    2008-06-01

    Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.

  19. An overview on development and application of an experimental platform for quantitative cardiac imaging research in rabbit models of myocardial infarction.

    Science.gov (United States)

    Feng, Yuanbo; Bogaert, Jan; Oyen, Raymond; Ni, Yicheng

    2014-10-01

    To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases.

  20. Utility of late gadolinium enhancement in pediatric cardiac MRI

    International Nuclear Information System (INIS)

    Etesami, Maryam; Gilkeson, Robert C.; Rajiah, Prabhakar

    2016-01-01

    Late gadolinium enhancement (LGE) cardiac magnetic resonance (MR) imaging sequence is increasingly used in the evaluation of pediatric cardiovascular disorders, and although LGE might be a normal feature at the sites of previous surgeries, it is pathologically seen as a result of extracellular space expansion, either from acute cell damage or chronic scarring or fibrosis. LGE is broadly divided into ischemic and non-ischemic patterns. LGE caused by myocardial infarction occurs in a vascular distribution and always involves the subendocardial portion, progressively involving the outer regions in a waveform pattern. Non-ischemic cardiomyopathies can have a mid-myocardial (either linear or patchy), subepicardial or diffuse subendocardial distribution. Idiopathic dilated cardiomyopathy can have a linear mid-myocardial pattern, while hypertrophic cardiomyopathy can have fine, patchy enhancement in hypertrophied and non-hypertrophied segments as well as right ventricular insertion points. Myocarditis and sarcoidosis have a mid-myocardial or subepicardial pattern of LGE. Fabry disease typically affects the basal inferolateral segment while Danon disease typically spares the septum. Pericarditis is characterized by diffuse or focal pericardial thickening and enhancement. Thrombus, the most common non-neoplastic cardiac mass, is characterized by absence of enhancement in all sequences, while neoplastic masses show at least some contrast enhancement, depending on the pathology. Regardless of the etiology, presence of LGE is associated with a poor prognosis. In this review, we describe the technical modifications required for performing LGE cardiac MR sequence in children, review and illustrate the patterns of LGE in children, and discuss their clinical significance. (orig.)

  1. Utility of late gadolinium enhancement in pediatric cardiac MRI.

    Science.gov (United States)

    Etesami, Maryam; Gilkeson, Robert C; Rajiah, Prabhakar

    2016-07-01

    Late gadolinium enhancement (LGE) cardiac magnetic resonance (MR) imaging sequence is increasingly used in the evaluation of pediatric cardiovascular disorders, and although LGE might be a normal feature at the sites of previous surgeries, it is pathologically seen as a result of extracellular space expansion, either from acute cell damage or chronic scarring or fibrosis. LGE is broadly divided into ischemic and non-ischemic patterns. LGE caused by myocardial infarction occurs in a vascular distribution and always involves the subendocardial portion, progressively involving the outer regions in a waveform pattern. Non-ischemic cardiomyopathies can have a mid-myocardial (either linear or patchy), subepicardial or diffuse subendocardial distribution. Idiopathic dilated cardiomyopathy can have a linear mid-myocardial pattern, while hypertrophic cardiomyopathy can have fine, patchy enhancement in hypertrophied and non-hypertrophied segments as well as right ventricular insertion points. Myocarditis and sarcoidosis have a mid-myocardial or subepicardial pattern of LGE. Fabry disease typically affects the basal inferolateral segment while Danon disease typically spares the septum. Pericarditis is characterized by diffuse or focal pericardial thickening and enhancement. Thrombus, the most common non-neoplastic cardiac mass, is characterized by absence of enhancement in all sequences, while neoplastic masses show at least some contrast enhancement, depending on the pathology. Regardless of the etiology, presence of LGE is associated with a poor prognosis. In this review, we describe the technical modifications required for performing LGE cardiac MR sequence in children, review and illustrate the patterns of LGE in children, and discuss their clinical significance.

  2. [Application of Ischemia Modified Albumin for Acute Ischemic Heart Disease in Forensic Science].

    Science.gov (United States)

    Wang, P; Zhu, Z L; Zhu, N; Yu, H; Yue, Q; Wang, X L; Feng, C M; Wang, C L; Zhang, G H

    2017-10-01

    To explore the application value and forensic significance of ischemia modified albumin (IMA) in pericardial fluid to diagnose sudden cardiac death. IMA level in pericardial fluid was detected in acute ischemic heart disease group ( n =36), acute myocardial infarction group ( n =6), cardiomyopathy group ( n =4) and control group ( n =15) by albumin cobalt binding method. The levels of IMA were compared among these groups. The best cut-off IMA value was estimated and the sensitivity and specificity of acute myocardial ischemia group was distinguished from control group by receiver operating characteristics (ROC) curve. The IMA level in acute ischemic heart disease group was significantly higher than that of control group ( P 0.05). The cut-off value for the identification of acute myocardial ischemia which obtained by ROC analysis was 40.65 U/mL. And the sensitivity and specificity for distinguishing acute ischemia cardiac disease was 60.0% and 80.5%, respectively. The IMA value in pericardial fluid can be a reference marker for the diagnosis of acute myocardial ischemia, which also can provide objective basis for the forensic identification of sudden cardiac death. Copyright© by the Editorial Department of Journal of Forensic Medicine

  3. Juvenile ischemic stroke secondary to cardiogenic embolism: A rare case report

    Directory of Open Access Journals (Sweden)

    Hassan Soleimanpour

    2014-01-01

    Full Text Available Myxomas, the most common primary cardiac tumors, are known as a source of cardiogenic emboli. The possibility of their early detection has made them of great importance for emergency medicines. Detection of the disease is probable at early stages using echocardiography and associate complications such as syncope, cerebral embolic ischemic strokes, and sudden death. We report experience of a rare case of juvenile acute stroke in a patient with cardiac myxoma affecting all cardiac chambers presenting to the emergency department. In young stroke patients with signs and symptoms compatible with cardiovascular involvement, cardiogenic emboli should be taken into consideration; early echocardiographic studies are highly recommended. Prompt myxoma resection is required in both asymptomatic and stroke patients in whom intravenous thrombolysis course has not been implemented due to any limitations.

  4. Cancer Cell-Derived Extracellular Vesicles Are Associated with Coagulopathy Causing Ischemic Stroke via Tissue Factor-Independent Way: The OASIS-CANCER Study.

    Directory of Open Access Journals (Sweden)

    Oh Young Bang

    Full Text Available Cancer and stroke, which are known to be associated with one another, are the most common causes of death in the elderly. However, the pathomechanisms that lead to stroke in cancer patients are not well known. Circulating extracellular vesicles (EVs play a role in cancer-associated thrombosis and tumor progression. Therefore, we hypothesized that cancer cell-derived EVs cause cancer-related coagulopathy resulting in ischemic stroke.Serum levels of D-dimer and EVs expressing markers for cancer cells (epithelial cell adhesion molecule [CD326], tissue factor (TF [CD142], endothelial cells (CD31+CD42b-, and platelets (CD62P were measured using flow cytometry in (a 155 patients with ischemic stroke and active cancer (116 - cancer-related, 39 - conventional stroke mechanisms, (b 25 patients with ischemic stroke without cancer, (c 32 cancer patients without stroke, and (d 101 healthy subjects.The levels of cancer cell-derived EVs correlated with the levels of D-dimer and TF+ EVs. The levels of cancer cell-derived EVs (CD326+ and CD326+CD142+ were higher in cancer-related stroke than in other groups (P<0.05 in all the cases. Path analysis showed that cancer cell-derived EVs are related to stroke via coagulopathy as measured by D-dimer levels. Poor correlation was observed between TF+ EV and D-dimer, and path analysis demonstrated that cancer cell-derived EVs may cause cancer-related coagulopathy independent of the levels of TF+ EVs.Our findings suggest that cancer cell-derived EVs mediate coagulopathy resulting in ischemic stroke via TF-independent mechanisms.

  5. Extracts of Crataegus oxyacantha and Rosmarinus officinalis Attenuate Ischemic Myocardial Damage by Decreasing Oxidative Stress and Regulating the Production of Cardiac Vasoactive Agents

    Directory of Open Access Journals (Sweden)

    Raúl Enrique Cuevas-Durán

    2017-11-01

    Full Text Available Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha (Co and Rosmarinus officinalis (Ro extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a sham; (b vehicle-treated myocardial infarction (MI (MI-V; (c Ro extract-treated myocardial infarction (MI-Ro; (d Co extract-treated myocardial infarction (MI-Co; or (e Ro+Co-treated myocardial infarction (MI-Ro+Co. Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD-Cu2+/Zn2+, SOD-Mn2+, and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2′-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1, increased vasodilators agents (angiotensin 1–7 and bradikinin and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators.

  6. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning.

    Science.gov (United States)

    Matsuzaki, Satoshi; Szweda, Pamela A; Szweda, Luke I; Humphries, Kenneth M

    2009-11-30

    Excessive production of free radicals by mitochondria is associated with, and likely contributes to, the progression of numerous pathological conditions. Nevertheless, the production of free radicals by the mitochondria may have important biological functions under normal or stressed conditions by activating or modulating redox-sensitive cellular signaling pathways. This raises the intriguing possibility that regulated mitochondrial free radical production occurs via mechanisms that are distinct from pathologies associated with oxidative damage. Indeed, the capacity of mitochondria to produce free radicals in a limited manner may play a role in ischemic preconditioning, the phenomenon whereby short bouts of ischemia protect from subsequent prolonged ischemia and reperfusion. Ischemic preconditioning can thus serve as an important model system for defining regulatory mechanisms that allow for transient, signal-inducing, production of free radicals by mitochondria. Defining how these mechanism(s) occur will provide insight into therapeutic approaches that minimize oxidative damage without altering normal cellular redox biology. The aim of this review is to present and discuss evidence for the regulated production of superoxide by the electron transport chain within the ischemic preconditioning paradigm of redox regulation.

  7. Depression, not anxiety, is independently associated with 5-year hospitalizations and mortality in patients with ischemic heart disease

    DEFF Research Database (Denmark)

    Versteeg, Henneke; Hoogwegt, Madelein T; Hansen, Tina B

    2013-01-01

    The objective of the current study was to examine whether depression and anxiety are independently associated with 5-year cardiac-related hospitalizations and all-cause mortality in patients with ischemic heart disease (IHD)....

  8. Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation.

    Directory of Open Access Journals (Sweden)

    Daniel Biermann

    Full Text Available The long-term outcome of patients with single ventricles improved over time, but remains poor compared to other congenital heart lesions with biventricular circulation. Main cause for this unfavourable outcome is the unphysiological hemodynamic of the Fontan circulation, such as subnormal systemic cardiac output and increased systemic-venous pressure. To overcome this limitation, we are developing the concept of a contractile extracardiac Fontan-tunnel. In this study, we evaluated the survival and structural development of a tissue-engineered conduit under in vivo conditions. Engineered heart tissue was generated from ventricular heart cells of neonatal Wistar rats, fibrinogen and thrombin. Engineered heart tissues started beating around day 8 in vitro and remained contractile in vivo throughout the experiment. After culture for 14 days constructs were implanted around the right superior vena cava of Wistar rats (n = 12. Animals were euthanized after 7, 14, 28 and 56 days postoperatively. Hematoxylin and eosin staining showed cardiomyocytes arranged in thick bundles within the engineered heart tissue-conduit. Immunostaining of sarcomeric actin, alpha-actin and connexin 43 revealed a well -developed cardiac myocyte structure. Magnetic resonance imaging (d14, n = 3 revealed no constriction or stenosis of the superior vena cava by the constructs. Engineered heart tissues survive and contract for extended periods after implantation around the superior vena cava of rats. Generation of larger constructs is warranted to evaluate functional benefits of a contractile Fontan-conduit.

  9. Hexokinase cellular trafficking in ischemia-reperfusion and ischemic preconditioning is altered in type I diabetic heart

    NARCIS (Netherlands)

    Gurel, Ebru; Ustunova, Savas; Kapucu, Aysegul; Yilmazer, Nadim; Eerbeek, Otto; Nederlof, Rianne; Hollmann, Markus W.; Demirci-Tansel, Cihan; Zuurbier, Coert J.

    2013-01-01

    Diabetes mellitus (DM) has been reported to alter the cardiac response to ischemia-reperfusion (IR). In addition, cardioprotection induced by ischemic preconditioning (IPC) is often impaired in diabetes. We have previously shown that the subcellular localisation of the glycolytic enzyme hexokinase

  10. Swallowing disorders after ischemic stroke

    Directory of Open Access Journals (Sweden)

    Gabriela Camargo Remesso

    2011-10-01

    Full Text Available OBJECTIVE: To investigate occurrences of swallowing disorders after ischemic stroke. METHOD: This was a retrospective study on 596 medical files. The inclusion criterion was that the patients needed to have been hospitalized with a diagnosis of ischemic stroke; the exclusion criteria were the presence of associated cardiac problems and hospital stay already more than 14 days. RESULTS: 50.5% were men and 49.5% women; mean age 65.3 years (SD=±11.7 (p<0.001. Among the risk factors, 79.4% had hypertension, 36.7% had diabetes (p<0.001 and 42.7% were smokers. 13.3% of the patients died. Swallowing disorders occurred in 19.6%, among whom 91.5% had mild difficulty and 8.5% had severe difficulty. 87.1% had spontaneous recovery after a mean of 2.4 months. A lesion in the brainstem region occurred in 6.8% (p<0.001. CONCLUSION: Swallowing disorders occurred in almost 20% of the population and most of the difficulty in swallowing found was mild. The predictors for swallowing disorders were older age, diabetes mellitus and lesions in the brainstem region.

  11. Apoptosis in fresh and cryopreserved cardiac valves of pig samples.

    Science.gov (United States)

    Rendal Vázquez, M Esther; Díaz Román, T M; Rodríguez Cabarcos, M; Zavanella Botta, C; Domenech García, N; González Cuesta, M; Sánchez Dopico, M J; Pértega Díaz, S; Andión Núñez, C

    2008-06-01

    To analyse the influence of cold ischemic time (CIT) (2-24 h) and of cryopreservation (liquid phase) on the viability of the valvular fibroblasts and in the presence of apoptosis. Cardiac valves from 10 pigs were evaluated by anatomo-pathological study of the wall, muscle and leaflet. At the same time, the presence of cellular death due to apoptosis was investigated in two ways; directly on tissue by Apodetec system and by two-colour flow cytometry assay analyzing a suspension of fibroblast from valve leaflets using Anexina V and propidium iodure (PI). We established three groups of samples to compare different experimental conditions: 2 h of ischemia (group 1), 24 h of ischemia (group 2), and a programme of cryopreservation (-1 degrees C/min) after 2 h of ischemia, followed by storage in liquid nitrogen during a week and thawing was performed (group 3). The analysis of viabilities showed slight differences between all three groups. The results indicated CIT of 24 h undergoing more structural affectation than CIT of 2 h. Flow cytometry analysis did not show important differences between groups; however cryopreserved samples (group 3) slightly less viability and a higher percentage of death by apoptosis than group 1 and 2 using flow cytometry. Apoptosis was confirmed on tissue from all valves but mainly in samples of group 2 and group 3. In summary, the viability of the valves in the case of ischemic times of 2 h, 24 h or after cryopreservation/thawing differs slightly. The death of the cells is mainly mediated by necrosis and not by apoptosis.

  12. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease

    Directory of Open Access Journals (Sweden)

    W. H. Davin Townley-Tilson

    2015-01-01

    Full Text Available Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  13. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system.

    Science.gov (United States)

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2004-04-01

    Although human heme oxygenase-1 (hHO-1) could provide a useful approach for cellular protection in the ischemic heart, constitutive overexpression of hHO-1 may lead to unwanted side effects. To avoid this, we designed a hypoxia-regulated hHO-1 gene therapy system that can be switched on and off. This vigilant plasmid system is composed of myosin light chain-2v promoter and a gene switch that is based on an oxygen-dependent degradation domain from the hypoxia inducible factor-1-alpha. The vector can sense ischemia and switch on the hHO-1 gene system, specifically in the heart. In an in vivo experiment, the vigilant hHO-1 plasmid or saline was injected intramyocardially into myocardial infarction mice or sham operation mice. After gene transfer, expression of hHO-1 was only detected in the ischemic heart treated with vigilant hHO-1 plasmids. Masson trichrome staining showed significantly fewer fibrotic areas in vigilant hHO-1 plasmids-treated mice compared with saline control (43.0%+/-4.8% versus 62.5%+/-3.3%, PhHO-1 expression in peri-infarct border areas, concomitant with higher Bcl-2 levels and lower Bax, Bak, and caspase 3 levels in the ischemic myocardium compared with saline control. By use of a cardiac catheter, heart from vigilant hHO-1 plasmids-treated mice showed improved recovery of contractile and diastolic performance after myocardial infarction compared with saline control. This study documents the beneficial regulation and therapeutic potential of vigilant plasmid-mediated hHO-1 gene transfer. This novel gene transfer strategy can provide cardiac-specific protection from future repeated bouts of ischemic injury.

  14. Machine Learning of Human Pluripotent Stem Cell-Derived Engineered Cardiac Tissue Contractility for Automated Drug Classification

    Directory of Open Access Journals (Sweden)

    Eugene K. Lee

    2017-11-01

    Full Text Available Accurately predicting cardioactive effects of new molecular entities for therapeutics remains a daunting challenge. Immense research effort has been focused toward creating new screening platforms that utilize human pluripotent stem cell (hPSC-derived cardiomyocytes and three-dimensional engineered cardiac tissue constructs to better recapitulate human heart function and drug responses. As these new platforms become increasingly sophisticated and high throughput, the drug screens result in larger multidimensional datasets. Improved automated analysis methods must therefore be developed in parallel to fully comprehend the cellular response across a multidimensional parameter space. Here, we describe the use of machine learning to comprehensively analyze 17 functional parameters derived from force readouts of hPSC-derived ventricular cardiac tissue strips (hvCTS electrically paced at a range of frequencies and exposed to a library of compounds. A generated metric is effective for then determining the cardioactivity of a given drug. Furthermore, we demonstrate a classification model that can automatically predict the mechanistic action of an unknown cardioactive drug.

  15. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  16. Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis

    OpenAIRE

    Satoh, Hiroshi; Sano, Makoto; Suwa, Kenichiro; Saitoh, Takeji; Nobuhara, Mamoru; Saotome, Masao; Urushida, Tsuyoshi; Katoh, Hideki; Hayashi, Hideharu

    2014-01-01

    The recent development of cardiac magnetic resonance (CMR) techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution. We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies (ICM and NICM), especially in terms of the location and distribution of late gadolinium enhancement (LGE). CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory, and the suben...

  17. Ischemic heart disease after mantlefield irradiation for Hodgkin's disease in long-term follow-up

    International Nuclear Information System (INIS)

    Reinders, J.G.; Heijmen, B.J.M.; Olofsen-van Acht, M.J.J.; Putten, W.L.J. van; Levendag, P.C.

    1999-01-01

    Background and purpose: In patients with Hodgkin's disease treated by radiotherapy with a moderate total dose and a low (mean) fraction dose to the heart, the risk of ischemic heart disease was investigated during long-term follow-up.Materials and methods: The medical records of 258 patients treated in the period 1965-1980 with radiotherapy alone as the primary treatment were reviewed. The median follow-up was 14.2 years (range 0.7-26.2). The mean total dose and fraction dose to the heart were 37.2 Gy (SD 2.9) and 1.64 Gy (SD 0.09), respectively. The impact on the development of ischemic heart disease of treatment-related parameters, such as the applied (fraction) dose, irradiation technique (one or two fields per day), and chemotherapy in case of a relapse, was investigated. The incidence of ischemic heart disease in this patient population was compared with the expected incidence based on gender, age and calendar period-specific data for the Dutch population.Results: Thirty-one patients (12%) experienced ischemic heart disease (actuarial risk at 20-25 years: 21.2% (95% C.I. 15-30). Twenty-five of them were hospitalized. When compared with the expected incidence, the relative risk (RR) of hospital admission for ischemic heart disease was 2.7 (95% C.I. 1.7-4.0). There were 12 deaths (4.7%) due to ischemic myocardial or sudden death (actuarial risk at 25 years: 10.2% (95% C.I. 5.3-19), compared to 2.3 cases that were expected to have died from these causes, yielding a standardized mortality ratio (SMR) of 5.3 (95% C.I. 2.7-9.3). Gender (male), pretreatment cardiac medical history and increasing age appeared to be the only significant factors for the development of ischemic heart disease.Conclusions: Despite the moderate total dose and the low (mean) fraction dose to the heart, the observed incidence of ischemic heart disease is high, especially after long follow-up periods. Treatment related cardiac disease in patients treated for Hodgkin's disease has only been

  18. Assessment of Myocardial Infarction by Cardiac Magnetic Resonance Imaging and Long-Term Mortality

    Energy Technology Data Exchange (ETDEWEB)

    Petriz, João Luiz Fernandes, E-mail: jlpetriz@cardiol.br [Universidade Federal do Rio de Janeiro (UFRJ) / Instituto do Coração Edson Saad - Programa de Pós Graduação em Medicina (Cardiologia), Rio de Janeiro, RJ (Brazil); Hospital Barra D’Or, Rio de Janeiro, RJ (Brazil); Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil); Gomes, Bruno Ferraz de Oliveira; Rua, Braulio Santos [Hospital Barra D’Or, Rio de Janeiro, RJ (Brazil); Azevedo, Clério Francisco [Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil); Hadlich, Marcelo Souza [Universidade Federal do Rio de Janeiro (UFRJ) / Instituto do Coração Edson Saad - Programa de Pós Graduação em Medicina (Cardiologia), Rio de Janeiro, RJ (Brazil); Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil); Mussi, Henrique Thadeu Periard [Universidade Federal do Rio de Janeiro (UFRJ) / Instituto do Coração Edson Saad - Programa de Pós Graduação em Medicina (Cardiologia), Rio de Janeiro, RJ (Brazil); Hospital Barra D’Or, Rio de Janeiro, RJ (Brazil); Taets, Gunnar de Cunto [Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil); Nascimento, Emília Matos do; Pereira, Basílio de Bragança; Silva, Nelson Albuquerque de Souza e [Universidade Federal do Rio de Janeiro (UFRJ) / Instituto do Coração Edson Saad - Programa de Pós Graduação em Medicina (Cardiologia), Rio de Janeiro, RJ (Brazil)

    2015-02-15

    Cardiac magnetic resonance imaging provides detailed anatomical information on infarction. However, few studies have investigated the association of these data with mortality after acute myocardial infarction. To study the association between data regarding infarct size and anatomy, as obtained from cardiac magnetic resonance imaging after acute myocardial infarction, and long-term mortality. A total of 1959 reports of “infarct size” were identified in 7119 cardiac magnetic resonance imaging studies, of which 420 had clinical and laboratory confirmation of previous myocardial infarction. The variables studied were the classic risk factors – left ventricular ejection fraction, categorized ventricular function, and location of acute myocardial infarction. Infarct size and acute myocardial infarction extent and transmurality were analyzed alone and together, using the variable named “MET-AMI”. The statistical analysis was carried out using the elastic net regularization, with the Cox model and survival trees. The mean age was 62.3 ± 12 years, and 77.3% were males. During the mean follow-up of 6.4 ± 2.9 years, there were 76 deaths (18.1%). Serum creatinine, diabetes mellitus and previous myocardial infarction were independently associated with mortality. Age was the main explanatory factor. The cardiac magnetic resonance imaging variables independently associated with mortality were transmurality of acute myocardial infarction (p = 0.047), ventricular dysfunction (p = 0.0005) and infarcted size (p = 0.0005); the latter was the main explanatory variable for ischemic heart disease death. The MET-AMI variable was the most strongly associated with risk of ischemic heart disease death (HR: 16.04; 95%CI: 2.64-97.5; p = 0.003). The anatomical data of infarction, obtained from cardiac magnetic resonance imaging after acute myocardial infarction, were independently associated with long-term mortality, especially for ischemic heart disease death.

  19. [Broad ischemic stroke revealing infective endocarditis in a young patient: about a case].

    Science.gov (United States)

    Ravelosaona, Fanomezantsoa Noella; Razafimahefa, Julien; Randrianasolo, Rahamefy Odilon; Rakotoarimanana, Solofonirina; Tehindrazanarivelo, Djacoba Alain

    2016-01-01

    Broad ischemic stroke is mainly due to a cardiac embolus or to an atheromatous plaque. In young subjects, one of the main causes of ischemic stroke (broad ischemic stroke in particolar) is embolic heart disease including infective endocarditis. Infective endocarditis is a contraindication against the anticoagulant therapy (which is indicated for the treatment of embolic heart disease complicated by ischemic stroke). One neurologic complications of infective endocarditis is ischemic stroke which often occurs in multiple sites. We here report the case of a 44-year old man with afebrile acute onset of severe left hemiplegia associated with a sistolic mitral murmur, who had fever in hospital on day 5 with no other obvious source of infection present. Brain CT scan showed full broad ischaemic stroke of the right middle cerebral artery territory and doppler ultrasound, performed after stroke onset, showed infective endocarditis affecting the small mitral valve. He was treated with 4 weeks of antibiotic therapy without anticoagulant therapy ; evolution was marked by the disappearance of mitral valve vegetations and by movement sequelae involving the left side of the body. In practical terms, our problem was the onset of the fever which didn't accompany or pre-exist patient's deficit, leading us to the misdiagnosis of ischemic stroke of cardioembolic origin. This case study underlines the importance of doppler ultrasound, in the diagnosis of all broad ischemic strokes, especially superficial, before starting anticoagulant therapy.

  20. Ischemic risk stratification by means of multivariate analysis of the heart rate variability

    International Nuclear Information System (INIS)

    Valencia, José F; Vallverdú, Montserrat; Caminal, Pere; Porta, Alberto; Voss, Andreas; Schroeder, Rico; Vázquez, Rafael; Bayés de Luna, Antonio

    2013-01-01

    In this work, a univariate and multivariate statistical analysis of indexes derived from heart rate variability (HRV) was conducted to stratify patients with ischemic dilated cardiomyopathy (IDC) in cardiac risk groups. Indexes conditional entropy, refined multiscale entropy (RMSE), detrended fluctuation analysis, time and frequency analysis, were applied to the RR interval series (beat-to-beat series), for single and multiscale complexity analysis of the HRV in IDC patients. Also, clinical parameters were considered. Two different end-points after a follow-up of three years were considered: (i) analysis A, with 151 survivor patients as a low risk group and 13 patients that suffered sudden cardiac death as a high risk group; (ii) analysis B, with 192 survivor patients as a low risk group and 30 patients that suffered cardiac mortality as a high risk group. A univariate and multivariate linear discriminant analysis was used as a statistical technique for classifying patients in risk groups. Sensitivity (Sen) and specificity (Spe) were calculated as diagnostic criteria in order to evaluate the performance of the indexes and their linear combinations. Sen and Spe values of 80.0% and 72.9%, respectively, were obtained during daytime by combining one clinical parameter and one index from RMSE, and during nighttime Sen = 80% and Spe = 73.4% were attained by combining one clinical factor and two indexes from RMSE. In particular, relatively long time scales were more relevant for classifying patients into risk groups during nighttime, while during daytime shorter scales performed better. The results suggest that the left atrial size, indexed to body surface and RMSE indexes are those that allow enhanced classification of ischemic patients in their respective risk groups, confirming that a single measurement is not enough to fully characterize ischemic risk patients and the clinical relevance of HRV complexity measures. (paper)

  1. [Role of cardiac magnetic resonance in cardiac involvement of Fabry disease].

    Science.gov (United States)

    Serra, Viviana M; Barba, Miguel Angel; Torrá, Roser; Pérez De Isla, Leopoldo; López, Mónica; Calli, Andrea; Feltes, Gisela; Torras, Joan; Valverde, Victor; Zamorano, José L

    2010-09-04

    Fabry disease is a hereditary disorder. Clinical manifestations are multisystemic. The majority of the patients remain undiagnosed until late in life, when alterations could be irreversible. Early detection of cardiac symptoms is of major interest in Fabry's disease (FD) in order to gain access to enzyme replacement therapy. Echo-Doppler tissular imaging (TDI) has been used as a cardiologic early marker in FD. This study is intended to determine whether the cardiac magnetic resonance is as useful tool as TDI for the early detection of cardiac affectation in FD. Echocardiography, tissue Doppler and Cardio magnetic resonance was performed in 20 patients with confirmed Fabry Disease. Left ventricular hypertrophy was defined as septum and left ventricular posterior wall thickness ≥12 mm. An abnormal TDI velocity was defined as (Sa), (Ea) and/or (Aa) velocities gadolinium-enhanced images sequences were obtained using magnetic resonance. Twenty patients included in the study were divided into three groups: 1. Those without left ventricular hypertrophy nor tissue Doppler impairment 2. Those without left ventricular hypertrophy and tissue Doppler impairment 3. Those with left ventricular hypertrophy and Tissue Doppler impairment. Late gadolinium enhancement was found in only one patient, who has already altered DTI and LVH. Tissue Doppler imaging (TDI) is the only diagnostic tool able to provide early detection of cardiac affectation in patients with FD. Magnetic resonance provides information of the disease severity in patients with LVH, but can not be used as an early marker of cardiac disease in patients with FD. However MRI could be of great value for diagnostic stratification. Copyright © 2009 Elsevier España, S.L. All rights reserved.

  2. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts

    Science.gov (United States)

    Markes, Alexander R.; Okundaye, Amenawon O.; Qu, Zhilin; Mende, Ulrike; Choi, Bum-Rak

    2018-01-01

    Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs) and/or cardiac fibroblasts (CFs) and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair. PMID:29715271

  3. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tae Yun Kim

    Full Text Available Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs and/or cardiac fibroblasts (CFs and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair.

  4. The effectiveness of the cardiac resynchronization in a patient with ischemic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Diana R. Tudorașcu

    2018-04-01

    Full Text Available Cardiac resynchronization therapy (CRT in multiple and large trials has been demonstrated to improve symptoms and decrease hospitalization and mortality of patients when used in addition to optimal medical therapy. The global mechanical performance of the heart is affected in subjects with heart failure by atrio-ventricular, interventricular, or intraventricular conduction disorders, which lead to the desynchronization of electrical activity. Cardiac resynchronization therapy can effectively improve the clinical and haemodynamic status of these patients. According to literature data, CRT is performed only on well-selected patients (who qualify for CRT based on current indications, and approximately 70% of those patients respond favorably. We present the case of a patient responsive to cardiac resynchronization therapy which led to lowering of his NYHA classification and to improvement of left ventricle hemodynamics. The benefits of cardiac resynchronization therapy were multiple in this case, including improved tolerance to physical exercise and a decreased rate of hospitalization, which overall led to improved quality of life.

  5. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  6. Cardiac retransplantation is an efficacious therapy for primary cardiac allograft failure

    Directory of Open Access Journals (Sweden)

    Acker Michael A

    2008-05-01

    Full Text Available Abstract Background Although orthotopic heart transplantation has been an effective treatment for end-stage heart failure, the incidence of allograft failure has increased, necessitating treatment options. Cardiac retransplantation remains the only viable long-term solution for end-stage cardiac allograft failure. Given the limited number of available donor hearts, the long term results of this treatment option need to be evaluated. Methods 709 heart transplants were performed over a 20 year period at our institution. Repeat cardiac transplantation was performed in 15 patients (2.1%. A retrospective analysis was performed to determine the efficacy of cardiac retransplantation. Variables investigated included: 1 yr and 5 yr survival, length of hospitalization, post-operative complications, allograft failure, recipient and donor demographics, renal function, allograft ischemic time, UNOS listing status, blood group, allograft rejection, and hemodynamic function. Results Etiology of primary graft failure included transplant arteriopathy (n = 10, acute rejection (n = 3, hyperacute rejection (n = 1, and a post-transplant diagnosis of metastatic melanoma in the donor (n = 1. Mean age at retransplantation was 45.5 ± 9.7 years. 1 and 5 year survival for retransplantation were 86.6% and 71.4% respectively, as compared to 90.9% and 79.1% for primary transplantation. Mean ejection fraction was 67.3 ± 12.2% at a mean follow-up of 32.6 ± 18.5 mos post-retransplant; follow-up biopsy demonstrated either ISHLT grade 1A or 0 rejection (77.5 ± 95.7 mos post-transplant. Conclusion Cardiac retransplantation is an efficacious treatment strategy for cardiac allograft failure.

  7. [The effect of prophylactically administered n-acetylcysteine on clinical indicators for tissue oxygenation during hyperoxic ventilation in cardiac risk patients].

    Science.gov (United States)

    Spies, C; Giese, C; Meier-Hellmann, A; Specht, M; Hannemann, L; Schaffartzik, W; Reinhart, K

    1996-04-01

    Hyperoxic ventilation, used to prevent hypoxia during potential periods of hypoventilation, has been reported to paradoxically decrease whole-body oxygen consumption (VO2). Reduction in nutritive blood flow due to oxygen radical production is one possible mechanism. We investigated whether pretreatment with the sulfhydryl group donor and O2 radical scavenger N-acetylcysteine (NAC) would preserve VO2 and other clinical indicators of tissue oxygenation in cardiac risk patients. Thirty patients, requiring hemodynamic monitoring (radial and pulmonary artery catheters) because of cardiac risk factors, were included in this randomized investigation. All patients exhibited stable clinical conditions (hemodynamics, body temperature, hemoglobin, F1O2 depression ( > 0.2 mV) was significantly less marked in the NAC group (NAC: -0.02 +/- 0.17 vs placebo: -0.23 +/- 0.15; P depression if patients were prophylactically treated with NAC. This suggests that pretreatment with NAC could be considered to attenuate impaired tissue oxygenation and to preserve myocardial performance better in cardiac risk patients during hyperoxia.

  8. Clinical evaluation of ischemic heart diagnosis

    International Nuclear Information System (INIS)

    Kamei, Fumio

    1983-01-01

    Attempt were made to detect the existence of myocardial ischemia by means of both radiographic and scintigraphic techniques. Firstly, a new polygraph was especially designed for selecting the arbitrary phases in a cardiac cycle at which the corresponding radiogram should be synchronously obtained. A comparative investigation on the difference between end-systolic and-diastolic cardiac transverse diameters revealed a remarkable difference of 3.6% in normal subjects and 0.6% in patients with ischemic heart disease. These data indicating the difference of overall heart size was reflected in local dyskinesis documentation of recently developed techniques. For daily clinical purposes, radiography of the chest based on synchronously selected phases would contribute to accurate diagnosis and treatment of heart disease. Secondly, scintigraphic display using intravenously injected thallium-201 was clinically applied. For detection of ischemia, comparative study was performed of initial image relative to selective coronary cineangiography and stress scintigraphy. The former indicated a good correlation of 90%, whereas the latter served to enhnace sensitivity. Sequential images (initial and delayed) facilitated the distinction of normal, necrotic, and ischemic areas. Scintigram was used for objective evaluation of coronary dilator (dilazep), either at immediate or follow-up stage. In the same way, it was also possible to indicate the effectiveness of sublingually given nitroglycerin by myocardial scintigram, where by significant increase of uptake was observed 20 minutes after administration. Rehabilitation after acute heart disease was discussed, especially on the peripheral effect. Ratio of the thigh muscle to myocardium shown in this study was useful fer objective evaluation. Another preliminary study is to separate normal coronary arteries from myocardial necrosis. (J.P.N.)

  9. Clinical evaluation of ischemic heart diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Fumio [Sendai Railway Hospital (Japan)

    1983-09-01

    Attempt were made to detect the existence of myocardial ischemia by means of both radiographic and scintigraphic techniques. Firstly, a new polygraph was especially designed for selecting the arbitrary phases in a cardiac cycle at which the corresponding radiogram should be synchronously obtained. A comparative investigation on the difference between end-systolic and-diastolic cardiac transverse diameters revealed a remarkable difference of 3.6% in normal subjects and 0.6% in patients with ischemic heart disease. These data indicating the difference of overall heart size was reflected in local dyskinesis documentation of recently developed techniques. For daily clinical purposes, radiography of the chest based on synchronously selected phases would contribute to accurate diagnosis and treatment of heart disease. Secondly, scintigraphic display using intravenously injected thallium-201 was clinically applied. For detection of ischemia, comparative study was performed of initial image relative to selective coronary cineangiography and stress scintigraphy. The former indicated a good correlation of 90%, whereas the latter served to enhance sensitivity. Sequential images (initial and delayed) facilitated the distinction of normal, necrotic, and ischemic areas. Scintigram was used for objective evaluation of coronary dilator (dilazep), either at immediate or follow-up stage. In the same way, it was also possible to indicate the effectiveness of sublingually given nitroglycerin by myocardial scintigram, where by significant increase of uptake was observed 20 minutes after administration. Rehabilitation after acute heart disease was discussed, especially on the peripheral effect. Ratio of the thigh muscle to myocardium shown in this study was useful for objective evaluation. Another preliminary study is to separate normal coronary arteries from myocardial necrosis.

  10. The role of 17-beta estradiol in ischemic preconditioning protection of the heart.

    Science.gov (United States)

    Babiker, Fawzi A; Hoteit, Lamia J; Joseph, Shaji; Mustafa, Abu Salim; Juggi, Jasbir S

    2012-09-01

    The protective effects of 17-beta estradiol (E2) on cardiac tissue during ischemia/reperfusion (I/R) injury have not yet been fully elucidated. To assess the protective effects of short- and long-term E2 treatments on cardiac tissue exposed to I/R, and to assess the effects of these treatments in combination with ischemic preconditioning (IPC) on cardiac protection from I/R injury. SPRAGUE DAWLEY RATS WERE ASSIGNED TO THE FOLLOWING TREATMENT PROTOCOLS: control (no preconditioning); IPC (isolated hearts were subjected to two cycles of 5 min global ischemia followed by 10 min of reperfusion); E2 preconditioning (E2PC; isolated hearts were subjected to E2 pharmacological perfusion for 15 min); short-term in vivo E2 pretreatment for 3 h; long-term in vivo E2 pretreatment or withdrawal (ovariectomy followed by a six-week treatment with E2 or a placebo); combined IPC and E2PC; combined IPC and short- or long-term E2 pretreatments or withdrawal. All hearts were isolated and stabilized for at least 30 min before being subjected to 40 min of global ischemia followed by 30 min of reperfusion; left ventricular function and vascular hemodynamics were then assessed. IPC, E2PC and short-term E2 pretreatment led to the recovery of left ventricle function and vascular hemodynamics. Long-term E2 and placebo treatments did not result in any protection compared with untreated controls. The combination of E2PC or short-term E2 treatments with IPC did not block the IPC protection or result in any additional protection to the heart. Long-term E2 treatment blocked IPC protection; however, placebo treatment did not. Short-term treatment with E2 protected the heart against I/R injury through a pathway involving the regulation of tumour necrosis factor-alpha. The combination of short-term E2 treatment with IPC did not provide additional protection to the heart. Short-term E2 treatment may be a suitable alternative for classical estrogen replacement therapy.

  11. Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling.

    Directory of Open Access Journals (Sweden)

    Coert J Zuurbier

    Full Text Available Recent studies indicate that the innate immune system is not only triggered by exogenous pathogens and pollutants, but also by endogenous danger signals released during ischemia and necrosis. As triggers for the innate immune NLRP3 inflammasome protein complex appear to overlap with those for cardiac ischemia-reperfusion (I/R and ischemic preconditioning (IPC, we explored the possibility that the NLRP3 inflammasome is involved in IPC and acute I/R injury of the heart.Baseline cardiac performance and acute I/R injury were investigated in isolated, Langendorff-perfused hearts from wild-type (WT, ASC(-/- and NLRP3(-/- mice. Deletion of NLRP3 inflammasome components ASC(-/- or NLRP3(-/- did not affect baseline performance. The deletions exacerbated I/R-induced mechanical dysfunction, but were without effect on I/R-induced cell death. When subjected to IPC, WT and ASC(-/- hearts were protected against I/R injury (improved function and less cell death. However, IPC did not protect NLRP3(-/- hearts against I/R injury. NLRP3(-/- hearts had significantly decreased cardiac IL-6 levels with a trend towards lower IL-1β levels at end reperfusion, suggesting abrogation of IPC through diminished IL-6 and/or IL-1β signaling. Subsequent experiments showed that neutralising IL-6 using an antibody against IL-6 abrogated IPC in WT hearts. However, inhibition of the IL-1r receptor with the IL-1 receptor inhibitor Anakinra (100 mg/L did not abrogate IPC in WT hearts. Analysis of survival kinases after IPC demonstrated decreased STAT3 expression in NLRP3(-/- hearts when compared to WT hearts.The data suggest that the innate immune NLRP3 protein, in an NLRP3-inflammasome-independent fashion, is an integral component of IPC in the isolated heart, possibly through an IL-6/STAT3 dependent mechanism.

  12. Cocktail treatment, a promising strategy to treat acute cerebral ischemic stroke?

    Directory of Open Access Journals (Sweden)

    Li-jun Liang

    2016-01-01

    Full Text Available Up to now, over 1,000 experimental treatments found in cells and rodents have been difficult to translate to human ischemic stroke. Since ischemia and reperfusion, two separate stages of ischemic stroke, have different pathophysiological mechanisms leading to brain injury, a combination of protective agents targeting ischemia and reperfusion respectively may obtain substantially better results than a single agent. Normobaric hyperoxia (NBO has been shown to exhibit neuro- and vaso-protective effects by improving tissue oxygenation when it is given during ischemia, however the effect of NBO would diminish when the duration of ischemia and reperfusion was extended. Therefore, during reperfusion drug treatment targeting inflammation, oxidative stress and free radical scavenger would be a useful adjuvant to extend the therapeutic window of tissue plasminogen activator, the only United States Food and Drug Administration (FDA approved treatment for acute ischemic stroke. In this review, we discussed the neuro- and vaso-protective effects of NBO and recent finding of combining NBO with other drugs.

  13. Molecular nuclear cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Paeng, Jin Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-04-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

  14. Molecular nuclear cardiac imaging

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Paeng, Jin Chul

    2004-01-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect

  15. Texture analysis of computed tomography images of acute ischemic stroke patients

    International Nuclear Information System (INIS)

    Oliveira, M.S.; Castellano, G.; Fernandes, P.T.; Avelar, W.M.; Santos, S.L.M.; Li, L.M.

    2009-01-01

    Computed tomography (CT) images are routinely used to assess ischemic brain stroke in the acute phase. They can provide important clues about whether to treat the patient by thrombolysis with tissue plasminogen activator. However, in the acute phase, the lesions may be difficult to detect in the images using standard visual analysis. The objective of the present study was to determine if texture analysis techniques applied to CT images of stroke patients could differentiate between normal tissue and affected areas that usually go unperceived under visual analysis. We performed a pilot study in which texture analysis, based on the gray level co-occurrence matrix, was applied to the CT brain images of 5 patients and of 5 control subjects and the results were compared by discriminant analysis. Thirteen regions of interest, regarding areas that may be potentially affected by ischemic stroke, were selected for calculation of texture parameters. All regions of interest for all subjects were classified as lesional or non-lesional tissue by an expert neuroradiologist. Visual assessment of the discriminant analysis graphs showed differences in the values of texture parameters between patients and controls, and also between texture parameters for lesional and non-lesional tissue of the patients. This suggests that texture analysis can indeed be a useful tool to help neurologists in the early assessment of ischemic stroke and quantification of the extent of the affected areas. (author)

  16. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool......-A. Remarkably, transplantation of BM-derived tPA-mobilized CD11b(+) cells and VEGFR-1(+) cells, but not carrier-mobilized cells or CD11b(-) cells, accelerates neovascularization and ischemic tissue regeneration. Inhibition of VEGF signaling suppresses tPA-induced neovascularization in a model of hind limb...... and mobilizes CD45(+)CD11b(+) proangiogenic, myeloid cells, a process dependent on vascular endothelial growth factor-A (VEGF-A) and Kit ligand signaling. tPA improves the incorporation of CD11b(+) cells into ischemic tissues and increases expression of neoangiogenesis-related genes, including VEGF...

  17. Right ventricular function in patients with ischemic heart disease

    International Nuclear Information System (INIS)

    Araki, Haruo; Hisano, Ryuichi; Nagata, Yoshiyuki; Caglar, N.; Nakamura, Motoomi

    1985-01-01

    Thirty-five patients with ischemic heart disease (IHD) and 10 normal subjects were studied. Right and left ventricular ejecction fractions (EF) were determined using equilibrium radionuclide ventriculography with technetium-99m. Furthermore, abnormal motion of the right ventricular septal wall was obtained by cardiac cathetelization, and its relation to the right ventricular EF was examined. In IHD patients with anterior myocardial infarction, left ventricular EF decreased, but right ventricular EF was normal. This suggested that left ventricular dysfunction does not always have an effect on right ventricular function. Right ventricular EF was normal even when akinesis or dyskinesis was present in the ventricular septul, suggesting that abnormal motion of the ventricular septal wall has no significantly stimulant effect on right ventricular function. A decreased right ventricular EF was likely to occur only when the right ventricular free wall became ischemic or necrotic simultaneously with occurrence of posterior myocardial infarction. (Namekawa, K.)

  18. Initiation and dynamics of a spiral wave around an ionic heterogeneity in a model for human cardiac tissue.

    Science.gov (United States)

    Defauw, Arne; Dawyndt, Peter; Panfilov, Alexander V

    2013-12-01

    In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important factors underlying the onset of spiral waves and determining their type. In this paper, we numerically model heterogeneity of realistic size and value and study formation and dynamics of spiral waves around such heterogeneity. We find that the only sustained pattern obtained is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt regional increase in the period of excitation occurring as a bifurcation. We study factors determining spatial distribution of excitation periods of anchored spiral waves and discuss consequences of such dynamics for cardiac arrhythmias and possibilities for experimental testings of our predictions.

  19. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats.

    Science.gov (United States)

    Kim, Junhwan; Villarroel, José Paul Perales; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W; Becker, Lance B

    2016-01-01

    Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.

  20. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.

    Science.gov (United States)

    Jonker, Jacqueline T; de Mol, Pieter; de Vries, Suzanna T; Widya, Ralph L; Hammer, Sebastiaan; van Schinkel, Linda D; van der Meer, Rutger W; Gans, Rijk O B; Webb, Andrew G; Kan, Hermien E; de Koning, Eelco J P; Bilo, Henk J G; Lamb, Hildo J

    2013-11-01

    To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years ± 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Exercise reduced visceral abdominal fat volume from 348 mL ± 57 to 219 mL ± 33 (P Exercise decreased hepatic TG content from 6.8% ± 2.3 to 4.6% ± 1.6 (P Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. RSNA, 2013

  1. Adverse Effects on β-Adrenergic Receptor Coupling: Ischemic Postconditioning Failed to Preserve Long-Term Cardiac Function.

    Science.gov (United States)

    Schreckenberg, Rolf; Bencsik, Péter; Weber, Martin; Abdallah, Yaser; Csonka, Csaba; Gömöri, Kamilla; Kiss, Krisztina; Pálóczi, János; Pipis, Judit; Sárközy, Márta; Ferdinandy, Péter; Schulz, Rainer; Schlüter, Klaus-Dieter

    2017-12-22

    Ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) are currently among the most efficient strategies protecting the heart against ischemia/reperfusion injury. However, the effect of IPC and IPoC on functional recovery following ischemia/reperfusion is less clear, particularly with regard to the specific receptor-mediated signaling of the postischemic heart. The current article examines the effect of IPC or IPoC on the regulation and coupling of β-adrenergic receptors and their effects on postischemic left ventricular function. The β-adrenergic signal transduction was analyzed in 3-month-old Wistar rats for each of the intervention strategies (Sham, ischemia/reperfusion, IPC, IPoC) immediately and 7 days after myocardial infarction. Directly after the infarction a cardioprotective potential was demonstrated for both IPC and IPoC: the infarct size was reduced, apoptosis and production of reactive oxygen species were lowered, and the myocardial tissue was preserved. Seven days after myocardial ischemia, only IPC hearts showed significant functional improvement. Along with a deterioration in fractional shortening, IPoC hearts no longer responded adequately to β-adrenergic stimulation. The stabilization of β-adrenergic receptor kinase-2 via increased phosphorylation of Mdm2 (an E3-ubiquitin ligase) was responsible for desensitization of β-adrenergic receptors and identified as a characteristic specific to IPoC hearts. Immediately after myocardial infarction, rapid and transient activation of β-adrenergic receptor kinase-2 may be an appropriate means to protect the injured heart from excessive stress. In the long term, however, induction and stabilization of β-adrenergic receptor kinase-2, with the resultant loss of positive inotropic function, leads to the functional picture of heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. The impaired myocardial ischemic tolerance in adult offspring of diabetic pregnancy is restored by maternal melatonin treatment.

    Science.gov (United States)

    Gao, Ling; Zhao, Yi-Chao; Liang, Yan; Lin, Xian-Hua; Tan, Ya-Jing; Wu, Dan-Dan; Li, Xin-Zhu; Ye, Bo-Zhi; Kong, Fan-Qi; Sheng, Jian-Zhong; Huang, He-Feng

    2016-10-01

    Diabetic pregnancy, with ever increasing prevalence, adversely affects embryogenesis and increases vasculometabolic disorder risks in adult offspring. However, it remains poorly understood whether maternal diabetes increases the offspring's susceptibility to heart injuries in adulthood. In this study, we observed that cardiac function and structure were comparable between adult offspring born to diabetic mice and their counterparts born to nondiabetic mice at baseline. However, in response to myocardial ischemia/reperfusion (MIR), diabetic mother offspring exhibited augmented infarct size, cardiac dysfunction, and myocardial apoptosis compared with control, in association with exaggerated activation of mitochondria- and endoplasmic reticulum (ER) stress-mediated apoptosis pathways and oxidative stress. Molecular analysis showed that the impaired myocardial ischemic tolerance in diabetic mother offspring was mainly attributable to blunted cardiac insulin receptor substrate (IRS)-1/Akt signaling. Furthermore, the effect of maternal melatonin administration on offspring's response to MIR was determined, and the results indicated that melatonin treatment in diabetic dams during pregnancy significantly improved the tolerance to MIR injury in their offspring, via restoring cardiac IRS-1/Akt signaling. Taken together, these data suggest that maternal diabetes predisposes offspring to augmented MIR injury in adulthood, and maternal melatonin supplementation during diabetic pregnancy may hold promise for improving myocardial ischemic tolerance in the offspring. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Prognostic Value of Cardiac Time Intervals by Tissue Doppler Imaging M-Mode in Patients With Acute ST-Segment-Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Mogelvang, Rasmus; Søgaard, Peter

    2013-01-01

    Background- Color tissue Doppler imaging M-mode through the mitral leaflet is an easy and precise method to estimate all cardiac time intervals from 1 cardiac cycle and thereby obtain the myocardial performance index (MPI). However, the prognostic value of the cardiac time intervals and the MPI...... assessed by color tissue Doppler imaging M-mode through the mitral leaflet in patients with ST-segment-elevation myocardial infarction (MI) is unknown. Methods and Results- In total, 391 patients were admitted with an ST-segment-elevation MI, treated with primary percutaneous coronary intervention...

  4. Cardiac macrophages adopt profibrotic/M2 phenotype in infarcted hearts: Role of urokinase plasminogen activator.

    Science.gov (United States)

    Carlson, Signe; Helterline, Deri; Asbe, Laura; Dupras, Sarah; Minami, Elina; Farris, Stephen; Stempien-Otero, April

    2017-07-01

    Macrophages (mac) that over-express urokinase plasminogen activator (uPA) adopt a profibrotic M2 phenotype in the heart in association with cardiac fibrosis. We tested the hypothesis that cardiac macs are M2 polarized in infarcted mouse and human hearts and that polarization is dependent on mac-derived uPA. Studies were performed using uninjured (UI) or infarcted (MI) hearts of uPA overexpressing (SR-uPA), uPA null, or nontransgenic littermate (Ntg) mice. At 7days post-infarction, cardiac mac were isolated, RNA extracted and M2 markers Arg1, YM1, and Fizz1 measured with qrtPCR. Histologic analysis for cardiac fibrosis, mac and myofibroblasts was performed at the same time-point. Cardiac macs were also isolated from Ntg hearts and RNA collected after primary isolation or culture with vehicle, IL-4 or plasmin and M2 marker expression measured. Cardiac tissue and blood was collected from humans with ischemic heart disease. Expression of M2 marker CD206 and M1 marker TNFalpha was measured. Macs from WT mice had increased expression of Arg1 and Ym1 following MI (41.3±6.5 and 70.3±36, fold change vs UI, n=8, Padopt a M2 phenotype in association with fibrosis. Plasmin can induce an M2 phenotype in cardiac macs. However, M2 activation can occur in the heart in vivo in the absence of uPA indicating that alternative pathways to activate plasmin are present in the heart. Excess uPA promotes increased fibroblast density potentially via potentiating fibroblast migration or proliferation. Altering macrophage phenotype in the heart is a potential target to modify cardiac fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Science.gov (United States)

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  6. Focal intramural pericardial effusion and cardiac tamponade associated with necrotic adipose tissue in a dog.

    Science.gov (United States)

    Krentz, Terence A; Schutrumpf, Robert J; Zitz, Julie C

    2017-07-15

    CASE DESCRIPTION A 1-year-old castrated male German Shepherd Dog was examined because of an acute onset of lethargy, tachypnea, and inappetence. CLINICAL FINDINGS On initial physical examination, the dog was tachypneic with muffled heart sounds on thoracic auscultation and a palpable abdominal fluid wave. Transthoracic echocardiography revealed focal intramural pericardial effusion and cardiac tamponade. TREATMENT AND OUTCOME The patient underwent emergency therapeutic pericardiocentesis, followed by right lateral intercostal thoracotomy and subtotal pericardiectomy. A 3 × 5-cm mass located between the parietal and visceral layers of the pericardium was resected. The histologic diagnosis was necrotic adipose tissue with granulomatous inflammation and fibroplasia. The patient also underwent exploratory laparotomy and umbilical herniorrhaphy during the same anesthetic episode and recovered from surgery without apparent complications. There were no further clinical signs of cardiac disease. CLINICAL RELEVANCE The patient described in the present report underwent successful subtotal pericardiectomy for treatment of a benign focal lesion causing recurrent pericardial effusion and cardiac tamponade. Prompt diagnosis and intervention may have contributed to the positive outcome in this case.

  7. Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats.

    Science.gov (United States)

    Hu, Zhaoyang; Chen, Mou; Zhang, Ping; Liu, Jin; Abbott, Geoffrey W

    2017-04-26

    Sudden cardiac death (SCD), a leading cause of global mortality, most commonly arises from a substrate of cardiac ischemia, but requires an additional trigger. Diabetes mellitus (DM) predisposes to SCD even after adjusting for other DM-linked cardiovascular pathology such as coronary artery disease. We previously showed that remote liver ischemia preconditioning (RLIPC) is highly protective against cardiac ischemia reperfusion injury (IRI) linked ventricular arrhythmias and myocardial infarction, via induction of the cardioprotective RISK pathway, and specifically, inhibitory phosphorylation of GSK-3β (Ser 9). We evaluated the impact of acute streptozotocin-induced DM on coronary artery ligation IRI-linked ventricular arrhythmogenesis and RLIPC therapy in rats. Post-IRI arrhythmia induction was similar in nondiabetic and DM rats, but, unexpectedly, DM rats exhibited lower incidence of SCD during reperfusion (41 vs. 100%), suggesting uncontrolled hyperglycemia does not acutely predispose to SCD. RLIPC was highly effective in both nondiabetic and DM rats at reducing incidence and duration of, and increasing latency to, all classes of ventricular tachyarrhythmias. In contrast, atrioventricular block (AVB) was highly responsive to RLIPC in nondiabetic rats (incidence reduced from 72 to 18%) but unresponsive in DM rats. RISK pathway induction was similar in nondiabetic and DM rats, thus not explaining the DM-specific resistance of AVB to therapy. Our findings uncover important acute DM-specific differences in responsiveness to remote preconditioning for ventricular tachyarrhythmias versus AVB, which may have clinical significance given that AVB is a malignant arrhythmia twofold more common in human diabetics than nondiabetics, and correlated to plasma glucose levels >10 mmol/L.

  8. High resolution systematic digital histological quantification of cardiac fibrosis and adipose tissue in phospholamban p.Arg14del mutation associated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Johannes M I H Gho

    Full Text Available Myocardial fibrosis can lead to heart failure and act as a substrate for cardiac arrhythmias. In dilated cardiomyopathy diffuse interstitial reactive fibrosis can be observed, whereas arrhythmogenic cardiomyopathy is characterized by fibrofatty replacement in predominantly the right ventricle. The p.Arg14del mutation in the phospholamban (PLN gene has been associated with dilated cardiomyopathy and recently also with arrhythmogenic cardiomyopathy. Aim of the present study is to determine the exact pattern of fibrosis and fatty replacement in PLN p.Arg14del mutation positive patients, with a novel method for high resolution systematic digital histological quantification of fibrosis and fatty tissue in cardiac tissue. Transversal mid-ventricular slices (n = 8 from whole hearts were collected from patients with the PLN p.Arg14del mutation (age 48±16 years; 4 (50% male. An in-house developed open source MATLAB script was used for digital analysis of Masson's trichrome stained slides (http://sourceforge.net/projects/fibroquant/. Slides were divided into trabecular, inner and outer compact myocardium. Per region the percentage of connective tissue, cardiomyocytes and fatty tissue was quantified. In PLN p.Arg14del mutation associated cardiomyopathy, myocardial fibrosis is predominantly present in the left posterolateral wall and to a lesser extent in the right ventricular wall, whereas fatty changes are more pronounced in the right ventricular wall. No difference in distribution pattern of fibrosis and adipocytes was observed between patients with a clinical predominantly dilated and arrhythmogenic cardiomyopathy phenotype. In the future, this novel method for quantifying fibrosis and fatty tissue can be used to assess cardiac fibrosis and fatty tissue in animal models and a broad range of human cardiomyopathies.

  9. Ischemic Stroke with Cardiac Pacemaker Implantation: Comparison of Physiological and Ventricular Pacing Modes.

    Science.gov (United States)

    Kato, Yuji; Hayashi, Takeshi; Kato, Ritsushi; Tanahashi, Norio; Takao, Masaki

    2017-09-01

    The clinical characteristics of ischemic stroke in patients with a pacemaker (PM) are not well understood. Forty-six ischemic stroke patients with a PM were investigated retrospectively, and the impact of different pacing modes was compared. The patients were divided into a physiological pacing group (n = 22) and a ventricular pacing group (n = 24). The prevalence of atrial fibrillation (AF) was significantly higher in the ventricular pacing group (36% versus 75%; P = .008). The mean left atrial dimension was relatively large in the ventricular pacing group than in the physiological pacing group (44.5 ± 6.7 mm versus 39.1 ± 8.5 mm, respectively; P = .071). Twenty-four percent of the patients were receiving anticoagulants, whereas 41% of the patients were receiving antiplatelet drugs. Cardioembolism was the most common stroke subtype in both groups. Although there was no statistically significant difference, neurological severity on admission was higher in the ventricular pacing group than in the physiological pacing group (P = .061). Functional outcomes, excluding patients with transient ischemic attack or prior stroke, significantly declined in the ventricular pacing group compared with the physiological pacing group (P = .044). The avoidance of the ventricular pacing mode may result in improved clinical outcomes. In patients without persistent AF, it may be important to select physiological pacing instead of ventricular pacing to decrease potential stroke severity. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Dynamic MR cardiac perfusion studies in patients with acquired heart diseases

    International Nuclear Information System (INIS)

    Finelli, D.A.; Adler, L.P.; Paschal, C.B.; Haacke, E.M.

    1990-01-01

    The combination of ultrafast scanning techniques with contrast administration has opened new venues for MR imaging relating to the physiology of organ perfusion. Regional cardiac perfusion determinations lend important additional information to the morphologic and functional data provided by conventional cardiac MR imaging. The authors of this paper studied 10 patients with acquired heart diseases, including ischemic heart disease, cardiomyopathy, ventricular hypertrophy, and cardiac tumor, using conventional spin-echo imaging, cine gradient-echo imaging, and dynamic Gd-DTPA--enhanced perfusion imaging with an ultrafast, inversion-recovery, Turbo-fast low-angle shot sequence. This technique enables analysis of the first pass and early biodistribution phases following contrast administration, information that has been correlated with cardiac catheterization, single photo emission CT (SPECT), and administration emission tomographic (PET) data

  11. How study patients who receive fluo pyrimidines to prevent ischemic events

    International Nuclear Information System (INIS)

    Saldombide, L.

    2010-01-01

    Introduction: Ischemic heart disease is the main cause of death in Uruguay and cancer is the second. The pillar of the systemic treatment of colorectal cancer are fluo pyrimidines and cause acute ischemic events in 3-8% of t rated patients. The 5 fluorouracil is the third anticancer drug most used Objective: Due to the high incidence of the two diseases and the risk of death caused by the ischemic treatment complications, the literature is analyzed to define how to study patients who receive fluo pyrimidines as a medium of preventing the same. Development: fluo pyrimidines cardio-toxicity can occur by myocardial toxicity, vasospasm, dihydropyrimidine dehydrogenase deficiency, autoimmune phenomena, platelet hyper aggregability, etc. The clinic is varied and underestimated: angina, abnormal ST silent and reversible, arrhythmias, heart failure, hypertension and heart failure. It is the most common complication with continuous infusion of 5 Fu and its equivalent capecitabine with bolus f lou pyrimidines. It is common that ischemic heart disease prioritises the risk increase of complications, but their absence does not exist. Without ischemic heart disease it is difficult to prevent ischemic events, however proposes that the older higher risk. Results: No uniform guidelines is advised: detailed history, determine if risk factors such as smoking, hypertension, diabetes and dyslipidemia and They are present electrocardiogram and cardiac evaluation. Warn the patient about angina l pain as early symptom and monitor symptoms during chemotherapy including cardio-vascular hypotension. Discontinue the medication and perform classic anti-angina l symptoms and / or signs of ischemia. Not reintroduce unless it is the only therapeutic option, since mortality may exceed

  12. Ischemic colitis masquerading as colonic tumor, Case report with review of literature

    Institute of Scientific and Technical Information of China (English)

    Parakkal Deepak; Radha Devi

    2011-01-01

    Ischemic colitis can mimic a carcinoma on computed tomographic (CT) imaging or endoscopic examination. A coexisting colonic carcinoma or another potentially obstructing lesion has also been described in 20% of the cases of ischemic colitis. CT scan can differentiate it from colon cancer in 75% of cases. However, colonoscopy is the preferred method for diagnosing ischemic colitis as it allows for direct visualization with tissue sampling. Varied presentations of ischemic colitis have been described as an ulcerated or submucosal mass or as a narrowed segment of colon with ulcerated mucosa on colonoscopy. Awareness and early recognition of such varied presentations of a common condition is necessary to differentiate from a colonic carcinoma, and to avoid unnecessary surgery and related complications.

  13. Transient ischemic attack: diagnostic evaluation.

    Science.gov (United States)

    Messé, Steven R; Jauch, Edward C

    2008-08-01

    A transient ischemic attack portends significant risk of a stroke. Consequently, the diagnostic evaluation in the emergency department is focused on identifying high-risk causes so that preventive strategies can be implemented. The evaluation consists of a facilitated evaluation of the patient's metabolic, cardiac, and neurovascular systems. At a minimum, the following tests are recommended: fingerstick glucose level, electrolyte levels, CBC count, urinalysis, and coagulation studies; noncontrast computed tomography (CT) of the head; electrocardiography; and continuous telemetry monitoring. Vascular imaging studies, such as carotid ultrasonography, CT angiography, or magnetic resonance angiography, should be performed on an urgent basis and prioritized according to the patient's risk stratification for disease. Consideration should be given for echocardiography if no large vessel abnormality is identified.

  14. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Timothy J Cashman

    Full Text Available Hypertrophic cardiomyopathy (HCM is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS, which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and

  15. IQGAP1 is involved in post-ischemic neovascularization by regulating angiogenesis and macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Norifumi Urao

    2010-10-01

    Full Text Available Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS. IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF-induced ROS production and migration of cultured endothelial cells (ECs; however, its role in post-ischemic neovascularization is unknown.Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+ macrophages and CD31(+ capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and α-actin positive arterioles. Furthermore, IQGAP1(-/- mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/- mice. In vitro, IQGAP1(-/- BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/- mice.IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases.

  16. Treatment with intravenous thrombolysis in acute ischemic stroke is associated with reduced bed day use

    DEFF Research Database (Denmark)

    Terkelsen, Thorkild; Schmitz, Marie Louise; Simonsen, Claus Z.

    2015-01-01

    Introduction: Several studies have demonstrated the beneficial effects of intravenous tissue-type plasminogen activator (IV-tPA) on neurological outcome in acute ischemic stroke. It is uncertain whether the improved neurological outcome also translates into less morbidity and lower need for hospi......Introduction: Several studies have demonstrated the beneficial effects of intravenous tissue-type plasminogen activator (IV-tPA) on neurological outcome in acute ischemic stroke. It is uncertain whether the improved neurological outcome also translates into less morbidity and lower need...

  17. Stem cell therapy for ischemic heart diseases.

    Science.gov (United States)

    Yu, Hong; Lu, Kai; Zhu, Jinyun; Wang, Jian'an

    2017-01-01

    Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. Key recent published literatures and ClinicalTrials.gov. Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Quantification of convection-enhanced delivery to the ischemic brain

    International Nuclear Information System (INIS)

    Haar, Peter J; Broaddus, William C; Chen, Zhi-jian; Gillies, George T; Fatouros, Panos P; Corwin, Frank D

    2010-01-01

    Convection-enhanced delivery (CED) could have clinical application in the delivery of neuroprotective agents following ischemic stroke. However, ischemic brain tissue changes such as cytotoxic edema, in which cellular swelling decreases the fractional volume of the extracellular space, would be expected to significantly alter the distribution of neuroprotective agents delivered by CED. We sought to predict and characterize these effects using the magnetic resonance contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a model therapeutic agent. CED was observed using MRI in a normal rat brain and in a middle cerebral artery (MCA) occlusion rat model of brain ischemia. Gd-DTPA was infused to the caudate putamen in the normal rat (n = 6) and MCA occlusion model (n = 6). In each rat, baseline apparent diffusion coefficient images were acquired prior to infusion, and T1 maps were then acquired 13 times throughout the duration of the experiment. These T1 maps were used to compute Gd-DTPA concentrations throughout each brain. In the MCA occlusion group, CED delivered Gd-DTPA to a comparatively larger volume with lower average tissue concentrations. Following the infusion, the total content of Gd-DTPA decreased more slowly in the MCA occlusion group than in the normal group. This quantitative characterization confirms that edematous ischemic tissue changes alter the distribution of agents by CED. These findings may have important implications for CED in the treatment of brain injury, and will assist in future efforts to model the distribution of therapeutic agents

  19. Collateral status and tissue outcome after intra-arterial therapy for patients with acute ischemic stroke.

    Science.gov (United States)

    Boers, Anna Mm; Jansen, Ivo Gh; Berkhemer, Olvert A; Yoo, Albert J; Lingsma, Hester F; Slump, Cornelis H; Roos, Yvo Bwem; van Oostenbrugge, Robert J; Dippel, Diederik Wj; van der Lugt, Aad; van Zwam, Wim H; Marquering, Henk A; Majoie, Charles Blm

    2017-11-01

    Intra-arterial therapy (IAT) for ischemic stroke aims to save brain tissue. Collaterals are thought to contribute to prolonged penumbra sustenance. In this study, we investigate the effect of collateral status on brain tissue salvage with IAT. In 500 patients randomized between IAT and standard care, collateral status was graded from 0 (absent) to 3 (good). Final infarct volumes (FIV) were calculated on post-treatment CT. FIVs were compared between treatment groups per collateral grade. Multivariable linear regression with interaction terms was performed to study whether collaterals modified IAT effect on FIV. Four-hundred-forty-nine patients were included in the analysis. Median FIV for the IAT group was significantly lower with 54.5 mL (95% IQR: 21.8-145.0) than for the controls with 81.8 mL (95% IQR: 40.0-154.0) ( p = 0.020). Treatment effect differed across collateral grades, although there was no significant interaction (unadjusted p = 0.054; adjusted p = 0.105). For grade 3, IAT resulted in a FIV reduction of 30.1 mL ( p = 0.024). For grade 2 and 1, this difference was, respectively, 28.4 mL ( p = 0.028) and 28.4 mL ( p = 0.29). For grade 0, this was 88.6 mL ( p = 0.28) in favour of controls. IAT saves substantially more brain tissue as compared to standard care. We observed a trend of increasing effect of IAT with higher collateral grades.

  20. Nitrates and Nitrites in the Treatment of Ischemic Cardiac Disease

    Science.gov (United States)

    Nossaman, Vaughn E.; Nossaman, Bobby D.; Kadowitz, Philip J.

    2010-01-01

    The organic nitrite, amyl of nitrite, was initially used as a therapeutic agent in the treatment of angina pectoris in 1867, but was replaced over a decade later by the organic nitrate, nitroglycerin (NTG), due to the ease of administration and longer duration of action. The administration of organic nitrate esters, such as NTG, continues to be used in the treatment of angina pectoris and heart failure during the birth of modern pharmacology. The clinical effectiveness is due to vasodilator activity in large veins and arteries through an as yet unidentified method of delivering nitric oxide (NO), or a NO-like compound to vascular smooth muscle cells. The major drawback with NTG administration is the rapid development of tolerance; and with amyl of nitrite, the duration and route of administration. Although amyl of nitrite are no longer used in the treatments of hypertension or ischemic heart disease, the nitrite anion has recently been discovered to possess novel pharmacologic actions such as modulating hypoxic vasodilation and providing cytoprotection in ischemia-reperfusion injury. Although the actions of these two similar chemical classes (nitrites and organic nitrates) have often been considered to be alike, we still do not understand their mechanism of action. However, the recent discovery that the nitrite anion, derived from either sodium nitrite or an intermediate NTG form, may act as a storage form for NO and provides support for investigating the use of these agents in the treatment of ischemic cardiovascular states. We review what is presently known about the use of nitrites and nitrates, the potential uses of these agents, and their mechanisms of action. PMID:20539102

  1. Prognostic study of risk stratification among Japanese patients with ischemic heart disease using gated myocardial perfusion SPECT: J-ACCESS study

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Nakajima, Kenichi; Kusuoka, Hideo; Yamashina, Akira; Nishimura, Shigeyuki

    2008-01-01

    Although the prognostic value of myocardial perfusion imaging using gated single photon emission computed tomography (SPECT) for predicting major cardiac events has been evaluated, little is known about the relevance of this procedure to the Japanese population. A total of 4,031 consecutive Japanese patients with suspected or confirmed ischemic heart diseases were registered at 117 hospitals in the Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT investigation. Gated stress/rest myocardial perfusion SPECT was performed and the patients were followed up for 3 years. Segmental perfusion scores and quantitative gated SPECT results were calculated. Major cardiac events were defined as cardiac death, nonfatal myocardial infarction, and severe heart failure. During the 3-year follow-up, cardiac death (n = 57) and nonfatal myocardial infarction (n = 39) occurred in 96 patients (2.4%/3 years) when hard events were the endpoints. When severe heart failure was included as an endpoint, major cardiac events that developed in 175 patients (4.3%/3 years) comprised cardiac death (n = 45), nonfatal myocardial infarction (n = 37), and severe heart failure (n = 93). Normal and severely abnormal summed stress score values were associated with low (2.31%/3 years) and high (9.21%/3 years) rates of major cardiac events, respectively. Rates of major cardiac events were significantly higher in patients with ejection fraction (EF) <45% than in those with EF 45% or higher (16.55 vs 2.94%/3 years; P < 0.001). The incidence of major cardiac events within 3 years was also significantly higher among patients with high end-systolic volumes. The major event rates were similar among nondiabetic patients with and diabetic patients without prior myocardial infarction at 5.06% and 5.73%/3 years, respectively. Cardiac event rates were significantly lower in the Japanese than in the USA and European populations. However, large myocardial perfusion defects and

  2. Remote Ischemic Conditioning to Protect against Ischemia-Reperfusion Injury: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Brevoord, Daniel; Kranke, Peter; Kuijpers, Marijn; Weber, Nina; Hollmann, Markus; Preckel, Benedikt

    2012-01-01

    Background Remote ischemic conditioning is gaining interest as potential method to induce resistance against ischemia reperfusion injury in a variety of clinical settings. We performed a systematic review and meta-analysis to investigate whether remote ischemic conditioning reduces mortality, major adverse cardiovascular events, length of stay in hospital and in the intensive care unit and biomarker release in patients who suffer from or are at risk for ischemia reperfusion injury. Methods and Results Medline, EMBASE and Cochrane databases were searched for randomized clinical trials comparing remote ischemic conditioning, regardless of timing, with no conditioning. Two investigators independently selected suitable trials, assessed trial quality and extracted data. 23 studies in patients undergoing cardiac surgery (15 studies), percutaneous coronary intervention (four studies) and vascular surgery (four studies), comprising in total 1878 patients, were included in this review. Compared to no conditioning, remote ischemic conditioning did not reduce mortality (odds ratio 1.22 [95% confidence interval 0.48, 3.07]) or major adverse cardiovascular events (0.65 [0.38, 1.14]). However, the incidence of myocardial infarction was reduced with remote ischemic conditioning (0.50 [0.31, 0.82]), as was peak troponin release (standardized mean difference −0.28 [−0.47, −0.09]). Conclusion There is no evidence that remote ischemic conditioning reduces mortality associated with ischemic events; nor does it reduce major adverse cardiovascular events. However, remote ischemic conditioning did reduce the incidence of peri-procedural myocardial infarctions, as well as the release of troponin. PMID:22860077

  3. Non-invasive cardiac imaging. Spectrum, methodology, indication and interpretation

    International Nuclear Information System (INIS)

    Schaefers, Michael; Flachskampf, Frank; Sechtem, Udo; Achenbach, Stephan; Krause, Bernd J.; Schwaiger, Markus; Breithardt, Guenter

    2008-01-01

    The book contains 13 contributions concerning the following chapters: (1)methodology: echo cardiography; NMR imaging; nuclear medicine; computer tomography, (2) clinical protocols: contraction; cardiac valve function; perfusion and perfusion reserve; vitality; corona imaging; transmitters, receptors, enzymes; (3) clinic: coronary heart diseases; non-ischemic heart diseases. The appendix contains two contributions on future developments and certification/standardization

  4. How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Juan Antonio Marchal

    2013-03-01

    Full Text Available Nanotechnologists have become involved in regenerative medicine via creation of biomaterials and nanostructures with potential clinical implications. Their aim is to develop systems that can mimic, reinforce or even create in vivo tissue repair strategies. In fact, in the last decade, important advances in the field of tissue engineering, cell therapy and cell delivery have already been achieved. In this review, we will delve into the latest research advances and discuss whether cell and/or tissue repair devices are a possibility. Focusing on the application of nanotechnology in tissue engineering research, this review highlights recent advances in the application of nano-engineered scaffolds designed to replace or restore the followed tissues: (i skin; (ii cartilage; (iii bone; (iv nerve; and (v cardiac.

  5. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats

    Directory of Open Access Journals (Sweden)

    Junhwan Kim

    2016-01-01

    Full Text Available Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.

  6. Isometric exercise: cardiovascular responses in normal and cardiac populations.

    Science.gov (United States)

    Hanson, P; Nagle, F

    1987-05-01

    Isometric exercise produces a characteristic pressor increase in blood pressure which may be important in maintaining perfusion of muscle during sustained contraction. This response is mediated by combined central and peripheral afferent input to medullary cardiovascular centers. In normal individuals the increase in blood pressure is mediated by a rise in cardiac output with little or no change in systemic vascular resistance. However, the pressor response is also maintained during pharmacologic blockade or surgical denervation by increasing systemic vascular resistance. Left ventricular function is normally maintained or improves in normal subjects and cardiac patients with mild impairment of left ventricular contractility. Patients with poor left ventricular function may show deterioration during isometric exercise, although this pattern of response is difficult to predict from resting studies. Recent studies have shown that patients with uncomplicated myocardial infarction can perform submaximum isometric exercise such as carrying weights in the range of 30 to 50 lb without difficulty or adverse responses. In addition, many patients who show ischemic ST depression or angina during dynamic exercise may have a reduced ischemic response during isometric or combined isometric and dynamic exercise. Isometric exercises are frequently encountered in activities of daily living and many occupational tasks. Cardiac patients should be gradually exposed to submaximum isometric training in supervised cardiac rehabilitation programs. Specific job tasks that require isometric or combined isometric and dynamic activities may be evaluated by work simulation studies. This approach to cardiac rehabilitation may facilitate patients who wish to return to a job requiring frequent isometric muscle contraction. Finally, there is a need for additional research on the long-term effects of isometric exercise training on left ventricular hypertrophy and performance. The vigorous training

  7. Magnetic resonance imaging in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Kouichi [Mito Red Cross Hospital (Japan)

    2000-01-01

    This paper summarizes current MRI technology used in the diagnosis of acute cerebral infarction and discusses tasks for further improvement of MRI technology. First, the principles and methods of MRI imaging are described in terms of 1) diffusion-weighted imaging (DWI) and ADC maps, 2) perfusion imaging, 3) the fluid-attenuated inversion recovery (FLAIR) method, and 4) MR angiography (MRA). Then, the actual use of MRI in the early phase of ischemic cerebrovascular disorders is discussed focusing on general MRI procedures, cases in which an ischemic lesion dose not yield a high signal with DWI in the acute phase, and chronological changes in DWI signal strength and ADC. Third, chronological changes in acute cerebrovascular disorder in an animal model of local cerebral ischemia are summarized in terms of expansion of reduced ADC areas and ischemic penumbras in the acute phase of cerebral ischemia. Finally, chronological changes in acute ischemic disorders in patients with cerebrovascular disorders are assessed by reviewing the development of reduced ADC and expansion of DWI lesions. Whether MRI can identify cerebral tissues that can be rescued by the reperfusion method by examining the mismatchs between perfusion images and DWI, relative CBV, and ADC is also discussed. (K.H.)

  8. Mechanical perturbation control of cardiac alternans

    Science.gov (United States)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  9. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    Directory of Open Access Journals (Sweden)

    Jeffrey R. Koenitzer

    2016-08-01

    Full Text Available Nitro-fatty acids (NO2-FA are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2 reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval.

  10. Brain-Heart Interaction: Cardiac Complications After Stroke.

    Science.gov (United States)

    Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli

    2017-08-04

    Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.

  11. Assessment of muscle tissue oxygen saturation after out-of-hospital cardiac arrest.

    Science.gov (United States)

    Orban, Jean-Christophe; Scarlatti, Audrey; Danin, Pierre-Eric; Dellamonica, Jean; Bernardin, Gilles; Ichai, Carole

    2015-12-01

    Pathophysiology of cardiac arrest corresponds to an ischemia-reperfusion syndrome with deep impairment of microcirculation. Muscular tissue oxygen saturation (StO2) is a noninvasive method of evaluation of microcirculation. Our study was aimed at assessing the prognosis value of muscular StO2 in patients admitted for out-of-hospital cardiac arrest (OHCA) and treated with hypothermia. We conducted a prospective bicentric observational study including OHCA patients treated with therapeutic hypothermia. Baseline StO2, derived variables (desaturation and resaturation slopes), and lactate levels were compared at different times between patients with good and poor outcomes. Prognosis was assessed by the Cerebral Performance Category (CPC) score at 6 months after admission (CPC 1-2, good outcome; CPC 3-5, poor outcome). Forty-four patients were included, 17 good and 27 poor outcomes at 6 months. At admission, StO2 and lactate levels were lower in good outcome patients. Desaturation and resaturation slopes did not differ between groups. After an OHCA treated with therapeutic hypothermia, StO2 was correlated with outcome. Further research is needed to better understand the pathophysiological process underlying our results. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Low dose CT perfusion in acute ischemic stroke.

    Science.gov (United States)

    Murphy, Amanda; So, Aaron; Lee, Ting-Yim; Symons, Sean; Jakubovic, Raphael; Zhang, Liying; Aviv, Richard I

    2014-12-01

    The purpose of this investigation is to determine if CT perfusion (CTP) measurements at low doses (LD = 20 or 50 mAs) are similar to those obtained at regular doses (RD = 100 mAs), with and without the addition of adaptive statistical iterative reconstruction (ASIR). A single-center, prospective study was performed in patients with acute ischemic stroke (n = 37; 54% male; age = 74 ± 15 years). Two CTP scans were performed on each subject: one at 100 mAs (RD) and one at either 50 or 20 mAs (LD). CTP parameters were compared between the RD and LD scans in regions of ischemia, infarction, and normal tissue. Differences were determined using a within-subjects ANOVA (p test post hoc analysis (p 50 mAs, there was no significant difference between cerebral blood flow (CBF), cerebral blood volume (CBV), or time to maximum enhancement (Tmax) values for the RD and LD scans in the ischemic, infarcted, or normal contralateral regions (p LD scans for all parameters in the ischemic and normal tissue regions (p > 0.05). CTP-derived CBF and CBV are not different at 50 mAs compared to 100 mAs, even without the addition of ASIR. Current CTP protocols can be modified to reduce the effective dose by 50 % without altering CTP measurements.

  13. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart.

    Science.gov (United States)

    Doroudgar, Shirin; Glembotski, Christopher C

    2011-04-01

    Intercellular communication depends on many factors, including proteins released via the classical or non-classical secretory pathways, many of which must be properly folded to be functional. Owing to their adverse effects on the secretion machinery, stresses such as ischemia can impair the folding of secreted proteins. Paradoxically, cells rely on secreted proteins to mount a response designed to resist stress-induced damage. This review examines this paradox using proteins secreted from the heart, cardiokines, as examples, and focuses on how the ischemic heart maintains or even increases the release of select cardiokines that regulate important cellular processes in the heart, including excitation-contraction coupling, hypertrophic growth, myocardial remodeling and stem cell function, in ways that moderate ischemic damage and enhance cardiac repair. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  15. A Case of Cardiac Cephalalgia Showing Reversible Coronary Vasospasm on Coronary Angiogram

    Science.gov (United States)

    Yang, YoungSoon; Jin, Dong Gyu; Jang, Il Mi; Jang, YoungHee; Na, Hae Ri; Kim, SanYun

    2010-01-01

    Background Under certain conditions, exertional headaches may reflect coronary ischemia. Case Report A 44-year-old woman developed intermittent exercise-induced headaches with chest tightness over a period of 10 months. Cardiac catheterization followed by acetylcholine provocation demonstrated a right coronary artery spasm with chest tightness, headache, and ischemic effect of continuous electrocardiography changes. The patient's headache disappeared following intra-arterial nitroglycerine injection. Conclusions A coronary angiogram with provocation study revealed variant angina and cardiac cephalalgia, as per the International Classification of Headache Disorders (code 10.6). We report herein a patient with cardiac cephalalgia that manifested as reversible coronary vasospasm following an acetylcholine provocation test. PMID:20607049

  16. Wernicke's encephalopathy after cardiac surgery.

    Science.gov (United States)

    Nishimura, Yoshiyuki

    2018-05-01

    A 76-year-old woman who had been on hemodialysis for 3 years developed ischemic mitral valve insufficiency, tricuspid insufficiency, and chronic atrial fibrillation, and underwent cardiac surgery. On the 4th postoperative day, she experienced a sudden disturbance of consciousness, aphasia, and limb ataxia. Brain computed tomography and magnetic resonance imaging showed no abnormalities. Wernicke's encephalopathy was suspected and the patient was given vitamin B1, whereupon her symptoms gradually improved. On the 42nd postoperative day, she was free of neurological symptoms and discharged.

  17. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    Science.gov (United States)

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study.

    Science.gov (United States)

    Muñoz Maniega, S; Cvoro, V; Chappell, F M; Armitage, P A; Marshall, I; Bastin, M E; Wardlaw, J M

    2008-12-09

    Although much tissue damage may occur within the first few hours of ischemic stroke, the duration of tissue injury is not well defined. We assessed the temporal pattern of neuronal loss and ischemia after ischemic stroke using magnetic resonance spectroscopic imaging (MRSI) and diffusion-weighted imaging (DWI). We measured N-acetylaspartate (NAA) and lactate in 51 patients with acute ischemic stroke at five time points, from admission to 3 months, in voxels classified as normal, possibly or definitely abnormal (ischemic) according to the appearance of the stroke lesion on the admission DWI. We compared changes in NAA and lactate in different voxel classes using linear mixed models. NAA was significantly reduced from admission in definitely and possibly abnormal (p < 0.01) compared to contralateral normal voxels, reaching a nadir by 2 weeks and remaining reduced at 3 months. Lactate was significantly increased in definitely and possibly abnormal voxels (p < 0.01) during the first 5 days, falling to normal at 2 weeks, rising again later in these voxels. The progressive fall in N-acetylaspartate suggests that some additional neuronal death may continue beyond the first few hours for up to 2 weeks or longer. The mechanism is unclear but, if correct, then it is possible that interventions to limit this ongoing subacute tissue damage might add to the benefit of hyperacute treatment, making further improvements in outcome possible.

  19. Gender and post-ischemic recovery of hypertrophied rat hearts

    Directory of Open Access Journals (Sweden)

    Popov Kirill M

    2006-03-01

    Full Text Available Abstract Background Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. Methods Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. Results Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in

  20. Study on the effect of hypoxia on apoptosis of cultured newly born rat cardiac myocytes

    International Nuclear Information System (INIS)

    Su Weidong; Li Huiqiang; Yao Zhi

    2005-01-01

    Objective: To investigate the possible hypoxia-mediated cellular apoptosis after ischemic cardiac injury via a model of cultured newly born rat cardiac myocytes. Methods: Cardiac myocytes cultures from newly born rats (1-3d) were examined for apoptosis with HE stain and flow cytometry after cultured 96h and again examined after exposure to hypoxic environment for 16h. Results: Apoptotic changes were evident in the hypoxic culture cells. The HE stain revealed cellular shrinkage, nuclear chromosomal condensation with cytoplasmic eosinophilia. Also, distinct apoptosis peak was observed in the flow cytometry. Conclusion: This experiment proved that hypoxic model of cardiac myocyte culture showed definite apoptosis of the cells. (authors)

  1. The heartbreak of depression: 'Psycho-cardiac' coupling in myocardial infarction.

    Science.gov (United States)

    Headrick, John P; Peart, Jason N; Budiono, Boris P; Shum, David H K; Neumann, David L; Stapelberg, Nicolas J C

    2017-05-01

    Ample evidence identifies strong links between major depressive disorder (MDD) and both risk of ischemic or coronary heart disease (CHD) and resultant morbidity and mortality. The molecular mechanistic bases of these linkages are poorly defined. Systemic factors linked to MDD, including vascular dysfunction, atherosclerosis, obesity and diabetes, together with associated behavioral changes, all elevate CHD risk. Nonetheless, experimental evidence indicates the myocardium is also directly modified in depression, independently of these factors, impairing infarct tolerance and cardioprotection. It may be that MDD effectively breaks the heart's intrinsic defense mechanisms. Four extrinsic processes are implicated in this psycho-cardiac coupling, presenting potential targets for therapeutic intervention if causally involved: sympathetic over-activity vs. vagal under-activity, together with hypothalamic-pituitary-adrenal (HPA) axis and immuno-inflammatory dysfunctions. However, direct evidence of their involvement remains limited, and whether targeting these upstream mediators is effective (or practical) in limiting the cardiac consequences of MDD is unknown. Detailing myocardial phenotype in MDD can also inform approaches to cardioprotection, yet cardiac molecular changes are similarly ill defined. Studies support myocardial sensitization to ischemic insult in models of MDD, including worsened oxidative and nitrosative damage, apoptosis (with altered Bcl-2 family expression) and infarction. Moreover, depression may de-sensitize hearts to protective conditioning stimuli. The mechanistic underpinnings of these changes await delineation. Such information not only advances our fundamental understanding of psychological determinants of health, but also better informs management of the cardiac consequences of MDD and implementing cardioprotection in this cohort. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Classification of etiologic subtypes for transient ischemic attacks. Clinical significance of lacunar transient ischemic attack

    International Nuclear Information System (INIS)

    Ohara, Tomoyuki; Yamamoto, Yasumasa; Nagakane, Yoshinari; Tanaka, Eijiro; Morii, Fukiko; Koizumi, Takashi

    2011-01-01

    Lacunar transient ischemic attack (lacunar TIA) may have been underestimated because of diagnostic difficulties. The aim of our study was to classify TIAs by etiologic subtypes, especially using defined criteria for diagnosis of lacunar TIA and clarify clinical characteristics of lacunar TIA.105 TIA patients out of consecutive 1,244 patients with acute ischemic stroke admitted to our hospital between January 2007 and June 2010 were enrolled in the present study. TIA was defined as an acute focal neurological deficit lasting less than 24 hours, suspected to be of cerebrovascular origin regardless of ischemic lesions on MRI. TIAs were classified to 5 etiologic subtypes; cardioembolic TIA, atherothrombotic TIA, lacunar TIA, other etiologies, and undetermined etiology and clinical characteristics in each subtype and the incidence of recurrent stroke after TIA were investigated. Lacunar TIA was diagnosed if the following criteria were fulfilled; presence of lacunar infarct on MRI and/or the presence of unilateral dysfunction of at least two of three body parts (face, arm, leg) in the absence of cortical dysfunction presumed due to subcortical ischemia. Absence of cardiac sources of embolism and large artery atherosclerosis. In 105 patients with TIA, lacunar TIA was the most frequent etiology (31%) followed by cardioembolic TIA (27%), atherothrombotic TIA (19%), undetermined etiology (18%), and other etiologies (6%). In patients with lacunar TIA, history of repeated TIA was more frequent and systolic blood pressure on admission was higher significantly than in cardioembolic TIA. Six of 105 patients had experienced recurrent stroke after TIA during admission. Among these 6 patients, 3 patients were diagnosed as lacunar infarctions. Lacunar TIA was most common TIA subtype in the present study. It is critical to identify lacunar TIA on admission because some patients with lacunar TIAs experience early recurrent stroke. (author)

  3. Anterior ischemic optic neuropathy after conventional coronary artery bypass graft surgery.

    Science.gov (United States)

    Dorecka, Mariola; Miniewicz-Kurkowska, Joanna; Romaniuk, Dorota; Gajdzik-Gajdecka, Urszula; Wójcik-Niklewska, Bogumiła

    2011-06-01

    Perioperative optic neuropathy is a disease which can lead to serious, irreversible damage of vision. This complication could be the result of non-ocular surgery, for example, cardiac or spinal procedures. We present a case of anterior ischemic neuropathy (AION) which occurred following a conventional coronary artery bypass graft procedure. A 57-year-old man, 4 days after Conventional Coronary Artery Bypass Graft surgery as result of multi-vessel stabile coronary artery disease and history of anterolateral wall myocardial infarction, was admitted to the Eye Clinic due to significant loss of vision in his right eye. The patient had hypertension and was a heavy smoker. On admission, the slit lamp examination revealed a relative afferent pupillary defect in the right eye. The fundus examination showed optic disc edema with the presence of flame hemorrhages. Best corrected visual acuity (BCVA) was 0.02. The results of eye examination and fluorescein angiography confirmed the diagnosis of AION. Anti-aggregation and antithrombotic treatment was continued with steroids and vasodilators. After 7 days of this treatment we noticed the improvement of BCVA to 0.2. At 6-month follow-up, the vision was stable, and fundus examination revealed optic disc atrophy. After cardiac surgical operations, such as coronary artery bypass graft procedures, anterior ischemic optic neuropathy may occur. In those cases, close cooperation between the various specialists is necessary.

  4. Human renin biosynthesis and secretion in normal and ischemic kidneys

    International Nuclear Information System (INIS)

    Pratt, R.E.; Carleton, J.E.; Richie, J.P.; Heusser, C.; Dzau, V.J.

    1987-01-01

    The pathway of renin biosynthesis and secretion in normal and ischemic human kidneys has been investigated by pulse-labeling experiments. The results indicate that in normal human kidney, preprorenin is rapidly processed to 47-kDa prorenin. Microradiosequencing showed that this molecule was generated by cleavage between Gly-23 and Leu-24, yielding a 43-amino acid proregion. Analysis of prorenin secreted by the kidney tissue yielded an identical sequence, indicating that prorenin is secreted without any further proteolysis. An examination of the kinetics of processing and secretion suggested that a majority of the newly synthesized prorenin is quickly secreted, while only a small fraction is processed intracellularly to the mature renin. The differences in secretion kinetics between prorenin and mature renin and the selective inhibition of prorenin secretion by monensin suggest that they are secreted independently via two pathways: a constitutive pathway probably from the Golgi or protogranules that rapidly release prorenin and a regulated pathway that secretes mature renin from the mature granules. A comparison of the kinetics of processing between normal and ischemic tissues suggests that renal ischemia leads to an overall increase in the rate of processing or prorenin to mature renin. In addition, prolonged biosynthetic labeling of renin in the ischemic kidney yielded two smaller molecular weight immunoreactive forms suggestive of renin fragments that may be degradative products. These fragments were not detected in normal kidney tissue labeled for similar lengths of time

  5. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch.

    Science.gov (United States)

    Khan, Mahmood; Xu, Yanyi; Hua, Serena; Johnson, Jed; Belevych, Andriy; Janssen, Paul M L; Gyorke, Sandor; Guan, Jianjun; Angelos, Mark G

    2015-01-01

    Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment

  6. Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation.

    Science.gov (United States)

    Masè, Michela; Grasso, Margherita; Avogaro, Laura; D'Amato, Elvira; Tessarolo, Francesco; Graffigna, Angelo; Denti, Michela Alessandra; Ravelli, Flavia

    2017-01-24

    MicroRNAs (miRNAs) are emerging as key regulators of complex biological processes in several cardiovascular diseases, including atrial fibrillation (AF). Reverse transcription-quantitative polymerase chain reaction is a powerful technique to quantitatively assess miRNA expression profile, but reliable results depend on proper data normalization by suitable reference genes. Despite the increasing number of studies assessing miRNAs in cardiac disease, no consensus on the best reference genes has been reached. This work aims to assess reference genes stability in human cardiac tissue with a focus on AF investigation. We evaluated the stability of five reference genes (U6, SNORD48, SNORD44, miR-16, and 5S) in atrial tissue samples from eighteen cardiac-surgery patients in sinus rhythm and AF. Stability was quantified by combining BestKeeper, delta-C q , GeNorm, and NormFinder statistical tools. All methods assessed SNORD48 as the best and U6 as the worst reference gene. Applications of different normalization strategies significantly impacted miRNA expression profiles in the study population. Our results point out the necessity of a consensus on data normalization in AF studies to avoid the emergence of divergent biological conclusions.

  7. ST-Segment resolution and clinical outcome with ischemic postconditioning and comparison to magnetic resonance

    DEFF Research Database (Denmark)

    Lønborg, Jacob; Holmvang, Lene; Kelbæk, Henning

    2010-01-01

    Ischemic postconditioning (IPost) during primary percutaneous coronary intervention (PPCI) is suggested to reduce myocardial damage. However, the association with ST-segment resolution (STR) and clinical outcome is not determined. The primary aim of this study was to evaluate the association of I...... of IPost with STR and clinical outcome. Secondly, we sought to determine the relationship between STR and cardiac magnetic resonance (CMR) parameters in these patients....

  8. Sodium nitroprusside enhanced cardiopulmonary resuscitation improves short term survival in a porcine model of ischemic refractory ventricular fibrillation.

    Science.gov (United States)

    Yannopoulos, Demetris; Bartos, Jason A; George, Stephen A; Sideris, George; Voicu, Sebastian; Oestreich, Brett; Matsuura, Timothy; Shekar, Kadambari; Rees, Jennifer; Aufderheide, Tom P

    2017-01-01

    Sodium nitroprusside (SNP) enhanced CPR (SNPeCPR) demonstrates increased vital organ blood flow and survival in multiple porcine models. We developed a new, coronary occlusion/ischemia model of prolonged resuscitation, mimicking the majority of out-of-hospital cardiac arrests presenting with shockable rhythms. SNPeCPR will increase short term (4-h) survival compared to standard 2015 Advanced Cardiac Life Support (ACLS) guidelines in an ischemic refractory ventricular fibrillation (VF), prolonged CPR model. Sixteen anesthetized pigs had the ostial left anterior descending artery occluded leading to ischemic VF arrest. VF was untreated for 5min. Basic life support was performed for 10min. At minute 10 (EMS arrival), animals received either SNPeCPR (n=8) or standard ACLS (n=8). Defibrillation (200J) occurred every 3min. CPR continued for a total of 45min, then the balloon was deflated simulating revascularization. CPR continued until return of spontaneous circulation (ROSC) or a total of 60min, if unsuccessful. SNPeCPR animals received 2mg of SNP at minute 10 followed by 1mg every 5min until ROSC. Standard ACLS animals received 0.5mg epinephrine every 5min until ROSC. Primary endpoints were ROSC and 4-h survival. All SNPeCPR animals (8/8) achieved sustained ROSC versus 2/8 standard ACLS animals within one hour of resuscitation (p=0.04). The 4-h survival was significantly improved with SNPeCPR compared to standard ACLS, 7/8 versus 1/8 respectively, p=0.0019. SNPeCPR significantly improved ROSC and 4-h survival compared with standard ACLS CPR in a porcine model of prolonged ischemic, refractory VF cardiac arrest. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Correlation between left ventricular filling and ischemic extent during exercise-induced myocardial ischemia

    International Nuclear Information System (INIS)

    Ando, Akitada; Yokota, Mitsuhiro; Iwase, Mitsunori

    1993-01-01

    The aim of this study was to determine how the extent of exercise-induced myocardial ischemia influence left ventricular filling. Twenty-two consecutive patients with effort angina, consisting of 16 with single vessel disease and 6 with double vessel disease, underwent exercise studies in lying and sitting positions. Extent score (ES) and severity score (SS) were calculated on polar map prepared from early exercise Tl-201 myocardial SPECT images to determine ischemic extent. Pulmonary arterial wedge pressure (PAWP), as obtained at exercise in lying position, correlated significantly well with both ES (r=0.75, p<0.001) and SS (r=0.61, p<0.01). There was, however, no significant correlation between the other hemodynamic parameters, such as heart rate, systolic pressure, rate-pressure product, cardiac index and stroke index, and both ES and SS. Either increased PAWP or ischemic extent was not dependent on the number of diseased vessels. In conclusion, the extent of increased left ventricular filling did not correlate with the number of diseased vessels, but correlated positively with ischemic extent. (N.K.)

  10. Artificial neural network prediction of ischemic tissue fate in acute stroke imaging

    Science.gov (United States)

    Huang, Shiliang; Shen, Qiang; Duong, Timothy Q

    2010-01-01

    Multimodal magnetic resonance imaging of acute stroke provides predictive value that can be used to guide stroke therapy. A flexible artificial neural network (ANN) algorithm was developed and applied to predict ischemic tissue fate on three stroke groups: 30-, 60-minute, and permanent middle cerebral artery occlusion in rats. Cerebral blood flow (CBF), apparent diffusion coefficient (ADC), and spin–spin relaxation time constant (T2) were acquired during the acute phase up to 3 hours and again at 24 hours followed by histology. Infarct was predicted on a pixel-by-pixel basis using only acute (30-minute) stroke data. In addition, neighboring pixel information and infarction incidence were also incorporated into the ANN model to improve prediction accuracy. Receiver-operating characteristic analysis was used to quantify prediction accuracy. The major findings were the following: (1) CBF alone poorly predicted the final infarct across three experimental groups; (2) ADC alone adequately predicted the infarct; (3) CBF+ADC improved the prediction accuracy; (4) inclusion of neighboring pixel information and infarction incidence further improved the prediction accuracy; and (5) prediction was more accurate for permanent occlusion, followed by 60- and 30-minute occlusion. The ANN predictive model could thus provide a flexible and objective framework for clinicians to evaluate stroke treatment options on an individual patient basis. PMID:20424631

  11. Visualization of spiral and scroll waves in simulated and experimental cardiac tissue

    Science.gov (United States)

    Cherry, E. M.; Fenton, F. H.

    2008-12-01

    The heart is a nonlinear biological system that can exhibit complex electrical dynamics, complete with period-doubling bifurcations and spiral and scroll waves that can lead to fibrillatory states that compromise the heart's ability to contract and pump blood efficiently. Despite the importance of understanding the range of cardiac dynamics, studying how spiral and scroll waves can initiate, evolve, and be terminated is challenging because of the complicated electrophysiology and anatomy of the heart. Nevertheless, over the last two decades advances in experimental techniques have improved access to experimental data and have made it possible to visualize the electrical state of the heart in more detail than ever before. During the same time, progress in mathematical modeling and computational techniques has facilitated using simulations as a tool for investigating cardiac dynamics. In this paper, we present data from experimental and simulated cardiac tissue and discuss visualization techniques that facilitate understanding of the behavior of electrical spiral and scroll waves in the context of the heart. The paper contains many interactive media, including movies and interactive two- and three-dimensional Java appletsDisclaimer: IOP Publishing was not involved in the programming of this software and does not accept any responsibility for it. You download and run the software at your own risk. If you experience any problems with the software, please contact the author directly. To the fullest extent permitted by law, IOP Publishing Ltd accepts no responsibility for any loss, damage and/or other adverse effect on your computer system caused by your downloading and running this software. IOP Publishing Ltd accepts no responsibility for consequential loss..

  12. Six Conductivity Values to Use in the Bidomain Model of Cardiac Tissue.

    Science.gov (United States)

    Johnston, Barbara M

    2016-07-01

    The aim of this work is to produce a consistent set of six conductivity values for use in the bidomain model of cardiac tissue. Studies in 2007 by Hooks et al. and in 2009 by Caldwell et al. have found that, in the directions longitudinal:transverse:normal (l:t:n) to the cardiac fibers, ratios of bulk conductivities and conduction velocities are each approximately in the ratio 4:2:1. These results are used here as the basis for a method that can find sets of six normalized bidomain conductivity values. It is found that the ratios involving transverse and normal conductivities are quite consistent, allowing new light to be shed on conductivity in the normal direction. For example, it is found that the ratio of transverse to normal conductivity is much greater in the intracellular (i) than the extracellular (e) domain. Using parameter values from experimental studies leads to the proposal of a new nominal six conductivity dataset: gil=2.4, gel=2.4, git=0.35, get=2.0, gin=0.08, and gen=1.1 (all in mS/cm). When it is used to model partial thickness ischaemia, this dataset produces epicardial potential distributions in accord with experimental studies in an animal model. It is, therefore, suggested that the dataset is suitable for use in numerical simulations. Since the bidomain approach is the most commonly used method for modeling cardiac electrophysiological phenomena, new information about conductivity in the normal direction, as well as a consistent set of six conductivity values, is valuable for researchers who perform simulation studies.

  13. Cardiac regeneration using pluripotent stem cells—Progression to large animal models

    Directory of Open Access Journals (Sweden)

    James J.H. Chong

    2014-11-01

    Full Text Available Pluripotent stem cells (PSCs have indisputable cardiomyogenic potential and therefore have been intensively investigated as a potential cardiac regenerative therapy. Current directed differentiation protocols are able to produce high yields of cardiomyocytes from PSCs and studies in small animal models of cardiovascular disease have proven sustained engraftment and functional efficacy. Therefore, the time is ripe for cardiac regenerative therapies using PSC derivatives to be tested in large animal models that more closely resemble the hearts of humans. In this review, we discuss the results of our recent study using human embryonic stem cell derived cardiomyocytes (hESC-CM in a non-human primate model of ischemic cardiac injury. Large scale remuscularization, electromechanical coupling and short-term arrhythmias demonstrated by our hESC-CM grafts are discussed in the context of other studies using adult stem cells for cardiac regeneration.

  14. Neurosteroids and Ischemic Stroke: Progesterone a Promising Agent in Reducing the Brain Injury in Ischemic Stroke.

    Science.gov (United States)

    Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena

    2017-01-01

    Progesterone (P4), a well-known neurosteroid, is produced by ovaries and placenta in females and by adrenal glands in both sexes. Progesterone is also synthesized by central nervous system (CNS) tissues to perform various vital neurological functions in the brain. Apart from performing crucial reproductive functions, it also plays a pivotal role in neurogenesis, regeneration, cognition, mood, inflammation, and myelination in the CNS. A substantial body of experimental evidence from animal models documents the neuroprotective role of P4 in various CNS injury models, including ischemic stroke. Extensive data have revealed that P4 elicits neuroprotection through multiple mechanisms and systems in an integrated manner to prevent neuronal and glial damage, thus reducing mortality and morbidity. Progesterone has been described as safe for use at the clinical level through different routes in several studies. Data regarding the neuroprotective role of P4 in ischemic stroke are of great interest due to their potential clinical implications. In this review, we succinctly discuss the biosynthesis of P4 and distribution of P4 receptors (PRs) in the brain. We summarize our work on the general mechanisms of P4 mediated via the modulation of different PR and neurotransmitters. Finally, we describe the neuroprotective mechanisms of P4 in ischemic stroke models and related clinical prospects.

  15. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    Directory of Open Access Journals (Sweden)

    Khayat Andre

    2011-01-01

    Full Text Available Abstract We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies.

  16. Critical care management of acute ischemic stroke.

    Science.gov (United States)

    Coplin, William M

    2012-06-01

    Acute ischemic stroke (AIS) can have profound and devastating effects on the CNS and several other organs. Approximately 15% to 20% of patients with AIS are admitted to an intensive care unit and cared for by a multidisciplinary team. This article discusses the critical care management of patients with AIS. Patients with AIS require attention to airway, pulmonary status, blood pressure, glucose, temperature, cardiac function, and, sometimes, life-threatening cerebral edema. The lack of disease-specific data has led to numerous management approaches and limited guidance on choosing among them. Existing guidelines emphasize risk factors, prevention, natural history, and prevention of bleeding but provide little discussion of the complex critical care issues involved in caring for patients with AIS.

  17. Low dose CT perfusion in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Amanda; Symons, Sean; Jakubovic, Raphael; Zhang, Liying; Aviv, Richard I. [Sunnybrook Health Sciences Centre, Toronto, ON (Canada); So, Aaron; Lee, Ting-Yim [Robarts Research Institute, London, Ontario (Canada)

    2014-12-15

    The purpose of this investigation is to determine if CT perfusion (CTP) measurements at low doses (LD = 20 or 50 mAs) are similar to those obtained at regular doses (RD = 100 mAs), with and without the addition of adaptive statistical iterative reconstruction (ASIR). A single-center, prospective study was performed in patients with acute ischemic stroke (n = 37; 54 % male; age = 74 ± 15 years). Two CTP scans were performed on each subject: one at 100 mAs (RD) and one at either 50 or 20 mAs (LD). CTP parameters were compared between the RD and LD scans in regions of ischemia, infarction, and normal tissue. Differences were determined using a within-subjects ANOVA (p < 0.05) followed by a paired t test post hoc analysis (p < 0.01). At 50 mAs, there was no significant difference between cerebral blood flow (CBF), cerebral blood volume (CBV), or time to maximum enhancement (Tmax) values for the RD and LD scans in the ischemic, infarcted, or normal contralateral regions (p < 0.05). At 20 mAs, there were significant differences between the RD and LD scans for all parameters in the ischemic and normal tissue regions (p > 0.05). CTP-derived CBF and CBV are not different at 50 mAs compared to 100 mAs, even without the addition of ASIR. Current CTP protocols can be modified to reduce the effective dose by 50 % without altering CTP measurements. (orig.)

  18. Causes and Treatment of Acute Ischemic Stroke During Pregnancy.

    Science.gov (United States)

    Terón, Ina; Eng, Melissa S; Katz, Jeffrey M

    2018-05-21

    Treatment recommendations for pregnancy associated ischemic stroke are scarce. This may be due to the fact that, in general, obstetricians tend not to make recommendations for stroke patients and neurologists are not commonly involved in the care of pregnant women. Herein, we review the multiple etiologies of ischemic stroke during pregnancy, considerations for diagnostic testing, and acute treatment and prevention options, including associated risks specific to the pregnant and puerperal state. Intravenous tissue plasminogen activator (tPA) and endovascular thrombectomy have been used successfully to treat pregnant women with acute ischemic stroke. Recent national guidelines recommend considering tPA use during pregnancy for moderate and severe strokes if the potential benefits offset the risks of uterine hemorrhage. Pregnancy-associated ischemic stroke is rare, but can be devastating, and recanalization therapy should not be systematically withheld. Women who are at risk for stroke should be followed carefully, and providers caring for pregnant women should be educated regarding stroke signs and symptoms. Many of the standard post stroke diagnostic modalities may be used safely in pregnancy, and primary and secondary stroke prevention therapy must be tailored to avoid fetal toxicity.

  19. Characteristics of Misclassified CT Perfusion Ischemic Core in Patients with Acute Ischemic Stroke.

    Directory of Open Access Journals (Sweden)

    Ralph R E G Geuskens

    Full Text Available CT perfusion (CTP is used to estimate the extent of ischemic core and penumbra in patients with acute ischemic stroke. CTP reliability, however, is limited. This study aims to identify regions misclassified as ischemic core on CTP, using infarct on follow-up noncontrast CT. We aim to assess differences in volumetric and perfusion characteristics in these regions compared to areas that ended up as infarct on follow-up.This study included 35 patients with >100 mm brain coverage CTP. CTP processing was performed using Philips software (IntelliSpace 7.0. Final infarct was automatically segmented on follow-up noncontrast CT and used as reference. CTP and follow-up noncontrast CT image data were registered. This allowed classification of ischemic lesion agreement (core on CTP: rMTT≥145%, aCBV<2.0 ml/100g and infarct on follow-up noncontrast CT and misclassified ischemic core (core on CTP, not identified on follow-up noncontrast CT regions. False discovery ratio (FDR, defined as misclassified ischemic core volume divided by total CTP ischemic core volume, was calculated. Absolute and relative CTP parameters (CBV, CBF, and MTT were calculated for both misclassified CTP ischemic core and ischemic lesion agreement regions and compared using paired rank-sum tests.Median total CTP ischemic core volume was 49.7ml (IQR:29.9ml-132ml; median misclassified ischemic core volume was 30.4ml (IQR:20.9ml-77.0ml. Median FDR between patients was 62% (IQR:49%-80%. Median relative mean transit time was 243% (IQR:198%-289% and 342% (IQR:249%-432% for misclassified and ischemic lesion agreement regions, respectively. Median absolute cerebral blood volume was 1.59 (IQR:1.43-1.79 ml/100g (P<0.01 and 1.38 (IQR:1.15-1.49 ml/100g (P<0.01 for misclassified ischemic core and ischemic lesion agreement, respectively. All CTP parameter values differed significantly.For all patients a considerable region of the CTP ischemic core is misclassified. CTP parameters significantly

  20. Cardiac Remote Conditioning and Clinical Relevance: All Together Now!

    Directory of Open Access Journals (Sweden)

    Kristin Luther

    2015-12-01

    mechanisms related to cardioprotection, and in the last five to ten years, it has become clear that the mechanisms are similar, whether induced by ischemic or non-ischemic stimuli. Taking together much of the data in the literature, we propose that all of these cardioprotective “conditioning” phenomena represent activation from different entry points of a cardiac conditioning network that converges upon specific mediators and effectors of myocardial cell survival, including NF-кB, Stat3/5, protein kinase C, bradykinin, and the mitoKATP channel. Nervous system pathways may represent a novel mechanism for initiating conditioning of the heart and other organs. IPC and RIPC have proven difficult to translate clinically, as they have associated risks and cannot be used in some patients. Because of this, the use of neural and nociceptive stimuli is emerging as a potential non-ischemic and non-traumatic means to initiate cardiac conditioning. Clinical relevance is underscored by the demonstration of postconditioning with one of these modalities, supporting the conclusion that the development of pharmaceuticals and electroceuticals for this purpose is an area ripe for clinical development.

  1. Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium.

    Science.gov (United States)

    Elmadhun, Nassrene Y; Sabe, Ashraf A; Lassaletta, Antonio D; Chu, Louis M; Kondra, Katelyn; Sturek, Michael; Sellke, Frank W

    2014-09-01

    Impaired angiogenesis is a known consequence of metabolic syndrome (MetS); however, the mechanism is not fully understood. Recent studies have shown that the notch signaling pathway is an integral component of cardiac angiogenesis. We tested, in a clinically relevant swine model, the effects of MetS on notch and apoptosis signaling in chronically ischemic myocardium. Ossabaw swine were fed either a regular diet (control [CTL], n = 8) or a high-cholesterol diet (MetS, n = 8) to induce MetS. An ameroid constrictor was placed to induce chronic myocardial ischemia. Eleven weeks later, the wine underwent cardiac harvest of the ischemic myocardium. Downregulation of pro-angiogenesis proteins notch2, notch4, jagged2, angiopoietin 1, and endothelial nitric oxide synthase were found in the MetS group compared with the CTL group. Also, upregulation of pro-apoptosis protein caspase 8 and downregulation of anti-angiogenesis protein phosphorylated forkhead box transcription factor 03 and pro-survival proteins phosphorylated P38 and heat shock protein 90 were present in the MetS group. Cell death was increased in the MetS group compared with the CTL group. Both CTL and MetS groups had a similar arteriolar count and capillary density, and notch3 and jagged1 were both similarly concentrated in the smooth muscle wall. MetS in chronic myocardial ischemia significantly impairs notch signaling by downregulating notch receptors, ligands, and pro-angiogenesis proteins. MetS also increases apoptosis signaling, decreases survival signaling, and increases cell death in chronically ischemic myocardium. Although short-term angiogenesis appears unaffected in this model of early MetS, the molecular signals for angiogenesis are impaired, suggesting that inhibition of notch signaling might underlie the decreased angiogenesis in later stages of MetS. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  2. [Molecular mechanisms of ischemic-reperfusion syndrome and its personalized therapy].

    Science.gov (United States)

    Grebenchikov, O A; Likhvantsev, V V; Plotnikov, E Iu; Silachev, D N; Pevzner, I B; Zorova, L D; Zorov, D B

    2014-01-01

    Cardiovascular pathologies are the major causes of morbidity and mortality in the world. Cessation of the blood flow in large vessels, supplying tissues with oxygen and substrates, leads to ischemic conditions accompanied by unwanted shifts of oxidative metabolism and rise of the reactive oxygen species (ROS) generation. Small amounts of ROS are essential elements of the cell metabolism, however pathological elevation of ROS jeopardizes the survival of cells, organs and even organisms. Paradoxically, blood flow restoration during prolonged ischemia leads to oxidative stress that is often fatal for a live system. Oxygen paradox appears to be a limiting factor in clinical practice that intuitively seeks for immediate and complete restoration of a damaged blood flow. Mitochondrion is a major ROS source and a key element of pro-apoptotic signaling, however it is clear, that mitochondria are the main target for anti-ischemic treatment. In the present review we consider two ways of such anti-ischemic strategy, bringing ischemic tolerance to the organ through mitochondrial involvement, such as intrinsic, biological, or artificial, pharmacological adaptive systems (preconditioning). The latter is aimed to simulate elements and high efficiency of intrinsic protective system. The role of antioxidants in anti-ischemic therapy and their effects on preconditioning signaling are discussed in the review.

  3. Remote Ischemic Conditioning

    Science.gov (United States)

    Heusch, Gerd; Bøtker, Hans Erik; Przyklenk, Karin; Redington, Andrew; Yellon, Derek

    2014-01-01

    In remote ischemic conditioning (RIC) brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microRNA-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible and inexpensive. PMID:25593060

  4. Association of ischemic stroke to coronary artery disease using computed tomography coronary angiography

    DEFF Research Database (Denmark)

    Jensen, Jesper Møller; Medina, Hector; Nørgaard, Bjarne Linde

    2012-01-01

    BACKGROUND: While patients with coronary artery disease (CAD) and cerebrovascular disease share similar risk factor profiles, data on whether IS can be considered a "CAD equivalent" are limited. We aimed to determine whether ischemic stroke is an independent predictor of CAD by using cardiac...... increase odds of having coronary artery plaque (odds ratio [OR] 4.9, P4 segments of plaque than 0-4 segments as compared to patients without stroke (OR 18.3, P...

  5. Periodontal bacteria DNA findings in human cardiac tissue - Is there a link of periodontitis to heart valve disease?

    Science.gov (United States)

    Ziebolz, D; Jahn, C; Pegel, J; Semper-Pinnecke, E; Mausberg, R F; Waldmann-Beushausen, R; Schöndube, F A; Danner, B C

    2018-01-15

    The aim of the study was to detect periodontal pathogens DNA in atrial and myocardial tissue, and to investigate periodontal status and their connection to cardiac tissue inflammation. In 30 patients, biopsy samples were taken from the atrium (A) and the ventricle myocardium (M) during aortic valve surgery. The dental examination included the dental and periodontal status (PS) and a collection of a microbiological sample. The detection of 11 periodontal pathogens DNA in oral and heart samples was carried out using PCR. The heart samples were prepared for detecting the LPS-binding protein (LBP), and for inflammation scoring on immunohistochemistry (IHC), comprising macrophages (CD68), LPS-binding protein receptor (CD14), and LBP (big42). 28 (93%) patients showed moderate to severe periodontitis. The periodontal pathogens in the oral samples of all patients revealed a similar distribution (3-93%). To a lesser extent and with a different distribution, these bacteria DNA were also detected in atrium and myocardium (3-27%). The LBP was detected in higher amount in atrium (0.22±0.16) versus myocardium (0.13±0.13, p=0.001). IHC showed a higher inflammation score in atrial than myocardial tissue as well as for CD14, CD68 and for LBP. Additional, periodontal findings showed a significant correlation to CD14 and CD68. The results provide evidence of the occurrence of oral bacteria DNA at the cardiac tissue, with a different impact on atrial and myocardial tissue inflammation. Influence of periodontal findings was identified, but their relevance is not yet distinct. Therefore further clinical investigations with long term implication are warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Contribution of two-pore K+ channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes.

    Science.gov (United States)

    Chai, Sam; Wan, Xiaoping; Nassal, Drew M; Liu, Haiyan; Moravec, Christine S; Ramirez-Navarro, Angelina; Deschênes, Isabelle

    2017-06-01

    Two-pore K + (K 2p ) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K 2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K 2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K 2p channels in the heart. Comparing quantitative PCR expression of K 2p channels between human heart tissue and iPSC-CMs revealed K 2p 1.1, K 2p 2.1, K 2p 5.1, and K 2p 17.1 to be higher expressed in cHVT, whereas K 2p 3.1 and K 2p 13.1 were higher in iPSC-CMs. Notably, K 2p 17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K 2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K 2p 2.1, K 2p 3.1, K 2p 6.1, and K 2p 17.1. Here, we report the expression level of 10 human K 2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K 2p 17.1 as significantly reduced in niHF tissues and K 2p 4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K 2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K + (K 2p ) channels are traditionally regarded as merely background leak channels in myriad

  7. Effect of sample size on multi-parametric prediction of tissue outcome in acute ischemic stroke using a random forest classifier

    Science.gov (United States)

    Forkert, Nils Daniel; Fiehler, Jens

    2015-03-01

    The tissue outcome prediction in acute ischemic stroke patients is highly relevant for clinical and research purposes. It has been shown that the combined analysis of diffusion and perfusion MRI datasets using high-level machine learning techniques leads to an improved prediction of final infarction compared to single perfusion parameter thresholding. However, most high-level classifiers require a previous training and, until now, it is ambiguous how many subjects are required for this, which is the focus of this work. 23 MRI datasets of acute stroke patients with known tissue outcome were used in this work. Relative values of diffusion and perfusion parameters as well as the binary tissue outcome were extracted on a voxel-by- voxel level for all patients and used for training of a random forest classifier. The number of patients used for training set definition was iteratively and randomly reduced from using all 22 other patients to only one other patient. Thus, 22 tissue outcome predictions were generated for each patient using the trained random forest classifiers and compared to the known tissue outcome using the Dice coefficient. Overall, a logarithmic relation between the number of patients used for training set definition and tissue outcome prediction accuracy was found. Quantitatively, a mean Dice coefficient of 0.45 was found for the prediction using the training set consisting of the voxel information from only one other patient, which increases to 0.53 if using all other patients (n=22). Based on extrapolation, 50-100 patients appear to be a reasonable tradeoff between tissue outcome prediction accuracy and effort required for data acquisition and preparation.

  8. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart.

    Directory of Open Access Journals (Sweden)

    Boyd R Rorabaugh

    Full Text Available We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury.Adult male and female rats received daily injections of methamphetamine (5 mg/kg or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining.Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine.Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.

  9. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart

    Science.gov (United States)

    Seeley, Sarah L.; Stoops, Thorne S.; D’Souza, Manoranjan S.

    2017-01-01

    Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse. PMID:28575091

  10. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure.

    Science.gov (United States)

    Penn, Marc S; Mendelsohn, Farrell O; Schaer, Gary L; Sherman, Warren; Farr, Maryjane; Pastore, Joseph; Rouy, Didier; Clemens, Ruth; Aras, Rahul; Losordo, Douglas W

    2013-03-01

    Preclinical studies indicate that adult stem cells induce tissue repair by activating endogenous stem cells through the stromal cell-derived factor-1:chemokine receptor type 4 axis. JVS-100 is a DNA plasmid encoding human stromal cell-derived factor-1. We tested in a phase 1, open-label, dose-escalation study with 12 months of follow-up in subjects with ischemic cardiomyopathy to see if JVS-100 improves clinical parameters. Seventeen subjects with ischemic cardiomyopathy, New York Heart Association class III heart failure, with an ejection fraction ≤40% on stable medical therapy, were enrolled to receive 5, 15, or 30 mg of JVS-100 via endomyocardial injection. The primary end points for safety and efficacy were at 1 and 4 months, respectively. The primary safety end point was a major adverse cardiac event. Efficacy end points were change in quality of life, New York Heart Association class, 6-minute walk distance, single photon emission computed tomography, N-terminal pro-brain natruretic peptide, and echocardiography at 4 and 12 months. The primary safety end point was met. At 4 months, all of the cohorts demonstrated improvements in 6-minute walk distance, quality of life, and New York Heart Association class. Subjects in the 15- and 30-mg dose groups exhibited improvements in 6-minute walk distance (15 mg: median [range]: 41 minutes [3-61 minutes]; 30 mg: 31 minutes [22-74 minutes]) and quality of life (15 mg: -16 points [+1 to -32 points]; 30 mg: -24 points [+17 to -38 points]) over baseline. At 12 months, improvements in symptoms were maintained. These data highlight the importance of defining the molecular mechanisms of stem cell-based tissue repair and suggest that overexpression of stromal cell-derived factor-1 via gene therapy is a strategy for improving heart failure symptoms in patients with ischemic cardiomyopathy.

  11. Pathological 99mTc-sestamibi myocardial perfusion scintigraphy is independently associated with emerging cardiac events in elderly patients with known or suspected coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan; Joe, Alexius Y.; Herder, Ellen; Brockmann, Holger; Biermann, Kim; Palmedo, Holger; Biersack, Hans-Juergen (Dept. of Nuclear Medicine, Univ. of Bonn (Germany)), e-mail: jan.bucerius@ukb.uni-bonn.de; Tiemann, Klaus (Dept. of Internal Medicine II, Univ. of Bonn (Germany))

    2011-02-15

    Background: Only few data are available regarding the prognostic impact of myocardial perfusion scintigraphy with 99mTc-sestamibi (MPS) regarding emerging cardiac events in elderly patients Purpose: To evaluate the prognostic value of MPS regarding emerging cardiac events in patients aged =70 years with known or suspected coronary artery disease (CAD). Material and Methods: One hundred and thirty-three patients (74.6 +- 3.7 years) who underwent exercise or pharmacological stress/rest MPS were included in this analysis. Semi-quantitative visual interpretation of MPS images was performed and Summed-Stress- (SSS), Summed-Difference- (SDS), and Summed-Rest Scores (SRS) were calculated. Multivariate logistic regression analyses were calculated for evaluation of the independent prognostic impact of MPS results and several cardiac-related patient characteristics with regard to emerging cardiac events. Kaplan-Meier survival- and log rank analyses were calculated for assessment of cardiac event-free survival. Results: Pathological SSS (OR: 3.3), angina (OR: 2.7) and ischemic ECG (OR: 3.0) were independently associated with cardiac events. Patients with pathological SSS (p = 0.005) and ischemic ECG (p = 0.012) had a significantly lower incidence of cardiac event-free survival. Conclusion: Pathological MPS is independently associated with emerging cardiac events predicting a significantly lower incidence of cardiac event-free survival in patients aged =70 years

  12. Use of Fluorescein Isothiocyanate-Inulin as a Marker for Intestinal Ischemic Injury.

    Science.gov (United States)

    AlKukhun, Abedalrazaq; Caturegli, Giorgio; Munoz-Abraham, Armando Salim; Judeeba, Sami; Patron-Lozano, Roger; Morotti, Raffaella; Rodriguez-Davalos, Manuel I; Geibel, John P

    2017-06-01

    Intestinal ischemia is observed in conditions such as mesenteric ischemia, or during traumatic events such as intestinal transplantation. Intestinal ischemia leads to pathophysiologic disruptions that present as increased fluid secretion into the intestinal lumen. We propose a novel method to detect real-time ischemic injury that is used in an in vitro model applicable to intestinal transplantation. Small intestine segments from rats were procured. The segments were attached to customized perfusion chambers. Both intestines were perfused on the vascular side with a Ringer buffer solution. The experimental buffer solution was bubbled with 100% nitrogen to mimic ischemia. Both lumens were perfused with 3 mL HEPES-Ringer solution containing 50 μM fluorescein isothiocyanate (FITC)-inulin. Intraluminal samples were collected at 15-minute intervals to measure FITC-inulin concentration using a nanofluorospectrophotometer. Intestinal tissue samples were processed and evaluated by a blinded pathologist using the Park/Chiu scoring system for grading intestinal ischemia. Samples collected from the ischemic intestine showed a significant decrease in FITC-inulin fluorescence compared with the control intestine, indicating enhanced fluid secretion. Histopathologic samples from the experimental arm exhibited higher scores of ischemic injury in comparison with the control arm, confirming the FITC-inulin as a correlation to ischemia. Fluorescein isothiocyanate-inulin can be used as a real-time volume marker to monitor the ischemic state of intestinal tissue. A positive correlation between the degree of fluid shift and presence of ischemic injury. The changes in fluorescence signal provide a potential selective method to measure real-time fluid changes inside an intestinal graft to evaluate viability. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine

    Science.gov (United States)

    Li, Huiyan; Wan, Huiying; Xia, Tian; Chen, Maohua; Zhang, Yun; Luo, Xiaoming; Li, Xiaohong

    2015-07-01

    Therapeutic angiogenesis remains the most effective method to re-establish a proper blood flow in ischemic tissues. There is a great clinical need to identify an injectable format to achieve a well accumulation following local administration and a sustained delivery of biological factors at the ischemic sites. In the current study, fragmented nanofibers with loaded traditional Chinese medicines, astragaloside IV (AT), the main active ingredient of astragalus, and ferulic acid (FA), the main ingredient of angelica, were proposed to promote the microvessel formation after intramuscular injection into ischemic hindlimbs. Fragmented fibers with average lengths of 5 (FF-5), 20 (FF-20) and 80 μm (FF-80) were constructed by the cryocutting of aligned electrospun fibers. Their dispersion in sodium alginate solution (0.2%) indicated good injectability. After injection into the quadriceps muscles of the hindlimbs, FF-20 and FF-80 fiber fragments showed higher tissue retentions than FF-5, and around 90% of the injected doses were determined after 7 days. On a hindlimb ischemia model established by ligating the femoral arteries, intramuscular injection of the mixtures of FA-loaded and AT-loaded FF-20 fiber fragments substantially reduced the muscle degeneration with minimal fibrosis formation, significantly enhanced the neovessel formation and hindlimb perfusion in the ischemic tissues, and efficiently promoted the limb salvage with few limb losses. Along with the easy manipulation and lower invasiveness for in vivo administration, fragmented fibers should become potential drug carriers for disease treatment, wound recovery and tissue repair after local injection.

  14. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  15. Hepatitis isquémica Ischemic hepatitis

    Directory of Open Access Journals (Sweden)

    Marcos Amuchástegui (h

    2006-10-01

    Full Text Available La hepatitis isquémica es una complicación sumamente infrecuente de cirugía cardiovascular. Las biopsias muestran necrosis centrolobulillar. El término de "hepatitis" fue propuesto debido al aumento de transaminasas similar a aquellas de origen infeccioso, e "isquémica" por falla en la perfusión hepática. Posteriormente se definió el término de hepatitis isquémica como cuadro de elevación aguda y reversible (dentro de las 72 horas de transaminasas de hasta 20 veces el valor normal, asociado a trastornos en la perfusión hepática, luego de haber excluido otras causas de hepatitis aguda o daño hepatocelular. Se describe el caso de un paciente de 53 años que consulta por dolor epigástrico de 12 h de evolución sin fiebre, náuseas ni vómitos, resistente a la medicación. Tenía antecedentes inmediatos de reemplazo de válvula aórtica, y estaba anticoagulado. Evolucionó con shock y fallo multiorgánico. El examen evidenció marcada ictericia y signos de taponamiento pericárdico, asociado a un aumento considerable de enzimas hepáticas. Un ecocardiograma informó signos de taponamiento cardíaco y ausencia de disección aórtica. Se decidió pericardiocentesis, extrayéndose 970 cc. de líquido sanguinolento, y hemodiálisis, con notable mejoría de su estado hemodinámico. Los valores enzimáticos disminuyeron. Los marcadores virales fueron negativos.Ischemic hepatitis is an uncommon cardiovascular surgery complication. Hepatic biopsies show centrolobulillar necrosis. The term "hepatitis" was proposed because of a raise in hepatic enzymes similar with infectious disease, and "ischemic" because of failure in hepatic perfusion. Ischemic hepatitis was then defined as an acute and reversible elevation of hepatic enzymes (within 72 h, associated with disturbance in hepatic perfusion after excluding other causes of acute hepatitis. A 53 year-old male presented complaining of a 12 h epigastric pain, without nausea or vomiting, resistant

  16. Usefulness of cardiac 125I-metaiodobenzylguanidine uptake for evaluation of cardiac sympathetic nerve abnormalities in diabetic rats

    International Nuclear Information System (INIS)

    Abe, Nanami; Kashiwagi, Atsunori; Shigeta, Yukio

    1992-01-01

    We investigated cardiac sympathetic nerve abnormalities in streptozocin-induced diabetic rats using 125 I-metaiodobenzylguanidine (MIBG). The radioactivity ratio of cardiac tissue to 1 ml blood (H/B) was used as an index of cardiac MIBG uptake. Cardiac 125 I-MIBG uptake (H/B) in 4-, 8- and 20-wk diabetic rats was 48% lower than that in control rats. Similar results were obtained even when the data were corrected for g wet tissue weight. Although there was no improvement in H/B following 2-wk insulin treatment, the H/B ratio increased significantly, to 85% of control levels, following 4 wk insulin treatment indicating the reversibility of impaired MIBG uptake in diabetic rats. In vivo reserpine treatment resulted in a 50% reduction in the H/B value in control rats. However, the treatment did not significantly suppress uptake in diabetic rats. Cardiac norepinephrine content in both * 4- and ** 8-wk diabetic rats was significantly ( * p ** p 125 I-MIBG in diabetic rats is significantly impaired due to cardiac sympathetic nerve abnormalities. These abnormalities are reversible, however, dependent on the diabetic state. (author)

  17. Cardiac diastolic dysfunction is associated with cerebral white matter lesions in elderly patients with risk factors for atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Hisashi; Senda, Shoichi; Goda, Fuminori [Kagawa Univ., Faculty of Medicine, Miki, Kagawa (Japan)

    2008-10-15

    Cerebral white matter lesions on magnetic resonance imaging (MRI) are considered to be the result of brain ischemic injury and a risk factor for clinical stroke. The purpose of this study was to elucidate the relationship between the cardiac diastolic function and cerebral white matter lesions in elderly patients with risk factors for atherosclerosis. The study subjects were 55 patients (75{+-}7 years) with risk factors for atherosclerosis including hypertension, diabetes mellitus, and dyslipidemia. Patients with symptomatic cerebrovascular events were excluded from the study. Cerebral white matter lesions, which were defined as exhibiting high intensity regions on brain MRI, were evaluated with the degrees of periventricular hyperintensity (PVH) according to the Japanese Brain Dock Guidelines of 2003. Peak early diastolic mitral annular velocity (E' velocity) was measured by tissue Doppler echocardiography, and was used as a parameter of cardiac diastolic function. The mean value of E' velocity was decreased due to the cardiac diastolic dysfunction (5.2{+-}1.4 cm/s). In addition, the E' velocity was inversely correlated with the degree of PVH ({rho}=-0.701, p<0.001). Stepwise regression analysis showed that the decrease in the E' velocity ({beta} coefficient=-0.42, p<0.001) and the presence of hypertension ({beta} coefficient=0.31, p=0.001) were independent determinants of the degree of PVH. Thus, cardiac diastolic dysfunction is correlated to the severity of cerebral white matter lesions, suggesting the cardio-cerebral connection in elderly patients with risk factors for atherosclerosis. (author)

  18. Current status of stem cells in cardiac repair.

    Science.gov (United States)

    Henning, Robert J

    2018-03-01

    One out of every two men and one out of every three women greater than the age of 40 will experience an acute myocardial infarction (AMI) at some time during their lifetime. As more patients survive their AMIs, the incidence of congestive heart failure (CHF) is increasing. 6 million people in the USA have ischemic cardiomyopathies and CHF. The search for new and innovative treatments for patients with AMI and CHF has led to investigations and use of human embryonic stem cells, cardiac stem/progenitor cells, bone marrow-derived mononuclear cells and mesenchymal stem cells for treatment of these heart conditions. This paper reviews current investigations with human embryonic, cardiac, bone marrow and mesenchymal stem cells, and also stem cell paracrine factors and exosomes.

  19. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  20. Disability-adjusted Life Years Lost to Ischemic Heart Disease in Spain.

    Science.gov (United States)

    Fernández de Larrea-Baz, Nerea; Morant-Ginestar, Consuelo; Catalá-López, Ferrán; Gènova-Maleras, Ricard; Álvarez-Martín, Elena

    2015-11-01

    The health indicator disability-adjusted life years combines the fatal and nonfatal consequences of a disease in a single measure. The aim of this study was to evaluate the burden of ischemic heart disease in 2008 in Spain by calculating disability-adjusted life years. The years of life lost due to premature death were calculated using the ischemic heart disease deaths by age and sex recorded in the Spanish National Institute of Statistics and the life-table in the 2010 Global Burden of Disease study. The years lived with disability, calculated for acute coronary syndrome, stable angina, and ischemic heart failure, used hospital discharge data and information from population studies. Disability weights were taken from the 2010 Global Burden of Disease study. We calculated crude and age standardized rates (European Standard Population). Univariate sensitivity analyses were performed. In 2008, 539 570 disability-adjusted life years were lost due to ischemic heart disease in Spain (crude rate, 11.8/1000 population; standardized, 8.6/1000). Of the total years lost, 96% were due to premature death and 4% due to disability. Among the years lost due to disability, heart failure accounted for 83%, stable angina 15%, and acute coronary syndrome 2%. In the sensitivity analysis, weighting by age was the factor that changed the results to the greatest degree. Ischemic heart disease continues to have a huge impact on the health of our population, mainly because of premature death. The results of this study provide an overall vision of the epidemiologic situation in Spain and could serve as the basis for evaluating interventions targeting the acute and chronic manifestations of cardiac ischemia. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Risk factor profile by etiological subtype of ischemic stroke in the young.

    Science.gov (United States)

    Jaffre, Aude; Ruidavets, Jean Bernard; Calviere, Lionel; Viguier, Alain; Ferrieres, Jean; Larrue, Vincent

    2014-05-01

    Studies of risk factors for ischemic stroke in the young have generally considered ischemic stroke as a whole. The purpose of the present study was to evaluate the association of traditional cardiovascular risk factors with etiological subtypes of ischemic stroke in young adults. Retrospective review of data from patients aged 16-54 years consecutively treated for first-ever ischemic stroke in an academic stroke unit. Definite causes of stroke were classified using the ASCO (A for atherothrombosis, S for small vessel disease, C for cardiac source, O for other cause) classification system. We used multinomial logistic regression analysis to evaluate associations of age, gender, smoking, hypertension, diabetes and blood lipids with each etiological subtype. A total of 400 patients were included: 244 men (61.1%), 156 women (38.9%); mean age (SD) 44.5 (8.5) years. A definite cause of stroke could be identified in 202 (50.5%) patients. Definite causes of stroke included: atherothrombosis, 72 (18.0%) patients; cardioembolism, 37 (9.25%) patients; small vessel disease, 28 (7.0%) patients; other definite cause, 65 (16.25%) patients including 44 patients with carotid or vertebral artery dissection. Atherothrombosis was associated with age, smoking, diabetes, hypertension and low HDL-cholesterol. Small vessel disease was associated with age and hypertension. Cardioembolism was associated with age. The risk factor profile differs between etiological subtypes of ischemic stroke in young adults. Our findings emphasize the impact of smoking, diabetes, hypertension and low HDL-cholesterol as risk factors for atherothrombosis, and of hypertension as a risk factor for small vessel disease in young adults. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Immediate electrical storm of Torsades de Pointes after CRT-D implantation in an ischemic cardiomyopathy patient

    Directory of Open Access Journals (Sweden)

    Adnan Kaya, MD

    2015-06-01

    Full Text Available Cardiac resynchronization therapy with an implantable cardioverter-defibrillator (CRT-D is the preferred treatment for patients with severe heart failure, dyssynchrony, and an increased risk of sudden cardiac death or for primary ventricular arrhythmia survivors. Rarely, left ventricular epicardial pacing can induce ventricular tachyarrhythmia rather than a beneficial effect. We describe an ischemic cardiomyopathy patient who underwent CRT-D therapy and developed sustained torsades de pointes (TdP immediately after switching to biventricular pacing (BVP mode. Here, TdP possibly developed owing to the change in the dispersion of repolarization of the left ventricle myocardium. The diagnosis and management of BVP-induced ventricular arrhythmia is discussed.

  3. Intravenous thrombolysis with recombinant tissue plasminogen activator for ischemic stroke patients over 80 years old: the Fukuoka Stroke Registry.

    Directory of Open Access Journals (Sweden)

    Ryu Matsuo

    Full Text Available The benefit of intravenous recombinant tissue plasminogen activator (rt-PA therapy for very old patients with acute ischemic stroke remains unclear. The aim of this study was to elucidate the efficacy and safety of intravenous rt-PA therapy for patients over 80 years old.Of 13,521 stroke patients registered in the Fukuoka Stroke Registry in Japan from June 1999 to February 2013, 953 ischemic stroke patients who were over 80 years old, hospitalized within 3 h of onset, and not treated with endovascular therapy were included in this study. Among them, 153 patients were treated with intravenous rt-PA (0.6 mg/kg. For propensity score (PS-matched case-control analysis, 148 patients treated with rt-PA and 148 PS-matched patients without rt-PA therapy were selected by 1:1 matching with propensity for using rt-PA. Clinical outcomes were neurological improvement, good functional outcome at discharge, in-hospital mortality, and hemorrhagic complications (any intracranial hemorrhage [ICH], symptomatic ICH, and gastrointestinal bleeding.In the full cohort of 953 patients, rt-PA use was associated positively with neurological improvement and good functional outcome, and negatively with in-hospital mortality after adjustment for multiple confounding factors. In PS-matched case-control analysis, patients treated with rt-PA were still at lower risk for unfavorable clinical outcomes than non-treated patients (neurological improvement, odds ratio 2.67, 95% confidence interval 1.61-4.40; good functional outcome, odds ratio 2.23, 95% confidence interval 1.16-4.29; in-hospital mortality, odds ratio 0.30, 95% confidence interval 0.13-0.65. There was no significant association between rt-PA use and risk of hemorrhagic complications in the full and PS-matched cohorts.Intravenous rt-PA therapy was associated with improved clinical outcomes without significant increase in risk of hemorrhagic complications in very old patients (aged>80 years with acute ischemic stroke.

  4. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  5. Impact of Cardiac Contractility during Cerebral Blood Flow in Ischemia

    Directory of Open Access Journals (Sweden)

    Silver, Brian

    2011-05-01

    Full Text Available Objective: In cerebral regions affected by ischemia, intrinsic vascular autoregulation is often lost. Blood flow delivery depends upon cardiac function and may be influenced by neuro-endocrine mediated myocardial suppression. Our objective is to evaluate the relation between ejection fraction (EF and transcranial doppler (TCD peak systolic velocities (PSV in patients with cerebral ischemic events.Methods: We conducted a retrospective cohort study from an existing TCD registry. We evaluated patients admitted within 24 hours of onset of a focal neurological deficit who had an echocardiogram and TCD performed within 72 hours of admission.Results: We identified 58 patients from March to October 2003. Eighty-one percent (n=47 had a hospital discharge diagnosis of ischemic stroke and 18.9% (n=11 had a diagnosis of transient ischemic attack. Fourteen patients had systolic dysfunction (EF50% compared to those with systolic dysfunction (EF<50% was as follows: middle cerebral artery 62.0 + 28.6 cm/s vs. 51.0 + 23.3 cm/s, p=0.11; anterior cerebral artery 52.1 + 21.6 cm/s vs. 45.9 + 22.7 cm/s, p=0.28; internal carotid artery 56.5 + 20.1 cm/s vs. 46.4 + 18.4 cm/s, p=0.04; ophthalmic artery 18.6 + 7.2 cm/s vs. 15.3 + 5.2 cm/s, p=0.11; vertebral artery 34.0 + 13.9 cm/s vs. 31.6 + 15.0 cm/s, p=0.44.Conclusion: Cerebral blood flow in the internal carotid artery territory appears to be higher in cerebral ischemia patients with preserved left ventricular contractility. Our study was unable to differentiate pre-existing cardiac dysfunction from neuro-endocrine mediated myocardial stunning. Future research is necessary to better understand heart-brain interactions in this setting and to further explore the underlying mechanisms and consequences of neuro-endocrine mediated cardiac dysfunction. [West J Emerg Med. 2011;12(2:227-232.

  6. Predicting Long-term Ischemic Events Using Routine Clinical Parameters in Patients with Coronary Artery Disease: The OPT-CAD Risk Score.

    Science.gov (United States)

    Han, Yaling; Chen, Jiyan; Qiu, Miaohan; Li, Yi; Li, Jing; Feng, Yingqing; Qiu, Jian; Meng, Liang; Sun, Yihong; Tao, Guizhou; Wu, Zhaohui; Yang, Chunyu; Guo, Jincheng; Pu, Kui; Chen, Shaoliang; Wang, Xiaozeng

    2018-06-05

    The prognosis of patients with coronary artery disease (CAD) at hospital discharge was constantly varying, and post-discharge risk of ischemic events remain a concern. However, risk prediction tools to identify risk of ischemia for these patients has not yet been reported. We sought to develop a scoring system for predicting long-term ischemic events in CAD patients receiving antiplatelet therapy that would be beneficial in appropriate personalized decision-making for these patients. In this prospective Optimal antiPlatelet Therapy for Chinese patients with Coronary Artery Disease (OPT-CAD, NCT01735305) registry, a total of 14,032 patients with CAD receiving at least one kind of antiplatelet agent were enrolled from 107 centers across China, from January 2012 to March 2014. The risk scoring system was developed in a derivation cohort (enrolled initially 10,000 patients in the database) using a logistic regression model and was subsequently tested in a validation cohort (the last 4,032 patients). Points in risk score was assigned based on the multivariable odds ratio of each factor. Ischemic events were defined as the composite of cardiac death, myocardial infarction or stroke. Ischemic events occurred in 342 (3.4%) patients in the derivation cohort and 160 (4.0%) patients in the validation cohort during 1-year follow-up. The OPT-CAD score, ranging from 0-257 points, consist of 10 independent risk factors, including age (0-71 points), heart rates (0-36 points), hypertension (0-20 points), prior myocardial infarction (16 points), prior stroke (16 points), renal insufficient (21 points), anemia (19 points), low ejection fraction (22 points), positive cardiac troponin (23 points) and ST-segment deviation (13 points). In predicting 1-year ischemic events, the area under receiver operating characteristics curve were 0.73 and 0.72 in derivation and validation cohort, respectively. The incidences of ischemic events in low- (0-90 points), medium- (91-150 points) and

  7. The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection.

    Science.gov (United States)

    Johnsen, Jacob; Pryds, Kasper; Salman, Rasha; Løfgren, Bo; Kristiansen, Steen Buus; Bøtker, Hans Erik

    2016-03-01

    Remote ischemic preconditioning (rIPC), induced by cycles of transient limb ischemia and reperfusion (IR), is cardioprotective. The optimal rIPC-algorithm is not established. We investigated the effect of cycle numbers and ischemia duration within each rIPC-cycle and the influence of effector organ mass on the efficacy of cardioprotection. Furthermore, the duration of the early phase of protection by rIPC was investigated. Using a tourniquet tightened at the inguinal level, we subjected C57Bl/6NTac mice to intermittent hind-limb ischemia and reperfusion. The rIPC-protocols consisted of (I) two, four, six or eight cycles, (II) 2, 5 or 10 min of ischemia in each cycle, (III) single or two hind-limb occlusions and (IV) 0.5, 1.5, 2.0 or 2.5 h intervals from rIPC to index cardiac ischemia. All rIPC algorithms were followed by 5 min of reperfusion. The hearts were subsequently exposed to 25 min of global ischemia and 60 min of reperfusion in an ex vivo Langendorff model. Cardioprotection was evaluated by infarct size and post-ischemic hemodynamic recovery. Four to six rIPC cycles yielded significant cardioprotection with no further protection by eight cycles. Ischemic cycles lasting 2 min offered the same protection as cycles of 5 min ischemia, whereas prolonged cycles lasting 10 min abrogated protection. One and two hind-limb preconditioning were equally protective. In our mouse model, the duration of protection by rIPC was 1.5 h. These findings indicate that the number and duration of cycles rather than the tissue mass exposed to rIPC determines the efficacy of rIPC.

  8. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins.

    Directory of Open Access Journals (Sweden)

    Eric K Johnson

    Full Text Available Mutations affecting the expression of dystrophin result in progressive loss of skeletal muscle function and cardiomyopathy leading to early mortality. Interestingly, clinical studies revealed no correlation in disease severity or age of onset between cardiac and skeletal muscles, suggesting that dystrophin may play overlapping yet different roles in these two striated muscles. Since dystrophin serves as a structural and signaling scaffold, functional differences likely arise from tissue-specific protein interactions. To test this, we optimized a proteomics-based approach to purify, identify and compare the interactome of dystrophin between cardiac and skeletal muscles from as little as 50 mg of starting material. We found selective tissue-specific differences in the protein associations of cardiac and skeletal muscle full length dystrophin to syntrophins and dystrobrevins that couple dystrophin to signaling pathways. Importantly, we identified novel cardiac-specific interactions of dystrophin with proteins known to regulate cardiac contraction and to be involved in cardiac disease. Our approach overcomes a major challenge in the muscular dystrophy field of rapidly and consistently identifying bona fide dystrophin-interacting proteins in tissues. In addition, our findings support the existence of cardiac-specific functions of dystrophin and may guide studies into early triggers of cardiac disease in Duchenne and Becker muscular dystrophies.

  9. Ischemic Volume and Neurological Deficit: Correlation of Computed Tomography Perfusion with the National Institutes of Health Stroke Scale Score in Acute Ischemic Stroke.

    Science.gov (United States)

    Furlanis, Giovanni; Ajčević, Miloš; Stragapede, Lara; Lugnan, Carlo; Ridolfi, Mariana; Caruso, Paola; Naccarato, Marcello; Ukmar, Maja; Manganotti, Paolo

    2018-04-30

    The National Institutes of Health Stroke Scale (NIHSS) is the most adopted stroke patients' evaluation tool in emergency settings to assess the severity of stroke and to determine the patients' eligibility for specific treatments. Computed tomography perfusion (CTP) is crucial to identify salvageable tissue that can benefit from the reperfusion treatment. The aim of this study is to identify the relation between the NIHSS scores and the hypoperfused volumes evaluated by CTP in patients with hyperacute ischemic stroke. This retrospective study was conducted on 105 patients with ischemic stroke who underwent NIHSS assessment and CTP in the hyperacute phase. Hypoperfused volume was evaluated by CTP maps processed with semi-automatic algorithm. An analysis was conducted to determine the degree of correlation between the NIHSS scores and the ischemic lesion volumes and to investigate the relation between the anterior and the posterior circulation strokes, as well as between the right and the left hemispheric strokes. A significant correlation was found between ischemic volume and NIHSS score at baseline (r = .82; P correlation was identified in the anterior circulation stroke (r = .76; P correlated for the left and the right hemispheric strokes (r = .83 and .81; P correlation between the baseline NIHSS score and the ischemic volume estimated by CTP. We confirmed that NIHSS is a reliable predictor of perfusion deficits in acute ischemic stroke. CTP allows fast imaging assessment in the hyperacute phase. The results highlight the importance of these diagnostic tools in the assessment of stroke severity and in acute decision-making. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Maternal cardiac metabolism in pregnancy

    Science.gov (United States)

    Liu, Laura X.; Arany, Zolt

    2014-01-01

    Pregnancy causes dramatic physiological changes in the expectant mother. The placenta, mostly foetal in origin, invades maternal uterine tissue early in pregnancy and unleashes a barrage of hormones and other factors. This foetal ‘invasion’ profoundly reprogrammes maternal physiology, affecting nearly every organ, including the heart and its metabolism. We briefly review here maternal systemic metabolic changes during pregnancy and cardiac metabolism in general. We then discuss changes in cardiac haemodynamic during pregnancy and review what is known about maternal cardiac metabolism during pregnancy. Lastly, we discuss cardiac diseases during pregnancy, including peripartum cardiomyopathy, and the potential contribution of aberrant cardiac metabolism to disease aetiology. PMID:24448314

  11. Comparison of the chloride channel activator lubiprostone and the oral laxative Polyethylene Glycol 3350 on mucosal barrier repair in ischemic-injured porcine intestine.

    Science.gov (United States)

    Moeser, Adam-J; Nighot, Prashant-K; Roerig, Birgit; Ueno, Ryuji; Blikslager, Anthony-T

    2008-10-21

    To investigate the effects of lubiprostone and Polyethylene Glycol 3350 (PEG) on mucosal barrier repair in ischemic-injured porcine intestine. Ileum from 6 piglets (approximately 15 kg body weight) was subjected to ischemic conditions by occluding the local mesenteric circulation for 45 min in vivo. Ileal tissues from each pig were then harvested and mounted in Ussing chambers and bathed in oxygenated Ringer's solution in vitro. Intestinal barrier function was assessed by measuring transepithelial electrical resistance (TER) and mucosal-to-serosal fluxes of (3)H-mannitol and (14)C-inulin. Statistical analyses of data collected over a 120-min time course included 2-way ANOVA for the effects of time and treatment on indices of barrier function. Application of 1 micromol/L lubiprostone to the mucosal surface of ischemic-injured ileum in vitro induced significant elevations in TER compared to non-treated tissue. Lubiprostone also reduced mucosal-to-serosal fluxes of (3)H-mannitol and (14)C-inulin. Alternatively, application of a polyethylene laxative (PEG, 20 mmol/L) to the mucosal surface of ischemic tissues significantly increased flux of (3)H-mannitol and (14)C-inulin. This experiment demonstrates that lubiprostone stimulates recovery of barrier function in ischemic intestinal tissues whereas the PEG laxative had deleterious effects on mucosal repair. These results suggest that, unlike osmotic laxatives, lubiprostone stimulates repair of the injured intestinal barrier.

  12. Development and Implementation of Discrete Polymeric Microstructural Cues for Applications in Cardiac Tissue Engineering

    Science.gov (United States)

    Pinney, James Richardson

    Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. Despite care in the acute setting of MI, subsequent development of scar tissue and a lack of treatments for this maladaptive response lead to a poor prognosis. This has increased burdens on the cost of healthcare due to chronic disability. Here a novel therapeutic strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructural cues to attenuate the fibrotic response and improve functional outcomes is presented. Additionally, applications of integrated chemical functionalizations into discrete, micro-scale polymer structures are discussed in the realm of tissue engineering in order to impart enhancements in in vivo localization, three-dimensional manipulation and drug delivery. Polymeric microstructures, termed "microrods" and "microcubes", were fabricated using photolithographic techniques and studied in three-dimensional culture models of the fibrotic environment and by direct injection into the infarct zone of adult Sprague-Dawley rats. In vitro gene expression and functional and histological results were analyzed, showing a dose-dependent down-regulation fibrotic indicators and improvement in cardiac function. Furthermore, iron oxide nanoparticles and functionalized fluorocarbons were incorporated into the polymeric microdevices to promote in situ visualization by magnetic resonance imaging as well as to facilitate the manipulation and alignment of microstructural cues in a tissue-realistic environment. Lastly, successful encapsulation of native MGF peptide within microrods is demonstrated with release over two weeks as a proof of concept in the ability to locally deliver myogenic or supportive pharmacotherapeutics to the injured myocardium. This work demonstrates the efficacy and versatility of discrete microtopographical cues to attenuate the fibrotic response after MI and suggests a novel

  13. Tissue plasminogen activator; identifying major barriers related to intravenous injection in ischemic acute cerebral infraction

    Directory of Open Access Journals (Sweden)

    Fariborz Khorvash

    2017-01-01

    Full Text Available Background: According to previous publications, in patients with acute ischemic cerebral infarction, thrombolytic therapy using intravenous tissue plasminogen activator (IV-tPA necessitates precise documentation of symptoms' onset. The aim of this study was to identify major barriers related to the IV-tPA injection in such patients. Materials and Methods: Between the year 2014-2015, patients with definitive diagnosis of acute cerebral infarction (n = 180 who attended the neurology ward located at the Isfahan Alzahra Hospital were studied. To investigate barriers related to door to IV-tPA needle time, personal reasons, and criteria for inclusion or exclusion of patients, three questionnaire forms were designed based on the Food and Drug Administration-approved indications or contraindications. Results: The mean age of males versus females was 60 versus 77.5 years (ranged 23–93 vs. 29–70 years, respectively. Out of total population, only 10.7% transferred to hospital in <4.5 h after the onset of symptoms. Regarding to eligibility for IV-tPA, 68.9% of total population have had criteria for such treatment. Concerning to both items such as transferring to hospital in <4.5 h after the onset of symptoms and eligibility for IV-tPA, only 6.6% of total population met the criteria for such management. There was ignorance or inattention to symptoms in 75% of population studied. There was a mean of 195.92 ± 6.65 min (182.8–209.04 min for door to IV-tPA needle time. Conclusion: Despite the international guidelines for IV-tPA injection within 3–4.5 h of ischemic stroke symptoms' onset, the results of this study revealed that falling time due to ignorance of symptoms, literacy, and living alone might need further attention. As a result, to decrease death and disability, educational programs related to the symptoms' onset by consultant neurologist in Isfahan/Iran seem to be advantageous.

  14. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats

    Science.gov (United States)

    FAROOQUI, Mariya; ERICSON, Marna E; GUPTA, Kalpna

    2016-01-01

    Background Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. Methods We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-PDGFR-β were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. Results Fentanyl significantly promoted wound closure as compared to PBS. Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho PDGFR-β co-localized with CD31 co-staining for vasculature. Conclusions Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing. PMID:25266258

  15. DRAGON score predicts functional outcomes in acute ischemic stroke patients receiving both intravenous tissue plasminogen activator and endovascular therapy.

    Science.gov (United States)

    Wang, Arthur; Pednekar, Noorie; Lehrer, Rachel; Todo, Akira; Sahni, Ramandeep; Marks, Stephen; Stiefel, Michael F

    2017-01-01

    The DRAGON score, which includes clinical and computed tomographic (CT) scan parameters, predicts functional outcomes in ischemic stroke patients treated with intravenous tissue plasminogen activator (IV tPA). We assessed the utility of the DRAGON score in predicting functional outcome in stroke patients receiving both IV tPA and endovascular therapy. A retrospective chart review of patients treated at our institution from February 2009 to October 2015 was conducted. All patients with computed tomography angiography (CTA) proven large vessel occlusions (LVO) who underwent intravenous thrombolysis and endovascular therapy were included. Baseline DRAGON scores and modified Rankin Score (mRS) at the time of hospital discharge was calculated. Good outcome was defined as mRS ≤3. Fifty-eight patients with LVO of the anterior circulation were studied. The mean DRAGON score of patients on admission was 5.3 (range, 3-8). All patients received IV tPA and endovascular therapy. Multivariate analysis demonstrated that DRAGON scores ≥7 was associated with higher mRS ( P DRAGON scores ≤6. Patients with DRAGON scores of 7 and 8 on admission had a mortality rate of 3.8% and 40%, respectively. The DRAGON score can help predict better functional outcomes in ischemic stroke patients receiving both IV tPA and endovascular therapy. This data supports the use of the DRAGON score in selecting patients who could potentially benefit from more invasive therapies such as endovascular treatment. Larger prospective studies are warranted to further validate these results.

  16. Effects of autologous bone marrow stem cell transplantation on beta-adrenoceptor density and electrical activation pattern in a rabbit model of non-ischemic heart failure

    Directory of Open Access Journals (Sweden)

    Ullmann Cris

    2006-06-01

    Full Text Available Abstract Background Since only little is known on stem cell therapy in non-ischemic heart failure we wanted to know whether a long-term improvement of cardiac function in non-ischemic heart failure can be achieved by stem cell transplantation. Methods White male New Zealand rabbits were treated with doxorubicine (3 mg/kg/week; 6 weeks to induce dilative non-ischemic cardiomyopathy. Thereafter, we obtained autologous bone marrow stem cells (BMSC and injected 1.5–2.0 Mio cells in 1 ml medium by infiltrating the myocardium via a left anterolateral thoracotomy in comparison to sham-operated rabbits. 4 weeks later intracardiac contractility was determined in-vivo using a Millar catheter. Thereafter, the heart was excised and processed for radioligand binding assays to detect β1- and β2-adrenoceptor density. In addition, catecholamine plasma levels were determined via HPLC. In a subgroup we investigated cardiac electrophysiology by use of 256 channel mapping. Results In doxorubicine-treated animals β-adrenoceptor density was significantly down-regulated in left ventricle and septum, but not in right ventricle, thereby indicating a typical left ventricular heart failure. Sham-operated rabbits exhibited the same down-regulation. In contrast, BMSC transplantation led to significantly less β-adrenoceptor down-regulation in septum and left ventricle. Cardiac contractility was significantly decreased in heart failure and sham-operated rabbits, but was significantly higher in BMSC-transplanted hearts. Norepinephrine and epinephrine plasma levels were enhanced in heart failure and sham-operated animals, while these were not different from normal in BMSC-transplanted animals. Electrophysiological mapping revealed unaltered electrophysiology and did not show signs of arrhythmogeneity. Conclusion BMSC transplantation improves sympathoadrenal dysregualtion in non-ischemic heart failure.

  17. Predicting acute cardiac rejection from donor heart and pre-transplant recipient blood gene expression.

    Science.gov (United States)

    Hollander, Zsuzsanna; Chen, Virginia; Sidhu, Keerat; Lin, David; Ng, Raymond T; Balshaw, Robert; Cohen-Freue, Gabriela V; Ignaszewski, Andrew; Imai, Carol; Kaan, Annemarie; Tebbutt, Scott J; Wilson-McManus, Janet E; McMaster, Robert W; Keown, Paul A; McManus, Bruce M

    2013-02-01

    Acute rejection in cardiac transplant patients remains a contributory factor to limited survival of implanted hearts. Currently, there are no biomarkers in clinical use that can predict, at the time of transplantation, the likelihood of post-transplant acute cellular rejection. Such a development would be of great value in personalizing immunosuppressive treatment. Recipient age, donor age, cold ischemic time, warm ischemic time, panel-reactive antibody, gender mismatch, blood type mismatch and human leukocyte antigens (HLA-A, -B and -DR) mismatch between recipients and donors were tested in 53 heart transplant patients for their power to predict post-transplant acute cellular rejection. Donor transplant biopsy and recipient pre-transplant blood were also examined for the presence of genomic biomarkers in 7 rejection and 11 non-rejection patients, using non-targeted data mining techniques. The biomarker based on the 8 clinical variables had an area under the receiver operating characteristic curve (AUC) of 0.53. The pre-transplant recipient blood gene-based panel did not yield better performance, but the donor heart tissue gene-based panel had an AUC = 0.78. A combination of 25 probe sets from the transplant donor biopsy and 18 probe sets from the pre-transplant recipient whole blood had an AUC = 0.90. Biologic pathways implicated include VEGF- and EGFR-signaling, and MAPK. Based on this study, the best predictive biomarker panel contains genes from recipient whole blood and donor myocardial tissue. This panel provides clinically relevant prediction power and, if validated, may personalize immunosuppressive treatment and rejection monitoring. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  18. Effects of Momordica charantia (Bitter Melon on Ischemic Diabetic Myocardium

    Directory of Open Access Journals (Sweden)

    Attila Czompa

    2017-03-01

    Full Text Available Objective: A rat model is here used to test a hypothesis that Momordica charantia (Bitter melon (BM extract favorably alters processes in cardiovascular tissue and is systemically relevant to the pathophysiology of type 2 diabetes (T2DM and related cardiovascular disease. Methods: Male Lean and Zucker Obese (ZO rats were gavage-treated for six weeks with 400 mg/kg body weight bitter melon (BM extract suspended in mucin–water vehicle, or with vehicle (Control. Animals were segregated into four treatment groups, 10 animals in each group, according to strain (Lean or ZO and treatment (Control or BM. Following six-week treatment periods, peripheral blood was collected from selected animals, followed by sacrifice, thoracotomy and mounting of isolated working heart setup. Results: Body mass of both Lean and ZO rats was unaffected by treatment, likewise, peripheral blood fasting glucose levels showed no significant treatment-related effects. However, some BM treatment-related improvement was noted in postischemic cardiac functions when Lean, BM-treated animals were compared to vehicle treated Lean control rats. Treatment of Lean, but not ZO, rats significantly reduced the magnitude of infarcted zone in isolated hearts subjected to 30 min of ischemia followed by 2 h of working mode reperfusion. Immunohistochemical demonstration of caspase-3 expression by isolated heart tissues subjected to 30 min of ischemia followed by 2 h of reperfusion, revealed significant correlation between BM treatment and reduced expression of this enzyme in hearts obtained from both Lean and ZO animals. The hierarchy and order of caspase-3 expression from highest to lowest was as follows: ZO rats receiving vehicle > ZO rats receiving BM extract > Lean rats treated receiving vehicle > Lean rats administered BM extract. Outcomes of analyses of peripheral blood content of cardiac-related analytics: with particular relevance to clinical application was a significant elevation in

  19. Effects of Momordica charantia (Bitter Melon) on Ischemic Diabetic Myocardium.

    Science.gov (United States)

    Czompa, Attila; Gyongyosi, Alexandra; Szoke, Kitti; Bak, Istvan; Csepanyi, Evelin; Haines, David D; Tosaki, Arpad; Lekli, Istvan

    2017-03-20

    Objective : A rat model is here used to test a hypothesis that Momordica charantia (Bitter melon (BM)) extract favorably alters processes in cardiovascular tissue and is systemically relevant to the pathophysiology of type 2 diabetes (T2DM) and related cardiovascular disease. Methods : Male Lean and Zucker Obese (ZO) rats were gavage-treated for six weeks with 400 mg/kg body weight bitter melon (BM) extract suspended in mucin-water vehicle, or with vehicle (Control). Animals were segregated into four treatment groups, 10 animals in each group, according to strain (Lean or ZO) and treatment (Control or BM). Following six-week treatment periods, peripheral blood was collected from selected animals, followed by sacrifice, thoracotomy and mounting of isolated working heart setup. Results : Body mass of both Lean and ZO rats was unaffected by treatment, likewise, peripheral blood fasting glucose levels showed no significant treatment-related effects. However, some BM treatment-related improvement was noted in postischemic cardiac functions when Lean, BM-treated animals were compared to vehicle treated Lean control rats. Treatment of Lean, but not ZO, rats significantly reduced the magnitude of infarcted zone in isolated hearts subjected to 30 min of ischemia followed by 2 h of working mode reperfusion. Immunohistochemical demonstration of caspase-3 expression by isolated heart tissues subjected to 30 min of ischemia followed by 2 h of reperfusion, revealed significant correlation between BM treatment and reduced expression of this enzyme in hearts obtained from both Lean and ZO animals. The hierarchy and order of caspase-3 expression from highest to lowest was as follows: ZO rats receiving vehicle > ZO rats receiving BM extract > Lean rats treated receiving vehicle > Lean rats administered BM extract. Outcomes of analyses of peripheral blood content of cardiac-related analytics: with particular relevance to clinical application was a significant elevation in blood of ZO

  20. Autonomic cardiac innervation

    Science.gov (United States)

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  1. [Cardiac cachexia].

    Science.gov (United States)

    Miján, Alberto; Martín, Elvira; de Mateo, Beatriz

    2006-05-01

    Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.

  2. Spectral pulsed-wave tissue Doppler imaging lateral-to-septal delay fails to predict clinical or echocardiographic outcome after cardiac resynchronization therapy

    NARCIS (Netherlands)

    O.I.I. Soliman (Osama Ibrahim Ibrahim); D.A.M.J. Theuns (Dominic); M.L. Geleijnse (Marcel); A. Nemes (Attila); K. Caliskan (Kadir); W.B. Vletter (Wim); L.J.L.M. Jordaens (Luc); F.J. ten Cate (Folkert)

    2007-01-01

    textabstractAims: The current study sought to assess if pre-implantation lateral-to-septal delay (LSD) ≥60 ms assessed by spectral pulsed-wave myocardial tissue Doppler imaging (PW-TDI) could predict successful long-term outcome after cardiac resynchronization therapy (CRT). Methods and results

  3. Perioperative erythropoietin protects the CNS against ischemic lesions in patients after open heart surgery.

    Science.gov (United States)

    Lakič, Nikola; Mrak, Miha; Šušteršič, Miha; Rakovec, Peter; Bunc, Matjaž

    2016-12-01

    The aim of this study was to establish erythropoietin as a protective factor against brain ischemia during open heart surgery. A total of 36 consecutive patients scheduled for revascularization heart surgery were included in the study. Of the patients 18 received 3 intravenous doses of recombinant human erythropoietin (rHuEpo, 24,000 IU) and 18 patients received a placebo. Magnetic resonance imaging (MRI) to detect new brain ischemic lesions was performed. Additionally, S100A, S100B, neuron-specific enolase A and B (NSE-A and B) and the concentration of antibodies against N‑methyl-D-aspartate receptors (NMDAR) to identify new neurological complications were determined. Patients who received rHuEpo showed no postoperative ischemic changes in the brain on MRI images. In the control group 5 (27.8 %) new ischemic lesions were found. The NMDAR antibody concentration, S100A, S100B and NSE showed no significant differences between the groups for new cerebral ischemia. High levels of lactate before and after external aortic compression (p = 0.022 and p = 0.048, respectively) and duration of operation could predict new ischemic lesions (p = 0.009). The addition of rHuEpo reduced the formation of lesions detectable by MRI in the brain and could be used clinically as neuroprotection in cardiac surgery.

  4. Unstandardized treatment of electroencephalographic status epilepticus does not improve outcome of comatose patients after cardiac arrest

    NARCIS (Netherlands)

    Hofmeijer, Jeannette; Cloostermans, M.C.; Beishuizen, A.; van Putten, Michel Johannes Antonius Maria

    2014-01-01

    Objective: Electroencephalographic status epilepticus occurs in 9–35% of comatose patients after cardiac arrest. Mortality is 90–100%. It is unclear whether (some) seizure patterns represent a condition in which anti-epileptic treatment may improve outcome, or severe ischemic damage, in which

  5. Association of ischemic stroke, hormone therapy, and right to left shunt in postmenopausal women.

    Science.gov (United States)

    Greep, Nancy C; Liebeskind, David S; Gevorgyan, Rubine; Truong, Tam; Cua, Bennett; Tseng, Chi-Hong; Dodick, David W; Demaerschalk, Bart M; Thaler, David E; Tobis, Jonathan M

    2014-09-01

    Postmenopausal hormone therapy (HT) increases the risk of venous thrombosis and ischemic stroke. We postulated that HT might increase the risk of ischemic stroke by promoting venous clots that travel to the brain through a right to left shunt (RLS). A total of 2,389 records were studied. After eliminating the premenopausal patients, and those with TIAs and non-ischemic strokes, the medical records of 1846 postmenopausal women hospitalized at four institutions for ischemic stroke were reviewed to identify those who had undergone an adequate study to assess for RLS. The proportion of women with a shunt in users and non-users of HT was compared in stroke patients and in a reference population consisting of postmenopausal women undergoing elective cardiac catheterization. There were 363 (20%) records that had complete data and were included in the analysis. A shunt was more prevalent in patients with a cryptogenic stroke than in patients with a stroke of known cause (55/88 (63%) vs. 53/275 (19%), P women 31/136 (23%), and the proportion of women with a shunt was similar in non-users and current users of HT (14% vs. 20%, P = 0.40). However, among patients with a cryptogenic stroke, the prevalence of a shunt was 1.5 times higher in current users than non-users of HT (82% vs. 56%, P = 0.04). Approximately 23% of older women have a RLS. HT in these women may increase the risk of ischemic stroke by promoting paradoxical embolism. © 2014 Wiley Periodicals, Inc.

  6. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  7. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-01-01

    Full Text Available This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC- derived exosomes (hucMSC-exosomes have a protective effect on acute myocardial infarction (AMI. Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein were intravenously administrated immediately following ligation of the left anterior descending (LAD coronary artery in rats. Cardiac function was evaluated by echocardiography and apoptotic cells were counted using TUNEL staining. The cardiac fibrosis was assessed using Masson’s trichrome staining. The Ki67 positive cells in ischemic myocardium were determined using immunohistochemistry. The effect of hucMSC-exosomes on blood vessel formation was evaluated through tube formation and migration of human umbilical vein endothelial cells (EA.hy926 cells. The results indicated that ligation of the LAD coronary artery reduced cardiac function and induced cardiomyocyte apoptosis. Administration of hucMSC-exosomes significantly improved cardiac systolic function and reduced cardiac fibrosis. Moreover, hucMSC-exosomes protected myocardial cells from apoptosis and promoted the tube formation and migration of EA.hy926 cells. It is concluded that hucMSC-exosomes improved cardiac systolic function by protecting myocardial cells from apoptosis and promoting angiogenesis. These effects of hucMSC-exosomes might be associated with regulating the expression of Bcl-2 family.

  8. Adding left atrial appendage closure to open heart surgery provides protection from ischemic brain injury six years after surgery independently of atrial fibrillation history

    DEFF Research Database (Denmark)

    Park-Hansen, Jesper; Holme, Susanne J V; Irmukhamedov, Akhmadjon

    2018-01-01

    BACKGROUND: Open heart surgery is associated with high occurrence of atrial fibrillation (AF), subsequently increasing the risk of post-operative ischemic stroke. Concomitant with open heart surgery, a cardiac ablation procedure is commonly performed in patients with known AF, often followed by l...

  9. Distribution of Eight QT-Prolonging Drugs and Their Main Metabolites Between Postmortem Cardiac Tissue and Blood Reveals Potential Pitfalls in Toxicological Interpretation

    DEFF Research Database (Denmark)

    Mikkelsen, Christian R; Jornil, Jakob R; Andersen, Ljubica V

    2018-01-01

    significantly higher compared to femoral and cardiac blood concentrations, with two exceptions. The median cardiac tissue-to-femoral blood concentration ratio (Kb) ranged from 2.2 (venlafaxine) to 15 (nortriptyline). The inter-individual fold difference between the minimum and maximum Kb ranged from 2.6-fold (Z......-hydroxynortriptyline) to 61 (venlafaxine). For 12 compounds, postmortem redistribution appeared to be minimal, whereas four compounds displayed some degree of postmortem redistribution. Citalopram and quetiapine were selected for in-depth analysis of the relation between the toxicological interpretation and femoral blood...

  10. Comparison of remifentanil and low-dose fentanyl for fast-track cardiac anesthesia

    DEFF Research Database (Denmark)

    Khanykin, Boris; Siddiqi, Rizwan; Jensen, Per F

    2013-01-01

    BACKGROUND: Different anesthetic techniques have been used for fast tracking in cardiac anesthesia. Remifentanil, with its unique pharmacokinetic profile, could be an ideal drug for fast tracking. Possible limitations of remifentanil are rapid onset of postoperative pain after discontinuation...... of the drug infusion, which may increase the risk of an ischemic event. We conducted this randomized study to compare the efficacy of remifentanil versus low doses of fentanyl in fast-track cardiac anesthesia. It has been hypothesized that remifentanil would provide a safe anesthesia with no impact...... anesthesia. The study was designed as a prospective randomized study. The primary outcomes were changes in the cardiac index and creatine kinase MB fraction (CKMB), extubation times, mobilization times, and lengths of stay in the intensive care unit (ICU) and the hospital. Frequency of myocardial infarction...

  11. Mechanical dyssynchrony evaluated by tissue Doppler cross-correlation analysis is associated with long-term survival in patients after cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Risum, Niels; Williams, Eric S; Khouri, Michel G

    2013-01-01

    Aims Pre-implant assessment of longitudinal mechanical dyssynchrony using cross-correlation analysis (XCA) was tested for association with long-term survival and compared with other tissue Doppler imaging (TDI)-derived indices. Methods and results In 131 patients referred for cardiac resynchroniz......Aims Pre-implant assessment of longitudinal mechanical dyssynchrony using cross-correlation analysis (XCA) was tested for association with long-term survival and compared with other tissue Doppler imaging (TDI)-derived indices. Methods and results In 131 patients referred for cardiac......-max was independently associated with improved survival when adjusted for QRS > 150 ms and aetiology {hazard ratio (HR) 0.35 [95% confidence interval (CI) 0.16-0.77], P = 0.01}. Maximal activation delay performed significantly better than Yu index, OWD, and the presence of left bundle branch block (P ..., for difference between parameters). In subgroup analysis, patients without dyssynchrony and QRS between 120 and 150 ms showed a particularly poor survival [HR 4.3 (95% CI 1.46-12.59), P

  12. Modern nuclear cardiac imaging in diagnosis and clinical management of patients with left ventricular dysfunction.

    Science.gov (United States)

    Abidov, A; Hachamovitch, R; Berman, D S

    2004-12-01

    Congestive heart failure (CHF) has become a large social burden in modern Western society, with very high morbidity and mortality and extremely large financial costs. The largest cause of CHF is coronary heart disease, with ventricular dysfunction that may or may not be reversible by revascularization. Thus, evaluation of the viable myocardial tissue in patients with ischemic left ventricular (LV) dysfunction has important clinical and therapeutic implications. Furthermore, since patients with ventricular dysfunction are at higher operative risk, cardiologists and cardiac surgeons are commonly faced with issues regarding the balance between the potential risk vs benefit of revascularization procedures. Cardiac nuclear imaging [myocardial perfusion SPECT (MPS) and positron emission tomography (PET)] provide objective information that augments standard clinical and angiographic assessments of patients with ventricular dysfunction with respect to diagnosis (etiology), prognosis, and potential benefit from intervention. Development of the technology and methodology of gated MPS, now the routine method for MPS, allows assessment of the extent and severity of inducible ischemia as well as hypoperfused but viable myocardium, and also provides measurements of LV ejection fraction, regional wall motion, LV volume measurements, diastolic function and LV geometry. With PET, myocardial metabolism and blood flow reserve can be added to the measurements provided by nuclear cardiology procedures. This paper provides insight into the current evidence regarding settings in which nuclear cardiac imaging procedures are helpful in assessment of patients in the setting of coronary artery disease with severe LV dysfunction. A risk-benefit approach to MPS results is proposed, with principal focus on identifying patients at risk for major cardiac events who may benefit from myocardial revascularization.

  13. Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics

    International Nuclear Information System (INIS)

    Matsuo, Shinro; Nakajima, Kenichi; Kinuya, Seigo

    2013-01-01

    Mitochondria play an important role in energy production for the cell. The proper function of a myocardial cell largely depends on the functional capacity of the mitochondria. Therefore it is necessary to establish a novel and reliable method for a non-invasive assessment of mitochondrial function and metabolism in humans. Although originally designed for evaluating myocardial perfusion, 99m Tc-MIBI can be also used to evaluate cardiac mitochondrial function. In a clinical study on ischemic heart disease, reverse redistribution of 99m Tc-MIBI was evident after direct percutaneous transluminal coronary angioplasty. The presence of increased washout of 99m Tc-MIBI was associated with the infarct-related artery and preserved left ventricular function. In non-ischemic cardiomyopathy, an increased washout rate of 99m Tc-MIBI, which correlated inversely with left ventricular ejection fraction, was observed in patients with congestive heart failure. Increased 99m Tc-MIBI washout was also observed in mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and in doxorubicin-induced cardiomyopathy. Noninvasive assessment of cardiac mitochondrial function could be greatly beneficial in monitoring possible cardiotoxic drug use and in the evaluation of cardiac damage in clinical medicine

  14. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture.

    Directory of Open Access Journals (Sweden)

    Rupamanjari Majumder

    2011-04-01

    Full Text Available Cardiac arrhythmias, such as ventricular tachycardia (VT and ventricular fibrillation (VF, are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.

  15. Segmented Symbolic Dynamics for Risk Stratification in Patients with Ischemic Heart Failure, Cardiovascular Engineering and Technology

    OpenAIRE

    Voss, Andreas; Schroeder, Rico; Caminal Magrans, Pere; Vallverdú Ferrer, Montserrat; Brunel, Helena; Cygankiewicz, I.; Vázquez, Rafael; Bayes de Luna, Antonio

    2010-01-01

    Chronic heart failure (CHF) is recognized as major and escalating public health problem. Approximately 69% of CHF patients suffer from cardiac death within 5 years after the initial diagnosis. Until now, no generally accepted ECG risk predictors in CHF patients are available. The objective of this study was to investigate the suitability of the new developed non-linear method segmented symbolic dynamics (SSD) for risk stratification in patients with ischemic cardiomyop...

  16. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction.

    Science.gov (United States)

    Howangyin, Kiave Yune; Silvestre, Jean-Sébastien

    2014-06-01

    In patients with diabetes mellitus, the ability of ischemic tissue to synchronize the molecular and cellular events leading to restoration of tissue perfusion in response to the atherosclerotic occlusion of a patent artery is markedly impaired. As a consequence, adverse tissue remodeling and the extent of ischemic injury are intensified, leading to increased morbidity and mortality. Growing evidence from preclinical and clinical studies has implicated alterations in hypoxia-inducible factor 1 levels in the abrogation of proangiogenic pathways, including vascular endothelial growth factor A/phosphoinositide 3' kinase/AKT/endothelial nitric oxide synthase and in the activation of antiangiogenic signals characterized by accumulation of advanced glycation end products, reactive oxygen species overproduction, and endoplasmic reticulum stress. In addition, the diabetic milieu shows a switch toward proinflammatory antiregenerative pathways. Finally, the mobilization, subsequent recruitment, and the proangiogenic potential of the different subsets of angiogenesis-promoting bone marrow-derived cells are markedly impaired in the diabetic environment. In this review, we will give an overview of the current understanding on the signaling molecules contributing to the diabetes mellitus-induced impairment of postischemic revascularization mainly in the setting of myocardial infarction or critical limb ischemia. © 2014 American Heart Association, Inc.

  17. ASCI 2010 appropriateness criteria for cardiac computed tomography: a report of the Asian Society of Cardiovascular Imaging Cardiac Computed Tomography and Cardiac Magnetic Resonance Imaging Guideline Working Group.

    Science.gov (United States)

    Tsai, I-Chen; Choi, Byoung Wook; Chan, Carmen; Jinzaki, Masahiro; Kitagawa, Kakuya; Yong, Hwan Seok; Yu, Wei

    2010-02-01

    In Asia, the healthcare system, populations and patterns of disease differ from Western countries. The current reports on the criteria for cardiac CT scans, provided by Western professional societies, are not appropriate for Asian cultures. The Asian Society of Cardiovascular Imaging, the only society dedicated to cardiovascular imaging in Asia, formed a Working Group and invited 23 Technical Panel members representing a variety of Asian countries to rate the 51 indications for cardiac CT in clinical practice in Asia. The indications were rated as 'appropriate' (7-9), 'uncertain' (4-6), or 'inappropriate' (1-3) on a scale of 1-9. The median score was used for the final result if there was no disagreement. The final ratings for indications were 33 appropriate, 14 uncertain and 4 inappropriate. And 20 of them are highly agreed (19 appropriate and 1 inappropriate). Specifically, the Asian representatives considered cardiac CT as an appropriate modality for Kawasaki disease and congenital heart diseases in follow up and in symptomatic patients. In addition, except for some specified conditions, cardiac CT was considered to be an appropriate modality for one-stop shop ischemic heart disease evaluation due to its general appropriateness in coronary, structure and function evaluation. This report is expected to have a significant impact on the clinical practice, research and reimbursement policy in Asia.

  18. Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats.

    Science.gov (United States)

    Liu, Shimin; Shi, Honglian; Liu, Wenlan; Furuichi, Takamitsu; Timmins, Graham S; Liu, Ke Jian

    2004-03-01

    Stroke causes heterogeneous changes in tissue oxygenation, with a region of decreased blood flow, the penumbra, surrounding a severely damaged ischemic core. Treatment of acute ischemic stroke aims to save this penumbra before its irreversible damage by continued ischemia. However, effective treatment remains elusive due to incomplete understanding of processes leading to penumbral death. While oxygenation is central in ischemic neuronal death, it is unclear exactly what actual changes occur in interstitial oxygen tension (pO2) in ischemic regions during stroke, particularly the penumbra. Using the unique capability of in vivo electron paramagnetic resonance (EPR) oximetry to measure localized interstitial pO2, we measured both absolute values, and temporal changes of pO2 in ischemic penumbra and core during ischemia and reperfusion in a rat model. Ischemia rapidly decreased interstitial pO2 to 32% +/- 7.6% and 4% +/- 0.6% of pre-ischemic values in penumbra and core, respectively 1 hour after ischemia. Importantly, whilst reperfusion restored core pO2 close to its pre-ischemic value, penumbral pO2 only partially recovered. Hyperoxic treatment significantly increased penumbral pO2 during ischemia, but not in the core, and also increased penumbral pO2 during reperfusion. These divergent, important changes in pO2 in penumbra and core were explained by combined differences in cellular oxygen consumption rates and microcirculation conditions. We therefore demonstrate that interstitial pO2 in penumbra and core is differentially affected during ischemia and reperfusion, providing new insights to the pathophysiology of stroke. The results support normobaric hyperoxia as a potential early intervention to save penumbral tissue in acute ischemic stroke.

  19. Risk of Adverse Cardiac and Bleeding Events Following Cardiac and Noncardiac Surgery in Patients With Coronary Stent: How Important Is the Interplay Between Stent Type and Time From Stenting to Surgery?

    Science.gov (United States)

    Saia, Francesco; Belotti, Laura Maria Beatrice; Guastaroba, Paolo; Berardini, Alessandra; Rossini, Roberta; Musumeci, Giuseppe; Tarantini, Giuseppe; Campo, Gianluca; Guiducci, Vincenzo; Tarantino, Fabio; Menozzi, Alberto; Varani, Elisabetta; Santarelli, Andrea; Tondi, Stefano; De Palma, Rossana; Rapezzi, Claudio; Marzocchi, Antonio

    2016-01-01

    Epidemiology and consequences of surgery in patients with coronary stents are not clearly defined, as well as the impact of different stent types in relationship with timing of surgery. Among 39 362 patients with previous coronary stenting enrolled in a multicenter prospective registry and followed for 5 years, 13 128 patients underwent 17 226 surgical procedures. The cumulative incidence of surgery at 30 days, 6 months, 1 year, and 5 years was 3.6%, 9.4%, 14.3%, and 40.0%, respectively, and of cardiac and noncardiac surgery was 0.8%, 2.1%, 2.6%, and 4.0% and 1.3%, 5.1%, 9.1%, and 31.7%, respectively. We assessed the incidence and the predictors of cardiac death, myocardial infarction, and serious bleeding event within 30 days from surgery. Cardiac death occurred in 438 patients (2.5%), myocardial infarction in 256 (1.5%), and serious bleeding event in 1099 (6.4%). Surgery increased 1.58× the risk of cardiac death during follow-up. Along with other risk factors, the interplay between stent type and time from percutaneous coronary intervention to surgery was independently associated with cardiac death/myocardial infarction. In comparison with bare-metal stent implanted >12 months before surgery, old-generation drug-eluting stent was associated with higher risk of events at any time point. Conversely, new-generation drug-eluting stent showed similar safety as bare-metal stent >12 months and between 6 and 12 months and appeared trendly safer between 0 and 6 months. Surgery is frequent in patients with coronary stents and carries a considerable risk of ischemic and bleeding events. Ischemic risk is inversely related with time from percutaneous coronary intervention to surgery and is influenced by stent type. © 2015 American Heart Association, Inc.

  20. Ketamine infusion for refractory status epilepticus: A case report of cardiac arrest.

    Science.gov (United States)

    Koffman, Lauren; Yan Yiu, Ho; Farrokh, Salia; Lewin, John; Geocadin, Romergryko; Ziai, Wendy

    2018-01-01

    Refractory status epilepticus (RSE) has a high mortality rate and is often difficult to treat. When traditional therapies fail ketamine may be considered. There are limited reports of adverse cardiac events with the use of ketamine for RSE and no reports of cardiac arrest in this context. Evaluate the occurrence of cardiac arrhythmias associated with the use of ketamine for RSE. Retrospective chart review of nine patients who underwent ketamine infusion for RSE. Etiology of refractory status epilepticus included autoimmune/infectious process (Zeiler et al., 2014), ischemic stroke (Bleck, 2005) and subarachnoid hemorrhage (Bleck, 2005). Of the nine patients who received ketamine, two had documented cardiac events; one remained clinically stable and the other developed multiple arrhythmias, including recurrent episodes of asystole. Once ketamine was discontinued the latter patient stabilized with the addition of anti arrhythmic therapy. Ketamine is utilized to treat refractory status epilepticus, but should be used with caution in patients with subarachnoid hemorrhage, as there may be an increased risk of life threatening arrhythmias and cardiac arrest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects Of Ischemic Preconditioning On The Renal Ischemia- Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Anyamanesh S

    2003-07-01

    Full Text Available  During kidney and other organ transplantation, the organ to be transplanted, must inevitably remain out of the body with little or no blood perfusion at all for a long period of time (ischemia. These events have been suggested to cause the formation of oxygen- derived free radicals (OFR. Reperfusion (reintroduction of blood flow will further exacerbate the initial damage caused by the ischemic insult and may result in the production of free radicals. The aim of this study was to investigate whether induction of brief periods of renal artery occlusion (ischemic pre¬conditioning, IPC can provide protection from the effects of a subsequent period of ischemia and reperfusion (IR in the rat kidney."nMaterials and Methods: In this regard, 28 white, male rats were randomly and equally divided into four groups: Control (sham- operated, IPC alone, IR alone (30 min ischemia followed by 10 min reperfusion, and IPC- IR. Preconditioning involved the sequential clamping of the right renal artery for 5 min and declamping for 5 min for a total of 3 cycles. To demonstrate the effectiveness of IPC regimen, vitamin E as an endogenous antioxidant and an index of lipid peroxidation was measured by HPLC after its extraction from right renal venous plasma and right renal tissue."nResults: Results of this study showed that the amount of vitamin E of renal tissue and venous plasma in the IR group had a significant decrease when compared to the control group (P< 0.0001. Whereas the amount of this vitamin in both renal tissue and venous plasma of the IPC- IR group was significantly higher than that in the IR group (P< 0.0001, but did not show any significant difference with the control group."nConclusion: In this study, preconditioning method prevented the reduction of the endogenous antioxidant (Vit. E in encountering the following sustained ischemic insult. Therefore, we suggest that ischemic preconditioning can be used to protect the Vit. E level of kidney from its

  2. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue

    International Nuclear Information System (INIS)

    Marcotte, Christopher D.; Grigoriev, Roman O.

    2015-01-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals

  3. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue.

    Science.gov (United States)

    Marcotte, Christopher D; Grigoriev, Roman O

    2015-06-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.

  4. Glibenclamide for the treatment of ischemic and hemorrhagic stroke.

    Science.gov (United States)

    Caffes, Nicholas; Kurland, David B; Gerzanich, Volodymyr; Simard, J Marc

    2015-03-04

    Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS) ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1-transient receptor potential melastatin 4 (Sur1-Trpm4) channels and, in some cases, microglial KATP (Sur1-Kir6.2) channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.

  5. Glibenclamide for the Treatment of Ischemic and Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Nicholas Caffes

    2015-03-01

    Full Text Available Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1–transient receptor potential melastatin 4 (Sur1–Trpm4 channels and, in some cases, microglial KATP (Sur1–Kir6.2 channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.

  6. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping.

    Science.gov (United States)

    Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T

    2015-01-01

    Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  7. Reduction in Hexokinase II Levels Results in Decreased Cardiac Function and Altered Remodeling After Ischemia/Reperfusion Injury

    NARCIS (Netherlands)

    Wu, Rongxue; Smeele, Kirsten M.; Wyatt, Eugene; Ichikawa, Yoshihiko; Eerbeek, Otto; Sun, Lin; Chawla, Kusum; Hollmann, Markus W.; Nagpal, Varun; Heikkinen, Sami; Laakso, Markku; Jujo, Kentaro; Wasserstrom, J. Andrew; Zuurbier, Coert J.; Ardehali, Hossein

    2011-01-01

    Rationale: Cardiomyocytes switch substrate utilization from fatty acid to glucose under ischemic conditions; however, it is unknown how perturbations in glycolytic enzymes affect cardiac response to ischemia/reperfusion (I/R). Hexokinase (HK)II is a HK isoform that is expressed in the heart and can

  8. Cardiac diastolic dysfunction is associated with cerebral white matter lesions in elderly patients with risk factors for atherosclerosis

    International Nuclear Information System (INIS)

    Masugata, Hisashi; Senda, Shoichi; Goda, Fuminori

    2008-01-01

    Cerebral white matter lesions on magnetic resonance imaging (MRI) are considered to be the result of brain ischemic injury and a risk factor for clinical stroke. The purpose of this study was to elucidate the relationship between the cardiac diastolic function and cerebral white matter lesions in elderly patients with risk factors for atherosclerosis. The study subjects were 55 patients (75±7 years) with risk factors for atherosclerosis including hypertension, diabetes mellitus, and dyslipidemia. Patients with symptomatic cerebrovascular events were excluded from the study. Cerebral white matter lesions, which were defined as exhibiting high intensity regions on brain MRI, were evaluated with the degrees of periventricular hyperintensity (PVH) according to the Japanese Brain Dock Guidelines of 2003. Peak early diastolic mitral annular velocity (E' velocity) was measured by tissue Doppler echocardiography, and was used as a parameter of cardiac diastolic function. The mean value of E' velocity was decreased due to the cardiac diastolic dysfunction (5.2±1.4 cm/s). In addition, the E' velocity was inversely correlated with the degree of PVH (ρ=-0.701, p<0.001). Stepwise regression analysis showed that the decrease in the E' velocity (β coefficient=-0.42, p<0.001) and the presence of hypertension (β coefficient=0.31, p=0.001) were independent determinants of the degree of PVH. Thus, cardiac diastolic dysfunction is correlated to the severity of cerebral white matter lesions, suggesting the cardio-cerebral connection in elderly patients with risk factors for atherosclerosis. (author)

  9. Remote Ischemic Postconditioning (RIPC) of the Upper Arm Results in Protection from Cardiac Ischemia-Reperfusion Injury Following Primary Percutaneous Coronary Intervention (PCI) for Acute ST-Segment Elevation Myocardial Infarction (STEMI).

    Science.gov (United States)

    Cao, Bangming; Wang, Haipeng; Zhang, Chi; Xia, Ming; Yang, Xiangjun

    2018-02-19

    BACKGROUND The aim of this study was to evaluate the role of remote ischemic postconditioning (RIPC) of the upper arm on protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI). MATERIAL AND METHODS Eighty patients with STEMI were randomized into two groups: primary PCI (N=44) and primary PCI+RIPC (N=36). RIPC consisted of four cycles of 5 minutes of occlusion and five minutes of reperfusion by cuff inflation and deflation of the upper arm, commencing within one minute of the first PCI balloon dilatation. Peripheral venous blood samples were collected before PCI and at 0.5, 8, 24, 48, and 72 hours after PCI. Levels of creatine kinase-MB (CK-MB), serum creatinine (Cr), nitric oxide (NO), and stromal cell-derived factor-1α (SDF-1α) were measured. The rates of acute kidney injury (AKI) and the estimated glomerular filtration rate (eGFR) were calculated. RESULTS Patients in the primary PCI+RIPC group, compared with the primary PCI group, had significantly lower peak CK-MB concentrations (PPCI in patients with acute STEMI might provide cardiac and renal protection from ischemia-reperfusion injury via the actions of SDF-1α, and NO.

  10. Imaging of ischemic heart disease

    International Nuclear Information System (INIS)

    Lipton, Martin J.; Reba, Richard C.; Bogaert, Jan; Boxt, Larry M.

    2002-01-01

    Despite advances in the understanding and treatment of ischemic cardiomyopathy, characterized by extensive coronary artery disease and left ventricular (LV) dysfunction, the prognosis remains poor with only a 50-60% 5-year survival rate. The composition of atherosclerotic lesions is currently regarded as being more important than the degree of stenosis in determining acute events. If imaging techniques could distinguish vulnerable from stable plaques, then high-risk patient subgroups could be identified. Another important concept is that LV dysfunction may be the result of either scarring due to necrosis or to the presence of myocardial hibernation, in which there is sufficient blood flow to sustain viable myocytes, but insufficient to maintain systolic contraction. This concept of myocardial viability is critical for making optimal clinical management decisions. This review describes how noninvasive imaging methods can be used to distinguish regions of irreversibly injured myocardium from viable but hibernating segments. Technical advances in CT and MR have made imaging of the beating heart possible. Considerable clinical progress has already been made and further cardiac applications are expected. Radiologists therefore have new opportunities for involvement in cardiac imaging but must recognize the political implications as well as the diagnostic potential of these modalities not only for the heart, but also for the whole vascular system. This review focuses on imaging myocardial injury. It compares state-of-the-art CT and MR with more established yet contemporary echocardiography and nuclear scintigraphy. (orig.)

  11. Psychological well-being in obese in-patients with ischemic heart disease at entry and at discharge from a four-week cardiac rehabilitation program

    Directory of Open Access Journals (Sweden)

    Gian Mauro Manzoni

    2010-08-01

    Full Text Available The purposes of this observational pre-post study were twofold: 1- to evaluate psychological health in obese patients with ischemic heart disease (IHD at admission to cardiac rehabilitation (CR and 2 - to examine the effectiveness of a four-week CR residential program in improving obese patients’ psychological well-being at discharge from CR. A sample of 177 obese patients completed the Psychological General Well-Being Inventory (PGWBI at admission to the CR program and at discharge. The equivalence testing method with normative comparisons was used to determine the clinical significance of improvements after having established that baseline mean scores on the PGWBI scales were significantly lower than normal means. Results show that patients scored equally or better than norms on many PGWBI dimensions at admission to CR but scored significantly worse on Global Score, Vitality and Self-control. At discharge, mean scores that were impaired at baseline returned to normal levels at the more conservative equivalence interval. A four-week CR program was thus effective in improving obese patients’ psychological well-being. The equivalence testing method allowed to establish the clinical significance of such improvement.

  12. Ischemic stroke in young adults: an overview of etiological aspects

    Directory of Open Access Journals (Sweden)

    Fábio Iuji Yamamoto

    2012-06-01

    Full Text Available Stroke affects mainly people aged over 65 years, and atherosclerosis predominates as the main etiopathogenic factor in ischemic stroke (IS. On the other hand, cardiac embolism and arterial dissection are the most frequent causes of IS in patients aged less than 45 years. However, inappropriate control of traditional vascular risk factors in young people may be causing a significant increase of atherosclerosis-related IS in this population. Furthermore, a variety of etiologies, many of them uncommon, must be investigated. In endemic regions, neurocysticercosis and Chagas' disease deserve consideration. Undetermined cause has been still reported in as many as one third of young stroke patients.

  13. Direct Cardiac Reprogramming: Advances in Cardiac Regeneration

    Directory of Open Access Journals (Sweden)

    Olivia Chen

    2015-01-01

    Full Text Available Heart disease is one of the lead causes of death worldwide. Many forms of heart disease, including myocardial infarction and pressure-loading cardiomyopathies, result in irreversible cardiomyocyte death. Activated fibroblasts respond to cardiac injury by forming scar tissue, but ultimately this response fails to restore cardiac function. Unfortunately, the human heart has little regenerative ability and long-term outcomes following acute coronary events often include chronic and end-stage heart failure. Building upon years of research aimed at restoring functional cardiomyocytes, recent advances have been made in the direct reprogramming of fibroblasts toward a cardiomyocyte cell fate both in vitro and in vivo. Several experiments show functional improvements in mouse models of myocardial infarction following in situ generation of cardiomyocyte-like cells from endogenous fibroblasts. Though many of these studies are in an early stage, this nascent technology holds promise for future applications in regenerative medicine. In this review, we discuss the history, progress, methods, challenges, and future directions of direct cardiac reprogramming.

  14. Relationship Between Collateral Status, Contrast Transit, and Contrast Density in Acute Ischemic Stroke.

    Science.gov (United States)

    Kawano, Hiroyuki; Bivard, Andrew; Lin, Longting; Spratt, Neil J; Miteff, Ferdinand; Parsons, Mark W; Levi, Christopher R

    2016-03-01

    Collateral circulation is recognized to influence the life expectancy of the ischemic penumbra in acute ischemic stroke. The best method to quantify collateral status on acute imaging is uncertain. We aimed to determine the relationship between visual collateral status, quantitative collateral assessments, baseline computed tomographic perfusion measures, and tissue outcomes on follow-up imaging. Sixty-six consecutive patients with acute ischemic stroke clinically eligible for recanalization therapy and with M1 or M2 middle cerebral artery occlusion were evaluated. We compared the visual collateral scoring with measures of contrast peak time delay and contrast peak density. We also compared these measures for their ability to predict perfusion lesion and infarct core volumes, final infarct, and infarct growth. Shorter contrast peak time delay (P=0.041) and higher contrast peak density (P=0.002) were associated with good collateral status. Shorter contrast peak time delay correlated with higher contrast peak density (β=-4.413; P=0.037). In logistic regression analysis after adjustment for age, sex, onset-computed tomographic time, and occlusion site, higher contrast peak density was independently associated with good collateral status (P=0.009). Multiple regression analysis showed that higher contrast peak density was an independent predictor of smaller perfusion lesion volume (P=0.029), smaller ischemic core volume (P=0.044), smaller follow-up infarct volume (P=0.005), and smaller infarct growth volume (P=0.010). Visual collateral status, contrast peak density, and contrast peak time delay were inter-related, and good collateral status was strongly associated with contrast peak density. Contrast peak density in collateral vessel may be an important factor in tissue fate in acute ischemic stroke. © 2016 American Heart Association, Inc.

  15. Delayed treatment with ADAMTS13 ameliorates cerebral ischemic injury without hemorrhagic complication.

    Science.gov (United States)

    Nakano, Takafumi; Irie, Keiichi; Hayakawa, Kazuhide; Sano, Kazunori; Nakamura, Yoshihiko; Tanaka, Masayoshi; Yamashita, Yuta; Satho, Tomomitsu; Fujioka, Masayuki; Muroi, Carl; Matsuo, Koichi; Ishikura, Hiroyasu; Futagami, Kojiro; Mishima, Kenichi

    2015-10-22

    Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke. However, delayed tPA treatment increases the risk of cerebral hemorrhage and can result in exacerbation of nerve injury. ADAMTS13, a von Willebrand factor (VWF) cleaving protease, has a protective effect against ischemic brain injury and may reduce bleeding risk by cleaving VWF. We examined whether ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA in mice subjected to middle cerebral artery occlusion (MCAO). ADAMTS13 (0.1mg/kg) or tPA (10mg/kg) was administered i.v., immediately after reperfusion of after 2-h or 4-h MCAO for comparison of the therapeutic time windows in ischemic stroke. Infarct volume, hemorrhagic volume, plasma high-mobility group box1 (HMGB1) levels and cerebral blood flow were measured 24h after MCAO. Both ADAMTS13 and tPA improved the infarct volume without hemorrhagic complications in 2-h MCAO mice. On the other hand, ADAMTS13 reduced the infarct volume and plasma HMGB1 levels, and improved cerebral blood flow without hemorrhagic complications in 4-h MCAO mice, but tPA was not effective and these animals showed massive intracerebral hemorrhage. These results indicated that ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA, and ADAMTS13 may be useful as a new therapeutic agent for ischemic stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Myocardial infarction false alarm: initial electrocardiogram and cardiac enzymes.

    Science.gov (United States)

    Gupta, Esha Das; Sakthiswary, Rajalingham

    2014-05-01

    The objectives of this study were to determine the incidence of a myocardial infarction "false alarm" and evaluate the efficacy of the initial electrocardiogram and cardiac enzymes in diagnosing myocardial infarction in Malaysia. We recruited patients who were admitted with suspected myocardial infarction from June to August 2008. The medical records of these patients were reviewed for the initial electrocardiogram, initial cardiac enzyme levels (creatinine kinase-MB and troponin T), and the final diagnosis upon discharge. The subjects were stratified into 2 groups: true myocardial infarction, and false alarm. 125 patients were enrolled in this study. Following admission and further evaluation, the diagnosis was revised from myocardial infarction to other medical conditions in 48 (38.4%) patients. The sensitivity and specificity of the initial ischemic electrocardiographic changes were 54.5% and 70.8%, respectively. Raised cardiac enzymes had a sensitivity of 44.3% and specificity of 95.8%. A significant proportion of patients in Malaysia are admitted with a false-alarm myocardial infarction. The efficacy of the electrocardiogram in diagnosing myocardial infarction in Malaysia was comparable to the findings of Western studies, but the cardiac enzymes had a much lower sensitivity.

  17. Atrial fibrillation detected by external loop recording for seven days or two-day simultaneous Holter recording: A comparison in patients with ischemic stroke or transient ischemic attack.

    Science.gov (United States)

    Sejr, Michala Herskind; Nielsen, Jens Cosedis; Damgaard, Dorte; Sandal, Birgitte Forsom; May, Ole

    Atrial fibrillation (AF) is the most common cardiac cause of ischemic stroke and transient ischemic attack (IS/TIA). To compare the diagnostic value of seven-day external loop recording (ELR) and two-day Holter recording for detecting AF after IS/TIA. 191 IS/TIA patients without AF history. Endpoint was AF >30s. We started two-day Holter recording and seven-day ELR simultaneously. Seven-day ELR and two-day Holter recording detected the same three AF patients. ELR detected another six patients with AF adjudicated by cardiologists, four detections after Holter (3 vs. 7, p=0.125) and two false-positive detections during Holter. Seven-day ELR automatically classified 50/191 patients (26%) with AF, but only 7/50 (14%) were confirmed as AF by cardiologists. Seven-day ELR did not detect significantly more patients with AF than two-day Holter recording. 86% of patients with ELR-classified AF were false positives, indicating a poor performance of the automatic AF detection algorithm used. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Optimization of delivery strategies for cardiac cell therapy in ischemic heart disease

    NARCIS (Netherlands)

    van der Spoel, T.I.G.

    2012-01-01

    Cardiac cell therapy has been proposed as an alternative treatment option for patients after acute myocardial infarction (MI). Irrespective of the chosen regenerative strategy, it is essential to deliver sufficient number of cells to the infarcted myocardium to become effective which is important

  19. [Experimental therapy of cardiac remodeling with quercetin-containing drugs].

    Science.gov (United States)

    Kuzmenko, M A; Pavlyuchenko, V B; Tumanovskaya, L V; Dosenko, V E; Moybenko, A A

    2013-01-01

    It was shown that continuous beta-adrenergic hyperstimulation resulted in cardiac function disturbances and fibrosis of cardiac tissue. Treatment with quercetin-containing drugs, particularly, water-soluble corvitin and tableted quertin exerted favourable effect on cardiac hemodynamics, normalized systolic and diastolic function in cardiac remodeling, induced by sustained beta-adrenergic stimulation. It was estimated that conducted experimental therapy limited cardiac fibrosis area almost three-fold, that could be associated with first and foremost improved cardiac distensibility, characteristics of diastolic and also pump function in cardiac remodeling.

  20. Patent foramen ovale in a large population of ischemic stroke patients: diagnosis, age distribution, gender, and race.

    Science.gov (United States)

    Gupta, Vishal; Yesilbursa, Dilek; Huang, Wen Ying; Aggarwal, Kul; Gupta, Vijaya; Gomez, Camilo; Patel, Vinod; Miller, Andrew P; Nanda, Navin C

    2008-02-01

    Patent foramen ovale (PFO) is a well-recognized risk factor for ischemic strokes. The true prevalence of PFO among stroke patients is still under debate. Transesophageal echocardiography (TEE) is the "gold standard" in diagnosing PFO but the physiology requires right-to-left atrial shunting. In this report, we evaluate the prevalence of PFO in a diverse group of ischemic stroke patients studied by TEE. TEE of 1,663 ischemic stroke patients were reviewed for cardiac source of embolism, including PFO and atrial septal aneurysm (ASA). Agitated saline bubble injection was performed to look for right to left atrial shunting. Success of maneuvers to elevate right atrial pressure (RAP) was noted by looking at the atrial septal bulge. Among 1,435 ischemic stroke patients analyzed, the presence or absence of PFO could not be determined in 32.1% because bulging of the septum could not be demonstrated in patients with negative contrast study despite aggressive maneuvers to elevate RAP. Of the remaining 974 patients, 294 patients (30.2%) had a PFO. The mean age was 61.5 years in both groups, with a bimodal distribution of PFO and the highest prevalence occurring in gender or racial difference in the prevalence of PFO, but there was a bimodal distribution in prevalence with age.

  1. Protection of Ischemic and Reperfused Rat Heart by Aqueous Extract of Urtica Dioica

    Directory of Open Access Journals (Sweden)

    D Shackebaei

    2010-09-01

    Full Text Available Background: Urtica dioica (U.D has widely been used in traditional medicine for its hypotensive and vasodilatory effects. The objective of this study was to clarify the effects of aqueous extract of Urtica dioica on isolated ischemia- reperfused heart.Methods: The heart of male wistar rats were isolated and perfused according to langendorff method. In the control group (n = 13 the hearts were subjected to three steps of stabilization (30 min, normothermic global ischemia (40 min and reperfusion (45 min. In addition, before and after ischemia, the aqueous extract of U.D (200 mg/ml was added to perfusion solution in the test group (n=14. Different cardiac variables including left ventricular pressure, heart rate and coronary flow were measured and rate pressure product was calculated.Results: Results showed that left ventricular pressure (59.11±4.7 and rate pressure product (13680±1136 in 45th minute of reperfusion in the test group were significantly (P=0.0187 and 0.0321 respectively greater than the control group (39.1±6.0, 9480±1480 respectively. These findings indicated decreased cardiac damage following ischemia in the test group, compared with that of control group.Conclusion: Results of the present study showed that the aqueous extract of U.D, increased the tolerance of isolated rat hearts against ischemic damage. This effect can be explained by potent antioxidant activity of the U.D extract, suggesting its clinical use in ischemic heart disease.

  2. Ischemic cardiovascular disease in workers occupationally exposed to urban air pollution - A systematic review.

    Science.gov (United States)

    De Marchis, Paola; Verso, Maria Gabriella; Tramuto, Fabio; Amodio, Emanuele; Picciotto, Diego

    2018-03-14

    Cardiovascular disease is the first cause of morbidity and mortality worldwide. Among several known risk factors, researchers also focus their attention on the chronic exposure to air pollution. There is much evidence that exposure to air pollution, especially to ultrafine particles, can damage the endothelium and can favour cardiovascular diseases in the general population. Occupational exposition could be an additive risk factor for the cardiovascular system. This article presents a scientific review of the linkage between occupational exposure to air pollution and ischemic heart disease. A scientific review was undertaken, followed by PRISMA Statements. Observational studies were selected from several scientific databases, likesuch as Pubmed, Google Scholar, Nioshtic-2 and Reserchgate, searching for selected key words: police workers, professional drivers, mail carriers, filling station attendants, road cleaners, garage workers, motor vehicles and engine maintenance. All the key words were combined with "Boolean Operators" with the following words: cardiovascular (or cardiac) disease, cardiovascular function, cardiovascular system, ischemic heart disease, coronary disease, myocardial infarction. During the systematic research, the focus was on retrospective and prospective studies from January 1990 - December 2014. Both the retrospective and prospective studies showed an increased risk of ischemic heart disease in occupationally occupied people exposed to air pollution. Only one study presented a ly minor risk. The findings of this systematic review suggest a possible linkage between occupational exposure to urban air pollution, especially to motor exhaust and particulate, and ischemic heart disease.

  3. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis.

    Directory of Open Access Journals (Sweden)

    Xavier Helluy

    Full Text Available Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis.Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast.This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise localization of

  4. Adding left atrial appendage closure to open heart surgery provides protection from ischemic brain injury six years after surgery independently of atrial fibrillation history: the LAACS randomized study.

    Science.gov (United States)

    Park-Hansen, Jesper; Holme, Susanne J V; Irmukhamedov, Akhmadjon; Carranza, Christian L; Greve, Anders M; Al-Farra, Gina; Riis, Robert G C; Nilsson, Brian; Clausen, Johan S R; Nørskov, Anne S; Kruuse, Christina R; Rostrup, Egill; Dominguez, Helena

    2018-05-23

    Open heart surgery is associated with high occurrence of atrial fibrillation (AF), subsequently increasing the risk of post-operative ischemic stroke. Concomitant with open heart surgery, a cardiac ablation procedure is commonly performed in patients with known AF, often followed by left atrial appendage closure with surgery (LAACS). However, the protective effect of LAACS on the risk of cerebral ischemia following cardiac surgery remains controversial. We have studied whether LAACS in addition to open heart surgery protects against post-operative ischemic brain injury regardless of a previous AF diagnosis. One hundred eighty-seven patients scheduled for open heart surgery were enrolled in a prospective, open-label clinical trial and randomized to concomitant LAACS vs. standard care. Randomization was stratified by usage of oral anticoagulation (OAC) planned to last at least 3 months after surgery. The primary endpoint was a composite of post-operative symptomatic ischemic stroke, transient ischemic attack or imaging findings of silent cerebral ischemic (SCI) lesions. During a mean follow-up of 3.7 years, 14 (16%) primary events occurred among patients receiving standard surgery vs. 5 (5%) in the group randomized to additional LAACS (hazard ratio 0.3; 95% CI: 0.1-0.8, p = 0.02). In per protocol analysis (n = 141), 14 (18%) primary events occurred in the control group vs. 4 (6%) in the LAACS group (hazard ratio 0.3; 95% CI: 0.1-1.0, p = 0.05). In a real-world setting, LAACS in addition to elective open-heart surgery was associated with lower risk of post-operative ischemic brain injury. The protective effect was not conditional on AF/OAC status at baseline. LAACS study, clinicaltrials.gov NCT02378116 , March 4th 2015, retrospectively registered.

  5. Cardiac Aging - Benefits of Exercise, Nrf2 Activation and Antioxidant Signaling.

    Science.gov (United States)

    Narasimhan, Madhusudhanan; Rajasekaran, Namakkal-Soorappan

    2017-01-01

    Cardiovascular dysfunction and heart failure associated with aging not only impairs the cardiac function but also the quality of life eventually decreasing the life expectancy of the elderly. Notably, cardiac tissue can prematurely age under certain conditions such as genetic mutation, persistent redox stress and overload, aberrant molecular signaling, DNA damage, telomere attrition, and other pathological insults. While cardiovascular-related morbidity and mortality is on the rise and remains a global health threat, there has been only little to moderate improvements in its medical management. This is due to the fact that the lifestyle changes to molecular mechanisms underlying age-related myocardial structure and functional remodeling are multifactorial and intricately operate at different levels. Along these lines, the intrinsic redox mechanisms and oxidative stress (OS) are widely studied in the myocardium. The accumulation of reactive oxygen species (ROS) with age and the resultant oxidative damage has been shown to increase the susceptibility of the myocardium to multiple complications such as atherosclerosis, hypertension, ischemic heart disease, cardiac myopathy, and heart failure. There has been growing interest in trying to enhance the mechanisms that neutralize the ROS and curtailing OS as a possible anti-aging intervention and as a treatment for age-related disorders. Natural defense system to fight against OS involves a master transcription factor named nuclear erythroid-2-p45-related factor-2 (Nrf2) that regulates several antioxidant genes. Compelling evidence exists on the Nrf2 gain of function through pharmacological interventions in counteracting the oxidative damage and affords cytoprotection in several organs including but not limited to lung, liver, kidney, brain, etc. Nevertheless, thus far, only a few studies have described the potential role of Nrf2 and its non-pharmacological induction in cardiac aging. This chapter explores the effects of

  6. Ischemic stroke associated with radio frequency ablation for nodal reentry

    International Nuclear Information System (INIS)

    Diaz M, Juan C; Duran R, Carlos E; Perafan B, Pablo; Pava M, Luis F

    2010-01-01

    Atrioventricular nodal reentry tachycardia is the most common type of paroxysmal supraventricular tachycardia. In those patients in whom drug therapy is not effective or not desired, radio frequency ablation is an excellent therapeutic method. Although overall these procedures are fast and safe, several complications among which ischemic stroke stands out, have been reported. We present the case of a 41 year old female patient with repetitive episodes of tachycardia due to nodal reentry who was treated with radiofrequency ablation. Immediately after the procedure she presented focal neurologic deficit consistent with ischemic stroke in the right medial cerebral artery territory. Angiography with angioplastia and abxicimab was performed and then tissue plasminogen activator (rtPA) was locally infused, with appropriate clinical and angiographic outcome.

  7. Pyrophosphate scintigraphy and other non-invasive methods in the detection of cardiac involvement in some systemic connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Duska, F.; Bradna, P.; Pospisil, M.; Kubicek, J.; Vizda, J.; Kafka, P.; Palicka, V.; Mazurova, Y.

    1987-02-01

    Thirteen patients with systemic lupus erythematosus, 8 patients with polymyositis, and 6 patients with spondylitis ankylopoetica (Bechterew's disease) underwent clinical cardiologic examination and scintigraphy of the myocardium (/sup 99m/Tc-pyrophosphate), ECG, echocardiography, polygraphy, and their blood pressure was taken. The aim of the study was to ascertain how such a combination of non-invasive examinations can help in recognizing a cardiac involvement. In systemic lupus erythematosus cases one or more positive findings were revealed in 9 patients (69%), in 4 patients all examinations were negative (31%). Four patients (50%) with polymyosits had positive findings. In patients with spondylitis ankylopoetica positive findings occurred in 2 cases (33%). The study has shown that a combination of non-invasive cardiologic methods increases the probability of detecting cardiac involvement in systemic connective tissue diseases.

  8. Pyrophosphate scintigraphy and other non-invasive methods in the detection of cardiac involvement in some systemic connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Duska, F; Bradna, P; Pospisil, M; Kubicek, J; Vizda, J; Kafka, P; Palicka, V; Mazurova, Y

    1987-02-01

    Thirteen patients with systemic lupus erythematosus, 8 patients with polymyositis, and 6 patients with spondylitis ankylopoetica (Bechterew's disease) underwent clinical cardiologic examination and scintigraphy of the myocardium (/sup 99m/Tc-pyrophosphate), ECG, echocardiography, polygraphy, and their blood pressure was taken. The aim of the study was to ascertain how such a combination of non-invasive examinations can help in recognizing a cardiac involvement. In systemic lupus erythematosus cases one or more positive findings were revealed in 9 patients (69%), in 4 patients all examinations were negative (31%). Four patients (50%) with polymyosits had positive findings. In patients with spondylitis ankylopoetica positive findings occurred in 2 cases (33%). The study has shown that a combination of non-invasive cardiologic methods increases the probability of detecting cardiac involvement in systemic connective tissue diseases.

  9. Potential of Stem Cell-Based Therapy for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Hany E. Marei

    2018-02-01

    Full Text Available Ischemic stroke is one of the major health problems worldwide. The only FDA approved anti-thrombotic drug for acute ischemic stroke is the tissue plasminogen activator. Several studies have been devoted to assessing the therapeutic potential of different types of stem cells such as neural stem cells (NSCs, mesenchymal stem cells, embryonic stem cells, and human induced pluripotent stem cell-derived NSCs as treatments for ischemic stroke. The results of these studies are intriguing but many of them have presented conflicting results. Additionally, the mechanism(s by which engrafted stem/progenitor cells exert their actions are to a large extent unknown. In this review, we will provide a synopsis of different preclinical and clinical studies related to the use of stem cell-based stroke therapy, and explore possible beneficial/detrimental outcomes associated with the use of different types of stem cells. Due to limited/short time window implemented in most of the recorded clinical trials about the use of stem cells as potential therapeutic intervention for stroke, further clinical trials evaluating the efficacy of the intervention in a longer time window after cellular engraftments are still needed.

  10. Sex-based differences in response to recombinant tissue plasminogen activator in acute ischemic stroke: a pooled analysis of randomized clinical trials.

    Science.gov (United States)

    Kent, David M; Price, Lori Lyn; Ringleb, Peter; Hill, Michael D; Selker, Harry P

    2005-01-01

    Women experience worse outcomes after stroke compared with men. Prior work has suggested sex-based differences in coagulation and fibrinolysis markers in subjects with acute stroke. We explored whether sex might modify the effect of recombinant tissue plasminogen activator (rtPA) on outcomes in patients with acute ischemic stroke. Using a combined database including subjects from the National Institute of Neurological Disorders and Stroke (NINDS), Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke (ATLANTIS) A and B, and the Second European Cooperative Acute Stroke Study (ECASS II) trials, we examined 90-day outcomes in patients randomized to rtPA versus placebo by sex. We used logistic regression to control for potential confounders. Among 988 women treated between 0 and 6 hours from symptom onset, patients receiving rtPA were significantly more likely than those receiving placebo to have a modified Rankin Score < or =1 (40.5% versus 30.3%, P<0.0008). Among 1190 men, the trend toward benefit in the overall group did not reach statistical significance (38.5% versus 36.7%, P=0.52). An unadjusted analysis showed that women were significantly more likely to benefit from rtPA compared with men (P=0.04). Controlling for age, baseline National Institutes of Health Stroke Scale, diabetes, symptom onset to treatment time, prior stroke, systolic blood pressure, extent of hypoattenuation on baseline computed tomography scan and several significant interaction terms (including onset to treatment time-by-treatment and systolic blood pressure-by treatment) did not substantially change the strength of the interaction between gender and rtPA treatment (P=0.04). In this pooled analysis of rtPA in acute ischemic stroke, women benefited more than men, and the usual gender difference in outcome favoring men was not observed in the thrombolytic therapy group. For patients presenting at later time intervals, when the risks and benefits of rtPA are more finely

  11. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    Science.gov (United States)

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  12. Development of a tool-kit for the detection of healthy and injured cardiac tissue based on MR imaging

    Directory of Open Access Journals (Sweden)

    Westphal Philip

    2017-09-01

    Full Text Available Planning of interventions to treat cardiac arrhythmia requires a 3D patient specific model of the heart. Currently available commercial or free software dedicated to this task have important limitations for routinely use. Automatic algorithms are not robust enough while manual methods are time-consuming. Therefore, the project attempts to develop an optimal software tool. The heart model is generated from preoperative MR data-sets acquired with contrast agent and allows visualisation of damaged cardiac tissue. A requirement in the development of the software tool was the use of semi-automatic functions to be more robust. Once the patient image dataset has been loaded, the user selects a region of interest. Thresholding functions allow selecting the areas of high intensities which correspond to anatomical structures filled with contrast agent, namely cardiac cavities and blood vessels. Thereafter, the target-structure, for example the left ventricle, is coarsely selected by interactively outlining the gross shape. An active contour function adjusts automatically the initial contour to the image content. The result can still be manually improved using fast interaction tools. Finally, possible scar tissue located in the cavity muscle is automatically detected and visualized on the 3D heart model. The model is exported in format which is compatible with interventional devices at hospital. The evaluation of the software tool included two steps. Firstly, a comparison with two free software tools was performed on two image data sets of variable quality. Secondly, six scientists and physicians tested our tool and filled out a questionnaire. The performance of our software tool was visually judged more satisfactory than the free software, especially on the data set of lower quality. Professionals evaluated positively our functionalities regarding time taken, ease of use and quality of results. Improvements would consist in performing the planning based

  13. Are 12-lead ECG findings associated with the risk of cardiovascular events after ischemic stroke in young adults?

    Science.gov (United States)

    Pirinen, Jani; Putaala, Jukka; Aarnio, Karoliina; Aro, Aapo L; Sinisalo, Juha; Kaste, Markku; Haapaniemi, Elena; Tatlisumak, Turgut; Lehto, Mika

    2016-11-01

    Ischemic stroke (IS) in a young patient is a disaster and recurrent cardiovascular events could add further impairment. Identifying patients with high risk of such events is therefore important. The prognostic relevance of ECG for this population is unknown. A total of 690 IS patients aged 15-49 years were included. A 12-lead ECG was obtained 1-14 d after the onset of stroke. We adjusted for demographic factors, comorbidities, and stroke characteristics, Cox regression models were used to identify independent ECG parameters associated with long-term risks of (1) any cardiovascular event, (2) cardiac events, and (3) recurrent stroke. Median follow-up time was 8.8 years. About 26.4% of patients experienced a cardiovascular event, 14.5% had cardiac events, and 14.6% recurrent strokes. ECG parameters associated with recurrent cardiovascular events were bundle branch blocks, P-terminal force, left ventricular hypertrophy, and a broader QRS complex. Furthermore, more leftward P-wave axis, prolonged QTc, and P-wave duration >120 ms were associated with increased risks of cardiac events. No ECG parameters were independently associated with recurrent stroke. A 12-lead ECG can be used for risk prediction of cardiovascular events but not for recurrent stroke in young IS patients. KEY MESSAGES ECG is an easy, inexpensive, and useful tool for identifying young ischemic stroke patients with a high risk for recurrent cardiovascular events and it has a statistically significant association with these events even after adjusting for confounding factors. Bundle branch blocks, P-terminal force, broader QRS complex, LVH according to Cornell voltage duration criteria, more leftward P-wave axis, prolonged QTc, and P-wave duration >120 ms are predictors for future cardiovascular or cardiac events in these patients. No ECG parameters were independently associated with recurrent stroke.

  14. Level of complement activity predicts cardiac dysfunction after acute myocardial infarction treated with primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Haahr-Pedersen, Sune; Bjerre, Mette; Flyvbjerg, Allan

    2009-01-01

    BACKGROUND: The positive effect of reperfusion after ST-elevation myocardial infarction (STEMI) can be reduced by ischemic/reperfusion (I/R) injury.Mannose-binding-lectin (MBL) and soluble C5b-9 (membrane-attack-complex) are involved in complement-driven cell lysis and may play a role in human...... with increased risk of cardiac dysfunction in STEMI patients treated with pPCI, probably due to increased complement activity during the ischemic and reperfusion process. The predictive value of low peripheral plasma sC5b-9 may be explained by an accumulation and activation of sC5b-9 in the infarcted myocardium....

  15. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  16. Acute effects of remote ischemic preconditioning on cutaneous microcirculation - a controlled prospective cohort study

    Directory of Open Access Journals (Sweden)

    Kraemer Robert

    2011-11-01

    Full Text Available Abstract Background Therapeutic strategies aiming to reduce ischemia/reperfusion injury by conditioning tissue tolerance against ischemia appear attractive not only from a scientific perspective, but also in clinics. Although previous studies indicate that remote ischemic intermittent preconditioning (RIPC is a systemic phenomenon, only a few studies have focused on the elucidation of its mechanisms of action especially in the clinical setting. Therefore, the aim of this study is to evaluate the acute microcirculatory effects of remote ischemic preconditioning on a distinct cutaneous location at the lower extremity which is typically used as a harvesting site for free flap reconstructive surgery in a human in-vivo setting. Methods Microcirculatory data of 27 healthy subjects (25 males, age 24 ± 4 years, BMI 23.3 were evaluated continuously at the anterolateral aspect of the left thigh during RIPC using combined Laser-Doppler and photospectrometry (Oxygen-to-see, Lea Medizintechnik, Germany. After baseline microcirculatory measurement, remote ischemia was induced using a tourniquet on the contralateral upper arm for three cycles of 5 min. Results After RIPC, tissue oxygen saturation and capillary blood flow increased up to 29% and 35% during the third reperfusion phase versus baseline measurement, respectively (both p = 0.001. Postcapillary venous filling pressure decreased statistically significant by 16% during second reperfusion phase (p = 0.028. Conclusion Remote intermittent ischemic preconditioning affects cutaneous tissue oxygen saturation, arterial capillary blood flow and postcapillary venous filling pressure at a remote cutaneous location of the lower extremity. To what extent remote preconditioning might ameliorate reperfusion injury in soft tissue trauma or free flap transplantation further clinical trials have to evaluate. Trial registration ClinicalTrials.gov: NCT01235286

  17. [Unilateral acute pulmonary edema and ischemic myocardial process: a case report].

    Science.gov (United States)

    Bentaleb, A; Tagu, P; Vascaut, L

    2008-08-01

    Unilateral acute pulmonary oedema (APO) is a rare radioclinical finding. It occurs secondary to multiple specific and rare pathological processes. Functional ischemic mitral regurgitation (FIMR) secondary to myocardial necrosis is one of the rare aetiologies involved in its pathogenesis. This concerns a 94-year-old male patient with a history of myocardial infarction who presented with a clinical picture of unilateral APO secondary to functional mitral regurgitation as a complication of myocardial necrosis. In addition to the clinical presentation and unilateral radiological findings, the diagnosis was based essentially on the electrocardiographic tracing, as well as changes in cardiac enzyme levels and transthoracic echocardiogram coupled with Doppler tissue imaging. This resulted after ruling out many differential diagnoses. Unilateral APO secondary to functional mitral regurgitation often presents diagnostic challenges and problems of initial management for the clinician. There are multiple aetiologies of acute unilateral pulmonary oedema, namely mechanical (re-expansion), lesional, vascular, bronchial obstructions, as well as iatrogenic causes, as is the case with some lung transplantations. As with all cases of APO, the treatment is based mainly on diuretics with high-flow oxygen therapy in association with an anticoagulant, which is usually effectively combined with a platelet aggregation inhibiting drug and sometimes with vasodilators and beta-blockers. Surgical treatment with valvuloplasty or valvular replacement appears to be the most effective means for preventing relapse.

  18. Cardiac Resynchronization Therapy Defibrillator Treatment in a Child with Heart Failure and Ventricular Arrhythmia

    Directory of Open Access Journals (Sweden)

    Hak Ju Kim

    2016-08-01

    Full Text Available Cardiac resynchronization therapy (CRT is a new treatment for refractory heart failure. However, most patients with heart failure treated with CRT are adults, middle-aged or older with idiopathic or ischemic dilated cardiomyopathy. We treated a 12-year-old boy, who was transferred after cardiac arrest, with dilated cardiomyopathy, left bundle-branch block, and ventricular tachycardia. We performed cardiac resynchronization therapy with a defibrillator (CRT-D. After CRT-D, left ventricular ejection fraction improved from 22% to 4 4% a ssessed by e chocardiog ram 1 year p ostoperatively. On e lectrocardiog ram, Q RS d uration was shortened from 206 to 144 ms. The patient’s clinical symptoms also improved. For pediatric patients with refractory heart failure and ventricular arrhythmia, CRT-D could be indicated as an effective therapeutic option.

  19. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model.

    Science.gov (United States)

    Gómez-Mauricio, Guadalupe; Moscoso, Isabel; Martín-Cancho, María-Fernanda; Crisóstomo, Verónica; Prat-Vidal, Cristina; Báez-Díaz, Claudia; Sánchez-Margallo, Francisco M; Bernad, Antonio

    2016-07-16

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration.

  20. Sudden Cardiac Arrest due to Brugada Syndrome: a Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    R Soleimanirad

    2013-04-01

    Full Text Available Brugada Syndrome is a rare cause of sudden cardiac arrest and has a unique ECG pattern. In fact, with ST-segment elevation down sloping in the right precordial leads (v1-v3, RBBB pattern in lateral leads and J-point elevation is revealed. We must notice and avoid trigger factors of this syndrome during general anesthesia. Patient is a 39 old man who attended to emergency department with sudden cardiac arrest and resuscitate. He was transferred to ICU for management of hypoxic ischemic encephalopathy. Complementary studies concluded the diagnosis of Brugada syndrome. We must consider Brugada syndrome within patients with family history of sudden cardiac arrest. Moreover, we must avoid trigger factors of this syndrome such as fever, bradicardia and electrolyte abnormality (specialy Na, Ca abnormalities during general anesthesia and if they appear, we should treat them.

  1. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing

    Science.gov (United States)

    Lind, Johan U.; Busbee, Travis A.; Valentine, Alexander D.; Pasqualini, Francesco S.; Yuan, Hongyan; Yadid, Moran; Park, Sung-Jin; Kotikian, Arda; Nesmith, Alexander P.; Campbell, Patrick H.; Vlassak, Joost J.; Lewis, Jennifer A.; Parker, Kevin K.

    2017-03-01

    Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.

  2. Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model

    International Nuclear Information System (INIS)

    Blasco-Gimenez, Ramón; Lequerica, Juan L; Herrero, Maria; Hornero, Fernando; Berjano, Enrique J

    2010-01-01

    The aim of this work was to study linear deterministic models to predict tissue temperature during radiofrequency cardiac ablation (RFCA) by measuring magnitudes such as electrode temperature, power and impedance between active and dispersive electrodes. The concept involves autoregressive models with exogenous input (ARX), which is a particular case of the autoregressive moving average model with exogenous input (ARMAX). The values of the mode parameters were determined from a least-squares fit of experimental data. The data were obtained from radiofrequency ablations conducted on agar models with different contact pressure conditions between electrode and agar (0 and 20 g) and different flow rates around the electrode (1, 1.5 and 2 L min −1 ). Half of all the ablations were chosen randomly to be