WorldWideScience

Sample records for isc2 dispersion models

  1. MODELACIÓN DE LA DISPERSIÓN DE ANHÍDRIDO SULFUROSO EN LA COMUNA DE LA COMUNA DE PUCHUNCAVÍ UTILIZANDO EL PROGRAMA ISC3 MODELING OF THE SULFUR DIOXIDE DISPERSION IN THE PUCHUNCAVI CITY USING THE PROGRAM ISC3

    Directory of Open Access Journals (Sweden)

    Pamela Lazo

    2006-12-01

    Full Text Available El presente trabajo evalúa el modelo de dispersión atmosférica ISC3 en la comuna de Puchuncaví, modelando las emisiones de SO 2 provenientes del Complejo Industrial Las Ventanas en las cinco estaciones que conforman la red de calidad del aire de este complejo. Se modelan concentraciones horarias y promedio de 24 horas para los años 2003 y 2004, minimizando los errores sistemáticos mediante la aplicación del filtro Kalman. Se evalúa el desempeño del modelo mediante una serie de herramientas estadísticas. Se realiza un análisis de sensibilidad de la variación en la tasa de emisión de SO 2 , velocidad y dirección del viento, observando que el modelo es sensible a estos factores y siendo una de las causas de los errores obtenidos en cuatro de las cinco estaciones de calidad del aire del complejo industrial. Se concluye que el modelo ISC3 predice con menor error en la dirección del viento predominante en frecuencia, entregando un mejor ajuste para velocidades de viento elevadas en direcciones de viento menores en frecuencia. Se observa que el filtro de Kalman mejora el desempeño del modelo ISC3 entregando resultados con menor error en las cinco estaciones de calidad del aire.The present work evaluates the atmospheric dispersion model ISC3 in Puchuncaví, Chile, modelling the emissions of SO 2 coming from the five stations that make up the air quality network in the industrial complex of Ventanas. 24 hour average concentrations for the years 2003 and 2004 were modelled, systematic errors being diminished by using a Kalman filter. The performance of the model is evaluated using a series of statistic tools. An analysis of the sensitivity of the SO 2 rate of emission, speed and wind direction variation is made, noting that the model is sensible to these factors, being this one of the causes of the errors found in four of the five stations that measured the quality of the air. It is concluded that the Kalman filter improves model ISC3

  2. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly.

    Science.gov (United States)

    Urbina, H D; Silberg, J J; Hoff, K G; Vickery, L E

    2001-11-30

    The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of Fe/S proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed [(35)S]cysteine radiotracer studies to monitor sulfur transfer between IscS and IscU from Escherichia coli and have used direct binding measurements to investigate interactions between the proteins. IscS catalyzed transfer of (35)S from [(35)S]cysteine to IscU in the absence of additional thiol reagents, suggesting that transfer can occur directly and without involvement of an intermediate carrier. Surface plasmon resonance studies and isothermal titration calorimetry measurements further revealed that IscU binds to IscS with high affinity (K(d) approximately 2 microm) in support of a direct transfer mechanism. Transfer was inhibited by treatment of IscU with iodoacetamide, and (35)S was released by reducing reagents, suggesting that transfer of persulfide sulfur occurs to cysteinyl groups of IscU. A deletion mutant of IscS lacking C-terminal residues 376-413 (IscSDelta376-413) displayed cysteine desulfurase activity similar to the full-length protein but exhibited lower binding affinity for IscU, decreased ability to transfer (35)S to IscU, and reduced activity in assays of Fe/S cluster assembly on IscU. The findings with IscSDelta376-413 provide additional support for a mechanism of sulfur transfer involving a direct interaction between IscS and IscU and suggest that the C-terminal region of IscS may be important for binding IscU.

  3. Official (ISC)2 guide to the CISSP CBK

    CERN Document Server

    Hernandez, Steven

    2012-01-01

    Recognized as one of the best tools available for the information security professional and especially for candidates studying for the (ISC)2 CISSP examination, the Official (ISC)2(R) Guide to the CISSP(R) CBK(R), Third Edition has been updated and revised to reflect the latest developments in this ever-changing field. Endorsed by the (ISC)2, this book provides unrivaled preparation for the certification exam that is both up to date and authoritative. Compiled and reviewed by CISSPs and (ISC)2 members, the text provides an exhaustive review of the 10 current domains of the CBK.

  4. Cysteine desulfurase IscS2 plays a role in oxygen resistance in Clostridium difficile.

    Science.gov (United States)

    Giordano, Nicole; Hastie, Jessica L; Smith, Ashley D; Foss, Elissa D; Gutierrez-Munoz, Daniela F; Carlson, Paul E

    2018-06-04

    Clostridium difficile is an anaerobic, spore-forming bacterium capable of colonizing the gastrointestinal tract of humans following disruption of the normal microbiota, typically from antibiotic therapy for an unrelated infection. With approximately 500,000 confirmed infections leading to 29,000 deaths per year in the United States, C. difficile infection (CDI) is an urgent public health threat. We previously determined C. difficile survives in up to 3% oxygen. Low levels of oxygen are present in the intestinal tract with the higher concentrations being associated with the epithelial cell surface. Additionally, antibiotic treatment, the greatest risk factor for CDI, increases intestinal oxygen concentration. Therefore, we hypothesized that the C. difficile genome encodes mechanisms for survival during oxidative stress. Previous data have shown that cysteine desulfurases involved in iron-sulfur cluster assembly are involved in protecting bacteria from oxidative stress. In this study, deletion of a putative cysteine desulfurase ( Cd 630_12790/IscS2) involved in the iron sulfur cluster (Isc) system caused a severe growth defect in the presence of 2% oxygen. Additionally, this mutant delayed colonization in a conventional mouse model of CDI, and failed to colonize in a germ-free model, which has higher intestinal oxygen levels. These data imply an undefined role for this cysteine desulfurase in protecting C. difficile from low levels of oxygen in the gut. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  5. A new tessera into the interactome of the isc operon:A novel interaction between HscB and IscS

    Directory of Open Access Journals (Sweden)

    Annalisa Pastore

    2016-09-01

    Full Text Available Iron sulfur clusters are essential universal prosthetic groups which can be formed inorganically but, in biology, are bound to proteins and produced enzymatically. Most of the components of the machine that produces the clusters are conserved throughout evolution. In bacteria, they are encoded in the isc operon. Previous reports provide information on the role of specific components but a clear picture of how the whole machine works is still missing. We have carried out a study of the effects of the co-chaperone HscB from the model system E. coli. We document a previously undetected weak interaction between the chaperone HscB and the desulfurase IscS, one of the two main players of the machine. The binding site involves a region of HscB in the longer stem of the approximately L-shaped molecules, whereas the interacting surface of IscS overlaps with the surface previously involved in binding other proteins, such as ferredoxin and frataxin. Our findings provide an entirely new perspective to our comprehension of the role of HscB and propose this protein as a component of the IscS complex.

  6. Official (ISC)2 guide to the CISSP exam

    CERN Document Server

    Hansche, Susan; Hare, Chris

    2003-01-01

    Candidates for the CISSP exam can now go directly to the source for study materials that are indispensable in achieving certification. The Official (ISC)2 Guide to the CISSP Exam is derived from the actual CBK review course created and administered by the non-profit security consortium (ISC)2. In addition to being an invaluable study guide, this book is detailed enough to serve as an authoritative information security resource. Both of the guide's co-authors are CISSPs, and the entire text has been reviewed and approved by Hal Tipton, Co-Founder and Past President of ISSA and Co-Founder of (I

  7. Chinese mitten crab (Eriocheir sinensis) iron-sulphur cluster assembly protein 2 (EsIscA2) is differentially regulated after immune and oxidative stress challenges.

    Science.gov (United States)

    Zhang, Peng; Liu, Yu; Wang, Min; Dong, Miren; Liu, Zhaoqun; Jia, Zhihao; Wang, Weilin; Zhang, Anguo; Wang, Lingling; Song, Linsheng

    2018-07-01

    Iron-sulphur clusters (ISCs), one of the oldest and most versatile cofactors of proteins, are involved in catalysis reactions, electron transport reactions, regulation processes as well as sensing of ambient conditions. Iron-sulphur cluster assembly protein (IscA) is a scaffold protein member of ISC formation system, which plays a significant role in the assembly and maturation process of ISC proteins. In the present study, the cDNA sequence of iron-sulphur cluster assembly protein 2 (designated as EsIscA2) was cloned from Eriocheir sinensis. The open reading frame (ORF) of EsIscA2 was of 507 bp, encoding a peptide of 168 amino acids with a typically conserved Fe-S domain. A tetrameric form was predicated by the SWISS-MODEL prediction algorithm, and three conserved cysteine residues (Cys-93, Cys-158, Cys-160) from each IscA monomer were predicted to form a 'cysteine pocket'. The deduced amino acid sequence of EsIscA2 shared over 50% similarity with that of other IscAs. EsIscA2 was clustered with IscA2 proteins from invertebrates and vertebrates, indicating that the protein was highly conservative in the evolution. rEsIscA2 exhibited a high iron binding affinity in the concentration ranging from 2 to 200 μM. EsIscA2 transcripts were detected in all the tested tissues including gonad, hemocytes, gill, muscle, heart, hepatopancreas and eyestalk, and EsIscA2 protein was detected in the mitochondria of hemocytes. The highest mRNA expression level of EsIscA2 was detected in muscle and hepatopancreas, which was about 34.66-fold (p < 0.05) and 27.07-fold (p < 0.05) of that in hemocytes, respectively. After Aeromonas hydrophila and lipopolysaccharide (LPS) stimulations, the mRNA expression of EsIscA2 in hemocytes was down-regulated and reached the lowest level at 24 h (0.31-fold, p < 0.05) and 48 h (0.29-fold, p < 0.05) compared to control group, respectively. And the expression of EsIscA2 mRNA in hepatopancreas was repressed from 6 h to 48 h post

  8. Functional Complementation Studies Reveal Different Interaction Partners of Escherichia coli IscS and Human NFS1.

    Science.gov (United States)

    Bühning, Martin; Friemel, Martin; Leimkühler, Silke

    2017-08-29

    The trafficking and delivery of sulfur to cofactors and nucleosides is a highly regulated and conserved process among all organisms. All sulfur transfer pathways generally have an l-cysteine desulfurase as an initial sulfur-mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of sulfur-containing biomolecules like iron-sulfur (Fe-S) clusters, thiamine, biotin, lipoic acid, the molybdenum cofactor (Moco), and thiolated nucleosides in tRNA. The human l-cysteine desulfurase NFS1 and the Escherichia coli homologue IscS share a level of amino acid sequence identity of ∼60%. While E. coli IscS has a versatile role in the cell and was shown to have numerous interaction partners, NFS1 is mainly localized in mitochondria with a crucial role in the biosynthesis of Fe-S clusters. Additionally, NFS1 is also located in smaller amounts in the cytosol with a role in Moco biosynthesis and mcm 5 s 2 U34 thio modifications of nucleosides in tRNA. NFS1 and IscS were conclusively shown to have different interaction partners in their respective organisms. Here, we used functional complementation studies of an E. coli iscS deletion strain with human NFS1 to dissect their conserved roles in the transfer of sulfur to a specific target protein. Our results show that human NFS1 and E. coli IscS share conserved binding sites for proteins involved in Fe-S cluster assembly like IscU, but not with proteins for tRNA thio modifications or Moco biosynthesis. In addition, we show that human NFS1 was almost fully able to complement the role of IscS in Moco biosynthesis when its specific interaction partner protein MOCS3 from humans was also present.

  9. Role of IscX in Iron-Sulfur Cluster Biogenesis in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hae; Bothe, Jameson R.; Frederick, Ronnie O.; Holder, Johneisa C.; Markley, John L. [UW

    2014-08-20

    The Escherichia coli isc operon encodes key proteins involved in the biosynthesis of iron–sulfur (Fe–S) clusters. Whereas extensive studies of most ISC proteins have revealed their functional properties, the role of IscX (also dubbed YfhJ), a small acidic protein encoded by the last gene in the operon, has remained in question. Previous studies showed that IscX binds iron ions and interacts with the cysteine desulfurase (IscS) and the scaffold protein for cluster assembly (IscU), and it has been proposed that IscX functions either as an iron supplier or a regulator of Fe–S cluster biogenesis. We have used a combination of NMR spectroscopy, small-angle X-ray scattering (SAXS), chemical cross-linking, and enzymatic assays to enlarge our understanding of the interactions of IscX with iron ions, IscU, and IscS. We used chemical shift perturbation to identify the binding interfaces of IscX and IscU in their complex. NMR studies showed that Fe2+ from added ferrous ammonium sulfate binds IscX much more avidly than does Fe3+ from added ferric ammonium citrate and that Fe2+ strengthens the interaction between IscX and IscU. We found that the addition of IscX to the IscU–IscS binary complex led to the formation of a ternary complex with reduced cysteine desulfurase activity, and we determined a low-resolution model for that complex from a combination of NMR and SAXS data. We postulate that the inhibition of cysteine desulfurase activity by IscX serves to reduce unproductive conversion of cysteine to alanine. By incorporating these new findings with results from prior studies, we propose a detailed mechanism for Fe–S cluster assembly in which IscX serves both as a donor of Fe2+ and as a regulator of cysteine desulfurase activity.

  10. Updating default depths in the ISC bulletin

    Science.gov (United States)

    Bolton, Maiclaire K.; Storchak, Dmitry A.; Harris, James

    2006-09-01

    The International Seismological Centre (ISC) publishes the definitive global bulletin of earthquake locations. In the ISC bulletin, we aim to obtain a free depth, but often this is not possible. Subsequently, the first option is to obtain a depth derived from depth phases. If depth phases are not available, we then use the reported depth from a reputable local agency. Finally, as a last resort, we set a default depth. In the past, common depths of 10, 33, or multiples of 50 km have been assigned. Assigning a more meaningful default depth, specific to a seismic region will increase the consistency of earthquake locations within the ISC bulletin and allow the ISC to publish better positions and magnitude estimates. It will also improve the association of reported secondary arrivals to corresponding seismic events. We aim to produce a global set of default depths, based on a typical depth for each area, from well-constrained events in the ISC bulletin or where depth could be constrained using a consistent set of depth phase arrivals provided by a number of different reporters. In certain areas, we must resort to using other assumptions. For these cases, we use a global crustal model (Crust2.0) to set default depths to half the thickness of the crust.

  11. Official (ISC)2 guide to the CISSP CBK

    CERN Document Server

    Gordon, Adam

    2015-01-01

    As a result of a rigorous, methodical process that (ISC)² follows to routinely update its credential exams, it has announced that enhancements will be made to both the Certified Information Systems Security Professional (CISSP) credential, beginning April 15, 2015. (ISC)² conducts this process on a regular basis to ensure that the examinations and subsequent training and continuing professional education requirements encompass the topic areas relevant to the roles and responsibilities of today's practicing information security professionals.Refreshed technical content has been added to the off

  12. Knock-downs of mitochondrial iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Šmíd, O.; Horáková, Eva; Vilímová, V.; Hrdý, I.; Cammack, R.; Horváth, A.; Lukeš, Julius; Tachezy, J.

    2006-01-01

    Roč. 281, č. 39 (2006), s. 28679-28686 ISSN 0021-9258 R&D Projects: GA ČR GA204/04/0435; GA AV ČR IAA5022302 Institutional research plan: CEZ:AV0Z60220518 Keywords : IscS * IscU * FeS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.808, year: 2006

  13. IRRIGATION SCHEDULING CALCULATOR (ISC TO IMPROVE WATER MANAGEMENT ON FIELD LEVEL IN EGYPT

    Directory of Open Access Journals (Sweden)

    Samiha Abou El-Fetouh Hamed Ouda

    2017-10-01

    Full Text Available The developed model is MS excel sheet called “Irrigation Scheduling Calculator, ISC”. The model requires to input daily weather data to calculate daily evapotranspiration using Penman-Monteith equation. The model calculates water depletion from the root zone to determine when to irrigate and how much water should be applied. The charge from irrigation pump is used to calculate how many hours should the farmer run the pump to deliver the needed amount of water. ISC model was used to developed irrigation schedule for wheat and maize planted in El-Gharbia governorate. The developed schedules were compared to the actual schedules for both crops. Furthermore, CropSyst model was calibrated for both crops and run using the developed schedules by ISC model. The simulation results indicated that the calculated irrigation amount by ISC model for wheat was lower than actual schedule by 6.0 mm. Furthermore, the simulated wheat productivity by CropSyst was higher than measured grain and biological by 2%. Similarly, the calculated applied irrigation amount by ISC model for maize was lower than actual schedule by 79.0 mm and the productivity was not changed.

  14. Official (ISC)2 guide to the ISSMP CBK

    CERN Document Server

    Tipton, Harold F

    2007-01-01

    As the recognized leader in the field of information security education and certification, the (ISC)2(R) promotes the development of information security professionals around the world. The Certified Information Systems Security Professional-Information Systems Security Management Professional (CISSP-ISSMP(R)) examination assesses individuals' understanding of security management practices. Obtaining certification validates your ability to create and implement effective information security management programs that meet the security needs of today's organizations. Preparing professionals for c

  15. Apical P2XR contribute to [Ca2+]i signaling and Isc in mouse renal MCD.

    Science.gov (United States)

    Li, Liuzhe; Lynch, I Jeanette; Zheng, Wencui; Cash, Melanie N; Teng, Xueling; Wingo, Charles S; Verlander, Jill W; Xia, Shen-Ling

    2007-08-03

    We examined P2X receptor expression and distribution in the mouse collecting duct (CD) and their functional role in Ca(2+) signaling. Both P2X(1) and P2X(4) were detected by RT-PCR and Western blot. Immunohistochemistry demonstrated apical P2X(1) and P2X(4) immunoreactivity in principal cells in the outer medullary CD (OMCD) and inner medullary CD (IMCD). Luminal ATP induced an increase in Ca(2+) signaling in native medullary CD (MCD) as measured by fluorescence imaging. ATP also induced an increase in Ca(2+) signaling in MCD cells grown in primary culture but not in the presence of P2XR antagonist PPNDS. Short circuit current (I(sc)) measurement with mouse IMCD cells showed that P2XR agonist BzATP induced a larger I(sc) than did P2YR agonist UTP in the apical membrane. Our data reveal for the first time that P2X(1) and P2X(4) are cell-specific with prominent immunoreactivity in the apical area of MCD cells. The finding that P2XR blockade inhibits ATP-induced Ca(2+) signaling suggests that activation of P2XR is a key step in Ca(2+)-dependent purinergic signaling. The result that activation of P2XR produces large I(sc) indicates the necessity of P2XR in renal CD ion transport.

  16. The ISC Seismic Event Bibliography

    Science.gov (United States)

    Di Giacomo, Domenico; Storchak, Dmitry

    2015-04-01

    The International Seismological Centre (ISC) is a not-for-profit organization operating in the UK for the last 50 years and producing the ISC Bulletin - the definitive worldwide summary of seismic events, both natural and anthropogenic - starting from the beginning of 20th century. Often researchers need to gather information related to specific seismic events for various reasons. To facilitate such task, in 2012 we set up a new database linking earthquakes and other seismic events in the ISC Bulletin to bibliographic records of scientific articles (mostly peer-reviewed journals) that describe those events. Such association allows users of the ISC Event Bibliography (www.isc.ac.uk/event_bibliography/index.php) to run searches for publications via a map-based web interface and, optionally, selecting scientific publications related to either specific events or events in the area of interest. Some of the greatest earthquakes were described in several hundreds of articles published over a period of few years. The journals included in our database are not limited to seismology but bring together a variety of fields in geosciences (e.g., engineering seismology, geodesy and remote sensing, tectonophysics, monitoring research, tsunami, geology, geochemistry, hydrogeology, atmospheric sciences, etc.) making this service useful in multidisciplinary studies. Usually papers dealing with large data set are not included (e.g., papers describing a seismic catalogue). Currently the ISC Event Bibliography includes over 17,000 individual publications from about 500 titles related to over 14,000 events that occurred in last 100+ years. The bibliographic records in the Event Bibliography start in the 1950s, and it is updated as new publications become available.

  17. Official (ISC)2 guide to the CSSLP CBK

    CERN Document Server

    Paul, Mano

    2013-01-01

    The text allows readers to learn about software security from a renowned security practitioner who is the appointed software assurance advisor for (ISC)2. Complete with numerous illustrations, it makes complex security concepts easy to understand and implement. In addition to being a valuable resource for those studying for the CSSLP examination, this book is also an indispensable software security reference for those already part of the certified elite. A robust and comprehensive appendix makes this book a time-saving resource for anyone involved in secure software development.

  18. Official (ISC)2 guide to the CISSP CBK

    CERN Document Server

    Hernandez, CISSP, Steven

    2009-01-01

    With each new advance in connectivity and convenience comes a new wave of threats to privacy and security capable of destroying a company's reputation, violating a consumer's privacy, compromising intellectual property, and in some cases endangering personal safety. This is why it is essential for information security professionals to stay up to date with the latest advances in technology and the new security threats they create. Recognized as one of the best tools available for the information security professional and especially for candidates studying for the (ISC)2 CISSP examination, the O

  19. Extending the ISC-GEM Global Earthquake Instrumental Catalogue

    Science.gov (United States)

    Di Giacomo, Domenico; Engdhal, Bob; Storchak, Dmitry; Villaseñor, Antonio; Harris, James

    2015-04-01

    After a 27-month project funded by the GEM Foundation (www.globalquakemodel.org), in January 2013 we released the ISC-GEM Global Instrumental Earthquake Catalogue (1900 2009) (www.isc.ac.uk/iscgem/index.php) as a special product to use for seismic hazard studies. The new catalogue was necessary as improved seismic hazard studies necessitate that earthquake catalogues are homogeneous (to the largest extent possible) over time in their fundamental parameters, such as location and magnitude. Due to time and resource limitation, the ISC-GEM catalogue (1900-2009) included earthquakes selected according to the following time-variable cut-off magnitudes: Ms=7.5 for earthquakes occurring before 1918; Ms=6.25 between 1918 and 1963; and Ms=5.5 from 1964 onwards. Because of the importance of having a reliable seismic input for seismic hazard studies, funding from GEM and two commercial companies in the US and UK allowed us to start working on the extension of the ISC-GEM catalogue both for earthquakes that occurred beyond 2009 and for earthquakes listed in the International Seismological Summary (ISS) which fell below the cut-off magnitude of 6.25. This extension is part of a four-year program that aims at including in the ISC-GEM catalogue large global earthquakes that occurred before the beginning of the ISC Bulletin in 1964. In this contribution we present the updated ISC GEM catalogue, which will include over 1000 more earthquakes that occurred in 2010 2011 and several hundreds more between 1950 and 1959. The catalogue extension between 1935 and 1949 is currently underway. The extension of the ISC-GEM catalogue will also be helpful for regional cross border seismic hazard studies as the ISC-GEM catalogue should be used as basis for cross-checking the consistency in location and magnitude of those earthquakes listed both in the ISC GEM global catalogue and regional catalogues.

  20. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results

    Science.gov (United States)

    Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.

    2014-01-01

    The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.

  1. The Inertial Stellar Compass (ISC): A Multifunction, Low Power, Attitude Determination Technology Breakthrough

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dennehy, Neil; Gambino, Joel; Maynard, Andrew; Brady, T.; Buckley, S.; Zinchuk, J.

    2003-01-01

    The Inertial Stellar Compass (ISC) is a miniature, low power, stellar inertial attitude determination system with an accuracy of better than 0.1 degree (1 sigma) in three axes. The ISC consumes only 3.5 Watts of power and is contained in a 2.5 kg package. With its embedded on-board processor, the ISC provides attitude quaternion information and has Lost-in-Space (LIS) initialization capability. The attitude accuracy and LIS capability are provided by combining a wide field of view Active Pixel Sensor (APS) star camera and Micro- ElectroMechanical System (MEMS) inertial sensor information in an integrated sensor system. The performance and small form factor make the ISC a useful sensor for a wide range of missions. In particular, the ISC represents an enabling, fully integrated, micro-satellite attitude determination system. Other applications include using the ISC as a single sensor solution for attitude determination on medium performance spacecraft and as a bolt on independent safe-hold sensor or coarse acquisition sensor for many other spacecraft. NASA's New Millennium Program (NMP) has selected the ISC technology for a Space Technology 6 (ST6) flight validation experiment scheduled for 2004. NMP missions, such a s ST6, are intended to validate advanced technologies that have not flown in space in order to reduce the risk associated with their infusion into future NASA missions. This paper describes the design, operation, and performance of the ISC and outlines the technology validation plan. A number of mission applications for the ISC technology are highlighted, both for the baseline ST6 ISC configuration and more ambitious applications where ISC hardware and software modifications would be required. These applications demonstrate the wide range of Space and Earth Science missions that would benefit from infusion of the ISC technology.

  2. Quantifying and Reducing Curve-Fitting Uncertainty in Isc

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mark; Duck, Benjamin; Emery, Keith

    2015-06-14

    Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data points can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.

  3. What Industry Is Saying About the Battery ISC Device (Text Version) |

    Science.gov (United States)

    version of the video What Industry Is Saying About the Battery ISC Device. Bring Up NREL Logo with Music Transportation Research | NREL What Industry Is Saying About the Battery ISC Device (Text Version) What Industry Is Saying About the Battery ISC Device (Text Version) The following is the text

  4. Quantifying and Reducing Curve-Fitting Uncertainty in Isc: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mark; Duck, Benjamin; Emery, Keith

    2015-09-28

    Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data points can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.

  5. ISC-EHB: Reconstruction of a robust earthquake dataset

    Science.gov (United States)

    Weston, J.; Engdahl, E. R.; Harris, J.; Di Giacomo, D.; Storchak, D. A.

    2018-04-01

    The EHB Bulletin of hypocentres and associated travel-time residuals was originally developed with procedures described by Engdahl, Van der Hilst and Buland (1998) and currently ends in 2008. It is a widely used seismological dataset, which is now expanded and reconstructed, partly by exploiting updated procedures at the International Seismological Centre (ISC), to produce the ISC-EHB. The reconstruction begins in the modern period (2000-2013) to which new and more rigorous procedures for event selection, data preparation, processing, and relocation are applied. The selection criteria minimise the location bias produced by unmodelled 3D Earth structure, resulting in events that are relatively well located in any given region. Depths of the selected events are significantly improved by a more comprehensive review of near station and secondary phase travel-time residuals based on ISC data, especially for the depth phases pP, pwP and sP, as well as by a rigorous review of the event depths in subduction zone cross sections. The resulting cross sections and associated maps are shown to provide details of seismicity in subduction zones in much greater detail than previously achievable. The new ISC-EHB dataset will be especially useful for global seismicity studies and high-frequency regional and global tomographic inversions.

  6. Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site

    International Nuclear Information System (INIS)

    Jeong, Hyojoon; Hwang, Wontae; Kim, Eunhan; Han, Moonhee

    2012-01-01

    Highlights: ► This study is to improve the reliability of air dispersion modeling. ► Tracer experiments assumed gaseous radionuclides were conducted at a nuclear site. ► The performance of a hybrid modeling combined ISC with ANFIS was investigated.. ► Hybrid modeling approach shows better performance rather than a single ISC model. - Abstract: Predicted air concentrations of radioactive materials are important for an environmental impact assessment for the public health. In this study, the performance of a hybrid modeling combined with the industrial source complex (ISC) model and an adaptive neuro-fuzzy inference system (ANFIS) for predicting tracer concentrations was investigated. Tracer dispersion experiments were performed to produce the field data assuming the accidental release of radioactive material. ANFIS was trained in order that the outputs of the ISC model are similar to the measured data. Judging from the higher correlation coefficients between the measured and the calculated ones, the hybrid modeling approach could be an appropriate technique for an improvement of the modeling capability to predict the air concentrations for radioactive materials.

  7. Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA.

    Science.gov (United States)

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions.

  8. Rebuild of the Bulletin of the International Seismological Centre (ISC), part 1: 1964-1979

    Science.gov (United States)

    Storchak, Dmitry A.; Harris, James; Brown, Lonn; Lieser, Kathrin; Shumba, Blessing; Verney, Rebecca; Di Giacomo, Domenico; Korger, Edith I. M.

    2017-12-01

    The data from the Bulletin of the International Seismological Centre (ISC) have always been and still remain in demand for a wide range of studies in Geosciences. The unique features of the Bulletin include long-term coverage (1904-present), the most comprehensive set of included seismic data from the majority of permanent seismic networks at any given time in the history of instrumental recording (currently 150) and homogeneity of the data and their representation. In order to preserve this homogeneity, the ISC has followed its own standard seismic event processing procedures that have not substantially changed until the early 2000s. Several considerable and necessary advancements in the ISC data collection and seismic event location procedures have created a need to rebuild the data for preceding years in line with the new procedures. Thus was set up a project to rebuild the ISC Bulletin for the period from the beginning of the ISC data till the end of data year 2010. The project is known as the Rebuild of the ISC Bulletin. From data month of January 2011, the ISC data have already been processed with the fully tested and established new procedures and do not require an alteration. It was inconceivable even to think about such a project for many tens of years, but great advances in computer power and increased support by the ISC Member-Institutions and Sponsors have given us a chance to perform this project. Having obtained a lot of experience on the way, we believe that within a few years the entire period of the ISC data will be reprocessed and extended for the entire period of instrumental seismological recordings from 1904 till present. The purpose of this article is to describe the work on reprocessing the ISC Bulletin data under the Rebuild project. We also announce the release of the rebuilt ISC Bulletin for the period 1964-1979 with all seismic events reprocessed and relocated in line with the modern ISC procedures, 68,000 new events, 255 new stations

  9. The CTBTO Link to the database of the International Seismological Centre (ISC)

    Science.gov (United States)

    Bondar, I.; Storchak, D. A.; Dando, B.; Harris, J.; Di Giacomo, D.

    2011-12-01

    The CTBTO Link to the database of the International Seismological Centre (ISC) is a project to provide access to seismological data sets maintained by the ISC using specially designed interactive tools. The Link is open to National Data Centres and to the CTBTO. By means of graphical interfaces and database queries tailored to the needs of the monitoring community, the users are given access to a multitude of products. These include the ISC and ISS bulletins, covering the seismicity of the Earth since 1904; nuclear and chemical explosions; the EHB bulletin; the IASPEI Reference Event list (ground truth database); and the IDC Reviewed Event Bulletin. The searches are divided into three main categories: The Area Based Search (a spatio-temporal search based on the ISC Bulletin), the REB search (a spatio-temporal search based on specific events in the REB) and the IMS Station Based Search (a search for historical patterns in the reports of seismic stations close to a particular IMS seismic station). The outputs are HTML based web-pages with a simplified version of the ISC Bulletin showing the most relevant parameters with access to ISC, GT, EHB and REB Bulletins in IMS1.0 format for single or multiple events. The CTBTO Link offers a tool to view REB events in context within the historical seismicity, look at observations reported by non-IMS networks, and investigate station histories and residual patterns for stations registered in the International Seismographic Station Registry.

  10. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA.

    Science.gov (United States)

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.

  11. The Molecular Bases of the Dual Regulation of Bacterial Iron Sulfur Cluster Biogenesis by CyaY and IscX

    Directory of Open Access Journals (Sweden)

    Salvatore Adinolfi

    2018-02-01

    Full Text Available IscX (or YfhJ is a protein of unknown function which takes part in the iron-sulfur cluster assembly machinery, a highly specialized and essential metabolic pathway. IscX binds to iron with low affinity and interacts with IscS, the desulfurase central to cluster assembly. Previous studies have suggested a competition between IscX and CyaY, the bacterial ortholog of frataxin, for the same binding surface of IscS. This competition could suggest a link between the two proteins with a functional significance. Using a hybrid approach based on nuclear magnetic resonance, small angle scattering and biochemical methods, we show here that IscX is a modulator of the inhibitory properties of CyaY: by competing for the same site on IscS, the presence of IscX rescues the rates of enzymatic cluster formation which are inhibited by CyaY. The effect is stronger at low iron concentrations, whereas it becomes negligible at high iron concentrations. These results strongly suggest the mechanism of the dual regulation of iron sulfur cluster assembly under the control of iron as the effector.

  12. The InSAR Scientific Computing Environment (ISCE): A Python Framework for Earth Science

    Science.gov (United States)

    Rosen, P. A.; Gurrola, E. M.; Agram, P. S.; Sacco, G. F.; Lavalle, M.

    2015-12-01

    The InSAR Scientific Computing Environment (ISCE, funded by NASA ESTO) provides a modern computing framework for geodetic image processing of InSAR data from a diverse array of radar satellites and aircraft. ISCE is both a modular, flexible, and extensible framework for building software components and applications as well as a toolbox of applications for processing raw or focused InSAR and Polarimetric InSAR data. The ISCE framework contains object-oriented Python components layered to construct Python InSAR components that manage legacy Fortran/C InSAR programs. Components are independently configurable in a layered manner to provide maximum control. Polymorphism is used to define a workflow in terms of abstract facilities for each processing step that are realized by specific components at run-time. This enables a single workflow to work on either raw or focused data from all sensors. ISCE can serve as the core of a production center to process Level-0 radar data to Level-3 products, but is amenable to interactive processing approaches that allow scientists to experiment with data to explore new ways of doing science with InSAR data. The NASA-ISRO SAR (NISAR) Mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystems. ISCE is planned as the foundational element in processing NISAR data, enabling a new class of analyses that take greater advantage of the long time and large spatial scales of these new data. NISAR will be but one mission in a constellation of radar satellites in the future delivering such data. ISCE currently supports all publicly available strip map mode space-borne SAR data since ERS and is expected to include support for upcoming missions. ISCE has been incorporated into two prototype cloud-based systems that have demonstrated its elasticity in addressing larger data processing problems in a "production" context and its ability to be

  13. The Akt inhibitor ISC-4 synergizes with cetuximab in 5-FU-resistant colon cancer.

    Directory of Open Access Journals (Sweden)

    Joshua E Allen

    Full Text Available Phenylbutyl isoselenocyanate (ISC-4 is an Akt inhibitor with demonstrated preclinical efficacy against melanoma and colon cancer. In this study, we sought to improve the clinical utility of ISC-4 by identifying a synergistic combination with FDA-approved anti-cancer therapies, a relevant and appropriate disease setting for testing, and biomarkers of response. We tested the activity of ISC-4 and 19 FDA-approved anticancer agents, alone or in combination, against the SW480 and RKO human colon cancer cell lines. A synergistic interaction with cetuximab was identified and validated in a panel of additional colon cancer cell lines, as well as the kinetics of synergy. ISC-4 in combination with cetuximab synergistically reduced the viability of human colon cancer cells with wild-type but not mutant KRAS genes. Further analysis revealed that the combination therapy cooperatively decreased cell cycle progression, increased caspase-dependent apoptosis, and decreased phospho-Akt in responsive tumor cells. The synergism between ISC-4 and cetuximab was retained independently of acquired resistance to 5-FU in human colon cancer cells. The combination demonstrated synergistic anti-tumor effects in vivo without toxicity and in the face of resistance to 5-FU. These results suggest that combining ISC-4 and cetuximab should be explored in patients with 5-FU-resistant colon cancer harboring wild-type KRAS.

  14. Plutonium explosive dispersal modeling using the MACCS2 computer code

    International Nuclear Information System (INIS)

    Steele, C.M.; Wald, T.L.; Chanin, D.I.

    1998-01-01

    The purpose of this paper is to derive the necessary parameters to be used to establish a defensible methodology to perform explosive dispersal modeling of respirable plutonium using Gaussian methods. A particular code, MACCS2, has been chosen for this modeling effort due to its application of sophisticated meteorological statistical sampling in accordance with the philosophy of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145, ''Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants''. A second advantage supporting the selection of the MACCS2 code for modeling purposes is that meteorological data sets are readily available at most Department of Energy (DOE) and NRC sites. This particular MACCS2 modeling effort focuses on the calculation of respirable doses and not ground deposition. Once the necessary parameters for the MACCS2 modeling are developed and presented, the model is benchmarked against empirical test data from the Double Tracks shot of project Roller Coaster (Shreve 1965) and applied to a hypothetical plutonium explosive dispersal scenario. Further modeling with the MACCS2 code is performed to determine a defensible method of treating the effects of building structure interaction on the respirable fraction distribution as a function of height. These results are related to the Clean Slate 2 and Clean Slate 3 bunkered shots of Project Roller Coaster. Lastly a method is presented to determine the peak 99.5% sector doses on an irregular site boundary in the manner specified in NRC Regulatory Guide 1.145 (1983). Parametric analyses are performed on the major analytic assumptions in the MACCS2 model to define the potential errors that are possible in using this methodology

  15. Plutonium explosive dispersal modeling using the MACCS2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Steele, C.M.; Wald, T.L.; Chanin, D.I.

    1998-11-01

    The purpose of this paper is to derive the necessary parameters to be used to establish a defensible methodology to perform explosive dispersal modeling of respirable plutonium using Gaussian methods. A particular code, MACCS2, has been chosen for this modeling effort due to its application of sophisticated meteorological statistical sampling in accordance with the philosophy of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145, ``Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants``. A second advantage supporting the selection of the MACCS2 code for modeling purposes is that meteorological data sets are readily available at most Department of Energy (DOE) and NRC sites. This particular MACCS2 modeling effort focuses on the calculation of respirable doses and not ground deposition. Once the necessary parameters for the MACCS2 modeling are developed and presented, the model is benchmarked against empirical test data from the Double Tracks shot of project Roller Coaster (Shreve 1965) and applied to a hypothetical plutonium explosive dispersal scenario. Further modeling with the MACCS2 code is performed to determine a defensible method of treating the effects of building structure interaction on the respirable fraction distribution as a function of height. These results are related to the Clean Slate 2 and Clean Slate 3 bunkered shots of Project Roller Coaster. Lastly a method is presented to determine the peak 99.5% sector doses on an irregular site boundary in the manner specified in NRC Regulatory Guide 1.145 (1983). Parametric analyses are performed on the major analytic assumptions in the MACCS2 model to define the potential errors that are possible in using this methodology.

  16. Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU.

    Science.gov (United States)

    Hoff, Kevin G; Ta, Dennis T; Tapley, Tim L; Silberg, Jonathan J; Vickery, Larry E

    2002-07-26

    Hsc66 and Hsc20 comprise a specialized chaperone system important for the assembly of iron-sulfur clusters in Escherchia coli. Only a single substrate, the Fe/S template protein IscU, has been identified for the Hsc66/Hsc20 system, but the mechanism by which Hsc66 selectively binds IscU is unknown. We have investigated Hsc66 substrate specificity using phage display and a peptide array of IscU. Screening of a heptameric peptide phage display library revealed that Hsc66 prefers peptides with a centrally located Pro-Pro motif. Using a cellulose-bound peptide array of IscU we determined that Hsc66 interacts specifically with a region (residues 99-103, LPPVK) that is invariant among all IscU family members. A synthetic peptide (ELPPVKIHC) corresponding to IscU residues 98-106 behaves in a similar manner to native IscU, stimulating the ATPase activity of Hsc66 with similar affinity as IscU, preventing Hsc66 suppression of bovine rhodanese aggregation, and interacting with the peptide-binding domain of Hsc66. Unlike native IscU, however, the synthetic peptide is not bound by Hsc20 and does not synergistically stimulate Hsc66 ATPase activity with Hsc20. Our results indicate that Hsc66 and Hsc20 recognize distinct regions of IscU and further suggest that Hsc66 will not bind LPPVK motifs with high affinity in vivo unless they are in the context of native IscU and can be directed to Hsc66 by Hsc20.

  17. The Comparison of the Inquiry Behavior of ISCS and Non-ISCS Science Students as Measured by the Tab Science Test

    Science.gov (United States)

    Stallings, Everett S.; Snyder, William R.

    1977-01-01

    Studies of a group of seventh-grade students who were tested for inquiry skills using the TAB Science Test showed no significant differences between those students who had studied the Intermediate Science Curriculum Study (ISCS) and those who studied another curriculum. (MLH)

  18. 2-D model for pollutant dispersion at the coastal outfall off Paradip

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Babu, M.T.; Vethamony, P.; Gouveia, A.D.

    Simulation of dispersion of the effluent discharge has been carried out using 2-D Model to verify the advection and diffusion of the pollutant patch of the proposed effluent disposal off Paradip, Orissa, India. The simulation of dispersion...

  19. Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli

    Science.gov (United States)

    Hoff, Kevin G.; Silberg, Jonathan J.; Vickery, Larry E.

    2000-01-01

    The iscU gene in bacteria is located in a gene cluster encoding proteins implicated in iron–sulfur cluster assembly and an hsc70-type (heat shock cognate) molecular chaperone system, iscSUA-hscBA. To investigate possible interactions between these systems, we have overproduced and purified the IscU protein from Escherichia coli and have studied its interactions with the hscA and hscB gene products Hsc66 and Hsc20. IscU and its iron–sulfur complex (IscU–Fe/S) stimulated the basal steady-state ATPase activity of Hsc66 weakly in the absence of Hsc20 but, in the presence of Hsc20, increased the ATPase activity up to 480-fold. Hsc20 also decreased the apparent Km for IscU stimulation of Hsc66 ATPase activity, and surface plasmon resonance studies revealed that Hsc20 enhances binding of IscU to Hsc66. Surface plasmon resonance and isothermal titration calorimetry further showed that IscU and Hsc20 form a complex, and Hsc20 may thereby aid in the targeting of IscU to Hsc66. These results establish a direct and specific role for the Hsc66/Hsc20 chaperone system in functioning with isc gene components for the assembly of iron–sulfur cluster proteins. PMID:10869428

  20. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems.

    Science.gov (United States)

    Dos Santos, Patricia C; Johnson, Deborah C; Ragle, Brook E; Unciuleac, Mihaela-Carmen; Dean, Dennis R

    2007-04-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.

  1. Building and implementing a security certification and accreditation program official (ISC)2 guide to the CAPCM CBK

    CERN Document Server

    Howard, Patrick D

    2004-01-01

    Building and Implementing a Security Certification and Accreditation Program: Official (ISC)2 Guide to the CAP CBK demonstrates the practicality and effectiveness of certification and accreditation (C&A) as a risk management methodology for IT systems in both public and private organizations. It provides security professionals with an overview of C&A components, enabling them to document the status of the security controls of their IT systems, and learn how to secure systems via standard, repeatable processes.  This book consists of four main sections. It begins with a description of what it

  2. Successful field implementation of novel cementing solution for ISC wells : case histories

    Energy Technology Data Exchange (ETDEWEB)

    Meher, R.K.; Suyan, K.M.; Dasgupta, D. [Society of Petroleum Engineers, Dubai (United Arab Emirates)]|[Oil and Natural Gas Corp. Ltd., Tel Bhavan, Dehradun (India); Deodhar, S.; Sharma, V.; Jain, V.K. [Oil and Natural Gas Corp. Ltd., Tel Bhavan, Dehradun (India)

    2008-10-15

    Cementation of in-situ combustion (ISC) wells is challenging since wells are frequently associated with weak and unconsolidated formation. However, cement rise up to surface is desired to prevent casing failure. Moreover, the cement sheath is also required to withstand extreme stresses due to high temperature cycling experienced during in-situ combustion process. In response to the problem of inadequate placement time and flash setting, Portland cement-silica blends were used for cementation of ISC wells in India instead of alumina cement blends. However, the use of the cement-silica blends has resulted in insufficient cement rise because of losses during cementation. The cured cement failed to contain the strength and permeability in course of ISC process causing charge of sub-surface shallower layers. This paper discussed the development and implementation of a non-alumina based thermally stable lightweight lead slurry and a ductile high temperature resistance tail slurry for mitigating these problems. The paper provided details of the study as well as four successful case histories. The cementing practice for ISC wells around the world was first described and illustrated. Next, the paper outlined the formulation of thermally stable tail slurry through laboratory studies. Slurry parameters of the tail slurry were presented, including slurry weight; thickening time; fluid loss; free fluid; and rheology. The paper also reviewed a study of compressive strength and permeability of thermal slurry; slurry parameters of the lightweight lead slurry; and study of compressive strength and permeability of lightweight thermal slurry. 8 refs., 4 tabs., 12 figs.

  3. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.

    Science.gov (United States)

    Llanos, Willians; Kocman, David; Higueras, Pablo; Horvat, Milena

    2011-12-01

    The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from

  4. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU.

    Science.gov (United States)

    Silberg, Jonathan J; Tapley, Tim L; Hoff, Kevin G; Vickery, Larry E

    2004-12-24

    The ATPase activity of HscA, a specialized hsp70 molecular chaperone from Escherichia coli, is regulated by the iron-sulfur cluster assembly protein IscU and the J-type co-chaperone HscB. IscU behaves as a substrate for HscA, and HscB enhances the binding of IscU to HscA. To better understand the mechanism by which HscB and IscU regulate HscA, we examined binding of HscB to the different conformational states of HscA and the effects of HscB and IscU on the kinetics of the individual steps of the HscA ATPase reaction cycle. Affinity sensor studies revealed that whereas IscU binds both ADP (R-state) and ATP (T-state) HscA complexes, HscB interacts only with an ATP-bound state. Studies of ATPase activity under single-turnover and rapid mixing conditions showed that both IscU and HscB interact with the low peptide affinity T-state of HscA (HscA++.ATP) and that both modestly accelerate (3-10-fold) the rate-determining steps in the HscA reaction cycle, k(hyd) and k(T-->R). When present together, IscU and HscB synergistically stimulate both k(hyd) (approximately = 500-fold) and k(T-->R) (approximately = 60-fold), leading to enhanced formation of the HscA.ADP-IscU complex (substrate capture). Following ADP/ATP exchange, IscU also stimulates k(R-->T) (approximately = 50-fold) and thereby accelerates the rate at which the low peptide affinity HscA++.ATP T-state is regenerated. Because HscA nucleotide exchange is fast, the overall rate of the chaperone cycle in vivo will be determined by the availability of the IscU-HscB substrate-co-chaperone complex.

  5. pH-induced conformational change of IscU at low pH correlates with protonation/deprotonation of two conserved histidine residues.

    Science.gov (United States)

    Dai, Ziqi; Kim, Jin Hae; Tonelli, Marco; Ali, Ibrahim K; Markley, John L

    2014-08-19

    IscU, the scaffold protein for the major iron-sulfur cluster biosynthesis pathway in microorganisms and mitochondria (ISC pathway), plays important roles in the formation of [2Fe-2S] and [4Fe-4S] clusters and their delivery to acceptor apo-proteins. Our laboratory has shown that IscU populates two distinct, functionally relevant conformational states, a more structured state (S) and a more dynamic state (D), that differ by cis/trans isomerizations about two peptidyl-prolyl peptide bonds [Kim, J. H., Tonelli, M., and Markley, J. L. (2012) Proc. Natl. Acad. Sci. U.S.A., 109, 454-459. Dai Z., Tonelli, M., and Markley, J. L. (2012) Biochemistry, 51, 9595-9602. Cai, K., Frederick, R. O., Kim, J. H., Reinen, N. M., Tonelli, M., and Markley, J. L. (2013) J. Biol. Chem., 288, 28755-28770]. Here, we report our findings on the pH dependence of the D ⇄ S equilibrium for Escherichia coli IscU in which the D-state is stabilized at low and high pH values. We show that the lower limb of the pH dependence curve results from differences in the pKa values of two conserved histidine residues (His10 and His105) in the two states. The net proton affinity of His10 is about 50 times higher and that of His105 is 13 times higher in the D-state than in the S-state. The origin of the high limb of the D ⇄ S pH dependence remains to be determined. These results show that changes in proton inventory need to be taken into account in the steps in iron-sulfur cluster assembly and transfer that involve transitions of IscU between its S- and D-states.

  6. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    Science.gov (United States)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  7. Modeling electrical dispersion phenomena in Earth materials

    Directory of Open Access Journals (Sweden)

    D. Patella

    2008-06-01

    Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.

  8. Phonons and their dispersion in model ferroelastics Hg2Hal2

    Science.gov (United States)

    Roginskii, E. M.; Kvasov, A. A.; Markov, Yu. F.; Smirnov, M. B.

    2012-05-01

    Dispersion relations of the acoustic and optical phonon frequencies have been calculated and plotted, and the density of states of the phonon spectrum of Hg2Cl2 and Hg2Br2 crystals has been derived. The effect of hydrostatic pressure on the frequencies of acoustic and optical phonons and their dispersion has been theoretically analyzed. It has been found that an increase in the pressure leads to a strong softening of the slowest acoustic TA branch (the soft mode) at the X point of the Brillouin zone boundary, which is consistent with the phenomenological Landau theory and correlates with experiment.

  9. Harmonisation within atmospheric dispersion modelling for regulatory purposes. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Suppan, P.

    2004-01-01

    Dispersion modelling has proved to be a very effective tool to assess the environmental impact of human activities on air quality already at the early planning stage. Environmental assessments during planning are required by the EU directive 85/337/EEC. Only models can give detailed information on the distribution of pollutants with high spatial and temporal resolution, while they allow the decision-maker to devise a range of scenarios, in which the various processes determining the environmental impact can be easily simulated and changed. In June 1991, the Joint Research Centre of the European Commission started an initiative on the sharing of information and possible harmonisation of new approaches to atmospheric dispersion modelling and model evaluation. This initiative has fostered a series of conferences that have been concerned with improvement of ''modelling culture'' in Europe. The 9 th International Conference on Harmonisation within atmospheric dispersion modelling for regulatory purposes in Garmisch-Partenkirchen, in Germany/ Bavaria, 1-4 June, 2004, will continue the efforts of the previous conferences. The conference has a role as a forum where users and decision-makers can bring their requirements to the attention of scientists. It is also a natural forum for discussing environmental issues related to the European union enlargement process. The scope of this conference is covered by the following topics: Validation and inter-comparison of models: Model evaluation methodology, experiences with implementation of EU directives; regulatory modelling, short distance dispersion modelling, urban scale and street canyon modelling: Meteorology and air quality, mesoscale meteorology and air quality modelling, environmental impact assessment: Air pollution management and decision support systems. (orig.)

  10. Cadmium uptake capacity of an indigenous cyanobacterial strain, Nostoc entophytum ISC32: new insight into metal uptake in microgravity-simulating conditions.

    Science.gov (United States)

    Alidoust, Leila; Soltani, Neda; Modiri, Sima; Haghighi, Omid; Azarivand, Aisan; Khajeh, Khosro; Shahbani Zahiri, Hossein; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2016-02-01

    Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.

  11. A dispersion modelling system for urban air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Karppinen, A.; Kukkonen, J.; Nordlund, G.; Rantakrans, E.; Valkama, I.

    1998-10-01

    An Urban Dispersion Modelling system UDM-FMI, developed at the Finnish Meteorological Institute is described in the report. The modelling system includes a multiple source Gaussian plume model and a meteorological pre-processing model. The dispersion model is an integrated urban scale model, taking into account of all source categories (point, line, area and volume sources). It includes a treatment of chemical transformation (for NO{sub 2}) wet and dry deposition (for SO{sub 2}) plume rise, downwash phenomena and dispersion of inert particles. The model allows also for the influence of a finite mixing height. The model structure is mainly based on the state-of-the-art methodology. The system also computes statistical parameters from the time series, which can be compared to air quality guidelines. The relevant meteorological parameters for the dispersion model are evaluated using data produced by a meteorological pre-processor. The model is based mainly on the energy budget method. Results of national investigations have been used for evaluating climate-dependent parameters. The model utilises the synoptic meteorological observations, radiation records and aerological sounding observations. The model results include the hourly time series of the relevant atmospheric turbulence 51 refs.

  12. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    Science.gov (United States)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic

  13. Discrete dispersion models and their Tweedie asymptotics

    DEFF Research Database (Denmark)

    Jørgensen, Bent; Kokonendji, Célestin C.

    2016-01-01

    The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place in this ap......The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place...... in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models...... with power variance functions. Using the factorial cumulant generating function as tool, we introduce a dilation operation as a discrete analogue of scaling, generalizing binomial thinning. The Poisson-Tweedie factorial dispersion models are closed under dilation, which in turn leads to a Poisson...

  14. Modelling long-distance seed dispersal in heterogeneous landscapes.

    Energy Technology Data Exchange (ETDEWEB)

    Levey, Douglas, J.; Tewlsbury, Joshua, J.; Bolker, Benjamin, M.

    2008-01-01

    1. Long-distance seed dispersal is difficult to measure, yet key to understanding plant population dynamics and community composition. 2. We used a spatially explicit model to predict the distribution of seeds dispersed long distances by birds into habitat patches of different shapes. All patches were the same type of habitat and size, but varied in shape. They occurred in eight experimental landscapes, each with five patches of four different shapes, 150 m apart in a matrix of mature forest. The model was parameterized with smallscale movement data collected from field observations of birds. In a previous study we validated the model by testing its predictions against observed patterns of seed dispersal in real landscapes with the same types and spatial configuration of patches as in the model. 3. Here we apply the model more broadly, examining how patch shape influences the probability of seed deposition by birds into patches, how dispersal kernels (distributions of dispersal distances) vary with patch shape and starting location, and how movement of seeds between patches is affected by patch shape. 4. The model predicts that patches with corridors or other narrow extensions receive higher numbers of seeds than patches without corridors or extensions. This pattern is explained by edgefollowing behaviour of birds. Dispersal distances are generally shorter in heterogeneous landscapes (containing patchy habitat) than in homogeneous landscapes, suggesting that patches divert the movement of seed dispersers, ‘holding’ them long enough to increase the probability of seed defecation in the patches. Dispersal kernels for seeds in homogeneous landscapes were smooth, whereas those in heterogenous landscapes were irregular. In both cases, long-distance (> 150 m) dispersal was surprisingly common, usually comprising approximately 50% of all dispersal events. 5. Synthesis . Landscape heterogeneity has a large influence on patterns of long-distance seed dispersal. Our

  15. Correlation between Self-Citation and Impact Factor in Iranian English Medical Journals in WoS and ISC: A Comparative Approach.

    Science.gov (United States)

    Ghazi Mirsaeid, Seyed Javad; Motamedi, Nadia; Ramezan Ghorbani, Nahid

    2015-09-01

    In this study, the impact of self-citation (Journal and Author) on impact factor of Iranian English Medical journals in two international citation databases, Web of Science (WoS) and Islamic world science citation center (ISC), were compared by citation analysis. Twelve journals in WoS and 26 journals in ISC databases indexed between the years (2006-2009) were selected and compared. For comparison of self-citation rate in two databases, we used Wilcoxon and Mann-whitney tests. We used Pearson test for correlation of self-citation and IF in WoS, and the Spearman's correlation coefficient for the ISC database. Covariance analysis was used for comparison of two correlation tests. P. value was 0.05 in all of tests. There was no significant difference between self-citation rates in two databases (P>0.05). Findings also showed no significant difference between the correlation of Journal self-citation and impact factor in two databases (P=0.526) however, there was significant difference between the author's self-citation and impact factor in these databases (Pcitation in the Impact Factor of WoS was higher than the ISC.

  16. The effect of a tall tower on flow and dispersion through a model urban neighborhood: part 2. Pollutant dispersion.

    Science.gov (United States)

    Brixey, Laurie A; Heist, David K; Richmond-Bryant, Jennifer; Bowker, George E; Perry, Steven G; Wiener, Russell W

    2009-12-01

    This article is the second in a two-paper series presenting results from wind tunnel and computational fluid dynamics (CFD) simulations of flow and dispersion in an idealized model urban neighborhood. Pollutant dispersion results are presented and discussed for a model neighborhood that was characterized by regular city blocks of three-story row houses with a single 12-story tower located at the downwind edge of one of these blocks. The tower had three significant effects on pollutant dispersion in the surrounding street canyons: drawing the plume laterally towards the tower, greatly enhancing the vertical dispersion of the plume in the wake of the tower, and significantly decreasing the residence time of pollutants in the wake of the tower. In the wind tunnel, tracer gas released in the avenue lee of the tower, but several blocks away laterally, was pulled towards the tower and lifted in the wake of the tower. The same lateral movement of the pollutant was seen in the next avenue, which was approximately 2.5 tower heights downwind of the tower. The tower also served to ventilate the street canyon directly in its wake more rapidly than the surrounding areas. This was evidenced by CFD simulations of concentration decay where the residence time of pollutants lee of the 12-story tower was found to be less than half the residence time behind a neighboring three-story building. This same phenomenon of rapid vertical dispersion lee of a tower among an array of smaller buildings was also demonstrated in a separate set of wind tunnel experiments using an array of cubical blocks. A similar decrease in the residence time was observed when the height of one block was increased.

  17. MESOILT2, a Lagrangian trajectory climatological dispersion model

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Burk, K.W.

    1991-03-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at the Hanford Site. An independent Technical Steering Panel (TSP) directs the project, which is conducted by the Pacific Northwest Laboratory (PNL). The TSP directed PNL to demonstrate that its recommended approach for dose reconstruction is technically feasible and practical. This demonstration was Phase 1 of the project. This report is specifically concerned with the approach that PNL recommends for dealing with the atmospheric pathway. The TSP established a model domain for the atmospheric pathway for Phase 1 that includes 10 counties in Washington and Oregon and covers several thousand square miles. It is unrealistic to assume that atmospheric models which estimate transport and diffusion based on the meteorological conditions near the point of release of material at the time of release are adequate for a region this large. As a result, PNL recommended use of a Lagrangian trajectory, puff dispersion model for the Phase I study. This report describes the MESOILT2 computer code and the atmospheric transport, diffusion, deposition, and depletion models used in Phase I. The contents of the report include a technical description of the models, a user's guide for the codes, and descriptions of the individual code elements. 53 refs., 17 figs., 5 tabs

  18. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling.

    Science.gov (United States)

    Carotenuto, Federico; Gualtieri, Giovanni; Miglietta, Franco; Riccio, Angelo; Toscano, Piero; Wohlfahrt, Georg; Gioli, Beniamino

    2018-02-22

    CO 2 remains the greenhouse gas that contributes most to anthropogenic global warming, and the evaluation of its emissions is of major interest to both research and regulatory purposes. Emission inventories generally provide quite reliable estimates of CO 2 emissions. However, because of intrinsic uncertainties associated with these estimates, it is of great importance to validate emission inventories against independent estimates. This paper describes an integrated approach combining aircraft measurements and a puff dispersion modelling framework by considering a CO 2 industrial point source, located in Biganos, France. CO 2 density measurements were obtained by applying the mass balance method, while CO 2 emission estimates were derived by implementing the CALMET/CALPUFF model chain. For the latter, three meteorological initializations were used: (i) WRF-modelled outputs initialized by ECMWF reanalyses; (ii) WRF-modelled outputs initialized by CFSR reanalyses and (iii) local in situ observations. Governmental inventorial data were used as reference for all applications. The strengths and weaknesses of the different approaches and how they affect emission estimation uncertainty were investigated. The mass balance based on aircraft measurements was quite succesful in capturing the point source emission strength (at worst with a 16% bias), while the accuracy of the dispersion modelling, markedly when using ECMWF initialization through the WRF model, was only slightly lower (estimation with an 18% bias). The analysis will help in highlighting some methodological best practices that can be used as guidelines for future experiments.

  19. Improved quantification of CO2 emission at Campi Flegrei by combined Lagrangian Stochastic and Eulerian dispersion modelling

    Science.gov (United States)

    Pedone, Maria; Granieri, Domenico; Moretti, Roberto; Fedele, Alessandro; Troise, Claudia; Somma, Renato; De Natale, Giuseppe

    2017-12-01

    This study investigates fumarolic CO2 emissions at Campi Flegrei (Southern Italy) and their dispersion in the lowest atmospheric boundary layer. We innovatively utilize a Lagrangian Stochastic dispersion model (WindTrax) combined with an Eulerian model (DISGAS) to diagnose the dispersion of diluted gas plumes over large and complex topographic domains. New measurements of CO2 concentrations acquired in February and October 2014 in the area of Pisciarelli and Solfatara, the two major fumarolic fields of Campi Flegrei caldera, and simultaneous measurements of meteorological parameters are used to: 1) test the ability of WindTrax to calculate the fumarolic CO2 flux from the investigated sources, and 2) perform predictive numerical simulations to resolve the mutual interference between the CO2 emissions of the two adjacent areas. This novel approach allows us to a) better quantify the CO2 emission of the fumarolic source, b) discriminate ;true; CO2 contributions for each source, and c) understand the potential impact of the composite CO2 plume (Pisciarelli ;plus; Solfatara) on the highly populated areas inside the Campi Flegrei caldera.

  20. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state

    International Nuclear Information System (INIS)

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2014-01-01

    Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS

  1. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Gowardhan, Akshay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Donetti, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Walker, Hoyt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Belles, Rich [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Eme, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Homann, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC)

    2017-05-24

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a more detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).

  2. 7th International Seminar on Climate System and Climate Change(ISCS) through the Eyes of a Trainee

    Institute of Scientific and Technical Information of China (English)

    Karen K.Y.Shum

    2010-01-01

    @@ At the invitation of Dr.Dahe Qin,the president of ISCS and the Co-Chair of IPCC WGI,the Hong Kong Observatory has been obliged to participate and benefit from the International Seminar in Beijing,China on 19-30 July 2010.Seminar topics included atmospheric chemistry and climate effects of aerosol biogeochemical cycles,cryosphere and its role in the climate system and climate change,climate models and its application in climate change research,climate change adaptation and mitigation.Data is a common ground for these multi-disciplinary studies around the globe.

  3. Dispersion modeling by kinematic simulation: Cloud dispersion model

    International Nuclear Information System (INIS)

    Fung, J C H; Perkins, R J

    2008-01-01

    A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a 'simple' flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.

  4. Intelligence and High Intensity Drug Trafficking Areas (HIDTA's): A Critical Evaluation of the HIDTA Investigative Support Center (ISC)

    National Research Council Canada - National Science Library

    Gutierrez, Michael

    2004-01-01

    ...) Investigative Support Center (ISC). Prior to 9/11, the national intelligence apparatus was littered with flaws, including lack of information sharing, interagency conflict, and autonomous operations...

  5. An expert system for dispersion model interpretation

    International Nuclear Information System (INIS)

    Skyllingstad, E.D.; Ramsdell, J.V.

    1988-10-01

    A prototype expert system designed to diagnose dispersion model uncertainty is described in this paper with application to a puff transport model. The system obtains qualitative information from the model user and through an expert-derived knowledge base, performs a rating of the current simulation. These results can then be used in combination with dispersion model output for deciding appropriate evacuation measures. Ultimately, the goal of this work is to develop an expert system that may be operated accurately by an individual uneducated in meteorology or dispersion modeling. 5 refs., 3 figs

  6. Improving practical atmospheric dispersion models

    International Nuclear Information System (INIS)

    Hunt, J.C.R.; Hudson, B.; Thomson, D.J.

    1992-01-01

    The new generation of practical atmospheric dispersion model (for short range ≤ 30 km) are based on dispersion science and boundary layer meteorology which have widespread international acceptance. In addition, recent improvements in computer skills and the widespread availability of small powerful computers make it possible to have new regulatory models which are more complex than the previous generation which were based on charts and simple formulae. This paper describes the basis of these models and how they have developed. Such models are needed to satisfy the urgent public demand for sound, justifiable and consistent environmental decisions. For example, it is preferable that the same models are used to simulate dispersion in different industries; in many countries at present different models are used for emissions from nuclear and fossil fuel power stations. The models should not be so simple as to be suspect but neither should they be too complex for widespread use; for example, at public inquiries in Germany, where simple models are mandatory, it is becoming usual to cite the results from highly complex computational models because the simple models are not credible. This paper is written in a schematic style with an emphasis on tables and diagrams. (au) (22 refs.)

  7. A costal dispersion model

    International Nuclear Information System (INIS)

    Rahm, L.; Nyberg, L.; Gidhagen, L.

    1990-01-01

    A dispersion model to be used off costal waters has been developed. The model has been applied to describe the migration of radionuclides in the Baltic sea. A summary of the results is presented here. (K.A.E)

  8. Atmospheric dispersion models of radioactivity releases

    International Nuclear Information System (INIS)

    Oza, R.B.

    2016-01-01

    In view of the rapid industrialization in recent time, atmospheric dispersion models have become indispensible 'tools' to ensure that the effects of releases are well within the acceptable limits set by the regulatory authority. In the case of radioactive releases from the nuclear facility, though negligible in quantity and many a times not even measurable, it is required to demonstrate the compliance of these releases to the regulatory limits set by the regulatory authority by carrying out radiological impact assessment. During routine operations of nuclear facility, the releases are so low that environmental impact is usually assessed with the help of atmospheric dispersion models as it is difficult to distinguish negligible contribution of nuclear facility to relatively high natural background radiation. The accidental releases from nuclear facility, though with negligible probability of occurrence, cannot be ruled out. In such cases, the atmospheric dispersion models are of great help to emergency planners for deciding the intervention actions to minimize the consequences in public domain and also to workout strategies for the management of situation. In case of accidental conditions, the atmospheric dispersion models are also utilized for the estimation of probable quantities of radionuclides which might have got released to the atmosphere. Thus, atmospheric dispersion models are an essential tool for nuclear facility during routine operation as well as in the case of accidental conditions

  9. Software Project Management Plan for the Integrated Systems Code (ISC) of New Production Reactor -- Modular High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Taylor, D.

    1990-11-01

    The United States Department of Energy (DOE) has selected the Modular High Temperature Gas-Cooled Reactor (MHTGR) as one of the concepts for the New Production Reactor (NPR). DOE has also established several Technical Working Groups (TWG's) at the national laboratories to provide independent design confirmation of the NPR-MHTGR design. One of those TWG's is concerned with Thermal Fluid Flow (TFF) and analysis methods to provide independent design confirmation of the NPR-MHTGR. Analysis methods are also needed for operational safety evaluations, performance monitoring, sensitivity studies, and operator training. The TFF Program Plan includes, as one of its principal tasks, the development of a computer program (called the Integrated Systems Code, or ISC). This program will provide the needed long-term analysis capabilities for the MHTGR and its subsystems. This document presents the project management plan for development of the ISC. It includes the associated quality assurance tasks, and the schedule and resource requirements to complete these activities. The document conforms to the format of ANSI/IEEE Std. 1058.1-1987. 2 figs

  10. Working document dispersion models

    International Nuclear Information System (INIS)

    Dop, H. van

    1988-01-01

    This report is a summary of the most important results from June 1985 of the collaboration of the RIVM (Dutch National Institute for Public Health and Environment Hygiene) and KNMI (Royal Dutch Meteorologic Institute) on the domain of dispersion models. It contains a short description of the actual SO x /NO x -model. Furthermore it contains recommendations for modifications of some numerical-mathematical aspects and an impulse to a more complete description of chemical processes in the atmosphere and the (wet) deposition process. A separate chapter is devoted to the preparation of meteorologic data which are relevant for dispersion as well as atmospheric chemistry and deposition. This report serves as working document for the final formulation of a acidifying- and oxidant-model. (H.W.). 69 refs.; 51 figs.; 13 tabs.; 3 schemes

  11. Modelling airborne dispersion of coarse particulate material

    International Nuclear Information System (INIS)

    Apsley, D.D.

    1989-03-01

    Methods of modelling the airborne dispersion and deposition of coarse particulates are presented, with the emphasis on the heavy particles identified as possible constituents of releases from damaged AGR fuel. The first part of this report establishes the physical characteristics of the irradiated particulate in airborne emissions from AGR stations. The second part is less specific and describes procedures for extending current dispersion/deposition models to incorporate a coarse particulate component: the adjustment to plume spread parameters, dispersion from elevated sources and dispersion in conjunction with building effects and plume rise. (author)

  12. Involvement of the Cra global regulatory protein in the expression of the iscRSUA operon, revealed during studies of tricarballylate catabolism in Salmonella enterica.

    Science.gov (United States)

    Lewis, Jeffrey A; Boyd, Jeffrey M; Downs, Diana M; Escalante-Semerena, Jorge C

    2009-04-01

    In Salmonella enterica, tricarballylate (Tcb) catabolism requires function of TcuB, a membrane-bound protein that contains [4Fe-4S] clusters and heme. TcuB transfers electrons from reduced flavin adenine dinucleotide in the Tcb dehydrogenase (TcuA) to electron acceptors in the membrane. We recently showed that functions needed to assemble [Fe-S] clusters (i.e., the iscRSUA-hscBA-fdx operon) compensate for the lack of ApbC during growth of an apbC strain on Tcb. ApbC had been linked to [Fe-S] cluster metabolism, and we showed that an apbC strain had decreased TcuB activity. Here we report findings that expand our understanding of the regulation of expression of the iscRSUA genes in Salmonella enterica. We investigated why low levels of glucose or other saccharides restored growth of an apbC strain on Tcb. Here we report the following findings. (i) A Cra. (iv) Putative Cra binding sites are present in the regulatory region of the iscRSUA operon. (v) Cra protein binds to all three sites in the iscRSUA promoter region in a concentration-dependent fashion. To our knowledge, this is the first report of the involvement of Cra in [Fe-S] cluster assembly.

  13. A novel ultrawideband FDTD numerical modeling of ground penetrating radar on arbitrary dispersive soils

    NARCIS (Netherlands)

    Mescia, L.; Bia, P.; Caratelli, D.

    2017-01-01

    A novel two-dimensional (2-D) finite-difference timedomain algorithm for modeling ultrawideband pulse propagation in arbitrary dispersive soils is presented. The soil dispersion is modeled by general power law series representation, accounting for multiple higher order dispersive relaxation

  14. High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

    Science.gov (United States)

    Folch, Arnau; Barcons, Jordi; Kozono, Tomofumi; Costa, Antonio

    2017-06-01

    Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD) model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1) to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1), we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.

  15. Accident consequence assessments with different atmospheric dispersion models

    International Nuclear Information System (INIS)

    Panitz, H.J.

    1989-11-01

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straight-line Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different dispersion models on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been performed. The study showed that there are trajectory models available which can be applied in ACAs and that they provide more realistic results of ACAs than straight-line Gaussian models. This led to a completely novel concept of atmospheric dispersion modelling in which two different distance ranges of validity are distinguished: the near range of some ten kilometres distance and the adjacent far range which are assigned to respective trajectory models. (orig.) [de

  16. A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls Fe-S Cluster Delivery.

    Science.gov (United States)

    Mandin, Pierre; Chareyre, Sylvia; Barras, Frédéric

    2016-09-20

    Fe-S clusters are cofactors conserved through all domains of life. Once assembled by dedicated ISC and/or SUF scaffolds, Fe-S clusters are conveyed to their apo-targets via A-type carrier proteins (ATCs). Escherichia coli possesses four such ATCs. ErpA is the only ATC essential under aerobiosis. Recent studies reported a possible regulation of the erpA mRNA by the small RNA (sRNA) RyhB, which controls the expression of many genes under iron starvation. Surprisingly, erpA has not been identified in recent transcriptomic analysis of the iron starvation response, thus bringing into question the actual physiological significance of the putative regulation of erpA by RyhB. Using an sRNA library, we show that among 26 sRNAs, only RyhB represses the expression of an erpA-lacZ translational fusion. We further demonstrate that this repression occurs during iron starvation. Using mutational analysis, we show that RyhB base pairs to the erpA mRNA, inducing its disappearance. In addition, IscR, the master regulator of Fe-S homeostasis, represses expression of erpA at the transcriptional level when iron is abundant, but depleting iron from the medium alleviates this repression. The conjunction of transcriptional derepression by IscR and posttranscriptional repression by RyhB under Fe-limiting conditions is best described as an incoherent regulatory circuit. This double regulation allows full expression of erpA at iron concentrations for which Fe-S biogenesis switches from the ISC to the SUF system. We further provide evidence that this regulatory circuit coordinates ATC usage to iron availability. Regulatory small RNAs (sRNAs) have emerged as major actors in the control of gene expression in the last few decades. Relatively little is known about how these regulators interact with classical transcription factors to coordinate genetic responses. We show here how an sRNA, RyhB, and a transcription factor, IscR, regulate expression of an essential gene, erpA, in the bacterium E

  17. Evaluation of atmospheric dispersion/consequence models supporting safety analysis

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Lazaro, M.A.; Woodard, K.

    1996-01-01

    Two DOE Working Groups have completed evaluation of accident phenomenology and consequence methodologies used to support DOE facility safety documentation. The independent evaluations each concluded that no one computer model adequately addresses all accident and atmospheric release conditions. MACCS2, MATHEW/ADPIC, TRAC RA/HA, and COSYMA are adequate for most radiological dispersion and consequence needs. ALOHA, DEGADIS, HGSYSTEM, TSCREEN, and SLAB are recommended for chemical dispersion and consequence applications. Additional work is suggested, principally in evaluation of new models, targeting certain models for continued development, training, and establishing a Web page for guidance to safety analysts

  18. DART model for thermal conductivity of U3Si2 aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Rest, J.; Snelgrove, J.L.; Hofman, G.L.

    1995-09-01

    This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminium dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values

  19. Model development of UO_2-Zr dispersion plate-type fuel behavior at early phase of severe accident and molten fuel meat relocation

    International Nuclear Information System (INIS)

    Zhang Zhuohua; Yu Junchong; Peng Shinian

    2014-01-01

    According to former study on oxygen diffusion, Nb-Zr solid reaction and UO_2-Zr solid reaction, the models of oxidation, solid reaction in fuel meat and relocation of molten fuel meat are developed based on structure and material properties of UO_2-Zr dispersion plate-type fuel, The new models can supply theoretical elements for the safety analysis of the core assembled with dispersion plate-type fuel under severe accident. (authors)

  20. DART model for thermal conductivity of U3Si2 Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Rest, J.; Snelgrove, J.L.; Hofman, G.L.

    2004-01-01

    This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminum dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values. (author)

  1. A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls Fe-S Cluster Delivery

    Directory of Open Access Journals (Sweden)

    Pierre Mandin

    2016-09-01

    Full Text Available Fe-S clusters are cofactors conserved through all domains of life. Once assembled by dedicated ISC and/or SUF scaffolds, Fe-S clusters are conveyed to their apo-targets via A-type carrier proteins (ATCs. Escherichia coli possesses four such ATCs. ErpA is the only ATC essential under aerobiosis. Recent studies reported a possible regulation of the erpA mRNA by the small RNA (sRNA RyhB, which controls the expression of many genes under iron starvation. Surprisingly, erpA has not been identified in recent transcriptomic analysis of the iron starvation response, thus bringing into question the actual physiological significance of the putative regulation of erpA by RyhB. Using an sRNA library, we show that among 26 sRNAs, only RyhB represses the expression of an erpA-lacZ translational fusion. We further demonstrate that this repression occurs during iron starvation. Using mutational analysis, we show that RyhB base pairs to the erpA mRNA, inducing its disappearance. In addition, IscR, the master regulator of Fe-S homeostasis, represses expression of erpA at the transcriptional level when iron is abundant, but depleting iron from the medium alleviates this repression. The conjunction of transcriptional derepression by IscR and posttranscriptional repression by RyhB under Fe-limiting conditions is best described as an incoherent regulatory circuit. This double regulation allows full expression of erpA at iron concentrations for which Fe-S biogenesis switches from the ISC to the SUF system. We further provide evidence that this regulatory circuit coordinates ATC usage to iron availability.

  2. Lagrangian modelling of dispersion, sedimentation and resuspension processes in marine environments

    International Nuclear Information System (INIS)

    Gidhagen, L.; Rahm, L.; Nyberg, L.

    1989-01-01

    The model is based on a modified Langevin's equation which simulates the turbulent crossflow velocity fluctuations in shear flows. The velocity and turbulence fields used are generated by a 2-dimensional hydrodynamical model including a k-ε turbulence scheme. Since the dispersion model is formulated for only low particle concentrations, it is decoupled from the hydrodynamical model calculations. A great drawback in conventional dispersion modelling is the more or less unavoidable numerical diffusion. The use of a Lagrangian particle model will avoid this effect and the resulting too low concentrations for a given release. One consequence is a more realistic distribution of deposited particles. However, with regard to the overall deposition rates the simulated sedimentation process agrees well with well-established advection/diffusion model formulations. With a modified hydrodynamic model, the dispersion model can directly be applied to stratified 3D simulations. (orig./HP) [de

  3. Modelling of pollution dispersion in atmosphere

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Stankiewicz, R.

    1994-01-01

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs

  4. Aquatic dispersion modelling of a tritium plume in Lake Ontario

    International Nuclear Information System (INIS)

    Klukas, M.H.; Moltyaner, G.L.

    1996-05-01

    Approximately 2900 kg of tritiated water, containing 2.3E+15 Bq of tritium, were released to Lake Ontario via the cooling water discharge when a leak developed in a moderator heat exchanger in Unit 1 at the Pickering Nuclear Generating Station (PNGS) on 1992 August 2. The release provided the opportunity to study the dispersion of a tritium plume in the coastal zone of Lake Ontario. Current direction over the two-week period following the release was predominantly parallel to the shore, and elevated tritium concentrations were observed up to 20 km east and 85 km west of the PNGS. Predictions of the tritium plume movement were made using current velocity measurements taken at 8-m depth, 2.5 km offshore from Darlington and using a empirical relationship where alongshore current speed is assumed to be proportional to the alongshore component of the wind speed. The tritium migration was best described using current velocity measurements. The tritium plume dispersion is modelled using the one-dimensional advection-dispersion equation. Transport parameters are the alongshore current speed and longitudinal dispersion coefficient. Longitudinal dispersion coefficients, estimated by fitting the solution of the advection-dispersion equation to measured concentration distance profiles ranged from 3.75 to 10.57 m 2 s -1 . Simulations using the fitted values of the dispersion coefficient were able to describe maximum tritium concentrations measured at water supply plants located within 25 km of Pickering to within a factor of 3. The dispersion coefficient is a function of spatial and temporal variability in current velocity and the fitted dispersion coefficients estimated here may not be suitable for predicting tritium plume dispersion under different current conditions. The sensitivity of the dispersion coefficient to variability in current conditions should be evaluated in further field experiments. (author). 13 refs., 7 tabs., 12 figs

  5. Dispersion of some fission radionuclides during routine releases from ETRR-2 reactor

    International Nuclear Information System (INIS)

    Essa, S.M.K.; Mayhoub, A.B.; Mubarak, F.; Abedel Fattah, A.T.; Atia, S.

    2005-01-01

    One of the most important parameters in plume dispersion modeling is the plume growth (dispersion coefficients δ). Different models for estimating dispersion parameters are discussed to establish the relative importance of one over the others. Comparisons were made between power-law function, standard, split sigma, and split sigma theta methods. We use the double Gaussian expression for calculating concentration in this comparison. The results show that, with low wind speed (<2 m/s) split sigma and split sigma theta methods give much better results than other methods. While with wind speed greater than 2 m/s the power-law functions methods give more plausible results

  6. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    International Nuclear Information System (INIS)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H.

    2013-08-01

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  7. Chaotic Lagrangian models for turbulent relative dispersion.

    Science.gov (United States)

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  8. Modeling of atmospheric dispersion of radionuclides

    International Nuclear Information System (INIS)

    Baklouti, Nada

    2010-01-01

    This work is a prediction of atmospheric dispersion of radionuclide from a chronic rejection of the nuclear power generating plant that can be located in one of the Tunisian sites: Skhira or Bizerte. Also it contains a study of acute rejection 'Chernobyl accident' which was the reference for the validation of GENII the code of modeling of atmospheric dispersion.

  9. Lagrangian Stochastic Dispersion Model IMS Model Suite and its Validation against Experimental Data

    International Nuclear Information System (INIS)

    Bartok, J.

    2010-01-01

    The dissertation presents IMS Lagrangian Dispersion Model, which is a 'new generation' Slovak dispersion model of long-range transport, developed by MicroStep-MIS. It solves trajectory equation for a vast number of Lagrangian 'particles' and stochastic equation that simulates the effects of turbulence. Model contains simulation of radioactive decay (full decay chains of more than 300 nuclides), and dry and wet deposition. Model was integrated into IMS Model Suite, a system in which several models and modules can run and cooperate, e.g. LAM model WRF preparing fine resolution meteorological data for dispersion. The main theme of the work is validation of dispersion model against large scale international campaigns CAPTEX and ETEX, which are two of the largest tracer experiments. Validation addressed treatment of missing data, data interpolation into comparable temporal and spatial representation. The best model results were observed for ETEX I, standard results for CAPTEXes and worst results for ETEX II, known in modelling community for its meteorological conditions that can be hardly resolved by models. The IMS Lagrangian Dispersion Model was identified as capable long range dispersion model for slowly- or nonreacting chemicals and radioactive matter. Influence of input data on simulation quality is discussed within the work. Additional modules were prepared according to praxis requirement: a) Recalculation of concentrations of radioactive pollutant into effective doses form inhalation, immersion in the plume and deposition. b) Dispersion of mineral dust was added and tested in desert locality, where wind and soil moisture were firstly analysed and forecast by WRF. The result was qualitatively verified in case study against satellite observations. (author)

  10. Development and evaluation of GRAL-C dispersion model, a hybrid Eulerian-Lagrangian approach capturing NO-NO 2-O 3 chemistry

    Science.gov (United States)

    Oettl, Dietmar; Uhrner, Ulrich

    2011-02-01

    Based on two recent publications using Lagrangian dispersion models to simulate NO-NO 2-O 3 chemistry for industrial plumes, a similar modified approach was implemented using GRAL-C ( Graz Lagrangian Model with Chemistry) and tested on two urban applications. In the hybrid dispersion model GRAL-C, the transport and turbulent diffusion of primary species such as NO and NO 2 are treated in a Lagrangian framework while those of O 3 are treated in an Eulerian framework. GRAL-C was employed on a one year street canyon simulation in Berlin and on a four-day simulation during a winter season in Graz, the second biggest city in Austria. In contrast to Middleton D.R., Jones A.R., Redington A.L., Thomson D.J., Sokhi R.S., Luhana L., Fisher B.E.A. (2008. Lagrangian modelling of plume chemistry for secondary pollutants in large industrial plumes. Atmospheric Environment 42, 415-427) and Alessandrini S., Ferrero E. (2008. A Lagrangian model with chemical reactions: application in real atmosphere. Proceedings of the 12th Int. Conf. on Harmonization within atmospheric dispersion modelling for regulatory purposes. Croatian Meteorological Journal, 43, ISSN: 1330-0083, 235-239) the treatment of ozone was modified in order to facilitate urban scale simulations encompassing dense road networks. For the street canyon application, modelled daily mean NO x/NO 2 concentrations deviated by +0.4%/-15% from observations, while the correlations for NO x and NO 2 were 0.67 and 0.76 respectively. NO 2 concentrations were underestimated in summer, but were captured well for other seasons. In Graz a fair agreement for NO x and NO 2 was obtained between observed and modelled values for NO x and NO 2. Simulated diurnal cycles of NO 2 and O 3 matched observations reasonably well, although O 3 was underestimated during the day. A possible explanation here might lie in the non-consideration of volatile organic compounds (VOCs) chemistry.

  11. Modelling surface radioactive spill dispersion in the Alboran Sea

    International Nuclear Information System (INIS)

    Perianez, R.

    2006-01-01

    The Strait of Gibraltar and the Alboran Sea are the only connection between the Atlantic Ocean and the Mediterranean Sea. Intense shipping activities occur in the area, including transport of waste radionuclides and transit of nuclear submarines. Thus, it is relevant to have a dispersion model that can be used in an emergency situation after an accident, to help the decision-making process. Such dispersion model requires an appropriate description of the physical oceanography of the region of interest, with simulations of tides and residual (average) circulation. In this work, a particle-tracking dispersion model that can be used to simulate the dispersion of radionuclides in the system Strait of Gibraltar-Alboran Sea is described. Tides are simulated using a barotropic model and for the average circulation a reduced-gravity model is applied. This model is able to reproduce the main features of the Alboran circulation (the well known Western Alboran Gyre, WAG, and the coastal circulation mode). The dispersion model is run off-line, using previously computed tidal and residual currents. The contamination patch is simulated by a number of particles whose individual paths are computed; diffusion and decay being modelled using a Monte Carlo method. Radionuclide concentrations may be obtained from the density of particles per water volume unit. Results from the hydrodynamic models have been compared with observations in the area. Several examples of dispersion computations under different wind and circulation conditions are presented

  12. Model Equation for Acoustic Nonlinear Measurement of Dispersive Specimens at High Frequency

    Science.gov (United States)

    Zhang, Dong; Kushibiki, Junichi; Zou, Wei

    2006-10-01

    We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Regarding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.

  13. Identification and utilization of inter-species conserved (ISC probesets on Affymetrix human GeneChip® platforms for the optimization of the assessment of expression patterns in non human primate (NHP samples

    Directory of Open Access Journals (Sweden)

    Arnold Alma

    2004-10-01

    Full Text Available Abstract Background While researchers have utilized versions of the Affymetrix human GeneChip® for the assessment of expression patterns in non human primate (NHP samples, there has been no comprehensive sequence analysis study undertaken to demonstrate that the probe sequences designed to detect human transcripts are reliably hybridizing with their orthologs in NHP. By aligning probe sequences with expressed sequence tags (ESTs in NHP, inter-species conserved (ISC probesets, which have two or more probes complementary to ESTs in NHP, were identified on human GeneChip® platforms. The utility of human GeneChips® for the assessment of NHP expression patterns can be effectively evaluated by analyzing the hybridization behaviour of ISC probesets. Appropriate normalization methods were identified that further improve the reliability of human GeneChips® for interspecies (human vs NHP comparisons. Results ISC probesets in each of the seven Affymetrix GeneChip® platforms (U133Plus2.0, U133A, U133B, U95Av2, U95B, Focus and HuGeneFL were identified for both monkey and chimpanzee. Expression data was generated from peripheral blood mononuclear cells (PBMCs of 12 human and 8 monkey (Indian origin Rhesus macaque samples using the Focus GeneChip®. Analysis of both qualitative detection calls and quantitative signal intensities showed that intra-species reproducibility (human vs. human or monkey vs. monkey was much higher than interspecies reproducibility (human vs. monkey. ISC probesets exhibited higher interspecies reproducibility than the overall expressed probesets. Importantly, appropriate normalization methods could be leveraged to greatly improve interspecies correlations. The correlation coefficients between human (average of 12 samples and monkey (average of 8 Rhesus macaque samples are 0.725, 0.821 and 0.893 for MAS5.0 (Microarray Suite version 5.0, dChip and RMA (Robust Multi-chip Average normalization method, respectively. Conclusion It is

  14. Biophysical models of larval dispersal in the Benguela Current ...

    African Journals Online (AJOL)

    We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are ...

  15. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    Energy Technology Data Exchange (ETDEWEB)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H. [Danish Meteorological Institute, Copenhagen (Denmark)] [and others

    2013-08-15

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  16. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kitagaki, Hiroshi; Cowart, L Ashley; Matmati, Nabil; Montefusco, David; Gandy, Jason; de Avalos, Silvia Vaena; Novgorodov, Sergei A; Zheng, Jim; Obeid, Lina M; Hannun, Yusuf A

    2009-04-17

    Growth of Saccharomyces cerevisiae following glucose depletion (the diauxic shift) depends on a profound metabolic adaptation accompanied by a global reprogramming of gene expression. In this study, we provide evidence for a heretofore unsuspected role for Isc1p in mediating this reprogramming. Initial studies revealed that yeast cells deleted in ISC1, the gene encoding inositol sphingolipid phospholipase C, which resides in mitochondria in the post-diauxic phase, showed defective aerobic respiration in the post-diauxic phase but retained normal intrinsic mitochondrial functions, including intact mitochondrial DNA, normal oxygen consumption, and normal mitochondrial polarization. Microarray analysis revealed that the Deltaisc1 strain failed to up-regulate genes required for nonfermentable carbon source metabolism during the diauxic shift, thus suggesting a mechanism for the defective supply of respiratory substrates into mitochondria in the post-diauxic phase. This defect in regulating nuclear gene induction in response to a defect in a mitochondrial enzyme raised the possibility that mitochondria may initiate diauxic shift-associated regulation of nucleus-encoded genes. This was established by demonstrating that in respiratory-deficient petite cells these genes failed to be up-regulated across the diauxic shift in a manner similar to the Deltaisc1 strain. Isc1p- and mitochondrial function-dependent genes significantly overlapped with Adr1p-, Snf1p-, and Cat8p-dependent genes, suggesting some functional link among these factors. However, the retrograde response was not activated in Deltaisc1, suggesting that the response of Deltaisc1 cannot be simply attributed to mitochondrial dysfunction. These results suggest a novel role for Isc1p in allowing the reprogramming of gene expression during the transition from anaerobic to aerobic metabolism.

  17. A model for the dispersion of pollution from a road network

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Valkonen, E.; Kukkonen, J.; Rantakarans, E.; Lahtinen, K.; Karppinen, A.; Jalkanen, L.

    1996-12-31

    A mathematical model for predicting the dispersion of pollution from a road network, for use in a regulatory context is presented in the report. The model includes an emission model a treatment of the meteorological and background concentration time series, a dispersion model statistical analysis of the computed time series of concentrations and a Windows-based user interface. The dispersion model is based on a partly analytical solution of the Gaussian diffusion equation for a finite dine source. It allows for any wind direction with respect to the road. The dispersion parameters are modelled in a form which facilitates the use of the meteorological preprocessor. The chemical transformation is modelled by using a modified form of the discrete parcel method, developed in this study. The chemistry model contains the basic reactions of nitrogen oxides, oxygen and ozone. An operational model for evaluating the meteorological and background concentration data for the model applications is also presented. The model does not take into account the influence of buildings and inhomogeneous terrain on the dispersion processes. The validity of the mathematical solution presented has been tested against a more detailed numerical model. The overall differences are reasonable, and the solution can be used with confidence in an operational model. The program has been implemented on a personal computer and on a main-frame computer, and in the later case also executed on a Cray C94 supercomputer. The validation of the model against experimental data is reported elsewhere. Testing of the model near a major road Turunvaeylae Finland 1994 showed that the overall agreement of the measured and predicted values for NO{sub x} and NO{sub 2} concentrations was fairly good 30 refs.

  18. Dispersion-convolution model for simulating peaks in a flow injection system.

    Science.gov (United States)

    Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing

    2007-01-12

    A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.

  19. Dispersive processes in models of regional radionuclide migration. Technical memorandum

    International Nuclear Information System (INIS)

    Evenson, D.E.; Dettinger, M.D.

    1980-05-01

    Three broad areas of concern in the development of aquifer scale transport models will be local scale diffusion and dispersion processes, regional scale dispersion processes, and numerical problems associated with the advection-dispersion equation. Local scale dispersion processes are fairly well understood and accessible to observation. These processes will generally be dominated in large scale systems by regional processes, or macro-dispersion. Macro-dispersion is primarily the result of large scale heterogeneities in aquifer properties. In addition, the effects of many modeling approximations are often included in the process. Because difficulties arise in parameterization of this large scale phenomenon, parameterization should be based on field measurements made at the same scale as the transport process of interest or else partially circumvented through the application of a probabilistic advection model. Other problems associated with numerical transport models include difficulties with conservation of mass, stability, numerical dissipation, overshoot, flexibility, and efficiency. We recommend the random-walk model formulation for Lawrence Livermore Laboratory's purposes as the most flexible, accurate and relatively efficient modeling approach that overcomes these difficulties

  20. Acoustic phonon dispersion of CoSi2

    International Nuclear Information System (INIS)

    Weiss, L.; Rumyantsev, A.Yu.; Ivanov, A.S.

    1985-01-01

    The acoustical phonon dispersion curves of CoSi 2 are measured at room temperature along the main symmetry directions by means of coherent one-phonon scattering of thermal neutrons. The dispersion curves are compared with those of Ge, Si, and the fluorite structure types as CaF 2 and UO 2 . From the slope of the phonon dispersion curves at the GAMMA-point the elastic constants have been obtained

  1. Presentation of Austrians recommended dispersion model for tunnel portals

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, D.; Sturm, P.; Almbauer, R. [Inst. for Internal Combustion Engines and Thermodynamics, Graz Univ. of Technology (Austria)

    2004-07-01

    Street tunnels in cities are often suggested as solution to avoid daily congestions but also to prevent residential areas from high noise and air pollution emissions. In case of longitudinal ventilated tunnels high pollution levels may occur in the vicinity of the portals. The dispersion of pollutants from tunnel portals is considered to differ significantly from those of other sources, such as line or point sources. To the best of the authors knowledge, there exist currently two distinct dispersion models, which are especially designed to treat dispersion from tunnel portals. Okamoto et al proposed a diagnostic wind field model, where the dispersion is modelled using a Taylor-Galerkin-Forester filter method. Oettl et al. developed a Lagrangian-type model (GRAL TM 3.5=Graz Lagrangian model Tunnel Module version 3.5), which is briefly described in the next section. (orig.)

  2. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...

  3. A hybrid plume model for local-scale dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Nikmo, J.; Tuovinen, J.P.; Kukkonen, J.; Valkama, I.

    1997-12-31

    The report describes the contribution of the Finnish Meteorological Institute to the project `Dispersion from Strongly Buoyant Sources`, under the `Environment` programme of the European Union. The project addresses the atmospheric dispersion of gases and particles emitted from typical fires in warehouses and chemical stores. In the study only the `passive plume` regime, in which the influence of plume buoyancy is no longer important, is addressed. The mathematical model developed and its numerical testing is discussed. The model is based on atmospheric boundary-layer scaling theory. In the vicinity of the source, Gaussian equations are used in both the horizontal and vertical directions. After a specified transition distance, gradient transfer theory is applied in the vertical direction, while the horizontal dispersion is still assumed to be Gaussian. The dispersion parameters and eddy diffusivity are modelled in a form which facilitates the use of a meteorological pre-processor. Also a new model for the vertical eddy diffusivity (K{sub z}), which is a continuous function of height in the various atmospheric scaling regions is presented. The model includes a treatment of the dry deposition of gases and particulate matter, but wet deposition has been neglected. A numerical solver for the atmospheric diffusion equation (ADE) has been developed. The accuracy of the numerical model was analysed by comparing the model predictions with two analytical solutions of ADE. The numerical deviations of the model predictions from these analytic solutions were less than two per cent for the computational regime. The report gives numerical results for the vertical profiles of the eddy diffusivity and the dispersion parameters, and shows spatial concentration distributions in various atmospheric conditions 39 refs.

  4. Mathematical modeling of disperse two-phase flows

    CERN Document Server

    Morel, Christophe

    2015-01-01

    This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...

  5. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    Science.gov (United States)

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  6. Benchmarking of numerical models describing the dispersion of radionuclides in the Arctic Seas

    DEFF Research Database (Denmark)

    Scott, E.M.; Gurbutt, P.; Harms, I.

    1997-01-01

    As part of the International Arctic Seas Assessment Project (IASAP) of the International Atomic Energy Agency (IAEA), a working group was created to model the dispersal and transfer of radionuclides released from radioactive waste disposed of in the Kara Sea. The objectives of this group are: (1......) development of realistic and reliable assessment models for the dispersal of radioactive contaminants both within, and from, the Arctic ocean; and (2) evaluation of the contributions of different transfer mechanisms to contaminant dispersal and hence, ultimately, to the risks to human health and environment...

  7. Modelling solute dispersion in periodic heterogeneous porous media: Model benchmarking against intermediate scale experiments

    Science.gov (United States)

    Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham

    2018-06-01

    This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.

  8. Modeling of corium dispersion in DCH accidents

    International Nuclear Information System (INIS)

    Wu, Q.

    1996-01-01

    A model that governs the dispersion process in the direct containment heating (DCH) reactor accident scenario is developed by a stepwise approach. In this model, the whole transient is subdivided into four phases with an isothermal assumption. These are the liquid and gas discharge, the liquid film flow in the cavity before gas blowdown, the liquid and gas flow in the cavity with droplet entrainment, and the liquid transport and re-entrainment in the subcompartment. In each step, the dominant driving mechanisms are identified to construct the governing equations. By combining all the steps together, the corium dispersion information is obtained in detail. The key parameters are predicted quantitatively. These include the fraction of liquid that flows out of the cavity before gas blowdown, the dispersion fraction and the mean droplet diameter in the cavity, the cavity pressure rise due to the liquid friction force, and the dispersion fractions in the containment via different paths. Compared with the data of the 1:10 scale experiments carried out at Purdue University, fairly good agreement is obtained. A stand-alone prediction of the corium dispersion under prototypic Zion reactor conditions is carried out by assuming an isothermal process without chemical reactions. (orig.)

  9. Comparative calculations and validation studies with atmospheric dispersion models

    International Nuclear Information System (INIS)

    Paesler-Sauer, J.

    1986-11-01

    This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP) [de

  10. A review on air pollution and various dust models for open cast mines in India

    International Nuclear Information System (INIS)

    Sangeeth, M.G.; Ahmed, Siraj; Bhagoria, J.L.; Pandit, G.G.

    2010-01-01

    Open cast coal mining continues to create significant environmental problems in India. In particular, this type of mining creates high rates of air pollution SPM, RPM, SO 2 and NO x . In these particulate matter i.e. SPM and RPM is major pollution in the open cast mines. It creates several heath hazards to mine workers and surrounding peoples and high environmental deterioration occurs. Several studies are carried out in the field of air pollution and air quality modeling of open cast projects and many researchers suggested several control measures for the air pollution control in mines. Different dust models FDM, ISC3 are available for prediction and transport of the pollutants. In this paper a review has been studied about air pollution in the open cast mines and dust dispersion models for open cast mines in India. (author)

  11. Offshore and coastal dispersion (OCD) model. Users guide

    International Nuclear Information System (INIS)

    Hanna, S.R.; Schulman, L.L.; Paine, R.J.; Pleim, J.E.

    1984-09-01

    The Offshore and Coastal Dispersion (OCD) model was adapted from the EPA guideline model MPTER to simulate the effect of offshore emissions from point sources in coastal regions. Modifications were made to incorporate overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. Hourly meteorological data are needed from overwater and overland locations. Turbulence intensities are used but are not mandatory. For overwater dispersion, the turbulence intensities are parameterized from boundary-layer similarity relationships if they are not measured. Specifications of emission characteristics and receptor locations are the same as for MPTER; 250 point sources and 180 receptors may be used

  12. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario....

  13. ERUPTION TO DOSE: COUPLING A TEPHRA DISPERSAL MODEL WITHIN A PERFORMANCE ASSESSMENT FRAMEWORK

    International Nuclear Information System (INIS)

    G. N. Keating, J. Pelletier

    2005-01-01

    The tephra dispersal model used by the Yucca Mountain Project (YMP) to evaluate the potential consequences of a volcanic eruption through the waste repository must incorporate simplifications in order to function within a large Monte-Carlo style performance assessment framework. That is, the explicit physics of the conduit, vent, and eruption column processes are abstracted to a 2-D, steady-state advection-dispersion model (ASHPLUME) that can be run quickly over thousands of realizations of the overall system model. Given the continuous development of tephra dispersal modeling techniques in the last few years, we evaluated the adequacy of this simplified model for its intended purpose within the YMP total system performance assessment (TSPA) model. We evaluated uncertainties inherent in model simplifications including (1) instantaneous, steady-state vs. unsteady eruption, which affects column height, (2) constant wind conditions, and (3) power-law distribution of the tephra blanket; comparisons were made to other models and published ash distributions. Spatial statistics are useful for evaluating differences in these model output vs. results using more complex wind, column height, and tephra deposition patterns. However, in order to assess the adequacy of the model for its intended use in TSPA, we evaluated the propagation of these uncertainties through FAR, the YMP ash redistribution model, which utilizes ASHPLUME tephra deposition results to calculate the concentration of nuclear waste-contaminated tephra at a dose-receptor population as a result of sedimentary transport and mixing processes on the landscape. Questions we sought to answer include: (1) what conditions of unsteadiness, wind variability, or departure from simplified tephra distribution result in significant effects on waste concentration (related to dose calculated for the receptor population)? (2) What criteria can be established for the adequacy of a tephra dispersal model within the TSPA

  14. Debris Dispersion Model Using Java 3D

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  15. Air quality dispersion models from energy sources

    International Nuclear Information System (INIS)

    Lazarevska, Ana

    1996-01-01

    Along with the continuing development of new air quality models that cover more complex problems, in the Clean Air Act, legislated by the US Congress, a consistency and standardization of air quality model applications were encouraged. As a result, the Guidelines on Air Quality Models were published, which are regularly reviewed by the Office of Air Quality Planning and Standards, EPA. These guidelines provide a basis for estimating the air quality concentrations used in accessing control strategies as well as defining emission limits. This paper presents a review and analysis of the recent versions of the models: Simple Terrain Stationary Source Model; Complex Terrain Dispersion Model; Ozone,Carbon Monoxide and Nitrogen Dioxide Models; Long Range Transport Model; Other phenomenon Models:Fugitive Dust/Fugitive Emissions, Particulate Matter, Lead, Air Pathway Analyses - Air Toxic as well as Hazardous Waste. 8 refs., 4 tabs., 2 ills

  16. Review of potential models for UF6 dispersion

    International Nuclear Information System (INIS)

    Sykes, R.I.; Lewellen, W.S.

    1992-07-01

    A survey of existing atmospheric dispersion models has been conducted to determine the most appropriate basis for the development of a model for predicting the consequences of an accidental UF 6 release. The model is required for safety analysis studies and should therefore be computationally efficient. The release of UF 6 involves a number of physical phenomena which make the situation more complicated than passive dispersion of a trace gas. The safety analysis must consider the density variations in the UF 6 cloud, which can be heavier or lighter than the ambient air. The release also involves rapid chemical reactions and associated heat release, which must be modeled. Other Department of Energy storage facilities require a dense gas prediction capability, so the model must be sufficiently general for use with a variety of release scenarios. The special problems associated with UF 6 make it unique, so there are very few models with existing capability for the problem. There are, however, a large number of dense gas dispersion models, some with relevant chemical reaction modeling, that could potentially form the basis of an advanced UF 6 model. We have examined a large selection of possible candidates, and selected 5 models for detailed consideration

  17. Magnon dispersion relation and exchange interactions in MnF2

    DEFF Research Database (Denmark)

    Nikotin, O.; Lindgård, Per-Anker; Dietrich, O. W.

    1969-01-01

    The magnon dispersion relation for MnF2 at 4·2 °K has been measured by means of the triple-axis neutron scattering technique along the symmetry lines in the (010) plane of the Brillouin zone. Using an exact dipole model, the three nearest-neighbour exchange constants were found to be J1 = 0·028 ± 0......·001 mev, J2 = -0·152 ± 0·001 mev and J3 = -0·004 ± 0·001 mev. The second moment was also calculated with this model. The density of magnon states was evaluated by applying a six-parameter simulation of the dispersion surface. The critical points in the density of states agree well with those obtained...... by optical double-magnon experiments, whereas the detailed shape of the density of states differs significantly, indicating that the effect of magnon-magnon interactions rather than that of distant-neighbour exchange is of primary importance in the optical measurements....

  18. Evaluation of uncertainties in selected environmental dispersion models

    International Nuclear Information System (INIS)

    Little, C.A.; Miller, C.W.

    1979-01-01

    Compliance with standards of radiation dose to the general public has necessitated the use of dispersion models to predict radionuclide concentrations in the environment due to releases from nuclear facilities. Because these models are only approximations of reality and because of inherent variations in the input parameters used in these models, their predictions are subject to uncertainty. Quantification of this uncertainty is necessary to assess the adequacy of these models for use in determining compliance with protection standards. This paper characterizes the capabilities of several dispersion models to predict accurately pollutant concentrations in environmental media. Three types of models are discussed: aquatic or surface water transport models, atmospheric transport models, and terrestrial and aquatic food chain models. Using data published primarily by model users, model predictions are compared to observations

  19. Radiological impact from spanish coal power plants.2.- Dispersion model for deconcentration calculations

    International Nuclear Information System (INIS)

    Alvarez, M.C.; Garzon, L.

    1990-01-01

    In this paper a practical dispersion model is presented, which permits to calculate, in Spain, the concentration of natural radionuclides released to the atmosphere from coal power plants. To apply the model it is necessary to know the following data: emission rates, dry deposition velocity, scavenging coefficient, mixing layer height, together with climatological frequency data relating to wind speed and wind direction (to determinate trajectories from a given source) in the areas examined. Meteorological data can be obtained from meteorological stations across Spain. (Author)

  20. A random walk model to simulate the atmospheric dispersion of radionuclide

    Science.gov (United States)

    Zhuo, Jun; Huang, Liuxing; Niu, Shengli; Xie, Honggang; Kuang, Feihong

    2018-01-01

    To investigate the atmospheric dispersion of radionuclide in large-medium scale, a numerical simulation method based on random walk model for radionuclide atmospheric dispersion was established in the paper. The route of radionuclide migration and concentration distribution of radionuclide can be calculated out by using the method with the real-time or historical meteorological fields. In the simulation, a plume of radionuclide is treated as a lot of particles independent of each other. The particles move randomly by the fluctuations of turbulence, and disperse, so as to enlarge the volume of the plume and dilute the concentration of radionuclide. The dispersion of the plume over time is described by the variance of the particles. Through statistical analysis, the relationships between variance of the particles and radionuclide dispersion characteristics can be derived. The main mechanisms considered in the physical model are: (1) advection of radionuclide by mean air motion, (2) mixing of radionuclide by atmospheric turbulence, (3) dry and wet deposition, (4) disintegration. A code named RADES was developed according the method. And then, the European Tracer Experiment (ETEX) in 1994 is simulated by the RADES and FLEXPART codes, the simulation results of the concentration distribution of tracer are in good agreement with the experimental data.

  1. One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels

    Science.gov (United States)

    Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.

    2017-12-01

    Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.

  2. LNG vapor dispersion prediction with the DEGADIS dense-gas dispersion model. Topical report, April 1988-July 1990. Documentation

    International Nuclear Information System (INIS)

    Havens, J.; Spicer, T.

    1990-09-01

    The topical report is one of a series on the development of methods for LNG vapor dispersion prediction for regulatory application. The results indicate that the DEGADIS model is superior both phenomenologically and in performance to the Gaussian line source model promulgated in 49 CFR 193 for LNG vapor dispersion simulation. Availability of the DEGADIS model for VAX and IBM-PC formats provides for wider use of the model and greater potential for industry and regulatory acceptance. The acceptance is seen as an important interim objective while research continues on vapor dispersion estimation methods which provide for effects of vapor detention systems, turbulence induced by plant structure, and plant/area topographical features

  3. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  4. Validation of the Canadian atmospheric dispersion model for the CANDU reactor complex at Wolsong, Korea

    International Nuclear Information System (INIS)

    Klukas, M.H.; Davis, P.A.

    2000-01-01

    AECL is undertaking the validation of ADDAM, an atmospheric dispersion and dose code based on the Canadian Standards Association model CSA N288.2. The key component of the validation program involves comparison of model predicted and measured vertical and lateral dispersion parameters, effective release height and air concentrations. A wind tunnel study of the dispersion of exhaust gases from the CANDU complex at Wolsong, Korea provides test data for dispersion over uniform and complex terrain. The test data are for distances close enough to the release points to evaluate the model for exclusion area boundaries (EAB) as small as 500 m. Lateral and vertical dispersion is described well for releases over uniform terrain but the model tends to over-predict these parameters for complex terrain. Both plume rise and entrainment are modelled conservatively and the way they are combined in the model produces conservative estimates of the effective release height for low and high wind speeds. Estimates for the medium wind speed case (50-m wind speed, 3.8 ms -1 ) are conservative when the correction for entrainment is made. For the highest ground-level concentrations, those of greatest interest in a safety analysis, 82% of the predictions were within a factor 2 of the observed values. The model can be used with confidence to predict air concentrations of exhaust gases at the Wolsong site for neutral conditions, even for flows over the hills to the west, and is unlikely to substantially under-predict concentrations. (author)

  5. Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.

    Science.gov (United States)

    Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin

    1998-11-01

    Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.

  6. A numerical three-dimensional ocean general circulation and radionuclides dispersion model

    International Nuclear Information System (INIS)

    Chartier, M.; Marti, O.

    1988-01-01

    The dispersion of radioactive waste disposed of in the deep-sea or transferred from the atmosphere is a complex hydrodynamic problem concerned by space scales as large as the world ocean. The recent development in the high-speed computers has led to significant progress in ocean modelling and now allows a thorough improvement in the accuracy of the simulations of the nuclides dispersion in the sea. A three-dimensional ocean general circulation model has been recently developed in France for research and engineering purposes. The model solves the primitive equation of the ocean hydrodynamics and the advection-diffusion equation for any dissolved tracer. The code has been fully vectorized and multitasked on 1 to 4 processors of the CRAY-2

  7. Modelling surface radioactive spill dispersion in the Alborán Sea.

    Science.gov (United States)

    Periáñez, R

    2006-01-01

    The Strait of Gibraltar and the Alborán Sea are the only connection between the Atlantic Ocean and the Mediterranean Sea. Intense shipping activities occur in the area, including transport of waste radionuclides and transit of nuclear submarines. Thus, it is relevant to have a dispersion model that can be used in an emergency situation after an accident, to help the decision-making process. Such dispersion model requires an appropriate description of the physical oceanography of the region of interest, with simulations of tides and residual (average) circulation. In this work, a particle-tracking dispersion model that can be used to simulate the dispersion of radionuclides in the system Strait of Gibraltar-Alborán Sea is described. Tides are simulated using a barotropic model and for the average circulation a reduced-gravity model is applied. This model is able to reproduce the main features of the Alborán circulation (the well known Western Alborán Gyre, WAG, and the coastal circulation mode). The dispersion model is run off-line, using previously computed tidal and residual currents. The contamination patch is simulated by a number of particles whose individual paths are computed; diffusion and decay being modelled using a Monte Carlo method. Radionuclide concentrations may be obtained from the density of particles per water volume unit. Results from the hydrodynamic models have been compared with observations in the area. Several examples of dispersion computations under different wind and circulation conditions are presented.

  8. Dispersion of tracers by the oceanic eddy field modelling programme

    International Nuclear Information System (INIS)

    Richards, K.J.; O'Farrell, S.P.

    1987-01-01

    A numerical model has been developed to study the dispersion of tracers by the oceanic eddy field. The present study is designed to study the dispersion of particles in a mesoscale eddy field produced by the numerical model. Dispersion rates are calculated for flows above three types of topography, a flat bottom, a random collection of hills and a ridge. The presence of topography is found to significantly affect the flow. The effective diffusion coefficient of the flow near the bottom is reduced by 20% for the random topography and 60% for the ridge from that for the flat bottom case. Estimates are given of the number of float years required to obtain a given accuracy for the diffusion coefficient. At the surface a modest number of floats (order 5) are required to obtain a 50% accuracy. However at the bottom, to be within a factor of 2 of the true value for the flows considered requires respectively 26, 42 and 103 float years for the flat, random and ridge cases. (author)

  9. Computer modelling of contaminant migration in natural disperse media

    International Nuclear Information System (INIS)

    Kundas, S.P.; Gishkelyuk, I.A.; Khil'ko, O.S.

    2012-01-01

    The theoretical foundations for modeling of the contaminants migration in natural disperses media taking into account interconnected heat and moisture transport are developed. The calculation of mass transfer parameters based on adsorption isotherms of water and thermodynamic equations in the developed mathematical models. The artificial neural networks use to predict migration of contaminants in natural disperse media is proposed. The developed software package is presented and results of practical application of models and software are discussed. (authors)

  10. Evaluation of hydrodynamic ocean models as a first step in larval dispersal modelling

    Science.gov (United States)

    Vasile, Roxana; Hartmann, Klaas; Hobday, Alistair J.; Oliver, Eric; Tracey, Sean

    2018-01-01

    Larval dispersal modelling, a powerful tool in studying population connectivity and species distribution, requires accurate estimates of the ocean state, on a high-resolution grid in both space (e.g. 0.5-1 km horizontal grid) and time (e.g. hourly outputs), particularly of current velocities and water temperature. These estimates are usually provided by hydrodynamic models based on which larval trajectories and survival are computed. In this study we assessed the accuracy of two hydrodynamic models around Australia - Bluelink ReANalysis (BRAN) and Hybrid Coordinate Ocean Model (HYCOM) - through comparison with empirical data from the Australian National Moorings Network (ANMN). We evaluated the models' predictions of seawater parameters most relevant to larval dispersal - temperature, u and v velocities and current speed and direction - on the continental shelf where spawning and nursery areas for major fishery species are located. The performance of each model in estimating ocean parameters was found to depend on the parameter investigated and to vary from one geographical region to another. Both BRAN and HYCOM models systematically overestimated the mean water temperature, particularly in the top 140 m of water column, with over 2 °C bias at some of the mooring stations. HYCOM model was more accurate than BRAN for water temperature predictions in the Great Australian Bight and along the east coast of Australia. Skill scores between each model and the in situ observations showed lower accuracy in the models' predictions of u and v ocean current velocities compared to water temperature predictions. For both models, the lowest accuracy in predicting ocean current velocities, speed and direction was observed at 200 m depth. Low accuracy of both model predictions was also observed in the top 10 m of the water column. BRAN had more accurate predictions of both u and v velocities in the upper 50 m of water column at all mooring station locations. While HYCOM

  11. Modelling the dispersion of non-conservative radionuclides in tidal waters. Pt. 1: Conceptual and mathematical model

    International Nuclear Information System (INIS)

    Perianez, R.; Abril, J.M.; Garcia-Leon, M.

    1996-01-01

    A 2D four-phase model to study the dispersion of non-conservative radionuclides in tidal waters, in conditions of disequilibrium for ionic exchanges, has been developed. At disequilibrium conditions, ionic exchanges cannot be formulated using distribution coefficients k d . Thus, kinetic transfer coefficients have been used. The model includes ionic exchanges among water and the solid phases (suspended matter and two grain size fractions of sediments), the deposition and resuspension of suspended matter and advective plus diffusive transport. In the second part of this work, which is presented in a separate paper, the model is applied to simulate 226 Ra dispersion, discharged from a fertilizer processing plant, in an estuarine system in the south-west of Spain. (Author)

  12. Application of air pollution dispersion modeling for source-contribution assessment and model performance evaluation at integrated industrial estate-Pantnagar

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, T., E-mail: tirthankaronline@gmail.com [Department of Environmental Science, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263 145 (India); Barman, S.C., E-mail: scbarman@yahoo.com [Department of Environmental Monitoring, Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh (India); Srivastava, R.K., E-mail: rajeevsrivastava08@gmail.com [Department of Environmental Science, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263 145 (India)

    2011-04-15

    Source-contribution assessment of ambient NO{sub 2} concentration was performed at Pantnagar, India through simulation of two urban mathematical dispersive models namely Gaussian Finite Line Source Model (GFLSM) and Industrial Source Complex Model (ISCST-3) and model performances were evaluated. Principal approaches were development of comprehensive emission inventory, monitoring of traffic density and regional air quality and conclusively simulation of urban dispersive models. Initially, 18 industries were found responsible for emission of 39.11 kg/h of NO{sub 2} through 43 elevated stacks. Further, vehicular emission potential in terms of NO{sub 2} was computed as 7.1 kg/h. Air quality monitoring delineates an annual average NO{sub 2} concentration of 32.6 {mu}g/m{sup 3}. Finally, GFLSM and ISCST-3 were simulated in conjunction with developed emission inventories and existing meteorological conditions. Models simulation indicated that contribution of NO{sub 2} from industrial and vehicular source was in a range of 45-70% and 9-39%, respectively. Further, statistical analysis revealed satisfactory model performance with an aggregate accuracy of 61.9%. - Research highlights: > Application of dispersion modeling for source-contribution assessment of ambient NO{sub 2}. > Inventorization revealed emission from industry and vehicles was 39.11 and 7.1 kg/h. > GFLSM revealed that vehicular pollution contributes a range of 9.0-38.6%. > Source-contribution of 45-70% was found for industrial emission through ISCST-3. > Aggregate performance of both models shows good agreement with an accuracy of 61.9%. - Development of industrial and vehicular inventory in terms of ambient NO{sub 2} for model simulation at Pantnagar, India and model validation revealed satisfactory outcome.

  13. Resuspension parameters for TRAC dispersion model

    International Nuclear Information System (INIS)

    Langer, G.

    1987-01-01

    Resuspension factors for the wind erosion of soil contaminated with plutonium are necessary to run the Rocky Flats Plant Terrain Responsive Atmospheric Code (TRAC). The model predicts the dispersion and resulting population dose due to accidental plutonium releases

  14. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process

    International Nuclear Information System (INIS)

    Chen, Mingbiao; Bai, Fanfei; Song, Wenji; Lv, Jie; Lin, Shili

    2017-01-01

    Highlights: • 2D network equivalent circuit considers the interplay of cell units. • The temperature non-uniformity Φ of multilayer model is bigger than that of lumped model. • The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. • Increasing the thermal conductivity of the separator can effectively relieve the heat spot effect of ISC. - Abstract: As the electrical and thermal characteristic will affect the batteries’ safety, performance, calendar life and capacity fading, an electro-thermal coupled model for pouch battery LiFePO_4/C is developed in normal discharge and internal short circuit process. The battery is discretized into many cell elements which are united as a 2D network equivalent circuit. The electro-thermal model is solved with finite difference method. Non-uniformity of current distribution and temperature distribution is simulated and the result is validated with experiment data at various discharge rates. Comparison of the lumped model and the multilayer structure model shows that the temperature non-uniformity Φ of multilayer model is bigger than that of lumped model and shows more precise. The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. The electro-thermal model can also be used to guide the safety design of battery. The temperature of the ISC element near tabs is the highest because the equivalent resistance of the external circuit (not including the ISC element) is the smallest when the resistance of cell units is small. It is found that increasing the thermal conductivity of integrated layer can effectively relieve the heat spot effect of ISC.

  15. Gas dispersal potential of infant bedding of sudden death cases. (I): CO2 accumulation around the face of infant mannequin model.

    Science.gov (United States)

    Sakai, Jun; Takahashi, Shirushi; Funayama, Masato

    2009-04-01

    We assessed CO(2) gas dispersal potential of bedding that had actually been used by 26 infants diagnosed with sudden unexpected infant death using a baby mannequin model. The age of victims ranged from 1 to 12 months. In some cases, the parents alleged that the infant faces were not covered with bedding when they were found. The parent's memories, however, may not have been accurate; therefore, we examined the potential for gas dispersal based on the supposition that the bedding had covered their faces. The mannequin was connected with a respirator set on the tidal volume and respiratory rates matched with the baby's age. Before measuring, CO(2) flow was regulated in 5%+/-0.1% of end-tidal PCO(2). After the model was placed on each bedding condition, measurements were performed at least five times under each respiratory condition. Four cases showed a plateau of FiCO(2) bedding. Especially, the latter seven bedding could have high rebreathing potential if they covered the infant's faces and the probability of environmental asphyxia should be considered.

  16. Spatially varying dispersion to model breakthrough curves.

    Science.gov (United States)

    Li, Guangquan

    2011-01-01

    Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  17. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  18. Ambient air quality predictions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents dispersion modelling predictions for SO 2 , NOx, CO, HC and particulate matter (PM), which complement regional monitoring observations. The air quality simulation models provide a scientific means of relating industrial emissions to changes in ambient air quality. The four models applied to the emission sources in the region were: (1) SCREEN3, (2) ISC3BE, (3) ADEPT2, and (4) the box model. Model predictions were compared to air quality guidelines. It was concluded that the largest SO 2 concentrations were associated with intermittent flaring, and with the Suncor Powerhouse whose emissions are continuous. 45 refs., 36 tabs., 40 figs

  19. Model-based dispersive wave processing: A recursive Bayesian solution

    International Nuclear Information System (INIS)

    Candy, J.V.; Chambers, D.H.

    1999-01-01

    Wave propagation through dispersive media represents a significant problem in many acoustic applications, especially in ocean acoustics, seismology, and nondestructive evaluation. In this paper we propose a propagation model that can easily represent many classes of dispersive waves and proceed to develop the model-based solution to the wave processing problem. It is shown that the underlying wave system is nonlinear and time-variable requiring a recursive processor. Thus the general solution to the model-based dispersive wave enhancement problem is developed using a Bayesian maximum a posteriori (MAP) approach and shown to lead to the recursive, nonlinear extended Kalman filter (EKF) processor. The problem of internal wave estimation is cast within this framework. The specific processor is developed and applied to data synthesized by a sophisticated simulator demonstrating the feasibility of this approach. copyright 1999 Acoustical Society of America.

  20. Marine Radioactivity Studies in the Suez Canal, Part II: Field Experiments and a Modelling Study of Dispersion

    Science.gov (United States)

    Abril, J. M.; Abdel-Aal, M. M.; Al-Gamal, S. A.; Abdel-Hay, F. A.; Zahar, H. M.

    2000-04-01

    In this paper we take advantage of the two field tracing experiments carried out under the IAEA project EGY/07/002, to develop a modelling study on the dispersion of radioactive pollution in the Suez Canal. The experiments were accomplished by using rhodamine B as a tracer, and water samples were measured by luminescence spectrometry. The presence of natural luminescent particles in the canal waters limited the use of some field data. During experiments, water levels, velocities, wind and other physical parameters were recorded to supply appropriate information for the modelling work. From this data set, the hydrodynamics of the studied area has been reasonably described. We apply a 1-D-Gaussian and 2-D modelling approaches to predict the position and the spatial shape of the plume. The use of different formulations for dispersion coefficients is studied. These dispersion coefficients are then applied in a 2-D-hydrodynamic and dispersion model for the Bitter Lake to investigate different scenarios of accidental discharges.

  1. Dispersion Models to Forecast Traffic-related Emissions in Urban Areas

    Directory of Open Access Journals (Sweden)

    Davide Scannapieco

    2011-11-01

    Full Text Available Down the centuries, a direct link had been developed between increase in mobility and increase in wealth. On the other hand, air emission of greenhouse gases (GHG due to vehicles equipped with internal combustion engines can be regarded as a negative pressure over the environment. In the coming decades, road transport is likely to remain a significant contributor to air pollution in cities. Many urban trips cover distances of less than 6 km. Since the effectiveness of catalytic converters in the initial minutes of engine operation is small, the average emission per distance driven is very high in urban areas. Also, poorly maintained vehicles that lack exhaust aftertreatment systems are responsible for a major part of pollutant emissions. Therefore in urban areas, where higher concentrations of vehicles can be easily found, air pollution represents a critical issue, being it related with both environment and human health protection: in truth, research in recent decades consistently indicates the adverse effects of outdoor air pollution on human health, and the evidence points to air pollution stemming from transport as an important contributor to these effects. Several institutions (EEA, USEPA, etc. focused their interest in dispersion models because of their potential effectiveness to forecast atmospheric pollution. Furthermore, air micropollutants such as Polycyclic Aromatic Compounds (PAH and Metallic Trace Elements (MTE are traffic-related and although very low concentrations their dispersion is a serious issue. However, dispersion models are usefully implemented to better manage this estimation problem. Nonetheless, policy makers and land managers have to deal with model selection, taking into account that several dispersion models are available, each one of them focused on specific goals (e.g., wind transport of pollutants, land morphology implementation, evaluation of micropollutants transport, etc.; a further aspect to be considered is

  2. Dispersion bias, dispersion effect, and the aerosol-cloud conundrum

    International Nuclear Information System (INIS)

    Liu Yangang; Daum, Peter H; Guo Huan; Peng Yiran

    2008-01-01

    This work examines the influences of relative dispersion (the ratio of the standard deviation to the mean radius of the cloud droplet size distribution) on cloud albedo and cloud radiative forcing, derives an analytical formulation that accounts explicitly for the contribution from droplet concentration and relative dispersion, and presents a new approach to parameterize relative dispersion in climate models. It is shown that inadequate representation of relative dispersion in climate models leads to an overestimation of cloud albedo, resulting in a negative bias of global mean shortwave cloud radiative forcing that can be comparable to the warming caused by doubling CO 2 in magnitude, and that this dispersion bias is likely near its maximum for ambient clouds. Relative dispersion is empirically expressed as a function of the quotient between cloud liquid water content and droplet concentration (i.e., water per droplet), yielding an analytical formulation for the first aerosol indirect effect. Further analysis of the new expression reveals that the dispersion effect not only offsets the cooling from the Twomey effect, but is also proportional to the Twomey effect in magnitude. These results suggest that unrealistic representation of relative dispersion in cloud parameterization in general, and evaluation of aerosol indirect effects in particular, is at least in part responsible for several outstanding puzzles of the aerosol-cloud conundrum: for example, overestimation of cloud radiative cooling by climate models compared to satellite observations; large uncertainty and discrepancy in estimates of the aerosol indirect effect; and the lack of interhemispheric difference in cloud albedo.

  3. A 'Puff' dispersion model for routine and accidental releases

    International Nuclear Information System (INIS)

    Grsic, Z.; Rajkovic, B.; Milutinovic, P.

    1999-01-01

    A Puff dispersion model for accidental or routine releases is presented. This model was used as a constitutive part of an automatic meteorological station.All measured quantities are continuously displayed on PC monitor in a digital and graphical form, they are averaging every 10 minutes and sending to the civil information center of Belgrade. In the paper simulation of a pollutant plume dispersion from The oil refinery 'Pancevo', on April 18 th 1999 is presented. (author)

  4. Modelling Pollutant Dispersion in a Street Network

    Science.gov (United States)

    Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.

    2015-04-01

    This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

  5. Mass transfer of Disperse Red 153 and its crude dye in supercritical CO2 fluid

    Directory of Open Access Journals (Sweden)

    Zheng Huan-Da

    2017-01-01

    Full Text Available In this paper, polyester fibers were dyed with Disperse Red 153 and its crude dye in supercritical CO2. The effect of dyeing temperature, dyeing time, dyeing pressure, as well as auxiliaries in the commercialized Disperse Red 153 on the dyeing performance of polyester fibers was investigated. The obtained results showed that the dyeing effect of crude dye for polyester was better than that of Disperse Red 153 in the same dyeing condition. The color strength values of the dyed polyester samples were increased gradually with the increase of temperature and pressure since mass transfer of dye was improved. In addition, the mass transfer model of Disperse Red 153 in supercritical CO2 was also proposed.

  6. Atmospheric dispersion models help to improve air quality; Los modelos de dispersion atmosferica ayudan a mejorar la calidad del aire

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.

    2013-07-01

    One of the main challenges of the atmospheric sciences is to reproduce as well as possible the phenomena and processes of pollutants in the atmosphere. To do it, mathematical models based in this case on fluid dynamics and mass and energy conservation equations, equations that govern the atmospheric chemistry, etc., adapted to the spatial scales to be simulated, are developed. The dispersion models simulate the processes of transport, dispersion, chemical transformation and elimination by deposition that air pollutants undergo once they are emitted. Atmospheric dispersion models with their multiple applications have become essential tools for the air quality management. (Author)

  7. A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae)

    Science.gov (United States)

    Westbrook, John K.; Eyster, Ritchie S.; Allen, Charles T.

    2011-07-01

    The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas / Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.

  8. Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.

    Science.gov (United States)

    Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M

    2015-12-11

    The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8  meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.

  9. A Deformation Model of TRU Metal Dispersion Fuel Rod for HYPER

    International Nuclear Information System (INIS)

    Lee, Byoung Oon; Hwang, Woan; Park, Won S.

    2002-01-01

    Deformation analysis in fuel rod design is essential to assure adequate fuel performance and integrity under irradiation conditions. An in-reactor performance computer code for a dispersion fuel rod is being developed in the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRU-Zr)-Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appeared that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel. Some experimental tests including in-pile and out-pile experiments are needed for verifying the predictive capability of the DIMAC code. An in-reactor performance analysis computer code for blanket fuel is being developed at the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRUZr)- Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appears that the deformation by swelling within fuel meat is very large for both fuels, and the major deformation mechanism at cladding is creep. The swelling strain is almost constant within the fuel meat, and is assumed to be zero in the cladding made of HT9. It is estimated that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel, and the dispersion fuel performance may be limited by swelling. But the predicted volume change of the (TRU-Zr)-Zr dispersion fuel models is about 6.1% at 30 at.% burnup. The value of cladding

  10. Modeling the generation and dispersion of odors from mushroom composting facilities

    International Nuclear Information System (INIS)

    Heinemann, P.; Wahanik, D.

    1998-01-01

    An odor source generation model and an odor dispersion model were developed to predict the local distribution of odors emanating from mushroom composting facilities. The odor source generation model allowed for simulation of various composting wharf configurations and odor source strengths. This model was linked to a Gaussian plume diffusion model that predicted odor dispersion. Dimethyl disulfide production at a rate of 1760 micrograms/h was simulated by the source generation model and six different atmospheric conditions were analyzed to demonstrate the effect of wind speed, atmospheric stability, and source generation on the dispersion of this odor producing compound. Detectable levels of dimethyl disulfide were predicted to range from less than 100 m from the source during very unstable conditions to almost 5000 m during very stable conditions

  11. Frequency dispersion analysis of thin dielectric MOS capacitor in a five-element model

    Science.gov (United States)

    Zhang, Xizhen; Zhang, Sujuan; Zhu, Huichao; Pan, Xiuyu; Cheng, Chuanhui; Yu, Tao; Li, Xiangping; Cheng, Yi; Xing, Guichao; Zhang, Daming; Luo, Xixian; Chen, Baojiu

    2018-02-01

    An Al/ZrO2/IL/n-Si (IL: interface layer) MOS capacitor has been fabricated by metal organic decomposition of ZrO2 and thermal deposition Al. We have measured parallel capacitance (C m) and parallel resistance (R m) versus bias voltage curves (C m, R m-V) at different AC signal frequency (f), and C m, R m-f curves at different bias voltage. The curves of C m, R m-f measurements show obvious frequency dispersion in the range of 100 kHz-2 MHz. The energy band profile shows that a large voltage is applied on the ZrO2 layer and IL at accumulation, which suggests possible dielectric polarization processes by some traps in ZrO2 and IL. C m, R m-f data are used for frequency dispersion analysis. To exclude external frequency dispersion, we have extracted the parameters of C (real MOS capacitance), R p (parallel resistance), C IL (IL capacitance), R IL (IL resistance) and R s (Si resistance) in a five-element model by using a three-frequency method. We have analyzed intrinsic frequency dispersion of C, R p, C IL, R IL and R s by studying the dielectric characteristics and Si surface layer characteristics. At accumulation, the dispersion of C and R p is attributed to dielectric polarization such as dipolar orientation and oxide traps. The serious dispersion of C IL and R IL are relative to other dielectric polarization, such as border traps and fixed oxide traps. The dispersion of R s is mainly attributed to contact capacitance (C c) and contact resistance (R c). At depletion and inversion, the frequency dispersion of C, R p, C IL, R IL, and R s are mainly attributed to the depletion layer capacitance (C D). The interface trap capacitance (C it) and interface trap resistance (R it) are not dominant for the dispersion of C, R p, C IL, R IL, and R s.

  12. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  13. Atmospheric dispersion modelling over complex terrain at small scale

    Science.gov (United States)

    Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.

    2014-03-01

    Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.

  14. Aplicabilidade do índice de risco do sistema NNIS na predição da incidência de infecção do sítio cirúrgico (ISC em um hospital universitário no sul do Brasil

    Directory of Open Access Journals (Sweden)

    Freitas P. F.

    2000-01-01

    Full Text Available OBJETIVO: Investigar a aplicabilidade da metodologia do sistema NNIS em um hospital universitário brasileiro, por meio da avaliação do modelo preditivo de ISC que deu origem ao índice de medida de risco intrínseco. CASUÍSTICA E MÉTODO: Foi conduzida uma revisão retrospectiva dos prontuários de 9.322 pacientes submetidos a procedimento cirúrgico no período de janeiro de 1993 a dezembro de 1998. Os dados foram coletados utilizando a opção detalhada do componente de vigilância do paciente cirúrgico do sistema NNIS. Foi calculada a incidência de ISC de acordo com as diferentes categorias individuais dos componentes do índice de risco NNIS (Classe de Ferida, escore ASA e duração da cirurgia. A força da associação entre cada um destes fatores e a ocorrência de ISC foi medida pelo coeficiente Gamma de Goodman-Kruskal (G. RESULTADOS: O escore ASA mostrou-se o melhor preditor de ISC entre os componentes individuais do índice de risco (G=0.49. O índice composto mostrou ser um melhor preditor de ISC do que classe de ferida e teve um poder preditivo semelhante ao do ASA (G=0.50. CONCLUSÕES: O grau de associação entre o índice NNIS e a ocorrência de ISC encontrada no presente estudo está em consonância com os resultados relatados por outros autores e mostrou-se adequado para a avaliação do risco de infecção cirúrgica em nossos pacientes. Amostras utilizando diferentes hospitais com características semelhantes são necessárias para avaliar o risco associado com procedimentos cirúrgicos específicos.

  15. A micromorphic model for monolayer hexagonal boron nitride with determined constitutive constants by phonon dispersions

    International Nuclear Information System (INIS)

    Zhang, Bin; Yang, Gang

    2014-01-01

    A two dimensional (2D) micromorphic model is developed for monolayer hexagonal boron nitride (h-BN). Theoretical expressions of phonon dispersions for 2D crystals are derived based on the simplified governing equations of specialized three dimensional micromorphic crystals. The constitutive constants of governing equations of the h-BN micromorphic model are determined, which is performed by fitting the available phonon dispersions data of experimental measurements and first-principles calculations with our theoretical expressions. The obtained Young’s modulus and Poisson’s ratio of h-BN are comparable with the results of ab initio calculations and inelastic x-ray scattering experiments, thus the constitutive relations of the h-BN model are verified, which also indicates that mechanical properties of monolayer h-BN could be characterized by our 2D micromorphic model

  16. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  17. Phonon dispersion models for MgB{sub 2} with application of pressure

    Energy Technology Data Exchange (ETDEWEB)

    Alarco, Jose A., E-mail: jose.alarco@qut.edu.au; Talbot, Peter C., E-mail: p.talbot@qut.edu.au; Mackinnon, Ian D.R., E-mail: ian.mackinnon@qut.edu.au

    2017-05-15

    Highlights: • Ab initio DFT MgB{sub 2} phonon dispersion for pressures up to 20 GPa are presented. • Extent of E{sub 2g} phonon anomaly and thermal energy, T{sub δ,} are pressure dependent. • Phonon anomaly thermal energy equivalent to experimental T{sub c} values for MgB{sub 2}. • Computational method to measure T{sub δ} is an effective predictor of T{sub c}. - Abstract: We evaluate, via the Local Density and the Generalised Gradient Approximations to the Density Functional Theory (DFT), the change in form and extent of the E{sub 2g} phonon anomaly of MgB{sub 2} with increase in applied pressure up to 20 GPa. Ab initio DFT calculations on the phonon dispersion (PD) for MgB{sub 2} show a phonon anomaly symmetrically displaced around Γ, the reciprocal lattice origin. This anomaly is related to nesting between diametrically opposite sides of tubular elements of Fermi surfaces, which correspond to sigma bonding and run approximately parallel to the Γ–A reciprocal space direction. The anomaly is parallel to Γ–A and along Γ–M and Γ–K. The extent of the E{sub 2g} phonon anomaly, δ, along Γ–M and Γ–K is a measure of the thermal energy, T{sub δ}, that matches within error the experimental onset superconducting transition temperature, T{sub c}. Ab initio DFT calculations with pressure for −5 GPa < P < 20 GPa show a linear reduction in T{sub δ} that closely matches experimental T{sub c} values for MgB{sub 2}. For phonon-mediated superconductors with AlB{sub 2}–type structures, the thermal energy of the phonon anomaly, T{sub δ}, is a reliable predictor of T{sub c}.

  18. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    Science.gov (United States)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  19. Prediction of U3SI2-Al burn-up and SiC/p-AI composition effects on its thermal conductivity using metal matrix composite (MMC) model containing progressive sub-dispersion

    International Nuclear Information System (INIS)

    Suwardi

    2000-01-01

    The model takes into account the evolution of constituent volume fraction. Sub-dispersion of disperse contains fission gas bubbles that increase with bum-up. The metal matrix could contain pore and void, a different type of disperse that vary wth time. The model is previously aimed to dispersion-nuclear fuel element. The model consists of a combination of different conductance constituent of both matrix and sub-matrix. Application is carried out to predict the fuel swelling effect on thermal conductivity of U 3 SI 2 -Al dispersion, and to volume fraction effect on conductivity of SiC-particulate reinforced AI matrix. The model shows that both fuel fraction and fission gas swelling decrease the thermal conductivity. During the start-up period of swelling the conductivity increases as aluminum pore close. then decreases most linearly. SiC/p-AI conductivity decreases most linearly with particulate volume fraction, attains 57.6% of pure AI at 50 % v/v. The author conclude that the model developed is applicable for more general MMC. (author)

  20. Phonon dispersion relations in PrBa2Cu3O6+x (x≅0.2)

    International Nuclear Information System (INIS)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.; Reichardt, W.; Zhokhov, A.A.; Andersen, N.H.; Lister, S.J.S.; Wildes, A.R.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa 2 Cu 3 O 6+x (x≅0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all but two phonon branches, which are significantly softer than predicted. These modes are found to arise predominantly from motion of the oxygen ions in the CuO 2 planes. Analogous modes in YBa 2 Cu 3 O 6 are well described by the common interatomic potential model

  1. Modelling drivers of mangrove propagule dispersal and restoration of abandoned shrimp farms

    Directory of Open Access Journals (Sweden)

    D. Di Nitto

    2013-07-01

    Full Text Available Propagule dispersal of four mangrove species Rhizophora mucronata, R. apiculata, Ceriops tagal and Avicennia officinalis in the Pambala–Chilaw Lagoon Complex (Sri Lanka was studied by combining a hydrodynamic model with species-specific knowledge on propagule dispersal behaviour. Propagule transport was simulated using a finite-volume advection-diffusion model to investigate the effect of dispersal vectors (tidal flow, freshwater discharge and wind, trapping agents (retention by vegetation and seed characteristics (buoyancy on propagule dispersal patterns. Sensitivity analysis showed that smaller propagules, like the oval-shaped propagules of Avicennia officinalis, dispersed over larger distances and were most sensitive to changing values of retention by mangrove vegetation compared to larger, torpedo-shaped propagules of Rhizophora spp. and C. tagal. Directional propagule dispersal in this semi-enclosed lagoon with a small tidal range was strongly concentrated towards the edges of the lagoon and channels. Short distance dispersal appeared to be the main dispersal strategy for all four studied species, with most of the propagules being retained within the vegetation. Only a small proportion (max. 5% of propagules left the lagoon through a channel connecting the lagoon with the open sea. Wind significantly influenced dispersal distance and direction once propagules entered the lagoon or adjacent channels. Implications of these findings for mangrove restoration were tested by simulating partial removal in the model of dikes around abandoned shrimp ponds to restore tidal hydrology and facilitate natural recolonisation by mangroves. The specific location of dike removal, (with respect to the vicinity of mangroves and independently suitable hydrodynamic flows, was found to significantly affect the resultant quantities and species of inflowing propagules and hence the potential effectiveness of natural regeneration. These results demonstrate the

  2. Harmonisation within atmospheric dispersion modelling for regulatory purposes. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Suppan, P.

    2004-01-01

    Dispersion modelling has proved to be a very effective tool to assess the environmental impact of human activities to be a very effective tool to assess the environmental impact of human activities on air quality already at the early planning stage. Environmental assessments during planning are required by the EU directive 85/337/EEC. Only models can give detailed information on the distribution of pollutants with high spatial and temporal resolution, while they allow the decision-maker to devise a range of scenarios, in which the various processes determining the environmental impact can be easily simulated and changed. In June 1991, the Joint Research Centre of the European Commission started an initiative on the sharing of information and possible harmonisation of new approaches to atmospheric disperion modelling and model evaluation. This initiative has fostered a series of conferences that have be concerned with improvement of ''modelling culture'' in Europe. The 9th International Conference on Harmonisation within Atmospheric dispersion Modelling for Regulatory Purposes in Garmisch-Partenkirchen, in Germany/Bavaria, 1-4 June, 2004, will continue the efforts of the previous conferences. The conference has a role as a forum where users and decision-makers can bring their requirements to the attention of scientists. It is also a natural forum for discussing environmental issues related to the European Union enlargement process. The scope of this conference is covered by the following topics: 1. Validation and inter-comparison of models: Model evaluation methodology - 2. Experiences with implementation of EU directives: regulatory modelling - 3. Short distance dispersion modelling - 4. Urban scale and street canyon modelling: Meteorology and air quality - 5. Mesoscale meteorology and air quality modelling - 6. Environmental impact assessment: Air pollution management and decision support systems. (orig.)

  3. Comparison of turbulent particle dispersion models in turbulent shear flows

    Directory of Open Access Journals (Sweden)

    S. Laín

    2007-09-01

    Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.

  4. Numerical models for computation of pollutant-dispersion in the atmosphere

    International Nuclear Information System (INIS)

    Leder, S.M.; Biesemann-Krueger, A.

    1985-04-01

    The report describes some models which are used to compute the concentration of emitted pollutants in the lower atmosphere. A dispersion model, developed at the University of Hamburg, is considered in more detail and treated with two different numerical methods. The convergence of the methods is investigated and a comparison of numerical results and dispersion experiments carried out at the Nuclear Research Center Karlsruhe is given. (orig.) [de

  5. Sensitivity of numerical dispersion modeling to explosive source parameters

    International Nuclear Information System (INIS)

    Baskett, R.L.; Cederwall, R.T.

    1991-01-01

    The calculation of downwind concentrations from non-traditional sources, such as explosions, provides unique challenges to dispersion models. The US Department of Energy has assigned the Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) the task of estimating the impact of accidental radiological releases to the atmosphere anywhere in the world. Our experience includes responses to over 25 incidents in the past 16 years, and about 150 exercises a year. Examples of responses to explosive accidents include the 1980 Titan 2 missile fuel explosion near Damascus, Arkansas and the hydrogen gas explosion in the 1986 Chernobyl nuclear power plant accident. Based on judgment and experience, we frequently estimate the source geometry and the amount of toxic material aerosolized as well as its particle size distribution. To expedite our real-time response, we developed some automated algorithms and default assumptions about several potential sources. It is useful to know how well these algorithms perform against real-world measurements and how sensitive our dispersion model is to the potential range of input values. In this paper we present the algorithms we use to simulate explosive events, compare these methods with limited field data measurements, and analyze their sensitivity to input parameters. 14 refs., 7 figs., 2 tabs

  6. Modelling airborne dispersion for disaster management

    Science.gov (United States)

    Musliman, I. A.; Yohnny, L.

    2017-05-01

    Industrial disasters, like any other disasters, can happen anytime, anywhere and in any form. Airborne industrial disaster is a kind of catastrophic event involving the release of particles such as chemicals and industrial wastes into environment in gaseous form, for instance gas leakages. Unlike solid and liquid materials, gases are often colourless and odourless, the particles are too tiny to be visible to the naked eyes; hence it is difficult to identify the presence of the gases and to tell the dispersion and location of the substance. This study is to develop an application prototype to perform simulation modelling on the gas particles to determine the dispersion of the gas particles and to identify the coverage of the affected area. The prototype adopted Lagrangian Particle Dispersion (LPD) model to calculate the position of the gas particles under the influence of wind and turbulent velocity components, which are the induced wind due to the rotation of the Earth, and Convex Hull algorithm to identify the convex points of the gas cloud to form the polygon of the coverage area. The application performs intersection and overlay analysis over a set of landuse data at Pasir Gudang, Johor industrial and residential area. Results from the analysis would be useful to tell the percentage and extent of the affected area, and are useful for the disaster management to evacuate people from the affected area. The developed application can significantly increase efficiency of emergency handling during a crisis. For example, by using a simulation model, the emergency handling can predict what is going to happen next, so people can be well informed and preparations works can be done earlier and better. Subsequently, this application helps a lot in the decision making process.

  7. Modelling airborne dispersion for disaster management

    International Nuclear Information System (INIS)

    Musliman, I A; Yohnny, L

    2017-01-01

    Industrial disasters, like any other disasters, can happen anytime, anywhere and in any form. Airborne industrial disaster is a kind of catastrophic event involving the release of particles such as chemicals and industrial wastes into environment in gaseous form, for instance gas leakages. Unlike solid and liquid materials, gases are often colourless and odourless, the particles are too tiny to be visible to the naked eyes; hence it is difficult to identify the presence of the gases and to tell the dispersion and location of the substance. This study is to develop an application prototype to perform simulation modelling on the gas particles to determine the dispersion of the gas particles and to identify the coverage of the affected area. The prototype adopted Lagrangian Particle Dispersion (LPD) model to calculate the position of the gas particles under the influence of wind and turbulent velocity components, which are the induced wind due to the rotation of the Earth, and Convex Hull algorithm to identify the convex points of the gas cloud to form the polygon of the coverage area. The application performs intersection and overlay analysis over a set of landuse data at Pasir Gudang, Johor industrial and residential area. Results from the analysis would be useful to tell the percentage and extent of the affected area, and are useful for the disaster management to evacuate people from the affected area. The developed application can significantly increase efficiency of emergency handling during a crisis. For example, by using a simulation model, the emergency handling can predict what is going to happen next, so people can be well informed and preparations works can be done earlier and better. Subsequently, this application helps a lot in the decision making process. (paper)

  8. Non-Fickian dispersive transport of strontium in laboratory-scale columns: Modelling and evaluation

    Science.gov (United States)

    Liu, Dongxu; Jivkov, Andrey P.; Wang, Lichun; Si, Gaohua; Yu, Jing

    2017-06-01

    In the context of environmental remediation of contaminated sites and safety assessment of nuclear waste disposal in the near-surface zone, we investigate the leaching and non-Fickian dispersive migration with sorption of strontium (mocking strontium-90) through columns packed with sand and clay. Analysis is based on breakthrough curves (BTCs) from column experiments, which simulated rainfall infiltration and source term release scenario, rather than applying constant tracer solution at the inlet as commonly used. BTCs are re-evaluated and transport parameters are estimated by inverse modelling using two approaches: (1) equilibrium advection-dispersion equation (ADE); and (2) continuous time random walk (CTRW). Firstly, based on a method for calculating leach concentration, the inlet condition with an exponential decay input is identified. Secondly, the results show that approximately 39%-58% of Br- and 16%-49% of Sr2+ are eluted from the columns at the end of the breakthrough experiments. This suggests that trapping mechanisms, including diffusion into immobile zones and attachment of tracer on mineral surfaces, are more pronounced for Sr2+ than for Br-. Thirdly, we demonstrate robustness of CTRW-based truncated power-law (TPL) model in capturing non-Fickian reactive transport with 0 2. The non-Fickian dispersion observed experimentally is explained by variations of local flow field from preferential flow paths due to physical heterogeneities. Particularly, the additional sorption process of strontium on clay minerals contributes to the delay of the peak concentration and the tailing features, which leads to an enhanced non-Fickian transport for strontium. Finally, the ADE and CTRW approaches to environmental modelling are evaluated. It is shown that CTRW with a sorption term can describe non-Fickian dispersive transport of strontium at laboratory scale by identifying appropriate parameters, while the traditional ADE with a retardation factor fails to reproduce

  9. Assessing the performance of dispersionless and dispersion-accounting methods: helium interaction with cluster models of the TiO2(110) surface.

    Science.gov (United States)

    de Lara-Castells, María Pilar; Stoll, Hermann; Mitrushchenkov, Alexander O

    2014-08-21

    As a prototypical dispersion-dominated physisorption problem, we analyze here the performance of dispersionless and dispersion-accounting methodologies on the helium interaction with cluster models of the TiO2(110) surface. A special focus has been given to the dispersionless density functional dlDF and the dlDF+Das construction for the total interaction energy (K. Pernal, R. Podeswa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 2009, 109, 263201), where Das is an effective interatomic pairwise functional form for the dispersion. Likewise, the performance of symmetry-adapted perturbation theory (SAPT) method is evaluated, where the interacting monomers are described by density functional theory (DFT) with the dlDF, PBE, and PBE0 functionals. Our benchmarks include CCSD(T)-F12b calculations and comparative analysis on the nuclear bound states supported by the He-cluster potentials. Moreover, intra- and intermonomer correlation contributions to the physisorption interaction are analyzed through the method of increments (H. Stoll, J. Chem. Phys. 1992, 97, 8449) at the CCSD(T) level of theory. This method is further applied in conjunction with a partitioning of the Hartree-Fock interaction energy to estimate individual interaction energy components, comparing them with those obtained using the different SAPT(DFT) approaches. The cluster size evolution of dispersionless and dispersion-accounting energy components is then discussed, revealing the reduced role of the dispersionless interaction and intramonomer correlation when the extended nature of the surface is better accounted for. On the contrary, both post-Hartree-Fock and SAPT(DFT) results clearly demonstrate the high-transferability character of the effective pairwise dispersion interaction whatever the cluster model is. Our contribution also illustrates how the method of increments can be used as a valuable tool not only to achieve the accuracy of CCSD(T) calculations using large cluster models but also to

  10. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  11. Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Passot, T.; Sulem, P. L.

    2005-01-01

    In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)

  12. Difficulties in modeling dispersed-flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    Dispersed Flow Film Boiling (DFFB) is characterized by important departures from thermal and velocity equilibrium that make it suitable for modeling with two-fluid models. The fundamental limitations and difficulties imposed by the one-dimensional nature of these models are extensively discussed. The validity of the assumptions and empirical laws used to close the system of conservation equations is critically reviewed, in light of the multidimensional aspects of the problem. Modifications that could improve the physics of the models are identified. (orig.) [de

  13. FIREPLUME model for plume dispersion from fires: Application to uranium hexafluoride cylinder fires

    International Nuclear Information System (INIS)

    Brown, D.F.; Dunn, W.E.

    1997-06-01

    This report provides basic documentation of the FIREPLUME model and discusses its application to the prediction of health impacts resulting from releases of uranium hexafluoride (UF 6 ) in fires. The model application outlined in this report was conducted for the Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted UF 6 . The FIREPLUME model is an advanced stochastic model for atmospheric plume dispersion that predicts the downwind consequences of a release of toxic materials from an explosion or a fire. The model is based on the nonbuoyant atmospheric dispersion model MCLDM (Monte Carlo Lagrangian Dispersion Model), which has been shown to be consistent with available laboratory and field data. The inclusion of buoyancy and the addition of a postprocessor to evaluate time-varying concentrations lead to the current model. The FIREPLUME model, as applied to fire-related UF 6 cylinder releases, accounts for three phases of release and dispersion. The first phase of release involves the hydraulic rupture of the cylinder due to heating of the UF 6 in the fire. The second phase involves the emission of material into the burning fire, and the third phase involves the emission of material after the fire has died during the cool-down period. The model predicts the downwind concentration of the material as a function of time at any point downwind at or above the ground. All together, five fire-related release scenarios are examined in this report. For each scenario, downwind concentrations of the UF 6 reaction products, uranyl fluoride and hydrogen fluoride, are provided for two meteorological conditions: (1) D stability with a 4-m/s wind speed, and (2) F stability with a 1-m/s wind speed

  14. Phonon dispersion relations in PrBa2Cu3O6+x (x approximate to 0.2)

    DEFF Research Database (Denmark)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa2Cu3O6+x (xapproximate to0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all...

  15. MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition

    Science.gov (United States)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2008-12-01

    Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.

  16. Objectives for next generation of practical short-range atmospheric dispersion models

    International Nuclear Information System (INIS)

    Olesen, H.R.; Mikkelsen, T.

    1992-01-01

    The proceedings contains papers from the workshop ''Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion Models''. They deal with two types of models, namely models for regulatory purposes and models for real-time applications. The workshop was the result of an action started in 1991 for increased cooperation and harmonization within atmospheric dispersion modelling. The focus of the workshop was on the management of model development and the definition of model objectives, rather than on detailed model contents. It was the intention to identify actions that can be taken in order to improve the development and use of atmospheric dispersion models. The papers in the proceedings deal with various topics within the broad spectrum of matters related to up-to-date practical models, such as their scientific basis, requirements for model input and output, meteorological preprocessing, standardisation within modelling, electronic information exchange as a potentially useful tool, model evaluation and data bases for model evaluation. In addition to the papers, the proceedings contain summaries of the discussions at the workshop. These summaries point to a number of recommended actions which can be taken in order to improve ''modelling culture''. (AB)

  17. A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling.

    Science.gov (United States)

    Lovreglio, Ruggiero; Ronchi, Enrico; Maragkos, Georgios; Beji, Tarek; Merci, Bart

    2016-11-15

    The release of toxic gases due to natural/industrial accidents or terrorist attacks in populated areas can have tragic consequences. To prevent and evaluate the effects of these disasters different approaches and modelling tools have been introduced in the literature. These instruments are valuable tools for risk managers doing risk assessment of threatened areas. Despite the significant improvements in hazard assessment in case of toxic gas dispersion, these analyses do not generally include the impact of human behaviour and people movement during emergencies. This work aims at providing an approach which considers both modelling of gas dispersion and evacuation movement in order to improve the accuracy of risk assessment for disasters involving toxic gases. The approach is applied to a hypothetical scenario including a ship releasing Nitrogen dioxide (NO2) on a crowd attending a music festival. The difference between the results obtained with existing static methods (people do not move) and a dynamic approach (people move away from the danger) which considers people movement with different degrees of sophistication (either a simple linear path or more complex behavioural modelling) is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. H2 uptake in the Li-dispersed silica nano-tubes

    International Nuclear Information System (INIS)

    Jin Bae Lee; Soon Chang Lee; Sang Moon Lee; Hae Jin Kim

    2006-01-01

    Highly ordered Li-dispersed silica nano-tubes were prepared by sol-gel template method for hydrogen storage. Isolated Li-dispersed silica nano-tubes can be easily obtained by removing the AAO template with 2M NaOH. From the XRD study, the Li-dispersed silica nano-tubes showed the amorphous phase with silica frameworks. The uniform length and diameter of Li-dispersed silica nano-tubes could be examined with the electron microscopy studies. The wall thickness and diameter of nano-tubes are about 50-60 nm and 200-400 nm, respectively. The obtained Li-dispersed silica nano-tubes have the hydrogen adsorption capacity 2.25 wt% at 77 K under 47 atm. (authors)

  19. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    Science.gov (United States)

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  20. Improved atmospheric dispersion modelling in the new program system UFOMOD for accident consequence assessments

    International Nuclear Information System (INIS)

    Panitz, H.J.

    1988-01-01

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straightline Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different concepts of dispersion modelling on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been carried out. The study showed that there are trajectory models available which can be applied in ACAs and that these trajectory models provide more realistic results of ACAs than straight-line Gaussian models. This led to a completly novel concept of atmospheric dispersion modelling which distinguish between two different distance ranges of validity: the near range ( 50 km). The two ranges are assigned to respective trajectory models

  1. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Katata, G.; Chino, M.; Kobayashi, T. [Japan Atomic Energy Agency (JAEA), Ibaraki (Japan); and others

    2015-07-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I{sub 2} and CH{sub 3}I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of

  2. Modelling of atmospheric dispersion in a complex medium and associated uncertainties

    International Nuclear Information System (INIS)

    Demael, Emmanuel

    2007-01-01

    This research thesis addresses the study of the digital modelling of atmospheric dispersions. It aimed at validating the Mercure-Saturne tool used with a RANS (Reynolds Averaged Navier-Stokes) approach within the frame of an impact study or of an accidental scenario on a nuclear site while taking buildings and ground relief into account, at comparing the Mercure-Saturne model with a more simple and less costly (in terms of computation time) Gaussian tool (the ADMS software, Atmospheric Dispersion Modelling System), and at quantifying uncertainties related to the use of the Mercure-Saturne model. The first part introduces theoretical elements of atmosphere physics and of the atmospheric dispersion in a boundary layer, presents the Gaussian model and the Mercure-Saturne tool and its associated RANS approach. The second part reports the comparison of the Mercure-Saturne model with conventional Gaussian plume models. The third part reports the study of the atmospheric flow and dispersion about the Bugey nuclear site, based on a study performed in a wind tunnel. The fourth part reports the same kind of study for the Flamanville site. The fifth part reports the use of different approaches for the study of uncertainties in the case of the Bugey site: application of the Morris method (a screening method), and of the Monte Carlo method (quantification of the uncertainty and of the sensitivity of each uncertainty source) [fr

  3. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations

    DEFF Research Database (Denmark)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.

    2018-01-01

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and conc...

  4. Advection models of longitudinal dispersion in rivers

    NARCIS (Netherlands)

    Kranenburg, C.

    1996-01-01

    A derivation is presented of a general cross-section averaged model of longitudinal dispersion, which is based on the notion of the advection of tracer particles. Particle displacement length and particle travel time are conceived as stochastic variables, and a joint probability density function is

  5. Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast

    Science.gov (United States)

    Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.

    2017-08-01

    Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.

  6. Atmospheric Dispersion Simulation for Level 3 PSA at Ulchin Nuclear Site using a PUFF model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Han, Seok-Jung; Jeong, Hyojoon; Jang, Seung-Cheol [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Air dispersion prediction is a key in the level 3 PSA to predict radiation releases into the environment for preparing an effective strategy for an evacuation as a basis of the emergency preparedness. To predict the atmospheric dispersion accurately, the specific conditions of the radiation release location should be considered. There are various level 3 PSA tools and MACSS2 is one of the widely used level 3 PSA tools in many countries including Korea. Due to the characteristics of environmental conditions in Korea, it should be demonstrated that environmental conditions of Korea nuclear sites can be appropriately illustrated by the tool. In Korea, because all nuclear power plants are located on coasts, sea and land breezes might be a significant factor. The objectives of this work is to simulate the atmospheric dispersion for Ulchin nuclear site in Korea using a PUFF model and to generate the data which can be used for the comparison with that of PLUME model. A nuclear site has own atmospheric dispersion characteristics. Especially in Korea, nuclear sites are located at coasts and it is expected that see and land breeze effects are relatively high. In this work, the atmospheric dispersion at Ulchin nuclear site was simulated to evaluate the effect of see and land breezes in four seasons. In the simulation results, it was observed that the wind direction change with time has a large effect on atmospheric dispersion. If the result of a PLUME model is more conservative than most severe case of a PUFF model, then the PLUME model could be used for Korea nuclear sites in terms of safety assessment.

  7. A discontinuous Galerkin approach for conservative modeling of fully nonlinear and weakly dispersive wave transformations

    Science.gov (United States)

    Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef

    2018-05-01

    This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.

  8. Modeling of Rayleigh wave dispersion in Iberia

    Directory of Open Access Journals (Sweden)

    José Badal

    2011-01-01

    Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.

  9. Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor

    Directory of Open Access Journals (Sweden)

    Stefanović Predrag Lj.

    2003-01-01

    Full Text Available A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder, and (d to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.

  10. Calibration of Discrete Random Walk (DRW) Model via G.I Taylor's Dispersion Theory

    Science.gov (United States)

    Javaherchi, Teymour; Aliseda, Alberto

    2012-11-01

    Prediction of particle dispersion in turbulent flows is still an important challenge with many applications to environmental, as well as industrial, fluid mechanics. Several models of dispersion have been developed to predict particle trajectories and their relative velocities, in combination with a RANS-based simulation of the background flow. The interaction of the particles with the velocity fluctuations at different turbulent scales represents a significant difficulty in generalizing the models to the wide range of flows where they are used. We focus our attention on the Discrete Random Walk (DRW) model applied to flow in a channel, particularly to the selection of eddies lifetimes as realizations of a Poisson distribution with a mean value proportional to κ / ɛ . We present a general method to determine the constant of this proportionality by matching the DRW model dispersion predictions for fluid element and particle dispersion to G.I Taylor's classical dispersion theory. This model parameter is critical to the magnitude of predicted dispersion. A case study of its influence on sedimentation of suspended particles in a tidal channel with an array of Marine Hydrokinetic (MHK) turbines highlights the dependency of results on this time scale parameter. Support from US DOE through the Northwest National Marine Renewable Energy Center, a UW-OSU partnership.

  11. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

    KAUST Repository

    Song, Xiaolei; Alkhalifah, Tariq Ali

    2012-01-01

    Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen's parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

  12. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

    KAUST Repository

    Song, Xiaolei

    2012-11-04

    Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

  13. Dispersion in the wake of a model industrial complex

    International Nuclear Information System (INIS)

    Hatcher, R.V.; Meroney, R.N.; Peterka, J.A.; Kothari, K.

    1977-06-01

    Models (1:200 scale) of the EOCR reactor building and surrounding silo and tank buildings at the Idaho National Engineering Laboratory, Idaho Falls, Idaho were put into the Meteorological Wind Tunnel at Colorado State University for the purpose of studying the effects of building wakes on dispersion. Flow visualization was done and concentration measurements were taken. The test program consisted of systematic releases from ground, building height, and stack height sources with no appreciable plume rise. The program was repeated for cases of moderately unstable, neutral, moderately stable, and stable conditions in the wind tunnel. Results show that the buildings significantly alter the dispersion patterns and the addition of any extra buildings or slight terrain change in the immediate vicinity of the building has a major effect. In the near wake region the effects of stratification were still evident causing slightly higher concentrations for stable conditions and slightly lower for unstable. Current dispersion models are discussed and evaluated that predict concentrations in the building wake region

  14. Ensemble dispersion forecasting - Part 2. Application and evaluation

    DEFF Research Database (Denmark)

    Galmarini, S.; Bianconi, R.; Addis, R.

    2004-01-01

    of the dispersion of ETEX release 1 and the model ensemble is compared with the monitoring data. The scope of the comparison is to estimate to what extent the ensemble analysis is an improvement with respect to the single model results and represents a superior analysis of the process evolution. (C) 2004 Elsevier...

  15. Numerical simulations of atmospheric dispersion of iodine-131 by different models.

    Directory of Open Access Journals (Sweden)

    Ádám Leelőssy

    Full Text Available Nowadays, several dispersion models are available to simulate the transport processes of air pollutants and toxic substances including radionuclides in the atmosphere. Reliability of atmospheric transport models has been demonstrated in several recent cases from local to global scale; however, very few actual emission data are available to evaluate model results in real-life cases. In this study, the atmospheric dispersion of 131I emitted to the atmosphere during an industrial process was simulated with different models, namely the WRF-Chem Eulerian online coupled model and the HYSPLIT and the RAPTOR Lagrangian models. Although only limited data of 131I detections has been available, the accuracy of modeled plume direction could be evaluated in complex late autumn weather situations. For the studied cases, the general reliability of models has been demonstrated. However, serious uncertainties arise related to low level inversions, above all in case of an emission event on 4 November 2011, when an important wind shear caused a significant difference between simulated and real transport directions. Results underline the importance of prudent interpretation of dispersion model results and the identification of weather conditions with a potential to cause large model errors.

  16. Physical modelling of flow and dispersion over complex terrain

    Science.gov (United States)

    Cermak, J. E.

    1984-09-01

    Atmospheric motion and dispersion over topography characterized by irregular (or regular) hill-valley or mountain-valley distributions are strongly dependent upon three general sets of variables. These are variables that describe topographic geometry, synoptic-scale winds and surface-air temperature distributions. In addition, pollutant concentration distributions also depend upon location and physical characteristics of the pollutant source. Overall fluid-flow complexity and variability from site to site have stimulated the development and use of physical modelling for determination of flow and dispersion in many wind-engineering applications. Models with length scales as small as 1:12,000 have been placed in boundary-layer wind tunnels to study flows in which forced convection by synoptic winds is of primary significance. Flows driven primarily by forces arising from temperature differences (gravitational or free convection) have been investigated by small-scale physical models placed in an isolated space (gravitational convection chamber). Similarity criteria and facilities for both forced and gravitational-convection flow studies are discussed. Forced-convection modelling is illustrated by application to dispersion of air pollutants by unstable flow near a paper mill in the state of Maryland and by stable flow over Point Arguello, California. Gravitational-convection modelling is demonstrated by a study of drainage flow and pollutant transport from a proposed mining operation in the Rocky Mountains of Colorado. Other studies in which field data are available for comparison with model data are reviewed.

  17. Characterisation of dispersion mechanisms in an urban catchment using a deterministic spatially distributed direct hydrograph travel time model

    Science.gov (United States)

    Rossel, F.; Gironas, J. A.

    2012-12-01

    a power law fashion. The kinematic dispersion is dominant until a threshold of 1 km2, where the geomorphologic dispersion becomes more important. Overall hillslopes are responsible for most of the dispersion, while the channels tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Finally, a simplification of the catchment structure in terms of the Horton-Strahler classification confirms the results above mentioned, and showed that geomorphologic dispersion is mostly due to high order elements. Overall the results obtained compared well to those hardly found in the literature, and validate the suitability of the U-McIUH model for simulating flow accumulation and hydrograph generation in urban catchments.

  18. Development of a FBR fuel pin bundle deformation analysis code 'BAMBOO' . Development of a dispersion model and its validation

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu; Asaga, Takeo

    2002-03-01

    Bundle Duct Interaction (BDI) is one of the life limiting factors of a FBR fuel subassembly. Under the BDI condition, the fuel pin dispersion would occur mainly by the deviation of the wire position due to the irradiation. In this study the effect of the dispersion on the bundle deformation was evaluated by using the BAMBOO code and following results were obtained. (1) A new contact analysis model was introduced in BAMBOO code. This model considers the contact condition at the axial position other than the nodal point of the beam element that composes the fuel pin. This improvement made it possible in the bundle deformation analysis to cause fuel pin dispersion due to the deviations of the wire position. (2) This model was validated with the results of the out-of-pile compression test with the wire deviation. The calculated pin-to-duct and pin-to-pin clearances with the dispersion model almost agreed with the test results. Therefore it was confirmed that the BAMBOO code reasonably predicts the bundle deformation with the dispersion. (3) In the dispersion bundle the pin-to-pin clearances widely scattered. And the minimum pin-to-duct clearance increased or decreased depending on the dispersion condition compared to the no-dispersion bundle. This result suggests the possibility that the considerable dispersion would affect the thermal integrity of the bundle. (author)

  19. ISC High Performance 2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, P^3MA, VHPC, WOPSSS

    CERN Document Server

    Mohr, Bernd; Kunkel, Julian M

    2016-01-01

    This book constitutes revised selected papers from 7 workshops that were held in conjunction with the ISC High Performance 2016 conference in Frankfurt, Germany, in June 2016. The 45 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They stem from the following workshops: Workshop on Exascale Multi/Many Core Computing Systems, E-MuCoCoS; Second International Workshop on Communication Architectures at Extreme Scale, ExaComm; HPC I/O in the Data Center Workshop, HPC-IODC; International Workshop on OpenPOWER for HPC, IWOPH; Workshop on the Application Performance on Intel Xeon Phi – Being Prepared for KNL and Beyond, IXPUG; Workshop on Performance and Scalability of Storage Systems, WOPSSS; and International Workshop on Performance Portable Programming Models for Accelerators, P3MA.

  20. Dispersion modeling of selected PAHs in urban air: A new approach combining dispersion model with GIS and passive air sampling

    Czech Academy of Sciences Publication Activity Database

    Sáňka, O.; Melymuk, L.; Čupr, P.; Dvorská, Alice; Klánová, J.

    2014-01-01

    Roč. 90, oct (2014), s. 88-95 ISSN 1352-2310 Institutional support: RVO:67179843 Keywords : passive air sampling * air dispersion modeling * GIS * polycyclic aromatic hydrocarbons * emission inventories Subject RIV: DI - Air Pollution ; Quality Impact factor: 3.281, year: 2014

  1. Dispersion, sorption and photodegradation of petroleum hydrocarbons in dispersant-seawater-sediment systems.

    Science.gov (United States)

    Zhao, Xiao; Liu, Wen; Fu, Jie; Cai, Zhengqing; O'Reilly, S E; Zhao, Dongye

    2016-08-15

    This work examined effects of model oil dispersants on dispersion, sorption and photodegradation of petroleum hydrocarbons in simulated marine systems. Three dispersants (Corexit 9500A, Corexit 9527A and SPC 1000) were used to prepare dispersed water accommodated oil (DWAO). While higher doses of dispersants dispersed more n-alkanes and PAHs, Corexit 9500A preferentially dispersed C11-C20 n-alkanes, whereas Corexit 9527A was more favorable for smaller alkanes (C10-C16), and SPC 1000 for C12-C28 n-alkanes. Sorption of petroleum hydrocarbons on sediment was proportional to TPH types/fractions in the DWAOs. Addition of 18mg/L of Corexit 9500A increased sediment uptake of 2-3 ring PAHs, while higher dispersant doses reduced the uptake, due to micelle-enhanced solubilization effects. Both dispersed n-alkanes and PAHs were susceptible to photodegradation under simulated sunlight. For PAHs, both photodegradation and photo-facilitated alkylation were concurrently taking place. The information can facilitate sounder assessment of fate and distribution of dispersed oil hydrocarbons in marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hydrodynamic dispersion characteristics of lateral inflow into a river tested by a laboratory model

    Directory of Open Access Journals (Sweden)

    P. Y. Chou

    2009-02-01

    Full Text Available Groundwater and river-water have a different composition and interact in and below the riverbed. The riverbed-aquifer flux interactions have received growing interest because of their role in the exchange and transformation of nutrients and pollutants between rivers and the aquifer. In this research our main purpose is to identify the physical processes and characteristics needed for a numerical transport model, which includes the unsaturated recharge zone, the aquifer and the riverbed. In order to investigate such lateral groundwater inflow process, a laboratory J-shaped column experiment was designed. This study determined the transport parameters of the J-shaped column by fitting an analytical solution of the convective-dispersion equation for every flux on individual segments to the observed breakthrough curves of the resident concentration, and by inverse modelling for every flux simultaneously over the entire flow domain. The obtained transport-parameter relation was tested by numerical simulation using HYDRUS 2-D/3-D.

    Four steady-state flux conditions (i.e. 0.5 cm hr−1, 1 cm hr−1, 1.5 cm hr−1 and 2 cm hr−1 were applied, transport parameters including pore water velocity and dispersivity were determined for both unsaturated and saturated sections along the column. Results showed that under saturated conditions the dispersivity was fairly constant and independent of the flux. In contrast, dispersivity under unsaturated conditions was flux dependent and increased at lower flux. For our porous medium the dispersion coefficient related best to the quotient of the pore water velocity divided by the water content. A simulation model of riverbed-aquifer flux interaction should take this into account.

  3. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing

    2016-12-08

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.

  4. radionuclides modelling dispersion of in the atmosphere for continuous discharges and accidental

    International Nuclear Information System (INIS)

    Teyeb, Malika

    2011-01-01

    The study of the dispersion of radionuclides in the atmosphere is the subject of a physical and numerical modeling of the phenomenon of dispersion. This work aims to study the atmospheric dispersion of accidental releases and continuous, from the possible establishment of a nuclear pressurized water reactor in the potential in Bizerte and Skhira.

  5. Essays on pricing dynamics, price dispersion, and nested logit modelling

    Science.gov (United States)

    Verlinda, Jeremy Alan

    The body of this dissertation comprises three standalone essays, presented in three respective chapters. Chapter One explores the possibility that local market power contributes to the asymmetric relationship observed between wholesale costs and retail prices in gasoline markets. I exploit an original data set of weekly gas station prices in Southern California from September 2002 to May 2003, and take advantage of highly detailed station and local market-level characteristics to determine the extent to which spatial differentiation influences price-response asymmetry. I find that brand identity, proximity to rival stations, bundling and advertising, operation type, and local market features and demographics each influence a station's predicted asymmetric relationship between prices and wholesale costs. Chapter Two extends the existing literature on the effect of market structure on price dispersion in airline fares by modeling the effect at the disaggregate ticket level. Whereas past studies rely on aggregate measures of price dispersion such as the Gini coefficient or the standard deviation of fares, this paper estimates the entire empirical distribution of airline fares and documents how the shape of the distribution is determined by market structure. Specifically, I find that monopoly markets favor a wider distribution of fares with more mass in the tails while duopoly and competitive markets exhibit a tighter fare distribution. These findings indicate that the dispersion of airline fares may result from the efforts of airlines to practice second-degree price discrimination. Chapter Three adopts a Bayesian approach to the problem of tree structure specification in nested logit modelling, which requires a heavy computational burden in calculating marginal likelihoods. I compare two different techniques for estimating marginal likelihoods: (1) the Laplace approximation, and (2) reversible jump MCMC. I apply the techniques to both a simulated and a travel mode

  6. Removal of Disperse Blue 56 and Disperse Red 135 dyes from aqueous dispersions by modified montmorillonite nanoclay

    Directory of Open Access Journals (Sweden)

    Ahmadishoar Javad

    2017-01-01

    Full Text Available In this study modified montmorillonite was used as an adsorbent for the removal of two selected disperse dyes i.e., Disperse Blue 56 (DB and Disperse Red 135 (DR from dye dispersions. The adsorption equilibrium data of dyes adsorption were investigated by using Nernst, Freundlich and Langmuir isotherm models. The adsorption kinetics was analyzed by using different models including pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion model. The Freundlich isotherm was found to be the most appropriate model for describing the sorption of the dyes on modified nanoclay. The best fit to the experimental results was obtained by using the pseudo-second-order kinetic equation, which satisfactorily described the process of dye adsorption. Although different kinetic models may control the rate of the adsorption process, the results indicated that the main rate limiting step was the intraparticle diffusion. The results showed that the proposed modified montmorillonite could be used as an effective adsorbent for the removal of disperse dyes even from highly concentrated dispersions.

  7. Ensemble atmospheric dispersion modeling for emergency response consequence assessments

    International Nuclear Information System (INIS)

    Addis, R.P.; Buckley, R.L.

    2003-01-01

    Full text: Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models themselves, as well as differences in the way these models treat the release source term, all may result in differences in the simulated plumes. This talk will address the U.S. participation in the European ENSEMBLE project, and present a perspective an how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave. Meteorological forecasts generated by numerical models from national and multinational meteorological agencies provide individual realizations of three-dimensional, time dependent atmospheric wind fields. These wind fields may be used to drive atmospheric dispersion (transport and diffusion) models, or they may be used to initiate other, finer resolution meteorological models, which in turn drive dispersion models. Many modeling agencies now utilize ensemble-modeling techniques to determine how sensitive the prognostic fields are to minor perturbations in the model parameters. However, the European Union programs RTMOD and ENSEMBLE are the first projects to utilize a WEB based ensemble approach to interpret the output from atmospheric dispersion models. The ensembles produced are different from those generated by meteorological forecasting centers in that they are ensembles of dispersion model outputs from many different atmospheric transport and diffusion models utilizing prognostic atmospheric fields from several different forecast centers. As such, they enable a decision-maker to consider the uncertainty in the plume transport and growth as a result of the differences in the forecast wind fields as well as the differences in the

  8. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  9. Dispersive dielectric and conductive effects in 2D resistor-capacitor networks.

    Science.gov (United States)

    Hamou, R F; Macdonald, J R; Tuncer, E

    2009-01-14

    How to predict and better understand the effective properties of disordered material mixtures has been a long-standing problem in different research fields, especially in condensed matter physics. In order to address this subject and achieve a better understanding of the frequency-dependent properties of these systems, a large 2D L × L square structure of resistors and capacitors was used to calculate the immittance response of a network formed by random filling of binary conductor/insulator phases with 1000 Ω resistors and 10 nF capacitors. The effects of percolating clusters on the immittance response were studied statistically through the generation of 10 000 different random network samples at the percolation threshold. The scattering of the imaginary part of the immittance near the dc limit shows a clear separation between the responses of percolating and non-percolating samples, with the gap between their distributions dependent on both network size and applied frequency. These results could be used to monitor connectivity in composite materials. The effects of the content and structure of the percolating path on the nature of the observed dispersion were investigated, with special attention paid to the geometrical fractal concept of the backbone and its influence on the behavior of relaxation-time distributions. For three different resistor-capacitor proportions, the appropriateness of many fitting models was investigated for modeling and analyzing individual resistor-capacitor network dispersed frequency responses using complex-nonlinear-least-squares fitting. Several remarkable new features were identified, including a useful duality relationship and the need for composite fitting models rather than either a simple power law or a single Davidson-Cole one. Good fits of data for fully percolating random networks required two dispersive fitting models in parallel or series, with a cutoff at short times of the distribution of relaxation times of one of

  10. 2.3. Global-scale atmospheric dispersion of microorganisms

    Science.gov (United States)

    Griffin, Dale W.; Gonzalez-Martin, Cristina; Hoose, C.; Smith, D.J.; Delort, Anne-Marie; Amato, Pierre

    2018-01-01

    This chapter addresses long-range dispersion and the survival of microorganisms across a wide range of altitudes in Earth's atmosphere. Topics include mechanisms of dispersion, survivability of microorganisms known to be associated with long-range transport, natural and artificial sources of bioaerosols, residence time estimation through the use of proxy aerosols, transport and emission models, and monitoring assays (both culture and molecular based). We conclude with a discussion of the known limits for Earth's biosphere boundary, relating aerobiology studies to planetary exploration given the large degree of overlapping requirements for in situ studies (including low biomass life detection and contamination control).

  11. Comparison of the local-scale atmospheric dispersion model Cedrat with 85KR measurements

    International Nuclear Information System (INIS)

    Rennesson, M.; Devin, P.; Maro, D.; Fitamant, M.L.; Bouland, P.

    2004-01-01

    An accurate model of atmospheric dispersion of radionuclides over the complex terrain of the La Hague reprocessing plant (North Cotentin, France) has been developed by COGEMA, in partnership with Paris VI University. This model, called CEDRAT 1.0.1 (operational since October 2002), takes into account areas typically outside the validity limits of Gaussian models: relief and building influence, short-distance (beyond 500 m from the release point) and stable atmospheric conditions. The modelling tool is based on an original method: a 2D-meshed model for flow resolution at permanent rate in the prevailing wind direction, and a 3D description of the dispersion phenomena, taking into account wet and dry deposits, at permanent or transitory rate. This leads to an effective compromise between rapidity (45 min on a 6000 nodes grid, with a standard PC), robustness and accuracy, coupled with a user-friendly interface. Primarily the validation process consisted of a comparison with the 3D complex dispersion reference model MERCURE, developed by EDF. Then, MERCURE and CEDRAT results were compared on real release scenario basis, for which actual meteorological conditions and tracer data collected at monitoring stations around the site were known. To enlarge this validation process, a second level of comparison was made in collaboration with a IRSN Cherbourg team, through different field experiments, which provided both ground and elevated level measurements (collected with a captive balloon), for different stability classes of the atmosphere. The plume tracer is krypton 85, an inert gas released from a height of 100 m. Thus, the aim of this paper is to present the original method to describe short distance dispersion over complex terrain and its validation enrichment for stability conditions and areas not yet observed, through wind and cross-wind Atmospheric Transfer Coefficients comparisons, at both ground and elevated levels. (author)

  12. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  13. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  14. Evaluation of a mesoscale dispersion modelling tool during the CAPITOUL experiment

    Science.gov (United States)

    Lac, C.; Bonnardot, F.; Connan, O.; Camail, C.; Maro, D.; Hebert, D.; Rozet, M.; Pergaud, J.

    2008-12-01

    Atmospheric transport and dispersion were investigated during the CAPITOUL campaign using measurements of sulphur hexafluoride (SF6) tracer. Six releases of SF6 tracer were performed (March 9-11 and July 1-3, 2004) in the same suburban area of Toulouse conurbation, during the Intensive Observing Periods (IOP) of CAPITOUL. Concentration data were collected both at ground-level along axes perpendicular to the wind direction (at distances ranging between 280 m and 5000 m from the release point), and above the ground at 100 m and 200 m height using aircraft flights. Meteorological conditions were all associated with daytime anticyclonic conditions with weak winds and convective clear and cloudy boundary layers. A meso-scale dispersion modelling system, PERLE, developed at Meteo-France for environmental emergencies in case of atmospheric accidental release, was evaluated in terms of meteorology and dispersion, for the different tracer experiments, in its operational configuration. PERLE is based on the combination of the non-hydrostatic meso-scale MESO-NH model, running at 2 km horizontal resolution, and the Lagrangian particle model SPRAY. The statistical meteorological evaluation includes two sets of simulations with initialisation from ECMWF or ALADIN. The meteorological day-to-day error statistics show fairly good Meso-NH predictions, in terms of wind speed, wind direction and near-surface temperature. A strong sensitivity to initial fields concerns the surface fluxes, crucial for dispersion, with an excessive drying of the convective boundary layer with ALADIN initial fields, leading to an overprediction of surface sensible heat fluxes. A parameterization of dry and shallow convection according to the Eddy-Diffusivity-Mass-Flux (EDMF) approach (Pergaud et al. 2008) allows an efficient mixing in the Convective Boundary Layer (CBL) and improves significantly the wind fields. A statistical evaluation of the dispersion prediction was then performed and shows a

  15. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    Science.gov (United States)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  16. Dispersion Relations for Electroweak Observables in Composite Higgs Models

    CERN Document Server

    Contino, Roberto

    2015-12-14

    We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.

  17. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Science.gov (United States)

    Yilmaz, Hayriye; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2015-01-01

    The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs) in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807), with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size) most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs. PMID:28347035

  18. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Directory of Open Access Journals (Sweden)

    Hayriye Yilmaz

    2015-05-01

    Full Text Available The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807, with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs.

  19. Effect of electronic correlations on the quasiparticle dispersion of USb2

    International Nuclear Information System (INIS)

    Yang Xiaodong; Riseborough, Peter S; Durakiewicz, Tomasz; Oppeneer, P M; Elgazzar, S

    2010-01-01

    Angle resolved photoemission experiments have been performed on USb 2 , and very narrow quasiparticle peaks have been observed in a band which LSDA predicts to osculate the Fermi-energy. The observed band is found to be depressed by 17 meV below the Fermi-energy, furthermore, the inferred quasiparticle dispersion relation for this band exhibits a kink at an energy of about 23 meV below the Fermi-energy. The kink is not found in LSDA calculations and, therefore, is attributable to a change in the quasiparticle mass renormalization by a factor of approximately 2. The existence of a kink in the quasiparticle dispersion relation of a band which does not cross the Fermi-energy is unprecedented. The origin of the observed depression of the band, its quasi-particle mass enhancement, and the characteristic energy are discussed on the basis of a theoretical model.

  20. Modeling atmospheric dispersion for reactor accident consequence evaluation

    International Nuclear Information System (INIS)

    Alpert, D.J.; Gudiksen, P.H.; Woodard, K.

    1982-01-01

    Atmospheric dispersion models are a central part of computer codes for the evaluation of potential reactor accident consequences. A variety of ways of treating to varying degrees the many physical processes that can have an impact on the predicted consequences exists. The currently available models are reviewed and their capabilities and limitations, as applied to reactor accident consequence analyses, are discussed

  1. Dispersion model computations of urban air pollution in Espoo, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Valkonen, E.; Haerkoenen, J.; Kukkonen, J.; Rantakrans, E.; Jalkanen, L.

    1997-12-31

    This report presents the numerical results of air quality studies of the city of Espoo in southern Finland. This city is one of the four cities in the Helsinki metropolitan area, having a total population of 850 000. A thorough emission inventory was made of both mobile and stationary sources in the Helsinki metropolitan area. The atmospheric dispersion was evaluated using an urban dispersion modelling system, including a Gaussian multiple-source plume model and a meteorological pre-processing model. The hourly time series of CO, NO{sub 2} and SO{sub 2} concentrations were predicted, using the emissions and meteorological data for the year 1990. The predicted results show a clear decrease in the yearly mean concentrations from southeast to northwest. This is due in part to the denser traffic in the southern parts of Espoo, and in part to pollution from the neighbouring cities of Helsinki and Vantaa, located east of Espoo. The statistical concentration parameters found for Espoo were lower than the old national air quality guidelines (1984); however, some occurrences of above-threshold values were found for NO{sub 2} in terms of the new guidelines (1996). The contribution of traffic to the total concentrations varies spatially from 30 to 90 % for NO{sub 2} from 1 to 65 % for SO{sub 2} while for CO it is nearly 100 %. The concentrations database will be further utilised to analyse the influence of urban air pollution on the health of children attending selected day nurseries in Espoo. The results of this study can also be applied in traffic and city planning. In future work the results will also be compared with data from the urban measurement network of the Helsinki Metropolitan Area Council. (orig.) 19 refs.

  2. Fuel Performance Modeling of U-Mo Dispersion Fuel: The thermal conductivity of the interaction layers of the irradiated U-Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mistarhi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    U-Mo/Al dispersion fuel performed well at a low burn-up. However, higher burn-up and higher fission rate irradiation testing showed enhanced fuel meat swelling which was caused by high interaction layer growth and pore formation. The performance of the dispersion type fuel in the irradiation and un-irradiation environment is very important. During the fabrication of the dispersion type fuel an Interaction Layer (IL) is formed due to the inter-diffusion between the U-Mo fuel particles and the Al matrix which is an intermetallic compound (U,Mo)Alx. During irradiation, the IL becomes amorphous causing a further decrease in the thermal conductivity and an increase in the centerline temperature of the fuel meat. Several analytical models and numerical methods were developed to study the performance of the unirradiated U-Mo/Al dispersion fuel. Two analytical models were developed to study the performance of the irradiated U-Mo/Al dispersion fuel. In these models, the thermal conductivity of the IL was assumed to be constant. The properties of the irradiated U-Mo dispersion fuel have been investigated recently by Huber et al. The objective of this study is to develop a correlation for IL thermal conductivity during irradiation as a function of the temperature and fission density from the experimentally measured thermal conductivity of the irradiated U-Mo/Al dispersion fuel. The thermal conductivity of IL during irradiation was calculated from the experimentally measured data and a correlation was developed from the thermal conductivity of IL as a function of T and fission density.

  3. A model for dispersion of contaminants in the subway environment

    Energy Technology Data Exchange (ETDEWEB)

    Coke, L. R.; Sanchez, J. G.; Policastro, A. J.

    2000-05-03

    Although subway ventilation has been studied extensively, very little has been published on dispersion of contaminants in the subway environment. This paper presents a model that predicts dispersion of contaminants in a complex subway system. It accounts for the combined transient effects of train motion, station airflows, train car air exchange rates, and source release properties. Results are presented for a range of typical subway scenarios. The effects of train piston action and train car air exchange are discussed. The model could also be applied to analyze the environmental impact of hazardous materials releases such as chemical and biological agents.

  4. A set of rapid-response models for pollutant dispersion assessments in southern Spain coastal waters

    International Nuclear Information System (INIS)

    Perianez, R.; Caravaca, F.

    2010-01-01

    Three rapid-response Lagrangian particle-tracking dispersion models have been developed for southern Spain coastal waters. The three domains cover the Gulf of Cadiz (Atlantic Ocean), the Alboran Sea (Mediterranean), and the Strait of Gibraltar with higher spatial resolution. The models are based on different hydrodynamic submodels, which are run in advance. Tides are calculated using a 2D barotropic model in the three cases. Models used to obtain the residual circulation depend on the physical oceanography of each region. Thus, two-layer models are applied to Gibraltar Strait and Alboran Sea and a 3D baroclinic model is used in the Gulf of Cadiz. Results from these models have been compared with observations to validate them and are then used by the particle-tracking models to calculate dispersion. Chemical, radioactive and oil spills may be simulated, incorporating specific processes for each kind of pollutant. Several application examples are provided.

  5. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the ‘most likely’ di...

  6. Variational Boussinesq model for strongly nonlinear dispersive waves

    NARCIS (Netherlands)

    Lawrence, C.; Adytia, D.; van Groesen, E.

    2018-01-01

    For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be

  7. Long-range transmission of pollutants simulated by a two-dimensional pseudospectral dispersion model

    International Nuclear Information System (INIS)

    Prahm, L.P.; Christensen, O.

    1977-01-01

    The pseudospectral dispersion model (Christensen and Prahm, 1976) is adapted for simulation of the long-range transmission of sulphur pollutants in the European region, covering an area of about 4000 km x 4000 km. Regional ''background'' concentrations of sulphur oxides are found to be highly dependent on distant sources and to correlate poorly with local source strength during the considered three- and four-day episodes. The simulation is based on emission data, given in squares of about 50 km x 50 km and on synoptic wind fields derived from observed wind velocities of the 850 mb level and the surface level. The two-dimensional model includes a constant vertical mixing depth. Appropriate values for the deposition and the transformation rates of SO 2 and SO/sup 4 are used. The concentration of pollutants computed from the two-dimensional pseudospectral dispersion model reflects the variable meteorological conditions. Computed concentrations are compared with measurements, giving spatial correlations between 0.4 and 0.8 for more than 400 ground-based 24 h mean values, and a spatial correlation of 0.9 for eight aircraft samples averaged over approx.30 min. A discussion of the influence of different sources of error in the model simulation is given. The high numerical accuracy of the pseudospectral model is combined with a modest consumption of CPU computer time. This study is the first application of the pseudospectral dispersion model which compares computed concentrations with measured field data. The model has possible applications as a tool for assessment of the impact of both national and international emission regulation strategies

  8. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  9. The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models

    Science.gov (United States)

    Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Murphy, B. W.; Seitzer, P. O.; Callanan, P. J.; Rutten, R. G. M.; Charles, P. A.

    1997-05-01

    We report a new measurement of the velocity dispersion profile within 1' (3 pc) of the center of the globular cluster M15 (NGC 7078), using long-slit spectra from the 4.2 m William Herschel Telescope at La Palma Observatory. We obtained spatially resolved spectra for a total of 23 slit positions during two observing runs. During each run, a set of parallel slit positions was used to map out the central region of the cluster; the position angle used during the second run was orthogonal to that used for the first. The spectra are centered in wavelength near the Ca II infrared triplet at 8650 Å, with a spectral range of about 450 Å. We determined radial velocities by cross-correlation techniques for 131 cluster members. A total of 32 stars were observed more than once. Internal and external comparisons indicate a velocity accuracy of about 4 km s-1. The velocity dispersion profile rises from about σ = 7.2 +/- 1.4 km s-1 near 1' from the center of the cluster to σ = 13.9 +/- 1.8 km s-1 at 20". Inside of 20", the dispersion remains approximately constant at about 10.2 +/- 1.4 km s-1 with no evidence for a sharp rise near the center. This last result stands in contrast with that of Peterson, Seitzer, & Cudworth who found a central velocity dispersion of 25 +/- 7 km s-1, based on a line-broadening measurement. Our velocity dispersion profile is in good agreement with those determined in the recent studies of Gebhardt et al. and Dubath & Meylan. We have developed a new set of Fokker-Planck models and have fitted these to the surface brightness and velocity dispersion profiles of M15. We also use the two measured millisecond pulsar accelerations as constraints. The best-fitting model has a mass function slope of x = 0.9 (where 1.35 is the slope of the Salpeter mass function) and a total mass of 4.9 × 105 M⊙. This model contains approximately 104 neutron stars (3% of the total mass), the majority of which lie within 6" (0.2 pc) of the cluster center. Since the

  10. DFT study of benzyl alcohol/TiO2 interfacial surface complex: reaction pathway and mechanism of visible light absorption.

    Science.gov (United States)

    Zhao, Lei; Gu, Feng Long; Kim, Minjae; Miao, Maosheng; Zhang, Rui-Qin

    2017-09-24

    We propose a new pathway for the adsorption of benzyl alcohol on the surface of TiO 2 and the formation of interfacial surface complex (ISC). The reaction free energies and reaction kinetics were thoroughly investigated by density functional calculations. The TiO 2 surfaces were modeled by clusters consisting of 4 Ti atoms and 18 O atoms passivated by H, OH group and H 2 O molecules. Compared with solid-state calculations utilizing the periodicity of the materials, such cluster modeling allows inclusion of the high-order correlation effects that seem to be essential for the adsorption of organic molecules onto solid surfaces. The effects of both acidity and solvation are included in our calculations, which demonstrate that the new pathway is competitive with a previous pathway. The electronic structure calculations based on the relaxed ISC structures reveal that the chemisorption of benzyl alcohol on the TiO 2 surface greatly alters the nature of the frontier molecular orbitals. The resulted reduced energy gap in ISC matches the energy of visible light, showing how the adsorption of benzyl alcohol sensitizes the TiO 2 surface. Graphical Abstract The chemisorption of benzyl alcohol on TiO 2 surface greatly alters the nature of the frontier molecular orbitals and the formed interfacial surface complex can be sensitized by visible light.

  11. Mechanistic model for dispersion coefficients in bubble column

    CSIR Research Space (South Africa)

    Skosana, PJ

    2015-05-01

    Full Text Available predicts axial and radial dispersion coefficients that are of the same order of magnitude as the reported data. Whereas the model is based on a description of the underlying physical phenomena, its validity and extrapolation is expected to be more reliable...

  12. Two-patch population models with adaptive dispersal: the effects of varying dispersal speeds

    Czech Academy of Sciences Publication Activity Database

    Cressman, R.; Křivan, Vlastimil

    2013-01-01

    Roč. 67, č. 2 (2013), s. 329-358 ISSN 0303-6812 Grant - others:The University of Tennessee(US) EF-0832858; National Science Foundation(US) DMS 0931642 Institutional support: RVO:60077344 Keywords : competition * dispersal * evolution Subject RIV: EH - Ecology, Behaviour Impact factor: 2.388, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs00285-012-0548-3.pdf

  13. Implementation of meso-scale radioactive dispersion model for GPU

    Energy Technology Data Exchange (ETDEWEB)

    Sunarko [National Nuclear Energy Agency of Indonesia (BATAN), Jakarta (Indonesia). Nuclear Energy Assessment Center; Suud, Zaki [Bandung Institute of Technology (ITB), Bandung (Indonesia). Physics Dept.

    2017-05-15

    Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.

  14. Evaluation of three atmospheric dispersion models using tracer release experiment data

    International Nuclear Information System (INIS)

    Daoo, V.J.; Oza, R.B.; Pandit, G.G.; Sadasivan, S.; Venkat Raj, V.

    2004-01-01

    Performance of three atmospheric dispersion models viz: (1) Gaussian Plume Model (GPM), (2) Equi-Distance PUFF Model (EDPUFFM) and (3) Particle Trajectory Model (PTM) is evaluated using field data collected from a tracer (SF 6 ) release experiment. The experiment was conducted within the campus of the Bhabha Atomic Research Centre (BARC), located at Trombay, Mumbai, India. The three models used are currently in operation at the BARC. The first one is a standard, well-documented empirical model while the other two models have been developed at the Bhabha Atomic Research Centre. The PTM is a numerical model while the EDPUFFM is a hybrid model combining both the numerical and analytical techniques. The procedure for evaluation is as per the recommendations of 1980 AMS (American Meteorological Society) workshop on atmospheric dispersion models performance evaluation. In addition, linear regression analysis has also been carried out. The regression analysis reveals that on an average, the EDPUFFM and the GPM predictions are higher by a factor of about 1.5 while the PTM predictions are lower by a factor of about 4. Comparison of various performance measures reveals that the performance of the EDPUFFM is marginally better than that of the GPM while the PTM performance is comparatively poor. The uncertainty factors obtained in this study, especially for higher concentration range ( > 100 ppt) are similar to those obtained in other validation study carried out elsewhere to validate the GPM predictions. However, for lower concentration range and for the conditions after the source is switched off, all the three models perform poorly in predicting the concentration. (author)

  15. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  16. User assessment of smoke-dispersion models for wildland biomass burning.

    Science.gov (United States)

    Steve Breyfogle; Sue A. Ferguson

    1996-01-01

    Several smoke-dispersion models, which currently are available for modeling smoke from biomass burns, were evaluated for ease of use, availability of input data, and output data format. The input and output components of all models are listed, and differences in model physics are discussed. Each model was installed and run on a personal computer with a simple-case...

  17. Dispersive infrared spectroscopy measurements of atmospheric CO2 using a Fabry–Pérot interferometer sensor

    International Nuclear Information System (INIS)

    Chan, K.L.; Ning, Z.; Westerdahl, D.; Wong, K.C.; Sun, Y.W.; Hartl, A.; Wenig, M.O.

    2014-01-01

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO 2 ) using a new scanning Fabry–Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3900 nm to 5220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO 2 absorption band (∼ 4280 nm) and sampling resolution of 20 nm. The CO 2 concentration is determined from the measured optical absorption spectra by fitting it to the CO 2 reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H 2 O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO 2 measurement for 1 minute averaged data is about ± 2.5 ppmv, and down to ± 0.8 ppmv for 10 minute averaged data. A field test of atmospheric CO 2 measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO 2 analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO 2 measurement featuring high accuracy, correction of non-linear absorption and interference of water vapor. - Highlights: • Dispersive infrared

  18. Development and application of dispersive soft ferrite models for time-domain simulation

    International Nuclear Information System (INIS)

    DeFord, J.F.; Kamin, G.; Craig, G.D.; Walling, L.

    1992-01-01

    Ferrite has a variety of applications in accelerator components, and the capability to model this magnetic material in the time domain is an important adjunct to currently available accelerator modeling tool. We describe in this report a material model we have developed for the magnetic characteristics of PE11BL, the ferrite found in the ETA-II (Experimental Test Accelerator-II) induction module. This model, which includes the important magnetic dispersion effects found in most soft ferrites, has been implemented in 1-D and 2-D finite-difference time-domain (FDTD) electromagnetic simulators, and comparisons with analytic and experimental results are presented

  19. Real-time dispersion calculation using the Lagrange model LASAT

    International Nuclear Information System (INIS)

    Janicke, L.

    1987-01-01

    The LASAT (Lagrange Simulation of Aerosol Transport) dispersion model demonstrates pollutant transport in the atmosphere by simulating the paths of representative random samples of pollutant particles on the computer as natural as possible. The author demonstrates the generated particle paths and refers to literature for details of the model algorithm. (DG) [de

  20. CRUNCH, Dispersion Model for Continuous Dense Vapour Release in Atmosphere

    International Nuclear Information System (INIS)

    Jagger, S.F.

    1987-01-01

    ambient atmospheric turbulence, and to follow the dispersion processes down to low concentrations, especially important for toxic gases, a virtual source passive dispersion model is fitted to the slumping plume. 2 - Restrictions on the complexity of the problem: Acceleration of the plume to the wind velocity is not considered, since an analysis of inertial effects has shown that the time for which these are important is short, compared to the dispersion time. Additionally, wind shear effects on cloud structure are not included; for a puff release producing a cloud of finite extent, this may not be valid but for a plume, extending to large downwind distances, they can be argued to have only a minor influence at the advancing front

  1. RANS modeling of scalar dispersion from localized sources within a simplified urban-area model

    Science.gov (United States)

    Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca

    2011-11-01

    The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.

  2. Modelling and tracer studies of atmospheric dispersion and deposition in regions of complex topography

    International Nuclear Information System (INIS)

    Norden, C.E.

    1981-11-01

    An indium tracer aerosol generating apparatus based on an alcohol/oxygen burner, and an analytical procedure by which filter samples containing tracer material could be analysed quantitatively by means of neutron activation analysis, were developed for use in atmospheric dispersion and deposition studies. A number of series of atmospheric dispersion experiments were conducted in the Richards Bay and Koeberg- Cape Town areas. The results are given, comparing the airbone tracer concentrations measured at ground level with values predicted by means of a numerical model, utilising two to three schemes, varying in sophistication, for calculating the dispersion coefficients. Recommendations are given regarding a dispersion model and dispersion coefficients for regular use in the Koeberg area, and ways for estimating plume trajectories

  3. Mathematical modeling of pigment dispersion taking into account the full agglomerate particle size distribution

    DEFF Research Database (Denmark)

    Kiil, Søren

    2017-01-01

    The purpose of this work is to develop a mathematical model that can quantify the dispersion of pigments, with a focus on the mechanical breakage of pigment agglomerates. The underlying physical mechanism was assumed to be surface erosion of spherical pigment agglomerates. The full agglomerate pa.......g., in the development of novel dispersion principles and for analysis of dispersion failures. The general applicability of the model, beyond the three pigments considered, needs to be confirmed....

  4. mathematical modelling of atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Mohamed, M.E.

    2002-01-01

    the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established

  5. Randomly dispersed particle fuel model in the PSG Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Leppaenen, J.

    2007-01-01

    High-temperature gas-cooled reactor fuels are composed of thousands of microscopic fuel particles, randomly dispersed in a graphite matrix. The modelling of such geometry is complicated, especially using continuous-energy Monte Carlo codes, which are unable to apply any deterministic corrections in the calculation. This paper presents the geometry routine developed for modelling randomly dispersed particle fuels using the PSG Monte Carlo reactor physics code. The model is based on the delta-tracking method, and it takes into account the spatial self-shielding effects and the random dispersion of the fuel particles. The calculation routine is validated by comparing the results to reference MCNP4C calculations using uranium and plutonium based fuels. (authors)

  6. Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples

    Energy Technology Data Exchange (ETDEWEB)

    Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.

    2003-07-01

    This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two

  7. Study on the irradiation swelling of U3Si2-Al dispersion fuel

    International Nuclear Information System (INIS)

    Xing Zhonghu; Ying Shihao

    2001-01-01

    The dominant modeling mechanisms on irradiation swelling of U 3 Si 2 -Al dispersion fuel are introduced. The core of dispersion fuel is looked to as micro-fuel elements of continuous matrix. The formation processes of gas bubbles in the fuel phase are described through the behavior mechanisms of fission gases. The swelling in the fuel phase causes the interaction between fuel particles and metal matrix, and the metal matrix can restrain the irradiation swelling of fuel particles. The developed code can predict irradiation-swelling values according to the parameters of fuel elements and irradiation conditions, and the predicted values are in agreement with the measured results

  8. Modeling non-Fickian dispersion by use of the velocity PDF on the pore scale

    Science.gov (United States)

    Kooshapur, Sheema; Manhart, Michael

    2015-04-01

    For obtaining a description of reactive flows in porous media, apart from the geometrical complications of resolving the velocities and scalar values, one has to deal with the additional reactive term in the transport equation. An accurate description of the interface of the reacting fluids - which is strongly influenced by dispersion- is essential for resolving this term. In REV-based simulations the reactive term needs to be modeled taking sub-REV fluctuations and possibly non-Fickian dispersion into account. Non-Fickian dispersion has been observed in strongly heterogeneous domains and in early phases of transport. A fully resolved solution of the Navier-Stokes and transport equations which yields a detailed description of the flow properties, dispersion, interfaces of fluids, etc. however, is not practical for domains containing more than a few thousand grains, due to the huge computational effort required. Through Probability Density Function (PDF) based methods, the velocity distribution in the pore space can facilitate the understanding and modelling of non-Fickian dispersion [1,2]. Our aim is to model the transition between non-Fickian and Fickian dispersion in a random sphere pack within the framework of a PDF based transport model proposed by Meyer and Tchelepi [1,3]. They proposed a stochastic transport model where velocity components of tracer particles are represented by a continuous Markovian stochastic process. In addition to [3], we consider the effects of pore scale diffusion and formulate a different stochastic equation for the increments in velocity space from first principles. To assess the terms in this equation, we performed Direct Numerical Simulations (DNS) for solving the Navier-Stokes equation on a random sphere pack. We extracted the PDFs and statistical moments (up to the 4th moment) of the stream-wise velocity, u, and first and second order velocity derivatives both independent and conditioned on velocity. By using this data and

  9. Exact Dispersion Study of an Asymmetric Thin Planar Slab Dielectric Waveguide without Computing {d^2}β/{d{k^2}} Numerically

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Palodiya, Vikram

    2017-08-01

    Waveguide dispersion can be tailored but not the material dispersion. Hence, the total dispersion can be shifted at any desired band by adjusting the waveguide dispersion. Waveguide dispersion is proportional to {d^2}β/d{k^2} and need to be computed numerically. In this paper, we have tried to compute analytical expression for {d^2}β/d{k^2} in terms of {d^2}β/d{k^2} accurately with numerical technique, ≈ 10^{-5} decimal point. This constraint sometimes generates the error in calculation of waveguide dispersion. To formulate the problem we will use the graphical method. Our study reveals that we can compute the waveguide dispersion enough accurately for various modes by knowing - β only.

  10. Open Burn/Open Detonation Dispersion Model (OBODM) User's Guide. Volume I. User's Instructions

    National Research Council Canada - National Science Library

    Bjorklund, Jay

    1998-01-01

    ...) of obsolete munitions and solid propellants. OBODM uses loud/plume rise, dispersion, and deposition algorithms taken from existing models for instantaneous and quasi-continuous sources to predict the downwind transport and dispersion...

  11. Modelling the observed vertical transport of {sup 7}Be in specific soils with advection dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)

    2014-07-01

    {sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained

  12. Catchment Dispersion Mechanisms in an Urban Context

    Science.gov (United States)

    Gironas, J. A.; Mejia, A.; Rossel, F.; Rinaldo, A.; Rodriguez, F.

    2014-12-01

    Dispersion mechanisms have been examined in-depth in natural catchments in previous studies. However, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. Thus, these features can modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. This model computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment (France) as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further studies with other catchments are needed to assess whether the latter is a general feature of urban drainage networks.

  13. Refinement and Verification of Predictive Models of Suspended Sediment Dispersion and Desorption of Toxics from Dredged Sediments.

    Science.gov (United States)

    1982-07-01

    C ~ DO 680 J=1,NSTEP FOREX =SQRT(ADELX(J+1) *4.* (EZ* ( +EXPCO*EXP( - ’ADELX(J+1)/100.)))) DO 680 IZ=1,21 AZ=(IZ-1) *DELZ TOP=(AZ+XL )/ FOREX - 166 ET...ERF(TOP) BOT= (AZ-XL )/ FOREX EB=ERF (BOT) Z( IZ,J+1)=0. 5*(ET-EB) 680 CONTINUE C C START FINITE DIFFERENCE SOLUTION IF(ISCE.EQ.3)GO TO 25 DO 100 I=IUP

  14. Integrating a street-canyon model with a regional Gaussian dispersion model for improved characterisation of near-road air pollution

    Science.gov (United States)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-03-01

    The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.

  15. Application of GIS to modified models of vehicle emission dispersion

    Science.gov (United States)

    Jin, Taosheng; Fu, Lixin

    This paper reports on a preliminary study of the forecast and evaluation of transport-related air pollution dispersion in urban areas. Some modifications of the traditional Gauss dispersion models are provided, and especially a crossroad model is built, which considers the great variation of vehicle emission attributed to different driving patterns at the crossroad. The above models are combined with a self-developed geographic information system (GIS) platform, and a simulative system with graphical interfaces is built. The system aims at visually describing the influences on the urban environment by urban traffic characteristics and therefore gives a reference to the improvement of urban air quality. Due to the introduction of a self-developed GIS platform and a creative crossroad model, the system is more effective, flexible and accurate. Finally, a comparison of the simulated (predicted) and observed hourly concentration is given, which indicates a good simulation.

  16. Hindrance Velocity Model for Phase Segregation in Suspensions of Poly-dispersed Randomly Oriented Spheroids

    Science.gov (United States)

    Faroughi, S. A.; Huber, C.

    2015-12-01

    Crystal settling and bubbles migration in magmas have significant effects on the physical and chemical evolution of magmas. The rate of phase segregation is controlled by the force balance that governs the migration of particles suspended in the melt. The relative velocity of a single particle or bubble in a quiescent infinite fluid (melt) is well characterized; however, the interplay between particles or bubbles in suspensions and emulsions and its effect on their settling/rising velocity remains poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions of nondeformable droplets, and suspensions of spherical solid particles in the creeping flow regime. The model is based on three sets of hydrodynamic corrections: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the mixture rheology to account for nonlocal interactions between particles. The model is then extended for mono-disperse non-spherical solid particles that are randomly oriented. The non-spherical particles are idealized as spheroids and characterized by their aspect ratio. The poly-disperse nature of natural suspensions is then taken into consideration by introducing an effective volume fraction of particles for each class of mono-disperse particles sizes. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratios between the constituents of dispersions. We find an excellent agreement between our model and experiments. We also show two significant applications for our model: (1) We demonstrate that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers. (2) We provide a model to correct for particle interactions in the conventional hydrometer test to estimate the particle size distribution in soils. Our model offers a greatly improved agreement with

  17. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); St Clair, Jeffrey G. [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States); Balachandar, S. [Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States)

    2016-05-07

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force is well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.

  18. Air Dispersion Modeling for Building 3026C/D Demolition

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Richard C [ORNL; Sjoreen, Andrea L [ORNL; Eckerman, Keith F [ORNL

    2010-06-01

    This report presents estimates of dispersion coefficients and effective dose for potential air dispersion scenarios of uncontrolled releases from Oak Ridge National Laboratory (ORNL) buildings 3026C, 3026D, and 3140 prior to or during the demolition of the 3026 Complex. The Environmental Protection Agency (EPA) AERMOD system1-6 was used to compute these estimates. AERMOD stands for AERMIC Model, where AERMIC is the American Meteorological Society-EPA Regulatory Model Improvement Committee. Five source locations (three in building 3026D and one each in building 3026C and the filter house 3140) and associated source characteristics were determined with the customer. In addition, the area of study was determined and building footprints and intake locations of air-handling systems were obtained. In addition to the air intakes, receptor sites consisting of ground level locations on four polar grids (50 m, 100 m, 200 m, and 500 m) and two intersecting lines of points (50 m separation), corresponding to sidewalks along Central Avenue and Fifth Street. Three years of meteorological data (2006 2008) were used each consisting of three datasets: 1) National Weather Service data; 2) upper air data for the Knoxville-Oak Ridge area; and 3) local weather data from Tower C (10 m, 30 m and 100 m) on the ORNL reservation. Annual average air concentration, highest 1 h average and highest 3 h average air concentrations were computed using AERMOD for the five source locations for the three years of meteorological data. The highest 1 h average air concentrations were converted to dispersion coefficients to characterize the atmospheric dispersion as the customer was interested in the most significant response and the highest 1 h average data reflects the best time-averaged values available from the AERMOD code. Results are presented in tabular and graphical form. The results for dose were obtained using radionuclide activities for each of the buildings provided by the customer.7

  19. Modelling of pollution dispersion in atmosphere; Modelowanie procesow propagacji skazen w atmosferze

    Energy Technology Data Exchange (ETDEWEB)

    Borysiewicz, M; Stankiewicz, R

    1994-12-31

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs.

  20. Viscoelasticity and diffusional properties of colloidal model dispersions

    International Nuclear Information System (INIS)

    Naegele, Gerhard

    2003-01-01

    We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles

  1. Viscoelasticity and diffusional properties of colloidal model dispersions

    CERN Document Server

    Naegele, G

    2003-01-01

    We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles.

  2. Modelling guided waves in the Alaskan-Aleutian subduction zone

    Science.gov (United States)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide

  3. NO2 and SO2 dispersion modeling and relative roles of emission sources over Map Ta Phut industrial area, Thailand.

    Science.gov (United States)

    Chusai, Chatinai; Manomaiphiboon, Kasemsan; Saiyasitpanich, Phirun; Thepanondh, Sarawut

    2012-08-01

    Map Ta Phut industrial area (MA) is the largest industrial complex in Thailand. There has been concern about many air pollutants over this area. Air quality management for the area is known to be difficult, due to lack of understanding of how emissions from different sources or sectors (e.g., industrial, power plant, transportation, and residential) contribute to air quality degradation in the area. In this study, a dispersion study of NO2 and SO2 was conducted using the AERMOD model. The area-specific emission inventories of NOx and SO2 were prepared, including both stack and nonstack sources, and divided into 11 emission groups. Annual simulations were performed for the year 2006. Modeled concentrations were evaluated with observations. Underestimation of both pollutants was Jbund, and stack emission estimates were scaled to improve the modeled results before quantifying relative roles of individual emission groups to ambient concentration overfour selected impacted areas (two are residential and the others are highly industrialized). Two concentration measures (i.e., annual average area-wide concentration or AC, and area-wide robust highest concentration or AR) were used to aggregately represent mean and high-end concentrations Jbfor each individual area, respectively. For AC-NO2, on-road mobile emissions were found to be the largest contributor in the two residential areas (36-38% of total AC-NO2), while petrochemical-industry emissions play the most important role in the two industrialized areas (34-51%). For AR-NO2, biomass burning has the most influence in all impacted areas (>90%) exceptJor one residential area where on-road mobile is the largest (75%). For AC-SO2, the petrochemical industry contributes most in all impacted areas (38-56%). For AR-SO2, the results vary. Since the petrochemical industry was often identified as the major contributor despite not being the largest emitter, air quality workers should pay special attention to this emission group

  4. A one-dimensional semi-empirical model considering transition boiling effect for dispersed flow film boiling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Jou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Pan, Chin, E-mail: cpan@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2017-05-15

    Highlights: • Seven heat transfer mechanisms are studied numerically by the model. • A semi-empirical method is proposed to account for the transition boiling effect. • The parametric effects on the heat transfer mechanisms are investigated. • The thermal non-equilibrium phenomenon between vapor and droplets is investigated. - Abstract: The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e., vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that the transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing situation in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30–140 bar, heat flux of 204–1837 kW/m{sup 2} and mass flux of 380–5180 kg/m{sup 2} s, shows very good agreement with RMS of 8.80% and standard deviation of 8.81%. Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.

  5. Evaluation of regional and local atmospheric dispersion models for the analysis of traffic-related air pollution in urban areas

    Science.gov (United States)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-10-01

    Dispersion of road transport emissions in urban metropolitan areas is typically simulated using Gaussian models that ignore the turbulence and drag induced by buildings, which are especially relevant for areas with dense downtown cores. To consider the effect of buildings, street canyon models are used but often at the level of single urban corridors and small road networks. In this paper, we compare and validate two dispersion models with widely varying algorithms, across a modelling domain consisting of the City of Montreal, Canada accounting for emissions of more 40,000 roads. The first dispersion model is based on flow decomposition into the urban canopy sub-flow as well as overlying airflow. It takes into account the specific height and geometry of buildings along each road. The second model is a Gaussian puff dispersion model, which handles complex terrain and incorporates three-dimensional meteorology, but accounts for buildings only through variations in the initial vertical mixing coefficient. Validation against surface observations indicated that both models under-predicted measured concentrations. Average weekly exposure surfaces derived from both models were found to be reasonably correlated (r = 0.8) although the Gaussian dispersion model tended to underestimate concentrations around the roadways compared to the street canyon model. In addition, both models were used to estimate exposures of a representative sample of the Montreal population composed of 1319 individuals. Large differences were noted whereby exposures derived from the Gaussian puff model were significantly lower than exposures derived from the street canyon model, an expected result considering the concentration of population around roadways. These differences have large implications for the analyses of health effects associated with NO2 exposure.

  6. Dispersive versus constant-geometry models of the neutron-208Pb mean field

    International Nuclear Information System (INIS)

    Mahaux, C.; Sartor, R.

    1990-01-01

    Phenomenological optical-model analyses of differential elastic scattering cross sections of neutrons by 208 Pb indicate that the radius of the real part of the potential decreases with increasing energy in the domain 4< E<40 MeV. On the other hand, the experimental total cross section is compatible with a real potential whose radial shape is energy independent. In order to clarify this situation, we compare a 'constant geometry' model whose real part has an energy-independent radial shape with a 'dispersive model' whose real part has an energy-dependent radial shape calculated from the dispersion relation which connects the real and imaginary parts of the field. The following three main features are considered. (i) The junction of the optical-model potential with the shell-model potential at negative energy. (ii) The agreement between the calculated total and differential cross sections and their experimental values. (iii) The extent to which the real part of the optical-model potential can be accurately determined by analyzing the total cross section only. It is concluded that the presently available experimental data support the existence of an energy dependence of the radial shape of the real potential, in keeping with the dispersion relation. A new parametrization of a 'dispersive' mean field is also presented. It does not involve more parameters than the previously published one but takes better account of the physical properties of the spectral functions; it is shown to improve the agreement between predicted and experimental scattering data. (orig.)

  7. Tracer dispersion - experiment and CFD

    International Nuclear Information System (INIS)

    Zitny, R.

    2004-01-01

    Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)

  8. Dispersion model for airborne radioactive particulates inside a process building

    International Nuclear Information System (INIS)

    Perkins, W.C.; Stoddard, D.H.

    1984-02-01

    An empirical model, predicting the spread of airborne radioactive particles after they are released inside a building, has been developed. The basis for this model is a composite of data for dispersion of airborne activity recorded during 12 case incidents. These incidents occurred at the Savannah River Plant (SRP) during approximately 90 plant-years of experience with the chemical and metallurgical processing of purified neptunium and plutonium. The model illustrates that the multiple-air-zone concept, used in the designs of many nuclear facilities, can be an efficient safety feature to limit the spread of airborne activity from a release. This study also provides some insight into an apparently anomalous behavior of airborne particulates, namely, their migration against the prevailing flow of ventilation air. 2 references, 12 figures, 4 tables

  9. Evaluation of main control room habitability in Japanese LWR (2). Evaluation for applicability of existing atmospheric dispersion models to building wake dispersion by using wind tunnel experiment

    International Nuclear Information System (INIS)

    Fukuda, Ryo; Fujita, Yuko; Yoneda, Jiro; Okabayashi, Kazuki; Tabuse, Shigehiko; Watada, Masayuki

    2009-01-01

    dispersion effect exists behind a building. Regarding the degree of meandering effect with dispersion by a building, however, the further investigation would still be necessary for a conclusion. At an additional experiment with a model of a higher release point similar to BWR LOCA showed no significant dispersion effect behind a building. The prediction of both of past and recent prediction models did not show an enough good agreement with this experimental data. The configuration coefficient by Gifford model, only predicting the experiment with PWR LOCA, was widely ranged between 0.1 and 1.0 on the roof of the building. (author)

  10. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo; Marchisio, Daniele Luca; Chidambaram, Narayanan; Fox, Rodney O.

    2013-01-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  11. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo

    2013-04-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  12. Different modes of electrogenic Na+ absorption in the coprodeum of the chicken embryo: role of extracellular Ca2+.

    Science.gov (United States)

    Heinz, M; Krattenmacher, R; Hoffmann, B; Clauss, W

    1991-01-01

    Transepithelial electrogenic Na+ transport (INa) was investigated in the coprodeum of 20-days-old chicken embryos in Ussing chambers. Short circuit current (Isc) and transepithelial resistance (Rt) were 14.7 +/- 4.8 microA.cm-2 (n = 12) and 0.53 +/- 0.09 k omega.cm-2 (n = 12), respectively. INa was calculated from changes in Isc by substitution of mucosal Na+ by (N-methyl-D-glucamine) (NMDG). Isc inversed during Na+ removal, and INa was found to be 27.8 +/- 4.7 microA.cm-2 (n = 12). Amiloride (100 mumol.l-1) inhibited only about 60% of INa. Analysis of Isc fluctuations revealed a Lorentzian component in the power density spectrum with a corner frequency of about 57 Hz. This component was not correlated to INa, and its origin is still unclear. Removal of mucosal Ca2+ increased INa about 2.5-fold due to an increase of the amiloride-insensitive component of INa in additionally investigated adult tissues. The results clearly show that this is due to a non-selective cation channel with an "apparent" order of selectivity Cs+ greater than Na+ = K+ greater than Rb+ greater than Li+. The Ca2+ concentration required to block 50% of the Isc was about 18 mumol.l-1. The IscCa could also be suppressed by other divalent cations such as Mg2+ and Ba2+. Additionally, an INa-linked Lorentzian component occurred which dominated the control spectrum with a significantly higher corner frequency (about 88 Hz). The results indicate that Na+ absorption in the coprodeum of the chicken embryo is more complex than in adult hens.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. LANDSCAPE MODELING OF CHARACTERISTIC HABITAT SCALES, DISPERSAL, AND CONNECTIVITY FROM THE PERSPECTIVE OF THE ORGANISM

    Science.gov (United States)

    A modeling framework was developed to investigate the interactive effects of life history characteristics and landscape heterogeneity on dispersal success. An individual-based model was used to examine how dispersal between resource patches is affected by four landscape characte...

  14. Pollen Forecast and Dispersion Modelling

    Science.gov (United States)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  15. User manual of nuclide dispersion in phreatic aquifers model

    International Nuclear Information System (INIS)

    Rives, D.E.

    1999-01-01

    The Nuclide Dispersion in Phreatic Aquifers (DRAF) model was developed in the 'Division Estudios Ambientales' of the 'Gerencia de Seguridad Radiologica y Nuclear, Comision Nacional de Energia Atomica' (1991), for the Safety Assessment of Near Surface Radioactive Waste Disposal Facilities. Afterwards, it was modified in several opportunities, adapting it to a number of application conditions. The 'Manual del usuario del codigo DRAF' here presented is a reference document for the use of the last three versions of the code developed for the 'Autoridad Regulatoria Nuclear' between 1995 and 1996. The DRAF model solves the three dimension's solute transport equation for porous media by the finite differences method. It takes into account the advection, dispersion, radioactive decay, and retention in the solid matrix processes, and has multiple possibilities for the source term. There are three versions of the model, two of them for the saturated zone and one for the unsaturated zone. All the versions have been verified in different conditions, and have been applied in exercises of the International Atomic Energy Agency and also in real cases. (author)

  16. Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements

    Science.gov (United States)

    Wang, An; Fallah-Shorshani, Masoud; Xu, Junshi; Hatzopoulou, Marianne

    2016-10-01

    Near-road concentrations of nitrogen dioxide (NO2), a known marker of traffic-related air pollution, were simulated along a busy urban corridor in Montreal, Quebec using a combination of microscopic traffic simulation, instantaneous emission modeling, and air pollution dispersion. In order to calibrate and validate the model, a data collection campaign was designed. For this purpose, measurements of NO2 were conducted mid-block along four segments of the corridor throughout a four-week campaign conducted between March and April 2015. The four segments were chosen to be consecutive and yet exhibiting variability in road configuration and built environment characteristics. Roadside NO2 measurements were also paired with on-site and fixed-station meteorological data. In addition, traffic volumes, composition, and routing decisions were collected using video-cameras located at upstream and downstream intersections. Dispersion of simulated emissions was conducted for eight time slots and under a range of meteorological conditions using three different models with vastly different dispersion algorithms (OSPM, CALINE 4, and SIRANE). The three models exhibited poor correlation with near-road NO2 concentrations and were better able to simulate average concentrations occurring along the roadways rather than the range of concentrations measured under diverse meteorological and traffic conditions. As hypothesized, the model SIRANE that can handle a street canyon configuration was the most sensitive to the built environment especially to the presence of tall buildings around the road. In contrast, CALINE exhibited the lowest sensitivity to the built environment.

  17. Relativistic energy-dispersion relations of 2D rectangular lattices

    Science.gov (United States)

    Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi

    2017-04-01

    An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.

  18. Enhanced air dispersion modelling at a typical Chinese nuclear power plant site: Coupling RIMPUFF with two advanced diagnostic wind models.

    Science.gov (United States)

    Liu, Yun; Li, Hong; Sun, Sida; Fang, Sheng

    2017-09-01

    An enhanced air dispersion modelling scheme is proposed to cope with the building layout and complex terrain of a typical Chinese nuclear power plant (NPP) site. In this modelling, the California Meteorological Model (CALMET) and the Stationary Wind Fit and Turbulence (SWIFT) are coupled with the Risø Mesoscale PUFF model (RIMPUFF) for refined wind field calculation. The near-field diffusion coefficient correction scheme of the Atmospheric Relative Concentrations in the Building Wakes Computer Code (ARCON96) is adopted to characterize dispersion in building arrays. The proposed method is evaluated by a wind tunnel experiment that replicates the typical Chinese NPP site. For both wind speed/direction and air concentration, the enhanced modelling predictions agree well with the observations. The fraction of the predictions within a factor of 2 and 5 of observations exceeds 55% and 82% respectively in the building area and the complex terrain area. This demonstrates the feasibility of the new enhanced modelling for typical Chinese NPP sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Invariant Theory for Dispersed Transverse Isotropy: An Efficient Means for Modeling Fiber Splay

    Science.gov (United States)

    Freed, alan D.; Einstein, Daniel R.; Vesely, Ivan

    2004-01-01

    Most soft tissues possess an oriented architecture of collagen fiber bundles, conferring both anisotropy and nonlinearity to their elastic behavior. Transverse isotropy has often been assumed for a subset of these tissues that have a single macroscopically-identifiable preferred fiber direction. Micro-structural studies, however, suggest that, in some tissues, collagen fibers are approximately normally distributed about a mean preferred fiber direction. Structural constitutive equations that account for this dispersion of fibers have been shown to capture the mechanical complexity of these tissues quite well. Such descriptions, however, are computationally cumbersome for two-dimensional (2D) fiber distributions, let alone for fully three-dimensional (3D) fiber populations. In this paper, we develop a new constitutive law for such tissues, based on a novel invariant theory for dispersed transverse isotropy. The invariant theory is based on a novel closed-form splay invariant that can easily handle 3D fiber populations, and that only requires a single parameter in the 2D case. The model is polyconvex and fits biaxial data for aortic valve tissue as accurately as the standard structural model. Modification of the fiber stress-strain law requires no re-formulation of the constitutive tangent matrix, making the model flexible for different types of soft tissues. Most importantly, the model is computationally expedient in a finite-element analysis.

  20. A model to predict failure of irradiated U–Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas E., E-mail: Douglas.Burkes@pnnl.gov; Senor, David J.; Casella, Andrew M.

    2016-12-15

    Highlights: • Simple model to predict failure of dispersion fuel meat designs. • Evaluated as a function of fabrication parameters and irradiation conditions. • Predictions compare well with experimental measurements of miniature fuel plates. • Interaction layer formation reduces matrix strength and increases temperature. • Si additions to the matrix appear effective only at moderate heat flux and burnup. - Abstract: Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO{sub 2}-stainless steel dispersion fuels and uses currently available thermal–mechanical property information for the materials of interest in the currently proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as onset of pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the {sup 235}U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of

  1. Combining a dispersal model with network theory to assess habitat connectivity.

    Science.gov (United States)

    Lookingbill, Todd R; Gardner, Robert H; Ferrari, Joseph R; Keller, Cherry E

    2010-03-01

    Assessing the potential for threatened species to persist and spread within fragmented landscapes requires the identification of core areas that can sustain resident populations and dispersal corridors that can link these core areas with isolated patches of remnant habitat. We developed a set of GIS tools, simulation methods, and network analysis procedures to assess potential landscape connectivity for the Delmarva fox squirrel (DFS; Sciurus niger cinereus), an endangered species inhabiting forested areas on the Delmarva Peninsula, USA. Information on the DFS's life history and dispersal characteristics, together with data on the composition and configuration of land cover on the peninsula, were used as input data for an individual-based model to simulate dispersal patterns of millions of squirrels. Simulation results were then assessed using methods from graph theory, which quantifies habitat attributes associated with local and global connectivity. Several bottlenecks to dispersal were identified that were not apparent from simple distance-based metrics, highlighting specific locations for landscape conservation, restoration, and/or squirrel translocations. Our approach links simulation models, network analysis, and available field data in an efficient and general manner, making these methods useful and appropriate for assessing the movement dynamics of threatened species within landscapes being altered by human and natural disturbances.

  2. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Haruyasu; Chino, Masamichi; Yamazawa, Hiromi (Japan Atomic Energy Research Inst., Tokyo (Japan))

    1999-07-01

    The meteorological forecast models are critically important for the accuracy of predicting the atmospheric dispersion of radionuclides discharged into atmosphere during nuclear emergencies. Thus, this paper describes a new scheme for predicting environmental impacts due to accidental release of radionuclides by using an atmospheric dynamic model PHYSIC. The advantages of introducing PHYSIC are, (1) three-dimensional local meteorological forecasts can be conducted, (2) synoptic meteorological changes can be considered by inputting grid data of synoptic forecasts from Japan Meteorological Agency to PHYSIC as initial and boundary conditions, (3) forecasts can be improved by nudging method using local meteorological observations, and (4) atmospheric dispersion model can consider the variation of the mixed layer. (author)

  3. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Chino, Masamichi; Yamazawa, Hiromi

    1999-01-01

    The meteorological forecast models are critically important for the accuracy of predicting the atmospheric dispersion of radionuclides discharged into atmosphere during nuclear emergencies. Thus, this paper describes a new scheme for predicting environmental impacts due to accidental release of radionuclides by using an atmospheric dynamic model PHYSIC. The advantages of introducing PHYSIC are, (1) three-dimensional local meteorological forecasts can be conducted, (2) synoptic meteorological changes can be considered by inputting grid data of synoptic forecasts from Japan Meteorological Agency to PHYSIC as initial and boundary conditions, (3) forecasts can be improved by nudging method using local meteorological observations, and (4) atmospheric dispersion model can consider the variation of the mixed layer. (author)

  4. ISC High Performance 2017 International Workshops, DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG, P^3MA, VHPC, Visualization at Scale, WOPSSS

    CERN Document Server

    Yokota, Rio; Taufer, Michela; Shalf, John

    2017-01-01

    This book constitutes revised selected papers from 10 workshops that were held as the ISC High Performance 2017 conference in Frankfurt, Germany, in June 2017. The 59 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They stem from the following workshops: Workshop on Virtualization in High-Performance Cloud Computing (VHPC) Visualization at Scale: Deployment Case Studies and Experience Reports International Workshop on Performance Portable Programming Models for Accelerators (P^3MA) OpenPOWER for HPC (IWOPH) International Workshop on Data Reduction for Big Scientific Data (DRBSD) International Workshop on Communication Architectures for HPC, Big Data, Deep Learning and Clouds at Extreme Scale Workshop on HPC Computing in a Post Moore's Law World (HCPM) HPC I/O in the Data Center ( HPC-IODC) Workshop on Performance and Scalability of Storage Systems (WOPSSS) IXPUG: Experiences on Intel Knights Landing at the One Year Mark International Workshop on Communicati...

  5. Cellular mechanisms underlying the laxative effect of flavonol naringenin on rat constipation model.

    Directory of Open Access Journals (Sweden)

    Zi-Huan Yang

    Full Text Available BACKGROUND & AIMS: Symptoms of constipation are extremely common, especially in the elderly. The present study aim to identify an efficacious treatment strategy for constipation by evaluating the secretion-promoting and laxative effect of a herbal compound, naringenin, on intestinal epithelial anion secretion and a rat constipation model, respectively. METHODS/PRINCIPAL FINDINGS: In isolated rat colonic crypts, mucosal addition of naringenin (100 microM elicited a concentration-dependent and sustained increase in the short-circuit current (I(SC, which could be inhibited in Cl- free solution or by bumetanide and DPC (diphenylamine-2-carboxylic acid, but not by DIDS (4, 4'- diisothiocyanatostilbene-2, 2'-disulfonic acid. Naringenin could increase intracellular cAMP content and PKA activity, consisted with that MDL-12330A (N-(Cis-2-phenyl-cyclopentyl azacyclotridecan-2-imine-hydrochloride pretreatment reduced the naringenin-induced I(SC. In addition, significant inhibition of the naringenin-induced I(SC by quinidine indicated that basolateral K+ channels were involved in maintaining this cAMP-dependent Cl- secretion. Naringenin-evoked whole cell current which exhibited a linear I-V relationship and time-and voltage- independent characteristics was inhibited by DPC, indicating that the cAMP activated Cl- conductance most likely CFTR (cystic fibrosis transmembrane conductance regulator was involved. In rat constipation model, administration of naringenin restored the level of fecal output, water content and mucus secretion compared to loperamide-administrated group. CONCLUSIONS: Taken together, our data suggest that naringenin could stimulate Cl- secretion in colonic epithelium via a signaling pathway involving cAMP and PKA, hence provide an osmotic force for subsequent colonic fluid secretion by which the laxative effect observed in the rat constipation model. Naringenin appears to be a novel alternative treatment strategy for constipation.

  6. Modeling the dispersal of spiny lobster (

    NARCIS (Netherlands)

    Whomersley, P.; van der Molen, J.; Holt, D.; Trundle, C.; Clark, S.; Fletcher, D.

    2018-01-01

    Knowledge of larval dispersal, population dynamics and connectivity in relation to the management and conservation of commercially important species is vital if existing fisheries are to remain sustainable into the future. Larval dispersal of the commercially exploited spiny lobster, Palinurus

  7. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonne (United States)

    2014-05-15

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model.

  8. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    International Nuclear Information System (INIS)

    Jeong, Gwan Yoon; Sohn, Dong Seong; Kim, Yeon Soo

    2014-01-01

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model

  9. Modeling pollutant dispersion within a tornadic thunderstorm

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W

    1982-01-01

    A three-dimensional numerical model has been developed to calculate ground-level air concentration and deposition of particles entrained in a tornadic thunderstorm. The rotational characteristics of the tornadic storm are within the larger mesoscale flow of the storm system and transported with the vortex. Turbulence exchange coefficients are based on empirical values. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume. Results indicate that updrafts and downdrafts, coupled with scavenging of particles by precipitation, account for most of the material being deposited closer to the site than anticipated. Approximately 5% of the pollutant is dispersed into the stratosphere.

  10. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    Science.gov (United States)

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using

  12. A Platoon Dispersion Model Based on a Truncated Normal Distribution of Speed

    Directory of Open Access Journals (Sweden)

    Ming Wei

    2012-01-01

    Full Text Available Understanding platoon dispersion is critical for the coordination of traffic signal control in an urban traffic network. Assuming that platoon speed follows a truncated normal distribution, ranging from minimum speed to maximum speed, this paper develops a piecewise density function that describes platoon dispersion characteristics as the platoon moves from an upstream to a downstream intersection. Based on this density function, the expected number of cars in the platoon that pass the downstream intersection, and the expected number of cars in the platoon that do not pass the downstream point are calculated. To facilitate coordination in a traffic signal control system, dispersion models for the front and the rear of the platoon are also derived. Finally, a numeric computation for the coordination of successive signals is presented to illustrate the validity of the proposed model.

  13. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Science.gov (United States)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  14. Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos

    Science.gov (United States)

    Zhang, Pengfei

    2017-11-01

    The Sachdev-Ye-Kitaev (SYK) model is a concrete model for a non-Fermi liquid with maximally chaotic behavior in (0 +1 ) dimensions. In order to gain some insights into real materials in higher dimensions where fermions could hop between different sites, here we consider coupling a SYK lattice by constant hopping. We call this the dispersive SYK model. Focusing on (1 +1 ) -dimensional homogeneous hopping, by either tuning the temperature or the relative strength of the random interaction (hopping) and constant hopping, we find a crossover between a dispersive metal to an incoherent metal, where the dynamic exponent z changes from 1 to ∞ . We study the crossover by calculating the spectral function, charge density correlator, and the Lyapunov exponent. We further find the Lyapunov exponent becomes larger when the chemical potential is tuned to approach a van Hove singularity because of the large density of states near the Fermi surface. The effect of the topological nontrivial bands is also discussed.

  15. Assessing vanadium and arsenic exposure of people living near a petrochemical complex with two-stage dispersion models

    International Nuclear Information System (INIS)

    Chio, Chia-Pin; Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Chan, Chang-Chuan

    2014-01-01

    Highlights: • Two-stage dispersion models can estimate exposures to hazardous air pollutants. • Spatial distribution of V levels is derived for sources without known emission rates. • A distance-to-source gradient is found for V levels from a petrochemical complex. • Two-stage dispersion is useful for modeling air pollution in resource-limited areas. - Abstract: The goal of this study is to demonstrate that it is possible to construct a two-stage dispersion model empirically for the purpose of estimating air pollution levels in the vicinity of petrochemical plants. We studied oil refineries and coal-fired power plants in the No. 6 Naphtha Cracking Complex, an area of 2,603-ha situated on the central west coast of Taiwan. The pollutants targeted were vanadium (V) from oil refineries and arsenic (As) from coal-fired power plants. We applied a backward fitting method to determine emission rates of V and As, with 192 PM 10 filters originally collected between 2009 and 2012. Our first-stage model estimated emission rates of V and As (median and 95% confidence intervals at 0.0202 (0.0040–0.1063) and 0.1368 (0.0398–0.4782) g/s, respectively. In our second stage model, the predicted zone-average concentrations showed a strong correlation with V, but a poor correlation with As. Our findings show that two-stage dispersion models are relatively precise for estimating V levels at residents’ addresses near the petrochemical complex, but they did not work as well for As levels. In conclusion, our model-based approach can be widely used for modeling exposure to air pollution from industrial areas in countries with limited resources

  16. Inelastic Neutron Scattering Measurements of Phonon Dispersion Relations in Andalusite and Sillimanite, Al2SiO5

    International Nuclear Information System (INIS)

    Goel, P.

    2001-01-01

    This paper reports inelastic neutron scattering (INS) measurements of the phonon dispersion relations of the aluminum silicate minerals andalusite and sillimanite, Al 2 SiO 5 . The single crystal INS measurements were undertaken using the Triple-axis-spectrometer at the Dhruva reactor, Trombay for andalusite and at the Oak Ridge National Laboratory, USA for sillimanite. The phonon dispersion relations (upto 50 mev) along various high symmetry directions have been measured and have been analyzed on the basis of lattice dynamics shell model calculations. The calculated structure factors based on the model calculations were used as guides for planning these single crystal measurements and were used to identify regions in reciprocal space with large cross-sections. The calculated structure factors have been very useful in the planning, execution and analysis of the experimental data. The calculated phonon dispersion relations are found to be in good agreement with the measured data

  17. Intrinsic Radiation Source Generation with the ISC Package: Data Comparisons and Benchmarking

    International Nuclear Information System (INIS)

    Solomon, Clell J. Jr.

    2012-01-01

    The characterization of radioactive emissions from unstable isotopes (intrinsic radiation) is necessary for shielding and radiological-dose calculations from radioactive materials. While most radiation transport codes, e.g., MCNP [X-5 Monte Carlo Team, 2003], provide the capability to input user prescribed source definitions, such as radioactive emissions, they do not provide the capability to calculate the correct radioactive-source definition given the material compositions. Special modifications to MCNP have been developed in the past to allow the user to specify an intrinsic source, but these modification have not been implemented into the primary source base [Estes et al., 1988]. To facilitate the description of the intrinsic radiation source from a material with a specific composition, the Intrinsic Source Constructor library (LIBISC) and MCNP Intrinsic Source Constructor (MISC) utility have been written. The combination of LIBISC and MISC will be herein referred to as the ISC package. LIBISC is a statically linkable C++ library that provides the necessary functionality to construct the intrinsic-radiation source generated by a material. Furthermore, LIBISC provides the ability use different particle-emission databases, radioactive-decay databases, and natural-abundance databases allowing the user flexibility in the specification of the source, if one database is preferred over others. LIBISC also provides functionality for aging materials and producing a thick-target bremsstrahlung photon source approximation from the electron emissions. The MISC utility links to LIBISC and facilitates the description of intrinsic-radiation sources into a format directly usable with the MCNP transport code. Through a series of input keywords and arguments the MISC user can specify the material, age the material if desired, and produce a source description of the radioactive emissions from the material in an MCNP readable format. Further details of using the MISC utility can

  18. Modelling electro-active polymers with a dispersion-type anisotropy

    Science.gov (United States)

    Hossain, Mokarram; Steinmann, Paul

    2018-02-01

    We propose a novel constitutive framework for electro-active polymers (EAPs) that can take into account anisotropy with a chain dispersion. To enhance actuation behaviour, particle-filled EAPs become promising candidates nowadays. Recent studies suggest that particle-filled EAPs, which can be cured under an electric field during the manufacturing time, do not necessarily form perfect anisotropic composites, rather they create composites with dispersed chains. Hence in this contribution, an electro-mechanically coupled constitutive model is devised that considers the chain dispersion with a probability distribution function in an integral form. To obtain relevant quantities in discrete form, numerical integration over the unit sphere is utilized. Necessary constitutive equations are derived exploiting the basic laws of thermodynamics that result in a thermodynamically consistent formulation. To demonstrate the performance of the proposed electro-mechanically coupled framework, we analytically solve a non-homogeneous boundary value problem, the extension and inflation of an axisymmetric cylindrical tube under electro-mechanically coupled load. The results capture various electro-mechanical couplings with the formulation proposed for EAP composites.

  19. A mean-density model of ionic surfactants for the dispersion of carbon nanotubes in aqueous solutions

    Science.gov (United States)

    Joung, Young Soo

    2018-05-01

    We propose a new analytical model of ionic surfactants used for the dispersion of carbon nanotubes (CNTs) in aqueous solutions. Although ionic surfactants are commonly used to facilitate the dispersion of CNTs in aqueous solutions, understanding the dispersion process is challenging and time-consuming owing to its complexity and nonlinearity. In this work, we develop a mean-density model of ionic surfactants to simplify the calculation of interaction forces between CNTs stabilized by ionic surfactants. Using this model, we can evaluate various interaction forces between the CNTs and ionic surfactants under different conditions. The dispersion mechanism is investigated by estimating the potential of mean force (PMF) as a function of van der Waals forces, electrostatic forces, interfacial tension, and osmotic pressure. To verify the proposed model, we compare the PMFs derived using our method with those derived from molecular dynamics simulations using comparable CNTs and ionic surfactants. Notably, for stable dispersions, the osmotic pressure and interfacial energy are important for long-range and short-range interactions, respectively, in comparison with the effect of electrostatic forces. Our model effectively prescribes specific surfactants and their concentrations to achieve stable aqueous suspensions of CNTs.

  20. Modeling blast waves, gas and particles dispersion in urban and hilly ground areas

    International Nuclear Information System (INIS)

    Hank, S.; Saurel, R.; Le Metayer, O.; Lapebie, E.

    2014-01-01

    The numerical simulation of shock and blast waves as well as particles dispersion in highly heterogeneous media such as cities, urban places, industrial plants and part of countries is addressed. Examples of phenomena under study are chemical gas products dispersion from damaged vessels, gas dispersion in urban places under explosion conditions, shock wave propagation in urban environment. A three-dimensional simulation multiphase flow code (HI2LO) is developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation is developed. When dealing with large scale domains, such as countries, the topography is considered with the help of elevation data. Meteorological conditions are also considered, in particular regarding complex temperature and wind profiles. Heat and mass transfers on sub-scale objects, such as buildings, trees and other obstacles are considered as well. Particles motion is addressed through a new turbulence model involving a single parameter to describe accurately plumes. Validations against experiments in basic situations are presented as well as examples of industrial and environmental computations. (authors)

  1. A study of the dispersed flow interfacial heat transfer model of RELAP5/MOD2.5 and RELAP5/MOD3

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, M. [Swiss Federal Institute of Technology, Zurich (Switzerland); Analytis, G.T.; Aksan, S.N. [Paul Scherrer Institute, Villigen (Switzerland)

    1995-09-01

    The model of interfacial heat transfer for the dispersed flow regime used in the RELAP5 computer codes is investigated in the present paper. Short-transient calculations of two low flooding rate tube reflooding experiments have been performed, where the hydraulic conditions and the heat input to the vapour in the post-dryout region were controlled for the predetermined position of the quench front. Both RELAP5/MOD2.5 and RELAP5/MOD3 substantially underpredicted the exit vapour temperature. The mass flow rate and quality, however, were correct and the heat input to the vapour was larger than the actual one. As the vapour superheat at the tube exit depends on the balance between the heat input from the wall and the heat exchange with the droplets, the discrepancy between the calculated and the measured exit vapour temperature suggested that the inability of both codes to predict the vapour superheat in the dispersed flow region is due to the overprediction of the interfacial heat transfer rate.

  2. Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data.

    Science.gov (United States)

    Silvestro, Daniele; Zizka, Alexander; Bacon, Christine D; Cascales-Miñana, Borja; Salamin, Nicolas; Antonelli, Alexandre

    2016-04-05

    Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable connectivity among areas. Fossil data hold considerable information about past distribution of lineages, but suffer from largely incomplete sampling. Here we present a new dispersal-extinction-sampling (DES) model, which estimates biogeographic parameters using fossil occurrences instead of phylogenetic trees. The model estimates dispersal and extinction rates while explicitly accounting for the incompleteness of the fossil record. Rates can vary between areas and through time, thus providing the opportunity to assess complex scenarios of biogeographic evolution. We implement the DES model in a Bayesian framework and demonstrate through simulations that it can accurately infer all the relevant parameters. We demonstrate the use of our model by analysing the Cenozoic fossil record of land plants and inferring dispersal and extinction rates across Eurasia and North America. Our results show that biogeographic range evolution is not a time-homogeneous process, as assumed in most phylogenetic analyses, but varies through time and between areas. In our empirical assessment, this is shown by the striking predominance of plant dispersals from Eurasia into North America during the Eocene climatic cooling, followed by a shift in the opposite direction, and finally, a balance in biotic interchange since the middle Miocene. We conclude by discussing the potential of fossil-based analyses to test biogeographic hypotheses and improve phylogenetic methods in historical biogeography. © 2016 The Author(s).

  3. Official (ISC)2 guide to the SSCP CBK

    CERN Document Server

    Tipton, Harold F

    2010-01-01

    Access Controls; Paul Henry Access Control ConceptsArchitecture ModelsIdentification, Authentication, Authorization, and AccountabilityRemote Access MethodsOther Access Control AreasSample QuestionsCryptography; Christopher M. NowellThe BasicsSymmetric CryptographyGeneral CryptographySpecific HashesSpecific ProtocolsX.509Sample QuestionsMalicious Code; Ken DunhamIntroduction to Windows Malcode Security ManagementMalcode Naming

  4. Dispersive infrared spectroscopy measurements of atmospheric CO{sub 2} using a Fabry–Pérot interferometer sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong); Westerdahl, D. [Ability R and D Energy Research Centre, City University of Hong Kong (Hong Kong); Wong, K.C. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Sun, Y.W. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei (China); Hartl, A. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Wenig, M.O. [Meteorological Institute, Ludwig-Maximilians-Universität Munich (Germany)

    2014-02-01

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO{sub 2}) using a new scanning Fabry–Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3900 nm to 5220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO{sub 2} absorption band (∼ 4280 nm) and sampling resolution of 20 nm. The CO{sub 2} concentration is determined from the measured optical absorption spectra by fitting it to the CO{sub 2} reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H{sub 2}O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO{sub 2} measurement for 1 minute averaged data is about ± 2.5 ppmv, and down to ± 0.8 ppmv for 10 minute averaged data. A field test of atmospheric CO{sub 2} measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO{sub 2} analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO{sub 2} measurement featuring high accuracy, correction of non-linear absorption and interference of water

  5. Effect of tubing length on the dispersion correction of an arterially sampled input function for kinetic modeling in PET.

    Science.gov (United States)

    O'Doherty, Jim; Chilcott, Anna; Dunn, Joel

    2015-11-01

    Arterial sampling with dispersion correction is routinely performed for kinetic analysis of PET studies. Because of the the advent of PET-MRI systems, non-MR safe instrumentation will be required to be kept outside the scan room, which requires the length of the tubing between the patient and detector to increase, thus worsening the effects of dispersion. We examined the effects of dispersion in idealized radioactive blood studies using various lengths of tubing (1.5, 3, and 4.5 m) and applied a well-known transmission-dispersion model to attempt to correct the resulting traces. A simulation study was also carried out to examine noise characteristics of the model. The model was applied to patient traces using a 1.5 m acquisition tubing and extended to its use at 3 m. Satisfactory dispersion correction of the blood traces was achieved in the 1.5 m line. Predictions on the basis of experimental measurements, numerical simulations and noise analysis of resulting traces show that corrections of blood data can also be achieved using the 3 m tubing. The effects of dispersion could not be corrected for the 4.5 m line by the selected transmission-dispersion model. On the basis of our setup, correction of dispersion in arterial sampling tubing up to 3 m by the transmission-dispersion model can be performed. The model could not dispersion correct data acquired using a 4.5 m arterial tubing.

  6. Meteorological and sulphur dioxide dispersion modelling for an industrial complex near Mexico city metropolitan area

    International Nuclear Information System (INIS)

    Mora, V.R.; Sosa, G.; Molina, M.M.; Palmerin-ruiz, M.E.; Melgarejo-flores, L.E.

    2009-01-01

    Major sulphur dioxide emissions in Mexico are due largely to fuel of oil refining and coal combustion. In Tula-Vito-Apasco industrial corridor (TVA) are located two important sources of SO/sub 2/: the 'Miguel Hidalgo' refinery and the 'Francisco Perez Rios' power plant. Due to from March 25 to April 22 of 2006 a major field campaign took place as part of a collaborative research program called MILAGRO. Data collected around the Industrial Complex were used to: a) evaluate the air quality to local and regional scale; b) study the structure of the atmospheric boundary layer (BL); and c) validate meteorological and dispersion models. In this study we presented the behaviour of daytime BL, and the results of meteorological and dispersion modelling for selected episodes of high sulfur dioxide (SO/sub 2/). The Regional Atmospheric Modeling System (RAMS) and the Hybrid and Particle Concentration Transport Model (HYPACT) were used to evaluate the impact of SO/sub 2/ emissions to regional scale. For modelling, we selected the days where higher mean daily levels of SO/sub 2 /surface concentrations were observed, these corresponded to March 31 and April 6. The results indicate that: The daytime BL in TVA, exhibited a normal behavior, a stable layer or thermal inversion close to surface was observed at 0800 LST (up to 80% of the cases), then the mixing height (MH) growths, with a growth rate of 313 m h-1 (between 0800 to 1200 LST). The most rapid MH growth happened between 1200 to 1500 LST;. The maximum MH was observed at 1500 LST (90% of the cases); the mean maximum MH was close to 2794 m AGL; Potential temperature and humidity profiles showed a normal behavior; High persistence in wind direction (> 0.6) close to surface up to 500 m AGL, was observed at 1500, and 1800 LST, at the same time, a low level jet, penetrating from the NE, with wind speed between 6 to 8 m s/sup -1/ was observed. Meteorological modelling was used to determine the circulation patterns in the region

  7. Peer review CALMET/CALPUFF dispersion modelling analysis : Proposed Duke Point generation facility Georgia Strait Crossing pipeline

    International Nuclear Information System (INIS)

    2002-01-01

    A peer review of the air quality dispersion modeling analysis for the proposed gas-fired plant at Duke Point in the vicinity of Nanaimo, British Columbia was required, and SENES Consultants Limited (SENES) was commissioned to perform it. British Columbia Hydro had requested that Levelton Engineering Ltd. prepare an air quality impact assessment, and it was submitted to be included in Vancouver Island Generation Project (VIGP) permit application. This permit application was for the Joint Panel Review of the Georgia Strait Crossing Pipeline (GSX) Project and the British Columbia Environmental Assessment Office. The CALMET/CALPUFF Modelling System had been used by Levelton to conduct the air quality dispersion modelling analysis. Copies of the input and output files that had been used for the conduct of the modelling analysis were provided to SENES. The ability for SENES to reproduce the modelling results that had been published in the GSX application represented the first step in the peer review. This was accomplished by running the files received from Levelton into the CALMET/CALPUFF models. A detailed review of the methodology selected by Levelton during the conduct of the dispersion modelling analysis was then initiated by SENES. Some deficiencies were identified by SENES, despite concurrence with the overall conceptual approach adopted by Levelton. The deficiencies concerned meteorological data; startup, partial load and upset conditions; pollutant emissions; health risk assessment; cumulative impact on ambient particulate matter 10 concentrations; and collateral environmental impacts. refs., 2 tabs., 21 figs

  8. Modeling a failure criterion for U-Mo/Al dispersion fuel

    Science.gov (United States)

    Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik

    2016-05-01

    The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.

  9. Modeling a failure criterion for U–Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong, E-mail: tylor@kaeri.re.kr [Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik [Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2016-05-15

    The breakaway swelling in U–Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U–Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.

  10. Dispersion modeling in assessing air quality of industrial projects under Indian regulatory regime

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Amitava [Department of Chemical Engineering, University of Calcutta, 92, A.P.C.Road, Kolkata 700 009 (India)

    2010-07-01

    Environmental impact assessment (EIA) studies conducted over the years as a part of obtaining environmental clearance in accordance with Indian regulation have been given significant attention towards carrying out Gaussian dispersion modeling for predicting the ground level concentration (GLC) of pollutants, especially for SO{sub 2}. Making any adhoc decision towards recommending flue gas desulfurization (FGD) system in Indian fossil fuel combustion operations is not realistic considering the usage of fuel with low sulfur content. Thus a predictive modeling is imperative prior to making any conclusive decision. In the light of this finding, dispersion modeling has been accorded in Indian environmental regulations. This article aims at providing approaches to ascertain pollution potential for proposed power plant operation either alone or in presence of other industrial operations under different conditions. In order to assess the performance of the computational work four different cases were analyzed based on worst scenario. Results obtained through predictions were compared with National Ambient Air Quality Standards (NAAQS) of India. One specific case found to overshoot the ambient air quality adversely in respect of SO2 and was therefore, suggested to install a FGD system with at least 80 % SO2 removal efficiency. With this recommendation, the cumulative prediction yielded a very conservative resultant value of 24 hourly maximum GLC of SO2 as against a value that exceeded well above the stipulated value without considering the FGD system. The computational algorithm developed can therefore, be gainfully utilized for the purpose of EIA analysis in Indian condition.

  11. A model for short and medium range dispersion of radionuclides released to the atmosphere

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1979-09-01

    A Working Group was established to give practical guidance on the estimation of the dispersion of radioactive releases to the atmosphere. The dispersion is estimated in the short and medium range, that is from about 100 m to a few tens of kilometres from the source, and is based upon a Gaussian plume model. A scheme is presented for categorising atmospheric conditions and values of the associated dispersion parameters are given. Typical results are presented for releases in specific meteorological conditions and a scheme is included to allow for durations of release of up to 24 hours. Consideration has also been given to predicting longer term average concentrations, typically annual averages, and results are presented which facilitate site specific calculations. The results of the models are extended to 100 km from the source, but the increasing uncertainty with which results may be predicted beyond a few tens of kilometres from the source is emphasised. Three technical appendices provide some of the rationale behind the decisions made in adopting the various models in the proposed dispersion scheme. (author)

  12. A computer model for dispersed fluid-solid turbulent flows

    International Nuclear Information System (INIS)

    Liu, C.H.; Tulig, T.J.

    1985-01-01

    A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows

  13. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin.

    Science.gov (United States)

    Johnson, Adam S; García, Dana M

    2007-12-19

    Inside bluegill (Lepomis macrochirus) retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog) is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II) failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms), our evidence does not support a significant role for PKC.

  14. Mixed Platoon Flow Dispersion Model Based on Speed-Truncated Gaussian Mixture Distribution

    Directory of Open Access Journals (Sweden)

    Weitiao Wu

    2013-01-01

    Full Text Available A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a macroscopic mixed platoon flow dispersion model (MPFDM was proposed to simulate the platoon dispersion process along the road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM algorithm was used for parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was performed between the Robertson model and the MPFDM. The results confirmed the validity of the proposed model.

  15. Pollutant dispersion models for issues of air pollution control

    International Nuclear Information System (INIS)

    1985-01-01

    14 papers entered separately into the data base were presented at the meeting for application-oriented dispersion models for issues of air pollution control. These papers focus on fields of application, availability of required input data relevant to emissions and meteorology, performance and accuracy of these methods and their practicability. (orig./PW) [de

  16. An efficient approach to transient turbulent dispersion modeling by CFD-statistical analysis of a many-puff system

    International Nuclear Information System (INIS)

    Ching, W-H; K H Leung, Michael; Leung, Dennis Y C

    2009-01-01

    Transient turbulent dispersion phenomena can be found in various practical problems, such as the accidental release of toxic chemical vapor and the airborne transmission of infectious droplets. Computational fluid dynamics (CFD) is an effective tool for analyzing such transient dispersion behaviors. However, the transient CFD analysis is often computationally expensive and time consuming. In the present study, a computationally efficient CFD-statistical hybrid modeling method has been developed for studying transient turbulent dispersion. In this method, the source emission is represented by emissions of many infinitesimal puffs. Statistical analysis is performed to obtain first the statistical properties of the puff trajectories and subsequently the most probable distribution of the puff trajectories that represent the macroscopic dispersion behaviors. In two case studies of ambient dispersion, the numerical modeling results obtained agree reasonably well with both experimental measurements and conventional k-ε modeling results published in the literature. More importantly, the proposed many-puff CFD-statistical hybrid modeling method effectively reduces the computational time by two orders of magnitude.

  17. Forecasting the consequences of accidental releases of radionuclides in the atmosphere from ensemble dispersion modelling

    International Nuclear Information System (INIS)

    Galmarini, S.; Bianconi, R.; Bellasio, R.; Graziani, G.

    2001-01-01

    The RTMOD system is presented as a tool for the intercomparison of long-range dispersion models as well as a system for support of decision making. RTMOD is an internet-based procedure that collects the results of more than 20 models used around the world to predict the transport and deposition of radioactive releases in the atmosphere. It allows the real-time acquisition of model results and their intercomparison. Taking advantage of the availability of several model results, the system can also be used as a tool to support decision making in case of emergency. The new concept of ensemble dispersion modelling is introduced which is the basis for the decision-making application of RTMOD. New statistical parameters are presented that allow gathering the results of several models to produce a single dispersion forecast. The devised parameters are presented and tested on the results of RTMOD exercises

  18. A real case simulation of the air-borne effluent dispersion on a typical summer day under CDA scenario for PFBR using an advanced meteorological and dispersion model

    International Nuclear Information System (INIS)

    Srinivas, C.V; Venkatesan, R.; Bagavath Singh, A.; Somayaji, K.M.

    2003-11-01

    Environmental concentrations and radioactive doses within and beyond the site boundary for the CDA situation of PFBR have been estimated using an Advanced Radiological Impact Prediction system for a real atmospheric situation on a typical summer day in the month of May 2003. The system consists of a meso-scale atmospheric prognostic model MM5 coupled with a random walk Lagrangian particle dispersion model FLEXPART for the simulation of transport, diffusion and deposition of radio nuclides. The details of the modeling system, its capabilities and various features are presented. The model has been validated for the simulated coastal atmospheric features of land-sea breeze, development of TIBL etc., with site and regional meteorological observations from IMD. Analysis of the dose distribution in a situation that corresponds to the atmospheric conditions on the chosen day shows that the doses for CDA through different pathways are 8 times less than the earlier estimations made according to regulatory requirements using the Gaussian Plume Model (GPM) approach. However for stack releases a higher dose than was reported earlier occurred beyond the site boundary at 2-4 km range under stable and fumigation conditions. The doses due to stack releases under these conditions maintained almost the same value in 3 to 10 km range and decreased there after. Deposition velocities computed from radionuclide species, wind speed, surface properties were 2 orders lower than the values used earlier and hence gave more realistic estimates of ground deposited activity. The study has enabled to simulate the more complex meteorological situation that actually is present at the site of interest and the associated spatial distribution of radiological impact around Kalpakkam. In order to draw meaningful conclusion that can be compared with regulatory estimates future study would be undertaken to simulate the dispersion under extreme meteorological situations which could possibly be worse than

  19. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Meroney, Robert N. [Fluid Mechanics and Wind Engineering Program, Civil Engineering Department, Colorado State University Fort Collins, CO (United States); Pavageau, Michel; Rafailidis, Stilianos; Schatzmann, Michael [Meteorologisches Institut, Universitaet Hamburg, Hamburg (Germany)

    1996-08-01

    The University of Hamburg initiated a wind tunnel study of car exhaust dispersion from street canyons in an urban environment to investigate how pollution dispersion is affected by street geometry. Particular emphasis at the beginning of this work was put on the design of a line source to represent traffic exhaust. Pollution dispersion was studied in two dimensions (i.e., infinite-length streets were assumed). The case of an isolated street canyon in open country was examined first. The same street canyon geometry was subsequently studied in an urban environment, i.e., with additional canyons of similar geometry upstream and downstream of the test street. The dynamic and dispersion characteristics of the flow in the two cases were quite different. In the canyon amidst open country we observed better canyon ventilation than in the urban roughness case

  20. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin

    Directory of Open Access Journals (Sweden)

    García Dana M

    2007-12-01

    Full Text Available Abstract Background Inside bluegill (Lepomis macrochirus retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Results Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. Conclusion A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms, our evidence does not support a significant role for PKC.

  1. Comparison of results from dispersion models for regulatory purposes based on Gaussian-and Lagrangian-algorithms: an evaluating literature study

    International Nuclear Information System (INIS)

    Walter, H.

    2004-01-01

    Powerful tools to describe atmospheric transport processes for radiation protection can be provided by meteorology; these are atmospheric flow and dispersion models. Concerning dispersion models, Gaussian plume models have been used since a long time to describe atmospheric dispersion processes. Advantages of the Gaussian plume models are short computation time, good validation and broad acceptance worldwide. However, some limitations and their implications on model result interpretation have to be taken into account, as the mathematical derivation of an analytic solution of the equations of motion leads to severe constraints. In order to minimise these constraints, various dispersion models for scientific and regulatory purposes have been developed and applied. Among these the Lagrangian particle models are of special interest, because these models are able to simulate atmospheric transport processes close to reality, e.g. the influence of orography, topography, wind shear and other meteorological phenomena. Within this study, the characteristics and computational results of Gaussian dispersion models as well as of Lagrangian models have been compared and evaluated on the base of numerous papers and reports published in literature. Special emphasis has been laid on the intention that dispersion models should comply with EU requests (Richtlinie 96/29/Euratom, 1996) on a more realistic assessment of the radiation exposure to the population. (orig.)

  2. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  3. Practical Model for First Hyperpolarizability Dispersion Accounting for Both Homogeneous and Inhomogeneous Broadening Effects.

    Science.gov (United States)

    Campo, Jochen; Wenseleers, Wim; Hales, Joel M; Makarov, Nikolay S; Perry, Joseph W

    2012-08-16

    A practical yet accurate dispersion model for the molecular first hyperpolarizability β is presented, incorporating both homogeneous and inhomogeneous line broadening because these affect the β dispersion differently, even if they are indistinguishable in linear absorption. Consequently, combining the absorption spectrum with one free shape-determining parameter Ginhom, the inhomogeneous line width, turns out to be necessary and sufficient to obtain a reliable description of the β dispersion, requiring no information on the homogeneous (including vibronic) and inhomogeneous line broadening mechanisms involved, providing an ideal model for practical use in extrapolating experimental nonlinear optical (NLO) data. The model is applied to the efficient NLO chromophore picolinium quinodimethane, yielding an excellent fit of the two-photon resonant wavelength-dependent data and a dependable static value β0 = 316 × 10(-30) esu. Furthermore, we show that including a second electronic excited state in the model does yield an improved description of the NLO data at shorter wavelengths but has only limited influence on β0.

  4. Dispersion and Stabilization of Photocatalytic TiO2 Nanoparticles in Aqueous Suspension for Coatings Applications

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2012-01-01

    Full Text Available To produce titanium dioxide (TiO2 nanoparticle coatings, it is desirable that the nanoparticles are dispersed into a liquid solution and remain stable for a certain period of time. Controlling the dispersion and aggregation of the nanoparticles is crucial to exploit the advantages of the nanometer-sized TiO2 particles. In this work, TiO2 nanoparticles were dispersed and stabilized in aqueous suspensions using two common dispersants which were polyacrylic acid (PAA and ammonium polymethacrylate (Darvan C. The effect of parameters such as ultrasonication amplitude and type and amount of dispersants on the dispersibility and stability of the TiO2 aqueous suspensions were examined. Rupture followed by erosion was determined to be the main break up mechanisms when ultrasonication was employed. The addition of dispersant was found to produce more dispersed and more stabilized aqueous suspension. 3 wt.% of PAA with average molecular weight (Mw of 2000 g/mol (PAA 2000 was determined to produce the best and most stable dispersion. The suspensions were then coated on quartz glass, whereby the photocatalytic activity of the coatings was studied via the degradation of formaldehyde gas under UV light. The coatings were demonstrated to be photocatalytically active.

  5. Multiphysics Simulations of Entrained Flow Gasification. Part I: Validating the Nonreacting Flow Solver and the Particle Turbulent Dispersion Model

    KAUST Repository

    Kumar, Mayank

    2012-01-19

    In this two-part paper, we describe the construction, validation, and application of a multiscale model of entrained flow gasification. The accuracy of the model is demonstrated by (1) rigorously constructing and validating the key constituent submodels against relevant canonical test cases from the literature and (2) validating the integrated model against experimental data from laboratory scale and commercial scale gasifiers. In part I, the flow solver and particle turbulent dispersion models are validated against experimental data from nonswirling flow and swirling flow test cases in an axisymmetric sudden expansion geometry and a two-phase flow test case in a cylindrical bluff body geometry. Results show that while the large eddy simulation (LES) performs best among all tested models in predicting both swirling and nonswirling flows, the shear stress transport (SST) k-ω model is the best choice among the commonly used Reynolds-averaged Navier-Stokes (RANS) models. The particle turbulent dispersion model is accurate enough in predicting particle trajectories in complex turbulent flows when the underlying turbulent flow is well predicted. Moreover, a commonly used modeling constant in the particle dispersion model is optimized on the basis of comparisons with particle-phase experimental data for the two-phase flow bluff body case. © 2011 American Chemical Society.

  6. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere

    International Nuclear Information System (INIS)

    Ma, Denglong; Zhang, Zaoxiao

    2016-01-01

    Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  7. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Denglong [Fuli School of Food Equipment Engineering and Science, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); Zhang, Zaoxiao, E-mail: zhangzx@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); School of Chemical Engineering and Technology, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China)

    2016-07-05

    Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  8. Evaluation of field-collected data measuring fluorescein dye movements and dispersion for dispersed oil transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    French McCay, D.; Mueller, C.; Jayko, K.; Longval, B.; Schroeder, M. [Applied Science Associates Inc., Narragansett, RI (United States); Terrill, E.; Carter, M.; Otero, M.; Kim, S.Y. [Scripps Inst. of Oceanography, La Jolla, CA (United States); Nordhausen, W.; Lampinen, M. [California Dept. of Fish and Game, San Diego, CA (United States). Office of Spill Prevention and Response; Payne, J.R. [Payne Environmental Consultants Inc., Encinitas, CA (United States); Ohlmann, C. [California Univ., Santa Barbara, CA (United States)

    2007-07-01

    In the event of on oil spill at sea, the concentration of hydrocarbons in the water column can be evaluated using oil spill fate and transport modeling. Such modeling can also determine the potential exposure to zooplankton, and the impacts of oil spills with and without the use of dispersants. This paper reported on fluorescein dye studies that were conducted off Sand Diego, California to evaluate the ability of transport models to hindcast movement and dispersion of dye using data such as surface currents calculated from high-frequency radar; near surface currents from drifter measurements drogued at several depths; dye concentrations measured by fluorescence; spreading and dye intensity measurements based on aerial photography; and, water density profiles from conductivity-temperature-depth (CTD) casts. This paper presented modeling issues that remain to be addressed, such as the need to resolve small-scale transport processes in order to evaluate effects on water column biota. Since these processes determining current velocities are complex, it is not feasible to include most of the complexities at appropriately small scales in oil spill modeling applications. The difficulty in predicting currents that transport oil components and organisms with a hydrodynamic model application that does not include temporal details in the forcing function was also discussed. This paper demonstrated that the SIMAP spill trajectory model, using the drifter velocities as current input, successfully reproduced trajectories of the dye. The effect of wind drift transporting the surface material faster than the subsurface materials was identified as a spreading mechanism. Therefore, subtraction of the wind drift from the shallower drifter velocities, and inclusion of wind drift in SIMAP would allow those velocities to be used for depths other than those tracked by the drifters. 57 refs., 8 tabs., 17 figs.

  9. Multiple Linear Regression Modeling To Predict the Stability of Polymer-Drug Solid Dispersions: Comparison of the Effects of Polymers and Manufacturing Methods on Solid Dispersion Stability.

    Science.gov (United States)

    Fridgeirsdottir, Gudrun A; Harris, Robert J; Dryden, Ian L; Fischer, Peter M; Roberts, Clive J

    2018-03-29

    Solid dispersions can be a successful way to enhance the bioavailability of poorly soluble drugs. Here 60 solid dispersion formulations were produced using ten chemically diverse, neutral, poorly soluble drugs, three commonly used polymers, and two manufacturing techniques, spray-drying and melt extrusion. Each formulation underwent a six-month stability study at accelerated conditions, 40 °C and 75% relative humidity (RH). Significant differences in times to crystallization (onset of crystallization) were observed between both the different polymers and the two processing methods. Stability from zero days to over one year was observed. The extensive experimental data set obtained from this stability study was used to build multiple linear regression models to correlate physicochemical properties of the active pharmaceutical ingredients (API) with the stability data. The purpose of these models is to indicate which combination of processing method and polymer carrier is most likely to give a stable solid dispersion. Six quantitative mathematical multiple linear regression-based models were produced based on selection of the most influential independent physical and chemical parameters from a set of 33 possible factors, one model for each combination of polymer and processing method, with good predictability of stability. Three general rules are proposed from these models for the formulation development of suitably stable solid dispersions. Namely, increased stability is correlated with increased glass transition temperature ( T g ) of solid dispersions, as well as decreased number of H-bond donors and increased molecular flexibility (such as rotatable bonds and ring count) of the drug molecule.

  10. A new percolation model for composite solid electrolytes and dispersed ionic conductors

    Science.gov (United States)

    Risyad Hasyim, Muhammad; Lanagan, Michael T.

    2018-02-01

    Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.

  11. Resonance dielectric dispersion of TEA-CoCl2Br2 nanocrystals incorporated into the PMMA matrix

    Science.gov (United States)

    Kapustianyk, V.; Shchur, Ya; Kityk, I.; Rudyk, V.; Lach, G.; Laskowski, L.; Tkaczyk, S.; Swiatek, J.; Davydov, V.

    2008-09-01

    The dielectric properties of TEA-CoCl2Br2 nanocrystals incorporated into the polymethylmethacrylate matrix within the frequency range of 3 × 105-2.6 × 109 Hz in the temperature region of 90-300 K were investigated. The considerable difference in the dielectric spectra of the nanocomposite compared to those of the bulk crystal and the pure polymer matrix was observed. The dielectric dispersion of the composite material reveals a resonance type (resonance frequency was found to be near 1.3 GHz) and may be qualitatively explained as the result of piezoelectric resonance on the nanocrystals. The model interpretation of this phenomenon based on the forced-dumped oscillator is presented.

  12. Modeling and preliminary analysis on the temperature profile of the (TRU-Zr)-Zr dispersion fuel rod for HYPER

    International Nuclear Information System (INIS)

    Lee, B. W.; Hwang, W.; Lee, B. S.; Park, W. S.

    2000-01-01

    Either TRU-Zr metal alloy or (TRU-Zr)-Zr dispersion fuel is considered as a blanket fuel for HYPER(Hybrid Power Extraction Reactor). In order to develop the code for dispersion fuel rod performance analysis under steady state condition, the fuel temperature distribution model which is the one of the most important factors in a fuel performance code has been developed in this paper,. This developed model computes the one dimensional radial temperature distribution of a cylindrical fuel rod. The temperature profile results by this model are compared with the temperature distributions of U 3 Si-A1 dispersion fuel and TRU-Zr metal alloy fuel. This model will be installed in performance analysis code for dispersion fuel

  13. Convergence monitoring of Markov chains generated for inverse tracking of unknown model parameters in atmospheric dispersion

    International Nuclear Information System (INIS)

    Kim, Joo Yeon; Ryu, Hyung Joon; Jung, Gyu Hwan; Lee, Jai Ki

    2011-01-01

    The dependency within the sequential realizations in the generated Markov chains and their reliabilities are monitored by introducing the autocorrelation and the potential scale reduction factor (PSRF) by model parameters in the atmospheric dispersion. These two diagnostics have been applied for the posterior quantities of the release point and the release rate inferred through the inverse tracking of unknown model parameters for the Yonggwang atmospheric tracer experiment in Korea. The autocorrelations of model parameters are decreasing to low values approaching to zero with increase of lag, resulted in decrease of the dependencies within the two sequential realizations. Their PSRFs are reduced to within 1.2 and the adequate simulation number recognized from these results. From these two convergence diagnostics, the validation of Markov chains generated have been ensured and PSRF then is especially suggested as the efficient tool for convergence monitoring for the source reconstruction in atmospheric dispersion. (author)

  14. PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES

    Science.gov (United States)

    The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...

  15. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  16. Circulation and microplastic dispersion in the Chiemsee (Germany) investigated with numerical modeling.

    Science.gov (United States)

    Marcello Falcieri, Francesco; Laforsch, Christian; Piehl, Sarah; Ricchi, Antonio; Atwood, Elizabeth C.; Carniel, Sandro; Sclavo, Mauro

    2017-04-01

    The Chiemsee (measuring about 80 km2 and a maximum depth of 73 m) is a NATURA 2000 site and one of the major German lakes and plays a significant environmental role for the region. Moreover it is an important touristic destination, making its beaches and water quality highly valuable from a socio-economical viewpoint. As for most inland European aquatic environments, the Chiemsee was recently found to be contaminated by microplastic (i.e. plastic fragments smaller than 0.5 mm). Two main microplastics sources were identified in the Chiemsee: riverine inputs, and degradation of litter from touristic beaches. Hence, it is of interest to study lake circulation and the resulting microplastic dispersion from these sources in order to support activities to achieve a good environmental status. Here we present the first attempt to characterize the hydrodynamic processes of the Chiemsee with a high resolution 3D implementation of the Regional Ocean Modeling System (ROMS). The simulations were forced with observed riverine inputs and modeled atmospherical fields computed with a local implementation of the Weather Research and Forecasting (WRF) model. Modeling results provide a first insight into the Chiemsee circulation system and contribute to understanding the dispersion pathways of microplastic particles from different sources. Furthermore, results can be used to highlight coastlines with higher risk of microplastic accumulation, identified using a set of Lagrangian simulations. The work was partially supported by the CNR Short Term Mobility grant.

  17. Development of numerical dispersion model for radioactive nuclei including resuspension processes

    International Nuclear Information System (INIS)

    Chiba, Masaru; Kurita, Susumu; Sasaki, Hidetaka

    2003-01-01

    Global-scale and local-scale dispersion model are developed combining to global and local scale meteorological forecasting model. By applying this system to another miner constituent such as mineral dust blowing by strong wind in arid region, this system shows very good performance to watch and predict the distribution of it. (author)

  18. Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media

    Science.gov (United States)

    Zhang, K.; Luo, Y.; Xia, J.; Chen, C.

    2011-01-01

    Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P

  19. A novel polymer of Al2(SO43-poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonate ionic hybrid prepared by dispersion polymerization

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available A novel polymer Al2(SO43-poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonate (Al2(SO43-P(AM/AMPS had been synthesized by dispersion polymerization in an aqueous solution of ammonium sulfate and aluminum sulfate, using poly(2-acrylamido-2-methyl-1-propanesulfonate P(AMPS as stabilizer, acrylamide (AM and 2-acrylamido-2-methyl-1-propanesulfonate (AMPS as monomers, poly(2-acrylamido-2-methyl-1-propanesulfonate (PAMPS as stabilizer and [2-(2-imidazdino-2-ylpropane]dihydrochloride (VA-044 as initiator. The average particle size of polymer dispersion ranged from 0.2 to 0.3 µm, the molecular weight was from 4.3•106 to 5.7•106 g•mol-1. The polymer was characterized by infrared (IR spectroscopy, thermogravimetry (TGA and transmission electron microscopy (TEM. The swelling property of the dispersion polymer was studied by particle size distribution. When the polymer dispersion was diluted with deionized water, particle sizes decreased several times. When the polymer dispersion was diluted with salt water, the particle size increased with increasing concentration of salt. The effects of Al2(SO43 and stabilizer on the particle size and the relative molecular weight of the polymer were investigated, respectively. The optimum conditions for the stable Al2(SO43-P(AM/AMPS dispersion were that the concentration of Al2(SO43 was 1.12 wt%, the concentration of PAMPS stabilizer was 3 wt% and the concentration of initiator was 0.2 mol•l-1 and the monomers concentration was 14 wt%.

  20. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  1. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  2. Finite-difference modeling and dispersion analysis of high-frequency love waves for near-surface applications

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.

    2010-01-01

    Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.

  3. Phonon dispersion relations for caesium thiocyanate

    International Nuclear Information System (INIS)

    Irving, M.A.; Smith, T.F.; Elcombe, M.M.

    1984-01-01

    Room temperature phonon dispersion relations for frequencies below 2 THz have been measured, along the three orthorhombic axes and selected diagonal directions by neutron inelastic scattering, for caesium thiocyanate. These curves, which represent 13 acoustic modes and 11 optic modes of vibration, do not agree with the dispersion behaviour calculated from the rigid-ion model developed by Ti and Ra to describe their Raman scattering observations

  4. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    2016-01-01

    Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.

  5. Pollutant Dispersion Modeling in Natural Streams Using the Transmission Line Matrix Method

    Directory of Open Access Journals (Sweden)

    Safia Meddah

    2015-09-01

    Full Text Available Numerical modeling has become an indispensable tool for solving various physical problems. In this context, we present a model of pollutant dispersion in natural streams for the far field case where dispersion is considered longitudinal and one-dimensional in the flow direction. The Transmission Line Matrix (TLM, which has earned a reputation as powerful and efficient numerical method, is used. The presented one-dimensional TLM model requires a minimum input data and provides a significant gain in computing time. To validate our model, the results are compared with observations and experimental data from the river Severn (UK. The results show a good agreement with experimental data. The model can be used to predict the spatiotemporal evolution of a pollutant in natural streams for effective and rapid decision-making in a case of emergency, such as accidental discharges in a stream with a dynamic similar to that of the river Severn (UK.

  6. Two-Fluid Models for Simulating Dispersed Multiphase Flows-A Review

    Directory of Open Access Journals (Sweden)

    L.X. Zhou

    2009-01-01

    Full Text Available The development of two-fluid models for simulating dispersed multiphase flows (gas-particle, gas-droplet, bubble-liquid, liquid-particle flows by the present author within the last 20 years is systematically reviewed. The two-fluid models based on Reynolds expansion, time averaging and mass-weighed averaging, and also PDF transport equations are described. Different versions of two-phase turbulence models, including the unified second-order moment (USM and k-ε-kp models, the DSM-PDF model, the SOM-MC model, the nonlinear k-e-kp model, and the USM-Θ model for dense gas-particle flows and their application and experimental validation are discussed.

  7. Contributions of chemical exchange to T1ρ dispersion in a tissue model.

    Science.gov (United States)

    Cobb, Jared G; Xie, Jingping; Gore, John C

    2011-12-01

    Variations in T(1ρ) with locking-field strength (T(1ρ) dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of comonomers, increasing stiffness, and in pH, modifying exchange rates. Magnetic resonance images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T(1ρ) at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T(1ρ) dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This article demonstrates a new method to assess the structural and chemical effects on T(1ρ) relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. Copyright © 2011 Wiley Periodicals, Inc.

  8. A summary of recent refinements to the WAKE dispersion model, a component of the HGSYSTEM/UF6 model suite

    International Nuclear Information System (INIS)

    Yambert, M.W.; Lombardi, D.A.; Goode, W.D. Jr.; Bloom, S.G.

    1998-08-01

    The original WAKE dispersion model a component of the HGSYSTEM/UF 6 model suite, is based on Shell Research Ltd.'s HGSYSTEM Version 3.0 and was developed by the US Department of Energy for use in estimating downwind dispersion of materials due to accidental releases from gaseous diffusion plant (GDP) process buildings. The model is applicable to scenarios involving both ground-level and elevated releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant. Over the 2-year period since its creation, the WAKE model has been used to perform consequence analyses for Safety Analysis Reports (SARs) associated with gaseous diffusion plants in Portsmouth (PORTS), Paducah (PGDP), and Oak Ridge. These applications have identified the need for additional model capabilities (such as the treatment of complex terrain and time-variant releases) not present in the original utilities which, in turn, has resulted in numerous modifications to these codes as well as the development of additional, stand-alone postprocessing utilities. Consequently, application of the model has become increasingly complex as the number of executable, input, and output files associated with a single model run has steadily grown. In response to these problems, a streamlined version of the WAKE model has been developed which integrates all calculations that are currently performed by the existing WAKE, and the various post-processing utilities. This report summarizes the efforts involved in developing this revised version of the WAKE model

  9. On unitarity of the particle-hole dispersive optical model

    Science.gov (United States)

    Gorelik, M. L.; Shlomo, S.; Tulupov, B. A.; Urin, M. H.

    2018-02-01

    For the recently developed particle-hole dispersive optical model, weak violations of unitarity due to a phenomenological description of the spreading effect are considered. Methods for unitarity restoration are proposed and implemented for the 208Pb nucleus in the description of the energy-averaged isoscalar monopole double transition density and strength functions in a wide excitation energy interval that includes the isoscalar giant monopole resonance and its overtone. To illustrate abilities of the model, direct neutron decay of the mentioned giant resonance is also considered.

  10. Atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1988-01-01

    The report describes currently available techniques for predicting the dispersion of accidentally released radioactive materials and techniques for visualization using computer graphics. A simulation study is also made on the dispersion of radioactive materials released from the Chernobyl plant. The simplest models include the Gauss plume model and the puff model, which cannot serve to analyze the effects of the topography, vertical wind shear, temperature inversion layer, etc. Numerical analysis methods using advection and dispersion equations are widely adopted for detailed evaluation of dispersion in an emergency. An objective analysis model or a hydrodynamical model is often used to calculate the air currents which are required to determine the advection. A small system based on the puff model is widely adopted in Europe, where the topography is considered to have only simple effects. A more sophisticated large-sized system is required in nuclear facilities located in an area with more complex topographic features. An emergency system for dispersion calculation should be equipped with a graphic display to serve for quick understanding of the radioactivity distribution. (Nogami, K.)

  11. Application of CFD dispersion calculation in risk based inspection for release of H2S

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Vinod, Gopika; Singh, R.K.; Rao, V.V.S.S.; Vaze, K.K.

    2011-01-01

    In atmospheric dispersion both deterministic and probabilistic approached have been used for addressing design and regulatory concerns. In context of deterministic calculations the amount of pollutants dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analysis based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. In context of probabilistic methods applying risk based inspection (wherein consequence of failure from each component needs to be assessed) are becoming popular. Consequence evaluation in a process plant is a crucial task. Often the number of components considered for life management will be too huge. Also consequence evaluation of all the components proved to be laborious task. The present paper is the results of joint collaborative work from deterministic and probabilistic modelling group working in the field of atmospheric dispersion. Even though API 581 has simplified qualitative approach, regulators find the some of the factors, in particular, quantity factor, not suitable for process plants. Often dispersion calculations for heavy gas are done with very simple model which can not take care of density based atmospheric dispersion. This necessitates a new approach with a CFD based technical basis is proposed, so that the range of quantity considered along with factors used can be justified. The present paper is aimed at bringing out some of the distinct merits and demerits of the CFD based models. A brief account of the applications of such CFD codes reported in literature is also presented in the paper. This paper describes the approach devised and demonstrated for the said issue with emphasis of CFD calculations. (author)

  12. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies

    International Nuclear Information System (INIS)

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. - Highlights: → A concept for aerodynamic modelling of vegetation in small scale wind tunnel studies is presented. → The concept was applied to study pollutant dispersion in urban street canyons with avenue tress. → The wind tunnel studies show that modelling the aerodynamic effects of vegetation is important. → Avenue trees give rise to increased pollutant concentrations in urban street canyons. - Avenue trees in urban street canyons affect the pollutant dispersion and result in increased traffic exhaust concentrations.

  13. Comparison of marine dispersion model predictions with environmental radionuclide concentrations

    International Nuclear Information System (INIS)

    Johnson, C.E.; McKay, W.A.

    1988-01-01

    The comparison of marine dispersion model results with measurements is an essential part of model development and testing. The results from two residual flow models are compared with seawater concentrations, and in one case with concentrations measured in marine molluscs. For areas with short turnover times, seawater concentrations respond rapidly to variations in discharge rate and marine currents. These variations are difficult to model, and comparison with concentrations in marine animals provides an alternative and complementary technique for model validation with the advantages that the measurements reflect the mean conditions and frequently form a useful time series. (author)

  14. Marine radioactivity studies in the Suez Canal: Modelling hydrodynamics and dispersion

    International Nuclear Information System (INIS)

    Abril, J.M.; Abdel-Aal, M.M.

    1999-01-01

    This paper comprises the work carried out under the IAEA Technical Co-operation Project EGY/07/002. The main goal was to develop a modelling study on the dispersion of radioactive pollution in the Suez Canal

  15. Global regulator IscR positively contributes to antimonite resistance and oxidation in Comamonas testosteroni S44

    DEFF Research Database (Denmark)

    Liu, Hongliang; Zhuang, Weiping; Zhang, Shengzhe

    2015-01-01

    Antimonial compounds can be found as a toxic contaminant in the environment. Knowledge on mechanisms of microbial Sb oxidation and its role in microbial tolerance are limited. Previously, we found that Comamonas testosteroni S44 was resistant to multiple heavy metals and was able to oxidize the t...... and Sb(III) oxidation via Fe-S cluster biogenesis and oxidative stress protection. Bacterial Sb(III) oxidation is a detoxification reaction.......Antimonial compounds can be found as a toxic contaminant in the environment. Knowledge on mechanisms of microbial Sb oxidation and its role in microbial tolerance are limited. Previously, we found that Comamonas testosteroni S44 was resistant to multiple heavy metals and was able to oxidize...... the toxic antimonite [Sb(III)] to the much less toxic antimonate [Sb(V)]. In this study, transposon mutagenesis was performed in C. testosteroni S44 to isolate genes responsible for Sb(III) resistance and oxidation. An insertion mutation into iscR, which regulates genes involved in the biosynthesis of Fe...

  16. Patterns of physical activity and associated factors among teenagers from Barcelona (Spain) in 2012.

    Science.gov (United States)

    Ruiz-Trasserra, Alicia; Pérez, Anna; Continente, Xavier; O'Brien, Kerry; Bartroli, Montse; Teixidó-Compaño, Ester; Espelt, Albert

    To estimate the prevalence of moderate and vigorous physical activity (MVPA), as defined by the World Health Organisation (WHO), and associated factors among teenagers from Barcelona in 2012. Cross-sectional survey to assess risk factors in a representative sample of secondary school students (aged 13-16 years, International Standard Classification of Education [ISCED] 2, n=2,162; and 17-18 years, ISCED 3, n=1016) in Barcelona. We estimated MVPA prevalence overall, and for each independent variable and each gender. Poisson regression models with robust variance were fit to examine the factors associated with high-level MVPA, and obtained prevalence ratios (PR) and 95% confidence intervals (95%CI). Only 13% of ISCED 2 and 10% of ISCED 3 students met the WHO physical activity recommendations. This percentage was lower among girls at both academic levels. MVPA was lower among ISCED 3 compared to ISCED 2 students, and among students with a lower socioeconomic status. Physical activity was associated with positive self-perception of the health status (e.g., positive self-perception of health status among ISCED 2 compared to ISCED 3 students: PR=1.31 [95%CI: 1.22-1.41] and 1.61 [95%CI: 1.44-1.81] for boys and girls, respectively]. The percentage of teenagers who met WHO MVPA recommendations was low. Strategies are needed to increase MVPA levels, particularly in older girls, and students from low socioeconomic backgrounds. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a finite volume method

  18. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a

  19. Influential factors of 2-chlorobiphenyl reductive dechlorination by highly dispersed bimetallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Junrong

    2016-01-01

    Full Text Available Highly dispersed Pd-Fe0 bimetallic nanoparticles were prepared in the presence of 40 kHz ultrasonic irradiation in order to enhance disparity and reactivity, and simultaneously avoid agglomeration. Influential factors of 2-chlorobiphenyl (2-Cl BP reductive dechlorination by highly dispersed Pd-Fe0 nanoparticles were investigated. Experimental results showed that highly dispersed Pd-Fe0 nanoparticles prepared in the in the presence of ultrasound could further improve the dechlorination efficiency of 2-Cl BP, meanwhile the biphenyl (BP formation rates increased obviously and increased from 47.4% (in the absence of ultrasound to 95.3% (in the presence of ultrasound within 300 min. The catalytic reductive dechlorination effciency of 2-Cl BP was dependent on Pd-Fe0 nanoparticles prepared methods, Pd-Fe0 nanoparticles dosage, Pd loading percentage over Fe0 and initial pH values

  20. Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space

    International Nuclear Information System (INIS)

    William S. Winters

    2002-01-01

    This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied

  1. Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence

    Science.gov (United States)

    Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui

    2018-01-01

    This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.

  2. Decontamination of solid matrices using supercritical CO2: study of contaminant-additives-CO2

    International Nuclear Information System (INIS)

    Galy, J.

    2006-11-01

    This work deals with the decontamination of solid matrices by supercritical CO 2 and more particularly with the study of the interactions between the surfactants and the CO 2 in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO 2 . The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO 2 low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO 2 -phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO 2 and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO 2 -phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO 2 . A parallel has been established between the evolution of the surface tension between the water and

  3. Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models

    Science.gov (United States)

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.

  4. Parametric laws to model urban pollutant dispersion with a street network approach

    Science.gov (United States)

    Soulhac, L.; Salizzoni, P.; Mejean, P.; Perkins, R. J.

    2013-03-01

    This study discusses the reliability of the street network approach for pollutant dispersion modelling in urban areas. This is essentially based on a box model, with parametric relations that explicitly model the main phenomena that contribute to the street canyon ventilation: the mass exchanges between the street and the atmosphere, the pollutant advection along the street axes and the pollutant transfer at street intersections. In the first part of the paper the focus is on the development of a model for the bulk transfer street/atmosphere, which represents the main ventilation mechanisms for wind direction that are almost perpendicular to the axis of the street. We then discuss the role of the advective transfer along the street axis on its ventilation, depending on the length of the street and the direction of the external wind. Finally we evaluate the performances of a box model integrating parametric exchange laws for these transfer phenomena. To that purpose we compare the prediction of the model to wind tunnel experiments of pollutant dispersion within a street canyon placed in an idealised urban district.

  5. Comparison of Land-Use Regression Modeling with Dispersion and Chemistry Transport Modeling to Assign Air Pollution Concentrations within the Ruhr Area

    Directory of Open Access Journals (Sweden)

    Frauke Hennig

    2016-03-01

    Full Text Available Two commonly used models to assess air pollution concentration for investigating health effects of air pollution in epidemiological studies are Land Use Regression (LUR models and Dispersion and Chemistry Transport Models (DCTM. Both modeling approaches have been applied in the Ruhr area, Germany, a location where multiple cohort studies are being conducted. Application of these different modelling approaches leads to differences in exposure estimation and interpretation due to the specific characteristics of each model. We aimed to compare both model approaches by means of their respective aims, modeling characteristics, validation, temporal and spatial resolution, and agreement of residential exposure estimation, referring to the air pollutants PM2.5, PM10, and NO2. Residential exposure referred to air pollution exposure at residences of participants of the Heinz Nixdorf Recall Study, located in the Ruhr area. The point-specific ESCAPE (European Study of Cohorts on Air Pollution Effects-LUR aims to temporally estimate stable long-term exposure to local, mostly traffic-related air pollution with respect to very small-scale spatial variations (≤100 m. In contrast, the EURAD (European Air Pollution Dispersion-CTM aims to estimate a time-varying average air pollutant concentration in a small area (i.e., 1 km2, taking into account a range of major sources, e.g., traffic, industry, meteorological conditions, and transport. Overall agreement between EURAD-CTM and ESCAPE-LUR was weak to moderate on a residential basis. Restricting EURAD-CTM to sources of local traffic only, respective agreement was good. The possibility of combining the strengths of both applications will be the next step to enhance exposure assessment.

  6. Atmospheric dispersion models for real-time application in the decision support system being developed within the CEC

    International Nuclear Information System (INIS)

    Mikkelsen, T.

    1992-01-01

    A number of Commission of the European Communities member states are presently coordinating their research and development of a ''Real-time On-line DecisiOn Support'' (RODOS) for emergency assistance in the event of nuclear accident. In addition to atmospheric dispersion, the system involves multiple other radiological disciplines. The ability to estimate a specific atmospheric dispersion scenarios in real-time becomes a first-priority task and is of uttermost importance for the subsequent success or failure of such a comprehensive decision support system to guide off-site emergency situations. No single dispersion model is at present able to cover all possible release-types and scales of dispersion. A hierarchy of atmospheric flow and dispersion models is presently being ranked for suitability to real-time calculate air and integrated-air concentrations. Starting at the short-range scale, models are discriminated with respect to principle, adequacy and flexibility, CPU-time constraints, experimental evaluation record, instantaneous or short-time release handling, deposition measures (wet and dry), input and output data flexibility and uncertainty-handling and model-interpretation. Additional features of particular importance are: Robustness in schemes for meteorological preprocessing of meteorological input data, and on-line backfitting and data-assimilation procedures. Models demonstrating practical and operational use, including real-time operational experience, have in this context the highest priority, as opposed to the more sophisticated and theoretical ''development-type'' models. Real-time methods founded on our present knowledge and data concerning flow and dispersion in the atmospheric boundary layer, are of primary interest. (au) (18 refs.)

  7. Modelling the atmospheric dispersion of foot-and-mouth disease virus for emergency preparedness

    DEFF Research Database (Denmark)

    Sørensen, J.H.; Jensen, C.O.; Mikkelsen, T.

    2001-01-01

    A model system for simulating airborne spread of foot-and-mouth disease (FMD) is described. The system includes a virus production model and the local- and mesoscale atmospheric dispersion model RIMPUFF linked to the LINCOM local-scale Row model. LINCOM is used to calculate the sub-grid scale Row...

  8. Unconfined Groundwater Dispersion Model On Sand Layers In Coral Island

    OpenAIRE

    Sultan

    2016-01-01

    The research objective is to analyze the sand layer to determine the characteristics of the unconfined groundwater aquifer on coral island and found the dispersion model of unconfined groundwater in the sand layer in the coral island. The method used is direct research in the field, laboratory analysis and secondary data. Observations geological conditions, as well as the measurement and interpretation of geoelectrical potential groundwater models based on the value of the conductivity of gro...

  9. Analytical solution of dispersion relations for the nuclear optical model

    Energy Technology Data Exchange (ETDEWEB)

    VanderKam, J.M. [Center for Communications Research, Thanet Road, Princeton, NJ 08540 (United States); Weisel, G.J. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States); Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601-3760 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States)

    2000-12-01

    Analytical solutions of dispersion integral relations, linking the real and imaginary parts of the nuclear optical model, have been derived. These are displayed for some widely used forms of the volume- and surface-absorptive nuclear potentials. When the analytical solutions are incorporated into the optical-model search code GENOA, replacing a numerical integration, the code runs three and a half to seven times faster, greatly aiding the analysis of direct-reaction, elastic scattering data. (author)

  10. User's manual for DWNWND: an interactive Gaussian plume atmospheric transport model with eight dispersion parameter options

    International Nuclear Information System (INIS)

    Fields, D.E.; Miller, C.W.

    1980-05-01

    The most commonly used approach for estimating the atmospheric concentration and deposition of material downwind from its point of release is the Gaussian plume atmospheric dispersion model. Two of the critical parameters in this model are sigma/sub y/ and sigma/sub z/, the horizontal and vertical dispersion parameters, respectively. A number of different sets of values for sigma/sub y/ and sigma/sub z/ have been determined empirically for different release heights and meteorological and terrain conditions. The computer code DWNWND, described in this report, is an interactive implementation of the Gaussian plume model. This code allows the user to specify any one of eight different sets of the empirically determined dispersion paramters. Using the selected dispersion paramters, ground-level normalized exposure estimates are made at any specified downwind distance. Computed values may be corrected for plume depletion due to deposition and for plume settling due to gravitational fall. With this interactive code, the user chooses values for ten parameters which define the source, the dispersion and deposition process, and the sampling point. DWNWND is written in FORTRAN for execution on a PDP-10 computer, requiring less than one second of central processor unit time for each simulation

  11. Equilibrium Price Dispersion in a Matching Model with Divisible Money

    NARCIS (Netherlands)

    Kamiya, K.; Sato, T.

    2002-01-01

    The main purpose of this paper is to show that, for any given parameter values, an equilibrium with dispersed prices (two-price equilibrium) exists in a simple matching model with divisible money presented by Green and Zhou (1998).We also show that our two-price equilibrium is unique in certain

  12. Evaluating realized seed dispersal across fragmented tropical landscapes: a two-fold approach using parentage analysis and the neighbourhood model.

    Science.gov (United States)

    Ismail, Sascha A; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G; Uma Shaanker, Ramanan; Kettle, Chris J

    2017-05-01

    Despite the importance of seed dispersal for survival of plant species in fragmented landscapes, data on seed dispersal at landscape scales remain sparse. Effective seed dispersal among fragments determines recolonization and plant species persistence in such landscapes. We present the first large-scale (216-km 2 ) direct estimates of realized seed dispersal of a high-value timber tree (Dysoxylum malabaricum) across an agro-forest landscape in the Western Ghats, India. Based upon an exhaustive inventory of adult trees and a sample of 488 seedlings all genotyped at 10 microsatellite loci, we estimated realized seed dispersal using parentage analysis and the neighbourhood model. Our estimates found that most realized seed dispersal was within 200 m, which is insufficient to effectively bridge the distances between forest patches. We conclude that using mobility of putative animal dispersers can be misleading when estimating tropical tree species vulnerability to habitat fragmentation. This raises serious concerns about the potential of many tropical trees to recolonize isolated forest patches where high-value tree species have already been removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. AERMOD: A DISPERSION MODEL FOR INDUSTRIAL SOURCE APPLICATIONS PART I: GENERAL MODEL FORMULATION AND BOUNDARY LAYER CHARACTERIZATION

    Science.gov (United States)

    The formulations of the AMS/EPA Regulatory Model Improvement Committee's applied air dispersion model (AERMOD) as related to the characterization of the planetary boundary layer are described. This is the first in a series of three articles. Part II describes the formulation of...

  14. Calculation of Longitudinal Dispersion Coefficient and Modeling the Pollution Transmission in Rivers (Case studies: Severn and Narew Rivers

    Directory of Open Access Journals (Sweden)

    A. Parsaie

    2017-01-01

    empirical formulas and artificial intelligent techniques have been proposed. In this study LDC is calculated for the Severn River and Narew River and some selected empirical formulas have been assessed to calculate the LDC. Dispersion Routing Method: As mentioned previously, calculating the LDC is more important, so firstly, the longitudinal dispersion was calculated from the concentration profile by Dispersion Routing Method (DRM. Using the DRM included the four stage.1-considering of initial value for LDC .2-calculating the concentration profile at the downstream station by using the upstream concentration profile and LDC.3- Performing a comparison between the calculated profile and measured profile.4- if the calculating profile is not a suitable cover, the measured profile of the process will be repeated until the calculated profile shows a good covering on the measured profile. Numerical Method: The ADE includes two different parts advection and dispersion. The pure advection term is related to transmission modeling without any dispersing and the dispersion term is related to the dispersion without any transmission. To discrete the ADE the finite volume method was used. According to physical properties of these two terms and the recommendation of researchers a suitable scheme should be considered for numerical solution of ADE terms. Among the finite volume schemes, the quickest scheme was selected to discrete the advection term, because of this scheme has suitable ability to model the pure advection term. The quickest scheme is an explicit scheme and the stability condition should be considered. To discrete the dispersion term, the central implicit scheme was selected. This scheme is unconditionally stable. Results and Discussion: The results of longitudinal dispersion coefficient for the Severn River and Narew River were calculated using the DRM method and empirical formulas. The results of LDC calculation showed that the minimum and maximum values for the Severn River

  15. Electrophysiological response of chicken's jejunal epithelium to increasing levels of T-2 toxin.

    Science.gov (United States)

    Yunus, Agha Waqar; Kröger, Susan; Tichy, Alexander; Zentek, Jürgen; Böhm, Josef

    2013-02-01

    The present investigations were conducted to test the effects of T-2 toxin on electrophysiological variables of jejunal epithelium of chicken. Jejunal segments of broilers were monitored in Ussing chambers in the presence of T-2 toxin at the levels of 0 (negative control), 0 (methanol/vehicle control), 0.1, 1, 5, and 10 μg/ml of buffer. T-2 toxin did not affect basal values of short circuit current (I(sc)), transmural potential difference, or tissue conductivity in the jejunal epithelium. T-2 toxin also did not statistically affect glucose-induced electrophysiological variables during the first 3 min of glucose induction. Compared to the vehicle control, the ouabain-sensitive I(sc) was negatively affected (P = 0.008) only under 5 μg of T-2 toxin/ml. Increasing levels of T-2 toxin negatively affected the ouabain-sensitive I(sc) in a cubic (P = 0.007) fashion. These data indicate that acute exposure to moderate levels of T-2 toxin may progressively impair the cation gradient across the jejunal epithelium.

  16. Modeling the influence of interaction layer formation on thermal conductivity of U–Mo dispersion fuel

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Casella, Andrew M.; Huber, Tanja K.

    2015-01-01

    Highlights: • Hsu equation provides best thermal conductivity estimate of U–Mo dispersion fuel. • Simple model considering interaction layer formation was coupled with Hsu equation. • Interaction layer thermal conductivity is not the most important attribute. • Effective thermal conductivity is mostly influenced by interaction layer formation. • Fuel particle distribution also influences the effective thermal conductivity. - Abstract: The Global Threat Reduction Initiative Program continues to develop existing and new test reactor fuels to achieve the maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix, porosity that forms during fabrication of the fuel plates or rods, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation, dispersed particle size, and volume fraction of dispersed phase in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be as important in determining the effective conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the dispersed particle distribution by minimizing interaction

  17. Mixing height derived from the DMI-HIRLAM NWP model, and used for ETEX dispersion modelling

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.H.; Rasmussen, A. [Danish Meteorological Inst., Copenhagen (Denmark)

    1997-10-01

    For atmospheric dispersion modelling it is of great significance to estimate the mixing height well. Mesoscale and long-range diffusion models using output from numerical weather prediction (NWP) models may well use NWP model profiles of wind, temperature and humidity in computation of the mixing height. This is dynamically consistent, and enables calculation of the mixing height for predicted states of the atmosphere. In autumn 1994, the European Tracer Experiment (ETEX) was carried out with the objective to validate atmospheric dispersion models. The Danish Meteorological Institute (DMI) participates in the model evaluations with the Danish Emergency Response Model of the Atmosphere (DERMA) using NWP model data from the DMI version of the High Resolution Limited Area Model (HIRLAM) as well as from the global model of the European Centre for Medium-Range Weather Forecast (ECMWF). In DERMA, calculation of mixing heights are performed based on a bulk Richardson number approach. Comparing with tracer gas measurements for the first ETEX experiment, a sensitivity study is performed for DERMA. Using DMI-HIRLAM data, the study shows that optimum values of the critical bulk Richardson number in the range 0.15-0.35 are adequate. These results are in agreement with recent mixing height verification studies against radiosonde data. The fairly large range of adequate critical values is a signature of the robustness of the method. Direct verification results against observed missing heights from operational radio-sondes released under the ETEX plume are presented. (au) 10 refs.

  18. Estimating Longitudinal Dispersion Coefficient of Pollutants Using Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Hossein Riahi Modvar

    2008-09-01

    Full Text Available Longitudinal dispersion coefficient in rivers and natural streams is usually estimated by simple inaccurate empirical relations because of the complexity of the phenomenon. In this study, the adaptive neuro-fuzzy inference system (ANFIS is used to develop a new flexible tool for predicting the longitudinal dispersion coefficient. The system has the ability to understand and realize the phenomenon without the need for mathematical governing equations.. The training and testing of this new model are accomplished using a set of available published filed data. Several statistical and graphical criteria are used to check the accuracy of the model. The dispersion coefficient values predicted by the ANFIS model compares satisfactorily with the measured data. The predicted values are also compared with those predicted by existing empirical equations reported in the literature to find that the ANFIS model with R2=0.99 and RMSE=15.18 in training stage and R2=0.91 and RMSE=187.8 in testing stage is superior in predicting the dispersion coefficient to the most accurate empirical equation with R2=0.48 and RMSE=295.7. The proposed methodology is a new approach to estimating dispersion coefficient in streams and can be combined with mathematical models of pollutant transfer or real-time updating of these models.

  19. Sea Outfall Design Based on a Stochastic Transport/Dispersion Model

    DEFF Research Database (Denmark)

    Larsen, Torben

    1983-01-01

    /dispersion phenomena can easily be modelled by the stochastic approach without going into advanced methods as finite differences or elements. The advantage of this approach is the simple programming and Iow need of computer memory. The disadvantage could be the need for excessive computing time.......This paper describes a numerical model of the dilution and disappearance of sewage discharged to the coastal zone. The model is based on the Monte Carlo (or random walk) principle. A cloud of particles is released at discrete time steps and the 3-dimensional path of every particle is simulated...

  20. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  1. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    Science.gov (United States)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  2. An Empirical Model of Wage Dispersion with Sorting

    DEFF Research Database (Denmark)

    Bagger, Jesper; Lentz, Rasmus

    (submodular). The model is estimated on Danish matched employer-employee data. We find evidence of positive assortative matching. In the estimated equilibrium match distribution, the correlation between worker skill and firm productivity is 0.12. The assortative matching has a substantial impact on wage......This paper studies wage dispersion in an equilibrium on-the-job-search model with endogenous search intensity. Workers differ in their permanent skill level and firms differ with respect to productivity. Positive (negative) sorting results if the match production function is supermodular...... to mismatch by asking how much greater output would be if the estimated population of matches were perfectly positively assorted. In this case, output would increase by 7.7%....

  3. A CFD model for particle dispersion in turbulent boundary layer flows

    International Nuclear Information System (INIS)

    Dehbi, A.

    2008-01-01

    In Lagrangian particle dispersion modeling, the assumption that turbulence is isotropic everywhere yields erroneous predictions of particle deposition rates on walls, even in simple geometries. In this investigation, the stochastic particle tracking model in Fluent 6.2 is modified to include a better treatment of particle-turbulence interactions close to walls where anisotropic effects are significant. The fluid rms velocities in the boundary layer are computed using fits of DNS data obtained in channel flow. The new model is tested against correlations for particle removal rates in turbulent pipe flow and 90 o bends. Comparison with experimental data is much better than with the default model. The model is also assessed against data of particle removal in the human mouth-throat geometry where the flow is decidedly three-dimensional. Here, the agreement with the data is reasonable, especially in view of the fact that the DNS fits used are those of channel flows, for lack of better alternatives. The CFD Best Practice Guidelines are followed to a large extent, in particular by using multiple grid resolutions and at least second order discretization schemes

  4. Atmospheric radionuclide transport model with radon postprocessor and SBG module. Model description version 2.8.0; ARTM. Atmosphaerisches Radionuklid-Transport-Modell mit Radon Postprozessor und SBG-Modul. Modellbeschreibung zu Version 2.8.0

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia; Sogalla, Martin; Thielen, Harald; Martens, Reinhard

    2015-04-20

    The study on the atmospheric radionuclide transport model with radon postprocessor and SBG module (model description version 2.8.0) covers the following issues: determination of emissions, radioactive decay, atmospheric dispersion calculation for radioactive gases, atmospheric dispersion calculation for radioactive dusts, determination of the gamma cloud radiation (gamma submersion), terrain roughness, effective source height, calculation area and model points, geographic reference systems and coordinate transformations, meteorological data, use of invalid meteorological data sets, consideration of statistical uncertainties, consideration of housings, consideration of bumpiness, consideration of terrain roughness, use of frequency distributions of the hourly dispersion situation, consideration of the vegetation period (summer), the radon post processor radon.exe, the SBG module, modeling of wind fields, shading settings.

  5. Comparison of different passive dispersion models for the simulation of a given release

    International Nuclear Information System (INIS)

    Wendum, D.; Musson-Genon, L.

    1996-01-01

    For internal needs of Electricite de France (dispersion computations of radioactive effluents during nuclear emergency situations, simulations of chemical pollution on the vicinity of thermal power plants), different models of passive dispersion in the atmosphere have been developed at the R and D D. This report presents the comparison of the performances of three such models: DIFTRA (Lagrangian puff model, with operational goal), DIFEUL (three dimensional Eulerian) and DiFPAR (Monte-Carlo particle model). The aim of this intercomparison is to assess the model differences of concentration values computed during an academic release in real meteorological conditions. The obtained results give inter-model differences of the same order as the model vs. experience differences observed during an international model comparison experiment using data of the Chernobyl release, the ATMES exercise. In a future study we plan to compare the results of these models to the results of an international tracer campaign named ETEX95, during which a passive tracer cloud has been followed over Europe. (author). 13 refs., 8 figs

  6. Rheological Behavior of Bentonite-Polyester Dispersions

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  7. Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid-particle model.

    Science.gov (United States)

    Dzwinel, Witold; Yuen, David A

    2002-03-15

    The dispersion of the agglomerating fluid process involving colloids has been investigated at the mesoscale level by a discrete particle approach--the hybrid fluid-particle model (FPM). Dynamical processes occurring in the granulation of colloidal agglomerate in solvents are severely influenced by coupling between the dispersed microstructures and the global flow. On the mesoscale this coupling is further exacerbated by thermal fluctuations, particle-particle interactions between colloidal beds, and hydrodynamic interactions between colloidal beds and the solvent. Using the method of FPM, we have tackled the problem of dispersion of a colloidal slab being accelerated in a long box filled with a fluid. Our results show that the average size of the agglomerated fragments decreases with increasing shearing rate gamma, according to the power law A x gamma(k), where k is around 2. For larger values of gamma, the mean size of the agglomerate S(avg) increases slowly with gamma from the collisions between the aggregates and the longitudinal stretching induced by the flow. The proportionality constant A increases exponentially with the scaling factor of the attractive forces acting between the colloidal particles. The value of A shows a rather weak dependence on the solvent viscosity. But A increases proportionally with the scaling factor of the colloid-solvent dissipative interactions. Similar type of dependence can be found for the mixing induced by Rayleigh-Taylor instabilities involving the colloidal agglomerate and the solvent. Three types of fragmentation structures can be identified, which are called rupture, erosion, and shatter. They generate very complex structures with multiresolution character. The aggregation of colloidal beds is formed by the collisions between aggregates, which are influenced by the flow or by the cohesive forces for small dispersion energies. These results may be applied to enhance our understanding concerning the nonlinear complex

  8. Improving long-range dispersion predictions with ETEX real-time and a-posteriori model evaluations

    International Nuclear Information System (INIS)

    Desiato, F.

    1997-01-01

    The Italian environmental Protection Agency (ANPA), which is responsible for the evaluation of the consequences of accidental releases into the atmosphere, has participated to both the real-time (phase-1) and a-posteriori (phase-2) ETEX model evaluations. The double benchmark actually constituted an invaluable experience for better understanding the skill and limits of the present long-range dispersion modelling capabilities. In particular, the strong difference between phase-1 and phase-2 model performance emphasised the opportunity to modify, improve or tune a number of specific aspects of the overall simulation. ETEX model runs were carried out with the Lagrangian particle model APOLLO. The meteorological input was constituted by ECMWF fields. Three-hourly average concentrations paired in space and time and time-integrated concentrations were used in the evaluation of the results, based on a set of statistical indexes and concentration contour lines and scatter diagrams

  9. Bands dispersion and charge transfer in β-BeH2

    Science.gov (United States)

    Trivedi, D. K.; Galav, K. L.; Joshi, K. B.

    2018-04-01

    Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.

  10. Multidimensional models for contaminants dispersion in rivers and channels: hybrid solutions via integral transforms

    International Nuclear Information System (INIS)

    Barros, Felipe Pereira Jorge de

    2004-05-01

    The aims of the present work were to use the Generalized Integral Transform Technique (GITT) to solve steady state multidimensional models for contaminants dispersion in rivers and channels, as well as to analyze the reduction of computational costs associated with convection-diffusion models that contains more than one space variable. The main focus of this work is the development of models that include variable coefficients such as variable velocity fields along and across the channel. The mathematical formulations also allow the use of different inlet conditions such as point sources, linear sources and plane sources. Several test cases were simulated and the models were validated numerically and with experimental data taken from the literature. The models were implemented in the symbolic computation platform, Mathematica 4.2. (author)

  11. Marine radioactivity studies in the Suez Canal. A modelling study on radionuclide dispersion

    International Nuclear Information System (INIS)

    Abril, J.M.; Abdel-Aal, M.M.

    2000-01-01

    This paper describes work carried out under the IAEA Project EGY/07/002 to study the dispersion of radioactive material in the Suez Canal and the Bitter Lakes. This effort is linked with increased public concern about radiation safety through this important trade route. We apply a sequence of related modelling approaches, covering: (1) hydrodynamics, (2) transport of dissolved pollutants, (3) suspended loads and sediment dynamics, and (4) electrolytic reactions in aqueous suspension and in-sediment water pores. The final stage is a kinetic-reactive transport model for these tidal waters. The hydrodynamics have been studied using both 1D and 2D modelling approaches, and a reasonable calibration has been possible from the data set prepared with the collaboration of the Suez Canal Authority. Diffusion coefficients are calibrated from field tracing experiments included in the IAEA Project. They have been implemented in 1D and 2D models. Suspended matter dynamics and electrolytic reactions are documented from the available literature. Finally, different scenarios of discharges for both conservative and non-conservative radionuclides have been investigated

  12. Predictive Modelling of Concentration of Dispersed Natural Gas in a Single Room

    Directory of Open Access Journals (Sweden)

    Abdulfatai JIMOH

    2009-07-01

    Full Text Available This paper aimed at developing a mathematical model equation to predict the concentration of natural gas in a single room. The model equation was developed by using theoretical method of predictive modelling. The model equation developed is as given in equation 28. The validity of the developed expression was tested through the simulation of experimental results using computer software called MathCAD Professional. Both experimental and simulated results were found to be in close agreement. The statistical analysis carried out through the correlation coefficients for the results of experiment 1, 2, 3 and 4 were found to be 0.9986, 1.0000, 0.9981 and 0.9999 respectively, which imply reasonable close fittings between the experimental and simulated concentrations of dispersed natural gas within the room. Thus, the model equation developed can be considered a good representation of the phenomena that occurred when there is a leakage or accidental release of such gas within the room.

  13. Applications of the PUFF model to forecasts of volcanic clouds dispersal from Etna and Vesuvio

    Science.gov (United States)

    Daniele, P.; Lirer, L.; Petrosino, P.; Spinelli, N.; Peterson, R.

    2009-05-01

    PUFF is a numerical volcanic ash tracking model developed to simulate the behaviour of ash clouds in the atmosphere. The model uses wind field data provided by meteorological models and adds dispersion and sedimentation physics to predict the evolution of the cloud once it reaches thermodynamic equilibrium with the atmosphere. The software is intended for use in emergency response situations during an eruption to quickly forecast the position and trajectory of the ash cloud in the near (˜1-72 h) future. In this paper, we describe the first application of the PUFF model in forecasting volcanic ash dispersion from the Etna and Vesuvio volcanoes. We simulated the daily occurrence of an eruptive event of Etna utilizing ash cloud parameters describing the paroxysm of 22nd July 1998 and wind field data for the 1st September 2005-31st December 2005 time span from the Global Forecast System (GFS) model at the approximate location of the Etna volcano (38N 15E). The results show that volcanic ash particles are dispersed in a range of directions in response to changing wind field at various altitudes and that the ash clouds are mainly dispersed toward the east and southeast, although the exact trajectory is highly variable, and can change within a few hours. We tested the sensitivity of the model to the mean particle grain size and found that an increased concentration of ash particles in the atmosphere results when the mean grain size is decreased. Similarly, a dramatic variation in dispersion results when the logarithmic standard deviation of the particle-size distribution is changed. Additionally, we simulated the occurrence of an eruptive event at both Etna and Vesuvio, using the same parameters describing the initial volcanic plume, and wind field data recorded for 1st September 2005, at approximately 38N 15E for Etna and 41N 14E for Vesuvio. The comparison of the two simulations indicates that identical eruptions occurring at the same time at the two volcanic centres

  14. Plume dispersion in four pine thinning scenarios: development of a simple pheromone dispersion model

    Science.gov (United States)

    Holly Peterson; Harold Thistle; Brian Lamb; Gene Allwine; Steve Edburg; Brian Strom

    2010-01-01

    A unique field campaign was conducted in 2004 to examine how changes in stand density may affect dispersion of insect pheromones in forest canopies. Over a l4-day period, 126 tracer tests were performed, and conditions ranged from an unthinned loblolly pine (Pinus taeda) canopy through a series of thinning scenarios with basal areas of32.l, 23.0, and 16.1 m2ha-l.ln...

  15. Identification and elucidation of anthropogenic source contribution in PM10 pollutant: Insight gain from dispersion and receptor models.

    Science.gov (United States)

    Roy, Debananda; Singh, Gurdeep; Yadav, Pankaj

    2016-10-01

    Source apportionment study of PM 10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM 10 . Copyright © 2016. Published by Elsevier B.V.

  16. Modélisation de la combustion de fuels lourds prenant en compte la dispersion des asphaltènes Modeling Heavy Fuel-Oil Combustion (While Considering Or Including Asphaltene Dispersion

    Directory of Open Access Journals (Sweden)

    Audibert F.

    2006-11-01

    difficultés relevant du mode d'exploration et de la non adéquation entre les structures asphalténiques et fractales. On a finalement opté pour une détermination visuelle s'appuyant sur les clichés sur lesquels les agglomérats d'asphaltènes sont clairement visualisés tels qu'ils sont dans le fuel. Ce mode d'exploration laborieux a cependant permis de déterminer un modèle construit sur une série de 25 fuels dont 10 ont été brûlés sur une chaudière de 2 MW, et 15 sur un four de 100 kW. Ce modèle fait intervenir les teneurs en carbone Conradson et en métaux, ainsi que le taux de dispersion des asphaltènes. Le perfectionnement des moyens d'exploration aidant, on peut s'attendre à ce que soient disponibles des techniques d'évaluation de la dispersion sur les clichés. Ce paramètre pourra alors être pris en considération pour une meilleure prédiction de résultats de combustion insuffisamment expliqués avec les paramètres classiques. Various models aiming to predict the amount of unburned particles (solids during heavy fuel-oil combustion have been developed. The parameters taken into consideration are generally asphaltenes precipitated by normal heptane or pentane and Conradson carbon as well as the metals content having a known catalytic effect on cenosphere combustion in the combustion chamber. The Exxon and Shell models can be mentioned, which were developed respectively in 1979 and 1981 (Chapter II. Other models also give consideration to the fuel-oil composition, the way it is atomized and diffused in the chamber and the combustion kinetics (research done by the MIT Energy Laboratory published in 1986. However, the above parameters are not the only ones involved. For some fuel oils, experience has shown that the state of dispersion of asphaltenes may also play an important role particularly for combustion installations with mechanical injection for which the dispersion of fuel-oil droplets is not very great and does not affect the structures built

  17. A CFD modeling study of the impacts of NO x and VOC emissions on reactive pollutant dispersion in and above a street canyon

    Science.gov (United States)

    Kwak, Kyung-Hwan; Baik, Jong-Jin

    2012-01-01

    A computational fluid dynamics (CFD) model that includes the carbon bond mechanism IV (CBM-IV) is developed and used to investigate reactive pollutant dispersion in and above a street canyon with an aspect ratio of 1. Fourteen emission scenarios of NO x and volatile organic compounds (VOCs) are considered. Dispersion types are classified into NO-type, NO 2-type, and O 3-type dispersion that exhibit concentration maxima at the street bottom, near the center of the street canyon, and above the street canyon, respectively. For the base emission scenario, the number of reactive species is 9 in the NO-type dispersion, 10 in the NO 2-type dispersion, and 15 in the O 3-type dispersion. As the NO x emission level decreases or the VOC emission level increases, some species in the O 3-type dispersion are shifted to the NO 2-type dispersion. The VOC-to-NO x emission ratio is found to be an important factor in determining the transition of dispersion type. In this transition process, OH plays a key role through a radical chain including HO 2, RO, and RO 2. Because of their high OH reactivities, XYL (xylene) and OLE (olefin carbon bond) among VOCs are largely responsible for the transition of dispersion type. The O 3 sensitivity is examined by reducing NO x or VOC emission level by a half. Because the NO titration of O 3 is more pronounced than the NO 2 photolysis and the radical chain process in the street canyon, the O 3 concentration therein is negatively correlated with the NO x emission level and weakly correlated with the VOC emission level. As a result, the street canyon is a negatively NO x-sensitive regime.

  18. Evaluation of the hydrodynamic behaviour of turbulence promoters in parallel plate electrochemical reactors by means of the dispersion model

    International Nuclear Information System (INIS)

    Colli, A.N.; Bisang, J.M.

    2011-01-01

    Highlights: · The type of turbulence promoters has a strong influence on the hydrodynamics. · The dispersion model is appropriate for expanded plastic turbulence promoters. · The dispersion model is appropriate for glass beads turbulence promoters. - Abstract: The hydrodynamic behaviour of electrochemical reactors with parallel plate electrodes is experimentally studied using the stimulus-response method either with an empty reactor or with different turbulence promoters. Theoretical results which are in accordance with the analytical and numerical resolution of the dispersion model for a closed system are compared with the classical relationships of the normalized outlet concentration for open systems and the validity range of the equations is discussed. The experimental results were well correlated with the dispersion model using glass beads or expanded plastic meshes as turbulence promoters, which have shown the most advantageous performance. The Peclet number was higher than 63. The dispersion coefficient was found to increase linearly with flow velocity in these cases.

  19. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing

    2016-09-06

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.

  20. Comparison of some dispersion-corrected and traditional functionals with CCSD(T) and MP2 ab initio methods: Dispersion, induction, and basis set superposition error

    Science.gov (United States)

    Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.

    2012-10-01

    We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.

  1. The mesoscale dispersion modeling system a simulation tool for development of an emergency response system

    International Nuclear Information System (INIS)

    Uliasz, M.

    1990-01-01

    The mesoscale dispersion modeling system is under continuous development. The included numerical models require further improvements and evaluation against data from meteorological and tracer field experiments. The system can not be directly applied to real time predictions. However, it seems to be a useful simulation tool for solving several problems related to planning the monitoring network and development of the emergency response system for the nuclear power plant located in a coastal area. The modeling system can be also applied to another environmental problems connected with air pollution dispersion in complex terrain. The presented numerical models are designed for the use on personal computers and are relatively fast in comparison with the similar mesoscale models developed on mainframe computers

  2. Monolayer dispersion of CoO on Al2O3 probed by positronium atom

    International Nuclear Information System (INIS)

    Liu, Z.W.; Zhang, H.J.; Chen, Z.Q.

    2014-01-01

    CoO/Al 2 O 3 catalysts were prepared by wet impregnation method with CoO contents ranging from 0 wt% to 24 wt%. X-ray diffraction and X-ray photoelectron spectroscopy measurements suggest formation of CoO after calcined in N 2 . Quantitative X-ray diffraction analysis indicates monolayer dispersion capacity of CoO in CoO/Al 2 O 3 catalysts to be about 3 wt%. Positron annihilation lifetime and coincidence Doppler broadening measurements were performed to study the dispersion state of CoO on Al 2 O 3 . The positron lifetime measurements reveal two long lifetime components τ 3 and τ 4 , which correspond to ortho-positronium annihilation lifetime in microvoids and large pores, respectively. It was found that the positronium atom is very sensitive to the dispersion state of CoO on Al 2 O 3 . The presence of CoO significantly decreases both the lifetime and the intensity of τ 4 . Detailed analysis of the coincidence Doppler broadening measurements suggests that with the CoO content lower than the monolayer dispersion, spin conversion reaction of positronium is induced by CoO. When the cobalt content is higher than the monolayer dispersion capacity, inhibition of positronium formation becomes the dominate effect.

  3. Material parameters from frequency dispersion simulation of floating gate memory with Ge nanocrystals in HfO2

    Science.gov (United States)

    Palade, C.; Lepadatu, A. M.; Slav, A.; Lazanu, S.; Teodorescu, V. S.; Stoica, T.; Ciurea, M. L.

    2018-01-01

    Trilayer memory capacitors with Ge nanocrystals (NCs) floating gate in HfO2 were obtained by magnetron sputtering deposition on p-type Si substrate followed by rapid thermal annealing at relatively low temperature of 600 °C. The frequency dispersion of capacitance and resistance was measured in accumulation regime of Al/HfO2 gate oxide/Ge NCs in HfO2 floating gate/HfO2 tunnel oxide/SiOx/p-Si/Al memory capacitors. For simulation of the frequency dispersion a complex circuit model was used considering an equivalent parallel RC circuit for each layer of the trilayer structure. A series resistance due to metallic contacts and Si substrate was necessary to be included in the model. A very good fit to the experimental data was obtained and the parameters of each layer in the memory capacitor, i.e. capacitances and resistances were determined and in turn the intrinsic material parameters, i.e. dielectric constants and resistivities of layers were evaluated. The results are very important for the study and optimization of the hysteresis behaviour of floating gate memories based on NCs embedded in oxide.

  4. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  5. Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling

    Science.gov (United States)

    Melvin, Thomas

    2018-02-01

    Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.

  6. Axial Dispersion Model for Solid Flow in Liquid Suspension in System of Two Mixers in Total Recycle

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Jiřina; Scargiali, F.; Siyakatshana, N.; Kudrna, V.; Brucato, A.; Machoň, V.

    2006-01-01

    Roč. 117, č. 2 (2006), s. 101-107 ISSN 1385-8947 R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : residence time distribution * dispersion model * flow mixer Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.594, year: 2006

  7. Properties of U3Si2-Al dispersion fuel element and its application

    International Nuclear Information System (INIS)

    Yin Changgeng

    2001-01-01

    The properties of U 3 Si 2 fuel and U 3 Si 2 -Al dispersion fuel element are introduced, which include U-loading; the banding quality, U-homogeneity and 'dog-bone' phenomenon, the minimum thickness of cladding and the corrosion performances. The fabrication technique of fuel elements, NDT for fuel plates, assemble technique of fuel elements and the application of U 3 Si 2 -Al dispersion fuel elements in the world are introduced

  8. Revisiting the advection-dispersion model - Testing an alternative

    International Nuclear Information System (INIS)

    Neretnieks, I.

    2001-01-01

    Some of the basic assumptions of the Advection-Dispersion model, AD-model, are revisited. That model assumes a continuous mixing along the flowpath similar to Fickian diffusion. This implies that there is a constant dispersion length irrespective of observation distance. This is contrary to most field observations. The properties of an alternative model based on the assumption that individual water packages can retain their identity over long distances are investigated. The latter model is called the Multi-Channel model, MChM. Inherent in the latter model is that if the waters in the different pathways are collected and mixed, the 'dispersion length' is proportional to observation distance. Using diffusion theory it is investigated over which distances or contact times, adjacent water packages will keep their identity. It is found that for a contact time of 10 hours, two streams, each wider than 6 mm, that flow side by side, will not have lost their identity. For 1000 hours contact time the minimum width is 6 cm. The MChM and AD-models were found to have very similar Residence Time Distributions, RTD, for Peclet numbers larger than 3. A generalised relation between flowrate and residence time is developed, including the so-called cubic law and constant aperture assumptions. Using the generalised relation, surprisingly it is found that for a system that has the same average flow volume and average flowrate the form of the RTD curves are the same irrespective of the form of the relation. Both models are also compared for a system where there is strong interaction of the solute with the rock matrix. In this case it is assumed that the solute can diffuse into and out of the fracture walls and also to sorb on the micro-fractures of the matrix. The so-called Flow Wetted Surface, FWS, between the flowing water in the fracture and the rock is a key entity in such systems. It is found that the AD-model predicts much later arrivals and lower concentrations than does the MCh-model

  9. Atmospheric tracer experiments for regional dispersion studies

    International Nuclear Information System (INIS)

    Heffter, J.L.; Ferber, G.J.

    1980-01-01

    Tracer experiments are being conducted to verify atmospheric transport and dispersion calculations at distances from tens to hundreds of km from pollutant sources. In one study, a 2 1/2 year sampling program has been carried out at 13 sites located 30 to 140 km from a source of 85 Kr at the Savannah River Plant in South Carolina. Average weekly concentrations as well as twice-daily concentrations were obtained. Sampling data and meteorological data, including surface, tower, and rawinsonde observations are available on magnetic tape for model verification studies. Some verification results for the Air Resources Laboratories Atmospheric Transort and Dispersion Model (ARL-ATAD) are shown for averaging periods from one week to two years

  10. Vapor generation rate model for dispersed drop flow

    International Nuclear Information System (INIS)

    Unal, C.; Tuzla, K.; Cokmez-Tuzla, A.F.; Chen, J.C.

    1991-01-01

    A comparison of predictions of existing nonequilibrium post-CHF heat transfer models with the recently obtained rod bundle data has been performed. The models used the experimental conditions and wall temperatures to predict the heat flux and vapor temperatures at the location of interest. No existing model was able to reasonably predict the vapor superheat and the wall heat flux simultaneously. Most of the models, except Chen-Sundaram-Ozkaynak, failed to predict the wall heat flux, while all of the models could not predict the vapor superheat data or trends. A recently developed two-region heat transfer model, the Webb-Chen two-region model, did not give a reasonable prediction of the vapor generation rate in the far field of the CHF point. A new correlation was formulated to predict the vapor generation rate in convective dispersed droplet flow in terms of thermal-hydraulic parameters and thermodynamic properties. A comparison of predictions of the two-region heat transfer model, with the use of a presently developed correlation, with all the existing post-CHF data, including single-tube and rod bundle, showed significant improvements in predicting the vapor superheat and tube wall heat flux trends. (orig.)

  11. Biomass burning aerosol over Romania using dispersion model and Calipso data

    Science.gov (United States)

    Nicolae, Victor; Dandocsi, Alexandru; Marmureanu, Luminita; Talianu, Camelia

    2018-04-01

    The purpose of the study is to analyze the seasonal variability, for the hot and cold seasons, of biomass burning aerosol observed over Romania using forward dispersion calculations based on FLEXPART model. The model was set up to use as input the MODIS fire data with a degree of confidence over 25% after transforming the emitted power in emission rate. The modelled aerosols in this setup was black carbon coated by organics. Distribution in the upper layers were compared to Calipso retrieval.

  12. Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime

    Science.gov (United States)

    Ahmad, H.; Karim, M. R.; Rahman, B. M. A.

    2018-03-01

    A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from {Ge}_{11.5} {As}_{24} {Se}_{64.5} chalcogenide glass as the core with either silica or {Ge}_{11.5} {As}_{24} {S}_{64.5} chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 μ {m} with a low input peak power of 100 W. Shifting the pump to 2 μ {m}, the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 μ {m} with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 μ {m}, although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2-5.5 μ {m} with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.

  13. Mechanism for enhanced absorption of a solid dispersion formulation of LY2300559 using the artificial stomach duodenum model.

    Science.gov (United States)

    Polster, Christopher S; Wu, Sy-Juen; Gueorguieva, Ivelina; Sperry, David C

    2015-04-06

    An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.

  14. Modelling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives

    DEFF Research Database (Denmark)

    Thiessen, K.M.; Andersson, Kasper Grann; Batandjieva, B.

    2009-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes...... the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included...... radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a "no action" situation (with no remedial measures...

  15. DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions.

    Science.gov (United States)

    Blaško, Martin; Mach, Pavel; Antušek, Andrej; Urban, Miroslav

    2018-02-08

    Using DFT modeling, we analyze the concerted action of gold atoms and dispersion interactions in cross-linked polyethylene. Our model consists of two oligomer chains (PEn) with 7, 11, 15, 19, or 23 carbon atoms in each oligomer cross-linked with one to three Au atoms through C-Au-C bonds. In structures with a single gold atom the C-Au-C bond is located in the central position of the oligomer. Binding energies (BEs) with respect to two oligomer radical fragments and Au are as high as 362-489 kJ/mol depending on the length of the oligomer chain. When the dispersion contribution in PEn-Au-PEn oligomers is omitted, BE is almost independent of the number of carbon atoms, lying between 293 and 296 kJ/mol. The dispersion energy contributions to BEs in PEn-Au-PEn rise nearly linearly with the number of carbon atoms in the PEn chain. The carbon-carbon distance in the C-Au-C moiety is around 4.1 Å, similar to the bond distance between saturated closed shell chains in the polyethylene crystal. BEs of pure saturated closed shell PEn-PEn oligomers are 51-187 kJ/mol. Both Au atoms and dispersion interactions contribute considerably to the creation of nearly parallel chains of oligomers with reasonably high binding energies.

  16. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    Science.gov (United States)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  17. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of 239Pu due to non- nuclear detonation of high explosive

    International Nuclear Information System (INIS)

    Edwards, L.L.; Harvey, T.F.; Freis, R.P.; Pitovranov, S.E.; Chernokozhin, E.V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of 239 Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal ''coupling coefficient'' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of 239 Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported

  18. Wind field and dispersion modelling in complex terrain

    International Nuclear Information System (INIS)

    Bartzis, J.G.; Varvayanni, M.; Catsaros, N.; Konte, K.; Amanatidis, G.

    1991-01-01

    Dispersion of airborne radioactive material can have an important environmental impact. Its prediction remains a difficult problem, especially over complex and inhomogeneous terrain, or under complicated atmospheric conditions. The ADREA-I code, a three-dimensional transport code especially designed for terrains of high complexity can be considered as contribution to the solution of the above problem. The code development has been initiated within the present CEC Radiation Program. New features are introduced into the code to describe the anomalous topography, the turbulent diffusion and numerical solution procedures. In this work besides a brief presentation of the main features of the code, a number of applications will be presented with the aim on one hand to illustrate the capability and reliability of the code and on the other hand to clarify the effects on windfield and dispersion in special cases of interest. Within the framework of ADREA-I verification studies, a I-D simulation of the experimental Wangara Day-33 mean boundary layer was attempted, reproducing the daytime wind speeds, temperatures, specific humidities and mixing depths. In order to address the effect of surface irregularities and inhomogeneities on contamination patterns, the flow field and dispersion were analyzed over a 2-D, 1000m high mountain range, surrounded by sea, with a point source assumed 40km offshore from one coastline. This terrain was studied as representing a greater Athens area idealization. The effects of a 2-D, 1000m high mountain range of Gaussian shape on long range transport has also been studied in terms of influence area, wind and concentration profile distortions and dry deposition patterns

  19. SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.; Rishel, Jeremy P.; Chapman, Elaine G.; Bird, S. L.; Thistle, Harold W.

    2006-09-20

    SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISP model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.

  20. The role of poly(methacrylic acid) conformation on dispersion behavior of nano TiO2 powder

    Science.gov (United States)

    Singh, Bimal P.; Nayak, Sasmita; Samal, Samata; Bhattacharjee, Sarama; Besra, Laxmidhar

    2012-02-01

    To exploit the advantages of nanoparticles for various applications, controlling the dispersion and agglomeration is of paramount importance. Agglomeration and dispersion behavior of titanium dioxide (TiO2) nanoparticles was investigated using electrokinetic and surface chemical properties. Nanoparticles are generally stabilized by the adsorption of a dispersant (polyelectrolyte) layer around the particle surface and in this connection ammonium salt of polymethacrylic acid (Darvan C) was used as dispersant to stabilize the suspension. The dosages of polyelectrolyte were optimized to get best dispersion stability by techniques namely particle charge detector (13.75 mg/g) and adsorption (14.57 mg/g). The surface charge of TiO2 particles changed significantly in presence of dispersant Darvan C and isoelectric point (iep) shifted significantly towards lower pH from 5.99 to 3.37. The shift in iep has been quantified in terms of free energy of interaction between the surface sites of TiO2 and the adsorbing dispersant Darvan C. Free energies of adsorption were calculated by electrokinetic data (-9.8 RT unit) and adsorption isotherms (-10.56 RT unit), which corroborated well. The adsorption isotherms are of typical Langmuir type and employed for calculation of free energy. The results indicated that adsorption occurs mainly through electrostatic interactions between the dispersant molecule and the TiO2 surface apart from hydrophobic interactions.

  1. The importance of realistic dispersal models in conservation planning: application of a novel modelling platform to evaluate management scenarios in an Afrotropical biodiversity hotspot.

    Science.gov (United States)

    Aben, Job; Bocedi, Greta; Palmer, Stephen C F; Pellikka, Petri; Strubbe, Diederik; Hallmann, Caspar; Travis, Justin M J; Lens, Luc; Matthysen, Erik

    2016-08-01

    As biodiversity hotspots are often characterized by high human population densities, implementation of conservation management practices that focus only on the protection and enlargement of pristine habitats is potentially unrealistic. An alternative approach to curb species extinction risk involves improving connectivity among existing habitat patches. However, evaluation of spatially explicit management strategies is challenging, as predictive models must account for the process of dispersal, which is difficult in terms of both empirical data collection and modelling.Here, we use a novel, individual-based modelling platform that couples demographic and mechanistic dispersal models to evaluate the effectiveness of realistic management scenarios tailored to conserve forest birds in a highly fragmented biodiversity hotspot. Scenario performance is evaluated based on the spatial population dynamics of a well-studied forest bird species.The largest population increase was predicted to occur under scenarios increasing habitat area. However, the effectiveness was sensitive to spatial planning. Compared to adding one large patch to the habitat network, adding several small patches yielded mixed benefits: although overall population sizes increased, specific newly created patches acted as dispersal sinks, which compromised population persistence in some existing patches. Increasing matrix connectivity by the creation of stepping stones is likely to result in enhanced dispersal success and occupancy of smaller patches. Synthesis and applications . We show that the effectiveness of spatial management is strongly driven by patterns of individual dispersal across landscapes. For species conservation planning, we advocate the use of models that incorporate adequate realism in demography and, particularly, in dispersal behaviours.

  2. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe-Cr model alloys

    Science.gov (United States)

    Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.

    2014-05-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe-Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α‧-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.

  3. Turbulent diffusion modelling for windflow and dispersion analysis

    International Nuclear Information System (INIS)

    Bartzis, J.G.

    1988-01-01

    The need for simple but reliable models for turbulent diffusion for windflow and atmospheric dispersion analysis is a necessity today if one takes into consideration the relatively high demand in computer time and costs for such an analysis, arising mainly from the often large solution domains needed, the terrain complexity and the transient nature of the phenomena. In the accident consequence assessment often there is a need for a relatively large number of cases to be analysed increasing further the computer time and costs. Within the framework of searching for relatively simple and universal eddy viscosity/diffusivity models, a new three dimensional non isotropic model is proposed applicable to any domain complexity and any atmospheric stability conditions. The model utilizes the transport equation for turbulent kinetic energy but introduces a new approach in effective length scale estimation based on the flow global characteristics and local atmospheric stability. The model is discussed in detail and predictions are given for flow field and boundary layer thickness. The results are compared with experimental data with satisfactory results

  4. State of the art atmospheric dispersion modelling. Should the Gaussian plume model still be used?

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany)

    2016-11-15

    For regulatory purposes with respect to licensing and supervision of airborne releases of nuclear installations, the Gaussian plume model is still in use in Germany. However, for complex situations the Gaussian plume model is to be replaced by a Lagrangian particle model. Now the new EU basic safety standards for protection against the dangers arising from exposure to ionising radiation (EU BSS) [1] asks for a realistic assessment of doses to the members of the public from authorised practices. This call for a realistic assessment raises the question whether dispersion modelling with the Gaussian plume model is an adequate approach anymore or whether the use of more complex models is mandatory.

  5. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles

    International Nuclear Information System (INIS)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-01-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. - Research highlights: → Nanoparticle emissions experience very short transformation time scales. → Vehicle wakes need to be characterised to analyse nanoparticle dispersion. → Fast response measurements of nanoparticle evolution in vehicle wakes are very rare. → Wind tunnel methodologies can be further improved to include nanoparticle dynamics. → A simple mathematical approach has been proposed for future development. - The transformation of nanoparticles and the flow characteristics in both the near and far wake regions must be understood in order to develop mathematical models.

  6. Radiotherapy supporting system based on the image database using IS&C magneto-optical disk

    Science.gov (United States)

    Ando, Yutaka; Tsukamoto, Nobuhiro; Kunieda, Etsuo; Kubo, Atsushi

    1994-05-01

    Since radiation oncologists make the treatment plan by prior experience, information about previous cases is helpful in planning the radiation treatment. We have developed an supporting system for the radiation therapy. The case-based reasoning method was implemented in order to search old treatments and images of past cases. This system evaluates similarities between the current case and all stored cases (case base). The portal images of the similar cases can be retrieved for reference images, as well as treatment records which show examples of the radiation treatment. By this system radiotherapists can easily make suitable plans of the radiation therapy. This system is useful to prevent inaccurate plannings due to preconceptions and/or lack of knowledge. Images were stored into magneto-optical disks and the demographic data is recorded to the hard disk which is equipped in the personal computer. Images can be displayed quickly on the radiotherapist's demands. The radiation oncologist can refer past cases which are recorded in the case base and decide the radiation treatment of the current case. The file and data format of magneto-optical disk is the IS&C format. This format provides the interchangeability and reproducibility of the medical information which includes images and other demographic data.

  7. Fabrication and Characterization of Micro- and Nano- Gd2O3 Dispersed HDPE/EPM Composites

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Kim, Jae Woo; Jun, Ji Heon; Lee, Sol; Rhee, Chang Kyu

    2010-01-01

    Hydrophobic polymer mixed with Gd 2 O 3 can be used in nuclear industry as a neutron shield because of its neutron attenuating and absorbing property, while it was reported that the smaller particles dispersed polymer composites can enhance radiation shielding efficiency compared to larger particles dispersed ones. However, preparations of such materials are difficult because of the poor dispersion of the fine particles in the polymer matrix. Surface modification of the nanoparticles is therefore required for the homogeneous dispersion of the particles in the polymer matrix. In this study, pulverization of the micro-Gd 2 O 3 particles and simultaneous surface coating of the nanoparticles by polymeric surfactant low density polyethylene (LDPE) were performed by using one-step of high energy wet ball-mill. Dispersion and neutron shielding effect of the nano- and micro-Gd 2 O 3 fillers in mixed polymer of ethylene propylene monomer (EPM) and high density polyethylene (HDPE) were examined

  8. Official (ISC)2 guide to the HCISSP CBK

    CERN Document Server

    Hernandez, Steven

    2014-01-01

    Domain 1-Healthcare Industry The Healthcare Industry Understand the Healthcare Environment Understand External Third Parties Foundational Health Data Management Processes Domain 1 - Review Questions Domain 2-Regulatory Environment Identify Applicable Regulations Understand International Regulations and Controls Compare Internal Practices against New Policies and Procedures Understand Compliance Frameworks Understand Response for Risk-Based Decision Understand and Comply with Code of Ethics/Conduct in a Health Information Environment Domain 2 - Review Questions Domain 3-Privacy and Security in Health Care Understand Security Objectives/Attributes Understand General Security Definitions and Concepts Case Study Case StudyGeneral Privacy Principles The Relationship between Privacy and Security The Nature of Sensitive Data and Handling Implications Case Study Case Study Security and Privacy Terminology Specific to Healthcare References Domain 3 - Review Questions Domain 4-Information Governance andRisk Management ...

  9. Highly anisotropic magnon dispersion in Ca{sub 2}RuO{sub 4}. Evidence for strong spin orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Kunkemoeller, Stefan; Khomskii, Daniel; Braden, Markus [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Steffens, Paul; Piovano, Andrea [Institut Laue Langevin, Grenoble (France); Nugroho, Augustinus Agung [Institut Teknologi Bandung (Indonesia)

    2016-07-01

    Ca{sub 2}RuO{sub 4} is a key material for the understanding of the impact of spin-orbit coupling in 4d and 5d compounds, which is intensively studied at present. We have studied the magnon dispersion in Ca{sub 2}RuO{sub 4} by inelastic neutron scattering on large single crystals containing 1% of Ti. With this unmagnetic substitution large single crystals could be obtained with the floating zone method. The magnon dispersion can be well described with the simple conventional Heisenberg model. Ca{sub 2}RuO{sub 4} reveals a large anisotropy gap of 13 meV, which shows that spin-orbit coupling and some in-plane orbital ordering are both important parameters for the description of the electronic and magnetic properties of Ca{sub 2}RuO{sub 4}.

  10. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles.

    Science.gov (United States)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-03-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Advanced modeling of the size poly-dispersion of boiling flows

    International Nuclear Information System (INIS)

    Ruyer, Pierre; Seiler, Nathalie

    2008-01-01

    Full text of publication follows: This work has been performed within the Institut de Radioprotection et de Surete Nucleaire that leads research programs concerning safety analysis of nuclear power plants. During a LOCA (Loss Of Coolant Accident), in-vessel pressure decreases and temperature increases, leading to the onset of nucleate boiling. The present study focuses on the numerical simulation of the local topology of the boiling flow. There is experimental evidence of a local and statistical large spectra of possible bubble sizes. The relative importance of the correct description of this poly-dispersion in size is due to the dependency of (i) main hydrodynamic forces, like lift, as well as of (ii) transfer area with respect to the individual bubble size. We study the corresponding CFD model in the framework of an ensemble averaged description of the dispersed two-phase flow. The transport equations of the main statistical moment densities of the population size distribution are derived and models for the mass, momentum and heat transfers at the bubble scale as well as for bubble coalescence are achieved. This model introduced within NEPTUNE-CFD code of the NEPTUNE thermal-hydraulic platform, a joint project of CEA, EDF, IRSN and AREVA, has been tested on boiling flows obtained on the DEBORA facility of the CEA at Grenoble. These numerical simulations provide a validation and attest the impact of the proposed model. (authors) [fr

  12. Homogenization of a Directed Dispersal Model for Animal Movement in a Heterogeneous Environment.

    Science.gov (United States)

    Yurk, Brian P

    2016-10-01

    The dispersal patterns of animals moving through heterogeneous environments have important ecological and epidemiological consequences. In this work, we apply the method of homogenization to analyze an advection-diffusion (AD) model of directed movement in a one-dimensional environment in which the scale of the heterogeneity is small relative to the spatial scale of interest. We show that the large (slow) scale behavior is described by a constant-coefficient diffusion equation under certain assumptions about the fast-scale advection velocity, and we determine a formula for the slow-scale diffusion coefficient in terms of the fast-scale parameters. We extend the homogenization result to predict invasion speeds for an advection-diffusion-reaction (ADR) model with directed dispersal. For periodic environments, the homogenization approximation of the solution of the AD model compares favorably with numerical simulations. Invasion speed approximations for the ADR model also compare favorably with numerical simulations when the spatial period is sufficiently small.

  13. Impact of atmospheric release in stable night meteorological conditions; can emergency models predict dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Connan, O.; Hebert, D.; Solier, L.; Voiseux, C.; Lamotte, M.; Laguionie, P.; Maro, D.; Thomas, L. [IRSN/PRP-ENV/SERIS/LRC (France)

    2014-07-01

    Atmospheric dispersion of pollutant or radionuclides in stratified meteorological condition, i.e. especially when weather conditions are very stable, mainly at night, is still poorly understood and not well apprehended by the operational atmospheric dispersion models. However, correctly predicting the dispersion of a radioactive plume, and estimating the radiological consequences for the population, following an unplanned atmospheric release of radionuclides are crucial steps in an emergency response. To better understand dispersion in these special weather conditions, IRSN performed a series of 22 air sampling campaigns between 2010 and 2013 in the vicinity of the La Hague nuclear reprocessing plant (AREVA - NC, France), at distances between 200 m and 3000 m from the facility. Krypton-85 ({sup 85}Kr), a b-and g-emitting radionuclide, released during the reprocessing of spent nuclear fuel was used as a non-reactive tracer of radioactive plumes. Experimental campaigns were realized in stability class stable or very stable (E or F according to Pasquill classification) 18 times, and in neutral conditions (D according to Pasquill classification) 4 times. During each campaign, Krypton-85 real time measurement were made to find the plume around the plant, and then integrated samples (30 min) were collected in bag perpendicularly to the assumed wind direction axis. After measurement by gamma spectrometry, we have, when it was possible, estimate the point of impact and the width of the plume. The objective was to estimate the horizontal dispersion (width) of the plume at ground level in function of the distance and be able to calculate atmospheric transfer coefficients. In a second step, objective was to conclude on the use of common model and on their uncertainties. The results will be presented in terms of impact on the near-field. They will be compared with data obtained in previous years in neutral atmospheric conditions, and finally the results will be confronted with

  14. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  15. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

    Science.gov (United States)

    Sutherland, Richard L.

    2002-12-01

    Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

  16. Atmospheric and dispersion modeling in areas of highly complex terrain employing a four-dimensional data assimilation technique

    International Nuclear Information System (INIS)

    Fast, J.D.; O'Steen, B.L.

    1994-01-01

    The results of this study indicate that the current data assimilation technique can have a positive impact on the mesoscale flow fields; however, care must be taken in its application to grids of relatively fine horizontal resolution. Continuous FDDA is a useful tool in producing high-resolution mesoscale analysis fields that can be used to (1) create a better initial conditions for mesoscale atmospheric models and (2) drive transport models for dispersion studies. While RAMS is capable of predicting the qualitative flow during this evening, additional experiments need to be performed to improve the prognostic forecasts made by RAMS and refine the FDDA procedure so that the overall errors are reduced even further. Despite the fact that a great deal of computational time is necessary in executing RAMS and LPDM in the configuration employed in this study, recent advances in workstations is making applications such as this more practical. As the speed of these machines increase in the next few years, it will become feasible to employ prognostic, three-dimensional mesoscale/transport models to routinely predict atmospheric dispersion of pollutants, even to highly complex terrain. For example, the version of RAMS in this study could be run in a ''nowcasting'' model that would continually assimilate local and regional observations as soon as they become available. The atmospheric physics in the model would be used to determine the wind field where no observations are available. The three-dimensional flow fields could be used as dynamic initial conditions for a model forecast. The output from this type of modeling system will have to be compared to existing diagnostic, mass-consistent models to determine whether the wind field and dispersion forecasts are significantly improved

  17. Effects of different dispersal patterns on the presence-absence of multiple species

    Science.gov (United States)

    Mohd, Mohd Hafiz; Murray, Rua; Plank, Michael J.; Godsoe, William

    2018-03-01

    Predicting which species will be present (or absent) across a geographical region remains one of the key problems in ecology. Numerous studies have suggested several ecological factors that can determine species presence-absence: environmental factors (i.e. abiotic environments), interactions among species (i.e. biotic interactions) and dispersal process. While various ecological factors have been considered, less attention has been given to the problem of understanding how different dispersal patterns, in interaction with other factors, shape community assembly in the presence of priority effects (i.e. where relative initial abundances determine the long-term presence-absence of each species). By employing both local and non-local dispersal models, we investigate the consequences of different dispersal patterns on the occurrence of priority effects and coexistence in multi-species communities. In the case of non-local, but short-range dispersal, we observe agreement with the predictions of local models for weak and medium dispersal strength, but disagreement for relatively strong dispersal levels. Our analysis shows the existence of a threshold value in dispersal strength (i.e. saddle-node bifurcation) above which priority effects disappear. These results also reveal a co-dimension 2 point, corresponding to a degenerate transcritical bifurcation: at this point, the transcritical bifurcation changes from subcritical to supercritical with corresponding creation of a saddle-node bifurcation curve. We observe further contrasting effects of non-local dispersal as dispersal distance changes: while very long-range dispersal can lead to species extinctions, intermediate-range dispersal can permit more outcomes with multi-species coexistence than short-range dispersal (or purely local dispersal). Overall, our results show that priority effects are more pronounced in the non-local dispersal models than in the local dispersal models. Taken together, our findings highlight

  18. MESOI, an interactive atmospheric dispersion model for emergency response applications

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1984-01-01

    MESOI is an interactive atmospheric dispersion model that has been developed for use by the U.S. Department of Energy, and the U.S. Nuclear Regulatory Commission in responding to emergencies at nuclear facilities. MESOI uses both straight-line Gaussian plume and Lagrangian trajectory Gaussian puff models to estimate time-integrated ground-level air and surface concentrations. Puff trajectories are determined from temporally and spatially varying horizontal wind fields that are defined in 3 dimensions. Other processes treated in MESOI include dry deposition, wet deposition and radioactive decay

  19. A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD

    Energy Technology Data Exchange (ETDEWEB)

    Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr

    2017-02-15

    The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.

  20. Determination and analysis of the dispersive optical constants of the 5,5',6,6'-tetraphenyl-2,2'-bi([1,3]dithiolo[4,5-b][1,4]dithiinylidene)-DDQ complex thin film

    International Nuclear Information System (INIS)

    Atalay, Y.; Basoglu, A.; Avci, D.; Arslan, M.; Ozturk, T.; Ertas, E.

    2008-01-01

    The synthesis and optical properties of the 5,5',6,6'-tetraphenyl-2,2'-bi([1,3]dithiolo [4,5-b] [1,4]dithiinylidene)-2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) complex thin film were investigated by the optical characterization. The optical constants such as refractive index, extinction coefficient and absorption coefficient were determined using the transmittance T(λ) and reflectance R(λ) spectra and the refractive index dispersion was analyzed using single oscillator of Wemple-Didomenico model. The single oscillator energy E 0 and the dispersion energy E d were calculated. The effect of temperature on refractive dispersion and optical band gap E g is also discussed. As a result, the annealing temperatures have an important effect on refractive index of thin film

  1. Dispersive excitations in the high-temperature superconductor La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Christensen, N.B.; McMorrow, D.F.; Rønnow, H.M.

    2004-01-01

    High-resolution neutron scattering experiments on optimally doped La(2-x)Sr(x)CuO(4) (x=0.16) reveal that the magnetic excitations are dispersive. The dispersion is the same as in YBa(2)Cu(3)O(6.85), and is quantitatively related to that observed with charge sensitive probes. The associated veloc...

  2. Boundary layer parameterizations and long-range transport

    International Nuclear Information System (INIS)

    Irwin, J.S.

    1992-01-01

    A joint work group between the American Meteorological Society (AMS) and the EPA is perusing the construction of an air quality model that incorporates boundary layer parameterizations of dispersion and transport. This model could replace the currently accepted model, the Industrial Source Complex (ISC) model. The ISC model is a Gaussian-plume multiple point-source model that provides for consideration of fugitive emissions, aerodynamic wake effects, gravitational settling and dry deposition. A work group of several Federal and State agencies is perusing the construction of an air quality modeling system for use in assessing and tracking visibility impairment resulting from long-range transport of pollutants. The modeling system is designed to use the hourly vertical profiles of wind, temperature and moisture resulting from a mesoscale meteorological processor that employs four dimensional data assimilation (FDDA). FDDA involves adding forcing functions to the governing model equations to gradually ''nudge'' the model state toward the observations (12-hourly upper air observations of wind, temperature and moisture, and 3-hourly surface observations of wind and moisture). In this way it is possible to generate data sets whose accuracy, in terms of transport, precipitation, and dynamic consistency is superior to both direct interpolation of synoptic-scale analyses of observations and purely predictive mode model result. (AB) ( 19 refs.)

  3. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color THG imaging.

    Science.gov (United States)

    Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke

    2018-05-16

    With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7.

    Science.gov (United States)

    Borges, Itamar

    2014-03-01

    Singlet, triplet and ionized states of the energetic molecule 1,1-diamino-2,2-dinitroethylene, known as FOX-7 or DADNE, were investigated using the symmetry-adapted-cluster configuration interaction (SAC-CI) ab initio wave function. The 20 computed singlet transitions, with 2 exceptions, were bright. The most intense singlet transitions were of the n₀→π type-typical of molecules having nitro groups. Fast intersystem crossing (ISC) from the 1¹A, 2¹A and 8¹A bright singlet transitions is possible. Other feasible ISC processes are discussed. The computed singlet and ionization spectra have similar features when compared to nitramide and N,N-dimethylnitramine molecules, which have only a nitro group. The ionization energies of the first 20 states have differences in comparison with Koopmans' energy values that can reach 3 eV. Moreover, the character of the first ionized states, dominated by single ionizations, is not the same when compared with the character resulting from application of Koopmans' theorem.

  5. A comparison of models to assess the atmospheric dispersion of resuspended radionuclides on the Nevada Test Site

    International Nuclear Information System (INIS)

    Green, J.R.; Eckart, R.E.

    1994-11-01

    A study of computer codes was made to determine the suitability of their use for modeling radionuclide dispersion from attachment to fugitive dust at the GMX safety shot area of the Nevada Test site. Two codes, the Industrial Source Complex 2 Long Term Model (ISCLT2) and the Fugitive Dust Model (FDM), were subsequently chosen to model the GMX site. Dose calculations were performed using the output values generated by the computer codes. The concentration values produced by the two codes were within a factor of two of each other and were not significantly different. The FDM, however, was felt to be a more useful code for use in calculating doses caused by attachment to fugitive dust

  6. A general advection-diffusion model for radioactive substance dispersion released from nuclear power plants

    International Nuclear Information System (INIS)

    Buske, D.

    2011-01-01

    The present contribution focuses on the question of radioactive material dispersion after discharge from a nuclear power plant in the context of micro-meteorology, i.e. an atmospheric dispersion model. The advection-diffusion equation with Fickian closure for the turbulence is solved for the atmospheric boundary layer where the eddy diffusivity coefficients and the wind profile are assumed to be space dependent. The model is solved in closed form using integral transform and spectral theory. Convergence of the solution is discussed in terms of a convergence criterion using a new interpretation of the Cardinal Theorem of Interpolation theory and Parseval's theorem. The solution is compared to other methods and model adequacy is analyzed. Model validation is performed against experimental data from a controlled release of radioactive material at the Itaorna Beach (Angra dos Reis, Rio de Janeiro state, Brazil, 1985). (author)

  7. Comparison of the performances of land use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area.

    NARCIS (Netherlands)

    Beelen, R.M.J.; Voogt, M.; Duyzer, J.; Zandveld, P.; Hoek, G.

    2010-01-01

    The performance of a Land Use Regression (LUR) model and a dispersion model (URBIS - URBis Information System) was compared in a Dutch urban area. For the Rijnmond area, i.e. Rotterdam and surroundings, nitrogen dioxide (NO2) concentrations for 2001 were estimated for nearly 70 000 centroids of a

  8. Dispersion of the resonant second order nonlinearity in 2D semiconductors probed by femtosecond continuum pulses

    Directory of Open Access Journals (Sweden)

    Mohammad Mokim

    2017-10-01

    Full Text Available We demonstrate an effective microspectroscopy technique by tracing the dispersion of second order nonlinear susceptibility (χ(2 in a monolayer tungsten diselenide (WSe2. The χ(2 dispersion obtained with better than 3 meV photon energy resolution showed peak value being within 6.3-8.4×10-19 m2/V range. We estimate the fundamental bandgap to be at 2.2 eV. Sub-structure in the χ(2 dispersion reveals a contribution to the nonlinearity due to exciton transitions with exciton binding energy estimated to be at 0.7 eV.

  9. Decontamination of solid matrices using supercritical CO{sub 2}: study of contaminant-additives-CO{sub 2}; Decontamination de matrices organiques solides par CO{sub 2} supercritique: etude des interactions contaminant-additifs-CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Galy, J

    2006-11-15

    This work deals with the decontamination of solid matrices by supercritical CO{sub 2} and more particularly with the study of the interactions between the surfactants and the CO{sub 2} in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO{sub 2}. The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO{sub 2} low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO{sub 2}-phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO{sub 2} and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO{sub 2}-phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO{sub 2}. A parallel has

  10. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke

    Science.gov (United States)

    G L Achtemeier; S L Goodrick; Y Liu; F Garcia-Menendez; Y Hu; M. Odman

    2011-01-01

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric...

  11. Numerical modeling of flows and pollutant dispersion within and above urban street canyons under unstable thermal stratification by large-eddy simulation

    Science.gov (United States)

    Chan, Ming-Chung; Liu, Chun-Ho

    2013-04-01

    Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the

  12. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models

    DEFF Research Database (Denmark)

    Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob

    2018-01-01

    embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdWTS) scheme aimed......Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable...... at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdWTSexpression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We...

  13. Calculation of the dispersion-dipole coefficients for interactions between H, He, and H2

    International Nuclear Information System (INIS)

    Bishop, D.M.; Pipin, J.

    1993-01-01

    Collisions between atoms and molecules create an induced dipole moment which, at long range separations, stems, in part, from the van der Waals interactions between the colliding species. This contribution is known as the dispersion dipole moment and is of the order R -7 , where R is the separation between particles. Although there have been several approximate calculations of the dispersion-dipole coefficients which govern this contribution, and are the counterparts to the van der Waals dispersion-energy coefficients, there have been few ab initio calculations. In this article we present highly accurate results, based on explicitly electron-correlated wave functions, for the dispersion-dipole coefficients pertaining to interactions between pairs chosen from H, He, and H 2 . We also obtain values with some of the currently used approximate formulas. A comparison shows that these values differ, in general, by a significant amount (∼20--∼40 %) from the accurate ones. We also tabulate values of the dipole--dipole-quadrupole polarizability tensor (B) for imaginary frequency (iω) for a range of frequencies appropriate to a 64-point Gauss--Legendre quadrature for H, He, and H 2 . These values were used in certain numerical integrations we made to verify our original results which had been obtained by analytic integration---they may, however, be useful in other contexts. For H--H 2 and H 2 --H 2 , these are the only ab initio calculations of the dispersion-dipole coefficients of which we are aware

  14. East Asian SO2 pollution plume over Europe – Part 1: Airborne trace gas measurements and source identification by particle dispersion model simulations

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available A large SO2-rich pollution plume of East Asian origin was detected by aircraft based CIMS (Chemical Ionization Mass Spectrometry measurements at 3–7.5 km altitude over the North Atlantic. The measurements, which took place on 3 May 2006 aboard of the German research aircraft Falcon, were part of the INTEX-B (Intercontinental Chemical Transport Experiment-B campaign. Additional trace gases (NO, NOy, CO, H2O were measured and used for comparison and source identification. The atmospheric SO2 mole fraction was markedly increased inside the plume and reached up to 900 pmol/mol. Accompanying lagrangian FLEXPART particle dispersion model simulations indicate that the probed pollution plume originated at low altitudes from densely populated and industrialized regions of East Asia, primarily China, about 8–12 days prior to the measurements.

  15. DIMO, a plant dispersal model

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Jochem, R.; Greft, van der J.G.M.; Franke, J.; Malinowska, A.H.; Geertsema, W.; Prins, A.H.; Ozinga, W.A.; Hoek, van der D.C.J.; Grashof-Bokdam, C.J.

    2014-01-01

    Due to human activities many natural habitats have become isolated. As a result the dispersal of many plant species is hampered. Isolated populations may become extinct and have a lower probability to become reestablished in a natural way. Moreover, plant species may be forced to migrate to new

  16. A Novel A Posteriori Investigation of Scalar Flux Models for Passive Scalar Dispersion in Compressible Boundary Layer Flows

    Science.gov (United States)

    Braman, Kalen; Raman, Venkat

    2011-11-01

    A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.

  17. A comprehensive experimental databank for the verification of urban car emission dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Pavageau, M.; Rafailidis, S.; Schatzmann, M. [Universitaet Hamburg (Germany). Meteorologisches Inst.

    2001-07-01

    A summary presentation is made of representative samples from a comprehensive experimental databank on car exhaust dispersion in urban street canyons. Physical modelling, under neutral stratification conditions, was used to provide visualisation, pollutant concentration and velocity measurements above and inside test canyons amidst surrounding urban roughness. The study extended to two different canyon aspects ratios, in combination with different roof configurations on the surrounding buildings. To serve as a reliable basis for validation and testing of urban pollution dispersion codes, special emphasis was placed in this work on data quality assurance. (Author)

  18. Ten-year survival and complication rates of lithium-disilicate (Empress 2) tooth-supported crowns, implant-supported crowns, and fixed dental prostheses.

    Science.gov (United States)

    Teichmann, Maren; Göckler, Fabian; Weber, Volker; Yildirim, Murat; Wolfart, Stefan; Edelhoff, Daniel

    2017-01-01

    To prospectively evaluate the clinical long-term outcome of tooth-supported crowns (SCs), implant-supported crowns (ISCs), and fixed dental prostheses (FDPs) made of a lithium-disilicate glass-ceramic framework material (IPS Empress 2). Between 1997 and 1999, a total of 184 restorations (106 SCs, 32 ISCs, 33 FDPs, and 13 diverse restorations) were placed in 73 patients. Kaplan-Meier estimation was applied for survival and chipping-free rates. Inter-group comparison of both rates was realized by a log rank test and a 2×2 contingency table. Also, SCs and FDPs were compared regarding adhesive vs. conventional cementation, and anterior vs. posterior positioning, for impact on survival. Due to 14 dropouts (34 restorations) and reasonable exclusion of 19 other restorations, the final dataset included: i) 87 SCs [37 patients, mean observation time 11.4 (±3.8)years]; ii) 17 ISCs [12 patients, mean observation time 13.3 (±2.3)years; and iii) 27 FDPs [19 patients, mean observation time 8.9 (±5.4)years]. The 10-year survival rate/chipping-free rate for SCs were 86.1%/83.4%, for ISCs 93.8%/94.1%, and for FDPs were 51.9%/90.8%. Both ISCs and SCs had a significantly higher survival than FDPs (ISCs vs. FDPs: both tests p=0.001; SCs vs. FDPs: p=0.001 and p=0.005). Differences in the chipping-free rates did not reach significance. Also, neither the cementation mode nor positioning of the restoration had an impact on survival. SCs had a slightly lower outcome than can generally be expected from single crowns. In contrast, ICSs had a favorable outcome and the FDPs predominantly failed. The practitioner's choice of dental materials is based (at best) on long-term experience. The present 10-year results are based on comprehensive data analyses and show the high potential of lithium-disilicate as a reliable material, especially for single-unit restoration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of radioxenon releases in Australia using atmospheric dispersion modelling tools

    International Nuclear Information System (INIS)

    Tinker, Rick; Orr, Blake; Grzechnik, Marcus; Hoffmann, Emmy; Saey, Paul; Solomon, Stephen

    2010-01-01

    The origin of a series of atmospheric radioxenon events detected at the Comprehensive Test Ban Treaty Organisation (CTBTO) International Monitoring System site in Melbourne, Australia, between November 2008 and February 2009 was investigated. Backward tracking analyses indicated that the events were consistent with releases associated with hot commission testing of the Australian Nuclear Science Technology Organisation (ANSTO) radiopharmaceutical production facility in Sydney, Australia. Forward dispersion analyses were used to estimate release magnitudes and transport times. The estimated 133 Xe release magnitude of the largest event (between 0.2 and 34 TBq over a 2 d window), was in close agreement with the stack emission releases estimated by the facility for this time period (between 0.5 and 2 TBq). Modelling of irradiation conditions and theoretical radioxenon emission rates were undertaken and provided further evidence that the Melbourne detections originated from this radiopharmaceutical production facility. These findings do not have public health implications. This is the first comprehensive study of atmospheric radioxenon measurements and releases in Australia.

  20. JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation

    Directory of Open Access Journals (Sweden)

    Camilla A. Richmond

    2018-01-01

    Full Text Available The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs and slowly cycling, reserve ISCs (r-ISCs. Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.

  1. High Resilience of Seed Dispersal Webs Highlighted by the Experimental Removal of the Dominant Disperser.

    Science.gov (United States)

    Timóteo, Sérgio; Ramos, Jaime Albino; Vaughan, Ian Phillip; Memmott, Jane

    2016-04-04

    The pressing need to conserve and restore habitats in the face of ongoing species loss [1, 2] requires a better understanding of what happens to communities when species are lost or reinstated [3, 4]. Theoretical models show that communities are relatively insensitive to species loss [5, 6]; however, they disagree with field manipulations showing a cascade of extinctions [7, 8] and have seldom been tested under field conditions (e.g., [9]). We experimentally removed the most abundant seed-dispersing ant species from seed dispersal networks in a Mediterranean landscape, replicating the experiment in three types of habitat, and then compared these communities to un-manipulated control communities. Removal did not result in large-scale changes in network structure. It revealed extensive structural plasticity of the remaining community, which rearranged itself through rewiring, while maintaining its functionality. The remaining ant species widened their diet breadth in a way that maintained seed dispersal, despite the identity of many interactions changing. The species interaction strength decreased; thus, the importance of each ant species for seed dispersal became more homogeneous, thereby reducing the dependence of seed species on one dominant ant species. Compared to the experimental results, a simulation model that included rewiring considerably overestimated the effect of species loss on network robustness. If community-level species loss models are to be of practical use in ecology or conservation, they need to include behavioral and population responses, and they need to be routinely tested under field conditions; doing this would be to the advantage of both empiricists and theoreticians. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Uncertainties in gas dispersion at the Bruce heavy water plant

    International Nuclear Information System (INIS)

    Alp, E.; Ciccone, A.

    1995-07-01

    There have been concerns regarding the uncertainties in atmospheric dispersion of gases released from the Bruce Heavy Water Plant (BHWP). The concern arises due to the toxic nature of H 2 S, and its combustion product SO 2 . In this study, factors that contribute to the uncertainties, such as the effect of the shoreline setting, the potentially heavy gas nature of H 2 S releases, and concentration fluctuations, have been investigated. The basic physics of each of these issues has been described along with fundamental modelling principles. Recommendations have been provided on available computer models that would be suitable for modelling gas dispersion in the vicinity of the BHWP. (author). 96 refs., 4 tabs., 25 figs

  3. Uncertainties in gas dispersion at the Bruce heavy water plant

    Energy Technology Data Exchange (ETDEWEB)

    Alp, E; Ciccone, A [Concord Environmental Corp., Downsview, ON (Canada)

    1995-07-01

    There have been concerns regarding the uncertainties in atmospheric dispersion of gases released from the Bruce Heavy Water Plant (BHWP). The concern arises due to the toxic nature of H{sub 2}S, and its combustion product SO{sub 2}. In this study, factors that contribute to the uncertainties, such as the effect of the shoreline setting, the potentially heavy gas nature of H{sub 2}S releases, and concentration fluctuations, have been investigated. The basic physics of each of these issues has been described along with fundamental modelling principles. Recommendations have been provided on available computer models that would be suitable for modelling gas dispersion in the vicinity of the BHWP. (author). 96 refs., 4 tabs., 25 figs.

  4. Estimation of the environmental impact of emissions from the La Reina NEC, by atmospheric dispersion modeling

    International Nuclear Information System (INIS)

    Bustamante C, Paula M.; Ortiz R, Marcela A.

    1996-01-01

    Based on a dispersion model, an accidental release of radioactive material to the atmosphere was simulated. To evaluate the consequences of the accidental release it was used the P C COSYMA program (KfK and NRPB). The atmospheric dispersion model was MUSEMET, a segmented Gaussian plume model which requires information on meteorological conditions for a period of one year. This study was carried out to determine the plume's behavior and path, and to define protective actions. The meteorological analysis shows an airflow from the WSW and a channeling flow from the S E at night, due to topographical influences. (author)

  5. Modeling skull's acoustic attenuation and dispersion on photoacoustic signal

    Science.gov (United States)

    Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.

    2017-03-01

    Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.

  6. Modeling of high-density U-MO dispersion fuel plate performance

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    2002-01-01

    Results from postirradiation examinations (PIE) of highly loaded U-Mo/Al dispersion fuel plates over the past several years have shown that the interaction between the metallic fuel particles and the matrix aluminum can be extensive, reducing the volume of the high-conductivity matrix phase and producing a significant volume of low-conductivity reaction-product phase. This phenomenon results in a significant decrease in fuel meat thermal conductivity during irradiation. PIE has further shown that the fuel-matrix interaction rate is a sensitive function of irradiation temperature. The interplay between fuel temperature and fuel-matrix interaction makes the development of a simple empirical correlation between the two difficult. For this reason a comprehensive thermal model has been developed to calculate temperatures throughout the fuel plate over its lifetime, taking into account the changing volume fractions of fuel, matrix and reaction-product phases within the fuel meat owing to fuel-matrix interaction; this thermal model has been incorporated into the dispersion fuel performance code designated PLATE. Other phenomena important to fuel thermal performance that are also treated in PLATE include: gas generation and swelling in the fuel and reaction-product phases, incorporation of matrix aluminum into solid solution with the unreacted metallic fuel particles, matrix extrusion resulting from fuel swelling, and cladding corrosion. The phenomena modeled also make possible a prediction of fuel plate swelling. This paper presents a description of the models and empirical correlations employed within PLATE as well as validation of code predictions against fuel performance data for U-Mo experimental fuel plates from the RERTR-3 irradiation test. (author)

  7. Dispersion model for airborne particulates inside a building

    International Nuclear Information System (INIS)

    Perkins, W.C.; Stoddard, D.H.

    1985-01-01

    An empirical model has been developed for the spread of airborne radioactive particles after they are released inside a building. The model has been useful in performing safety analyses of actinide materials facilities at the Savannah River Plant (SRP). These facilities employ the multiple-air-zone concept; that is, ventilation air flows from rooms or areas of least radioactive material hazard, through zones of increasing hazard, to a treatment system. A composite of the data for dispersion of airborne activity during 12 actual case incidents at SRP forms the basis for this model. These incidents occurred during approximately 90 plant-years of experience at SRP with the chemical and metallurgical processing of purified neptunium and plutonium after their recovery from irradiated uranium. The model gives ratios of the airborne activity concentrations in rooms and corridors near the site of the release. The multiple-air-zone concept has been applied to many designs of nuclear facilities as a safety feature to limit the spread of airborne activity from a release. The model illustrates the limitations of this concept: it predicts an apparently anomalous behavior of airborne particulates; namely, a small migration against the flow of the ventilation air

  8. Nanoparticle dispersion effect of laser-surface melting in ZrB{sub 2p}/6061Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yida; Chao, Yuhjin; Luo, Zhen, E-mail: lz-tju@163.com [Tianjin University, School of Material Science and Engineering (China); Huang, Yongxian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (China)

    2017-04-15

    Zirconium diboride (ZrB{sub 2p}, 15 vol%)/6061 aluminum (Al) composites were fabricated via in situ reaction. The existence, morphologies, and dispersion degree of the in situ ZrB{sub 2} particles with size from tens to hundreds of nanometers were studied by X-ray diffractometry, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. As the particle-settlement effect becomes dominant during the composite fabrication process, ZrB{sub 2} nanoparticles agglomerate to a certain extent in some areas of the as-cast composites. A laser-surface melting (LSM) strategy was applied to disperse agglomerated ZrB{sub 2} nanoparticles in as-cast composites, and the ZrB{sub 2} nanoparticle dispersion is affected visibly by LSM. After LSM, nanoparticles tend to distribute along the grain boundary. Particle clusters were dispersed in an explosive orientation and the particle diffusion distance varied in terms of its radius and melt-viscosity vicinity. High-resolution transmission electron microscopy showed the existence of a subgrain structure near the ZrB{sub 2}–Al interface after LSM. This may increase the yield strength when a dislocation tangle forms.

  9. Phonon dispersion of metallic glass CuZr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, S [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kawakita, Y [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Otomo, T [Japan Proton Accelerator Research Complex, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan (Japan); Suenaga, R [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Baron, A Q R [Materials Dynamics Laboratory, Harima RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Tsutsui, S [Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan (Japan); Kohara, S [Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan (Japan); Takeda, S [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Itoh, K [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennnan-gun, Osaka 590-0494 (Japan); Kato, H [Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Fukunaga, T [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennnan-gun, Osaka 590-0494 (Japan); Hasegawa, M [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)

    2007-12-15

    Collective dynamics of metallic glass CuZr{sub 2} has been studied in the first pseudo Brillouin zone using high-resolution inelastic X-ray scattering. Acoustic-like longitudinal propagating excitations were observed and the dispersion relation was determined. In addition of longitudinal mode, transverse mode with half excitation energy contributes to medium energy-transfer region.

  10. A mechanistic Eulerian-Lagrangian model for dispersed flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    In this paper a new mechanistic model of heat transfer in the dispersed flow regime is presented. The usual assumptions that render most of the available models unsuitable for the analysis of the reflooding phase of the LOCA are discussed, and a two-dimensional time-independent numerical model is developed. The gas temperature field is solved in a fixed-grid (Eulerian) mesh, with the droplets behaving as mass and energy sources. The histories of a large number of computational droplets are followed in a Lagrangian frame, considering evaporation, break-up and interactions with the vapor and with the wall. comparisons of calculated wall and vapor temperatures with experimental data are shown for two reflooding tests

  11. NOx dispersion modelling around roundabout in a small city, example from Hungary

    Science.gov (United States)

    Farkas, Orsolya; Rákai, Anikó; Czáder, Károly; Török, Ákos

    2013-04-01

    The present paper focuses on the modelling of pollutant distribution and dispersion in an urban region that is located in a moderately industrialized town of Hungary, Székesfehérvár, with a population of 100,000. The study area is located close to the city centre, with different housing styles and different building elevations. High-rise buildings with 10 floors to small houses with gardens are found in the modelled area. The roundabout has 5 access roads; three major ones and two minor ones with different geometries and traffic load. The traffic load of the roads was defined by traffic count, while for the meteorological characteristics wind-statistics were created. Additional input parameters were the ground plan and the elevation of buildings. To simulate the airflow and the dispersion of pollutants a Computational Fluid Dynamics code called MISKAM was used. The background concentration was taken from the dataset of a nearby air quality monitoring station. According to vehicle counting the 5 roads of the roundabout have very different loads from 12 vehicles to more than 412 vehicles/hour. Three different grid systems were applied ranging from half million to 5 million cells. The difference in the results related to grid density was also evaluated. Wind speed distribution, wind turbulence and building wake flow patterns were identified by using the model. With the help of the simulation the NOx flow and dispersion of pollutants around the roundabout can be estimated and the critical locations with higher pollution concentration are presented. The results of the modelling can be more generalized and used in the design of the layout, development, traffic-control and environmental aspects of roundabouts located in small urban areas.

  12. Description and validation of ERAD: An atmospheric dispersion model for high explosive detonations

    Energy Technology Data Exchange (ETDEWEB)

    Boughton, B.A.; DeLaurentis, J.M.

    1992-10-01

    The Explosive Release Atmospheric Dispersion (ERAD) model is a three-dimensional numerical simulation of turbulent atmospheric transport and diffusion. An integral plume rise technique is used to provide a description of the physical and thermodynamic properties of the cloud of warm gases formed when the explosive detonates. Particle dispersion is treated as a stochastic process which is simulated using a discrete time Lagrangian Monte Carlo method. The stochastic process approach permits a more fundamental treatment of buoyancy effects, calm winds and spatial variations in meteorological conditions. Computational requirements of the three-dimensional simulation are substantially reduced by using a conceptualization in which each Monte Carlo particle represents a small puff that spreads according to a Gaussian law in the horizontal directions. ERAD was evaluated against dosage and deposition measurements obtained during Operation Roller Coaster. The predicted contour areas average within about 50% of the observations. The validation results confirm the model`s representation of the physical processes.

  13. Estimating dispersion from a tornado vortex and mesocyclone

    International Nuclear Information System (INIS)

    Weber, A.H.; Hunter, C.H.

    1996-06-01

    Atmospheric dispersion modeling is required to ensure that a postulated breach in radionuclide storage containers at the Savannah River Site (SRS) from a tornado strike of Fujita-scale intensity F2 or higher will not result in an unacceptable dose to individuals. Fujita-scale tornado descriptions are included in Appendix A of this report. Dispersion models previously used at SRS for estimating dispersion following a tornado strike were developed by D.W. Pepper in 1975 (DP-1387, Dispersion of Small Particles) and H.R. Haynes and D.W. Taylor in 1983 (DPST-82-982, Estimating Doses from Tornado Winds). Research conducted in 1983 on the formation and evolution of tornadic thunderstorms has lead to a more complete understanding of the tornado vortex and associated persistent updraft and downdraft regions within the parent thunderstorm. To ensure that appropriate, contemporary methods are used for safety analysis, the Pepper model and the Haynes and Taylor model were evaluated with respect to current knowledge of circulations within tornadic thunderstorms. Pepper's model is complex numerically but contains most of the desired physical parameterizations. Haynes and Taylor's model is used with the Puff-Plume model (an emergency response model on the Weather INformation and Display System at SRS) and has provisions for radionuclide deposition and rainout. Haynes and Taylor assumed heavy rain following the tornado for a period of ten minutes, followed by a lighter rain for another ten minutes, then no rain for the period when the material is transported to 100 km downwind. However, neither model incorporates the effects of a nearby thunderstorm downdraft

  14. Modelling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives

    International Nuclear Information System (INIS)

    Thiessen, K.M.; Andersson, K.G.; Batandjieva, B.; Cheng, J.-J.; Hwang, W.T.; Kaiser, J.C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.

    2009-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a 'no action' situation (with no remedial measures) and for selected countermeasures. The exercise provided an opportunity for comparison of three modelling approaches, as well as a comparison of the predicted effectiveness of various countermeasures in terms of their short-term and long-term effects on predicted doses to humans.

  15. Modeling the Dispersal of Spiny Lobster (Palinurus elephas Larvae: Implications for Future Fisheries Management and Conservation Measures

    Directory of Open Access Journals (Sweden)

    Paul Whomersley

    2018-03-01

    Full Text Available Knowledge of larval dispersal, population dynamics and connectivity in relation to the management and conservation of commercially important species is vital if existing fisheries are to remain sustainable into the future. Larval dispersal of the commercially exploited spiny lobster, Palinurus elephas, was modeled from Marine Protected Areas located in the southwest of England for a 16-month period using a General Individuals Transport Model (GITM. The model included physical particle advection based on current fields from a 3D hydrodynamics model and a larval behavior module. Our results demonstrate the overall dispersal patterns of P. elephas larvae and highlight populations capable of self-seeding and those which are seemingly reliant on larvae from more distant populations. The results indicate where further research may be required to fully understand how populations of P. elephas are maintained at regional, national and international scales while providing us with the opportunity to discuss the effectiveness of current approaches to conservation and fisheries management.

  16. Effects of chemical dispersants on oil physical properties and dispersion. Volume 1

    International Nuclear Information System (INIS)

    Khelifa, A.; Fingas, M.; Hollebone, B.P.; Brown, C.E.; Pjontek, D.

    2007-01-01

    Laboratory and field testing have shown that the dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). This study focused on new laboratory experiments that measured the effects on the physical properties and dispersion of oil, with particular reference to the effects of chemical dispersants on IFT and oil viscosity and the subsequent effects on oil droplet formation. Experiments were conducted at 15 degrees C using Arabian Medium, Alaska North Slope and South Louisiana crude and Corexit 9500 and Corexit 9527 chemical dispersants. The dispersants were denser than the 3 oils. The effect of IFT reduction on oil dispersion was measured and showed substantial reduction in the size and enhancement of the concentration of oil droplets in the water column. It was shown that the brine-oil IFT associated with the 3 crudes reduced to less than 3.6 mN/m with the application of the chemical dispersants, even at a low dispersant-to-oil ratio (DOR) value of 1:200. The use of chemical dispersants increased the viscosity of the dispersant-oil mixture up to 40 per cent over the neat crude oil. It was shown that for each mixing condition, an optimum value of DOR exists that provides for maximal dispersant effectiveness. The IFT reaches maximum reduction at optimum DOR. It was suggested that oil spill modelling can be improved with further study of IFT reduction with DOR and variations of critical micelle concentration with the type and solubility of chemical dispersant, oil type and oil to water ratio. 13 refs., 3 tabs., 7 figs

  17. Preparation and characterization of CeO2 highly dispersed on activated carbon

    International Nuclear Information System (INIS)

    Serrano-Ruiz, J.C.; Ramos-Fernandez, E.V.; Silvestre-Albero, J.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F.

    2008-01-01

    A new material constituted by cerium dioxide highly dispersed on activated carbon (CeO 2 /AC) was prepared by an impregnation method using cerium(III) nitrate as CeO 2 precursor. In order to evaluate the degree of ceria dispersion on the carbon support, CeO 2 /AC was characterized by a number of techniques: thermogravimetry coupled with a mass spectrometer (TG-MS), N 2 adsorption at 77 K, temperature-programmed desorption (TPD), temperature-programmed reduction (TPR) and transmission electron microscopy (TEM). The analysis of the decomposition process under inert atmosphere indicated that cerium nitrate decomposes at 440-460 K, with the evolution of NO. Furthermore, this process produces an additional oxidation of the carbon surface (with evolution of N 2 O) and the subsequent onset of new oxygen surface groups, detected by means of temperature-programmed desorption. The ceria deposition process takes place with a decrease in the N 2 adsorption capacity of the starting carbon support, and the analysis of the pore size distribution showed that the majority of ceria particles are situated at the most internal part of the carbon porosity. The temperature-programmed reduction profile of CeO 2 /AC was very different to that shown by unsupported CeO 2 , with only one continuous reduction process at low temperatures (800-900 K). Finally, TEM pictures gave direct evidence that ceria is highly dispersed on the carbon surface, with a narrow CeO 2 particle distribution centred around 3 nm

  18. NUMERICAL SOLUTION OF STEADY STATE DISPERSION FLOW MODEL FOR LACTOSE-LACTASE HYDROLYSIS WITH DIFFERENT KINETICS IN FIXED BED

    Directory of Open Access Journals (Sweden)

    OLAOSEBIKAN ABIDOYE OLAFADEHAN

    2010-06-01

    Full Text Available A detailed computational procedure for evaluating lactose hydrolysis with immobilized enzyme in a packed bed tubular reactor under dispersion flow conditions is presented. The dispersion flow model for lactose hydrolysis using different kinetics, taking cognizance of external mass transfer resistances, was solved by the method of orthogonal collocation. The reliability of model simulations was tested using experimental data from a laboratory packed bed column, where the -galactosidase of Kluyveromyces fragilis was immobilized on spherical chitosan beads. Comparison of the simulated results with experimental exit conversion shows that the dispersion flow model and using Michaelis-Menten kinetics with competitive product (galactose inhibition are appropriate to interpret the experimental results and simulate the process of lactose hydrolysis in a fixed bed.

  19. The Solid Solution Sr(1-x)Ba(x)Ga2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations.

    Science.gov (United States)

    Pecher, Oliver; Mausolf, Bernhard; Lamberts, Kevin; Oligschläger, Dirk; Niewieszol, Carina; Englert, Ulli; Haarmann, Frank

    2015-09-28

    Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr(1-x)Ba(x)Ga2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recent developments in the atmospheric dispersion models to be used for regulatory purposes and in risk evaluation

    International Nuclear Information System (INIS)

    Graziani, G.

    1996-01-01

    Climatological models and those most widely used for risk evaluation are generally based on the classification of atmospheric turbulence according to the Pasquill-Gifford categories, and use the Gaussian solution of the dispersion equation. One of their main limitations is that they deal only with continuous or instantaneous (puff) emission. Furthermore, a discretisation in the definition of atmospheric turbulence is performed according to the Pasquill-Gifford categories. This can generate uncertainties, since partial information on the state of the atmosphere at the time of emission can lead to the choice of one category rather than another and consequently to select wrong dispersion parameters. Some of these limits, such as the assumption of flat or slowly varying terrain, and the choice of constant atmospheric conditions during the duration of the release, are intrinsic to the schematization required by these models. Other limitations, such as the finite duration of the emissions and the continuous variation of the physical quantities describing the effect of turbulence on dispersion parameters, can be overcome. This paper describes the possible improvements which can be made in the dispersion models used in regulating emissions in the atmosphere and to calculate the associated risk. In particular the turbulence is based on the definition of some physical quantities varying with continuity which can be easily deduced from simple observations at the meteorological station at release site. It then analyses the application of this approach to a simple dispersion model, which can take into account the finite and non-zero durations of accidental emissions

  1. A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS2 composites

    International Nuclear Information System (INIS)

    Zhou, Keqing; Liu, Jiajia; Wen, Panyue; Hu, Yuan; Gui, Zhou

    2014-01-01

    Highlights: • In this work, we have reported a convenient method to modify molybdenum disulfide (MoS 2 ) nanosheets. • The organic modified MoS 2 nanosheets dispersed well in organic solvents and aqueous solution simultaneously. • This well dispersion can be used to prepare polymer/MoS 2 nanocomposites with an exfoliation structure by a simple solvent mixing method. • The organic modified MoS 2 nanosheets show promising reinforcing efficiency in the thermal stability, fire resistance and thermomechanical properties of the polymer/MoS 2 nanocomposites. - Abstract: In the evolution of high performance layered inorganic compounds/polymer nanocomposites, homogeneous dispersion of inorganic nanoplatelets in the polymer matrix and exact interface control are difficult to achieve due to the potent interlayer cohesive energy and surface inactiveness of the nanocomposites. Pristine MoS 2 exhibits poor solubility in both water and organic solvents. Herein, it is necessary to modify the surface of molybdenum disulfide (MoS 2 ) nanosheets with functional groups, in order to enhance its dispersity and compatibility in various solvents and polymer matrices. In this paper, we have reported a convenient method to modify MoS 2 nanosheets with common cationic surfactant and polymer, these organic modified MoS 2 nanosheets dispersed well in organic solvents and aqueous solution simultaneously. This well dispersion can be used to prepare polymer/MoS 2 nanocomposites by a simple solvent mixing method which was found to display an exfoliation structure of MoS 2 nanosheets and improve the performances of the polymer nanocomposites. With the addition of 3 wt% CTAB-MoS 2 , T 10% and T 50% of the samples are increased by 60 °C, respectively. Moreover, the storage modulus of sample PS/3% CTAB-MoS 2 had 84% increment compared with that of pure PS at 30 °C

  2. Finite-element time-domain modeling of electromagnetic data in general dispersive medium using adaptive Padé series

    Science.gov (United States)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.

    2017-12-01

    The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.

  3. Dispersion of coupled mode-gap cavities

    NARCIS (Netherlands)

    Lian, Jin; Sokolov, Sergei; Yuce, E.; Combrie, S.; de Rossi, A.; Mosk, Allard

    2015-01-01

    The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity

  4. Global atmospheric dispersion modelling after the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  5. A nonlinear model for frequency dispersion and DC intrinsic parameter extraction for GaN-based HEMT

    Science.gov (United States)

    Nguyen, Tung The-Lam; Kim, Sam-Dong

    2017-11-01

    We propose in this study a practical nonlinear model for the AlGaN/GaN high electron mobility transistors (HEMTs) to extract DC intrinsic transconductance (gmDC), output conductance (gdsDC), and electron mobility from the intrinsic parameter set measured at high frequencies. An excellent agreement in I-V characteristics of the model with a fitting error of 0.11% enables us successfully extract the gmDC, gdsDC, and the total transconductance dispersion. For this model, we also present a reliable analysis scheme wherein the frequency dispersion effect due regional surface states in AlGaN/GaN HEMTs is taken into account under various bias conditions.

  6. Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions

    Directory of Open Access Journals (Sweden)

    Christoph Häni

    2018-04-01

    Full Text Available A controlled ammonia (NH3 release experiment was performed at a grassland site. The aim was to quantify the effect of dry deposition between the source and the receptors (NH3 measurement locations on emission rate estimates by means of inverse dispersion modelling. NH3 was released for three hours at a constant rate of Q = 6.29 mg s−1 from a grid of 36 orifices spread over an area of 250 m2. The increase in line-integrated NH3 concentration was measured with open-path optical miniDOAS devices at different locations downwind of the artificial source. Using a backward Lagrangian stochastic (bLS dispersion model (bLSmodelR, the fraction of the modelled release rate to the emitted NH3 ( Q bLS / Q was calculated from the measurements of the individual instruments. Q bLS / Q was found to be systematically lower than 1, on average between 0.69 and 0.91, depending on the location of the receptor. We hypothesized that NH3 dry deposition to grass and soil surfaces was the main factor responsible for the observed depletion of NH3 between source and receptor. A dry deposition algorithm based on a deposition velocity approach was included in the bLS modelling. Model deposition velocities were evaluated from a ‘big-leaf’ canopy resistance analogy. Canopy resistances (generally termed R c that provided Q bLS / Q = 1 ranged from 75 to 290 s m−1, showing that surface removal of NH3 by dry deposition can plausibly explain the original underestimation of Q bLS / Q . The inclusion of a dry deposition process in dispersion modelling is crucial for emission estimates, which are based on concentration measurements of depositing tracers downwind of homogeneous area sources or heterogeneously-distributed hot spots, such as, e.g., urine patches on pastures in the case of NH3.

  7. A Facile Solvothermal Method for Synthesis of CuInS2 Nanostructures

    Directory of Open Access Journals (Sweden)

    M. Mousavi-Kamazani

    2012-09-01

    Full Text Available CuInS2 nanostructures were  synthesized  via  a  simple  surfactant-free solvothermal  route.  In  this  synthesis,  thiosemicarbazide  and thioglycolic acid were used as sulfur sources. The effects of different parameters such as type of precursor and time on the morphology and particle  size  of  the  samples  have  been  investigated.  The nanostructures  were  characterized  by  means  of  X-ray  diffraction (XRD,  scanning  electron microscopy  (SEM,  energy-dispersive X- ray  analysis  (EDX,  Fourier  transform  infrared  (FT-IR  and photoluminescence  (PL  spectroscopy.  The  fill  factor  (FF,  open circuit voltage  (Voc, and  short circuit current  (Isc were obtained by I–V characterization.

  8. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  9. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    Science.gov (United States)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2014-06-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of

  10. Atmospheric Dispersion Models for the Calculation of Environmental Impact: A Comparative Study

    International Nuclear Information System (INIS)

    Caputo, Marcelo; Gimenez, Marcelo; Felicelli, Sergio; Schlamp, Miguel

    2000-01-01

    In this paper some new comparisons are presented between the codes AERMOD, HPDM and HYSPLIT.The first two are Gaussian stationary plume codes and they were developed to calculate environmental impact produced by chemical contaminants.HYSPLIT is a hybrid code because it uses a Lagrangian reference system to describe the transport of a puff center of mass and uses an Eulerian system to describe the dispersion within the puff.The meteorological and topographic data used in the present work were obtained from runs of the prognostic code RAMS, provided by NOAA. The emission was fixed in 0.3 g/s , 284 K and 0 m/s .The surface rough was fixed in 0.1m and flat terrain was considered.In order to analyze separate effects and to go deeper in the comparison, the meteorological data was split into two, depending on the atmospheric stability class (F to B), and the wind direction was fixed to neglect its contribution to the contaminant dispersion.The main contribution of this work is to provide recommendations about the validity range of each code depending on the model used.In the case of Gaussian models the validity range is fixed by the distance in which the atmospheric condition can be consider homogeneous.In the other hand the validity range of HYSPLIT's model is determined by the spatial extension of the meteorological data.The results obtained with the three codes are comparable if the emission is in equilibrium with the environment.This means that the gases were emitted at the same temperature of the medium with zero velocity.There was an important difference between the dispersion parameters used by the Gaussian codes

  11. Comparison Between 2-D and 3-D Stiffness Matrix Model Simulation of Sasw Inversion for Pavement Structure

    Directory of Open Access Journals (Sweden)

    Sri Atmaja P. Rosidi

    2007-01-01

    Full Text Available The Spectral Analysis of Surface Wave (SASW method is a non-destructive in situ seismic technique used to assess and evaluate the material stiffness (dynamic elastic modulus and thickness of pavement layers at low strains. These values can be used analytically to calculate load capacities in order to predict the performance of pavement system. The SASW method is based on the dispersion phenomena of Rayleigh waves in layered media. In order to get the actual shear wave velocities, 2-D and 3-D models are used in the simulation of the inversion process for best fitting between theoretical and empirical dispersion curves. The objective of this study is to simulate and compare the 2-D and 3-D model of SASW analysis in the construction of the theoretical dispersion curve for pavement structure evaluation. The result showed that the dispersion curve from the 3-D model was similar with the dispersion curve of the actual pavement profile compared to the 2-D model. The wave velocity profiles also showed that the 3-D model used in the SASW analysis is able to detect all the distinct layers of flexible pavement units.

  12. Advances in real-time technology assessment and emergency response: Close-in atmospheric dispersion modeling and exposure estimation

    International Nuclear Information System (INIS)

    Sims, J.; Lee, R.; McCallen, R.; Lawver, B.; Clark, J.; Rueppel, D.; Sullivan, T.

    1992-07-01

    We have developed a stand-alone, real-time emergency response system to assess and predict the offsite dispersion of particulate releases. We have also developed advanced modeling tools that win expand the capability of the emergency response system to predict nearfield dispersion over complex terrain and around buildings

  13. Relations de Dispersion et Diffusion des Glueballs et des Mesons dans la Theorie de Jauge U(1)(2+1) Compacte

    Science.gov (United States)

    Ahmed, Chaara El Mouez

    Nous avons etudie les relations de dispersion et la diffusion des glueballs et des mesons dans le modele U(1)_{2+1} compact. Ce modele a ete souvent utilise comme un simple modele de la chromodynamique quantique (QCD), parce qu'il possede le confinement ainsi que les etats de glueballs. Par contre, sa structure mathematique est beaucoup plus simple que la QCD. Notre methode consiste a diagonaliser l'Hamiltonien de ce modele dans une base appropriee de graphes et sur reseau impulsion, afin de generer les relations de dispersion des glueballs et des mesons. Pour la diffusion, nous avons utilise la methode dependante du temps pour calculer la matrice S et la section efficace de diffusion des glueballs et des mesons. Les divers resultats obtenus semblent etre en accord avec les travaux anterieurs de Hakim, Alessandrini et al., Irving et al., qui eux, utilisent plutot la theorie des perturbations en couplage fort, et travaillent sur un reseau espace-temps.

  14. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron ...

    Indian Academy of Sciences (India)

    An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from various elemental metals and standard inorganic ...

  15. Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by Aspergillus sp. XJ-2 CGMCC12963.

    Science.gov (United States)

    Pan, Huiran; Xu, Xiaolin; Wen, Zhu; Kang, Yanshun; Wang, Xinhao; Ren, Youshan; Huang, Danqi

    2017-09-03

    Anthraquinone dye represents an important group of recalcitrant pollutants in dye wastewater. Aspergillus sp XJ-2 CGMCC12963 showed broad-spectrum decolorization ability, which could efficiently decolorize and degrade various anthraquinone dyes (50 mg L -1 ) under microaerophilic condition. And the decolorization rate of 93.3% was achieved at 120 h with Disperse Blue 2BLN (the target dye). Intermediates of degradation were detected by FTIR and GC-MS, which revealed the cleavage of anthraquinone chromophoric group and partial mineralization of target dye. In addition, extracellular manganese peroxidase showed the most closely related to the increasing of decolorization rate and biomass among intracellular and extracellular ligninolytic enzymes. Given these results, 2 possible degraded pathways of target dye by Aspergillus sp XJ-2 CGMCC12963 were proposed first in this work. The degradation of Disperse Blue 2BLN and broad spectrum decolorization ability provided the potential for Aspergillus sp XJ-2 CGMCC12963 in the treatment of wastewater containing anthraquinone dyes.

  16. A Semi-Analytical Model for Dispersion Modelling Studies in the Atmospheric Boundary Layer

    Science.gov (United States)

    Gupta, A.; Sharan, M.

    2017-12-01

    The severe impact of harmful air pollutants has always been a cause of concern for a wide variety of air quality analysis. The analytical models based on the solution of the advection-diffusion equation have been the first and remain the convenient way for modeling air pollutant dispersion as it is easy to handle the dispersion parameters and related physics in it. A mathematical model describing the crosswind integrated concentration is presented. The analytical solution to the resulting advection-diffusion equation is limited to a constant and simple profiles of eddy diffusivity and wind speed. In practice, the wind speed depends on the vertical height above the ground and eddy diffusivity profiles on the downwind distance from the source as well as the vertical height. In the present model, a method of eigen-function expansion is used to solve the resulting partial differential equation with the appropriate boundary conditions. This leads to a system of first order ordinary differential equations with a coefficient matrix depending on the downwind distance. The solution of this system, in general, can be expressed in terms of Peano-baker series which is not easy to compute, particularly when the coefficient matrix becomes non-commutative (Martin et al., 1967). An approach based on Taylor's series expansion is introduced to find the numerical solution of first order system. The method is applied to various profiles of wind speed and eddy diffusivities. The solution computed from the proposed methodology is found to be efficient and accurate in comparison to those available in the literature. The performance of the model is evaluated with the diffusion datasets from Copenhagen (Gryning et al., 1987) and Hanford (Doran et al., 1985). In addition, the proposed method is used to deduce three dimensional concentrations by considering the Gaussian distribution in crosswind direction, which is also evaluated with diffusion data corresponding to a continuous point source.

  17. Dispersion relations in the noncommutative φ3 and Wess-Zumino model in the Yang-Feldman formalism

    International Nuclear Information System (INIS)

    Doescher, C.; Zahn, J.

    2006-05-01

    We study dispersion relations in the noncommutative φ 3 and Wess-Zumino model in the Yang-Feldman formalism at one-loop order. Non-planar graphs lead to a distortion of the dispersion relation. We find that this effect is small if the scale of noncommutativity is identified with the Planck scale and parameters typical for a Higgs field are employed. (Orig.)

  18. Dispersion and transport of atmospheric pollutants

    International Nuclear Information System (INIS)

    Cieslik, S.

    1991-01-01

    This paper presents the physical mechanisms that govern the dispersion and transport of air pollutant; the influence of the state of the 'carrying fluid', i.e. the role of meteorology; and finally, outlines the different techniques of assessing the process. Aspects of physical mechanisms and meteorology covered include: fate of an air pollutant; turbulence and dispersion; transport; wind speed and direction; atmospheric stability; and the role of atmospheric water. Assessment techniques covered are: concentrations measurements; modelling meteorological observations; and tracer releases. It is concluded that the only way to reduce air pollution is to pollute less. 10 refs., 12 figs., 2 tabs

  19. Numerical analysis and modeling of plume meandering in passive scalar dispersion downstream of a wall-mounted cube

    International Nuclear Information System (INIS)

    Rossi, R.; Iaccarino, G.

    2013-01-01

    Highlights: • Scalar dispersion downstream of a wall-mounted cube is examined by DNS and RANS models. • Vortex-shedding and plume meandering are established in the wake of the cube. • Low-frequency modulation is observed in the vortex-shedding and plume meandering. • Counter-gradient transport takes place in the streamwise component of the scalar flux. • Concentration decay and plume spread improved by the unsteady RANS model. -- Abstract: A DNS database is employed to examine the onset of plume meandering downstream of a wall-mounted cube and to address the impact of large-scale unsteadiness in modeling dispersion using the RANS equations. The cube is immersed in a uniform stream where the thin boundary-layer developing over the flat plate is responsible for the onset of vortex-shedding in the wake of the bluff-body. Spectra of velocity and concentration fluctuations exhibit a prominent peak in the energy content at the same frequency, showing that the plume meandering is established by the action of the vortex-shedding. The vortex-shedding and plume meandering display a low-frequency modulation where coherent fluctuations are suppressed at times with a quasi-regular period. The onset of the low-frequency modulation is indicated by a secondary peak in the energy spectrum and confirmed by the autocorrelation of velocity and scalar fluctuations. Unsteady RANS simulations performed with the v 2 − f model are able to detect the onset of the plume meandering and show remarkable improvement of the predicted decay rate and rate of spread of the scalar plume when compared to steady RANS solutions. By computing explicitly the periodic component of velocity and scalar fluctuations, the unsteady v 2 − f model is able to provide a representation of scalar flux components consistent with DNS statistics, where the counter-gradient transport mechanism that takes place in the streamwise component is also captured by URANS results. Nonetheless, the agreement with DNS

  20. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.

    Science.gov (United States)

    Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob; Corni, Stefano; Frediani, Luca; Steindal, Arnfinn Hykkerud; Guido, Ciro A; Scalmani, Giovanni; Mennucci, Benedetta

    2018-03-13

    Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdW TS ) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdW TS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdW TS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.