WorldWideScience

Sample records for isaria fumosoroseus cordycipitaceae

  1. Inoculation of sphagnum-based soil substrate with entomopathogenic fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae)

    Science.gov (United States)

    Zemek, Rostislav; Konopická, Jana; Bohatá, Andrea

    2018-04-01

    Convenient ecological alternative to broad-spectrum chemical pesticides is the utilization of natural enemies, like predators, parasitoids and microorganisms. A substantial number of microbial biopesticides based on entomopathogenic fungi have been developed worldwide since 1960s. Beauveria bassiana (Balsamo-Crivelli) Vuillemin, Metarhizium anisopliae (Metchnikoff) Sorokin, Isaria fumosorosea (Wize), and B. brongniartii (Saccardo) Petch are the most common species used in commercially produced mycopesticides. Besides direct biological pest control, these fungi could be also used in preventive application programs, particularly in ornamental or nursery plants to provide better control against pests. The aim of the present study was to investigate potential of pre-colonization of sphagnum-based soil substrate with I. fumosorosea strain CCM 8367 which was found earlier to be highly virulent against several pest species. We developed simple laboratory apparatus for application of fungal spore suspension into the substrate. Suspension was prepared from blastospores obtained by submerged cultivation on potato dextrose broth (PDB) medium using an orbital shaker. Inoculated substrate was placed into plastic bags and stored at constant temperature for six months. Every month, samples were analyzed for concentration of colony forming units (CFU) by elution and selective medium technique. The results showed that at 20°C the fungus successfully colonized the soil substrate and persisted there although the mean concentration slightly decreased from 5.89×104 to 2.76×104 CFU per milliliter of substrate during the experiment. Temperature 30°C had negative effect on survival of the fungus and is not recommended for long-term storage of pre-inoculated substrate. We can conclude that I. fumosorosea-colonized substrate can be convenient for preventive and permanent protection of various plants against soil-dwelling pests.

  2. Laboratory evaluation of a new strain CCM 8367 of Isaria fumosorosea (syn. Paecilomyces fumosoroseus) on Spodoptera littoralis (Boisd.)

    Czech Academy of Sciences Publication Activity Database

    Hussein, Hany; Zemek, Rostislav; Habuštová, Oxana; Prenerová, Eva; Adel, M. M.

    2013-01-01

    Roč. 46, č. 11 (2013), s. 1307-1319 ISSN 0323-5408 R&D Projects: GA MŠk 2B06005 Institutional support: RVO:60077344 Keywords : entomopathogenic fungi * Isaria fumosorosea * CCM 8367 Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection

  3. Efficacy of Isaria fumosorosea Wize (Hypocreales: Cordycipitaceae) on the leaf phylloplane over time for controlling Madeira mealybug nymphs preshipping

    Science.gov (United States)

    The efficacy of Isaria fumosorosea (= PFR 97®) on the leaf phylloplane over time for controlling Madeira mealybug nymphs before shipping plant products was assessed under laboratory conditions. Hibiscus leaves were dipped into beakers filled with 0, 1, 2, 4, 8, and 10 g of PFR 97® / L of water and t...

  4. Oviposition Behavior and Survival of Tamarixia radiata (Hymenoptera: Eulophidae), an Ectoparasitoid of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), on Hosts Exposed to an Entomopathogenic Fungus, Isaria fumosorosea (Hypocreales: Cordycipitaceae), Under Laboratory Conditions.

    Science.gov (United States)

    Chow, Andrew; Dunlap, Christopher A; Jackson, Mark A; Flores, Daniel; Patt, Joseph M; Sétamou, Mamoudou

    2016-10-01

    Antagonistic interactions between the nymphal parasitoid, Tamarixia radiata Waterston (Hymenoptera: Eulophidae), and the ARSEF 3581 strain of the entomopathogenic fungus, Isaria fumosorosea Wize (Hypocreales: Cordycipitaceae), could disrupt biological control of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Three interactions were evaluated under laboratory conditions at 25 °C: 1) parasitoid survival if parasitized hosts were exposed to ARSEF 3581 blastospores before or after host mummification; 2) parasitoid survival if mummies containing larva or pupa were exposed to ARSEF 3581 hyphae; 3) parasitoid oviposition on infected hosts with visible or without visible hyphae. Topical application of blastospore formulation onto the dorsal surfaces of live nymphs parasitized with second-instar wasp larva (3 d after parasitism) reduced host mummification by 50% and parasitoid emergence by 85%. However, parasitoid emergence was not affected by topical application of blastospore formulation onto mummies that contained fourth-instar wasp larva (6 d after parasitism). Parasitoid emergence was reduced by 80% if mummies containing fourth-instar wasp larva were covered with blastospore formulation colonized by fungal hyphae. In comparison, parasitoid emergence was not affected if mummies containing wasp pupa (9 d after parasitism) were covered with formulation colonized by fungal hyphae. Female parasitoids oviposited on infected hosts without visible hyphae but not on infected hosts with visible hyphae. Our findings suggest that I. fumosorosea could detrimentally affect T. radiata, if both natural enemies are simultaneously deployed for biological control of D. citri However, temporal separation of the fungus and parasitoid could reduce antagonism and enhance control of D. citri. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae Blastospores with Agricultural Chemicals Used for Management of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae

    Directory of Open Access Journals (Sweden)

    Pasco B. Avery

    2013-11-01

    Full Text Available Biorational insecticides are being increasingly emphasized for inclusion in integrated pest management programs for invasive insects. The entomopathogenic fungus, Isaria fumosorosea, can be used to help manage the Asian citrus psyllid with minimal impact on beneficial arthropods, but its effectiveness may be compromised by agrochemicals used to control concurrent arthropod pests and diseases. We evaluated the compatibility of I. fumosorosea blastospores with a range of spray oils and copper-based fungicides registered for use in citrus groves. Results of laboratory and greenhouse tests showed a range of responses of the fungus to the different materials, including compatibility and incompatibility. Overall, I. fumosorosea growth in vitro was reduced least by petroleum-based materials and most by botanical oils and borax, and some of the copper-based fungicides, suggesting that tank mixing of I. fumosorosea with these latter products should be avoided. However, equivalent negative effects of test materials on fungal pathogenicity were not always observed in tests with adult psyllids. We hypothesize that some oils enhanced adherence of blastospores to the insect cuticle, overcoming negative impacts on germination. Our data show that care should be taken in selecting appropriate agrochemicals for tank-mixing with commercial formulations of entomopathogenic fungi for management of citrus pests. The prospects of using I. fumosorosea for managing the invasive Asian citrus psyllid and other citrus pests are discussed.

  6. Use of real-time O2 concentration measurements in shake-flask fermentations of the bioinsecticidal fungus Isaria fumosorosea for improved yields of blastospores

    Science.gov (United States)

    The entomopathogenic fungus Isaria fumosoroseus (formerly Paecilomyces fumosoroseus) is capable of dimorphic growth (hyphal or yeast-like) in submerged culture. For use in spray applications as a biological control agent against insect pests, the yeast-like (blastospore) mode of growth is preferred....

  7. Species clarification of Isaria isolates used as biocontrol agents against Diaphorina citri (Hemiptera: Liviidae) in Mexico.

    Science.gov (United States)

    Gallou, Adrien; Serna-Domínguez, María G; Berlanga-Padilla, Angélica M; Ayala-Zermeño, Miguel A; Mellín-Rosas, Marco A; Montesinos-Matías, Roberto; Arredondo-Bernal, Hugo C

    2016-03-01

    Entomopathogenic fungi belonging to the genus Isaria (Hypocreales: Cordycipitaceae) are promising candidates for microbial control of insect pests. Currently, the Mexican government is developing a biological control program based on extensive application of Isaria isolates against Diaphorina citri (Hemiptera: Liviidae), a vector of citrus huanglongbing disease. Previous research identified three promising Isaria isolates (CHE-CNRCB 303, 305, and 307; tentatively identified as Isaria fumosorosea) from Mexico. The goal of this work was to obtain a complete morphological and molecular characterization of these isolates. Comparative analysis of morphology established that the isolates showed similar characteristics to Isaria javanica. Multi-gene analysis confirmed the morphological identification by including the three isolates within the I. javanica clade. Additionally, this work demonstrated the misidentifications of three other Isaria isolates (CHE-CNRCB 310 and 324: I. javanica, formerly I. fumosorosea; CHE-CNRCB 393: I. fumosorosea, formerly Isaria farinosa), underlying the need for a full and correct characterization of an isolate before developing a biological control program. Finally, the inter-simple sequence repeat (ISSR) genotyping method revealed that the CHE-CNRCB 303, 305, and 307 isolates belong to three different genotypes. This result indicates that ISSR markers could be used as a tool to monitor their presence in field conditions. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Rapid discrimination of Isaria javanica and Isaria poprawskii from Isaria spp. using high resolution DNA melting assays

    Science.gov (United States)

    The current study evaluates the potential of using high resolution DNA melting assays to discriminate species in the genus, Isaria. The study utilizes a previously identified 103 base pair PCR amplicon, which was reported to be selective for Isaria fumosorosea. Our study finds the amplicon selective...

  9. Molecular characterization of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes isolates Caracterização molecular de isolados de Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes

    Directory of Open Access Journals (Sweden)

    Andréia Cristiane Souza Azevedo

    2000-12-01

    Full Text Available ITS and RAPD analyses were used to investigate molecular variations within samples of Paecilomyces isolates and to resolve five morphologically atypical isolates resembling P. fumosorosus, obtained from whitefly in Northern Paraná State. The ITS4-ITS5 amplicon was 700 base pairs (bp long in all isolates. The five isolates of Paecilomyces not assigned to species produced restriction profiles identical to all the reference strains of P. fumosoroseus. The extent of fingerprint variability observed by RAPD was sufficient to discriminate all the isolates. The genetic similarity among unidentified isolates and strains of P. fumosoroseus was even higher than that observed among reference strains of this species, allowing us to conclude that isolates CNPso-P77, CNPso-P78, CNPso-P80, CNPso-P85 and CNPso-P91 are P. fumosoroseus.As análises de RAPD (Polimorfismo de DNA Amplificado ao Acaso e ITS (Sequências Internas Transcritas foram utilizadas para investigar a variabilidade molecular entre isolados de Paecilomyces e para identificar cinco isolados morfologicamente atípicos, obtidos a partir de mosca branca no Norte do Estado do Paraná, que possuíam alguma semelhança com P. fumosoroseus. O produto da amplificação com os primers ITS4 e ITS5 apresentou 700 pares de bases para todos os isolados investigados. Os cinco isolados não identificados deram origem a padrões de restrição idênticos a todas as linhagens de P. fumosoroseus utilizadas como referência. A variabilidade observada nos perfis de RAPD foi suficiente para discriminar todos os isolados. A similaridade genética entre os isolados não identificados e as linhagens de P. fumosoroseus foi maior do que aquela observada entre as linhagens referência desta espécie. Este fato permitiu concluir que os isolados CNPso-P77, CNPso-P78, CNPso-P80, CNPso-P85 and CNPso-P91 pertencem à espécie P. fumosoroseus.

  10. Microsatellite variability in the entomopathogenic fungus Paeciolomyces fumosoroseus: genetic diversity and population structure

    Science.gov (United States)

    The hyphomycete Paecilomyces fumosoroseus (Pfr) is a geographically widespread fungus capable of infecting various insect hosts. The fungus has been used for the biological control of several important insect pests of agriculture. However knowledge of the fungus’ genetic diversity and population str...

  11. Laboratory Evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against Immature Stages of the Colorado Potato Beetle

    Science.gov (United States)

    Hussein, Hany M.; Skoková Habuštová, Oxana; Půža, Vladimír; Zemek, Rostislav

    2016-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata, has developed resistance to most registered pesticides and has become one of the most difficult insect pests to control. Development of new biopesticides targeting this pest might solve the resistance problem and contribute to sustainable crop production. Laboratory experiments were conducted to assess the efficacy of Isaria fumosorosea (syn. Paecilomyces fumosoroseus) strain CCM 8367 against L. decemlineata when applied alone or combined with the entomopathogenic nematode Steinernema feltiae. The last-instar larvae of the Colorado potato beetle showed the highest susceptibility to I. fumosorosea followed by pre-pupae and pupae. The median lethal concentration (LC50) was estimated to be 1.03×106 blastospores/ml. The strain CCM 8367 was more virulent, causing 92.6% mortality of larvae (LT50 = 5.0 days) compared to the reference strain Apopka 97, which caused 54.5% mortality (LT50 = 7.0 days). The combined application of the fungus with the nematodes increased the mortality up to 98.0%. The best results were obtained when S. feltiae was applied simultaneously with I. fumosorosea (LT50 = 2.0 days); later application negatively affected both the penetration rate and the development of the nematodes. We can conclude that the strain CCM 8367 of I. fumosorosea is a prospective biocontrol agent against immature stages of L. decemlineata. For higher efficacy, application together with an entomopathogenic nematode is recommended. PMID:27015633

  12. Laboratory Evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against Immature Stages of the Colorado Potato Beetle.

    Directory of Open Access Journals (Sweden)

    Hany M Hussein

    Full Text Available The Colorado potato beetle, Leptinotarsa decemlineata, has developed resistance to most registered pesticides and has become one of the most difficult insect pests to control. Development of new biopesticides targeting this pest might solve the resistance problem and contribute to sustainable crop production. Laboratory experiments were conducted to assess the efficacy of Isaria fumosorosea (syn. Paecilomyces fumosoroseus strain CCM 8367 against L. decemlineata when applied alone or combined with the entomopathogenic nematode Steinernema feltiae. The last-instar larvae of the Colorado potato beetle showed the highest susceptibility to I. fumosorosea followed by pre-pupae and pupae. The median lethal concentration (LC50 was estimated to be 1.03×106 blastospores/ml. The strain CCM 8367 was more virulent, causing 92.6% mortality of larvae (LT50 = 5.0 days compared to the reference strain Apopka 97, which caused 54.5% mortality (LT50 = 7.0 days. The combined application of the fungus with the nematodes increased the mortality up to 98.0%. The best results were obtained when S. feltiae was applied simultaneously with I. fumosorosea (LT50 = 2.0 days; later application negatively affected both the penetration rate and the development of the nematodes. We can conclude that the strain CCM 8367 of I. fumosorosea is a prospective biocontrol agent against immature stages of L. decemlineata. For higher efficacy, application together with an entomopathogenic nematode is recommended.

  13. Kompatibilitas Jamur Entomopatogenik Paecilomyces fumosoroseus dengan Beberapa Bahan Aktif Pestisida Secara In Vitro

    Directory of Open Access Journals (Sweden)

    Fani Fauziah

    2016-12-01

    Full Text Available Untuk mengurangi penggunaan pestisida di perkebunan teh, maka salah satu upaya pengendalian hama yang dapat dilakukan adalah mengkombinasikan aplikasi pestisida dengan jamur entomopatogenik. Penelitian ini bertujuan untuk mengetahui kompatibilitas antara jamur P. fumosoroseus  dengan beberapa bahan aktif pestisida di laboratorium. Perlakuan dirancang dengan Rancangan Acak Lengkap (RAL terdiri dari 5 jenis bahan aktif yaitu metomil, bifentrin, imidakloprid, tembaga oksida dan metidation pada taraf konsentrasi sesuai rekomendasi lapang (RL, 0,5x RL dan 2x RL. Hasil pengamatan menunjukkan bahwa diantara kelima jenis bahan aktif pestisida yang diuji, metidation memiliki tingkat toksisitas yang paling tinggi. Persentase produksi spora tertinggi sebesar 13,77% ditunjukkan oleh perlakuan bifentrin 2x RL. Combining application of pesticides and entomopathogenic fungi is an alternative way for controlling pest in order to reduce pesticides application in the tea field. This research was aimed toexamine the compatibility of Paecilomyces fumosoroseus tosome active agents of pesticide in laboratory. Completely Randomized Block Designed (CRBD with 5 active agents: methomyl, bifenthrin, imidacloprid, copper oxide and metidation in three different concentration was employed in this study, which was based on the existing field recommendation (FR: 0,5x FR and 2x FR. The results showed that among the five tested pesticides, metidation appeared to be the most toxic agentto P. fumosoroseus. Meanwhile, the highest percentage of spore production was counted in bifenthrin 2x RL (13,77%.

  14. New cost-effective bioconversion process of palm kernel cake into bioinsecticides based on Beauveria bassiana and Isaria javanica.

    Science.gov (United States)

    do Nascimento Silva, Jaqueline; Mascarin, Gabriel Moura; Dos Santos Gomes, Isabel Cristina; Tinôco, Ricardo Salles; Quintela, Eliane Dias; Dos Reis Castilho, Leda; Freire, Denise Maria Guimarães

    2018-03-01

    The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 9 and I. javanica 2.91 × 10 9  conidia g -1 dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.

  15. Characterization of Acremonium and Isaria ice nuclei

    Science.gov (United States)

    Pummer, Bernhard G.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2014-05-01

    Until recently, the only known fungal ice nuclei (IN) were a few exponents of lichen mycobionts and Fusarium spp. [Kieft and Ruscetti 1990, Pouleur et al. 1992, Hasegawa et al. 1994, Tsumuki et al. 1995], as well as two strains of mold [Jayaweera and Flanagan 1982]. Other investigated species did not show any IN activity [Pouleur et al. 1992, Iannone et al. 2011, Pummer et al. 2013]. In the last few years, IN-activity has been discovered in some rust and smut fungi [Morris et al. 2013, Haga et al. 2013], Acremonium implicatum (Acr.) and Isaria farinosa (Isa.) [Huffman et al. 2013] and a handful of other airborne and soil fungi [unpublished data]. We started characterizing the IN of Acr. and Isa.: Like other non-bacterial biological IN, they can be easily separated from the cells in aqueous suspension, and keep their activity. The IN-active aqueous suspensions were processed by filtration (5 μm, 0.1 μm, 300 kDa, 100 kDa) and exposure to heat (60° C) or guanidinium chloride (6 M). The IN activity of the processed samples was measured by a freezing assay of droplets, as described by Pummer et al. [2013]. Via the Vali formula, we calculated the amount of IN per gram of mycelium, which is higher than 105 g-1. The initial freezing temperature was -4° C for Isaria and -8° C for Acremonium IN. Both were completely knocked out by 60° C or guanidinium chloride. The Acremonium IN are in a mass range between 100 and 300 kDa. The Isaria IN seem to be either a bit larger, or more attached to larger particles, since not all of them pass through the 300-kDa-filter. It is likely that both of these new IN are proteinaceous like the IN of Fusarium spp. and lichen mycobionts, which belong to the Ascomycota phylum. Since the Isaria IN show a high onset freezing temperature and are rather large for single molecules, they might be agglomerates. Haga D.I. et al. (2013) J. Geophys. Res.: Atm. 118, 7260-7272 Hasegawa Y. et al. (1994) Biosci. Biotech. Biochem. 58, 2273-2274 Huffman A

  16. Isaria poprawskii sp. nov. (Hypocreales: Cordycipitacae), a new entomopathogenic fungus from Texas affecting sweet potato whitefly

    Science.gov (United States)

    Isaria poprawskii is described as a new entomopathogenic species similar to Isaria javanica (=Paecilomyces javanicus). It was discovered ont he sweet potato whitefly, Bemisia tabaci biotype B in the Lower Rio Grande Valley of Texas (LRGV), USA. Morphological and DNA examinations indicated the dist...

  17. PTP1B Inhibitors from the Entomogenous Fungi Isaria fumosorosea

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-11-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is implicated as a negative regulator of insulin receptor (IR signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Thus, small molecule inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes and cancer diseases. In a continuing search for new PTP1B inhibitors, a new tetramic acid possessing a rare pyrrolidinedione skeleton named fumosorinone A (1, together with five known ones 2–6 were isolated from the entomogenous fungus Isaria fumosorosea. The structures of 2–6 were elucidated by extensive spectroscopic analysis. Fumosorinone A (1 and beauvericin (6 showed significant PTP1B inhibitory activity with IC50 value of 3.24 μM and 0.59 μM.

  18. PTP1B Inhibitors from the Entomogenous Fungi Isaria fumosorosea.

    Science.gov (United States)

    Zhang, Jun; Meng, Lin-Lin; Wei, Jing-Jing; Fan, Peng; Liu, Sha-Sha; Yuan, Wei-Yu; Zhao, You-Xing; Luo, Du-Qiang

    2017-11-24

    Protein tyrosine phosphatase 1B (PTP1B) is implicated as a negative regulator of insulin receptor (IR) signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Thus, small molecule inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes and cancer diseases. In a continuing search for new PTP1B inhibitors, a new tetramic acid possessing a rare pyrrolidinedione skeleton named fumosorinone A ( 1 ), together with five known ones 2 - 6 were isolated from the entomogenous fungus Isaria fumosorosea. The structures of 2 - 6 were elucidated by extensive spectroscopic analysis. Fumosorinone A ( 1 ) and beauvericin ( 6 ) showed significant PTP1B inhibitory activity with IC 50 value of 3.24 μM and 0.59 μM.

  19. Identification and sequence determination of a new chrysovirus infecting the entomopathogenic fungus Isaria javanica.

    Science.gov (United States)

    Herrero, Noemi

    2017-04-01

    A new double-stranded RNA (dsRNA) mycovirus has been identified in the isolate NB IFR-19 of the entomopathogenic fungus Isaria javanica. Isaria javanica chrysovirus-1 (IjCV-1) constitutes a new member of the Chrysoviridae family, and its genome is made up of four dsRNA elements designated dsRNA1, 2, 3 and 4 from largest to smallest. dsRNA1 and dsRNA2 encode an RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. dsRNA3 and 4 encode hypothetical proteins of unknown function. IjCV-1 constitutes the first report of a chrysovirus infecting the entomopathogenic fungus Isaria javanica.

  20. 76 FR 59901 - Isaria fumosorosea Apopka Strain 97; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2011-09-28

    ... (irritation symptoms reversed by 48 hours; Toxicity Category IV). 7. Dermal sensitization--guinea pig... that Isaria fumosorosea Apopka strain 97 was not a dermal sensitizer to guinea pigs when induced and... not limited to: Crop production (NAICS code 111). Animal production (NAICS code 112). Food...

  1. Dissolved oxygen levels affect dimorphic growth by the entomopathogenic fungus Isaria fumosorosea

    Science.gov (United States)

    The entomopathogenic fungus Isaria fumosorosea is capable of dimorphic growth (hyphal or yeast-like) in submerged culture. In shake flask studies, we evaluated the impact of aeration on the mode of growth of I. fumosorosea. Using 250 mL baffled Erlenmeyer flasks, culture volumes of 50, 100, 150, a...

  2. Identification and sequence determination of a new chrysovirus infecting the entomopathogenic fungus Isaria javanica

    Czech Academy of Sciences Publication Activity Database

    Herrero, Noemi

    2017-01-01

    Roč. 162, č. 4 (2017), s. 1113-1117 ISSN 0304-8608 R&D Projects: GA MŠk LH12105 EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : Isaria javanica * dsRNA * mycoviruses Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 2.058, year: 2016

  3. Water‐soluble red pigments from Isaria farinosa and structural characterization of the main colored component

    DEFF Research Database (Denmark)

    Velmurugan, Palanivel; Lee, Yong Hoon; Nanthakumar, Kuppanan

    2010-01-01

    darkness, sucrose and glucose as carbon source, yeast extract, meat peptone and monosodium glutamate at a fixed concentration of 3% as nitrogen source. The addition of 10 mM CaCl2 to the culture medium increased the biomass and pigment production. Structural elucidation of the pigment using gas...... commercial importance in the production of Isaria farinosa pigment for industrial application after considerable toxicological examination. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)......The present study describes the red pigment synthesized by the filamentous fungi Isaria farinosa under submerged culture conditions. The pigment production was optimal under the following conditions: pH 5, agitation speed 150 rpm, temperature 27 °C, incubation time 192 h, light source total...

  4. Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection

    OpenAIRE

    Tianni Gao; Zhaolei Wang; Yü Huang; Nemat O. Keyhani; Zhen Huang

    2017-01-01

    The emergence of insecticide resistant insect pests is of significant concern worldwide. The whitefly, Bemisia tabaci, is an important agricultural pest and has shown incredible resilience developing resistance to a number of chemical pesticides. Entomopathogenic fungi such as Isaria fumosorosea offer an attractive alternative to chemical pesticides for insect control, and this fungus has been shown to be an effective pathogen of B. tabaci. Little is known concerning the potential for the dev...

  5. The entomopathogenic fungus Isaria fumosorosea and its compatibility with buprofezin: effects on the rugose spiraling whitefly Aleurodicus rugioperculatus

    Science.gov (United States)

    The gumbo limbo or rugose spiraling whitefly is a new invasive pest of palms, woody ornamentals, and fruits in Florida. The pathogenicity of a naturally occurring entomopathogenic fungus, Isaria fumosorosea (PFR 97) is well known for its activity against commonly found whiteflies species in the regi...

  6. Oviposition behavior and survival of Tamarixia radiata (Hymenoptera: Eulophidae), an ectoparasitoid of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), on hosts exposed to an entomopathogenic fungus

    Science.gov (United States)

    Antagonistic interactions between the nymphal parasitoid, Tamarixia radiata Waterston (Hymenoptera: Eulophidae), and the ARSEF 3581 isolate of the entomopathogenic fungus, Isaria fumosorosea Wize (Hypocreales: Cordycipitaceae) could disrupt biological control of the Asian citrus psyllid, Diaphorina ...

  7. Compatibilidad in vitro de Isaria fumosorosea (Wize Brown y Smith (Hypocreales: Clavicipitaceae con plaguicidas comerciales

    Directory of Open Access Journals (Sweden)

    Érika Paola Grijalba Bernal

    2014-01-01

    Full Text Available Los agricultores colombianos utilizan productos químicos con categorías toxicológicas I, II y III para el control de insectos como la mosca blanca Bemisia tabaci (Gennadius, 1889 (Hemiptera: Aleyrodidae; pero su uso indiscriminado genera un riesgo para la salud y el medio ambiente. El control microbiológico con hongos entomopatógenos surge como alternativa de control ambientalmente sostenible. No obstante, su empleo exitoso dentro de una estrategia de manejo integrado de plagas (MIP depende, en gran parte, del efecto de los productos químicos sobre el bioplaguicida. El objetivo del presente trabajo fue determinar la compatibilidad in vitro de un bioplaguicida con base en el hongo Isaria fumosorosea formulado como polvo mojable con cuatro fungicidas y cinco insecticidas comerciales. Para esto, se evaluó el efecto de tres concentraciones de los productos químicos: FR = dosis recomendada en campo, 0.5 x FR y 0.25 x FR sobre la germinación de los conidios y el número de unidades formadoras de colonia UFC/g de I. fumosorosea. Los cuatro fungicidas (Benlate, Carboxin Captan, Metalaxil-Mancozeb y Mancozeb en las tres dosis evaluadas fueron incompatibles con el bioplaguicida, mientras que el insecticida Thiametoxam fue compatible cuando se utilizó la dosis de 0.25 x FR.

  8. Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection

    Science.gov (United States)

    Gao, Tianni; Wang, Zhaolei; Huang, Yü; Keyhani, Nemat O.; Huang, Zhen

    2017-02-01

    The emergence of insecticide resistant insect pests is of significant concern worldwide. The whitefly, Bemisia tabaci, is an important agricultural pest and has shown incredible resilience developing resistance to a number of chemical pesticides. Entomopathogenic fungi such as Isaria fumosorosea offer an attractive alternative to chemical pesticides for insect control, and this fungus has been shown to be an effective pathogen of B. tabaci. Little is known concerning the potential for the development of resistance to I. fumosorosea by B. tabaci. Five generations of successive survivors of B. tabaci infected by I. fumosorosea were assayed with I. fumosorosea. No significant differences in susceptibility to I. fumosorosea, number of ovarioles, or ovipostioning were seen between any of the generations tested. Effects of I. fumosorosea and cell-free ethyl acetate fractions derived from the fungus on the B. tabaci fat body, ovary, and vitellogenin were also investigated. These data revealed significant deformation and degradation of ovary tissues and associated vitellogenin by the fungal mycelium as well as by cell-free ethyl acetate fungal extracts. These data indicate the lack of the emergence of resistance to I. fumosorosea under the conditions tested and demonstrate invasion of the insect reproductive tissues during fungal infection.

  9. [Genetic differentiation of Isaria farinosa populations in Anhui Province of East China].

    Science.gov (United States)

    Sun, Zhao-Hong; Luan, Feng-Gang; Zhang, Da-Min; Chen, Ming-Jun; Wang, Bin; Li, Zeng-Zhi

    2011-11-01

    Isaria farinosa is an important entomopathogenic fungus. By using ISSR, this paper studied the genetic heterogeneity of six I. farinosa populations at different localities of Anhui Province, East China. A total of 98.5% polymorphic loci were amplified with ten polymorphic primers, but the polymorphism at population level varied greatly, within the range of 59.6%-93.2%. The genetic differentiation index (G(st)) between the populations based on Nei's genetic heterogenesis analysis was 0.3365, and the gene flow (N(m)) was 0.4931. The genetic differentiation between the populations was lower than that within the populations, suggesting that the genetic variation of I. farinosa mainly come from the interior of the populations. The UPGMA clustering based on the genetic similarities between the isolates revealed that the Xishan population was monophylectic, while the other five populations were polyphylectic, with the Yaoluoping population being the most heterogenic and the Langyashan population being the least heterogenic. No correlations were observed between the geographic distance and the genetic distance of the populations. According to the UPGMA clustering based on the genetic distance between the populations, the six populations were classified into three groups, and this classification was accorded with the clustering based on geographic environment, suggesting the effects of environmental heterogeneity on the population heterogeneity.

  10. Pre shipping dip treatments using soap, natural oils, and Isaria fumosorosea: potential biopesticides for mitigating the spread of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) invasive insects on ornamental plants

    Science.gov (United States)

    The whitefly Bemisia tabaci (Hemiptera: Aleyodidae) is an invasive insect pest affecting different crops including vegetables, fruits, cereals, and ornamentals. The efficacy of some products such as commercial soap, natural oils and Preferal® (based on the entomopathogenic fungus Isaria fumosorosea ...

  11. Laboratory evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against immature stages of the Colorado potato beetle

    Czech Academy of Sciences Publication Activity Database

    Hussein, Hany; Skoková Habuštová, Oxana; Půža, Vladimír; Zemek, Rostislav

    2016-01-01

    Roč. 11, č. 3 (2016), č. článku e0152399. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Grant - others:Ministerstvo zemědělství(CZ) 206553/2011-MZE-17253; Ministerstvo školství, mládeže a tělovýchovy(CZ) CZ.1.07/2.4.00/12.0082 Institutional support: RVO:60077344 Keywords : Isaria fumosorosea * Steinernema feltiae * Colorado potato beetle Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0152399

  12. Genome-Wide Profiling of Plutella xylostella Immunity-Related miRNAs after Isaria fumosorosea Infection.

    Science.gov (United States)

    Xu, Jin; Xu, Xiaoxia; Li, Shuzhong; Wang, Shuang; Xu, Xiaojing; Zhou, Xianqiang; Yu, Jialin; Yu, Xiaoqiang; Shakeel, Muhammad; Jin, Fengliang

    2017-01-01

    The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level.

  13. Laboratory and field evaluation of an entomopathogenic fungus, Isaria cateniannulata strain 08XS-1, against Tetranychus urticae (Koch).

    Science.gov (United States)

    Zhang, Xiaona; Jin, Daochao; Zou, Xiao; Guo, Jianjun

    2016-05-01

    The two-spotted mite, Tetranychus urticae Koch, is one of the most serious mite pests of crops throughout the world. Biocontrol of the mite with fungal agents has long been paid much attention because of the development of insecticide resistance and the severe restriction of chemical pesticides. In this study, the efficacy of submerged conidia of the entomopathogenic fungus Isaria cateniannulata strain 08XS-1 against T. urticae eggs, larvae and female adults was evaluated at different temperatures and humidity in the laboratory and under field conditions. The results showed that a suspension of 2 × 10(7) submerged conidia mL(-1) caused the highest mortalities of mite eggs, larvae and females (100, 100 and 70% respectively) at 100% relative humidity and 25 °C in the laboratory. In the field experiments against the mites, a suspension of 2 × 10(8) submerged conidia mL(-1) achieved significant efficiency - the relative control effects were 88.6, 83.8 and 83%, respectively, in cucumber, eggplant and bean fields after 10 days of treatment. The results suggest that the I. cateniannulata strain 08XS-1 is a potential fungal agent, with acceptable production cost of conidia, against T. urticae in the field in an area such as southwestern China with higher air humidity. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. De novo transcriptome sequencing of Isaria cateniannulata and comparative analysis of gene expression in response to heat and cold stresses.

    Directory of Open Access Journals (Sweden)

    Dingfeng Wang

    Full Text Available Isaria cateniannulata is a very important and virulent entomopathogenic fungus that infects many insect pest species. Although I. cateniannulata is commonly exposed to extreme environmental temperature conditions, little is known about its molecular response mechanism to temperature stress. Here, we sequenced and de novo assembled the transcriptome of I. cateniannulata in response to high and low temperature stresses using Illumina RNA-Seq technology. Our assembly encompassed 17,514 unigenes (mean length = 1,197 bp, in which 11,445 unigenes (65.34% showed significant similarities to known sequences in NCBI non-redundant protein sequences (Nr database. Using digital gene expression analysis, 4,483 differentially expressed genes (DEGs were identified after heat treatment, including 2,905 up-regulated genes and 1,578 down-regulated genes. Under cold stress, 1,927 DEGs were identified, including 1,245 up-regulated genes and 682 down-regulated genes. The expression patterns of 18 randomly selected candidate DEGs resulting from quantitative real-time PCR (qRT-PCR were consistent with their transcriptome analysis results. Although DEGs were involved in many pathways, we focused on the genes that were involved in endocytosis: In heat stress, the pathway of clathrin-dependent endocytosis (CDE was active; however at low temperature stresses, the pathway of clathrin-independent endocytosis (CIE was active. Besides, four categories of DEGs acting as temperature sensors were observed, including cell-wall-major-components-metabolism-related (CWMCMR genes, heat shock protein (Hsp genes, intracellular-compatible-solutes-metabolism-related (ICSMR genes and glutathione S-transferase (GST. These results enhance our understanding of the molecular mechanisms of I. cateniannulata in response to temperature stresses and provide a valuable resource for the future investigations.

  15. Compatibility and Efficacy of Isaria fumosorosea with Horticultural Oils for Mitigation of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae

    Directory of Open Access Journals (Sweden)

    Vivek Kumar

    2017-10-01

    Full Text Available Horticultural oils are an important component of integrated management programs of several phytophagous arthropods and pathogens affecting fruit, ornamentals and vegetables in greenhouse and field production systems. Although effective against the target pest, their incompatibility with biological control agents can compromise efforts to develop eco-friendly management programs for important agricultural pests. In this study, we assessed the in vitro effect of selected refined petroleum oils used in citrus and other horticultural crops with a biopesticide containing the entomopathogenic fungi, Isaria fumosorosea (PFR-97 under laboratory conditions. Further, we used leaf disk bioassays to evaluate the combined efficacy of petroleum oils and I. fumosorosea against the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae, a major pest of citrus in the United States. All five petroleum oil treatments (Orchex, Sun Pure, Conoco Blend -1, Conoco Blend -2, and JMS were compatible with I. fumosorosea blastospores, as none of them were found to affect I. fumosorosea colony-forming units and radial fungal growth measured at 3, 6, 9, and 12 days post-inoculation. All mixed treatments performed better than I. fumosorosea alone against D. citri, where the highest mean survival time of D. citri was 12.5 ± 0.7 days. No significant differences in D. citri survival time and I. fumosorosea growth (fungal development index on dead cadavers, which is important for determining their horizontal transmission, were observed when mixed with Orchex, Sun Pure, Conoco Blend -2, and JMS. Results indicated that horticultural oils in combination with I. fumosorosea could offer citrus growers an alternative treatment for integrating into their current management programs while battling against D. citri in citrus production systems. Due to their eco-friendly, broad-spectrum effect, it could provide control against various citrus pests, while also encouraging the

  16. Compatibility and Efficacy of Isaria fumosorosea with Horticultural Oils for Mitigation of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae).

    Science.gov (United States)

    Kumar, Vivek; Avery, Pasco B; Ahmed, Juthi; Cave, Ronald D; McKenzie, Cindy L; Osborne, Lance S

    2017-10-31

    Horticultural oils are an important component of integrated management programs of several phytophagous arthropods and pathogens affecting fruit, ornamentals and vegetables in greenhouse and field production systems. Although effective against the target pest, their incompatibility with biological control agents can compromise efforts to develop eco-friendly management programs for important agricultural pests. In this study, we assessed the in vitro effect of selected refined petroleum oils used in citrus and other horticultural crops with a biopesticide containing the entomopathogenic fungi, Isaria fumosorosea (PFR-97) under laboratory conditions. Further, we used leaf disk bioassays to evaluate the combined efficacy of petroleum oils and I. fumosorosea against the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), a major pest of citrus in the United States. All five petroleum oil treatments (Orchex, Sun Pure, Conoco Blend -1, Conoco Blend -2, and JMS) were compatible with I. fumosorosea blastospores, as none of them were found to affect I. fumosorosea colony-forming units and radial fungal growth measured at 3, 6, 9, and 12 days post-inoculation. All mixed treatments performed better than I. fumosorosea alone against D. citri , where the highest mean survival time of D. citri was 12.5 ± 0.7 days. No significant differences in D. citri survival time and I. fumosorosea growth (fungal development index) on dead cadavers, which is important for determining their horizontal transmission, were observed when mixed with Orchex, Sun Pure, Conoco Blend -2, and JMS. Results indicated that horticultural oils in combination with I. fumosorosea could offer citrus growers an alternative treatment for integrating into their current management programs while battling against D. citri in citrus production systems. Due to their eco-friendly, broad-spectrum effect, it could provide control against various citrus pests, while also encouraging the retention of effective

  17. Effect of Paecilomyces fumosoroseus (Wise) Brown and Smith(Ascomycota: Hypocreales) alone or in combination with diatomaceous earth against Tribolium confusum Jacquelin du Val (Coleoptera:Tenebrionidae) and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae)

    DEFF Research Database (Denmark)

    Michalaki, M P; Athanassiou, C G; Steenberg, Tove

    2007-01-01

    moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). The fungus was added in stored wheat at two dose rates, 200 and 400 ppm, at two temperature levels, 20 and 25 °C alone or in combination with the diatomaceous earth formulation SilicoSec®. Mortality of the exposed individuals was measured after...... 7, 14 and 21 d of exposure. For both T. confusum adults and larvae, mortality was higher at 20 than at 25 °C. In the case of T. confusum larvae, after 14 d of exposure, mortality on wheat treated with the highest dose of P. fumosoroseus with SilicoSec® was signiWcantly higher than that of Silico...

  18. Paecilomyces fumosoroseus blastospore production using liquid ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... using liquid culture in a bioreactor ... less time required, in comparison to fermentation on solid substratum. ... blastospores in liquid medium, the present study evalua- ... liquid-culture studies, conidia were produced by inoculating Sabou- .... a 250 ml baffled shaker flask containing 50 ml of Sabouraud.

  19. Penostatin Derivatives, a Novel Kind of Protein Phosphatase 1B Inhibitors Isolated from Solid Cultures of the Entomogenous Fungus Isaria tenuipes

    Directory of Open Access Journals (Sweden)

    Yu-Peng Chen

    2014-01-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is implicated as a negative regulator of insulin receptor (IR signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Therefore, small molecular inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes diseases. In a continuing search for new protein phosphatase inhibitors from fungi, we have isolated a new compound, named penostatin J (1, together with three known ones, penostatin C (2, penostatin A (3, and penostatin B (4, from cultures of the entomogenous fungus Isaria tenuipes. The structure of penostatin J (1 was elucidated by extensive spectroscopic analysis. We also demonstrate for the first time that penostatin derivatives exhibit the best PTP1B inhibitory action. These findings suggest that penostatin derivatives are a potential novel kind of PTP1B inhibitors.

  20. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis.

    Science.gov (United States)

    Nian, Xiao-Ge; He, Yu-Rong; Lu, Li-Hua; Zhao, Rui

    2015-12-01

    Entomopathogenic fungi are potential candidates for controlling the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae). The control efficacy of two Isaria fumosorosea conidial formulations - wettable powder and oil-based formulation - combined with Bacillus thuringiensis against P. xylostella was tested. In the laboratory, the combined application of two pathogens increased larval mortality either in an additive or a synergistic way. P. xylostella larvae treated with oil-based formulation died sooner than larvae infected with wettable powder. For pot and field experiments, each formulation was applied alone or combined with B. thuringiensis 668 µg mL(-1) , and then larval mortality, pupation rate, adult emergence rate, female longevity and fecundity were recorded. In pot experiments there was no evidence of any antagonistic effects between the two pathogens. Combined application of B. thuringiensis and a high concentration of the two I. fumosorosea formulations resulted in higher mortality (84.4 and 86.2%) with minimum pupation (15.6 and 11.9%) and adult emergence rates (8.7 and 7.0%). Female longevity and fecundity were significantly reduced by the two formulations at high concentration compared with the control. Similar results were also observed in field experiments. The combined application of I. fumosorosea and B. thuringiensis is a promising alternative strategy for P. xylostella control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes.

    Science.gov (United States)

    Xu, Jin; Xu, Xiaoxia; Shakeel, Muhammad; Li, Shuzhong; Wang, Shuang; Zhou, Xianqiang; Yu, Jialin; Xu, Xiaojing; Yu, Xiaoqiang; Jin, Fengliang

    2017-01-01

    Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs). The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea . To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella .

  2. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2017-07-01

    Full Text Available Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs. The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea. To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella.

  3. Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis.

    Science.gov (United States)

    Nian, Xiao-ge; He, Yu-rong; Lu, Li-hua; Zhao, Rui

    2015-02-01

    Entomopathogenic fungi are potential candidates for controlling Plutella xylostella, a cosmopolitan pest of crucifers. In this study, bioassays were conducted to evaluate the interaction between Isaria fumosorosea and sublethal doses of two insecticides, beta-cypermethrin and Bacillus thuringiensis, against P. xylostella. Data of each assay were in good agreement with the time-concentration-mortality model, indicating a strong dependence of the fungus and insecticide interaction on both concentration and post-exposure time. Using beta-cypermethrin 58-116 µg mL(-1) or B. thuringiensis 222.5-890 µg mL(-1) with the fungus significantly enhanced fungal efficacy. The LC50 values of the fungus declined over a 1-7 day period after exposure, and the LT50 values decreased with increasing concentration. Based on LC50 or LC90 estimates, synergism between the fungus and beta-cypermethrin resulted in a 2.7-28.3-fold reduction in LC50 values and a 12.1-19.6-fold reduction in LC90 values, while synergism of the fungus with B. thuringiensis led to a 2.4-385.0-fold reduction in LC50 values and a 4.4-151.7-fold reduction in LC90 values. Results show that sublethal doses of B. thuringiensis and beta-cypermethrin can synergise I. fumosorosea activity on P. xylostella, suggesting that combination of I. fumosorosea with the two insecticides might offer an integrated approach to controlling P. xylostella in practice. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  4. Assessing Compatibility of Isaria fumosorosea and Buprofezin for Mitigation of Aleurodicus rugioperculatus (Hemiptera: Aleyrodidae): An Invasive Pest in the Florida Landscape.

    Science.gov (United States)

    Kumar, Vivek; Francis, Antonio; Avery, Pasco B; McKenzie, Cindy L; Osborne, Lance S

    2018-05-28

    Rugose spiraling whitefly (RSW), Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) is a new invasive whitefly pest in the Florida landscape, known to feed on a wide range of plants including palms, woody ornamentals, shrubs, and fruits. With the objective to find an alternative to neonicotinoid insecticides, and develop an ecofriendly management program for RSW, in the current study we evaluated the efficacy of a biopesticide containing the entomopathogenic fungi, Isaria fumosorosea Wize (Hypocreales: Clavicipitaceae), and an insect growth regulator buprofezin applied alone and in combination under laboratory and field conditions. Before assessing the two products, their compatibility was studied at six different concentrations of buprofezin. No significant inhibitive effect of buprofezin was observed on I. fumosorosea spore germination, and the average linear growth of the colony measured 14 d postinoculation. Under laboratory conditions, I. fumosorosea treatments (alone or mixed with buprofezin) provided higher RSW mortality than buprofezin alone. However, in both outdoor cage studies, the efficacy of buprofezin treatments (alone or mixed with I. fumosorosea) was higher than I. fumosorosea alone. A significant reduction in RSW population was reported for more than 5 wk in buprofezin alone and more than 7 wk in the combination treatments. In fall of 2014 and summer of 2015, the mean whitefly mortality observed during the 10-wk assessment period was 52.4 and 42.1% for I. fumosorosea, 79.6 and 79.0% for buprofezin, and 87.6 and 84.3% in mixed treatments, respectively. Results suggest that buprofezin can offer an effective alternate in the battle against invasive whiteflies such as RSW in Florida ecosystems, either as a stand-alone strategy or in an integrated approach.

  5. Efficacy of Topical Application, Leaf Residue or Soil Drench of Blastospores of Isaria fumosorosea for Citrus Root Weevil Management: Laboratory and Greenhouse Investigations

    Directory of Open Access Journals (Sweden)

    Pasco B. Avery

    2016-11-01

    Full Text Available The efficacy of topical, leaf residue, and soil drench applications with Isaria fumosorosea blastospores (Ifr strain 3581 was assessed for the management of the citrus root weevil, Diaprepes abbreviatus (L.. Blastospores of Ifr were applied topically at a rate of 107 blastospores mL−1 on both the larvae and adults, and each insect stage was incubated in rearing cups with artificial diet at 25 °C, either in the dark or in a growth chamber under a 16 h photophase for 2 weeks, respectively. Percent larval and adult mortality due to the infection of Ifr was assessed after 14 days as compared to untreated controls. Leaf residue assays were assessed by feeding the adults detached citrus leaves previously sprayed with Ifr (107 blastospores mL−1 in Petri dish chambers and then incubating them at 25 °C for 2–3 weeks. Efficacy of the soil drench applications was assessed on five larvae feeding on the roots of a Carrizo hybrid citrus seedling ~8.5–10.5 cm below the sterile sand surface in a single 16 cm × 15.5 cm pot inside a second pot lined with plastic mesh to prevent escapees. Drench treatments per pot consisted of 100 mL of Ifr suspension (107 blastospores mL−1, flushed with 400, 900, or 1400 mL of water compared to 500, 1000, and 1500 mL of water only for controls. The mean concentration of Ifr propagules as colony forming units per gram (CFUs g−1 that leached to different depths in the sand profile per treatment drench rate was also determined. Two weeks post-drenching of Ifr treatments, larvae were assessed for percent mortality, size differences, and effect of treatments in reducing feeding damage to the plant root biomass compared to the controls. Topical spray applications caused 13 and 19% mortality in larvae and adults after 7 days compared to none in the control after 14 days, respectively. Adults feeding on a single Ifr treated leaf for 24 h consumed less than the control, and resulted in 100% mortality 35 days post

  6. Pathogenicity and proteome production of Isaria fumosorosea ...

    African Journals Online (AJOL)

    The predictions of catalytic triads (serine, histidine and asparagine) were also visualized in the peak level obtained in infra-red (IR) and H1 nuclear magnetic resonance (NMR) spectra. With this information it was suggested that, partial characterization of catalytic domain was predicted in the fungal isolates Ifr. Keywords: ...

  7. Morphology and molecular taxonomy of Evlachovaea-like fungi, and the status of this unusual conidial genus.

    Science.gov (United States)

    Humber, Richard A; Rocha, Luiz F N; Inglis, Peter W; Kipnis, André; Luz, Christian

    2013-01-01

    The entomopathogenic anamorphic genus Evlachovaea was described to differ from other fungi in forming its conidia obliquely to the axis of the conidiogenous cell and with successive conidia having alternate orientations with a zipper- or chevron-like arrangement resulting in flat, ribbon-like chains. Morphological and molecular studies of six Evlachovaea-like isolates baited from Central Brazilian soils using Triatoma infestans (a vector of Chagas disease) and of other entomopathogens with Evlachovaea-like conidiogenesis led to a re-evaluation of the status of this little known fungal genus. The Brazilian isolates formed two distinct groups based on gene sequences for both the internal transcribed spacer (ITS) and translation elongation factor (EF-1α) genes, morphology, and growth patterns; both groups also differed from the type species, Evlachovaea kintrischica. More detailed studies of these fungi indicated that the alternatingly oblique orientations of forming conidia are neither a stable nor invariant character (even on single phialides). Furthermore, the molecular cladistic analysis unambiguously placed the Evlachovaea isolates firmly within the genus Isaria (Hypocreales: Cordycipitaceae). The ITS sequences of E. kintrischica were very similar or even identical to those of Isaria amoenerosea and Isaria cateniobliqua, thereby suggesting that E. kintrischica is a synonym of one of these species, and that the genus Evlachovaea must be treated as a later synonym of Isaria, which must now be recognized to include several highly divergent modes of conidiogenesis. These taxonomic findings are discussed in the context of dramatic changes recently imposed on the nomenclatural standards used to determine the correct names of all pleomorphic fungi. Published by Elsevier Ltd.

  8. PTP1B Inhibitors from the Entomogenous Fungi Isaria fumosorosea

    OpenAIRE

    Jun Zhang; Lin-Lin Meng; Jing-Jing Wei; Peng Fan; Sha-Sha Liu; Wei-Yu Yuan; You-Xing Zhao; Du-Qiang Luo

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is implicated as a negative regulator of insulin receptor (IR) signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Thus, small molecule inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes and cancer diseases. In a continuing search for new PTP1B inhibitors, a new tetramic acid possessing a rare pyrrolidinedione skele...

  9. The first record of entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycota: Hyphomycetes) on the hibernating pupae of Cameraria ohridella (Lepidoptera: Gracillariidae)

    Czech Academy of Sciences Publication Activity Database

    Zemek, Rostislav; Prenerová, E.; Weyda, František

    2007-01-01

    Roč. 37, suppl. 1 (2007), s. 135-136 ISSN 1738-2297. [International Congress of Insect Biotechnology and Industry. 19.08.2007-24.08.2007, Daegu] R&D Projects: GA MŠk 2B06005 Institutional research plan: CEZ:AV0Z50070508 Keywords : horse chestnut leaf-miner * entomopathogenic fungi * biological control Subject RIV: EH - Ecology, Behaviour

  10. Metabolomic profile and nucleoside composition of Cordyceps nidus sp. nov. (Cordycipitaceae: A new source of active compounds.

    Directory of Open Access Journals (Sweden)

    Juan Chiriví

    Full Text Available Cordyceps sensu lato is a genus of arthropod-pathogenic fungi, which have been used traditionally as medicinal in Asia. Within the genus, Ophiocordyceps sinensis is the most coveted and expensive species in China. Nevertheless, harvesting wild specimens has become a challenge given that natural populations of the fungus are decreasing and because large-scale culture of it has not yet been achieved. The worldwide demand for products derived from cultivable fungal species with medicinal properties has increased recently. In this study, we propose a new species, Cordyceps nidus, which parasitizes underground nests of trapdoor spiders. This species is phylogenetically related to Cordyceps militaris, Cordyceps pruinosa, and a sibling species of Cordyceps caloceroides. It is found in tropical rainforests from Bolivia, Brazil, Colombia and Ecuador. We also investigated the medicinal potential of this fungus based on its biochemical properties when grown on four different culture media. The metabolic profile particularly that of nucleosides, in polar and non-polar extracts was determined by UPLC, and then correlated to their antimicrobial activity and total phenolic content. The metabolome showed a high and significant dependency on the substrate used for fungal growth. The mass intensities of nucleosides and derivative compounds were higher in natural culture media in comparison to artificial culture media. Among these compounds, cordycepin was the predominant, showing the potential use of this species as an alternative to O. sinensis. Furthermore, methanol fractions showed antimicrobial activity against gram-positive bacteria, and less than 3.00 mg of gallic acid equivalents per g of dried extract were obtained when assessing its total phenolic content by modified Folin-Ciocalteu method. The presence of polyphenols opens the possibility of further exploring the antioxidant capacity and the conditions that may enhance this characteristic. The metabolic composition and biochemical activity indicate potential use of C. nidus in pharmaceutical applications.

  11. Naturally-Occurring Entomopathogenic Fungi on Three Bark Beetle Species (Coleoptera: Curculionidae in Bulgaria

    Directory of Open Access Journals (Sweden)

    Slavimira A. Draganova

    2010-01-01

    Full Text Available Bark beetles (Coleoptera: Curculionidae: Scolytinae belong to one of the most damaging groups of forest insects and the activity of their natural enemies –pathogens, parasitoids,parasites or predators suppressing their population density,is of great importance. Biodiversity of entomopathogenic fungi on bark beetles in Bulgaria has been investigated sporadically. The aim of this preliminary study was to find, identify and study morphological characteristics of fungal entomopathogens naturally-occurring in populations of three curculionid species – Ips sexdentatus Boern, Ips typographus (L. and Dryocoetes autographus (Ratz.. Dead pest adults were found under the bark of Pinus sylvestris and Picea abies trees collectedfrom forests in the Maleshevska and Vitosha Mountains. Fungal pathogens were isolated into pure cultures on SDAY (Sabouraud dextrose agar with yeast extract and were identified based on morphological characteristics both on the host and in a culture.Morphological characteristics of the isolates were studied by phenotypic methods. The fungal isolates obtained from dead adults of Ips sexdentatus, Ips typographus and D. autographus were found to belong to the species Beauveria bassiana (Bals. – Criv. Vuillemin,Beauveria brongniartii (Saccardo Petch and Isaria farinosa (Holmsk. Fries (anamorph Ascomycota, Sordariomycetes: Hypocreales, Cordycipitaceae. Morphological traits of the isolates are described.

  12. Effect of buprofezin and Isaria fumosorosea against rugose spiraling whitefly, 2015

    Science.gov (United States)

    The objective of this study was to evaluate the efficacy of selected insecticides alone or in combination against Aleurodicus rugioperculatus Martin, the rugose spiraling whitefly (RSW), a new invasive pest of ornamentals in Florida. The trial was conducted on an ornamental host, white bird of parad...

  13. Effect of plant extracts and a disinfectant on biological parameters and pathogenicity of the fungus Beauveria bassiana (Bals. Vuill. (Ascomycota: Cordycipitaceae

    Directory of Open Access Journals (Sweden)

    C. C. Martins

    Full Text Available Abstract The fungus Beauveria bassiana is naturally found in poultry houses and causes high rates of mortality in Alphitobius diaperinus. Laboratory and field experiments have shown the potential of this fungus as an insect control agent. However, in poultry houses, bacteria as Salmonella, can be found and have been studied alternative control methods for this pathogen. Thus, this study aimed to evaluate the effect of plant extracts and a disinfectant on the fungus Beauveria bassiana (strain Unioeste 4. Conidial viability, colony-forming unit (CFU counts, vegetative growth, conidia production, insecticidal activity of the fungus and compatibility were used as parameters in the evaluation of the effect of these products on the fungus. Alcoholic and aqueous extracts of jabuticaba (Myrciaria cauliflora (Mart., guava (Psidium guajava (L., and jambolan (Syzygium cumini (L., at concentrations of 10% as well as the commercial disinfectant, Peroxitane® 1512 AL, were evaluated at the recommended concentrations (RC, 1:200 (RC, 0.5 RC and 2 RC. There was a negative influence of alcoholic and aqueous extracts of jabuticaba, guava and three dilutions of Peroxitane on the viability of conidia. The CFUs and vegetative growth of the fungus were affected only by the Peroxitane (all dilutions. For conidial production, the aqueous extract of guava had a positive effect, increasing production, while the Peroxitane at the R and RC concentrations resulted in a negative influence. The mortality of A. diaperinus, caused by the fungus after exposure to these products, was 60% for the peracetic acid at 0.5 RC, and above 80% for the extracts. Thus, the results showed that all the extracts and Peroxitane at RC 0.5 are compatible with the fungus B. bassiana Unioeste 4, however only the extracts had a low impact on inoculum potential.

  14. Potential of a strain of the entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) as a biological control agent against western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae)

    Science.gov (United States)

    Five Beauveria bassiana strains were evaluated for control of western flower thrips. Strain RSB was the most virulent, causing 69-96% mortality at concentrations of 1×104 – 1×107 conidia mL-1, 10 days after inoculation of first instars. In greenhouse trials, RSB applied to broccoli foliage signifi...

  15. Compatibility and efficacy of Isaria fumosorosea with horticultural oils for mitigation of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)

    Science.gov (United States)

    Horticultural oils are an important component of integrated management programs of several phytophagous arthropods, and pathogens affecting fruit, ornamental and vegetables in greenhouse and field production systems. Although effective against the target pest, their incompatibility with biological c...

  16. Efficacy of an autodisseminator of an entomopathogenic fungus, Isaria fumosorosea, to suppress Asian citrus psyllid, Diaphorina citri, under greenhouse conditions

    Science.gov (United States)

    The Asian citrus psyllid (ACP), transmits the causative agents of citrus greening disease or huanglongbing (HLB), the most devastating disease of citrus trees in the world today. ACP dwelling in noncommercial citrus (neighborhoods, commercial landscapes, etc.) can stymie area-wide management program...

  17. Insecticide Rotation Programs with Entomopathogenic Organisms for Suppression of Western Flower Thrips (Thysanoptera: Thripidae) Adult Populations under Greenhouse Conditions.

    Science.gov (United States)

    Kivett, Jessica M; Cloyd, Raymond A; Bello, Nora M

    2015-08-01

    Western flower thrips, Frankliniella occidentalis (Pergande), is one of the most destructive insect pests of greenhouse production systems with the ability to develop resistance to a wide variety of insecticides. A common resistance management strategy is rotating insecticides with different modes of action. By incorporating entomopathogenic organisms (fungi and bacteria), which have discrete modes of action compared to standard insecticides, greenhouse producers may preserve the effectiveness of insecticides used for suppression of western flower thrips populations. The objective of this study was to determine how different rotation programs that include entomopathogenic organisms (Beauveria bassiana, Isaria fumosoroseus, Metarhizium anisopliae, and Chromobacterium subtsugae) and commonly used standard insecticides (spinosad, chlorfenapyr, abamectin, and pyridalyl) may impact the population dynamics of western flower thrips adult populations by means of suppression. Eight-week rotation programs were applied to chrysanthemum, Dendranthema x morifolium plants and weekly counts of western flower thrips adults captured on yellow sticky cards were recorded as a means to evaluate the impact of the rotation programs. A final quality assessment of damage caused by western flower thrips feeding on foliage and flowers was also recorded. Furthermore, a cost comparison of each rotation program was conducted. Overall, insecticide rotation programs that incorporated entomopathogenic organisms were not significantly different than the standard insecticide rotation programs without entomopathogenic organisms in suppressing western flower thrips adult populations. However, there were no significant differences among any of the rotation programs compared to the water control. Moreover, there was no differential effect of the rotation programs on foliage and flower quality. Cost savings of up to 34% (in US dollars) are possible when including entomopathogenic organisms in the

  18. Use of the entomopathogenic fungi Metarhizium anisopliae, Cordyceps bassiana and Isaria fumosorosea to control Diaphorina citri (Hemiptera: Psylidae) in Persian lime under field conditions

    Science.gov (United States)

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a destructive insect pest in the citriculture, because it is an efficient vector of the proteobacteria, ‘Candidatus Liberibacter asiaticus’ (Las), ‘Ca. L. Africanus’ (Laf), and ‘Ca. L. Americanus’ (Lam). These bacteria c...

  19. Assessing compatibility of Isaria fumosorosea and buprofezin for mitigation of Aleurodicus rugioperculatus (Hemiptera: Aleyrodidae) - an invasive pest in the Florida landscape

    Science.gov (United States)

    A significant reduction in Rugose spiraling whitefly (RSW) population was reported for more than 5 weeks in buprofezin alone and more than 7 weeks in the combination treatments. In fall 2014 and summer 2015, the mean whitefly mortality observed during the 10 week assessment period were 52.4 and 42....

  20. Potential of the strain of entomopathogenic fungus Isaria fumosorosea CCM 8637 as a biological control agent against Cameraria ohridella and other pests

    Czech Academy of Sciences Publication Activity Database

    Zemek, Rostislav; Prenerová, Eva; Awad, Mona; Hussein, Hany

    2012-01-01

    Roč. 15, - (2012), s. 79-80 ISSN 1335-258X R&D Projects: GA MŠk 2B06005 Grant - others:European Social Fund(CZ) CZ.1.07/2.4.00/12.0082 Institutional support: RVO:60077344 Keywords : biological control * horse chestnut leaf miner * Colorado potato beatle

  1. Efficacy of an entomopathogenic fungus, Isaria fumosorosea and an insect growth regulator against the rugose spiraling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae)

    Science.gov (United States)

    Aleurodicus rugioperculatus Martin, infamous as gumbo limbo or rugose spiraling whitefly is a new addition in the list of devastating whitefly species found in Florida. It is a newly introduced pest of Central American origin, reported first time in Florida from Miami-Dade County in 2009. Since then...

  2. Field validation of a system for autodissemination of an entomopathogenic fungus, Isaria fumosorosea, to control the Asian citrus psyllid on residential citrus

    Science.gov (United States)

    The citrus industries of California and Texas share a pressing problem with the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) and huanglongbing (HLB) spreading in residential citrus near commercial groves. Insecticidal treatment of residential trees for the psyllid is problem...

  3. Survival of anopheline eggs and their susceptibility to infection with Metarhizium anisopliae and Beauveria bassiana under laboratory conditions

    NARCIS (Netherlands)

    Luz, C.; Mnyone, L.L.; Russell, T.L.

    2011-01-01

    The viability of Anopheles gambiae sensu stricto and Anopheles arabiensis (Diptera: Culicidae) eggs over time and the ovicidal activity of Beauveria bassiana (Ascomycota: Cordycipitaceae) and Metarhizium anisopliae (Ascomycota: Clavicipitaceae) were investigated. Eggs were incubated in soil or leaf

  4. New insights into the in vitro development and virulence of Culicinomyces spp. as fungal pathogens of Aedes aegypti

    Science.gov (United States)

    Culicinomyces spp. (Hypocreales: Cordycipitaceae) are facultative fungal pathogens affecting the larval stages from a range of mosquito species and are especially notable in their ability to infect hosts through the digestive tract after conidial ingestion. While Culicinomyces spp. were studied main...

  5. Occurrence of entomopathogenic fungi in arable soil

    Directory of Open Access Journals (Sweden)

    Ryszard Miętkiewski

    2014-08-01

    Full Text Available Samples of soil were taken from arable field and from balk. Larvae of Galleria mellonella and Ephestia kühniella were used as an "insect bait" for isolation of entomopathogenic fungi from soil. Metarhizium anisopliae and Paecilomyces fumosoroseus were isolated from both kind of soil. but Beauveria bassiana was present only in soil taken from balk.

  6. The spectrum and occurrence of entomopathogenic fungi in soils from apple orchards

    Directory of Open Access Journals (Sweden)

    Barbara Marjańska-Cichoń

    2012-12-01

    Full Text Available The spectrum and occurrence of entomopathogenic fungi in orchard soil and arable soil were evaluated using an "insect bait method". Soil samples taken in autumn and spring from sward, herbicides fallow and arable soil were baited with Galleria mellonella larvae. Entomopathogenic fungi Beauveria bassiana (Bals. Vuill., Metarhizium anisopliae (Metsch. Sorok. and Paecilomyces fumosoroseus (Wize Brown et Smith were isolated from three species of orchards soil and adjacent arable soil. Infection levels of G. mellonella larvae were depended from species of soil . M. anisoopliae caused most frequent infections of bait insects in light loamy sand and P. fumosoroseus in alluvial silt and coarse sand. B. bassiana was dominated in alluvial silt. It was established that M. anisopliae and B. bassiana infected more larvae in autumn than in spring. In case of P. fumosoroseus an opposite tendency was observed. Generaly in arable soil and sward number of infected larvae was higher than other stands. In case of light loamy sand more infections of G. mellonella larvae were found in samples from herbicides fallow. Irrespective of soil type B. bassiana was the dominated species isolated from herbicides fallow, M. anisopliae from sward and P. fumosoroseus - from arable soil.

  7. Pathogenecity of Beauveria bassiana and Metarhizium anisopliae ...

    African Journals Online (AJOL)

    emulsifiable formulation on two-spotted spider mite, T. urticae. Weibin and. Mingguang (2004) found that both B. bassiana and Paecilomyces fumosoroseus infections decreased the hatch rates of Tetranychus cinnanarinus eggs and the higher the conidial concentrations resulted in greater reduction in the hatch rates.

  8. Entomopathogenic fungi associated with Ixodes ricinus ticks

    DEFF Research Database (Denmark)

    Kalsbeek, Vibeke; Frandsen, F.; Steenberg, Tove

    1995-01-01

    to the Hyphomycetes. Paecilomyces farinosus and Verticillium lecanii were the predominant species. Other species, found only on engorged females were: Beauveria bassiana, B. brongniartii, P. fumosoroseus and V. araneanrm. Eight out of 1833 ticks collected from the vegetation and three out of 269 engorged nymphs were...

  9. Entomopathogenic fungi recorded from the harlequin ladybird, Harmonia axyridis

    DEFF Research Database (Denmark)

    Steenberg, Tove; Harding, Susanne

    2009-01-01

    Entomopathogenic fungi were recorded from field samples of the harlequin ladybird Harmonia axyridis, an invasive coccinellid that has recently arrived in Denmark. Larvae, pupae and adults were found to be infected by Isaria farinosa, Beauveria bassiana and species of Lecanicillium...

  10. Compatibility of entomopathogenic fungi with extracts of plants and ...

    African Journals Online (AJOL)

    The compatibility of some commercial botanicals (Biospark, Phytophrate, Exodos, Biodos and Neemgold) and of solvent extracts of Syndrella nodiflora, Premna tomentosa, Vitex negundo, Ipomea carnea, Pteridium aquilinum (leaves) and Annona squomosa (seeds) with Beauveria bassiana (Bals.) Vuil., Isaria ...

  11. Effect of Two Entomopathogenic Fungi in Controlling Aleurodicus cocois (Curtis, 1846 (Hemiptera: Aleyrodidae Efecto de Dos Hongos Entomopatógenos en el Control de Aleurodicus cocois (Curtis, 1846 (Hemiptera: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Elizabeth Núñez del Prado

    2008-03-01

    Full Text Available Aleurodicus cocois (Curtis, 1846, the coconut whitefly, is a very damaging pest in Peru, mainly in avocado trees (Persea americana Mill.. It has been determined that entomopathogenic fungi can infect and kill white flies and can be used as biological control agents. The object of this research was to determine if there is any synergic action of the entomopathogenic fungi Paecilomyces fumosoroseus (Wize Brown & Smith 1957 and Verticillium lecanii (Zimmerman, 1892 Viégas 1939, in controlling A. cocois. Plastic sterile dishes were prepared where 5 mL 2% agar were used for each stage; leaves infested with A. cocois were placed upon these. Three different treatments were applied by sprinkling: P. fumosoroseus (P, V. lecanii (V or the mixture of the two fungi. These treatments were evaluated at one, two and seven days in the case of nymph I and eggs, and after four, eight and 12 days for nymph II, NIII and NIV. The lethal effect of V. lecanii on the second nymph instar of A. cocois was better than that of P. fumosoroseus and than the mixture of both fungi; the highest mortality percentage appeared from day eight to day 12. A small increase was observed in the effect of the mixture of the two entomopathogenic fungi on the IV nymph instar; and the effect of P. fumosoroseus was the lowestAleurodicus cocois (Curtis, 1846, la mosca blanca del cocotero, constituye una plaga muy importante en el Perú, principalmente en el palto (Persea americana Mill.. Se ha determinado que los hongos entomopatógenos pueden infectar y matar a la mosca blanca, por lo que podrían ser usados como agentes de control biológico. El objetivo del presente trabajo fue determinar si existe alguna acción conjunta de dos hongos entomopatógenos Paecilomyces fumosoroseus (Wize Brown & Smith 1957 y Verticillium lecanii (Zimmerman, 1892 Viégas 1939, en el control de A. cocois. Para ello se prepararon previamente placas de plástico estériles en las que se sirvieron aproximadamente

  12. Borisade et al (10)

    African Journals Online (AJOL)

    DELL

    Entomopathogenic fungi, Metarhizium anisopliae and Isaria farinosa are biocontrol agents (BCA) widely reported for the management of insect pests, and they are potential components of Integrated Pest Management (IPM) systems. Compatibility of their infective conidia with low rates of four agrochemicals; Champ-DP ...

  13. Author Details

    African Journals Online (AJOL)

    Borisade, OA. Vol 23, No 2 (2015) - Articles Rearing tomato whitefly and field evaluation of modified and unmodified conidia of Beauveria bassiana, Isaria farinosa, Metarhizium anisopliae and low rates of Chlorpyrifos under tropical conditions. Abstract PDF. ISSN: 2072-6589. AJOL African Journals Online. HOW TO USE ...

  14. Virulence of entomopathogenic hypocrealean fungi infecting Anoplophora glabripennis

    Science.gov (United States)

    Thomas Dubois; Jennifer Lund; Leah S. Bauer; Ann E. Hajek

    2008-01-01

    Twenty isolates of four species of entomopathogenic hypocrealean fungi (Beauveria bassiana, Beauveria brongniartii, Isaria farinosa, and Metarhizium anisopliae) were found to be pathogenic to adults of the Asian longhorned beetle, Anoplophora glabripennis. Survival times for 50% of the beetles tested (ST

  15. Influence of pesticides used potatoes control on the growth of entomopathogenic fungi isolated from potatoes fields

    Directory of Open Access Journals (Sweden)

    Ryszard Miętkiewicz

    2013-12-01

    Full Text Available The growth of Metarhizium anisopliae, M.flavoviridae and Paecilomyces fumosoroseus was estimated on Sabouraud's medium to which insecticides and herbicides were added in three doses: A - 10 times higher from recommended field dose, B - as recommended field dose, C - 10 timer lower than recommended. Fungicides were used in B and C doses as well as in dose D - 100 times lower than recomended one. The fungi were obtained from soil under potatoes using Galleria mellonella as bait insect. Chlorothalonil and copper oxychloride were chosen from fungicides, linuron, MCPA, fluazifop-P-butyl and dikwat - from herbicides and deltamethrin, teflubenzuron and fozalon from insecticides. The growth of both species of Metarhizium was stronger inhibited than of Paecilomyces fumosoroseus by fungicides however colonies of Metarhizium always overpassed 50% controls colonies apart from M. flavoviridae on medium with copper oxychloride at concentration B. Herbicide linuron was more toxic to fungi than fungicides. M. anisopliae and M. fluvoviridae did not grow on medium containing dose A and dose B this herbicide but the colonies of P. fumosoroseus at dose B did not overpass 20% of controlled ones. MCPA and fluazifop-P-butyl inhibited fungal colonies in approximated way. On the medium with these herbicides in concentration A fungal colonies were strongly inhibited and the growth of fungi on medium with MCPA at this concentration appeared not before 5 days after inoculation. Dikwat in dose A strongly inhibited the growth of M. anisopliae but in remaining combinations growth of fungal colonies was similar to controlled ones. Fozalon, among insecticides, inhibited the growth of inwestigated fungi strongest. On the medium containing this insecticide in dose A all fungi did not grow, and in dose B colonies of both species of Metarhizium did not overpass 40% of controlled ones. Deltamethrin in dose A and B inhibited the growth of M. anisopliae and M. flavoviridae, but

  16. Occurrence of Entomopathogenic Fungi from Agricultural and Natural Ecosystems in Saltillo, México, and their Virulence Towards Thrips and Whiteflies

    Science.gov (United States)

    Sánchez-Peña, Sergio R.; Lara, Jorge San-Juan; Medina, Raúl F.

    2011-01-01

    Entomopathogenic fungi were collected from soil in four adjacent habitats (oak forest, agricultural soil, pine reforestation and chaparral habitat) in Saltillo, México using the insect bait method with Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) larvae as bait. Overall, of the larvae exposed to soil, 171 (20%) hosted Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), 25 (3%) hosted Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) and 1 (0.1%) hosted lsaria (=Paecilomyces) sp. (Hypocreales: Cordycipitaceae). B. bassiana was significantly more frequent on larvae exposed to oak forest soil. M. anisopliae was significantly more frequent on larvae exposed to agricultural soil. From the infected bait insects, 93 isolates of B. bassiana and 24 isolates of M. anisopliae were obtained. Strains were tested for their infectivity against Cuban laurel thrips, Gynaikothrips uzeli Zimmerman (Thysanoptera: Phlaeothripidae) and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). B. bassiana isolates caused the highest mortality on thrips (some causing 88% mortality after 6 days); both fungal species caused similarly high mortality levels against whiteflies (75%) after 6 days. Large amounts of germplasm of entomopathogenic fungi, fundamentally B. bassiana and M. anisopliae, exist in the habitats sampled; pathogenicity varied among strains, and some strains possessed significant virulence. Soils in these habitats are reservoirs of diverse strains with potential for use in biocontrol. PMID:21521145

  17. Influence of culture media in viability test of conidia of entomopathogenic fungi Influência de meios de cultura em teste de viabilidade de fungos entomopatogênicos

    Directory of Open Access Journals (Sweden)

    Edimara Aparecida Francisco

    2006-08-01

    Full Text Available This work aimed at investigatimg whether the culture medium used in viability tests affects the conidial germination of Lecanicillium lecanii, Beauveria bassiana and Paecilomyces fumosoroseus isolates. The tests were performed on microscope slides containing one of the culture media: agar-water (AW, minimal medium (MM, potato-dextrose agar (PDA, potato-dextrose-1% yeast extract agar (PDAY, Sabouraud-dextrose-yeast extract agar (SDAY, and complete medium (CM. Three areas per slide were delimited and 0.05ml of a 5.5 x 105 conidia ml-1 suspension was applied to each area. One bioassay was performed for each isolate. Germination was determined after 15 hours of incubation at 26±0.5°C. The culture media influenced the germination of the species studied, verifying within and inter specific variations. CM and PDA provided the highest germination of L. lecanii isolates and the lowest was obtained on SDAY and AW. The germination of B. bassiana isolates was favoured by CM, PDA and PDAY media, a fact not observed in AW and MM. P. fumosoroseus isolates showed the highest germination on CM and PDA media and the lowest on SDAY. However, some isolates presented high germination on nutrient-poor media (AW and MM.O presente trabalho objetivou investigar se meios de cultura utilizados em teste de viabilidade afetam a germinação de conídios de cinco isolados de Lecanicillium lecanii, cinco de Beauveria bassiana e quatro de Paecilomyces fumosoroseus. Os testes foram realizados em lâminas de microscopia contendo um dos seguintes meios de cultura: Ágar-água (AA, Meio Mínimo (MM, Batata, dextrose e ágar (BDA, Batata, dextrose, ágar e 1% de extrato de levedura (BDAL, Sabouraud, dextrose, ágar e extrato de levedura (SDAL e Meio Completo (MC. Delimitaram-se três áreas por lâmina e em cada uma aplicou-se 0,05mL de uma suspensão com concentração de 5,5 x 105 conídios ml-1. Para cada isolado foi realizado um bioensaio, com seis tratamentos e cinco repeti

  18. Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi.

    Science.gov (United States)

    Andersen, M; Magan, N; Mead, A; Chandler, D

    2006-09-01

    Entomopathogenic fungi are being used as biocontrol agents of insect pests, but their efficacy can be poor in environments where water availability is reduced. In this study, the potential to improve biocontrol by physiologically manipulating fungal inoculum was investigated. Cultures of Beauveria bassiana, Lecanicillium muscarium, Lecanicillium longisporum, Metarhizium anisopliae and Paecilomyces fumosoroseus were manipulated by growing them under conditions of water stress, which produced conidia with increased concentrations of erythritol. The time-course of germination of conidia at different water activities (water activity, aw) was described using a generalized linear model, and in most cases reducing the water activity of the germination medium delayed the onset of germination without affecting the distribution of germination times. The germination of M. anisopliae, L. muscarium, L. longisporum and P. fumosoroseus was accelerated over a range of aw levels as a result of physiological manipulation. However, the relationship between the effect of physiological manipulation on germination and the osmolyte content of conidia varied according to fungal species. There was a linear relationship between germination rate, expressed as the reciprocal of germination time, and aw of the germination medium, but there was no significant effect of fungal species or physiological manipulation on the aw threshold for germination. In bioassays with M. anisopliae, physiologically manipulated conidia germinated more rapidly on the surface of an insect host, the melon cotton aphid Aphis gossypii, and fungal virulence was increased even when relative humidity was reduced after an initial high period. It is concluded that physiological manipulation may lead to improvements in biocontrol in the field, but choice of fungal species/isolate will be critical. In addition, the population-based threshold model used in this study, which considered germination in terms of physiological

  19. Phyllosphere mycobiota on garden ponds plants

    Directory of Open Access Journals (Sweden)

    Maria Kowalik

    2013-12-01

    Full Text Available Investigations were conducted on calamus, common cattail, soft rush, yellow iris and white water lily plants in twenty ponds in Malopolska and Podkarpacie Regions. Mycobiota existing in the phyllosphere caused discolouring and necroses of leaves and shoots. 88 species of mycobiota were identified and isolated from the diseased tissues. Dominant were Alternaria alternata, Epicoccum nigrum and Isaria farinosa. Fungi of genera: Aspergillus, Botrytis, Chaetomium, Cladosporium, Fusarium, Ilyonectria, Mortierella, Mucor, Penicillium, Phialophora, Phoma, Pleustomophora, Sordaria, Trichoderma and Umbelopsis were also numerous. The monophagous and the polyphagous were identified.

  20. The preliminary assessment and isolation of entomopathogenic fungi to be used in biological control with twospotted spider mite [Tetranychus urticae (acari, tetranychidae)] from East Anatolia

    Science.gov (United States)

    Örtücü, Serkan; Algur, Ömer Faruk

    2017-04-01

    This study was conducted to isolation entomopathogenic fungi for possible use in biocontrol of two-spotted spider mite Tetranychus urticae Koch. and to determine their pathogenicity. For this purpose, plant leaves infected with T. urticae were collected from Erzurum, Kars and Ardahan. At laboratory, the internal and external mycoflora of T.urticae individuals on plant leaves were determined. As a result of isolation, twenty-five different fungi species belonging to the genera Acremonium, Alternaria, Aspergillus, Beauveria, Cladosporium, Gliocladium, Humicola, Penicillium, Trichoderma, Isaria, Ulocladium and Verticillium were obtained. Pathogenicity of this forty-five isolate belonging to twenty-five species were evaluated. As a test organism, T. urticae was used and suspensions (1 × 108conidia ml-1) were prepared in Tween 80. 2ml suspension of a single dose was sprayed onto down side of bean leaf discs using hand sprayer. Mortality was recorded daily for 7 days. A total of twelve isolates belonging to three species were determined to be pathogen against T.urticae. According to scale used: AT020 Isaria farinosa and AT025 Cladosporium cladosporioides were determined as least pathogen, AT037 and AT101 Beauveria bassiana, and AT019 and AT026 C. cladosporioides, and AT035 and AT036 I. farinosa as moderate pathogen, AT007, AT021, AT034 and AT076 B. bassiana as highly pathogen. The other thirty-three isolates found that not pathogenic against T.urticae.

  1. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii

    Directory of Open Access Journals (Sweden)

    Andrew G. S. Cuthbertson

    2016-06-01

    Full Text Available Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B; Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p < 0.001 reduced population development of D. suzukii from infested berries. All nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed.

  2. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii.

    Science.gov (United States)

    Cuthbertson, Andrew G S; Audsley, Neil

    2016-06-09

    Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B); Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed.

  3. Effect of Three Entomopathogenic Fungi on Three Species of Stingless Bees (Hymenoptera: Apidae) Under Laboratory Conditions.

    Science.gov (United States)

    Toledo-Hernández, R A; Ruíz-Toledo, J; Toledo, J; Sánchez, D

    2016-05-04

    Development of alternative strategies for pest control with reduced effect on beneficial organisms is a priority given the increasing global loss of biodiversity. Biological control with entomopathogenic fungi arises as a viable option to control insect pests. However, few studies have focused on the consequences of using these organisms on pollinators other than the honey bee (Apis mellifera L.) or bumble bees (Bombus spp). We evaluated the pathogenicity of commercial formulations of three widely used entomopathogenic fungi, Metarhizium anisopliae (Metschnikoff) Sorokin, Beauveria bassiana Vuillemin, and Isaria fumosorosea (Wize), to three species of stingless bees: Tetragonisca angustula Latreille, Scaptotrigona mexicana Guérin-Meneville, and Melipona beecheii Bennett. Bioassays consisted of exposing groups of bees to the recommended field concentration of each fungus using a microspray tower under laboratory conditions. Susceptibility to fungi varied greatly among species. Isaria fumosorosea (strain Ifu-lu 01) and the two formulations of B. bassiana (Bea-TNK and BotanicGard) caused entomopathogenic fungi on stingless bees, further field studies are required to support this finding. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The side effect of Paecilomyces fumosoroseusapplication on the black ant, Dolichoderus thoracicus, the predator of Helopeltis antoniiand cocoa pod borer

    Directory of Open Access Journals (Sweden)

    Endang Sulistyowai

    2006-05-01

    Full Text Available Paecilomyces fumosoroseuswas known as one of the effective biological agents of cocoa pod borer and Helopeltis antonii. To find out the side effect of application of P. fumosoroseuson black ant, Dolichoderus thoracicus, a series of observations were carried out at the Laboratory of Pest and Diseases Indonesian Coffee and Cocoa Research Institute (ICCRI and in a cocoa plantation of Glenmore, Banyuwangi district, since June until October, 2004. Laboratory research used four concentrations of P. fumosoroseusnamely 105, 106, 107 and 108 spores/ml, while in the field used concentration 2, 4, 6, 8 g dry spores/ml. Each trial as compared with spraying of carbamate and synthetic pyrethroid insecticides as control and untreated This research was designed by randomized block design and four replications. The results showed that in the laboratory, direct spraying suspension of P. fumosoroseuskilled black ant between 20—39% which infected fungi about 2.5—12.5%. The relationship between log of spores concentration of P. fumosoroseus and probit of ant mortality followed the regression equation Y = 3.653 + 0.097 X with LC 50 was 8 x 10 13 spore/ml. The period needed to kill a half of ant population at the laboratory (LT 50 at concentration 107 spores/ml followed the regression equation Y = 1.851 + 1.522 X, with LT50 is 12,01 days. The effect of pyrethroid and carbamate insecticide on ants mortality were 91.25% and 98.75% respectively. In the field, the effect of P. fumosoroseusspray on black ant population was very low, with the percentage of ant mortality at cocoa leaf nest were 0.25–0.46% and at cocoa leaf nest in plastic bag were 0.06–0.21%, while carbamate and pyrethroid synthetic effect were 37.35% and 52.37% at cocoa leaf nest, and 19.15% and 46.67% at cocoa leaf nest in plastic bags. Key words : Cocoa, capsid, Helopeltis antonii, biological control, biological agents, Paecilomyces fumosoroseus, Dolichoderus tharacicus.

  5. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects.

    Science.gov (United States)

    Hatting, Justin L; Moore, Sean D; Malan, Antoinette P

    2018-02-07

    Invertebrate pests pose a significant threat to food security on the African continent. In response, South Africa has become one of the largest importers of chemical pesticides in sub-Saharan Africa, with several hundred active ingredients registered. To address the over-reliance on such chemicals, the South African Department of Agriculture, Forestry and Fisheries (DAFF) has eliminated or restricted several pesticides since the late 1970s. The recent launch of the South African National Bio-Economy Strategy and establishment of the South African Bioproducts Organisation (SABO), together with new guidelines for registration of biopesticides in 2015, also support this endeavour. Concurrently, entomopathogen-related research and bioproduct development has increased over the past decade. Currently, 31 products (seven manufactured locally) are registered under the Fertilizers, Farm Feeds, Agricultural Remedies and Stock Remedies Act 36 of 1947. Commercially important microbes include Beauveria bassiana (Cordycipitaceae), Metarhizium anisopliae (Clavicipitaceae), Cydia pomonella granulovirus, Cryptophlebia leucotreta granulovirus, Helicoverpa armigera nucleopolyhedrovirus (Baculoviridae) and Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai (Bacillaceae). Both parasitic and entomopathogenic nematodes (EPNs) show potential for development as bioinsecticides with one commercial EPN product, based on Heterorhabditis bacteriophora (Heterorhabditidae), registered under the Act. Rapid scientific progression, supported by a favourable legislative environment, should facilitate further advances in microbial control of phytophagous invertebrate pests in South Africa. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Human exposure to airborne fungi from genera used as biocontrol agents in plant production.

    Science.gov (United States)

    Madsen, Anne Mette; Hansen, Vinni Mona; Meyling, Nicolai Vitt; Eilenberg, Jørgen

    2007-01-01

    The fungi Trichoderma harzianum, T. polysporum, T. viride, Paeciliomyces fumosoroseus, P. lilacinus, Verticillium/lecanicillium lecanii, Ulocladium oudemansii, U. atrum and Beauveria bassiana are used or considered to be used for biocontrol of pests and plant diseases. Human exposure to these fungi in environments where they may naturally occur or are used as biocontrol agents has not been directly investigated to date. This review aims to provide an overview of the current knowledge of human exposure to fungi from the relevant genera. The subject of fungal taxonomy due to the rapid development of this issue is also discussed. B. bassiana, V. lecanii, T. harzianum, T. polysporum, P. lilacinus and U. oudemansii were infrequently present in the air and thus people in general seem to be seldom exposed to these fungi. However, when V. lecanii was present, high concentrations were measured. Fungi from the genera Trichoderma, Paecilomyces and Ulocladium were rarely identified to the species level and sometimes high concentrations were reported. T. viride and U. atrum were detected frequently in different environments and sometimes with a high frequency of presence in samples. Thus, people seem to be frequently exposed to these fungi. Sequence data have led to recent revisions of fungal taxonomy, and in future studies it is important to specify the taxonomy used for identification, thus making comparisons possible.

  7. Occupational exposure to microorganisms used as biocontrol agents in plant production.

    Science.gov (United States)

    Madsen, Anne Mette

    2011-01-01

    Exposure to bioaerosols containing fungi and bacteria may cause various deleterious respiratory health effects. Fungi and bacteria are commercially produced and applied to the environment as microbiological pest control agents (MPCAs). Attention has been drawn towards the exposure and health risks due to the use of commercially important MPCAs. As part of a risk evaluation this paper intends to review whether the exposure to MPCAs (Beauveria bassiana, Verticillium lecanii, Trichoderma harzianum, T. viride, T. polysporum, Paecilomyces fumosoroseus, P. lilacinus, Streptomyces griseoviridis, Bacillus subtilis and Ba. thuringiensis) exceeds background exposure levels. The paper is further aimed to focus on the aerosolization of MPCAs in relation to exposure and human inhalation. From the few studies about exposures it is concluded that both people handling MPCAs in occupational settings and residents of an area where MPCAs have been applied may be exposed to MPCAs. The highest exposures to MPCAs are found for people applying MPCAs. In 2 of 12 environments exposure to applied MPCAs were higher than exposure to the total number of bacteria or fungi.

  8. Comparative performance evaluation of multi-metal resistant fungal strains for simultaneous removal of multiple hazardous metals.

    Science.gov (United States)

    Dey, Priyadarshini; Gola, Deepak; Mishra, Abhishek; Malik, Anushree; Kumar, Peeyush; Singh, Dileep Kumar; Patel, Neelam; von Bergen, Martin; Jehmlich, Nico

    2016-11-15

    In the present study, five fungal strains viz., Aspergillus terreus AML02, Paecilomyces fumosoroseus 4099, Beauveria bassiana 4580, Aspergillus terreus PD-17, Aspergillus fumigatus PD-18, were screened for simultaneous multimetal removal. Highest metal tolerance index for each individual metal viz., Cd, Cr, Cu, Ni, Pb and Zn (500mg/L) was recorded for A. fumigatus for the metals (Cd, 0.72; Cu, 0.72; Pb, 1.02; Zn, 0.94) followed by B. bassiana for the metals (Cd, 0.56; Cu, 0.14; Ni, 0.29; Zn, 0.85). Next, the strains were exposed to multiple metal mixture (Cd, Cr, Cu, Ni, Pb and Zn) of various concentrations (6, 12, 18, 30mg/L). Compared to other strains, B. bassiana and A. fumigatus had higher cube root growth (k) constants indicating their better adaptability to multi metal stress. After 72h, multimetal accumulation potential of B. bassiana (26.94±0.07mg/L) and A. fumigatus (27.59±0.09mg/L) were higher than the other strains at initial multimetal concentration of 30mg/L. However, considering the post treatment concentrations of individual metals in multimetal mixture (at all the tested concentrations), A. fumigatus demonstrated exceptional performance and could bring down the concentrations of Cd, Cu, Ni, Pb and Zn below the threshold level for irrigation prescribed by Food and Agriculture Organization (FAO). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. OCCURRENCE OF ENTOMOPATHOGENIC FUNGI IN SOILS FROM FESTUCA PRATENSIS HUDS. CROP

    Directory of Open Access Journals (Sweden)

    Roman Kolczarek

    2014-04-01

    Full Text Available Entomopathogenic fungi are the largest group of microorganisms existing in the soil environment. Occurrence and pathogenicity of entomopathogenic fungi in soil is dependent on many factors affecting the soil environment. The aim of this study was to compare the species composition and the intensity of the occurrence of entomopathogenic fungi in soils from monoculture crops of Festuca pratensis Huds. The study material consisted of soil samples taken from the experiment conducted in two experimental stations of the Research Centre for Cultivars Study. The insecticides fungi were isolated from soil using a method of the selective substrate. Three species of entomopathogenic fungi Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae were isolated from the study soils using the selective medium.

  10. Mortality and repellent effects of microbial pathogens on Coptotermes formosanus (Isoptera: Rhinotermitidae

    Directory of Open Access Journals (Sweden)

    Wright Maureen S

    2012-12-01

    Full Text Available Abstract Background Two entomopathogenic fungi, Isaria fumosorosea and Metarhizium anisopliae, and one bacterium, Bacillus thuringiensis, were tested for their ability to cause mortality of Formosan subterranean termites (FST, Coptotermes formosanus (Shiraki, after liquid exposure, and for their lack of propensity to repel FST. Results The fungus Isaria fumosorosea at 108 spores/ml caused 72.5% mortality on day 7, significantly higher than the control and 106 spores/ml treatment. On day 14, the 106 and 108 concentrations caused 38.8% and 92.5% mortality, respectively, significantly higher than the control. On day 21, 82.5% and 100% of the termites were killed by the 106 and 108 treatments, respectively. I. fumosorosea did not repel termites at 106 nor 108 spores/g in sand, soil or sawdust. The fungus Metarhizium anisopliae at 108 spores/ml caused 57.5% mortality on day 7, 77.5% mortality on day 14 and 100% mortality on day 21. Conclusions On all three days the rate of mortality was significantly higher than that of the control and 106 spores/ml treatment with I. fumosorosea. Neither I. fumosorosea nor M. anisopliae caused repellency of FST in sand, soil or sawdust. The bacterium Bacillus thuringiensis did not cause significant mortality on days 7, 14 or 21. When termites were exposed to cells of B. thuringiensis in sawdust and when termites were exposed to a mixture of spores and cells in sand, a significantly higher number remained in the control tubes. Repellency was not seen with B. thuringiensis spores alone, nor with the above treatments in the other substrates.

  11. Identification of Putative Coffee Rust Mycoparasites via Single-Molecule DNA Sequencing of Infected Pustules.

    Science.gov (United States)

    James, Timothy Y; Marino, John A; Perfecto, Ivette; Vandermeer, John

    2016-01-15

    The interaction of crop pests with their natural enemies is a fundament to their control. Natural enemies of fungal pathogens of crops are poorly known relative to those of insect pests, despite the diversity of fungal pathogens and their economic importance. Currently, many regions across Latin America are experiencing unprecedented epidemics of coffee rust (Hemileia vastatrix). Identification of natural enemies of coffee rust could aid in developing management strategies or in pinpointing species that could be used for biocontrol. In the present study, we characterized fungal communities associated with coffee rust lesions by single-molecule DNA sequencing of fungal rRNA gene bar codes from leaf discs (≈28 mm(2)) containing rust lesions and control discs with no rust lesions. The leaf disc communities were hyperdiverse in terms of fungi, with up to 69 operational taxonomic units (putative species) per control disc, and the diversity was only slightly reduced in rust-infected discs, with up to 63 putative species. However, geography had a greater influence on the fungal community than whether the disc was infected by coffee rust. Through comparisons between control and rust-infected leaf discs, as well as taxonomic criteria, we identified 15 putative mycoparasitic fungi. These fungi are concentrated in the fungal family Cordycipitaceae and the order Tremellales. These data emphasize the complexity of diverse fungi of unknown ecological function within a leaf that might influence plant disease epidemics or lead to the development of species for biocontrol of fungal disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species.

    Science.gov (United States)

    Yeo, Helen; Pell, Judith K; Alderson, Peter G; Clark, Suzanne J; Pye, Barry J

    2003-02-01

    As part of an approach to select potential mycoinsecticides for aphid biocontrol, we investigated the effects of temperature on the growth, germination and pathogenicity of some hyphomycete fungi. Commercially available mycoinsecticides (based on Beauveria bassiana (Balsamo) Vuillemin and Verticillium lecanii (Zimmermann) Viegas) and other isolates of B bassiana, V lecanii, Metarhizium anisopliae (Metschnikoff) Sorokin and Paecilomyces fumosoroseus (Wize) Brown & Smith were evaluated. The rate of in vitro conidial germination of all isolates was slower at 10 and 15 degrees C than at 20 and 25 degrees C. Similarly, in vitro growth of most isolates was adversely affected at 10 and 15 degrees C. The greatest reduction at 10 degrees C in rates of conidial germination and colony growth, compared with other temperatures, was for M anisopliae isolates. Germination of V lecanii (isolate HRI 1.72) was fastest at 10 degrees C compared with the other fungi. It was also the most pathogenic of three isolates tested against Aphis fabae Scopoli and Myzus persicae Sulzer at 10, 18 and 23 degrees C. Generally, A fabae was more susceptible than M persicae to infection by the fungal isolates tested. A significant interaction between aphid species and temperature indicated that the pathogenic nature of an isolate was dependent not only on the target aphid species but also the temperature conditions of the bioassay. The series of studies, detailed above, allowed a temperature profile to be formed for the different isolates. Verticillium lecanii isolate HRI 1.72 (commercialised as Vertalec) was the most promising isolate selected from results of the series of experiments. Temperature profiles in conjunction with infectivity assays can be useful in selecting appropriate isolates for a particular thermal environment.

  13. [Influence of liquid or solid culture conditions on the volatile components of mycelia of Isariacateinannulata].

    Science.gov (United States)

    Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin

    2011-12-01

    To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.

  14. The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation.

    Science.gov (United States)

    Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N

    2018-06-01

    The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50  > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50  solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Data in support of fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Directory of Open Access Journals (Sweden)

    Du-Qiang Luo

    2015-09-01

    Full Text Available This data article contains data related to the research article entitled “Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice” in the Toxicology and Applied Pharmacology [1]. Fumosorinone (FU is a new inhibitor of protein phosphatase 1B inhibitor, which was isolated from insect pathogenic fungi Isaria fumosorosea. FU was found to inhibit PTP1B activity in our previous study [2]. PTP1B is the physiological antagonist of the insulin signalling pathway. Inhibition of PTP 1B may increase insulin sensitivity [3]. PTP1B has been considered promising as an insulin-sensitive drug target for the prevention and the treatment of insulin-based diseases [4]. We determined the effect of FU on the glucose consumption of IR HepG2 cells. FU caused significant enhancement in glucose consumption by insulin-resistant HepG2 cells compared with control cells.

  16. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress.

    Science.gov (United States)

    Azevedo, Rosana F F; Souza, Roberta K F; Braga, Gilberto U L; Rangel, Drauzio E N

    2014-12-01

    Entomopathogenic fungi are predisposed to ROS induced by heat and UV-A radiation when outside the insect host. When inside the host, they are subject to phagocytic cells that generate ROS to eliminate invading pathogens. The oxidative stress tolerance of the entomopathogenic fungi Aschersonia aleyrodis (ARSEF 430 and 10276), Aschersonia placenta (ARSEF 7637), Beauveria bassiana (ARSEF 252), Isaria fumosorosea (ARSEF 3889), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium acridum (ARSEF 324), Metarhizium anisopliae (ARSEF 5749), Metarhizium brunneum (ARSEF 1187 and ARSEF 5626), Metarhizium robertsii (ARSEF 2575), Tolypocladium cylindrosporum (ARSEF 3392), Tolypocladium inflatum (ARSEF 4877), and Simplicillium lanosoniveum (ARSEF 6430 and ARSEF 6651) was studied based on conidial germination on a medium supplemented with menadione. Conidial germination was evaluated 24 h after inoculation on potato dextrose agar (PDA) (control) or PDA supplemented with menadione. The two Aschersonia species (ARSEF 430, 7637, and 10276) were the most susceptible fungi, followed by the two Tolypocladium species (ARSEF 3392 and 4877) and the M. acridum (ARSEF 324). Metarhizium brunneum (ARSEF 5626) and M. anisopliae (ARSEF 5749) were the most tolerant isolates with MIC 0.28 mM. All fungal isolates, except ARSEF 5626 and ARSEF 5749, were not able to germinate at 0.20 mM. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Occurrence and Prevalence of Insect Pathogens in Populations of the Codling Moth, Cydia pomonella L.: A Long-Term Diagnostic Survey

    Directory of Open Access Journals (Sweden)

    Regina G. Kleespies

    2013-08-01

    Full Text Available About 20,550 larvae, pupae and adults of the codling moth, Cydia pomonella L., were diagnosed for pathogens during long-term investigations (1955–2012 at the Institute for Biological Control in Darmstadt, Germany. The prevailing entomopathogens diagnosed in these studies were insect pathogenic fungi, especially Beauveria bassiana and Isaria farinosa, the microsporidium, Nosema carpocapsae, the Cydia pomonella granulovirus (CpGV, as well as mostly undetermined bacteria. While the CpGV was observed exclusively in larvae and pupae from laboratory colonies or from field experiments with this virus, entomopathogenic fungi were most frequently diagnosed in last instars in autumn and in diapausing larvae and pupae in spring. B. bassiana was identified as the major fungal pathogen, causing larval prevalences of 0.9% to 100% (mean, about 32%. During prognostic long-term studies in larvae and adults of C. pomonella, N. carpocapsae was diagnosed in codling moth populations from various locations in Germany. The mean prevalence generally ranged between 20% and 50%. Experiments revealed that the fecundity and fertility of microsporidia-infected female adults were significantly reduced compared to healthy ones. The results underpin the importance of naturally occurring microbial antagonists and represent a base for further ecological studies on developing new or additional biological and integrated control strategies.

  18. [Species diversity and temporal niche of entomopathogenic fungi in the extensively managed tea plantation soil].

    Science.gov (United States)

    Guo, Xian-Jian; Shen, Wan-Fang; Liu, Yu-Jun; Chen, Ming-Jun

    2014-11-01

    The species diversity and temporal niche of entomopathogenic fungi community in the rhizosphere soil collected from the extensively managed Huangshan fuzz tip tea plantation were investigated. A total of 140 soil samples were collected at the location of Tangkou Town, Huangshan of Anhui Province during August, 2012 to June, 2013, and totally 1041 fungal isolates were obtained on selective medium with soil dilution plating. The results showed that the entomopathogenic fungi community in the tea plantation soil was diverse with 13 species in 6 genera. Purpureocillium lilacinum (309 strains), Beauveria bassiana (255 strains), and Metarhizium anisopliae (101 strains) were the dominant species accounting for 29.7%, 24.5% and 9.7% of the relative frequency, respectively. P. lilacinum had the widest temporal niche breadth among these dominant entomopathogenic fungi from the tea plantation soil, while B. bassiana had the narrowest. Among the entomopathogenic fungi, B. bassiana and B. brongniartii had the biggest temporal niche overlap of 1.965, while Isaria javanicus and B. bassiana had the smallest of 0.374.

  19. SELECCIÓN DE AISLADOS DE HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE Rhipicephalus microplus (Acari: Ixodidae

    Directory of Open Access Journals (Sweden)

    Ana Martha Cruz-Avalos

    2015-08-01

    Full Text Available El objetivo del presente estudio fue evaluar la susceptibilidad in vitro de larvas no alimentadas de Rhipicephalus microplus a diferentes aislados de hongos entomopatógenos nativos de suelo de unidades ganaderas y conocer las características de crecimiento y potencial de inóculo de los aislados que mostraran ser más patógenos. Se evaluó la patogenicidad y virulencia de aislados de Metarhizium anisopliae sensu lato (Ma, Beauveria bassiana (Bb e, Isaria fumorosea (Ifr, en larvas de R. microplus de 7 días de edad, expuestas mediante inmersión en una solución acuosa a la concentración 1x108 conidios/ml. Los aislados Ma135 y Ma133, presentaron alta patogenicidad con 100 y 94% de mortalidad, con valores CL50 de 5.2x104 y 2.5x104 conidios/ml, respectivamente. En estos aislados, la producción de esporas fue de 1.0x10¹º conidios/ml, y el crecimiento radial de micelio fue de 3.07 y 3.60 mm/día, respectivamente. Estos resultados demuestran que los aislados Ma135 y Ma133, pueden ser considerados potenciales agentes de control biológico en larvas de R. microplus. Â

  20. Control of key pecan insect pests using biorational pesticides.

    Science.gov (United States)

    Shapiro-Ilan, David I; Cottrell, Ted E; Jackson, Mark A; Wood, Bruce W

    2013-02-01

    Key pecan insect pests include the black pecan aphid, Melanocallis caryaefoliae (Davis), pecan weevil, Curculio caryae (Horn), and stink bugs (Hemiptera: Pentatomidae). Alternative control tactics are needed for management of these pests in organic and conventional systems. Our objective was to evaluate the potential utility of several alternative insecticides including three plant extract formulations, eucalyptus extract, citrus extract-8.92%, and citrus extract-19.4%, and two microbial insecticides, Chromobacterium subtsugae (Martin et al.) and Isaria fumosorosea (Wize). In the laboratory, eucalyptus extract, citrus extract-8.92%, citrus extract-19.4%, and C. subtsugae caused M. caryaefoliae mortality (mortality was reached approximately 78, 83, and 96%, respectively). In field tests, combined applications of I. fumosorosea with eucalyptus extract were synergistic and caused up to 82% mortality in M. caryaefoliae. In laboratory assays focusing on C. caryae suppression, C. subtsugae reduced feeding and oviposition damage, eucalyptus extract and citrus extract-19.4% were ineffective, and antagonism was observed when citrus extract-19.4% was combined with the entomopathogenic nematode, Steinernema carpocapsae (Weiser). In field tests, C. subtsugae reduced C. caryae damage by 55% within the first 3d, and caused 74.5% corrected mortality within 7 d posttreatment. In the laboratory, C. subtsugae and eucalyptus extract did not cause mortality in the brown stink bug, Euschistus servus (Say). Applications of C. subtsugae for suppression of C. caryae, and eucalyptus extract plus I. fumosorosea for control of M. caryaefoliae show promise as alternative insecticides and should be evaluated further.

  1. Viability, purity, and genetic stability of entomopathogenic fungi species using different preservation methods.

    Science.gov (United States)

    Ayala-Zermeño, Miguel A; Gallou, Adrien; Berlanga-Padilla, Angélica M; Andrade-Michel, Gilda Y; Rodríguez-Rodríguez, José C; Arredondo-Bernal, Hugo C; Montesinos-Matías, Roberto

    2017-11-01

    Preservation methods for entomopathogenic fungi (EPF) require effective protocols to ensure uniform processes and to avoid alterations during storage. The aim of this study was to preserve Beauveria bassiana, Metarhizium acridum, M. anisopliae, M. rileyi, Isaria javanica, Hirsutella thompsonii, H. citriformis and Lecanicillium lecanii in mineral oil (MO), sterile water (SW), silica gel (SG), lyophilisation (L), ultracold-freezing at -70 °C, and cryopreservation at -196 °C. The viability and purity of the fungi were then verified: phenotypic characteristics were evaluated qualitatively at 6, 12 and 24 m. Genetic stability was tested by amplified fragment length polymorphisms (AFLP) analysis at 24 m. Of the eight species of EPF, three remained viable in SW, five in MO and L, six at -70 °C, seven in SG, and eight at -196 °C. No significant changes were observed in AFLP patterns at 24 m of storage. The most effective preservation methods for EPF were SG, L, -70 and -196 °C. Beauveria bassiana, M. acridum, M. anisopliae, M. rileyi and I. javanica remained stable with all methods, while the remaining species were less compatible. The optimisation of preservation methods for EPF facilitates the development of reliable protocols to ensure their inherent characteristics in culture collections. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Extracellular lipase of an entomopathogenic fungus effecting larvae of a scale insect.

    Science.gov (United States)

    Ali, Shaukat; Ren, Shunxiang; Huang, Zhen

    2014-11-01

    Lipases play an important role in the infection process of entomopathogenic fungi by hydrolyzing the ester bonds of lipoproteins, fats and waxes present on the insect surface and in the body. Here we report the purification and characterization of an extracellular lipase from Isaria fumosorosea. The enzyme was purified (138.46-fold) in three steps using (NH4 )2 SO4 precipitation followed by DEAE-cellulose and Sephadex G-100 column chromatography. The molecular weight of purified enzyme was determined to be 31 KDa by SDS-PAGE. The optimum temperature and pH for enzyme activity were 35 °C and 7.0, respectively, using p-nitrophenylpalmitate as the substrate. Lipolytic activity was enhanced in the presence of Ca(+2) , Mg(+2) , Na(+) , and NH4 (+) salts, while Zn(+2) , Fe(+2) , and Cu(+2) inhibited enzyme activity. The enzyme displayed broad substrate specificity with the highest activity observed for coconut oil and p-nitrophenyl carprate. Topical co-application of purified lipase with fungal conidial suspensions decreased the median survival time (ST50 ) of Dysmicoccus neobrevipes nymphs as compared to the fungus alone. Our results indicate that an extracellular lipase produced by I. fumosorosea can be exploited for development of enzyme-based insect management. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Notes on Some Biological Aspects of Arctornis riguata Snellen (Lepidoptera: Lymantriidae

    Directory of Open Access Journals (Sweden)

    HARI SUTRISNO

    2013-03-01

    Full Text Available Arctornis riguata Snellen is one of lymantriids which attacked a vast range of mango trees in Probolinggo at the beginning of 2011. About 1.2% mango trees from nine sub-districts have been defoliated by the larvae of this species. The larvae of this genus have been reported to forage at Anacardiacea as well; however, they have never been reported to forage at cultivated mango trees in Indonesia. Since there is no biological information of this species, thus, a study on some biological aspects of this species is needed. This study was conducted in the field as well as in the laboratory during 4 months (March-July 2011. The diagnostic characters of this species are black scale at dorsal antenna on both male and female and slightly setae particularly at the costal angle of valve on the male genitalia. Life span of this species is in the range of 30-37 days. This study also found four natural enemies of A. riguata i.e.: Bleparipa sp. (Diptera: Tachinidae, Euagathis sp. (Hymenoptera: Brachonidae, Theronia sp. (Hymenoptera: Ichneumonidae, and Brachymeria lasus (Hymenoptera: Chalcididae. Moreover, a single fungal pathogen of this species also was identified, i.e. Isaria fumosorosea Wize. Having these results, we considered that to control A. riguata, one need to conserve the native natural enemies by manipulating their environment.

  4. How to Start with a Clean Crop: Biopesticide Dips Reduce Populations of Bemisia tabaci (Hemiptera: Aleyrodidae on Greenhouse Poinsettia Propagative Cuttings

    Directory of Open Access Journals (Sweden)

    Rosemarije Buitenhuis

    2016-09-01

    Full Text Available (1 Global movement of propagative plant material is a major pathway for introduction of Bemisia tabaci (Hemiptera: Aleyrodidae into poinsettia greenhouses. Starting a poinsettia crop with high pest numbers disrupts otherwise successful biological control programs and widespread resistance of B. tabaci against pesticides is limiting growers’ options to control this pest; (2 This study investigated the use of several biopesticides (mineral oil, insecticidal soap, Beauveria bassiana, Isaria fumosorosea, Steinernema feltiae and combinations of these products as immersion treatments (cutting dips to control B. tabaci on poinsettia cuttings. In addition, phytotoxicity risks of these treatments on poinsettia cuttings, and effects of treatment residues on mortality of commercial whitefly parasitoids (Eretmocerus eremicus and Encarsia formosa were determined; (3 Mineral oil (0.1% v/v and insecticidal soap (0.5% + B. bassiana (1.25 g/L were the most effective treatments; only 31% and 29%, respectively, of the treated B. tabaci survived on infested poinsettia cuttings and B. tabaci populations were lowest in these treatments after eight weeks. Phytotoxicity risks of these treatments were acceptable, and dip residues had little effect on survival of either parasitoid, and are considered highly compatible; (4 Use of poinsettia cutting dips will allow growers to knock-down B. tabaci populations to a point where they can be managed successfully thereafter with existing biocontrol strategies.

  5. Anti-inflammatory effect of a novel food Cordyceps guangdongensis on experimental rats with chronic bronchitis induced by tobacco smoking.

    Science.gov (United States)

    Yan, Wenjuan; Li, Taihui; Zhong, Zhiyong

    2014-10-01

    Cordyceps guangdongensis T. H. Li, Q. Y. Lin & B. Song (Cordycipitaceae) is a novel food approved by the Ministry of Public Health of China in 2013. Preliminary studies revealed that this novel food has multiple pharmacological activities such as anti-fatigue effect, antioxidant ability, prolonging life, anti-avian influenza virus activity, and therapeutic effect on chronic renal failure. However, the anti-inflammatory effect on chronic bronchitis and the effective constituent are still unknown. The purpose of this study was to investigate both the anti-inflammatory effect of the edible fungus on experimental rats with chronic bronchitis induced by tobacco smoking, and the pilot effective constituent. Test rats were intragastrically administered with 3 doses of hot-water extract from C. guangdongensis (0.325, 0.65 and 1.30 g kg(-1) bw daily for low, middle and high dose, respectively) for 26 days. Biochemical indices and histological examinations in rats with chronic bronchitis induced by tobacco smoking were determined. The content and molecular weights of the polysaccharide from the hot-water extract were detected by the phenol-sulfuric acid method and gel permeation chromatography, respectively. Biochemical indices in the low, middle and high-dose groups with the hot-water extract of C. guangdongensis were only 53.4%, 46.0% and 40.4% of those in the model control group (total leukocytes), respectively; 70.7%, 60.3% and 58.1% (macrophages); 33.0%, 26.8% and 16.1% (neutrophils); and 22.2%, 23.5% and 13.6% (lymphocytes) of those in the model control group. The bronchial lesions and inflammatory cell infiltration were significantly alleviated in all groups with hot-water extract of C. guangdongensis. This study indicates that the hot-water extract from C. guangdongensis has a significant anti-inflammatory effect on chronic bronchitis. The content of the polysaccharide was 6.92%; the molecular weights of the 3 polysaccharide components were respectively 1.28 × 10

  6. Combined effect of gamma radiation and some fungal control agents on the greasy cut- worm

    International Nuclear Information System (INIS)

    Abd EL- Wahed, A. G.

    2011-01-01

    attention by scientists for their potential for biological control of pests. Some insect pathogenic fungi have restricted host ranges while other fungal species have a wide host range for example, Beauveria bassiana ,Metarhizium anisopliae and Paecilomyces fumosoroseus Many researchers have focused on the selection of virulent strains for target pests and their development as biological control agents.

  7. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    International Nuclear Information System (INIS)

    Liu, Zhi-Qin; Liu, Ting; Chen, Chuan; Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-song; Wei, Gui-xiang; Wang, Xiao-yi; Luo, Du-Qiang

    2015-01-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo

  8. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhi-Qin [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Liu, Ting; Chen, Chuan [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-song; Wei, Gui-xiang; Wang, Xiao-yi [College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Luo, Du-Qiang, E-mail: duqiangluo999@126.com [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China)

    2015-05-15

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo.

  9. Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations.

    Directory of Open Access Journals (Sweden)

    Nina Gouba

    Full Text Available BACKGROUND: Few studies describing eukaryotic communities in the human gut microbiota have been published. The objective of this study was to investigate comprehensively the repertoire of plant and fungal species in the gut microbiota of an obese patient. METHODOLOGY/PRINCIPAL FINDINGS: A stool specimen was collected from a 27-year-old Caucasian woman with a body mass index of 48.9 who was living in Marseille, France. Plant and fungal species were identified using a PCR-based method incorporating 25 primer pairs specific for each eukaryotic phylum and universal eukaryotic primers targeting 18S rRNA, internal transcribed spacer (ITS and a chloroplast gene. The PCR products amplified using these primers were cloned and sequenced. Three different culture media were used to isolate fungi, and these cultured fungi were further identified by ITS sequencing. A total of 37 eukaryotic species were identified, including a Diatoms (Blastocystis sp. species, 18 plant species from the Streptophyta phylum and 18 fungal species from the Ascomycota, Basidiomycota and Chytridiocomycota phyla. Cultures yielded 16 fungal species, while PCR-sequencing identified 7 fungal species. Of these 7 species of fungi, 5 were also identified by culture. Twenty-one eukaryotic species were discovered for the first time in human gut microbiota, including 8 fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa, Penicillium brevicompactum, Penicillium dipodomyicola, Penicillium camemberti, Climacocystis sp. and Malassezia restricta. Many fungal species apparently originated from food, as did 11 plant species. However, four plant species (Atractylodes japonica, Fibraurea tinctoria, Angelica anomala, Mitella nuda are used as medicinal plants. CONCLUSIONS/SIGNIFICANCE: Investigating the eukaryotic components of gut microbiota may help us to understand their role in human health.

  10. Two efficient methods for isolation of high-quality genomic DNA from entomopathogenic fungi.

    Science.gov (United States)

    Serna-Domínguez, María G; Andrade-Michel, Gilda Y; Arredondo-Bernal, Hugo C; Gallou, Adrien

    2018-03-27

    Conventional and commercial methods for isolation of nucleic acids are available for fungal samples including entomopathogenic fungi (EPF). However, there is not a unique optimal method for all organisms. The cell wall structure and the wide range of secondary metabolites of EPF can broadly interfere with the efficiency of the DNA extraction protocol. This study compares three commercial protocols: DNeasy® Plant Mini Kit (Qiagen), Wizard® Genomic DNA Purification Kit (Promega), and Axygen™ Multisource Genomic DNA Miniprep Kit (Axygen) and three conventional methods based on different buffers: SDS, CTAB/PVPP, and CTAB/β-mercaptoethanol versus three cell lysis procedures: liquid nitrogen homogenization and two bead-beating materials (i.e., tungsten-carbide and stainless-steel) for four representative species of EPF (i.e., Beauveria bassiana, Hirsutella citriformis, Isaria javanica, and Metarhizium anisopliae). Liquid nitrogen homogenization combined with DNeasy® Plant Mini Kit (i.e., QN) or SDS buffer (i.e., SN) significantly improved the yield with a good purity (~1.8) and high integrity (>20,000 bp) of genomic DNA in contrast with other methods, also, these results were better when compared with the two bead-beating materials. The purified DNA was evaluated by PCR-based techniques: amplification of translation elongation factor 1-α (TEF) and two highly sensitive molecular markers (i.e., ISSR and AFLP) with reliable and reproducible results. Despite a variation in yield, purity, and integrity of extracted DNA across the four species of EPF with the different DNA extraction methods, the SN and QN protocols maintained a high-quality of DNA which is required for downstream molecular applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. EFFECTS OF THE APPLICATION OF A MINERAL-AND-ORGANIC FERTILISER PRODUCED FROM BROWN COAL ON THE OCCURRENCE AND INFECTIOUS POTENTIAL OF ENTOMOPATHOGENIC FUNGI IN SOIL

    Directory of Open Access Journals (Sweden)

    Anna Majchrowska-Safaryan

    2017-05-01

    Full Text Available This study compared the species composition and rate of entomopathogenic fungi occurrence in cultivable soil following the application of a mineral-and-organic fertiliser produced from brown coal. The material for testing consisted of soil samples collected in the second year of the experiment on two dates in 2015 (spring and autumn. The experiment was carried out on the following plots: control plot (no fertilisation; a plot fertilised with mineral fertilisers NPK presowing + N60 for top dressing; a plot fertilised with NPK presowing + manure; a plot fertilised with a fertiliser produced from brown coal at a dose of 1 t/ha NPK presowing + N20 for top dressing; and a plot fertilised with a fertiliser produced from brown coal at a dose of 5 t/ha NPK presowing + N40 for top dressing. Entomopathogenic fungi were isolated from soil of particular fertilisation experiment plots using insect traps (Galleria mellonella larvae as well as a selective medium. Three species of entomopathogenic fungi, i.e. Beauveria bassiana, Metarhizium anisopliae s.l. and Isaria fumosorosea, were isolated using two methods, from the soil samples collected from particular fertilisation experiment plots on two dates, i.e. spring and autumn. Fungus M. anisopliae s.l. proved to be the predominant species in the tested soil samples. The addition of the mineral-and-organic fertiliser, produced based on brown coal, to the soil at both applied doses contributed to an increase in the number of infectious units (CFUs of entomopathogenic fungi formed in relation to the control plot.

  12. Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge

    Science.gov (United States)

    Ansari, Minshad Ali; Pope, Edward C.; Carpenter, Simon; Scholte, Ernst-Jan; Butt, Tariq M.

    2011-01-01

    Background The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Methodology/Findings Exposure of midges to ‘dry’ conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT50 value for strain V275 was 1.42 days compared to 2.21–3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (108–1011 conidia m−2) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to ‘dry’ conidia and ‘wet’ conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. ‘Dry’ conidia were more effective than ‘wet’ conidia, causing 100% mortality after 5 days. Conclusion/Significance This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of ‘dry’ conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges

  13. Susceptibility of Diaphorina citri (Hemiptera: Liviidae) and Its Parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) to Entomopathogenic Fungi under Laboratory Conditions.

    Science.gov (United States)

    Ibarra-Cortés, K H; Guzmán-Franco, A W; González-Hernández, H; Ortega-Arenas, L D; Villanueva-Jiménez, J A; Robles-Bermúdez, A

    2018-02-01

    Diaphorina citri (Kuwayama) is a global pest of citrus that transmits the bacteria associated with the disease, Huanglongbing. Entomopathogenic fungi and the parasitoid Tamarixia radiata (Waterston) are important biological control agents of this pest and likely to interact in D. citri populations. As a basis for interaction studies, we determined the susceptibility of nymphs and adults of D. citri and adults of the parasitoid T. radiata to six fungal isolates from the species Beauveria bassiana s.l. (Bals.-Criv.) Vuill. (isolates B1 and B3), Metarhizium anisopliae s.s. (Metsch.) (Ma129 and Ma65) and Isaria fumosorosea Wize (I2 and Pae). We conducted experiments evaluating infection levels in all three insect groups following inoculation with a series of conidial concentrations (1 × 10 4 -1 × 10 8 conidia mL -1 ). Results showed that D. citri nymphs and T. radiata were more susceptible to fungal isolates than D. citri adults. Overall, B. bassiana and M. anisopliae isolates caused the greatest infection compared with I. fumosorosea isolates in all three groups of insects. Isolates B1 (B. bassiana) and Ma129 (M. anisopliae) infected a greater proportion of adults and nymphs of D. citri, respectively. Both isolates of B. bassiana caused greater infection in T. radiata compared with isolates of the other fungal species. We propose that isolates B1 and Ma129 are the strongest candidates for control of D. citri. Our results represent the first report of entomopathogenic fungi infecting T. radiata, and the basis for future studies to design a biological control programme that uses both agents more efficiently against D. citri populations.

  14. Susceptibilities of Candidatus Liberibacter asiaticus-infected and noninfected Diaphorina citri to entomopathogenic fungi and their detoxification enzyme activities under different temperatures.

    Science.gov (United States)

    Hussain, Mubasher; Akutse, Komivi Senyo; Lin, Yongwen; Chen, Shiman; Huang, Wei; Zhang, Jinguan; Idrees, Atif; Qiu, Dongliang; Wang, Liande

    2018-03-25

    Some entomopathogenic fungi species, Isaria fumosorosea, and Hirsutella citriformis were found to be efficient against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). However, the susceptibility to these fungi increases when the psyllid infected with Candidatus Liberibacter asiaticus (Las), which is transmitted by D. citri and causes citrus greening disease. In this study, we examined the Las-infected and Las-uninfected D. citri susceptibility to entomopathogenic fungi at different temperature regimes (5-40°C). When D. citri adults exposed to cold temperature (5°C), they showed less susceptibility to entomopathogenic fungi as compared with control (27°C). Irrespective of infection with Las, a significantly positive correlation was observed between temperature and percentage mortality caused by different isolates of I. fumosorosea, 3A Ifr, 5F Ifr, PS Ifr, and H. citriformis isolates, HC3D and 2H. In contrast, a significantly negative correlation was found between temperature and percentage mortality for 3A Ifr for both Las-infected and Las-uninfected psyllids. Detoxification enzymes, Glutathione S-transferase levels in D. citri showed a negative correlation, whereas cytochrome P450 and general esterase levels were not correlated with changes in temperature. These findings revealed that detoxification enzymes and general esterase levels are not correlated with altered susceptibility to entomopathogenic fungi at the different temperature regimes. Conclusively, temperature fluctuations tested appear to be a significant factor impacting the management strategies of D. citri using entomopathogenic fungi. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Use of natural enemies and biorational pest control of corne

    Directory of Open Access Journals (Sweden)

    Cipriano García Gutiérrez

    2012-09-01

    Full Text Available A general analysis of the potential use of natural enemies and biorational insecticides for control of main pests of corn in thestate of Sinaloa is presented. A discuss on their composition, dosage, toxicity and type of effect on beneficial organisms(natural enemies and pollinators is too included. The work revealed that is possible implement the use of these natural enemies and products for the control of neonate larvae of Spodoptera frugiperda fall armyworm (J. E Smith with Nomuraea rileyi (Farlow (Samson; against thrips Frankliniella occidentalis (Pergande using the nematodes Steinernema riobravis (Cabanillas and Poinar, S. feltiae (Filipjev and Heterorhabditis bacteriophora (Poinar at doses of 10,000 IJ (4x10 ~ IJ/m; against the corn silk fly Euxesta stigmatias (Loew encouraging the natural parasitism of Spalangia sp., while for the cutworm Agrotis ipsilon (Hufnagel can be with spinosad (soluble concentrate at doses of 0.123 kg a. i, and to the corn earwormHelicoverpa zea (Boddie using the analog of methoxyfenozide molting hormone (24% at 144 mg of a. i/L. The biorational control agents that not affect significantly to the natural enemies were the nucleopoliedrosis virus SfMNPV and SeMNPV; N. rileyi and Isaria fumosorosea (Wize; Bacillus thuringiensis (Berlinier; the azadirachtin (neem and parasitoids. In the case of products of chemical synthesis: Spinosad, oxymatrine and bifenthrin showed high rates of mortality in the control of corn pests, so these are considered as of high and moderate risk to Aphis mellifera (L. bees, the methoxyfenozide presented relatively low toxicity to natural enemies. In general, biorational products have repellent effect on larvae and adults of these insects, inhibit feeding and induce molting, also causing deformities and impede the development and growth, too interfere with sexual intercourse and copulate, reducing the oviposition, as well as cause sterility of adults, so these may also constitute a risk to

  16. Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes

    Directory of Open Access Journals (Sweden)

    Blanford Simon

    2012-11-01

    Full Text Available Abstract Background Insecticide resistance is seriously undermining efforts to eliminate malaria. In response, research on alternatives to the use of chemical insecticides against adult mosquito vectors has been increasing. Fungal entomopathogens formulated as biopesticides have received much attention and have shown considerable potential. This research has necessarily focused on relatively few fungal isolates in order to ‘prove concept’. Further, most attention has been paid to examining fungal virulence (lethality and not the other properties of fungal infection that might also contribute to reducing transmission potential. Here, a range of fungal isolates were screened to examine variation in virulence and how this relates to additional pre-lethal reductions in feeding propensity. Methods The Asian malaria vector, Anopheles stephensi was exposed to 17 different isolates of entomopathogenic fungi belonging to species of Beauveria bassiana, Metarhizium anisopliae, Metarhizium acridum and Isaria farinosus. Each isolate was applied to a test substrate at a standard dose rate of 1×109 spores ml-1 and the mosquitoes exposed for six hours. Subsequently the insects were removed to mesh cages where survival was monitored over the next 14 days. During this incubation period the mosquitoes’ propensity to feed was assayed for each isolate by offering a feeding stimulant at the side of the cage and recording the number probing. Results and conclusions Fungal isolates showed a range of virulence to A. stephensi with some causing >80% mortality within 7 days, while others caused little increase in mortality relative to controls over the study period. Similarly, some isolates had a large impact on feeding propensity, causing >50% pre-lethal reductions in feeding rate, whereas other isolates had very little impact. There was clear correlation between fungal virulence and feeding reduction with virulence explaining nearly 70% of the variation in

  17. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates.

    Directory of Open Access Journals (Sweden)

    Silvia Raya-Díaz

    Full Text Available Although entomopathogenic fungi (EPF are best known for their ability to protect crops against insect pests, they may have other beneficial effects on their host plants. These effects, which include promoting plant growth and conferring resistance against abiotic stresses, have been examined in recent years to acquire a better understanding of them. The primary purposes of the present study were (i to ascertain in vitro whether three different strains of EPF (viz., Metarhizium, Beauveria and Isaria would increase the Fe bioavailability in calcareous or non-calcareous media containing various Fe sources (ferrihydrite, hematite and goethite and (ii to assess the influence of the EPF inoculation method (seed dressing, soil treatment or leaf spraying on the extent of the endophytic colonization of sorghum and the improvement in the Fe nutrition of pot-grown sorghum plants on an artificial calcareous substrate. All the EPFs studied were found to increase the Fe availability during the in vitro assay. The most efficient EPF was M. brunneum EAMa 01/58-Su, which lowered the pH of the calcareous medium, suggesting that it used a different strategy (organic acid release than the other two fungi that raised the pH of the non-calcareous medium. The three methods used to inoculate sorghum plants with B. bassiana and M. brunneum in the pot experiment led to differences in re-isolation from plant tissues and in the plant height. These three inoculation methods increased the leaf chlorophyll content of young leaves when the Fe deficiency symptoms were most apparent in the control plants (without fungal inoculation as well as the Fe content of the above-ground biomass in the plants at the end of the experiment. The total root lengths and fine roots were also increased in response to fungal applications with the three inoculation methods. However, the soil treatment was the most efficient method; thus, its effect on the leaf chlorophyll content was the most

  18. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Pasco B. Avery

    2018-04-01

    Full Text Available Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus, and potential alternative vectors, Xylosandrus crassiusculus, Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae. Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus, X. volvulus and X. bispinatus. The specific objectives were to determine: (1 the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF (Isaria fumosorosea, Metarhizium brunneum and Beauveria bassiana; and (2 the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 106 viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana, compared to the other fungal treatments. For X. volvulus, the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana. After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests indicated an

  19. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi.

    Science.gov (United States)

    Avery, Pasco B; Bojorque, Verónica; Gámez, Cecilia; Duncan, Rita E; Carrillo, Daniel; Cave, Ronald D

    2018-04-25

    Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF) are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus , and potential alternative vectors, Xylosandrus crassiusculus , Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae). Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus , X. volvulus and X. bispinatus. The specific objectives were to determine: (1) the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF ( Isaria fumosorosea , Metarhizium brunneum and Beauveria bassiana ); and (2) the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 10⁶ viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana , compared to the other fungal treatments. For X. volvulus , the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana . After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests) indicated an

  20. New species of ice nucleating fungi in soil and air

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gray D.; Pöschl, Ulrich

    2014-05-01

    Primary biological aerosol particles (PBAP) are ubiquitous in the atmosphere (1,2). Several types of PBAP have been identified as ice nuclei (IN) that can initiate the formation of ice at relatively high temperatures (3, 4). The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is due to a surface protein on the outer cell membrane that catalyses ice formation, for which the corresponding gene has been identified and detected by DNA analysis (3). Fungal spores or hyphae can also act as IN, but the biological structures responsible for their IN activity have not yet been elucidated. Furthermore, the abundance, diversity, sources, seasonality, properties, and effects of fungal IN in the atmosphere have neither been characterized nor quantified. Recent studies have shown that airborne fungi are highly diverse (1), and that atmospheric transport leads to efficient exchange of species among different ecosystems (5, 6). The results presented in Fröhlich-Nowoisky et al. 2012 (7) clearly demonstrate the presence of geographic boundaries in the global distribution of microbial taxa in air, and indicate that regional differences may be important for the effects of microorganisms on climate and public health. DNA analyses of aerosol samples collected during rain events showed higher diversity and frequency of occurrence for fungi belonging to the Sordariomycetes, than samples that were collected under dry conditions (8). Sordariomycetes is the class that comprises known ice nucleation active species (Fusarium spp.). By determination of freezing ability of fungal colonies isolated from air samples two species of ice nucleation active fungi that were not previously known as biological ice nucleators were found. By DNA-analysis they were identified as Isaria farinosa and Acremonium implicatum. Both fungi belong to the phylum Ascomycota, produce fluorescent spores in the range of 1-4 µm in diameter, and induced freezing at -4 and