WorldWideScience

Sample records for irrigation water resource

  1. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  2. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  3. Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan

    OpenAIRE

    Muhammad Afzal

    1996-01-01

    Pakistan’s agriculture is almost wholly dependent on irrigation and irrigated land supplies more than 90 percent of agricultural production. Irrigation is central to Pakistan’s economy. Massive investments in irrigation contributed to the development of one of the largest Indus Basin Irrigation System. Despite heavy budgetary inputs in irrigation system, it is facing shortage of resources and suffering from operational problems. The sustainability of irrigated agriculture is threatened due to...

  4. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  5. A short overview of measures for securing water resources for irrigated crop production

    DEFF Research Database (Denmark)

    Jensen, Christian Richardt; Ørum, Jens Erik; Pedersen, Søren Marcus

    2014-01-01

    Agriculture is the main user of limited fresh water resources in the world. Optimisation of agricultural water resources and their use can be obtained by both agronomical and political incentives. Important options are: reduction of the loss of irrigation water in conveyance before it reaches...... of the 'virtual water' principles so that water-rich regions secure food supply to dry regions; reduction in waste of food, feed and biofuel from post-harvest to the end consumer; changing of food composition to less water-consuming products; regulating amount of irrigation water by rationing, subsidies or water...... pricing to support water-saving measures such as use of drip, irrigation scheduling and DI. The potential for water saving for different measures is discussed and estimated. Reduction in waste of food and loss of irrigation water from conveyance source to farm both has a great potential for water saving...

  6. Automated Irrigation System using Weather Prediction for Efficient Usage of Water Resources

    Science.gov (United States)

    Susmitha, A.; Alakananda, T.; Apoorva, M. L.; Ramesh, T. K.

    2017-08-01

    In agriculture the major problem which farmers face is the water scarcity, so to improve the usage of water one of the irrigation system using drip irrigation which is implemented is “Automated irrigation system with partition facility for effective irrigation of small scale farms” (AISPF). But this method has some drawbacks which can be improved and here we are with a method called “Automated irrigation system using weather prediction for efficient usage of water resources’ (AISWP), it solves the shortcomings of AISPF process. AISWP method helps us to use the available water resources more efficiently by sensing the moisture present in the soil and apart from that it is actually predicting the weather by sensing two parameters temperature and humidity thereby processing the measured values through an algorithm and releasing the water accordingly which is an added feature of AISWP so that water can be efficiently used.

  7. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    Science.gov (United States)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also

  8. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  10. Using hydraulic modeling to simulate human interactions with water resources in an Omani irrigation system

    Science.gov (United States)

    Xanthopoulou, Themis; Ertsen, Maurits; Düring, Bleda; Kolen, Jan

    2017-04-01

    In the dry Southern Oman, more than a thousand years ago, a large water system that connected the mountain mass with the coastal region was constructed. Its length (up to 30 km) and the fact that the coastal region has a rich groundwater aquifer create confusion as to why the system was initially built. Nonetheless, it was abandoned a couple of centuries later only to be partially revived by small farming communities in the 17th to 18th century. The focus of our research is one of the irrigation systems that used the water conveyed from the large water system. Not much is known about these small irrigation systems functioning in the Wadi Al Jizzi of the greater Sohar region. There are no written records and we can only make guesses about the way the systems were managed based on ethnographical studies and the traditional Omani techniques. On the other hand, the good preservation state of the canals offers a great opportunity for hydraulic reconstruction of irrigation events. More than that, the material remains suggest and at the same time limit the ways in which humans interacted with the system and the water resources of the region. All irrigation activities and some daily activities had to be realized through the canal system and only if the canal system permits it these actions would have been feasible. We created a conceptual model of irrigation that includes the human agent and feedback mechanisms through hydraulics and then we simulated irrigation events using the Sobek software. Scenarios and sensibility analysis were used to address the unknown aspects of the system. Our research yielded insights about the way the farming community interacted with the larger water system, the levels of co-ordination and co-operation required for successful irrigation and the predisposition of conflict and power relations.

  11. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    Science.gov (United States)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  12. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    Science.gov (United States)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.

  13. Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    JI Xi-bin; KANG Er-si; CHEN Ren-sheng; ZHAO Wen-zhi; XIAO Sheng-chun; JIN Bo-wen

    2006-01-01

    Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.

  14. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  15. THE CURRENT SITUATION OF WATER RESOURCES IN IRRIGATED AGRICULTURE OF UZBEKISTAN

    OpenAIRE

    Djalalov, Sandjar

    1998-01-01

    Irrigation in Uzbekistan is of great importance since the country is an arid zone. The use of water in agriculture is described and its relationship as a constraint to economic development discussed. The current technical and organizational characteristics of irrigation systems need study and analysis to identify opportunities for improvements. The characteristics of demand for water at the farm level are described and irrigation and land improvement activities are outlined. Reform of water u...

  16. Rainfall Variability, Adaptation through Irrigation, and Sustainable Management of Water Resources in India

    Science.gov (United States)

    Fishman, R.

    2013-12-01

    Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.

  17. Endangered Species and Irrigated Agriculture, Water Resource Competition in Western River Systems

    OpenAIRE

    United States Department of Agriculture, Economic Research Service

    1995-01-01

    This report characterizes several aspects of water allocation tradeoffs between fish species listed under the Federal Endangered Species Act and agriculture in the American West. The geographic intersection between endangered/threatened (E/T) fish and agricultural production reliant on surface water for irrigation is identified. Three findings are: (1) 235 counties, representing 22 percent of the West's counties, contain irrigated production that relies on water from rivers with E/T fish, ...

  18. An Integrated Modeling System for Water Resource Management Under Climate Change, Socio-Economic Development and Irrigation Management

    Science.gov (United States)

    SU, Q.; Karthikeyan, R.; Lin, Y.

    2017-12-01

    Water resources across the world have been increasingly stressed in the past few decades due to the population and economic growth and climate change. Consequently, the competing use of water among agricultural, domestic and industrial sectors is expected to be increasing. In this study, the water stresses under various climate change, socio-economic development and irrigation management scenarios are predicted over the period of 2015-2050 using an integrated model, in which the changes in water supply and demand induced by climate change, socio-economic development and irrigation management are dynamically parameterized. Simulations on the case of Texas, Southwest U.S. were performed using the newly developed integrated model, showing that the water stress is projected to be elevated in 2050 over most areas of Texas, particularly at Northern and Southern Plain and metropolitan areas. Climate change represents the most pronounce factor affecting the water supply and irrigation water demand in Texas. The water supply over East Texas is largely reduced in future because of the less precipitation and higher temperature under the climate change scenario, resulting in an elevated irrigation water demand and thus a higher water stress in this region. In contrast, the severity of water shortage in West Texas would be alleviated in future because of climate change. The water shortage index over metropolitan areas would increase by 50-90% under 1.0% migration scenario, suggesting that the population growth in future could also greatly stress the water supply, especially megacities like Dallas, Houston, Austin and San Antonio. The projected increase in manufacturing water demand shows little effects on the water stress. Increasing irrigation rate exacerbates the water stress over irrigated agricultural areas of Texas.

  19. Integrated water resources management (IWRM) approach in water governance in Lao PDR. Cases of hydropower and irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jusi, S.

    2013-06-01

    Water resources are essential for socio-economic development, enabling, for example, hydropower and irrigation. Water resources management and development are expected to become more complex and challenging and to involve new uncertainties as water development increases and accelerates in different water use sectors and is coupled with increasing population, urbanisation, and climate change. Hence, water resources need to be managed in more integrated and sustainable way, both in Lao PDR and in the whole Mekong Basin area. Integrated Water Resources Management (IWRM) has become a universal paradigm of enhancing and promoting sustainable and equal water resources management and use. However, integrating water functions is a very complex task as it involves many actors with different interests. This research analyses the application of the IWRM approach and the related principles of integration, decentralisation, and participation in the development and management of water resources in Laotian water regime at the water use sectors of hydropower and irrigation. A case study approach was used for the research and for the four appended articles in order to examine hydropower and irrigation sectors, institutional structures, and processes of institutional change - Integrated Water Resources Management (IWRM) at constitutional, organisational, and operational levels. The constitutional level refers to water policy and law, organisational to water resource management, and operational to water use. The Management and Transition Framework (MTF) and one of its components, Institutional Analysis and Development (IAD) framework, have been used for the research to explore processes, institutions, and actors related to water governance reforms including the adoption of the IWRM paradigm, and to increase understanding of the strengths and weaknesses related to different institutional contexts and levels in Laotian water management. Through Action Situations, IAD and MTF have

  20. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    Directory of Open Access Journals (Sweden)

    N. Schütze

    2016-05-01

    Full Text Available Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF can serve as a central decision support tool for both, (i a cost benefit analysis of farm irrigation modernization on a local scale and (ii a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  1. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    Science.gov (United States)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  2. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  3. Evaluation of fog and rain water collected at Delta Barrage, Egypt as a new resource for irrigated agriculture

    Science.gov (United States)

    Salem, Talaat A.; Omar, Mohie El Din M.; El Gammal, H. A. A.

    2017-11-01

    Alternative clean water resources are needed in Egypt to face the current water shortage and water quality deterioration. Therefore, this research investigates the suitability of harvesting fog and rain water for irrigation using a pilot fog collector for water quantity, water quality, and economic aspects. A pilot fog collector was installed at one location at Delta Barrage, Egypt. Freeze liquid nitrogen was fixed at the back of the fiberglass sheet to increase the condensation rate. The experiment was conducted during the period from November 2015 to February 2016. In general, all physicochemical variables are observed with higher values in the majority of fog than rain water. The fog is assumed to contain higher concentrations of anthropogenic emissions. TDS in both waters collected are less than 700 mg/l at sodium content less than 60%, classifying these waters as good for various plants under most conditions. In addition, SAR calculated values are less than 3.0 in each of fog and rain water, which proves the water suitability for all irrigated agriculture. Al and Fe concentrations were found common in all samples with values less than the permissible limits of the guidelines. These metals originate from soil material, ash and metal surfaces. The sensitive heavy metals (Cd and Pb) were within the permissible limits of the guideline in fog water, indicating this water is suitable for irrigation. On the contrary, rain water that has heavy metals is not permitted in irrigation water as per the Egyptian law. As per WQI, the rain water is classified as good quality while fog is classified as medium quality. Regarding the water quantity, a significant increase in the harvested fog quantity was observed after cooling the collector surface with freeze liquid nitrogen. The current fog collector produced the lowest water quantity among different fog collectors worldwide. However, these comparative results confirmed that quantity is different from one location to another

  4. Nitrogen Recovered By Sorghum Plants As Affected By Saline Irrigation Water And Organic/Inorganic Resources Using 15N Technique

    International Nuclear Information System (INIS)

    ABOU-ELKHAIR, R.A.; EL-MOHTASEM, M.O.; SOLIMAN, S.M.; GALAL, Y.G.M.; ABD EL-LATIF, E.M.

    2009-01-01

    A pot experiment was conducted in the green house of Soil and Water Department, Nuclear Research Centre, Atomic Energy Authority, Egypt, to follow up the effect of saline irrigation water, inorganic and organic fertilizers on sorghum growth and N fractions that recovered by plant organs. Two types of artificial water salinity were used; one has 3 dS m -1 salinity level with 4 and 8 SAR and the second one has 3 and 6 dS m -1 salinity levels with 6 SAR . Leucenae residue and chicken manure were applied as organic sources at rate of 2% v/v. Sorghum was fertilized with recommended doses of super phosphate and potassium sulfate at rate of 150 kg P and 50 kg K per feddan, respectively. Labelled ammonium sulfate with 5% 15 N atom excess was applied to sorghum at rate of 100 kg N fed -1 . Dry matter yield (stalks and roots) was negatively affected by increasing water salinity levels or SAR ratios. Similar trend was recorded with N uptake by either stalks or roots of sorghum plants. On the other hand, both the dry matter yield and N uptake were positively and significantly affected by incorporation of organic sources in comparison to the untreated control. In this regard, the dry matter yield and N uptake induced by incorporation of chicken manure was superior over those recorded with leucenae residues. It means, in general, that the incorporation of organic sources into the soil may maximize the plant ability to combat the hazards effects caused by irrigation with saline water. Nitrogen derived from fertilizer (% Ndff), soil (% Ndfs) and organic resources (% Ndfr) showed frequent trends as affected by water salinity and organic resources but in most cases, severe reduction of these values was recorded when plants were irrigated with saline water. In the same time, plants were more dependent on N derived from organic sources than those derived from mineral fertilizer. Superiority of one organic source over the other was related to water salinity levels and SAR ratios

  5. More Water Resources but Less for Irrigation: Adaptation Strategy of the Yellow River in a Changing Environment

    Science.gov (United States)

    Tang, Q.; Yin, Y. Y.

    2015-12-01

    The Yellow River is the primary source of freshwater to the northern China. Increasing population and socio-economic development have put great pressure on water resources of the river basin. The anticipated climate and socio-economic changes may further increase water stress. Development of adaptation strategies would have significant implications for water and food security of this region. In this study, the outputs of multiple hydrological models forced with the bias-corrected climatic variables from multiple global climate models were used to assess the change in renewable water resources of the river basin in the 21st century. The outputs of multiple crop models were used to assess the change in agricultural water demand. The domestic and industrial water demands were estimated based on the future socio-economic conditions under the Shared Socio-economic Pathways (SSPs). Besides basic ecosystem needs for water which must be met, the water use in domestic and industrial sectors is considered to have a higher priority than the agricultural water use when water is insufficient. The results show that the renewable water resources of the basin would increase as global mean temperature increases while the water demand would grow much more rapidly, largely due to water demand increase in domestic and industrial sectors. In most of the sub-basins of the Yellow River basin, the available water resources can not sustain all the water use sectors starting from the next a few decades. As more water resources would be appropriated by domestic and industrial sectors, a part of irrigated area had to be converted to rainfed agriculture which led to a large reduction in food production. This study highlights the linked water and food security in a changing environment and suggests that the trade-off should be considered when developing regional adaptation strategies.

  6. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  7. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  8. Aligning the multiplicities in natural resource governance: a study on the governance of water and land resources in irrigated agriculture

    NARCIS (Netherlands)

    Özerol, Gül

    2013-01-01

    In many countries, irrigated agriculture is crucial for food security and poverty reduction. Despite these socio-economic prospects, irrigation agriculture often leads to negative impacts that threaten environmental sustainability. Particularly in semi-arid and arid regions, the coupled problems of

  9. Quantitative Analysis on the Influence Factors of the Sustainable Water Resource Management Performance in Irrigation Areas: An Empirical Research from China

    Directory of Open Access Journals (Sweden)

    Hulin Pan

    2018-01-01

    Full Text Available Performance evaluation and influence factors analysis are vital to the sustainable water resources management (SWRM in irrigation areas. Based on the objectives and the implementation framework of modern integrated water resources management (IWRM, this research systematically developed an index system of the performances and their influence factors ones of the SWRM in irrigation areas. Using the method of multivariate regression combined with correlation analysis, this study estimated quantitatively the effect of multiple factors on the water resources management performances of irrigation areas in the Ganzhou District of Zhangye, Gansu, China. The results are presented below. The overall performance is mainly affected by management enabling environment and management institution with the regression coefficients of 0.0117 and 0.0235, respectively. The performance of ecological sustainability is mainly influenced by local economic development level and enable environment with the regression coefficients of 0.08642 and −0.0118, respectively. The performance of water use equity is mainly influenced by information publicity, administrators’ education level and ordinary water users’ participation level with the correlation coefficients of 0.637, 0.553 and 0.433, respectively. The performance of water use economic efficiency is mainly influenced by the management institutions and instruments with the regression coefficients of −0.07844 and 0.01808, respectively. In order to improve the overall performance of SWRM in irrigation areas, it is necessary to strengthen the public participation, improve the manager’ ability and provide sufficient financial support on management organization.

  10. New soil water sensors for irrigation management

    Science.gov (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  11. An overview of soil water sensors for salinity & irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  12. Irrigation water management: Basic principles and applications

    OpenAIRE

    Ella, Victor B.

    2007-01-01

    This presentation defines the term, irrigation, as well as explains the common methods of irrigation in attempt to define the fundamental principles needed to wisely design an irrigation system. It outlines a typical drip irrigation set-up, and discusses management of an irrigation system, including water volume application suggestions. LTRA-5 (Agroforestry and Sustainable Vegetable Production)

  13. Assessment of Irrigation Water Quality and Suitability for Irrigation in ...

    African Journals Online (AJOL)

    A number of factors like geology, soil, effluents, sewage disposal and other environmental conditions in which the water stays or moves and interacts are among the factors that affect the quality of irrigation water. This study was conducted to determine the quality and suitability of different water sources for irrigation purpose ...

  14. Water Resources

    International Nuclear Information System (INIS)

    Abira, M.A.

    1997-01-01

    Water is essential for life and ecological sustenance; its availability is essential component of national welfare and productivity.The country's socio-economic activities are largely dependent on the natural endowment of water resources. Kenya's water resources comprises of surface waters (rivers, lakes and wetlands) and ground water. Surface water forms 86% of total water resources while the rest is ground water Geological, topographical and climatic factors influence the natural availability and distribution of water with the rainfall distribution having the major influence. Water resources in Kenya are continuously under threat of depletion and quality degradation owing to rising population, industrialization, changing land use and settlement activities as well as natural changes. However, the anticipated climate change is likely to exacerbate the situation resulting in increased conflict over water use rights in particular, and, natural resource utilisation in general. The impacts of climate change on the water resources would lead to other impacts on environmental and socio-economic systems

  15. Using soil water sensors to improve irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  16. Irrigation water quality as indicator of sustainable rural development

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2004-01-01

    Full Text Available The sustainable rural development more and more depends on the efficient usage of water resources. Most often, at least in one part of the year, the rain is not sufficient for plant growth and rain plant production significantly depends on the yearly precipitation variation. The increase and stability of the agricultural production is possible in the irrigation conditions. The most part (around 70% of the global water resources is used for food production. Irrigation water quality indicator is used to show if the available water resources have the required quality for application in agriculture. Irrigation is characterised by the complex water-plant-soil relationship, and in that eco-system the man as the end user of the irrigated fields occupies a very important place. That explains the difficulties in producing one universal classification of irrigation water quality. The paper analyses numerous water quality classifications from the aspect of the applicability on the quantifying of this indicator. The adopted classification should possess understandable, qualified and internationally comparable indicator. Thus, local classifications (Neigebauer, Miljkovic cannot be used for this indicator. United Nation Food and Agricultural Organization (FAO and US Salinity Laboratory (USSL classifications are used for the evaluation of the irrigation water quality throughout the world. FAO classification gives the complex picture of the usability of the irrigation water from the point of its influence on the soil and the plants. However, the scope of the analyses is not often suited to the needs of that classification, which makes it difficult to apply. The conclusion is that the USSL (US Salinity Laboratory classification is best suited to this range of chemical water analyses. The evaluation of the irrigation water quality indicator in the Juzna Morava river basin, upstream from the Toplica river estuary is given in this paper. Based on the obtained

  17. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  18. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  19. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Science.gov (United States)

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  20. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.

    Science.gov (United States)

    Liu, Jing; Sun, Shikun; Wu, Pute; Wang, Yubao; Zhao, Xining

    2015-02-01

    The integration of water footprints and virtual water flows allows the mapping of the links between production, trade, and consumption and could potentially help to alleviate water scarcity and improve water management. We evaluated the water footprints and virtual water flows of crop production, consumption, and trade and their influencing factors in the Hetao irrigation district in China for 1960-2010. The water footprint of crop production and the export of virtual water fluctuated but tended to increase during this period and were influenced mainly by agricultural factors such as crop yield, irrigation efficiency, and area sown. The water footprint of crop consumption and the import of virtual water increased during 1960-1979 and decreased during 1980-2010 and were influenced by socio-economic factors such as total population, the retail-price index, and the proportion of the population in urban areas. Most of the water footprint of production was exported to other areas, which added to the pressure on local water systems. The import of virtual water led to a saving of water for the Hetao irrigation district, while its share of the water footprint of consumption has decreased significantly since 1977. An increase in irrigation efficiency can alleviate water scarcity, and its application should be coupled with measures that constrain the continued expansion of agriculture. Full-cost pricing of irrigation water was an effective policy tool for its management. Re-shaping regional water-production and water-trade nexuses by changing crop structures could provide alternative opportunities for addressing the problems of local water scarcity, but the trade-offs involved should first be assessed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Integrated Water Resources Management for Sustainable Irrigation at the Basin Scale Manejo Integrado de Recursos Hídricos para Riego Sustentable a Nivel de Cuenca

    Directory of Open Access Journals (Sweden)

    Max Billib

    2009-12-01

    Full Text Available The objective of this paper is to review the state of art on integrated water resources management (IWRM approaches for sustainable irrigation at the basin scale under semi-arid and arid climatic conditions, with main emphasis on Latin America, but including case studies of other semi-arid and arid regions in the world. In Latin America the general concept of IWRM has proved to be hard to implement. Case studies recommend to develop the approach from lower to upper scale and oriented at the end-user. As IWRM is an interdisciplinary approach and used for very different objectives, the main emphasis is given to IWRM approaches for sustainable irrigation and their environmental aspects. The review shows that in Latin America the environmental impact is mostly analysed at the field level, the impact on the whole basin is less considered. Many publications present the development of models, advisory services and tools for decision support systems at a high technical level. Some papers present studies of environmental aspects of sustainable irrigation, especially for salt affected areas. Multi-criteria decision making models are developed for irrigation planning and irrigation scenarios are used to show the impact of different irrigation management decision. In general integrated approaches in Latin America are scarce.El objetivo de esta publicación es revisar el estado del arte de los diferentes enfoques que se han usado para lograr un manejo integrado de los recursos hídricos (MIRH asociados a una agricultura de riego sustentable a nivel de cuenca en condiciones áridas y semiáridas, con énfasis en Latinoamérica, pero incluyen casos de estudio de otras regiones similares del mundo. En Latinoamérica el concepto general de MIRH ha resultado difícil de implementar. De los estudios de casos, se recomienda desarrollar este enfoque desde una escala menor a una mayor orientándose al usuario final. MIRH es un enfoque interdisciplinario usado para

  2. INTEGRATED WATER MANAGEMENT AND DURABILITY OF LANDSCAPE OF PUBLIC IRRIGATED AREAS IN TUNISIA: CASES OF PUBLIC IRRIGATED AREAS OF CHOTT-MARIEM AND MORNAG

    OpenAIRE

    Abdelkarim Hamrita; Amira Boussetta; Rafael Mata Olmo; Mehdi Saqalli; Hichem Rejeb

    2017-01-01

    An important part of the landscape of irrigated areas in Tunisia is the result of morphology, organization and operation of agricultural policies implemented since independence, aimed at optimizing the exploitation of the best soils and natural resources, particularly water and productive crop intensification. The sustainability of the landscape of public irrigated areas has a strong bonding with the resources of irrigation water and their states of management. The scarcity of irrigation wate...

  3. Estimating irrigation water use in the humid eastern United States

    Science.gov (United States)

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  4. Deficit irrigation of peach trees to reduce water consumption

    Science.gov (United States)

    Lack of water is a major limiting factor for production tree fruits such as peaches in the San Joaquin Valley of California and many other arid- or semi-arid regions in the world. Deficit irrigation can be used in some cropping systems as a water resource management strategy to reduce non-productiv...

  5. Safe and high quality food production using low quality waters and improved irrigation systems and management

    DEFF Research Database (Denmark)

    Plauborg, Finn; Andersen, Mathias Neumann; Liu, Fulai

    2010-01-01

    uneven irrigation patterns can increase the water use efficiency as well as the quality of vegetable crops. Furthermore, recent innovations in the water treatment and irrigation industry have shown potential for the use of low quality water resources, such as reclaimed water or surface water in peri...

  6. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    irrigation water use can be reduced when adopting the SRI methodology in the future. The reducing of groundwater recharge could be supplemented by using 1,500 hectares of fallow paddy fields, located at proximal-fan region, as recharge pools in the wet season. The adoption of water-saving irrigation would be helpful for the relevant government agency to formulate the integral water resource management strategies in this region. Keywords:Groundwater recharge, SRI, FEMWATER, Field irrigation requirement

  7. Water resources

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on water resources describes how climate change will affect the supply of water in Canada. Water is one of Canada's greatest resources, which contributes about $7.5 to 23 billion per year to the Canadian economy. The decisions taken to adapt to climate change within the water resources sector will have profound implications in many other areas such as agriculture, human health, transportation and industry. The water related problems include water quality issues that relate to water shortages from droughts, or excesses from floods. The Intergovernmental Panel on Climate Change forecasts an increase in global average surface air temperatures of 1.4 to 5.8 degrees C by 2100. Such a change would impact the hydrological cycle, affecting runoff, evaporation patterns, and the amount of water stored in glaciers, lakes, wetlands and groundwater. The uncertainty as to the magnitude of these changes is due to the difficulty that climate models have in projecting future changes in regional precipitation patterns and extreme events. This chapter presents potential impacts of climate change on water resources in the Yukon, British Columbia, the Prairies, the Great Lakes basin, the Atlantic provinces, and the Arctic and Subarctic. The associated concerns for each region were highlighted. Adaptation research has focused on the impacts of supply and demand, and on options to adapt to these impacts. 60 refs., 2 tabs., 1 fig

  8. Economic optimization of photovoltaic water pumping systems for irrigation

    OpenAIRE

    Campana, Pietro Elia; Li, Hailong; Zhang, J.; Liu, J.; Yan, Jinyue

    2015-01-01

    Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availabil...

  9. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    projects under five functional themes. I) Streamflow and Flood Forecasting 2) Water Supply and Irrigation (includes evapotranspiration) 3) Drought 4) Water Quality 5) Climate and Water Resources. To maximize this activity NASA Water Resources Program works closely with other government agencies (e.g., the National Oceanic and Atmospheric Administration (NOAA); the U.S. Department of Agriculture (USDA); the U.S. Geological Survey (USGS); the Environmental Protection Agency (EPA), USAID, the Air Force Weather Agency (AFWA)), universities, non-profit national and international organizations, and the private sector. The NASA Water Resources program currently is funding 21 active projects under the functional themes (http://wmp.gsfc.nasa.gov & http://science.nasa.gov/earth-science/applied-sciences/).

  10. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  11. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  12. Water quality and irrigation [Chapter 10

    Science.gov (United States)

    Thomas D. Landis; Kim M. Wilkinson

    2009-01-01

    Water is the single most important biological factor affecting plant growth and health. Water is essential for almost every plant process: photosynthesis, nutrient transport, and cell expansion and development. In fact, 80 to 90 percent of a seedling's weight is made up of water. Therefore, irrigation management is the most critical aspect of nursery operations....

  13. Water users associations and irrigation water productivity in northern China

    NARCIS (Netherlands)

    Zhang, L.; Heerink, N.; Dries, L.K.E.; Qu, F.

    2013-01-01

    Traditional irrigation water management systems in China are increasingly replaced by user-based, participatory management through water users associations (WUAs) with the purpose to promote, economically and ecologically beneficial, water savings and increase farm incomes. Existing research shows

  14. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    Science.gov (United States)

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    pan evaporation with Kp (the Ko was taken as 0.5, 0.75, 0.85, and 0.75 at squaring stage, early blossoming, full-blossoming, and late blossoming stage, respectively), which could be the high efficient irrigation index to obtain high yield and WUE in drip irrigation cotton field and to save irrigation water resources.

  15. Reuse of drainage water from irrigated areas

    NARCIS (Netherlands)

    Willardson, L.S.; Boels, D.; Smedema, L.K.

    1997-01-01

    Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the

  16. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    lower than those of traditional irrigation schemes, saving 35% and 9% compared with continuous irrigation and rotational irrigation, respectively. The SRI methodology significantly improved water-saving benefit compared with the disadvantage of reducing groundwater recharge. The results could be used as a basis for the relevant government agency to formulate the integral water resource management strategies in this area. Keywords: SRI, Paddy field, Infiltration, Groundwater recharge

  17. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  18. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  19. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  20. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  1. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  2. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  3. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    Impact of upstream industrial effluents on irrigation water quality, soils and ... Knowledge of irrigation water quality is critical to predicting, managing and reducing salt ... Presence of heavy metals in concentration higher than the recommended ...

  4. Economic Valuation of Sufficient and Guaranteed Irrigation Water Supply for Paddy Farms of Guilan Province

    Directory of Open Access Journals (Sweden)

    Mohammad Kavoosi Kalashami

    2014-08-01

    Full Text Available Cultivation of the strategic crop of rice highly depends to the existence of sufficient and guaranteed irrigation water, and water shortage stresses have irreparable effects on yield and quality of productions. Decrease of the Sefidrud river inflow in Guilan province which is the main source of supplying irrigation water for 171 thousand hectares under rice cropping area of this province, has been challenged sufficient and guaranteed irrigation water supply in many regions of mentioned province. Hence, in present study estimating the value that paddy farmers place on sufficient and guaranteed irrigation water supply has been considered. Economic valuation of sufficient and guaranteed irrigation water supply improves water resource management policies in demand side. Requested data set were obtained on the base of a survey and are collected from 224 paddy farms in rural regions that faced with irrigation water shortages. Then, using open-ended valuation approach and estimation of Tobit model via ML and two stages Heckman approach, eliciting paddy farmers' willingness to pay for sufficient and guaranteed irrigation water supply has been accomplished. Results revealed that farmers in investigated regions willing to pay 26.49 percent more than present costs of providing irrigation water in order to have sufficient and guaranteed irrigation water.

  5. Analysis of Irrigation Water Quality at Kadawa Irrigation Project for Improved Productivity

    Directory of Open Access Journals (Sweden)

    AR Sanda

    2014-09-01

    Full Text Available In the face of water scarcity and the several negative consequences, such as water wastage, flooding, water logging, soil losses and production losses, conserving the finite amount of fresh water is a must. The quality of irrigation water must therefore be ascertained. The chemical quality of three sources of irrigation water from canal and drainage water, namely drainage water, fresh irrigation water from canal, and drainage/irrigation water mixture, were analyzed from Kadawa irrigation Project for year 2013 and 2014 cropping seasons, with the view to evaluating the potential risks associated with their use in irrigation and hence their suitability or otherwise for irrigation purposes. The analysis revealed that the use of drainage water alone for irrigation may result in problems associated with salinity, while a blend of drainage/irrigation water in the ratio of 1:1 is a viable means of water conservation and a good means of crop production. DOI: http://dx.doi.org/10.3126/ije.v3i3.11082 International Journal of Environment Vol.3(3 2014: 235-240

  6. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    for farmers in areas of aquifer depletion or recurrent drought, the stochastic model demonstrates that partial-area irrigation is optimal irrespective of the size of water supply restrictions. This effect is not produced by the aggregate model, which cannot account for the variability of the production function with changes in irrigated area that control intraseasonal irrigation application rates. In addition, the aggregate model overstates the willingness of a risk-averse farmer to adjust on the intensive margin in response to water supply restrictions. This is due to the inability of aggregate models to specify correctly the production risk associated with intensive margin adjustments. Consequently, aggregate models give unrealistic estimates of water demand and underestimate the negative impacts on profitability of declining groundwater resources. Reliance on aggregate models will limit the ability of socio-hydrology to guide policy responses to groundwater scarcity. Our stochastic methodology provides a more realistic tool to study the management of groundwater in coupled human-water systems.

  7. Impacts of crop insurance on water withdrawals for irrigation

    Science.gov (United States)

    Deryugina, Tatyana; Konar, Megan

    2017-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, crop insurance may have unintended consequences for water resources sustainability, as the vast majority of freshwater withdrawals go to agriculture. The causal impact of crop insurance on water use in agriculture remains poorly understood. Here, we determine the empirical relationship between crop insurance and irrigation water withdrawals in the United States. Importantly, we use an instrumental variables approach to establish causality. Our methodology exploits a major policy change in the crop insurance system - the 1994 Federal Crop Insurance Reform Act - which imposed crop insurance requirements on farmers. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, with most coming from groundwater aquifers. We identify farmers growing more groundwater-fed cotton as an important mechanism contributing to increased withdrawals. A 1% increase in insured crop acreage leads to a 0.624% increase in cotton acreage, or 95,602 acres. These results demonstrate that crop insurance causally leads to more irrigation withdrawals. More broadly, this work underscores the importance of determining causality in the water-food nexus as we endeavor to achieve global food security and water resources sustainability.

  8. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  9. Irrigation efficiency and water-policy implications for river basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2014-04-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  10. Water Reuse: Using Reclaimed Water For Irrigation

    OpenAIRE

    Haering, Kathryn; Evanylo, Gregory K.; Benham, Brian Leslie, 1960-; Goatley, Michael

    2009-01-01

    Describes water reuse and reclaimed water, explains how reclaimed water is produced, options for water reuse, water reuse regulations, and agronomic concerns with water reuse, and provides several case studies of water reuse.

  11. Irrigation efficiency and water-policy implications for river-basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2013-07-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  12. Balancing water scarcity and quality for sustainable irrigated agriculture

    Science.gov (United States)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  13. Agriculture and natural resources in a changing world - the role of irrigation

    Science.gov (United States)

    Sauer, T.; Havlík, P.; Schneider, U. A.; Kindermann, G.; Obersteiner, M.

    2009-04-01

    Fertile land and fresh water constitute two of the most fundamental resources for food production. These resources are affected by environmental, political, economic, and technical developments. Regional impacts may transmit to the world through increased trade. With a global forest and agricultural sector model, we quantify the impacts of increased demand for food due to population growth and economic development on potential land and water use. In particular, we investigate producer adaptation regarding crop and irrigation choice, agricultural market adjustments, and changes in the values of land and water. Against the background of resource sustainability and food security topics, this study integrates the spatial and operational heterogeneity of irrigation management into a global land use model. It represents a first large scale assessment of agricultural water use under explicit consideration of alternative irrigation options in their particular biophysical, economic, and technical context, accounting for international trade, motivation-based farming, and quantified aggregated impacts on land scarcity, water scarcity, and food supply. The inclusion of technical and economic aspects of irrigation choice into an integrated land use modeling framework provides new insights into the interdisciplinary trade-offs between determinants of global land use change. Agricultural responses to population and economic growth include considerable increases in irrigated area and agricultural water use, but reductions in the average water intensity. Different irrigation systems are preferred under different exogenous biophysical and socioeconomic conditions. Negligence of these adaptations would bias the burden of development on land and water scarcity. Without technical progress in agriculture, predicted population and income levels for 2030 would require substantial price adjustments for land, water, and food to equilibrate supply and demand.

  14. Evaluation of potential water conservation using site-specific irrigation

    Science.gov (United States)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  15. Limited irrigation research and infrared thermometry for detecting water stress

    Science.gov (United States)

    The USDA-ARS Limited Irrigation Research Farm, located outside of Greeley Colorado, is an experiment evaluating management perspectives of limited irrigation water. An overview of the farm systems is shown, including drip irrigation systems, water budgeting, and experimental design, as well as preli...

  16. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    Science.gov (United States)

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  17. Incentives and technologies for improving irrigation water use efficiency

    Science.gov (United States)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  18. Soil water sensors:Problems, advances and potential for irrigation scheduling

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  19. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  20. Optimal crop selection and water allocation under limited water supply in irrigation

    Science.gov (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  1. A coupled agronomic-economic model to consider allocation of brackish irrigation water

    Science.gov (United States)

    Ben-Gal, Alon; Weikard, Hans-Peter; Shah, Syed Hamid Hussain; van der Zee, Sjoerd E. A. T. M.

    2013-05-01

    In arid and semiarid regions, irrigation water is scarce and often contains high concentrations of salts. To reduce negative effects on crop yields, the irrigated amounts must include water for leaching and therefore exceed evapotranspiration. The leachate (drainage) water returns to water sources such as rivers or groundwater aquifers and increases their level of salinity and the leaching requirement for irrigation water of any sequential user. We develop a conceptual sequential (upstream-downstream) model of irrigation that predicts crop yields and water consumption and tracks the water flow and level of salinity along a river dependent on irrigation management decisions. The model incorporates an agro-physical model of plant response to environmental conditions including feedbacks. For a system with limited water resources, the model examines the impacts of water scarcity, salinity and technically inefficient application on yields for specific crop, soil, and climate conditions. Moving beyond the formulation of a conceptual frame, we apply the model to the irrigation of Capsicum annum on Arava Sandy Loam soil. We show for this case how water application could be distributed between upstream and downstream plots or farms. We identify those situations where it is beneficial to trade water from upstream to downstream farms (assuming that the upstream farm holds the water rights). We find that water trade will improve efficiency except when loss levels are low. We compute the marginal value of water, i.e., the price water would command on a market, for different levels of water scarcity, salinity and levels of water loss.

  2. Soil and water management in spate irrigation systems in Eritrea

    NARCIS (Netherlands)

    Hadera, M.T.

    2001-01-01

    Spate irrigation has been practised over 100 years in the Red Sea coastal zone of Eritrea such as the Sheeb area. Main problem of the spate irrigation system is water shortage caused by irregular rainfall in the highlands of Eritrea and breaching of the irrigation structures by destructive

  3. The Temporal Variation of Leaf Water Potential in Pistachio under Irrigated and Non-Irrigated Conditions

    Directory of Open Access Journals (Sweden)

    Yusuf AYDIN

    2014-09-01

    Full Text Available The present study was carried out in the experimental field of Pistachio Research Institute on pistachio trees which has uzun variety that was 30 years old. The aim of this research was to determine the Leaf Water Potential (LWP of Pistacia vera L. under irrigated and non-irrigated conditions. In the study, the leaf water potential of pistachio was investigated under fully irrigated and non irrigated conditions. The leaf water potential values were measured one day before and after irrigation by using pressure chamber technique at the beginning, mid and end of irrigation season. According to the results obtained from measurements, the LWP value at the beginning of the irrigation season was -3.7 MPa at noon time due to relatively high temperature for both treatments. At the time of pre-dawn and sunset, this value increased and reached to - 1.6 MPa due to relatively low temperature. In general, the LWP values during the mid of irrigation season, in the irrigated treatments, reached to almost -2.5 MPa in the non-irrigated treatment and the value was measured as -3.68 MPa.

  4. Possible Use of Treated Wastewater as Irrigation Water at Urban Green Area

    Directory of Open Access Journals (Sweden)

    Elif Bozdoğan

    2014-08-01

    Full Text Available Ever increasing demands for fresh water resources have brought the reuse of treated wastewater into agendas. Wastewater has year-long potential to be used as an irrigation water source. Therefore, treated wastewater is used as irrigation water over agricultural lands and urban landscapes, as process water in industrial applications, as back-up water in environmental applications in water resources and wetlands of dry regions. The present study was conducted to investigate the possible use of domestic wastewater treated through pilot-scale constructed wetland of Adana-Karaisalı with dominant Mediterranean climate in irrigation of marigold (Tagetes erecta, commonly used over urban landscapes. Experiments were carried out between the dates May-November 2008 for 7 months with fresh water and treated wastewater. Plant growth parameters (plant height, plant diameter, number of branches and flowering parameters (number of flowers, flower diameter, flower pedicle thickness were monitored in monthly basis. Results revealed positive impacts of treated wastewater irrigations on plant growth during the initial 5 months between May-September but negative impacts in October and November. Similarly, treated wastewater irrigations had positive impacts on flowering parameters during the initial 3 months but had negative impacts during the subsequent 4 months. Such a case indicated shortened visual efficiencies of marigold. Therefore, treated wastewater can be used as an alternative water resource in irrigation of annual flowers, but better results can be attained by mixing treated wastewater with fresh water at certain ratios.

  5. Analysis of Groundwater Resources Vulnerability from Agricultural Activities in the Large Irrigation District along the Yellow River

    OpenAIRE

    He, Bin; Oki, Taikan; Kanae, Shinjiro; Runkle, Benjamin; Liang, Xu; Zeng, Ayan; Hao, Fanghua

    2008-01-01

    Groundwater forms an important source of water supply in arid and semi-arid region. Optimum conjunctive utilization of surface and groundwater resources has become extremely important to fill the gap between water demand and supply. Hetao Irrigation District (HID) is the largest irrigation district along the Yellow River and its groundwater table is shallow. The project of Water Saving Reconstruction (WSR) has been conducted for the purpose of keeping the Yellow River free from drying up. The...

  6. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  7. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  8. Reuse potential of laundry greywater for irrigation based on growth, water and nutrient use of tomato

    Science.gov (United States)

    Misra, R. K.; Patel, J. H.; Baxi, V. R.

    2010-05-01

    SummaryGreywater is considered as a valuable resource with a high reuse potential for irrigation of household lawns and gardens. However, there are possibilities of surfactant and sodium accumulation in soil from reuse of greywater which may affect agricultural productivity and environmental sustainability adversely. We conducted a glasshouse experiment to examine variation in growth, water and nutrient use of tomato ( Lycopersicon esculentum Mill. cv. Grosse Lisse) using tap water (TW), laundry greywater (GW) and solutions of low and high concentration of a detergent surfactant (LC and HC, respectively) as irrigation treatments. Each treatment was replicated five times using a randomised block design. Measurements throughout the experiment showed greywater to be significantly more alkaline and saline than the other types of irrigation water. Although all plants received 16 irrigations over a period of 9 weeks until flowering, there were little or no significant effects of irrigation treatments on plant growth. Soil water retention following irrigation reduced significantly when plants were irrigated with GW or surfactant solutions on only three of 12 occasions. On one occasion, water use measured as evapotranspiration (ET) with GW irrigation was similar to TW, but it was significantly higher than the plants receiving HC irrigation. At harvest, various components of plant biomass and leaf area for GW irrigated plants were found to be similar or significantly higher than the TW irrigated plants with a common trend of GW ⩾ TW > LC ⩾ HC. Whole-plant concentration was measured for 12 essential plant nutrients (N, P, K, Ca, Mg, S, Fe, Cu, Mn, Zn, Mo and B) and Na (often considered as a beneficial nutrient). Irrigation treatments affected the concentration of four nutrients (P, Fe, Zn and Na) and uptake of seven nutrients (P, K, Ca, Mg, Na, Fe and B) significantly. Uptake of these seven nutrients by tomato was generally in the order GW ⩾ TW > HC ⩾ LC. GW

  9. Scalar alignment and sustainable water governance: The case of irrigated agriculture in Turkey

    NARCIS (Netherlands)

    Özerol, Gül; Bressers, Johannes T.A.

    2015-01-01

    Irrigated agriculture plays a significant role in global food security and poverty reduction. At the same time its negative impacts on water and land resources threaten environmental sustainability. With the objective of improving the understanding on the complexity of governing water resources for

  10. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  11. Irrigated agriculture and groundwater resources - towards an integrated vision and sustainable relationship.

    Science.gov (United States)

    Foster, Stephen; Garduño, Héctor

    2013-01-01

    Globally, irrigated agriculture is the largest abstractor, and predominant consumer, of groundwater resources, with large groundwater-dependent agro-economies now having widely evolved especially in Asia. Such use is also causing resource depletion and degradation in more arid and drought-prone regions. In addition crop cultivation practices on irrigated land exert a major influence on groundwater recharge. The interrelationship is such that cross-sector action is required to agree more sustainable land and water management policies, and this paper presents an integrated vision of the challenges in this regard. It is recognised that 'institutional arrangements' are critical to the local implementation of management policies, although the focus here is limited to the conceptual understanding needed for formulation of an integrated policy and some practical interventions required to promote more sustainable groundwater irrigation.

  12. Temporal and spatial water use on irrigated and nonirrigated pasture-based dairy farms.

    Science.gov (United States)

    Higham, C D; Horne, D; Singh, R; Kuhn-Sherlock, B; Scarsbrook, M R

    2017-08-01

    Robust information for water use on pasture-based dairy farms is critical to farmers' attempts to use water more efficiently and the improved allocation of freshwater resources to dairy farmers. To quantify the water requirements of dairy farms across regions in a practicable manner, it will be necessary to develop predictive models. The objectives of this study were to compare water use on a group of irrigated and nonirrigated farms, validate existing water use models using the data measured on the group of nonirrigated farms, and modify the model so that it can be used to predict water use on irrigated dairy farms. Water use data were collected on a group of irrigated dairy farms located in the Canterbury, New Zealand, region with the largest area under irrigation. The nonirrigated farms were located in the Manawatu region. The amount of water used for irrigation was almost 52-fold greater than the amount of all other forms of water use combined. There were large differences in measured milking parlor water use, stock drinking water, and leakage rates between the irrigated and nonirrigated farms. As expected, stock drinking water was lower on irrigated dairy farms. Irrigation lowers the dry matter percentage of pasture, ensuring that the amount of water ingested from pasture remains high throughout the year, thereby reducing the demand for drinking water. Leakage rates were different between the 2 groups of farms; 47% of stock drinking water was lost as leakage on nonirrigated farms, whereas leakage on the irrigated farms equated to only 13% of stock drinking water. These differences in leakage were thought to be related to regional differences rather than differences in irrigated versus nonirrigated farms. Existing models developed to predict milking parlor, corrected stock drinking water, and total water use on nonirrigated pasture-based dairy farms in a previous related study were tested on the data measured in the present research. As expected, these models

  13. [Ecological risks of reclaimed water irrigation: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Zhang, Wei-Ling; Pan, Neng; Jiao, Wen-Tao

    2012-12-01

    Wastewater reclamation and reuse have become an important approach to alleviate the water crisis in China because of its social, economic and ecological benefits. The irrigation on urban green space and farmland is the primary utilization of reclaimed water, which has been practiced world widely. To understand the risk of reclaimed water irrigation, we summarized and reviewed the publications associated with typical pollutants in reclaimed water including salts, nitrogen, heavy metals, emerging pollutants and pathogens, systematically analyzed the ecological risk posed by reclaimed water irrigation regarding plant growth, groundwater quality and public health. Studies showed that salt and salt ions were the major risk sources of reclaimed water irrigation, spreading disease was another potential risk of using reclaimed water, and emerging pollutants was the hot topic in researches of ecological risk. Based on overseas experiences, risk control measures on reclaimed water irrigation in urban green space and farmland were proposed. Five recommendations were given to promote the safe use of reclaimed water irrigation including (1) strengthen long-term in situ monitoring, (2) promote the modeling studies, (3) build up the connections of reclaimed water quality, irrigation management and ecological risk, (4) evaluate the soil bearing capacity of reclaimed water irrigation, (5) and establish risk management system of reclaimed water reuse.

  14. Achieving sustainable irrigation water withdrawals: global impacts on food security and land use

    Science.gov (United States)

    Liu, Jing; Hertel, Thomas W.; Lammers, Richard B.; Prusevich, Alexander; Baldos, Uris Lantz C.; Grogan, Danielle S.; Frolking, Steve

    2017-10-01

    Unsustainable water use challenges the capacity of water resources to ensure food security and continued growth of the economy. Adaptation policies targeting future water security can easily overlook its interaction with other sustainability metrics and unanticipated local responses to the larger-scale policy interventions. Using a global partial equilibrium grid-resolving model SIMPLE-G, and coupling it with the global Water Balance Model, we simulate the consequences of reducing unsustainable irrigation for food security, land use change, and terrestrial carbon. A variety of future (2050) scenarios are considered that interact irrigation productivity with two policy interventions— inter-basin water transfers and international commodity market integration. We find that pursuing sustainable irrigation may erode other development and environmental goals due to higher food prices and cropland expansion. This results in over 800 000 more undernourished people and 0.87 GtC additional emissions. Faster total factor productivity growth in irrigated sectors will encourage more aggressive irrigation water use in the basins where irrigation vulnerability is expected to be reduced by inter-basin water transfer. By allowing for a systematic comparison of these alternative adaptations to future irrigation vulnerability, the global gridded modeling approach offers unique insights into the multiscale nature of the water scarcity challenge.

  15. Gender and power contestations over water use in irrigation schemes: Lessons from the lake Chilwa basin

    Science.gov (United States)

    Nkhoma, Bryson; Kayira, Gift

    2016-04-01

    Over the past two decades, Malawi has been adversely hit by climatic variability and changes, and irrigation schemes which rely mostly on water from rivers have been negatively affected. In the face of dwindling quantities of water, distribution and sharing of water for irrigation has been a source of contestations and conflicts. Women who constitute a significant section of irrigation farmers in schemes have been major culprits. The study seeks to analyze gender contestations and conflicts over the use of water in the schemes developed in the Lake Chilwa basin, in southern Malawi. Using oral and written sources as well as drawing evidence from participatory and field observations conducted at Likangala and Domasi irrigation schemes, the largest schemes in the basin, the study observes that women are not passive victims of male domination over the use of dwindling waters for irrigation farming. They have often used existing political and traditional structures developed in the management of water in the schemes to competitively gain monopoly over water. They have sometimes expressed their agency by engaging in irrigation activities that fall beyond the control of formal rules and regulations of irrigation agriculture. Other than being losers, women are winning the battle for water and land resources in the basin.

  16. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  17. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  18. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Shakir, A.S.; Bashir, M.A

    2005-01-01

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  19. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    Science.gov (United States)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip

  20. Using Home Irrigation Users' Perceptions to Inform Water Conservation Programs

    Science.gov (United States)

    Warner, Laura A.; Chaudhary, Anil Kumar; Lamm, Alexa J.; Rumble, Joy N.; Momol, Esen

    2017-01-01

    Targeted agricultural education programs can play a role in solving complex water issues. This article applies importance-performance analysis to examine dimensions of water resources that may inform local water conservation campaigns in the United States. The purpose of this study was to generate a deep understanding of home irrigation users'…

  1. Regional application of one-dimensional water flow models for irrigation management

    NARCIS (Netherlands)

    Urso, D' G.; Menenti, M.; Santini, A.

    1999-01-01

    Numerical models for the simulation of soil water processes can be used to evaluate the spatial and temporal variations of crop water requirements; this information can support the irrigation management in a rationale usage of water resources. This latter objective requires the knowledge of

  2. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  3. Assesing the suitability of water for irrigation theoretical and practical approach

    International Nuclear Information System (INIS)

    Hannan, A.; Javad, M.A.; Arif, M.; Rashid, A.

    2006-01-01

    Forced by the surface water shortage and prevalent drought like conditions in the country the farmers have started exploiting groundwater resource. On the other hand, seventy percent of the groundwater being marginal to unfit is a threat to the sustainability of irrigated agriculture. The judicious groundwater exploitation and application has also become imperative in context of ever increasing demographic pressure on soil, crop and water resources. Different classes of irrigation waters established by various research scientists / organizations within the country or abroad are not ultimate under all conditions but these serve as general guidelines. In some cases brackish water requires only minor modification under existing irrigation and ogronomic practices, while in most of the cases it requires major changes regarding type of crops grown, method of water application and the use of soil and water amendments. Therefore, before recommending water for irrigation. Soil characteristics, water management practices, drainage condition of the filed and climatic events must be taken into account as waters generally classified unsuitable for irrigation can be used successfully to grow crops without long term hazardous consequences to crops or soils. This can be attempted simply with the use of improved farming and management practices. Use of brackish water for irrigation may increase the resource base for irrigated agriculture in Pakistan. This article reviews various water classification schemes, salinity-crop yield interrelation with detailed discussion on brackish water application and associated problems. The article also covers a number of management options so as to mitigate the problem and sustain food security in the country. (author)

  4. Farmers’ willingness to pay for surface water in the West Mitidja irrigated perimeter, northern Algeria

    Directory of Open Access Journals (Sweden)

    Malika Azzi

    2018-04-01

    Full Text Available Algeria is among the most water-stressed countries in the world. Because of its climatic conditions, irrigation is essential for agricultural production. Water prices paid by farmers in public irrigation districts are very low and do not cover the operation and maintenance (O&M costs of the irrigated perimeters, thus leading to the deterioration of these infrastructures. The objective of this paper is to analyse whether farmer’s in the West Mitidja irrigation district in northern Algeria would be willing to pay more for surface water in order to maintain the water supply service in its current conditions. We estimated farmers’ willingness to pay (WTP for water using data from a dichotomous choice contingent valuation survey to 112 randomly selected farmers. Farmers’ responses were modelled using logistic regression techniques. We also analysed which technical, structural, social and economic characteristics of farms and farmers explain the differences in WTP. Our results showed that nearly 80% of the surveyed farmers are willing to pay an extra price for irrigation water. The average WTP was 64% greater than the price currently paid by farmers, suggesting some scope for improving the financial resources of the Mitidja irrigated perimeter, but insufficient to cover all O&M costs. Some of the key identified factors that affect WTP for surface water relate to farm ownership, access to groundwater resources, cropping patterns, farmers’ agricultural training and risk exposure.

  5. Farmers’ willingness to pay for surface water in the West Mitidja irrigated perimeter, northern Algeria

    International Nuclear Information System (INIS)

    Azzi, M.; Calatrava, J.; Bedrani, S.

    2018-01-01

    Algeria is among the most water-stressed countries in the world. Because of its climatic conditions, irrigation is essential for agricultural production. Water prices paid by farmers in public irrigation districts are very low and do not cover the operation and maintenance (O&M) costs of the irrigated perimeters, thus leading to the deterioration of these infrastructures. The objective of this paper is to analyse whether farmer’s in the West Mitidja irrigation district in northern Algeria would be willing to pay more for surface water in order to maintain the water supply service in its current conditions. We estimated farmers’ willingness to pay (WTP) for water using data from a dichotomous choice contingent valuation survey to 112 randomly selected farmers. Farmers’ responses were modelled using logistic regression techniques. We also analysed which technical, structural, social and economic characteristics of farms and farmers explain the differences in WTP. Our results showed that nearly 80% of the surveyed farmers are willing to pay an extra price for irrigation water. The average WTP was 64% greater than the price currently paid by farmers, suggesting some scope for improving the financial resources of the Mitidja irrigated perimeter, but insufficient to cover all O&M costs. Some of the key identified factors that affect WTP for surface water relate to farm ownership, access to groundwater resources, cropping patterns, farmers’ agricultural training and risk exposure.

  6. Save Our Water Resources.

    Science.gov (United States)

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  7. Drip and Surface Irrigation Water Use Efficiency of Tomato Crop Using Nuclear Techniques

    International Nuclear Information System (INIS)

    Mellouli, H.J.; Askri, H.; Mougou, R.

    2003-01-01

    Nations in the arid and semi-arid regions, especially the Arab countries, will have to take up an important challenge at the beginning of the 21 st century: increasing food production in order to realise food security for growing population, wile optimising the use of limited water resources. Using and adapting management techniques like the drip irrigation system could obtain the later. This would allow reduction in water losses by bare soil evaporation and deep percolation. Consequently improved water use efficiency could be realised. In this way, this work was conducted as a contribution on the Tunisian national programs on the optimisation of the water use. By mean a field study at Cherfech Experimental Station (30 km from Tunis), the effect of the irrigation system on the water use efficiency (WUE)-by a season tomato crop-was monitored by comparing three treatments receiving equivalent quantities of fertiliser: Fertigation, Drip irrigation and Furrow irrigation. Irrigation was scheduled by mean calculation of the water requirement based on the agro meteorological data, the plant physiological stage and the soil water characteristics (Clay Loam). The plant water consumption (ETR) was determined by using soil water balance method, where rainfall and amount of irrigation water readily measured

  8. Village-level supply reliability of surface water irrigation in rural China: effects of climate change

    Science.gov (United States)

    Li, Yanrong; Wang, Jinxia

    2018-06-01

    Surface water, as the largest part of water resources, plays an important role on China's agricultural production and food security. And surface water is vulnerable to climate change. This paper aims to examine the status of the supply reliability of surface water irrigation, and discusses how it is affected by climate change in rural China. The field data we used in this study was collected from a nine-province field survey during 2012 and 2013. Climate data are offered by China's National Meteorological Information Center which contains temperature and precipitation in the past 30 years. A Tobit model (or censored regression model) was used to estimate the influence of climate change on supply reliability of surface water irrigation. Descriptive results showed that, surface water supply reliability was 74 % in the past 3 years. Econometric results revealed that climate variables significantly influenced the supply reliability of surface water irrigation. Specifically, temperature is negatively related with the supply reliability of surface water irrigation; but precipitation positively influences the supply reliability of surface water irrigation. Besides, climate influence differs by seasons. In a word, this paper improves our understanding of the impact of climate change on agriculture irrigation and water supply reliability in the micro scale, and provides a scientific basis for relevant policy making.

  9. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    The purpose of an irrigation system is to apply the desired amount of water, at the correct application rate and uniformly to the whole field, at the right time, with the least amount of non-beneficial water consumption (losses), and as economically as possible. We know that irrigated agriculture plays a major role in the ...

  10. Impact of Irrigation Method on Water Use Efficiency and Productivity of Fodder Crops in Nepal

    Directory of Open Access Journals (Sweden)

    Ajay K Jha

    2016-01-01

    Full Text Available Improved irrigation use efficiency is an important tool for intensifying and diversifying agriculture in Nepal, resulting in higher economic yield from irrigated farmlands with a minimum input of water. Research was conducted to evaluate the effect of irrigation method (furrow vs. drip on the productivity of nutritious fodder species during off-monsoon dry periods in different elevation zones of central Nepal. A split-block factorial design was used. The factors considered were treatment location, fodder crop, and irrigation method. Commonly used local agronomical practices were followed in all respects except irrigation method. Results revealed that location effect was significant (p < 0.01 with highest fodder productivity seen for the middle elevation site, Syangja. Species effects were also significant, with teosinte (Euchlaena mexicana having higher yield than cowpea (Vigna unguiculata. Irrigation method impacted green biomass yield (higher with furrow irrigation but both methods yielded similar dry biomass, while water use was 73% less under drip irrigation. Our findings indicated that the controlled application of water through drip irrigation is able to produce acceptable yields of nutritionally dense fodder species during dry seasons, leading to more effective utilization and resource conservation of available land, fertilizer and water. Higher productivity of these nutritional fodders resulted in higher milk productivity for livestock smallholders. The ability to grow fodder crops year-round in lowland and hill regions of Nepal with limited water storages using low-cost, water-efficient drip irrigation may greatly increase livestock productivity and, hence, the economic security of smallholder farmers.

  11. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  12. Coordinated research project of the use of nuclear and related techniques in assessment of irrigation schedules of field crops to increase effective use of water in irrigation projects

    International Nuclear Information System (INIS)

    Anac, M.S.; Tuzel, I.H.; Anac, D.

    1995-01-01

    The study aimed at determining the followings; water consumptions. irrigation water requirements of new cotton variety N 84; specific growth stages of cotton which are less sensitive to stress so that the irrigation could be avoided without significant yield decrease; and interactions between deficit irrigation and nitrogen fertilizer use. The experiment was set up with 6 irrigation and three nitrogen fertilizer (0.60 , 120 kg.ha sup -1 ) treatments. The irrigation treatments employed single stress at vegetative, flowering and boll formation stages, in addition to full irrigation, continuous stress and the traditional practice. In stress conditions available soil water depleted to 75 - 80 %, whereas in normal irrigation the depletion was 40 % in 0.90 m. of root zone. In full irrigation treatment 8 irrigations were applied, whereas 3 or 4 irrigations were needed in continuous stress conditions. The number of irrigations were 6 or 7 for other stress treatments. Irrigation water applications varied form 424 to 751 mm. Seasonal ET were ranged between 659 and 899 mm. The highest monthly ET in august for all of the treatments. Daily ET were found to vary from 2.2 to 12.1 mm/day. The seed cotton yields, ky values and yield - N indices have indicated that the vegetative state was more sensitive to water stress. The stress at boll formation stage had slight effects on these parameters. Under limited water resource conditions, vegetative growth period of cotton should be given preference for irrigation, followed by flowering period. Omitting irrigation in boll formation period would result in 4.3 to 9.1 % water savings. Yield changes with respect to N rates showed that high N doses are accompanied by high yields. Nitrogen recoveries either from fertilizers or soil revealed high uptakes in full irrigation conditions. Nitrogen use efficiencies were also high in these conditions. Average of three years put forth that 19% of N in stress conditions and 29% in full irrigation were

  13. Study of Investments in Irrigation Water Sector in Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2015-04-01

    Full Text Available Irrigation water sector is playing pivotal role in agricultural production and have prominent contribution to GDP (Gross Domestic Product both at provincial and country level. Many of the stakeholders including different ministries/department of Federal and Provincial governments, private sectors, farmers, and NGOs (Non-Government Organizations are investing in this sector. Although that the data and data analysis tools are present in most of the countries, yet a comprehensive information base on investments in irrigation water sector is missing. This has led to duplication at resources and beneficiaries? level on one side, as well as gaps in technical, infrastructural, institutional and managerial strategies of the irrigation water sector projects on the other. This paper analyzes investments in irrigation water sector made by government of KPK (Khyber Pakhtunkhwa during the last 10 fiscal years? time period (2003-2013 and identifies gaps. Besides recommendations are also made in order to overcome the identified gaps/issues.

  14. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  15. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    Science.gov (United States)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the

  16. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    Full Text Available Introduction: Olive (Olea europaea L. trees are mainly cultivated in the Mediterranean area and are grown for their oil or processed as table olives. Despite the fact that olive is known to be resistant to drought conditions due to its anatomical, physiological, and biochemical adaptations to drought stress, reports indicate that the olive can be adversely affected by drought stress, which has a negative effect on the growth of olive trees. In the absence of adequate supplies of water, the demand for water can be met by using improved irrigation methods or by using reclaimed water (RW. Reports have shown that recycled water has been used successfully for irrigating olive orchards with no negative effects on plant growth.Attention has been paid to reclaimed water as one of the most significant available water resources used in agriculture around large cities in arid and semi-arid regions. On the other hand, irrigation efficiency is low and does not meet the demands of farmers.In order to investigate the possibility of irrigating olive orchards with subsurface leakage irrigation (SLI in application of reclaimed water, an experiment was carried out with the aim of investigating the effect of reclaimed water on photosynthetic indices and morphological properties of olive fruit. Materials and Methods: Research was conducted using a split-plot experimental design with two factors (irrigation system and water quality on the campus of Isfahan University of Technology in Isfahan, Iran, on a sandy-clay soil with a pH of 7.5 and electrical conductivity (EC of 2.48 dSm-1.PVC leaky tubes were used for the SLI system. The SLI system was installed 40 cm from the crown of each tree at a depth of 30 - 40 cm.At the end of the experiment fruit yield, weight per fruit, volume, length and firmness were calculated. A portable gas exchange system (Li-6400., LICOR, Lincoln, NE, USA was used to measure the net rate photosynthesis (A, the internal partial pressure CO2

  17. Optimization of Water Allocation between Different Crops in Water Stress Conditions in Qazvin Irrigation Network

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad khani

    2017-06-01

    Full Text Available Introduction: Evaluations show the necessity of using optimization models in order to determine optimal allocation of water in different water conditions. Its use can be proposed according to developed model abilities in this study in order to optimize water productivity and provide sustainable management and development of water resources over irrigation and drainage networks. Basic needs of the earth growing population and limitation of water and soil resources remindnecessity of optimal use of resources. World’s more than 280 million hectare lands are covered by irrigation networks (Khalkhali et al., 2006. The efficiency of most projects is between 30-50 percent and studies show that performance of most irrigation and drainage networks is not desirable and they have not achieved their aims. Hirich et al. (2014 Used deficit irrigation to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season 2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of a crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of the full irrigation during the vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity. Moghaddasi et al. (2010 worked examines and compares this approach with that based on the optimization method to manage agricultural water demand during drought to minimize damage. The results show that the optimization method resulted in 42% more income for the agricultural sector using the

  18. Irrigation water policy analysis using a business simulation game

    Science.gov (United States)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  19. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    Science.gov (United States)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  20. Ohio Water Resources Council

    Science.gov (United States)

    Ohio.gov State Agencies | Online Services Twitter YouTube EPA IMAGE Ohio Water Resources Committee Ohio enjoys abundant water resources. Few states enjoy as many streams, rivers, lakes and wetlands as Ohio. Numerous agencies and organizations are involved in protecting Ohio's valuable water resources

  1. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  2. Forest Irrigation of Tritiated Water: A Proven Tritiated Water Management Tool - 13357

    Energy Technology Data Exchange (ETDEWEB)

    Prater, Phil; Blount, Gerald; Kmetz, Thomas; Vangelas, Karen [Savannah River National Laboratory, Bldg. 773-42A, Aiken, SC 29808 (United States)

    2013-07-01

    Tritium releases from the Old Radioactive Waste Burial Ground (ORWBG) at the SRS in South Carolina has impacted groundwater and surface water. Tritiated groundwater plumes discharge into Fourmile Branch which is a small tributary of the Savannah River, a regional water resource. Taking advantage of the groundwater flow paths and the local topography a water collection and irrigation system was constructed and has been used at the SRS for over a decade to reduce these tritiated water releases to Fourmile Branch. The tritiated water is transferred to the atmosphere by evaporation from the pond surface, and after irrigation, wetted surface evaporation and evapotranspiration through the forest vegetation. Over the last decade SRS has irrigated over 120,000,000 gallons of tritiated water, which diverted over 6000 curies away from Fourmile Branch and the Savannah River. The system has been effective in reducing the flux of tritiated groundwater by approximately 70%. Mass balance studies of tritium in the forest soils before operations and over the last decade indicate that approximately 90% of the tritiated water that is irrigated is transferred to the atmosphere. Dose studies indicate that exposure to site workers and offsite maximally exposed individual is very low, approximately 6 mrem/year and 0.004 mrem/year, respectively. To consistently meet the flux reduction goal of tritium into Fourmile Branch optimization activities are proposed. These efforts will increase irrigation capacity and area. An additional 17 acres are proposed for an expansion of the area to be irrigated and a planting of approximately 40 acres of pine forest plantations is underway to expand irrigation capacity. Co-mingled with the tritiated groundwater are low concentrations of chlorinated volatile organic compounds (cVOCs), and 1,4-dioxane. Research studies and SRS field data indicate the forest irrigation system may have an added benefit of reducing the mass of these co-contaminants via

  3. A Reevaluation of Price Elasticities for Irrigation Water

    Science.gov (United States)

    Howitt, Richard E.; Watson, William D.; Adams, Richard M.

    1980-08-01

    The effectiveness of pricing systems in the allocation of irrigation water is linked with the price elasticity of demand of farmers for water. Using microeconomic theory, it is shown that omission of the elasticity of demand for the crop produced leads to an inelastic bias in the demand for irrigated water. Linear programing approaches omit the product elasticity of demand and are consequently biased, whereas quadratic programing approaches to estimating derived demands for irrigation water include product demand functions. The difference between the resulting estimates are empirically demonstrated for regional derived demand functions estimated from a model of California's agricultural industry.

  4. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería

    Directory of Open Access Journals (Sweden)

    Pedro Garcia-Caparros

    2017-12-01

    Full Text Available The development of intensive horticulture in Almería, with a huge increase in greenhouse surface area, is related to three essential factors: climatic characteristics, groundwater use and mulching sandy soil. The purpose of the present paper is to draw a picture of the integral management of water irrigation in the intensive horticultural systems in the region, by identifying the most significant water resource contributions and alternative water resources. Results indicate that the use of groundwater for the irrigation of horticultural crops in the greenhouses presents a high degree of overexploitation of the aquifers, but due to the continuous search for alternative water resources, such as desalinated and reclaimed water, as well as in-depth knowledge of the integral management of water irrigation through automated fertigation and localized irrigation systems, the current status of the water resources could be sustainable. Moreover, being conscious of the pollution generated by agricultural leachates, the horticultural system of Almería is implementing complementary sustainable systems such as recirculation, cascade cropping systems and phytodepuration for the reuse of the leachate. Considering all these factors, it can be concluded that the intensive horticultural system is on the right path towards respecting the environment and being sustainable in terms of water use.

  5. Living with less water: development of viable adaptation options for Riverina irrigators

    NARCIS (Netherlands)

    Gaydon, D.S.

    2012-01-01

    In Australia, the best use of limited national water resources continues to be a major political and scientific issue. Average water allocations for rice-cereal irrigation farmers in the Riverina region have been drastically reduced since 1998 as a consequence of high rainfall variability and

  6. The Impact of Small Scale Mining on Irrigation Water Quality in ...

    African Journals Online (AJOL)

    Small scale mining is a major threat to water resources and agricultural activities in most mining communities across Ghana. This study investigated the effect of small scale mining on the quality of water for irrigation from some selected sites along a river and a reservoir which was used as a control. The physical and ...

  7. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería

    OpenAIRE

    Pedro Garcia-Caparros; Juana Isabel Contreras; Rafael Baeza; Maria Luz Segura; Maria Teresa Lao

    2017-01-01

    The development of intensive horticulture in Almería, with a huge increase in greenhouse surface area, is related to three essential factors: climatic characteristics, groundwater use and mulching sandy soil. The purpose of the present paper is to draw a picture of the integral management of water irrigation in the intensive horticultural systems in the region, by identifying the most significant water resource contributions and alternative water resources. Results indicate that the use of gr...

  8. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  9. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  10. Alfalfa response to irrigation from limited water supplies

    Science.gov (United States)

    A five-year field study (2007-2011) of irrigated alfalfa production with a limited water supply was conducted in southwest Kansas with two years of above-average precipitation, one year of average precipitation, and two years of below-average precipitation. The irrigation treatments were designed to...

  11. Evaluation of dripper clogging using magnetic water in drip irrigation

    Science.gov (United States)

    Khoshravesh, Mojtaba; Mirzaei, Sayyed Mohammad Javad; Shirazi, Pooya; Valashedi, Reza Norooz

    2018-06-01

    This study was performed to investigate the uniformity of distribution of water and discharge variations in drip irrigation using magnetic water. Magnetic water was achieved by transition of water using a robust permanent magnet connected to a feed pipeline. Two main factors including magnetic and non-magnetic water and three sub-factor of salt concentration including well water, addition of 150 and 300 mg L-1 calcium carbonate to irrigation water with three replications were applied. The result of magnetic water on average dripper discharge was significant at ( P ≤ 0.05). At the final irrigation, the average dripper discharge and distribution uniformity were higher for the magnetic water compared to the non-magnetic water. The magnetic water showed a significant effect ( P ≤ 0.01) on distribution uniformity of drippers. At the first irrigation, the water distribution uniformity was almost the same for both the magnetic water and the non-magnetic water. The use of magnetic water for drip irrigation is recommended to achieve higher uniformity.

  12. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    watering, with timing ranging between one and three hours in T1, and between about half-an-hour and one-hour and a-half, in T2. The validity of Hydrus-2D model was initially assessed based on the comparison between measured and estimated soil water content at different distances from the emitter (RMSE values were not higher than 0.036). Then, model simulations allowed to verify that it is possible to enhance irrigation water use efficiency by increasing the frequency of irrigation even maintaining limited water deficit conditions during the full development stage subsequent the crop tuberization. Experimental results, joined to model simulations can therefore provide useful guidelines for a more sustainable use of irrigation water in countries characterised by semi-arid environments and limited availability of water resources.

  13. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment......Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...

  14. Comparing water options for irrigation farmers using Modern Portfolio Theory

    NARCIS (Netherlands)

    Gaydon, D.S.; Meinke, H.B.; Rodriguez, D.; McGrath, D.J.

    2012-01-01

    For irrigation farmers, the deregulation of water markets and consequent emergence of water as a tradeable commodity calls for a method of comparing traditional on-farm water options (growing crops) with off-farm market options (selling water seasonally, or selling water licences permanently). The

  15. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Science.gov (United States)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  16. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Science.gov (United States)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  17. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique?

    NARCIS (Netherlands)

    Zaag, van der P.; Juizo, D.; Vilanculos, A.; Bolding, J.A.; Post Uiterweer, N.C.

    2010-01-01

    This paper verifies whether the water resources of the transboundary Limpopo River Basin are sufficient for the planned massive irrigation developments in the Mozambique part of this basin, namely 73,000 ha, in addition to existing irrigation (estimated at 9400 ha), and natural growth of common use

  18. Effect of Water Quality and Drip Irrigation Management on Yield and Water Use Efficiency in Late Summer Melon

    Directory of Open Access Journals (Sweden)

    javad baghani

    2016-02-01

    Full Text Available Introduction: Production and growth of plants in many parts of the world due to degradation and water scarcity have been limited and particularly, in recent decades, agriculture is faced with stress. In the most parts of Iran, especially in the Khorasan Razavi province, drought is a fact and water is very important. Due to melon cultivation in this province, and the conditions of quality and quantity of water resources and water used to produce the melon product in this province, any research done on the use of saline and brackish waters is statistically significant. Materials and Methods: To study the effects of different water salinity and water management on some of the agronomic traits of late summer melon with drip irrigation, an experiment with 7 treatments and 3 repetitions was conducted in a randomized complete block design, in Torogh station, Mashhad. The irrigation treatments were: 1- fresh water from planting to harvesting, 2- water (3 dS/m from planting to harvesting, 3- water (6 dS/m from planting to harvesting, 4- water (6 dS/m from 20 days after plantation to harvesting, 5-water (6 dS/m from 40 days after plantation to harvesting, 6-water (3 dS/m from 20 days after plantation to harvesting, 7-water (6 dS/m from 40 days after plantation to harvesting. Row spacing and plant spacing were 3 m and 60 cm, respectively and the pipe type had 6 liters per hour per unit of meters in the drip irrigation system. Finally, the amount of salinity water, number of male and female flowers, number of seed germination, dry leaves' weight, leaf area, chlorophyll (with SPAD etc. were measured and all data were analyzed by using MSTAT-C software and all averages of data, were compared by using the Duncan test. Results and Discussion The results of analysis of data showed the following: Number of seeds germination: Salinity in water irrigation had no significant effects on the number of seed germination. However, there was the most number of seed

  19. Integrated Water Resources Simulation Model for Rural Community

    Science.gov (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  20. Pricing Unmetered Irrigation Water under Asymmetric Information and Full Cost Recovery

    Directory of Open Access Journals (Sweden)

    Alban Lika

    2016-12-01

    Full Text Available The objective of this study is to define an efficient pricing scheme for irrigation water in conditions of unmetered water use. The study is based on a principal-agent model and identifies a menu of contracts, defined as a set of payments and share of irrigated area, able to provide incentives for an efficient use of the resource by maximizing social welfare. The model is applied in the case study of the Çukas region (Albania where irrigation water is not metered. The results demonstrate that using a menu of contracts makes it possible to define a second best solution that may improve the overall social welfare derived from irrigation water use compared with the existing pricing structure, though, in the specific case study, the improvement is small. Furthermore, the results also suggest that irrigation water pricing policy needs to take into account different farm types, and that appropriate contract-type pricing schemes have a potential role in providing incentives to farmers to make irrigation choices to the social optimum.

  1. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  2. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    human consumption as they pose serious health risks due to contamination with the metals. For environmental ... mining activities, industrial and domestic effluents, urban ... drinking and bathing water, irrigation, food, fuel and energy.

  3. Resources for National Water Savings for Outdoor Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-05-01

    In support of efforts by the U.S. Environmental Agency's (EPA's) WaterSense program to develop a spreadsheet model for calculating the national water and financial savings attributable to WaterSense certification and labeling of weather-based irrigation controllers, Lawrence Berkeley National Laboratory reviewed reports, technical data, and other information related to outdoor water use and irrigation controllers. In this document we categorize and describe the reviewed references, highlighting pertinent data. We relied on these references when developing model parameters and calculating controller savings. We grouped resources into three major categories: landscapes (section 1); irrigation devices (section 2); and analytical and modeling efforts (section 3). Each category is subdivided further as described in its section. References are listed in order of date of publication, most recent first.

  4. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  5. Analyzing alternative policy instruments for the irrigation sector : an assessment of the potential for water market development in the Chishtian Sub-division, Pakistan

    NARCIS (Netherlands)

    Strosser, P.

    1997-01-01


    The increasing scarcity of water and financial resources has made the economic dimension of water an important element of irrigation sector policies. Water pricing is the means traditionally used to incorporate economic issues into irrigation sector policies. More recently, water markets

  6. Chlorinated and ultraviolet radiation -treated reclaimed irrigation water is the source of Aeromonas found in vegetables used for human consumption

    Energy Technology Data Exchange (ETDEWEB)

    Latif-Eugenín, Fadua; Beaz-Hidalgo, Roxana; Silvera-Simón, Carolina [Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus (Spain); Fernandez-Cassi, Xavi [Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona (Spain); Figueras, María J., E-mail: mariajose.figueras@urv.cat [Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus (Spain)

    2017-04-15

    Wastewater is increasingly being recognized as a key water resource, and reclaimed water (or treated wastewater) is used for irrigating vegetables destined for human consumption. The aim of the present study was to determine the diversity and prevalence of Aeromonas spp. both in reclaimed water used for irrigation and in the three types of vegetables irrigated with that water. Seven of the 11 (63.6%) samples of reclaimed water and all samples of vegetables were positive for the presence of Aeromonas. A total of 216 Aeromonas isolates were genotyped and corresponded to 132 different strains that after identification by sequencing the rpoD gene belonged to 10 different species. The prevalence of the species varied depending on the type of sample. In the secondary treated reclaimed water A. caviae and A. media dominated (91.4%) while A. salmonicida, A. media, A. allosaccharophila and A. popoffii represented 74.0% of the strains in the irrigation water. In vegetables, A. caviae (75.0%) was the most common species, among which a strain isolated from lettuce had the same genotype (ERIC pattern) as a strain recovered from the irrigation water. Furthermore, the same genotype of the species A. sanarellii was recovered from parsley and tomatoes demonstrating that irrigation water was the source of contamination and confirming the risk for public health. - Highlights: • Reclaimed water (= treated wastewater) is used for the irrigation of vegetables. • Aeromonas was found in reclaimed water and irrigated vegetables with this water. • The prevalence of Aeromonas spp. varied between irrigation water and vegetables. • Epidemiological relationships were found between irrigation water and vegetables. • The water was the source of contamination which means a risk for the public health.

  7. Chlorinated and ultraviolet radiation -treated reclaimed irrigation water is the source of Aeromonas found in vegetables used for human consumption

    International Nuclear Information System (INIS)

    Latif-Eugenín, Fadua; Beaz-Hidalgo, Roxana; Silvera-Simón, Carolina; Fernandez-Cassi, Xavi; Figueras, María J.

    2017-01-01

    Wastewater is increasingly being recognized as a key water resource, and reclaimed water (or treated wastewater) is used for irrigating vegetables destined for human consumption. The aim of the present study was to determine the diversity and prevalence of Aeromonas spp. both in reclaimed water used for irrigation and in the three types of vegetables irrigated with that water. Seven of the 11 (63.6%) samples of reclaimed water and all samples of vegetables were positive for the presence of Aeromonas. A total of 216 Aeromonas isolates were genotyped and corresponded to 132 different strains that after identification by sequencing the rpoD gene belonged to 10 different species. The prevalence of the species varied depending on the type of sample. In the secondary treated reclaimed water A. caviae and A. media dominated (91.4%) while A. salmonicida, A. media, A. allosaccharophila and A. popoffii represented 74.0% of the strains in the irrigation water. In vegetables, A. caviae (75.0%) was the most common species, among which a strain isolated from lettuce had the same genotype (ERIC pattern) as a strain recovered from the irrigation water. Furthermore, the same genotype of the species A. sanarellii was recovered from parsley and tomatoes demonstrating that irrigation water was the source of contamination and confirming the risk for public health. - Highlights: • Reclaimed water (= treated wastewater) is used for the irrigation of vegetables. • Aeromonas was found in reclaimed water and irrigated vegetables with this water. • The prevalence of Aeromonas spp. varied between irrigation water and vegetables. • Epidemiological relationships were found between irrigation water and vegetables. • The water was the source of contamination which means a risk for the public health.

  8. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    Science.gov (United States)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  9. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    Science.gov (United States)

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  10. Soil Water Balance and Irrigation Strategies in an Agricultural District of Southern Italy

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2010-06-01

    Full Text Available An efficient management of water resources is considered very important for Mediterranean regions of Italy in order to improve the economical and environmental sustainability of the agricultural activity. The purpose of this study is to analyze the components of soil water balance in an important district included in the regions of Basilicata and Puglia and situated in the Jonical coastal area of Southern Italy and mainly cropped with horticultural crops. The study was performed by using the spatially distributed and physically based model SIMODIS in order to individuate the best irrigation management maximizing the water use efficiency and minimizing water losses by deep percolation and soil evaporation. SIMODIS was applied taking in to account the soil spatial variability and localization of cadastral units for two crops, durum wheat and water melon. For water melon recognition in 2007 a remote sensed image, from SPOT5 satellite, at the spatial resolution of 10 m, has been used. In 2008, a multi-temporal data set was available, from SPOT5 satellite to produce a land cover map for the classes water melon and durum wheat. Water melon cultivation was simulated adopting different water supply managements: rainfed and four irrigation strategies based on (i soil water availability and (ii plant water status adopting a threshold daily stress value. For each management, several water management indicators were calculated and mapped in GIS environment. For seasonal irrigation depth, actual evapotranspiration and irrigation efficiency were also determined. The analysis allowed to individuate the areas particularly sensitive to water losses by deep percolation because of their hydraulic functions characterized by low water retention and large values of saturated hydraulic conductivity. For these areas, the irrigation based on plant water status caused very high water losses by drainage. On the contrary, the irrigation scheduled on soil base allowed to

  11. Effects of climate change on water abstraction restrictions for irrigation during droughts - The UK case

    Science.gov (United States)

    Rey Vicario, D.; Holman, I.

    2016-12-01

    The use of water for irrigation and on-farm reservoir filling is globally important for agricultural production. In humid climates, like the UK, supplemental irrigation can be critical to buffer the effects of rainfall variability and to achieve high quality crops. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. Currently, water abstraction from surface waters for agricultural irrigation can be restricted by the Environment Agency during droughts under Section 57 of the Water Resources Act (1991), based on abnormally low river flow levels and rainfall forecast, causing significant economic impacts on irrigated agricultural production. The aim of this study is to assess the impact that climate change may have on agricultural abstraction in the UK within the context of the abstraction restriction triggers currently in place. These triggers have been applied to the `Future Flows hydrology' database to assess the likelihood of increasing restrictions on agricultural abstraction in the future by comparing the probability of voluntary and compulsory restrictions in the baseline (1961-1990) and future period (2071-2098) for 282 catchments throughout the whole of the UK. The results of this study show a general increase in the probability of future agricultural irrigation abstraction restrictions in the UK in the summer, particularly in the South West, although there is significant variability between the 11 ensemble members. The results also indicate that UK winters are likely to become wetter in the future, although in some catchments the probability of abstraction restriction in the reservoir refilling winter months (November-February) could increase slightly. An increasing frequency of drought events due to climate change is therefore likely to lead to

  12. Water resources in the next millennium

    Science.gov (United States)

    Wood, Warren

    As pressures from an exponentially increasing population and economic expectations rise against a finite water resource, how do we address management? This was the main focus of the Dubai International Conference on Water Resources and Integrated Management in the Third Millennium in Dubai, United Arab Emirates, 2-6 February 2002. The invited forum attracted an eclectic mix of international thinkers from five continents. Presentations and discussions on hydrology policy/property rights, and management strategies focused mainly on problems of water supply, irrigation, and/or ecosystems.

  13. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    Science.gov (United States)

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  14. Water and energy footprint of irrigated agriculture in the Mediterranean region

    Science.gov (United States)

    Daccache, A.; Ciurana, J. S.; Rodriguez Diaz, J. A.; Knox, J. W.

    2014-12-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m3 kg-1) and energy (CO2 kg-1) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km3 yr-1 of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm-3 and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km3 of water but would correspondingly increase CO2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km3 yr-1 (+137%) whilst CO2 emissions would rise by +270%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.

  15. Water Resources Research Center

    Science.gov (United States)

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center At WRRC we concentrate on addressing the unique water and wastewater management problems and issues elsewhere by researching water-related issues distinctive to these areas. We are Hawaii's link in a network

  16. Natural resource management issues of pakistan's agriculture: the cases of land, labour and irrigation

    International Nuclear Information System (INIS)

    Arifullah, S.A.; Farid, N.

    2009-01-01

    With the objective to understand the optimization behavior of farmers in allocating land, labor and irrigation water, Linear Programming (LP) analytic technique was applied to 13 Kharif and 7 Rabi crops, using national level data from 1990-2005. The crops included in the analysis have been occupying 80 - 85 percent of Pakistan's cropped area for the last three to four decades. The optimization analysis resulted in bringing up three major natural resource management issues of the Pakistan's crop sector to the forefront. First, Basmati rice, mung, fodders of millet and sorghum, onion and IRRI rice were found optimal Kharif crops relative to sugarcane, maize, maize fodder, millet, sorghum, cotton and tomato. For Rabi wheat, potato, gram, rapeseed and berseem proved to be optimal relative to barley and sugarcane, for this period. The results imply that to have an efficient agriculture base Pakistan should either replace the sub-optimal crops with the optimal ones, or the resource management side of such crops should be improved with the help sensitivity analysis. Second, cotton and tomato appeared to be relatively sensitive to labor availability than other crops; they seemed to establish a direct correlation between the optimality status and labor availability. And third, irrigation emerged as a critical input for IRRI rice in Kharif and for potato and gram in Rabi season; for these crops the crop optimality was directly correlated to the number of irrigations applied. In contrast, its opportunity cost is higher than the per unit return in cotton, tomato, wheat and berseem. This signified that irrigation needs to be managed efficiently in the latter four crops; whereas in the former three crops use of extra water would help in optimizing. (author)

  17. Water and energy footprint of irrigated agriculture in the Mediterranean region

    International Nuclear Information System (INIS)

    Daccache, A; Ciurana, J S; Knox, J W; Rodriguez Diaz, J A

    2014-01-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m 3 kg −1 ) and energy (CO 2 kg −1 ) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km 3 yr −1 of water abstraction and 1.78 Gt CO 2 emissions yr −1 , with most emissions from sunflower (73 kg CO 2 /t) and cotton (60 kg CO 2 /t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm −3 and emissions of 31 kg CO 2 /t. Irrigation modernization would save around 8 km 3 of water but would correspondingly increase CO 2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km 3 yr −1 (+137%) whilst CO 2 emissions would rise by +270%. The study has major policy implications for understanding the water–energy–food nexus in the region and the trade-offs between strategies to save water, reduce CO 2 emissions and/or intensify food production. (letter)

  18. Evaluation of sanitary quality of lettuce (Lactuca sativa, L. irrigated with reused water in comparison with commercialized lettuce

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2011-08-01

    Full Text Available Inadequate use of water resources reduces their availability and therefore, research focused on their reutilization is required. This work evaluated the sanitary quality of lettuce irrigated with reused water in comparison with samples of lettuce commercialized in Taubaté (SP market. An experiment was developed in a greenhouse with three beds of lettuce irrigated with reused water and three beds of lettuce irrigated with urban water supply. After lettuce biological cycle had been completed, lettuce samples were collected from the beds (irrigated and non-irrigated with reused water and from samples of lettuce commercialized in the city market that were analyzed in the laboratory. The analyses were done using the multiple tubes methodology. The results showed that the samples from lettuce irrigated with urban water supply were not contaminated by either total or thermotolerant coliforms while samples of irrigated lettuce with reused water were contaminated by total coliforms. Samples from commercialized lettuce were contaminated by both kinds of coliforms. Results indicated that the application of reused water for agricultural purposes should occur only after carefully treatment to allow a safe use and to contribute to the water use sustainability.

  19. Irrigation water quality of Al-Gharraf Canal, south of Iraq

    Science.gov (United States)

    Hussein Ewaid, Salam

    2018-05-01

    To evaluate the water quality of Al-Gharraf Canal south of Iraq for irrigation purpose, analysis of 12 physiochemical parameters of water samples by standard methods was carried out at five stations during the year 2016 (water temperature, pH, electrical conductivity, total dissolved solids, bicarbonate, chloride, calcium, magnesium, sulfate, nitrate, sodium, potassium). Seven irrigation water quality indices were calculated like; sodium percentage (% Na), soluble sodium percentage (SSP), residual sodium bicarbonate (RSBC), Kelly’s ratio (KR), permeability index (PI), magnesium adsorption ratio (MAR), and sodium adsorption ratio (SAR). The results represented as diagrams (Piper, Stiff, Schoeller, Durov, Gibbs, and Wilcox) using AquaChem and RockWork hydro-chemical software. Chemical analysis for canal water demonstrates the calcic chlorinated water type, the dominance of alkalis water, the major cations was in the order of: Na+ > Ca2+ > K+ > Mg2+ and major anions was: Cl- > SO42- > HCO3- > NO3-, the mean values of the irrigation water quality indices were (in meq/l) were; SAR (2.37), % Na (43.4), PI (%) (52.3), SSP (% (38.1), MAR (%) (34.5), KR (0.61), RSBC (-1.78). The results indicate the suitability of canal water for irrigational purposes based on the calculated indices for the majority of crops under special management for salinity and permeability control. The presentation of chemical analysis by diagrams and numbers makes understanding of complex water system too simpler and quicker. This study is a comprehensive assessment towards providing indicators and classification indices on irrigation water quality of the canal ecosystem, which will be the basis for future planning decisions on agricultural demand management measures and water quality monitoring to protect this principal water resource.

  20. Rangeland and water resources

    African Journals Online (AJOL)

    Session B3 Management for sustainable use — Rangeland and water resources. ... The theme of optimsing integrated catchment management will be treated ... land system, catchment, basin), with a focus on law, policy and implementation.

  1. Modern water resources engineering

    CERN Document Server

    Yang, Chih

    2014-01-01

    The Handbook of Environmental Engineering series is an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. This exciting new addition to the series, Volume 15: Modern Water Resources Engineering , has been designed to serve as a water resources engineering reference book as well as a supplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. A critical volume in the Handbook of Environmental Engineering series, chapters employ methods of practical design and calculation illustrated by numerical examples, include pertinent cost data whenever possible, and explore in great detail the fundamental principles of the field. Volume 15: Modern Water Resources Engineering, provides information on some of the most innovative and ground-breaking advances in the field today from a panel of esteemed...

  2. Irrigation of pistachios : strategies to confront water scarcity

    NARCIS (Netherlands)

    Pérez-López, David; Memmi, Houssem; Gijón-López, Maria del Carmen; Moreno, Marta Maria; Couceiro, José Francisco; Centeno, Ana; Martín-Palomo, Maria J.; Corell, Mireia; Noguera-Artiaga, Luis; Galindo Egea, Alejandro; Torrecillas, Arturo; Moriana, Alfonso; Tejero, Ivan Francisco Garcia; Zuazo, Victor Hugo Duran

    2017-01-01

    Pistachio trees are capable to be profitable under rain-fed conditions. They also have a good response to low amounts of irrigation water, so are a great candidate to be considered for water-scarcity scenarios. The pistachio tree has a singular way of alternate bearing, losing a percentage of its

  3. A review of mathematical programming models of irrigation water ...

    African Journals Online (AJOL)

    Crops modelled influence water values, but there is no apparent relationship between objective function specification and average value. Nor does the number of irrigation options seem to influence water value either. The policy implication is that while similar models for the same region produce consistent estimates, each ...

  4. Influence of Hudiara Drain Water Irrigation on Trace Elements Load ...

    African Journals Online (AJOL)

    ... Drain Water Irrigation on Trace Elements Load In Soil And Uptake By Vegetables. ... This polluted water not only contains organic matter and crop nutrients but also ... Plant samples were collected at maturity from all the monitoring points. ... (DO), Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) ...

  5. Myths and Maths of Water Efficiency: An Analytical Framework to Assess the Real Outcome of Water Saving Technologies in Irrigation

    OpenAIRE

    Gomez Gomez, Carlos Mario; Perez Blanco, Carlos Dionisio

    2013-01-01

    Greening the economy is mostly about improving water governance and not only about putting the existing resource saving technical alternatives into practice. Focusing in the second and forgetting the first risks finishing with a highly efficient use of water services at the level of each individual user but demanding an unsustainable amount of water for the entire economy. This might be happening already in many places with the so-called modernization of irrigated agriculture: the world’s lar...

  6. Soil properties evolution after irrigation with reclaimed water

    Science.gov (United States)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after

  7. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  8. Water - an inexhaustible resource?

    Science.gov (United States)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  9. Simulation of Farmers’ Response to Irrigation Water Pricing and Rationing Policies (Case Study: Zabol City

    Directory of Open Access Journals (Sweden)

    abouzar parhizkari

    2014-10-01

    Full Text Available Considering that agricultural sector is the largest consumer of water, presenting integrated management for water resources and formulating effective policies to increase water productivity in this sector is essential. Therefore, using economic modeling , this study simulated the farmers’ responses to irrigation water pricing and rationing policies in Zabol city. To achieve the study purpose, the State Wide Agricultural Production Model and Positive Mathematical Programming were applied. The required data for the years 2010-2011 was collected by completing questionnaires and collecting data sets from the relevant agencies of Zabol city in personal attendance. The results showed that imposing irrigation water pricing and rationing policies in Zabol city leads to a reduction in the total cultivated area by 9/54 and 5/14 percent and a reduction in the water consumption by 6/23 and 7/01 percent, compared to the base year. Ultimately, irrigation water rationing policy, considering frugality of 18/9 million m3 of water, as the appropriate solution for the sustainability of water resources of Zabol city was proposed.

  10. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  11. Estimated Colorado Golf Course Irrigation Water Use, 2005

    Science.gov (United States)

    Ivahnenko, Tamara

    2009-01-01

    Golf course irrigation water-use data were collected as part of the U.S. Geological Survey National Water Use Program's 2005 compilation to provide baseline information, as no golf course irrigation water-use data (separate from crop irrigation) have been reported in previous compilations. A Web-based survey, designed by the U.S. Geological Survey, in cooperation with the Rocky Mountain Golf Course Superintendents Association (RMGCSA), was electronically distributed by the association to the 237 members in Colorado. Forty-three percent of the members returned the survey, and additional source water information was collected by telephone for all but 20 of the 245 association member and non-member Colorado golf courses. For golf courses where no data were collected at all, an average 'per hole' coefficient, based on returned surveys from that same county, were applied. In counties where no data were collected at all, a State average 'per hole' value of 13.2 acre-feet was used as the coefficient. In 2005, Colorado had 243 turf golf courses (there are 2 sand courses in the State) that had an estimated 2.27 acre-feet per irrigated course acre, and 65 percent of the source water for these courses was surface water. Ground water, potable water (public supply), and reclaimed wastewater, either partially or wholly, were source waters for the remaining courses. Fifty-three of the 64 counties in Colorado have at least one golf course, with the greatest number of courses in Jefferson (23 courses), Arapahoe (22 courses), and El Paso Counties (20 courses). In 2005, an estimated 5,647.8 acre-feet in Jefferson County, 5,402 acre-feet in Arapahoe County, and 4,473.3 acre-feet in El Paso County were used to irrigate the turf grass.

  12. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    Science.gov (United States)

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    Science.gov (United States)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  14. Water Use and Crop Coefficients in Sprinkler Irrigated Rice

    Directory of Open Access Journals (Sweden)

    Antonino Spanu

    Full Text Available Field experiments were carried out during the years 2002, 2004, 2005 and 2006 to analyze water-soil-atmosphere interactions in sprinkler irrigated rice. The research was carried out in Sardinia (39º 59’ N; 8º 40’ E, at altitude 15 m. The cultivars used in the experiments, respectively in 2002 and in 2004-2005-2006, were Irat 212 and Eurosis. In each year cultivars were subjected to the same crop management. Irrigation was applied since the emergence with the sprinkler method, taking into account the loss of water from ‘Class A’ pan evaporation. Soil water content was monitored at 0.10 m intervals until 1.00-m depth using a ‘Diviner 2000’ (Sentek. In 2002 seven irrigation scheduling treatments were compared. In 2004, 2005, 2006 irrigation treatments provided for optimal soil water conditions during the growing season. In 2002 the results highlighted: 1 0-0.20 m depth was the most important layer for crop water uptake and the best correlated layer with rice rough yield; 2 the positive relationship between yield and water supply was significant until 6500 m3 ha-1 of water applied. Further seasonal irrigation volumes did not increase significantly yield. In 2004, 2005 and 2006 the analysis of the soil water balance at different crop phenological stages allowed to estimate crop coefficients (Kc using the Penman-Monteith equation and the ‘Class A’ pan evaporation (Kcev. Kc varied over the three-year period on average from 0.90 to 1.07 and 0.97, respectively for the emergence-end of tillering, end of tillering-heading and heading-maturing periods, while crop coefficients as a ratio between maximum crop evapotranspiration (ETc and Epan, Kcev ranged from 0.78 to 0.92 and 0.81 for the same time periods.

  15. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  16. Drainage estimation to aquifer and water use irrigation efficiency in semi-arid zone for a long period of time

    Science.gov (United States)

    Jiménez-Martínez, J.; Molinero-Huguet, J.; Candela, L.

    2009-04-01

    Water requirements for different crop types according to soil type and climate conditions play not only an important role in agricultural efficiency production, though also for water resources management and control of pollutants in drainage water. The key issue to attain these objectives is the irrigation efficiency. Application of computer codes for irrigation simulation constitutes a fast and inexpensive approach to study optimal agricultural management practices. To simulate daily water balance in the soil, vadose zone and aquifer the VisualBALAN V. 2.0 code was applied to an experimental area under irrigation characterized by its aridity. The test was carried out in three experimental plots for annual row crops (lettuce and melon), perennial vegetables (artichoke), and fruit trees (citrus) under common agricultural practices in open air for October 1999-September 2008. Drip irrigation was applied to crops production due to the scarcity of water resources and the need for water conservation. Water level change was monitored in the top unconfined aquifer for each experimental plot. Results of water balance modelling show a good agreement between observed and estimated water level values. For the study period, mean drainage obtained values were 343 mm, 261 mm and 205 mm for lettuce and melon, artichoke and citrus respectively. Assessment of water use efficiency was based on the IE indicator proposed by the ASCE Task Committee. For the modelled period, water use efficiency was estimated as 73, 71 and 78 % of the applied dose (irrigation + precipitation) for lettuce and melon, artichoke and citrus, respectively.

  17. Effect of Timing and Amount of Irrigation Water on Bean Yield and Water Use Efficiency in Arid and Semi-arid Conditions

    Directory of Open Access Journals (Sweden)

    S.S. Nurbakhsh

    2016-02-01

    Full Text Available Introduction: Nowadays, due to lack of water resources and increasing demand for water, agricultural water planning issues need further consideration. With proper planning and determination of irrigation depth and time, the effects of stress and yield loss on the plants are reduced. Irrigation scheduling is one of the most important factors in crop’s quality and quantity. The main objective of irrigation scheduling is to control crop’s water conditions in order to achieve its optimum yield level. So irrigation timing is the vital factor on which crop water stress and eventually yield's level are dependent upon. Moreover, irrigation timing is used in irrigation scheduling. The aim of this study was to evaluate the effect of irrigation time on water consumption, water use efficiency and yield of beans. Materials and Methods: In order to observe the effect of the amount and the time of the irrigation on water consumption, yields rate and water use efficiency, the current research was carried out at the University of Shahrekord during the summer of 2012. The experiment was done as a completely randomized design with 4 repetitions consisting of irrigation time and the amount of irrigation in 4 and 2 levels (at 6, 8, 14 and 18 and (deficit irrigation, full irrigation, respectively. Beans seeds were planted in 32 similar vases with a diameter of 45 cm and height of 60 cm, in each experiment. Treatments were begun after 37 days from planting. Treatments were irrigated when the average moisture in the root zone was equal to the lower border of readily available water of full irrigation. At the end of the experiments, plants were completely harvested. Then the plant’s height, number of branches, numbers of pods per plant, pod and seed weight were measured. Results and Discussion: Results showed that irrigating at different times during the day influenced water use efficiency, water consumption, seeds yield and number of pods in the bush. The water

  18. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    Science.gov (United States)

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  19. Morphophysiology of guava under saline water irrigation and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Idelfonso L. Bezerra

    Full Text Available ABSTRACT The aim of this study was to evaluate the growth of grafted guava cv. ‘Paluma’ subjected to different concentrations of salts in irrigation water and nitrogen (N fertilization. The plants were transplanted to 150 L lysimeters and under field conditions at the Science and Agri-food Technology Center of the Federal University of Campina Grande, in the municipality of Pombal - PB. The experiment was conducted in randomized block design in a 5 x 4 factorial scheme, with three replicates, and the treatments corresponded to five levels of electrical conductivity of irrigation water - ECw (0.3; 1.1; 1.9; 2.7 and 3.5 dS m-1 and four N doses (70, 100, 130 and 160% of the N dose recommended for the crop. The doses equivalent to 100% corresponded to 541.1 mg of N dm-3 of soil. Irrigation water salinity above 0.3 dS m-1 negatively affects the number of leaves, leaf area, stem diameter, dry phytomass of leaves, branches and shoots . A significant interaction between irrigation water salinity and N fertilization was observed only for the number of leaves and leaf area at 120 days after transplanting. N dose above 70% of the recommendation (378.7 mg N dm-3 soil did not mitigate the deleterious effects caused by salt stress on plant growth.

  20. Using Audience Segmentation to Tailor Residential Irrigation Water Conservation Programs

    Science.gov (United States)

    Warner, Laura A.; Chaudhary, Anil Kumar; Rumble, Joy N.; Lamm, Alexa J.; Momol, Esen

    2017-01-01

    Today's complex issues require technical expertise as well as the application of innovative social science techniques within Extension contexts. Researchers have suggested that a social science approach will play a critical role in water conservation, and people who use home landscape irrigation comprise a critical target audience for agriculture…

  1. Masculinities among irrigation engineers and water professionals in Nepal

    NARCIS (Netherlands)

    Liebrand, J.

    2014-01-01

    Summary

    This thesis documents my attempt to study masculinities among irrigation engineers and water professionals in Nepal. It is based on the recognition that more than two decades of mainstreaming gender in development research and policy have failed to come to grips

  2. Sample container and storage for paclobutrazol monitoring in irrigation water

    Science.gov (United States)

    Paclobutrazol is a plant growth retardant commonly used on greenhouse crops. Residues from paclobutrazol applications can accumulate in recirculated irrigation water. Given that paclobutrazol has a long half-life and potential biological activity in parts per billion concentrations, it would be de...

  3. Optimization strategies for improving irrigation water management of lower jhelum canal

    International Nuclear Information System (INIS)

    Rashid, M.U.

    2015-01-01

    The paper includes computing crop water requirement, identification of problems and optimization strategies for improved irrigation water management of a canal command. Lower Jhelum Canal (LJC) System was selected as a case study. Possible strategies for optimization are enhancing irrigation water productivity by high value and high yield crops, adoption of resource conservation interventions (RCIs) at the farm level, improving irrigation system efficiency and its management. Estimation of daily reference evapotranspiration of LJC command was carried out by Penman Montieth -2000 method and metrological data of Sargodha for the period 1999 to 2010 was used. Crop water requirements were computed from reference evapotranspiration, crop coefficients and periods of crops for existing cropping pattern. The comparison of the crop water requirements and available water supplies indicated shortage of more than 51% in Kharif and 54% in Rabi seasons. The gap between requirements and supplies is fulfilled by groundwater in the command. The structural measures identified in the present study for improving canal management include rationalization of canal capacities in keeping with the current water requirements and availability, rehabilitation and remodeling of canal network and lining of distributaries and minors in saline groundwater areas. An array of measures and practices identified for improved water management at the farm level include: improvement and lining of watercourses, proper farm design and layout, adoption of resource conservation technologies involving laser land leveling, zero tillage, and bed-furrow irrigation method. Adopting proper cropping systems considering land suitability and capacity building of farming community in improved soil, crop and water management technologies would enhance the water productivity in an effective and sustainable manner. (author)

  4. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  5. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  6. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  7. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    controllers, centralized and site-specific sensor inputs, leak detection sensors, and the use of harvested water (i.e., rainwater and air condition water ...include ET functionality with soil moisture sensor, and leak detection via flow meter. ESTCP Final Report Smart Water Conservation System 58... leakage . The minimum static pressure was not achieved because tank water levels were less than 10 feet in the selected low profile tank.) Adjust break

  8. Water resources transfers through Chinese interprovincial and foreign food trade.

    Science.gov (United States)

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2014-07-08

    China's water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability--with abundant agricultural land and little water resources in the north--increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities' virtual water content to build China's domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China's domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China's soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km(3)/y irrigation water savings, 41 km(3)/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.

  9. Food security, irrigation, climate change, and water scarcity in India

    Science.gov (United States)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  10. China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge

    Directory of Open Access Journals (Sweden)

    Liuyang Yao

    2017-12-01

    Full Text Available In response to the increased competition for water, the Chinese government has determined to promote water-saving irrigation (WSI followed by a range of institutional arrangements and policy goals. Three management mechanisms are analyzed in this study in terms of effectiveness, including the top-down regulation mechanism using direct control or economic instruments, the design-bid funding mechanism mobilizing local governments by competitive grants program, and the bottom-up participation mechanism transferring more irrigation management responsibilities to end-users. Although the WSI management has achieved notable improvements by the combination of different mechanisms, conflicts among different policy goals, uneven distribution of financial resources, and insufficient participation from water users caused the difficulty in aligning stakeholders’ incentives. Approaches are needed to enable sustainable management by coordinating incentives from different stakeholders in the management, as well as incorporating end water users to assist decision-making.

  11. Water resources (Chapter 12)

    Science.gov (United States)

    Thomas C. Brown; Romano Foti; Jorge Ramirez

    2012-01-01

    In this chapter, we focus on the vulnerability of U.S. freshwater supplies considering all lands, not just forest and rangelands. We do not assess the condition of those lands or report on how much of our water supply originates on lands of different land covers or ownerships, because earlier Resources Planning Act (RPA) Assessment work addressed these topics....

  12. WATER HAMMER OSCILLATIONS IN THE IRRIGATION FACILITIES

    Science.gov (United States)

    Kurata, Kouichi; Sasaki, Katsuhito; Makihata, Toshiaki

    In case a gate installed at the end of discharge conduit is vibrating during discharge, or an air valve is vibrating during water-filling operation into the conduit pipe between main gate and auxiliary gate, and vibration period tv is larger than tc (water hammer propagation time) that is equivalent to the phenomenon of slow closure, there is a possibility that water hammer oscillation in the discharge conduit could be induced. In this paper, by using two case examples, vibration phenomena transmitted to each part are analyzed, on the basis of water pressure fluctuation and pressure wave propagation due to occurrence of water hammer oscillation.

  13. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    For sound land use and water management in irrigated area, knowledge of the chemical composition of soils, water, climate, drainage condition and irrigation methods before action are crucial for sustainability of irrigation projects. The study aimed to evaluate the physicochemical properties of soils and water for intended ...

  14. Household-level heterogeneity of water resources within common-pool resource systems

    NARCIS (Netherlands)

    McCord, Paul; Dell'angelo, Jampel; Gower, Drew; Caylor, Kelly K.; Evans, Tom

    2017-01-01

    Prior work has demonstrated the ability of common property systems to sustain institutional arrangements governing natural resources over long periods of time. Much of this work has focused on irrigation systems where upstream users agree to management arrangements that distribute water resources

  15. Regulations of irrigation on regional climate in the Heihe watershed, China, and its implications to water budget

    Science.gov (United States)

    Zhang, X.

    2015-12-01

    In the arid area, such as the Heihe watershed in Northwest China, agriculture is heavily dependent on the irrigation. Irrigation suggests human-induced hydro process, which modifies the local climate and water budget. In this study, we simulated the irrigation-induced changes in surface energy/moisture budgets and modifications on regional climate, using the WRF-NoahMP modle with an irrigation scheme. The irrigation scheme was implemented following the roles that soil moisture is assigned a saturated value once the mean soil moisture of all root layers is lower than 70% of fileld capacity. Across the growth season refering from May to September, the simulated mean irrigation amount of the 1181 cropland gridcells is ~900 mm, wihch is close to the field measurments of around 1000 mm. Such an irrigation largely modified the surface energy budget. Due to irrigation, the surface net solar radiation increased by ~76.7 MJ (~11 Wm-2) accouting for ~2.3%, surface latent and senbile heat flux increased by 97.7 Wm-2 and decreased by ~79.7 Wm-2 respectively; and local daily mean surface air temperature was thereby cooling by ~1.1°C. Corresponding to the surface energy changes, wind and circulation were also modified and regional water budget is therefore regulated. The total rainfall in the irrigation area increased due to more moisture from surface. However, the increased rainfall is only ~6.5mm (accounting for ~5% of background rainfall) which is much less than the increased evaporation of ~521.5mm from surface. The ~515mm of water accounting for 57% of total irrigation was transported outward by wind. The other ~385 mm accounting for 43% of total irrigation was transformed to be runoff and soil water. These results suggest that in the Heihe watershed irrigation largely modify local energy budget and cooling surface. This study also implicate that the existing irrigation may waste a large number of water. It is thereby valuable to develope effective irrigation scheme to

  16. Water resources management plan

    Directory of Open Access Journals (Sweden)

    Glauco Maia

    2011-12-01

    Full Text Available Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assist the Fire Department in its missions. This goal was reached, and in association with LAGEOP (Geoprocessing Laboratory, UFRJ, the Tactical Group started using GIS techniques. The plan provides for the register of existing operational structures within each group (troops, vehicles and special equipment, along with knowledge about the nature and operating conditions of fire hydrants, as well as a detailed survey of areas considered to be "critical". The survey helps to support actions related to environmental disasters involved in the aforementioned critical areas (hospital, churches, schools, and chemical industries, among others. The Caju neighborhood, in Rio de Janeiro, was defined as initial application area, and was the first jurisdiction to have the system implemented, followed by Copacabana, Leblon, Lagoa, and Catete districts.

  17. Water resources of Sedgwick County, Kansas

    Science.gov (United States)

    Bevans, H.E.

    1989-01-01

    Hydrologic data from streams, impoundments, and wells are interpreted to: (1) document water resources characteristics; (2) describe causes and extent of changes in water resources characteristics; and (3) evaluate water resources as sources of supply. During 1985, about 134,200 acre-ft of water (84% groundwater) were used for public (42%), irrigation, (40%), industrial (14%), and domestic (4%) supplies. Streamflow and groundwater levels are related directly to precipitation, and major rivers are sustained by groundwater inflow. Significant groundwater level declines have occurred only in the Wichita well field. The Arkansas and Ninnescah Rivers have sodium chloride type water; the Little Arkansas River, calcium bicarbonate type water. Water quality characteristics of water in small streams and wells depend primarily on local geology. The Wellington Formation commonly yields calcium sulfate type water; Ninnescah Shale and unconsolidated deposits generally yield calcium bicarbonate type water. Sodium chloride and calcium sulfate type water in the area often have dissolved-solids concentrations exceeding 1,000 mg/L. Water contamination by treated sewage effluent was detected inparts of the Arkansas River, Little Arkansas River, and Cowskin Creek. Nitrite plus nitrate as nitrogen contamination was detected in 11 of 101 wells; oilfield brine was detected in the Wichita-Valley Center Floodway, Prairie Creek, Whitewater Creek, and 16 of 101 wells; and agricultural pesticides were detected in 8 of 14 impoundments and 5 of 19 wells. Generally, the water is acceptable for most uses. (USGS)

  18. Review - Water resources development

    Energy Technology Data Exchange (ETDEWEB)

    Todd, David K [Civil Engineering, University of California, Berkeley (United States)

    1970-05-15

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  19. Review - Water resources development

    International Nuclear Information System (INIS)

    Todd, David K.

    1970-01-01

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  20. pH Control of Untreated Water for Irrigation

    Science.gov (United States)

    Poyen, Faruk Bin; Kundu, Palash K.; Ghosh, Apurba K.

    2018-05-01

    Irrigation in India still plays a pivotal role in the country's economic and employment structure. But due to unawareness and lack of technological upgradations and ill and careless agricultural practices, the yield from the fields is poor and not to its best capacity. There exists a lot of reasons and factors that brings down the crop productivity. One among them is the quality of irrigation water that is supplied to the fields. It is a common practice in India and other sub-continental countries not to access the water qualitatively before getting fed to the fields. Albeit, it does not have catastrophic effects on the productivity, but it affects the nourishment of the crops to some good extent. Water pH has a strong effect on the soil and crop, when it comes to absorption of nutrients by the plant bodies. With properly regulating the pH level of the irrigation water, it is possible to create an ambiance where the symbiotic effects between the soil and the plant can be optimized. In this paper, it is tried to regulate the pH levels of the water based on the type of soil and the optimal requirement by the crop. The work in this paper involves neutralization of acidic or alkaline water before it is being supplied to the farmlands. The process model is simulation based which gave considerably good and acceptable results.

  1. The Water Connection: Irrigation, Water Grabbing and Politics in Southern Morocco

    Directory of Open Access Journals (Sweden)

    Annabelle Houdret

    2012-06-01

    Full Text Available Water and land grabbing is often an indication of growing control by an elite group over natural resources for agricultural production, marginalising their previous users. It may drive and exacerbate social, economic and political disparities and so increase the potential for conflict. In Southern Morocco’s Souss valley, the overuse of water resources is causing aquifer levels to sink and agricultural land to be abandoned. At the same time, irrigated agriculture is still expanding, often permitting the growing of lucrative citrus fruits. This export-oriented agriculture mostly benefits the economic elite, increasing their political influence. Small farmers, on the other hand, face growing threats to their livelihoods. A public-private partnership (PPP project reallocating water through a 90 km pipeline from a mountain region to plantations in the valley has been implemented to enhance water supply and save dying citrus plantations. However, it is accentuating disparities between farmers. We trace the dynamics of marginalisation linked to this PPP and use emerging water conflicts as a lens to analyse the appropriation of water resources and the underlying political and economic relationships and strategies. On the basis of the case study, we show that water conflicts are as much struggles over political influence as over the resource itself and, consequently, that the related phenomenon of 'water grabbing' is not only driven by economic interests but also determined by a political agenda of regime stability and economic control. However, we also point to the opportunities presented by recent social and political changes in Morocco, including the influence of the 'Arab Spring', and argue that such processes as increasing transparency, decentralisation and the empowerment of local civil society support, the re-appropriation of water, livelihoods and power. We conclude by examining the limits of this PPP model, which has been internationally

  2. Factors Affecting the Ability of Agriculture to Pay Irrigation-Water Costs

    Energy Technology Data Exchange (ETDEWEB)

    Hagood, M. A. [Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome (Italy)

    1967-11-15

    There are no universally acceptable standard criteria for determining how much agriculture can pay for irrigation water. Justification of cost will depend upon the country's need to develop its soil and water resources for food, for international trade, and for its cumulative effect on other industries in comparison with other possible uses and their over-all contributions to the economy. Social and political conditions often have as much or more influence on development cost decisions than do strictly economic analyses. Many studies indicate that US $0.10/1000 US gal is an upper limit of acceptable costs for developing irrigation water at present economic levels. Under private development and on projects where water users must pay total water costs, methods are available for making feasibility budgets based on present prices. Because of inflation, world food shortage, recessions, future population and other unknown factors, it is hazardous to predict how much farmers or agriculture can pay for irrigation water. Better utilization of water available now offers opportunities for ''developing'' sources at costs much less than those for sources such as sea-water conversion. (author)

  3. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    ht ly M or e W or kl oa d; 5 -M or e W or kl oa d; 6 -S ig ni fic an lty M or...install the water harvesting and pump system was captured from the contractor cost proposal. 7.1.3 Water Cost Water purchased from the Port Hueneme Water...818) 737-2734 KDuke@valleycrest.com Contractor Tom Santoianni 1205 Mill Rd. Bldg. 1430 Public Works, Ventura (805) 982-4075 Tom.Santoianni@navy.mil Energy Manager

  4. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  5. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  6. Rational use of water in trickle irrigation design.

    Science.gov (United States)

    Saad, J. C. C.; da Silva Junior, H. M.

    2012-04-01

    In trickle irrigation systems, the design is based on the pre-established emission uniformity (EU) which is the combined result of the equipment characteristics and its hydraulic configuration. However, this desired value of the EU may not be confirmed by the final project (in field conditions) and neither by the yield uniformity. However, the most important is to assure yield uniformity with rational use of water. The hypotheses of this research were: a) the EU of a trickle irrigation system at field conditions is equal to the emission uniformity pre-established in the design; b) EU has always the lowest value when compared with other indicators of uniformity; c) the discharge variation coefficient is not equal to production variation coefficient in the operational unit; d) the productivity variation coefficient is more dependent on water depth applied than the EU. This study aimed to evaluate the relationships among EU used in the irrigation system design, water depth applied and the final yield uniformity. The uniformity indicators evaluated were: EU, distribution uniformity (UD) and the index proposed by Barragan & Wu (2005). They were compared estimating the performance of a trickle irrigation system applied in a citrus orchard with dimensions of 400m x 600m. The design of the irrigation system was optimized by a Linear Programming model. The tree rows were leveled in the larger direction and the spacing adopted in the orchard was 7m x 4m. The manifold line was always operating on a slope condition. The sensitivity analysis involved different slopes, 0, 3, 6, 9 and 12%, and different values of emission uniformity, 60, 70, 75, 80, 85, 90 and 94%. The citrus yield uniformity was evaluated by the variation coefficient. The emission uniformity (EU) after design differed from the EU pre-established, more sharply in the initial values lower than 90%. Comparing the uniformity indexes, the EU always generated lower values when compared with the UD and with the index

  7. Evaluation of multiple water quality indices for drinking and irrigation purposes for the Karoon river, Iran.

    Science.gov (United States)

    Aminiyan, Milad Mirzaei; Aitkenhead-Peterson, Jacqueline; Aminiyan, Farzad Mirzaei

    2018-06-16

    The main purpose of this study was to evaluate the water quality of the Karoon river, which is a main river in Iran country. For this purpose, hydrochemical analyses of a database that maintained by the Water Resources Authority of Khuzestan Province, Iran's Ministry of Energy, were carried out. These data were compared with the maximum permissible limit values recommended by World Health Organization and Food and Agriculture Organization water standards for drinking and agricultural purposes, respectively. Also in this regard, multiple indices of water quality were utilized. However, not all indices gave similar rankings for water quality. According to the USSL diagram and Kelly ratio, Karoon's water quality is not suitable for irrigation purposes due to high salinity and moderate alkalinity. However, the results of the magnesium hazard analysis suggested that water quality for irrigation is acceptable. A Piper diagram illustrated that the most dominant water types during the 15 years of the study were Na-Cl and Na-SO 4 . The mineral saturation index also indicated that Na-Cl is the dominant water type. The water quality for drinking purpose was evaluated using a Schoeller diagram and water quality index (WQI). According to the computed WQI ranging from 111.9 to 194.0, the Karoon's water in the Khuzestan plain can be categorized as "poor water" for drinking purposes. Based on hydrochemical characteristics, years 2000-2007 and 2008-2014 were categorized into two clusters illustrating a decline in water quality between the two time periods.

  8. Drought Tip: Irrigating Citrus with Limited Water

    OpenAIRE

    Faber, Ben

    2015-01-01

    As an evergreen in California's Mediterranean climate, with wet winters and dry summers, citrus requires some water all year long. Depending on the cultivar and rootstock, citrus can sustain certain levels of drought stress.

  9. Characterizing the Effects of Irrigation in the Middle East and North Africa Using Remotely Sensed Vegetation and Water Cycle Observations

    Science.gov (United States)

    Bolten, John; Ozdogan, Mutlu; Beaudoing, Hiroko; Rodell, Matthew

    2012-01-01

    A majority of the countries in the Middle East and North Africa (MENA) region suffer from water scarcity due in part to widespread rainfall deficits, unprecedented levels of water demand, and the inefficient use of renewable freshwater resources. Since a majority of the water withdrawal in the MENA is used for irrigation, there is a desperate need for improved understanding of irrigation practices and agricultural water use in the region. Here, satellite-derived irrigation maps and crop-type agricultural data are applied to the Land Data Assimilation System for the MENA region (MENA LDAS), designed to provide regional, gridded fields of hydrological states and fluxes relevant for water resources assessments. Within MENA-LDAS, the Catchment Land Surface Model (CLSM) simulates the location, timing, and amount of water applied through agricultural irrigation practices over the region from 2002-2012. In addition to simulating the irrigation impact on evapotranspiration, soil moisture, and runoff, we also investigate regional changes in terrestrial water storage (TWS) observed from the Gravity Recovery and Climate Experiment (GRACE) and simulated by CLSM.

  10. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  11. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  12. Accounting for potassium and magnesium in irrigation water quality assessment

    Directory of Open Access Journals (Sweden)

    J.D. Oster

    2016-04-01

    Full Text Available Irrigation with treated wastewater is expected to increase significantly in California during the coming decade as a way to reduce the impact of drought and mitigate water transfer issues. To ensure that such wastewater reuse does not result in unacceptable impacts on soil permeability, water quality guidelines must effectively address sodicity hazard. However, current guidelines are based on the sodium adsorption ratio (SAR and thus assume that potassium (K and magnesium (Mg, which often are at elevated concentrations in recycled wastewaters, pose no hazard, despite many past studies to the contrary. Recent research has established that the negative effects of high K and Mg concentrations on soil permeability are substantial and that they can be accounted for by a new irrigation water quality parameter, the cation ratio of structural stability (CROSS, a generalization of SAR. We show that CROSS, when suitably optimized, correlates strongly with a standard measure of soil permeability reduction for an agricultural soil leached with winery wastewater, and that it can be incorporated directly into existing irrigation water quality guidelines by replacing SAR.

  13. Development of water resources management in Iraq and its obstacles

    International Nuclear Information System (INIS)

    Jawad, A. M.

    2011-01-01

    Iraq witnessed recently a considerable development in the field of water resources management to go along with developed countries. Latest technology has been introduced in hydrology monitoring. Many stations for water measuring and monitoring have been constructed beside many irrigation and drainage canals in order to reach an optimum irrigation system. A special emphasis has been put on the role of nuclear techniques in enhancing the water resources management development. These techniques will provide the perfect opportunity for investing water and drained quantities and determining pollution resources to insure the sustainability of the agricultural sector without threatening the development processes. This development encounters the lack of knowledge of technology applied in the field of the use of peaceful atomic energy and nuclear technologies, which are essential in sustaining the momentum in the management of water resources, despite the entry of the latest developed devices and technologies in measurements and monitoring. (author)

  14. Projected energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L. D.; Hellickson, M. L.; Schmisseur, W. E.; Shearer, M. N.

    1978-10-01

    A computer model has been developed to predict present and future regional water, energy, labor, and capital requirements of irrigated agricultural production in Idaho, Oregon, and Washington. The energy requirements calculated were on-farm pumping, and total energies. Total energies are the combined energies of on-farm pumping, manufacture, and installation. Irrigation system selections and modifications were based on an economic analysis utilizing the following input parameters: water, energy, labor, and capital costs and requirements; groundwater and surface water pumping lifts; improved application efficiencies; and pumping plant efficiencies. Major conclusions and implications of this analysis indicate that: as water application efficiencies increases additional quantities of water will not become available to other users; an overall increase in water application efficiencies resulted in decreases in gross water applications and increases in overall on-farm pumping and total energy consumptions; more energy will be consumed as pumping and total energies than will be conserved through decreased diversion pumping energy requirements; pump-back and similar technologies have the potential of both increasing application efficiencies and energy conservation; and the interrelationships understood between applying water in quantities greater than required for crop consumptive use and leaching, and late season in-steam flow augmentation and/or aquifer recharge are not well understood, and sound policy decisions concerning agricultural use of water and energy cannot be made until these interrelationships are better understood.

  15. Water Resource Sustainability Conference 2015

    Science.gov (United States)

    Water Resource Sustainability Issues on Tropical Islands December 1 - 3, 2015 | Hilton Hawaiian Village | Honolulu, Hawaii Presented By Water Resources Research Center (WRRC), Hawaii and American Samoa Water and Environmental Research Institute (WERI), Guam Puerto Rico Water Resources and Environmental Research Institute

  16. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    GREG

    2013-05-08

    May 8, 2013 ... For sound land use and water management in irrigated area, knowledge of the chemical ... Nowadays, soil salinity has become important problem in irrigated ... hoe, shovel, plastic bags, hard paper or labeling, markers, rope,.

  17. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. (cv Chemlali)) under saline water irrigated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-07-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  18. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. CV Chemlali)) under saline water irrigated field conditions

    International Nuclear Information System (INIS)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-01-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  19. Monitoring plant water status and rooting depth for precision irrigation in the vineyards of Classic Karst

    Science.gov (United States)

    Savi, Tadeja; Moretti, Elisa; Dal Borgo, Anna; Petruzzellis, Francesco; Stenni, Barbara; Bertoncin, Paolo; Dreossi, Giuliano; Zini, Luca; Martellos, Stefano; Nardini, Andrea

    2017-04-01

    δ18O was about -6‰ and a significantly lower value was recorded after the irrigation treatments (-7.2‰)), highlighting absorption of irrigation water (-8‰)) by plants. However, Ψmin and yield of irrigated and non-irrigated grapevines were not significantly different. Interestingly, Ψmin and in particular Ψpd, were find to be slightly more negative in the MV compared to YV. On the other hand, gL measured in July, if compared to that of the spring period, decreased by about 92% in MV, but only about 70% in YV, suggesting a relatively more anisohydric and isohydric behavior in the two groups of plants, respectively. Our data demonstrate the feasibility of the development of precision irrigation methods in karstic areas, as based on physiological parameters reflecting actual water needs of plants (Ψmin), which would assure a more sustainable management and significative savings of the, already limited, water resource.

  20. Water resources for Africa

    International Nuclear Information System (INIS)

    2003-01-01

    Water scarcity is a matter of urgent, national, regional and international concern. For those people, usually women, who are responsible for the daily task of obtaining sufficient water for household use, water shortages are a perpetual worry. It is a situation which affects many individual families and communities throughout the arid and semi-arid regions of Africa. The isotope studies conducted thus far have proved that the majority of regional groundwater systems in northern Africa and the Sahel zone are paleowaters, replenished thousands of years ago, without the possibility of significant replenishment under present climatic conditions. Therefore, removal from such underground reservoirs will eventually deplete the resource. Mapping these paleowaters, and estimating their reservoir sizes, is a priority. (IAEA)

  1. Sustainable use of water resources

    DEFF Research Database (Denmark)

    Battilani, A; Jensen, Christian Richardt; Liu, Fulai

    2013-01-01

    and acidity were observed. PRD reduced irrigation water volume (-9.0% of RDI) while a higher dry matter accumulation in the fruits was recorded both in 2007 and 2008. The income for each cubic meter of irrigation water was 10.6 € in RDI and 14.8 € in PRD, respectively. The gross margin obtained with each kg......A field experiment was carried out in Northern Italy, within the frame of the EU project SAFIR, to test the feasibility of partial root-zone drying (PRD) management on processing tomato and to compare PRD irrigation strategy with regulated deficit irrigation (RDI) management. In 2007......, there was no difference between RDI and PRD for the total and marketable yield. In 2008, PRD increased the marketable yield by 14.8% while the total yield was similar to RDI. Water Use Efficiency (WUE) was higher with PRD (+14%) compared to RDI. PRD didn’t improve fruit quality, although in 2007 a better °Brix, colour...

  2. Influential aspects of glacial resource for establishing Kuhl system (gravity flow irrigation) in the Hindu Kush, Karakoram and Himalaya ranges.

    Science.gov (United States)

    Ashraf, Arshad; Iqbal, Ayesha

    2018-04-27

    The meltwater components play an important role in the hydrological regime of the Hindu Kush, Karakorum and Himalaya (HKH) region, in terms of high demand of water for food and fiber from snow and glacial resource. The communities of Himalayan mountains are facing challenges of food security owing to lack of the resource information for meeting their water requirements. In this study, suitability index approach was adopted to assess glacier resource potential for establishing kuhl irrigation system in HKH ranges of Pakistan. The basis of indexing is glacier accessibility and water yield potential of the glacial resource for irrigation estimated in terms of number and ice reserve of the glaciers. The suitability index was found good for about 1.4% glaciers constituting about 80% of the total ice reserves of the HKH region. Medium suitability constitutes about 36.1% glaciers with 12.6% of the total ice reserves, while low suitability was assessed for about 60% glaciers containing 1.5% ice reserves only. Maximum unit glacial reserve was estimated for Shigar basin, i.e., 1.44 km 3 , and among HKH ranges, 0.46 km 3 for the Karakoram range. A regular monitoring of the glacial resource would prove helpful in assessing vulnerability of this resource to climate change in the high Himalayan region in future. Copyright © 2018. Published by Elsevier B.V.

  3. Occurrence of Escherichia coli in Brassica rapa L. chinensis irrigated with low quality water in urban areas of Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mhongole, Ofred J.; Mdegela, Robinson H.; Kusiluka, Lughano J. M.

    2016-01-01

    Low quality water has become valuable resource with restricted or unrestricted use in food production depending on its quality. This study has quantified the occurrence of Escherichia coli in Brassica rapa L. chinensis (Chinese cabbage) vegetables and low quality irrigation water. A total of 106...... samples including Chinese cabbage (69) and water (37) were collected. The E. coli were cultured in petri film selective E. coli plates at 44°C. The Chinese cabbage irrigated with river water at Fungafunga area indicated significantly (P... than those irrigated with treated wastewater at Mazimbu 10% (n=48, 0.00-1.36 log cfu/g). The mean counts of E. coli in untreated wastewater ranged from 4.59 to 5.56 log cfu/mL, while in treated wastewater was from 0.54 to 1.05 log cfu/mL and in river water it was 2.40 log cfu/mL. Treated wastewater...

  4. Willingness to Pay Additional Water Rate and Irrigation Knowledge of Farmers in Dinar Karakuyu Irrigation Areas in Turkey

    Directory of Open Access Journals (Sweden)

    Mevlüt Gül

    2017-08-01

    Full Text Available Water which has become commodity product which is an important product today. Turkey is not a water rich country. In this study, agricultural enterprises in the field of Irrigation Project in Dinar Karakuyu which was implemented in 1992 by DSI. The study analysed which factors affect the willingness to pay additional irrigation water rate with the help of logit model and the irrigation knowledge of farmers was determined by Likert scale. Dinar Karakuyu irrigation network has begun to lose the function in the region. It was supposed 100% irrigation rate but decreased by approximately 9% today. In this context, DSI (General Directorate of State Hydraulic Works plans to rehabilitation work in the same area. The main material of this study was data obtained from 67 agricultural enterprises through a survey covered by the Irrigation Rehabilitation Project in the province of Afyonkarahisar Karakuyu Dinar. The data was gathered with the help of questionnaires which were answered by farmers in Karakuyu Dinar region. The results indicated that 74.6% of farmers were willingness to pay additional water charge. The data were statistically analysed with the use of the logit model. The model results show that agricultural income, farmers’ educational level, computer ownership, attendance of agricultural training activities, family size and agricultural experience were positive factors affect farmers’ willingness to pay additional water fee.

  5. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  6. Supplemental irrigation to improve wheat production and water use efficiency under rainfed farming conditions

    International Nuclear Information System (INIS)

    Hussain, Q.; Bhatti, A.A.; Ahmad, M.M.

    2007-01-01

    The stochastic behaviors of rainfall pose serious limitations for sustained and profitable crop production in rainfed areas; farmers hesitate to apply fertilizers when they are not sure about rainfall. In view of these limitations a research study was conducted for three years (2003-2006) at field station of Water Resources Research Institute (WRRI), National Agricultural Research Centre(NARC), Islamabad to examine the effects of supplemental irrigation (SI) on wheat production and water use efficiency (WUE). Irrigation treatments employed under the experiment were: i) Rainfed without irrigation and fertilizer application (I/sub 0/); ii) SI of 25 mm was applied to non-fertilizer field at 75% management allowed deficit (MAD)(I/sub 1/); iii) Rainfed with fertilizer application at sowing time (I/sub 2/); and iv) SI of 25 mm was applied at 75% MAD and at the time of fertilizer application as top dressing (I/sub 3/). Supplemental irrigation increased the crop yield during the years 2003-2006 under both fertilizer and non-fertilizer conditions. Increased in grain yield under non-fertilizer conditions (I/sub 1/) ranges between 770-980 kg/ha, which is 27 to 48% higher than the rainfed yield (I/sub 0/). Supplemental irrigation and split application of fertilizer (treatment I/sub 3/) increased in grain yield within the range of 1000-1350 kg/ha, which is 27-49% higher than yield under treatment I/sub 2/. Whereas, due to synergetic effect of supplemental irrigation and fertilizer application, increased in grain yield ranges between 1550-2030 kg/ha, which is 49% to 100% higher than the rainfed and non-fertilizer field. WUE was calculated for rain (WUE/sub r/) for total water (grass: previous soil water storage + rain + irrigation) (WUE/sub g/), for SI water only (WUE/sub si/) and for synergetic effect (SI water + fertilizer application) (WUE/sub sis/) Water use efficiencies namely the WUE/sub r/, WUE/sub g/ and WUE/sub si/ during the period of three years under non fertilizer

  7. Modeling Sustainability of Water, Environment, Livelihood, and Culture in Traditional Irrigation Communities and Their Linked Watersheds

    Directory of Open Access Journals (Sweden)

    Kenneth Boykin

    2012-11-01

    Full Text Available Water scarcity, land use conversion and cultural and ecosystem changes threaten the way of life for traditional irrigation communities of the semi-arid southwestern United States. Traditions are strong, yet potential upheaval is great in these communities that rely on acequia irrigation systems. Acequias are ancient ditch systems brought from the Iberian Peninsula to the New World over 400 years ago; they are simultaneously gravity flow water delivery systems and shared water governance institutions. Acequias have survived periods of drought and external shocks from changing economics, demographics, and resource uses. Now, climate change and urbanization threaten water availability, ecosystem functions, and the acequia communities themselves. Do past adaptive practices hold the key to future sustainability, or are new strategies required? To explore this issue we translated disciplinary understanding into a uniform format of causal loop diagrams to conceptualize the subsystems of the entire acequia-based human-natural system. Four subsystems are identified in this study: hydrology, ecosystem, land use/economics, and sociocultural. Important linkages between subsystems were revealed as well as variables indicating community cohesion (e.g., total irrigated land, intensity of upland grazing, mutualism. Ongoing work will test the conceptualizations with field data and modeling exercises to capture tipping points for non-sustainability and thresholds for sustainable water use and community longevity.

  8. Irrigation water as a source of drinking water: is safe use possible?

    Science.gov (United States)

    van der Hoek, W; Konradsen, F; Ensink, J H; Mudasser, M; Jensen, P K

    2001-01-01

    In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water reservoirs is to use the water that has seeped from the irrigation canals and irrigated fields and that has formed a small layer of fresh water on top of the brackish groundwater. The objective of this study was to assess whether use of irrigation seepage water for drinking results in less diarrhoea than direct use of irrigation water and how irrigation water management would impact on health. The study was undertaken in an irrigated area in the southern Punjab, Pakistan. Over a one-year period, drinking water sources used and diarrhoea episodes were recorded each day for all individuals of 200 households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained by the generally poor quality of water in the in-house storage vessels, reflecting considerable in-house contamination of drinking water. Risk factors for diarrhoea were absence of a water connection and water storage facility, lack of a toilet, low standard of hygiene, and low socio-economic status. The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water was used (relative risk 1.68; 95% CI 1.31-2.15). For people with less water available the direction of the association between water quality and diarrhoea was different (relative risk 0.80; 95% CI 0

  9. SOCIAL MANAGEMENT OF IRRIGATION WATER IN THE SAN JUAN EJIDO, URIREO, SALVATIERRA, GUANAJUATO

    Directory of Open Access Journals (Sweden)

    Julieta Aidee Díaz-Rosillo

    2011-09-01

    Full Text Available In irrigated agriculture, producers are responsible for the management and administration of multiple common resources, among which include land and water. These common resources are used jointly by the whole community and in the same way are removed, depending on the needs of each individual. In the case of well 15 in the Ejido San Juan, has been maintained to be administered only by users without needing them, so far, the involvement of people outside the community or any government body for best results.

  10. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    Science.gov (United States)

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  11. Sustainable water resources management in Pakistan

    International Nuclear Information System (INIS)

    Malik, A.H.

    2005-01-01

    Total river discharge in Pakistan in summer season vary from 3 thousand to 34 thousand cusses (100 thousand Cusses to 1,200 thousand Cusses) and can cause tremendous loss to human lives, crops and property, this causes the loss of most of the flood water in the lower Indus plains to the sea. Due to limited capacity of storage at Tarbela and Mangla Dams on river Indus and Jhelum, with virtually no control on Chenab, Ravi and Sutlej, devastating problems are faced between July and October in the event of excessive rainfall in the catchments. Due to enormous amounts of sediments brought in by the feeding rivers, the three major reservoirs -Tarbela, Mangla and Chashma will lose their storage capacity, by 25 % by the end of the year 2010, which will further aggravate the water-availability situation in Pakistan. The quality of water is also deteriorating due to urbanization and industrialization and agricultural developments. On the Environmental Front the main problems are water-logging and salinity, salt-imbalance, and increasing pollution of water-bodies. World's largest and most integrated system of irrigation was installed almost a hundred years ago and now its efficiency has been reduced to such an extent that more than 50 per cent of the irrigation-water is lost in transit and during application. On the other side, there are still not fully exploited water resources for example groundwater, the alluvial plains of Pakistan are blessed with extensive unconfined aquifer, with a potential of over 50 MAF, which is being exploited to an extent of about 38 MAF by over 562,000 private and 10,000 public tube-wells. In case of Balochistan, out of a total available potential of about 0.9 MAF of groundwater, over 0.5 MAF are already being utilized, but there by leaving a balance of about 0.4 MAF that can still be utilized. Future water resources management strategies should includes starting a mass-awareness campaign on a marshal scale in rural and urban areas to apply water

  12. Maximizing the value of limited irrigation water: USDA researchers study how producers on limited irrigation can save water and be profitable

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  13. Varietal improvement of irrigated rice under minimal water conditions

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Marziah Mahmood; Sobri Hussein

    2010-01-01

    Varietal improvement of irrigated rice under minimal water condition is a research project under Program Research of Sustainable Production of High Yielding Irrigated Rice under Minimal Water Input (IRPA- 01-01-03-0000/ PR0068/ 0504). Several agencies were involved in this project such as Malaysian Nuclear Agency (MNA), Malaysian Agricultural Research and Development Institute (MARDI), Universiti Putra Malaysia (UPM) and Ministry of Agriculture (MOA). The project started in early 2004 with approved IRPA fund of RM 275,000.00 for 3 years. The main objective of the project is to generate superior genotypes for minimal water requirement through induced mutation techniques. A cultivated rice Oryza sativa cv MR219 treated with gamma radiation at 300 and 400 Gray were used in the experiment. Two hundred gm M2 seeds from each dose were screened under minimal water stress in greenhouse at Mardi Seberang Perai. Five hundred panicles with good filled grains were selected for paddy field screening with simulate precise water stress regime. Thirty eight potential lines with required adaptive traits were selected in M3. After several series of selection, 12 promising mutant line were observed tolerance to minimal water stress where two promising mutant lines designated as MR219-4 and MR219-9 were selected for further testing under several stress environments. (author)

  14. Water Governance and Adaptation to Disturbances in Irrigated Semi-Arid Agricultural Systems

    Science.gov (United States)

    Evans, T. P.; McCord, P. F.; McBride, L.; Gower, D.; Caylor, K. K.

    2013-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial has research focused on household-level agricultural decision-making and adaptation. But equally important are institutional dynamics, or the rules implemented to allocate water resources across different user groups. Previous work has identified design principles for common-pool resource systems that tend to lead to sustained governance regimes. Likewise, past research has addressed the issue of "institutional fit", or locally adapted governance arrangements characterized through governance structure. However, much of the complexity behind institutional dynamics and adaptive capacity lies in the translation of data to information to knowledge, and how this sequence contributes to effective cross-scale water management and decision-making - an arena that has arguably received less attention in the water management literature. We investigate the interplay between governance regimes, data/information and institutional dynamics in irrigation systems in semi-arid regions of Kenya. In particular, we articulate the role of knowledge and data in institutional dynamics at multiple levels of analysis. How do users at different decision-making levels incorporate social and hydrological information in water governance? What data is needed to develop the information and knowledge users need for effective management? While governance structure is certainly a critical component of water management systems - we emphasize the interplay between the data-information-knowledge sequence and institutional dynamics. We present findings from household and manager-level surveys examining irrigation practices and the institutions designed to equitably allocate

  15. Developing a Water Quality Index (WQI) for an Irrigation Dam.

    Science.gov (United States)

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-04-29

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl - , NO₃, SO₄, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.

  16. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  17. Farmers' laws and irrigation : water rights and dispute management in the hills of Nepal

    NARCIS (Netherlands)

    Poudel, R.

    2000-01-01

    The title of my Thesis is "Farmers' Laws and Irrigation: Water Rights and Dispute Management in the Hills of Nepal". This is based on a research I conducted in the Thulotar Kulo irrigation system in Nepal, during 1997 and 1998. Thulotar Kulo is a farmer-managed irrigation

  18. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  19. Gypsiferous mine water use in irrigation on rehabilitated open-cast mine land: Crop production, soil water and salt balance

    OpenAIRE

    Annandale, J.; Jovanovic, N.; Pretorius, J.; Lorentz, S.; Rethman, N.; Tanner, P.

    2001-01-01

    The use of gypsiferous mine water for irrigation of agricultural crops is a promising technology, which could alleviate a shortage of irrigation water and address the problem of disposal of mine effluent. A field trial was established at Kleinkopje Colliery in Witbank (Mpumalanga Province, South Africa) during the 1997-1998 season. Sugar beans and wheat were irrigated with three center pivots, on both virgin and rehabilitated land. The objectives were to determine crop response to irrigation ...

  20. Assessment of water quality from water harvesting using small farm reservoir for irrigation

    Science.gov (United States)

    Dewi, W. S.; Komariah; Samsuri, I. Y.; Senge, M.

    2018-03-01

    This study aims to assess the quality of rainfall-runoff water harvesting using small farm reservoir (SFR) for irrigation. Water quality assessment criteria based on RI Government Regulation number 82 the year 2001 on Water Quality Management and Pollution Control, and FAO Irrigation Water Quality Guidelines 1985. The experiment was conducted in the dry land of Wonosari Village, Gondangrejo District, Karanganyar Regency. SFR size was 10 m x 3 m x 2 m. Water quality measurements are done every week, ten times. Water samples were taken at 6 points, namely: distance of 2.5 m, 5 m, and 7.5 m from the inlet, at depth 25 cm and 175 cm from surface water. In each sampling point replicated three times. Water quality parameters include dissolved oxygen (DO), Turbidity (TSS), water pH, Nitrate (NO3), and Phosphate. The results show that water harvesting that collected in SFR meets both standards quality used, so the water is feasible for agricultural irrigation. The average value of harvested water was DO 2.6 mg/l, TSS 62.7 mg/l, pH 6.6, P 5.3 mg/l and NO3 0.16 mg/l. Rainfall-runoff water harvesting using SFR prospectus for increasing save water availability for irrigation.

  1. [Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China].

    Science.gov (United States)

    Huang, Zhi-gang; Wang, Xiao-li; Xiao, Ye; Yang, Fei; Wang, Chen-xi

    2015-01-01

    Based on meteorological data from China national weather stations and climate scenario grid data through regional climate model provided by National Climate Center, rice water requirement was calculated by using McCloud model and Penman-Monteith model combined with crop coefficient approach. Then the rice irrigation water requirement was estimated by water balance model, and the changes of rice water requirement were analyzed. The results indicated that either in historical period or in climate scenario, rice irrigation water requirement contour lines during the whole growth period and Lmid period decreased along southwest to northeast, and the same irrigation water requirement contour line moved north with decade alternation. Rice irrigation water requirement during the whole growth period increased fluctuantly with decade alternation at 44.2 mm . 10 a-1 in historical period and 19.9 mm . 10 a-1 in climate scenario. The increase in rice irrigation water requirement during the Lmid period with decade alternation was significant in historical period, but not significant in climate scenario. Contribution rate of climate change to rice irrigation water requirement would be fluctuantly increased with decade alternation in climate scenario. Compared with 1970s, contribution rates of climate change to rice irrigation water requirement were 23.6% in 2000s and 34.4% in 2040s, which increased 14.8 x 10(8) m3 irrigation water in 2000s and would increase 21.2 x 10(8) m3 irrigation water in 2040s.

  2. Sewage disinfection towards protection of drinking water resources.

    Science.gov (United States)

    Kolch, A

    2000-01-01

    Wastewater applied in agriculture for irrigation could replace the use of natural drinking-water resources. With respect to high concentrations of human pathogens wastewater has to be disinfected prior to use. This paper introduces disinfection methods with emphasis on UV irradiation.

  3. Evolution of Corn Transpiration and Leaf Water Potential During Sprinkler Irrigation

    OpenAIRE

    Martínez-Cob, Antonio; Fernández-Navajas, Julián; Durán, Víctor; Cavero Campo, José

    2009-01-01

    Corn (Zea mays L.) transpiration during daytime solid-set sprinkler irrigation was analyzed on two neighbouring subplots to determine the effect of the transpiration reduction on water application efficiency. During each irrigation event, one subplot was irrigated (moist treatment) while the other was not (dry treatment). Transpiration rates were determined at each subplot by the heat balance method (Dynamax Flow4 System) before, during and after the irrigations. During irri...

  4. Income Distribution Impacts of Irrigation Water Distribution Policy

    Science.gov (United States)

    Sampath, Rajan K.

    1984-06-01

    In the majority of lesser developed countries (LDC's) there is acute inequality in income distribution in the rural sector, particularly between large and small farms on the one hand and between land owners and the landless on the other. Irrigation water distribution policy of the government is both an economic and political problem. It has both equity and efficiency implications. It has effects on both the level and distribution of income. This paper deals with the conditions under which using water redistribution as an effective governmental policy variable can reduce inequality in the distribution of income. This paper also deals with the relationship between the objectives of equity and efficiency in water distribution under different objective realities, such as dualistic versus nondualistic conditions, two-sector versus three-sector modeling, optimum versus equal water distribution, specifically to derive the conditions under which promotion of equity promotes efficiency and vice versa and the conditions under which it does not.

  5. Assessment of the efficiency and water productivity in the Spanish irrigation associations "Canal Toro-Zamora" and "Canal Villagonzalo" from the Duero basin

    Science.gov (United States)

    Rodriguez-Sinobas, Leonor; Amado Mendoza Hidalgo, Edwin

    2017-04-01

    Within a water scarcity scenario, the irrigated agriculture economic sector would be affected by the reduction on water supply and this might have a negative impact on the National gross income. Water for irrigation in Spain comprises the 75% of total consumption. Therefore, the search for irrigation strategies dealing with sustainable irrigation by saving water and improving the environment quality is encouraged. Within this framework the assessment of water use in the irrigation districts to assist water stakeholder decisions is reinforced. Water resources can be assessed at field scheme or regional scale by analyzing the water use efficiency and the water productivity indicators. Which determine the water availability and the water supply quality in irrigation areas. Among then, the following are broadly used: water productivity WP, and irrigation water productivity IWP, annual relative water supply (ARWS) and the annual relative irrigation water supply (ARIS). Keeping in mind the water scarcity scenario for irrigation in the short and long term and the probably scenario of water allocation for different uses following criteria of efficiency and productivity, this work is aimed at assessing the water use efficiency and water productivity of two modernized Spanish irrigation districts CCRRs: "Canal Toro-Zamora" and "Canal Villagonzalo" from the Duero basin. For that purpose, the above indicators were estimated for years 2014 and 2015. Crop water requirements are needed to calculate the indicators. For this study, maize was chosen since it is the major crop in the area and its water needs were estimated with the FAO program Cropwat. Local crop coefficients (Kc) were determined with the open access application SpiderWebGis (http://maps.spiderwebgis.org/webgis/) which uses satelital images to monitor Kc coefficients in all crops across Spain. In both CCRRs the maize Kc coefficients were similar for all the phenology stages although a slightly spatial variability was

  6. A multi-attribute preference model for optimal irrigated crop planning under water scarcity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montazar, A.; Snyder, R. L.

    2012-11-01

    Water resources sustainability has a key role in the existence and durability of irrigated farming systems and strongly depends on the crop planning. The decision process is complex due to a number of constraints and the desire to secure crop diversification and the involvement of affected various parameters. The objective of the present study was to develop a comprehensive multi-criteria model for selecting adequate cropping pattern in an irrigation district under water scarcity condition. Eleven and nine attribute decisions were considered in ranking the type of crop and determination of the percentage of crop cultivation area as an optimal irrigated crop planning system, respectively. The results indicate that the proposed multi-attribute preference approach can synthesize various sets of criteria in the preference elicitation of the crop type and cultivated area. The predictive validity analysis shows that the preferences acquired by the proposed model are evidently in reasonable accordance with those of the conjunctive water use model. Consequently, the model may be used to aggregate preferences in order to obtain a group decision, improve understanding of the choice problem, accommodate multiple objectives and increase transparency and credibility in decision making by actively involving relevant criteria in the crop planning. (Author) 27 refs.

  7. Irrigation, risk aversion, and water right priority under water supply uncertainty

    Science.gov (United States)

    Li, Man; Xu, Wenchao; Rosegrant, Mark W.

    2017-09-01

    This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  8. Using a Water Balance Model to Bound Potential Irrigation Development in the Upper Blue Nile Basin

    Science.gov (United States)

    Jain Figueroa, A.; McLaughlin, D.

    2016-12-01

    The Grand Ethiopian Renaissance Dam (GERD), on the Blue Nile is an example of water resource management underpinning food, water and energy security. Downstream countries have long expressed concern about water projects in Ethiopia because of possible diversions to agricultural uses that could reduce flow in the Nile. Such diversions are attractive to Ethiopia as a partial solution to its food security problems but they could also conflict with hydropower revenue from GERD. This research estimates an upper bound on diversions above the GERD project by considering the potential for irrigated agriculture expansion and, in particular, the availability of water and land resources for crop production. Although many studies have aimed to simulate downstream flows for various Nile basin management plans, few have taken the perspective of bounding the likely impacts of upstream agricultural development. The approach is to construct an optimization model to establish a bound on Upper Blue Nile (UBN) agricultural development, paying particular attention to soil suitability and seasonal variability in climate. The results show that land and climate constraints impose significant limitations on crop production. Only 25% of the land area is suitable for irrigation due to the soil, slope and temperature constraints. When precipitation is also considered only 11% of current land area could be used in a way that increases water consumption. The results suggest that Ethiopia could consume an additional 3.75 billion cubic meters (bcm) of water per year, through changes in land use and storage capacity. By exploiting this irrigation potential, Ethiopia could potentially decrease the annual flow downstream of the UBN by 8 percent from the current 46 bcm/y to the modeled 42 bcm/y.

  9. Water reuse and cost-benefit of pumping at different spatial levels in a rice irrigation system in UPRIIS, Philippines

    Science.gov (United States)

    Hafeez, M. M.; Bouman, B. A. M.; Van de Giesen, N.; Mushtaq, S.; Vlek, P.; Khan, S.

    As agricultural water resources in Asia become increasingly scarce, the irrigation efficiency of rice must be improved. However, in this region there is very limited information available about water use efficiency across spatial levels in irrigation systems. This study quantifies the volume of water reuse and its related cost-benefits at five different spatial levels, ranging from 1500 ha to 18,000 ha, under gravity-fed irrigation system in Upper Pumpanga River Integrated Irrigation System (UPRIIS), Philippines. The major sources of water reuse are considered, namely groundwater pumping, pumping from creeks, combined use and irrigation supplies from check dams. The volume of water available from all four sources of water reuse was quantified through extensive measurements. Production functions were developed to quantify water-yield relationships and to measure the economic value of water reuse. This study was conducted during the dry season of 2001, which existed from 19 November 2000 until 18 May 2001. The water reuse by pumping and check dams was 7% and 22% of the applied surface water at District 1 level. The reuse of surface water through check dams increased linearly with 4.6 Mm 3 per added 1000 ha. Similarly, the total amount of reused water from pumping is equivalent to 30% of the water lost through rice evapotranspiration during the dry season 2001. The results showed that water reuse plays a dominant role in growing a rice crop during the dry season. The result showed no difference in pumping costs between the creek (US0.011/m 3) and shallow pumps (US0.012/m 3). The marginal value of productivity (MVP) of water reuse from creek (US0.044/m 3) was slightly higher than the water reuse through the pumping ground water (US0.039/m 3). Results also indicated that the total volume pumped per ha (m 3/ha) was ranging from 0.39 to 6.93 m 3/ha during the dry season. The results clearly indicate that the quantification of amount of water reuse is very crucial for

  10. Uptake of antibiotics from irrigation water by plants

    DEFF Research Database (Denmark)

    Azanu, David; Mortey, Christiana; Darko, Godfred

    2016-01-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through...... tested concentrations of 0.1-15 mg L(-1). Tetracycline was detected in all plant samples, at concentrations ranging from 4.4 to 28.3 ng/g in lettuce and 12.0-36.8 ng g(-1) fresh weight in carrots. Amoxicillin showed absorption with concentrations ranging from 13.7 ng g(-1) to 45.2 ng g(-1) for the plant...

  11. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  12. Mismanagement of Irrigation Water and Landslips in Yourjogh, Pakistan

    Directory of Open Access Journals (Sweden)

    Jawad Ali

    2017-05-01

    Full Text Available Risks and hazards associated with climate change and geological factors, especially in the world's youngest mountains, are inevitable and may have been exacerbated in recent decades. However reports about increased landslips and landslides in some areas are being presented as examples to argue that most natural hazards in mountain areas are due to climate change. Based on a field study in the Yourjogh area of Chitral District in Pakistan, we argue that this discourse is based on generalized conclusions that do not hold in all cases and for all types of disasters. Our study challenges the climate change discourse as disregarding the political dimension of water management that also contributes to landslides and landslips in Pakistan's mountainous regions. The climate change discourse has taken the politics out of external-donor-led development interventions that replaced traditional irrigation management practices and institutions with an arrangement in which external development agencies and the state control crucial economic and social processes that shape the distribution of water. This not only depoliticizes disasters and their effects but also leads to further mismanagement of abundantly available irrigation water, contributing to the frequent occurrence of landslips in our study area. We conclude that attributing hazards only to climatic or geological factors leaves little room to promote locally appropriate solutions for locally created hazards.

  13. Recycling of canteen waste water for irrigation purpose

    International Nuclear Information System (INIS)

    Ahmad, J.

    2005-01-01

    Recycling of wastewater of a canteen was done at Attock refinery Limited, Rawalpindi during 2002. The wastewater of the refinery canteen was recycled after a long process and was reused for irrigation of nearby garden and other landscape plants. The average outflow of the wastewater from the canteen was calculated as 4000 liters/day. Laboratory analysis for the quality of wastewater was conducted and it was found that suspended solid. Chemical Oxygen demand (COD) and biochemical oxygen demand (BOD) of the wastewater were above the National Environmental Quality Standards (NEQS) limits. Treatment system employed was composed of screening and settling tank for removing the suspended solids and aeration for decreasing the COD and BOD. It was a low cost system in which the materials used were mostly taken from the redundant stock. Air was given for aeration with the help of a compressor. The treated water was tested in the laboratory for the priority parameters i.e. temperature, pH, BOD, COD, Total suspended solids (TSS), Total dissolved (TDS), oil and grease and Phenols. These parameters were compared with the National Environmental Quality Standards (NEQS). Treated water was used for irrigation of the nearby garden and landscape. The recycling process was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was processes was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was recycled with a daily saving of Rs.100 at the rate of Rs.1/10 G water that was taken from market survey. (author)

  14. Water-right and water-allocation procedures of farmers' managed perennial spate irrigation systems of mithawan watershed, D.G. Khan, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Ahmad, S.

    2007-01-01

    A study was conducted on water rights, water allocation and local institutions prevailing in the perennial spate irrigation systems of Mithawan watershed o D.G. Khan District of Punjab. The Study Area was selected is the Mthawan watershed on the D.G. Khan-Quetta Road almost 70 kms from D.G. Khan and 10 km away from the road, representing real-life operating systems. Small-scale isolated and large-scale contiguous perennial spate irrigation systems were selected for study. A three-prong methodology was designed covering (a) interactive dialogue of the focus groups to document the community-perceptions regarding systems water-rights, water allocation and local institution prevailing in the area; (b) structured interviews to document systematic data regarding some of the study-aspects; and (c) diagnostic surveys to document some of the measured data regarding scheme performance. Water rights and allocation procedures both in small-scale isolated and large-scale Contiguous perennial spate irrigation-system are very clearly defined and do not change with time and space. Local institutions like Biradri and Muchi take care of just allocation of water. An irrigator is deputed who takes care of allocated time among various tribes. At the same time, the community is bringing more area under irrigation. Obviously it has increased water-requirements and in turn management of irrigation system. Previously they were reconstructing the diversion structure only. Present expansion in irrigated area has increased the necessity of maintaining the water-conveyance network more frequently, particularly at critical sections. However, the realization regarding water-losses still needs to be promoted. The linkages of resource-management with water-productivity are going to be the future area of consideration in theses systems, due to expansion of the system largely because of increased population and urge to increase their livelihood. (author)

  15. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL -1 ) and 13 (553±1050ngL -1 ) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Water economy in the irrigation of family farmland in arid zones

    International Nuclear Information System (INIS)

    Mhiri, A.; Elloumi, M.J.; Laouini, M.

    1983-01-01

    A simple irrigation technique based on the use of polyethylene bags was developed and tested so as to achieve maximum water economy in family-scale farming in arid zones. It simulates localized irrigation and eliminates water losses due to evaporation and drainage. The method was tried out in the cultivation of tomatoes in glasshouses. In comparison with the control experiment in the field with furrow irrigation, the saving of water was 60%, with a 30% drop in production. There was thus a net improvement in efficiency in the utilization of the irrigation water. (author)

  17. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    Science.gov (United States)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  18. Water quality, pesticide occurrence, and effects of irrigation with reclaimed water at golf courses in Florida

    Science.gov (United States)

    Swancar, Amy

    1996-01-01

    Reuse of treated wastewater for golf course irrigation is an increasingly popular water management option in Florida, where growth has put stress on potable water supplies. Surface water, ground water, and irrigation water were sampled at three pairs of golf courses quarterly for one year to determine if pesticides were present, and the effect of irrigation with treated effluent on ground-water quality, with an emphasis on interactions of effluent with pesticides. In addition to the six paired golf courses, which were in central Florida, ground water was sampled for pesticides and other constituents at three more golf courses in other parts of the State. This study was the first to analyze water samples from Florida golf courses for a broad range of pesticides. Statistical methods based on the percentage of data above detection limits were used to determine the effects of irrigation with reclaimed water on ground-water quality. Shallow ground water at golf courses irrigated with treated effluent has higher concentrations of chloride, lower concentrations of bicarbonate, and lower pH than ground water at golf courses irrigated with water from carbonate aquifers. There were no statistically significant differences in nutrient concentrations in ground water between paired golf courses grouped by irrigation water type at a 95 percent confidence level. The number of wells where pesticides occurred was significantly higher at the paired golf courses using ground water for irrigation than at ones using reclaimed water. However, the limited occurrences of individual pesticides in ground water make it difficult to correlate differences in irrigation- water quality with pesticide migration to the water table. At some of the golf courses, increased pesticide occurrences may be associated with higher irrigation rates, the presence of well-drained soils, and shallow depths to the surficial aquifer. Pesticides used by golf courses for turf grass maintenance were detected in

  19. Irrigation water as a source of drinking water: is safe use possible?

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Konradsen, F; Ensink, J H

    2001-01-01

    BACKGROUND: In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water...... households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. RESULTS: Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained....... The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water...

  20. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  1. Gated or ungated : water control in government-built irrigation systems : comparative research in Nepal

    NARCIS (Netherlands)

    Pradhan, T.M.S.

    1996-01-01


    The control, allocation and distribution, of water is the core process of an irrigation system. It is the process by which the available water is divided and distributed to the smaller irrigation units within the system, which in turn is distributed further down to the individual water

  2. Correlation among fluoride and metals in irrigation water and soils of ...

    African Journals Online (AJOL)

    Correlation among fluoride and metals in irrigation water and soils of Ethiopian Rift Valley. ... The fluoride concentrations in water samples were found in the range of 0.14-8.0 mg/L which is below the WHO limit of fluoride concentration for irrigation (less than 10 mg/L). ... KEY WORDS: Fluoride, Metals, Water, Soil, Ethiopia.

  3. Economic impacts on irrigated agriculture of water conservation programs in drought

    Science.gov (United States)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  4. Soil water sensors for irrigation scheduling:Can they deliver a management allowed depletion?

    Science.gov (United States)

    Soil water sensors are widely marketed in the farming sector as aids for irrigation scheduling. Sensors report either volumetric water content (theta-v, m**3 m**-3) or soil water potential, with theta-v sensors being by far the most common. To obtain yield and quality goals, irrigations are schedule...

  5. The crop water stress index (CWSI) for drip irrigated cotton in a semi ...

    African Journals Online (AJOL)

    The crop water stress index (CWSI) for drip irrigated cotton in a semi-arid region of Turkey. ... Four irrigation treatments designated as full (I100) with no water stress and slight (DI70), moderate (DI50) and strong water ... from 32 Countries:.

  6. Analysis of grey-water used for irrigating vegetables and possible ...

    African Journals Online (AJOL)

    Analysis of grey-water used for irrigating vegetables and possible effects on soils in the ... The concentrations of nutrients and heavy metals found in the grey-water ... in order to lower the salt content and to improve the irrigation water quality.

  7. Water productivity analysis of sand dams irrigation farming in northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Lorenzo Villani

    2018-06-01

    Full Text Available Water scarcity in drylands is the main problem that has to be tackled by farmers and practitioners that work in these areas. Climate change and increased and wealthier population are expected to put additional stress on the water resource. A large number of studies is calling to focus efforts to enhance water productivity (WP, and one of the most promising option is represented by water harvesting, the collection and storage of runoff water to be used for beneficially uses. Among the available technologies, sand dams are experiencing a renovated interest because of their relative simplicity and their potential. This research aims to deepen the knowledge about WP of water harvesting systems studying a sand dam irrigation system in Tigray, north Ethiopia, where farmers are getting used to this new technology. The research was carried out in the period March-April 2017, when farmers use sand dams water to irrigate off-season maize. We analysed a representative plot irrigated through a shallow well drilled in the sand dam aquifer, in terms of yield, Crop Water Productivity (CWP, Crop Water Productivity based on Evapotranspiration (CWP(ET and Economic Water Productivity (EWP, through field data analysis and a validated Aquacrop model. CWP(ET was found to be low (1.12 kg of grain per m3 of evapotranspired water, due by both inefficient water application and low soil fertility. Aquacrop model results showed that changing the irrigation schedule can increase CWP(ET up to 1.35 kg/m3 and EWP up to 3.94 birr/m3, but yield gap is mainly due to the low soil fertility. Interventions on soil fertility can raise yields from the original 3.3 up to 8.5 kg/ha, and thus CWP(ET and EWP up to 2.94 kg/m3 and 9.54 birr/m3 respectively. To enhance the effect of sand dams in northern Ethiopia, a set of measures, including conservation agriculture, is then proposed.

  8. Fourth Tennessee water resources symposium

    International Nuclear Information System (INIS)

    Sale, M.J.; Presley, P.M.

    1991-01-01

    The annual Tennessee Water Resources Symposium was initiated in 1988 as a means to bring together people with common interests in the state's important water-related resources at a technical, professional level. Initially the symposium was sponsored by the American Institute of Hydrology and called the Hydrology Symposium, but the Tennessee Section of the American Water Resources Association (AWRA) has taken on the primary coordination role for the symposium over the last two years and the symposium name was changed in 1990 to water resources to emphasize a more inter-disciplinary theme. This year's symposium carries on the successful tradition of the last three years. Our goal is to promote communication and cooperation among Tennessee's water resources professionals: scientists, engineers, and researchers from federal, state, academic, and private institutions and organizations who have interests and responsibilities for the state's water resources. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  9. Water resources in the Everglades

    Science.gov (United States)

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  10. Geospatial distribution modeling and determining suitability of groundwater quality for irrigation purpose using geospatial methods and water quality index (WQI) in Northern Ethiopia

    Science.gov (United States)

    Gidey, Amanuel

    2018-06-01

    Determining suitability and vulnerability of groundwater quality for irrigation use is a key alarm and first aid for careful management of groundwater resources to diminish the impacts on irrigation. This study was conducted to determine the overall suitability of groundwater quality for irrigation use and to generate their spatial distribution maps in Elala catchment, Northern Ethiopia. Thirty-nine groundwater samples were collected to analyze and map the water quality variables. Atomic absorption spectrophotometer, ultraviolet spectrophotometer, titration and calculation methods were used for laboratory groundwater quality analysis. Arc GIS, geospatial analysis tools, semivariogram model types and interpolation methods were used to generate geospatial distribution maps. Twelve and eight water quality variables were used to produce weighted overlay and irrigation water quality index models, respectively. Root-mean-square error, mean square error, absolute square error, mean error, root-mean-square standardized error, measured values versus predicted values were used for cross-validation. The overall weighted overlay model result showed that 146 km2 areas are highly suitable, 135 km2 moderately suitable and 60 km2 area unsuitable for irrigation use. The result of irrigation water quality index confirms 10.26% with no restriction, 23.08% with low restriction, 20.51% with moderate restriction, 15.38% with high restriction and 30.76% with the severe restriction for irrigation use. GIS and irrigation water quality index are better methods for irrigation water resources management to achieve a full yield irrigation production to improve food security and to sustain it for a long period, to avoid the possibility of increasing environmental problems for the future generation.

  11. Evaluation of Different Rice Genotypes Tolerance to Saline Irrigation Water

    Directory of Open Access Journals (Sweden)

    S. Jafari Rad

    2015-12-01

    Full Text Available To study the responses of seven rice genotypes (Khazar, SA13, Deylam, Sange Joe, Sepidrud, 831 and T5 to different levels of irrigation water salinity, and determining grain yield based on tolerance indices, a CRD based factorial pot experiment with five levels of irrigation water salinity (1, 2, 4, 6 and 8 dSm-1 and three replications was carried out at Rice Research Institute of Iran in 2011. Indices such as SSI, TOL, MP, GMP, HM, STI, YI and YSI were calculated and their correlations with grain yield were estimated for both stress and non-stress conditions. Results indicated significant differences among genotypes and the indices within both conditions. Results also showed that STI and MP indices could be considered as the best indices to screen salt tolerant genotypes. Among the genotypes used in the experiment, T5 produced the highest yield in both non-stress (19.71 g/plant and stress (10.69 g/plant conditions, while the lowest yield in normal (11.84 g/plant and stressful (4.29 g/plant conditions was recorded for Deylam and Khazar, respectively. The highest and the lowest percentage of yield reduction were found in Khazar (69.49% and Sange Joe (31.48% in stressful conditions, respectively. Overall, genotypes T5, 831, Sepidrud and Sange Joe can probably be considered as superior high yielding genotypes in both saline and non-saline conditions for further research.

  12. Field trials show the fertilizer value of nitrogen in irrigation water

    Directory of Open Access Journals (Sweden)

    Mike Cahn

    2017-04-01

    Full Text Available Increased regulatory activity designed to protect groundwater from degradation by nitrate-nitrogen (NO3-N is focusing attention on the efficiency of agricultural use of nitrogen (N. One area drawing scrutiny is the way in which growers consider the NO3-N concentration of irrigation water when determining N fertilizer rates. Four drip-irrigated field studies were conducted in the Salinas Valley evaluating the impact of irrigation water NO3-N concentration and irrigation efficiency on the N uptake efficiency of lettuce and broccoli crops. Irrigation with water NO3-N concentrations from 2 to 45 milligrams per liter were compared with periodic fertigation of N fertilizer. The effect of irrigation efficiency was determined by comparing an efficient (110% to 120% of crop evapotranspiration, ETc and an inefficient (160% to 200% of ETc irrigation treatment. Across these trials, NO3-N from irrigation water was at least as efficiently used as fertilizer N; the uptake efficiency of irrigation water NO3-N averaged approximately 80%, and it was not affected by NO3-N concentration or irrigation efficiency.

  13. Estimation of crop water requirements using remote sensing for operational water resources management

    Science.gov (United States)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  14. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions

    Science.gov (United States)

    Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao

    2017-12-01

    Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.

  15. Behaviour Of Saline Irrigation Water Components In Pakistani Barley And Calcareous Soil Under Scheduling Irrigation Using Neutron Scattering Technique

    International Nuclear Information System (INIS)

    RIZK, M.A.

    2010-01-01

    This study aims to investigate the behaviour of cation uptake by Pakistani barley (genotype PK-30163) as affected by saline irrigation water, as well as cation distribution within the soil profile. This experiment was carried out at Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt. The soil was transferred from Wadi Sudr (South Sinai, Egypt). It is salted affected soil (calcareous soil, EC = 4.3 dS/m) and was irrigated using ground water irrigation (12.5 dS/m). Nine used lysimeters were irrigated with three artificial saline water (0.3, 4 and 8 dS/m) using drip irrigation system. The irrigation schedule was carried out using neutron scattering technique according to the hydro physical properties of the soil. Pakistani barley (halophytic plant) was used to remove salts from the soil especially sodium cations. The cation uptake and cation distribution (Na, K, Ca, Mg) within the soil profile were studied.The data indicated that roots of barley collected within 0-15 cm layer showed high cation uptake that made the salt concentrations in this layer low. Sodium uptake ratio was 43, 37 and 47% from total cation uptake by using fresh water (0.3 dS/m), 4 and 8 dS/m, respectively. The maximum uptake for Na, K, Ca and Mg was 20.51, 19.13, 3.98 and 12.81 g/lys at 5.69, 3.05, 6.56 and 4.15 dS/m, respectively. It was found that Pakistani barley preferred Mg uptake rather than Ca uptake.

  16. Accounting for user expectations in the valuation of reliable irrigation water access in the Ethiopian highlands

    DEFF Research Database (Denmark)

    Kassahun, Habtamu Tilahun; Nicholson, Charles F.; Jacobsen, Jette Bredahl

    2016-01-01

    We estimate the willingness-to-pay (WTP) for reliable access to irrigation water for a sample of farmers in a watershed of the Ethiopian highlands who do not have prior experience with irrigation. To address the lack of previous irrigation experience, we account for underlying expectations...... of future irrigation productivity using an Integrated Choice and Latent Variable (ICLV) econometric model. We then compare the ICLV estimates with alternative models that do not account for expectations regarding productivity increases with irrigation. Our results indicate that both the ICLV and alternative...

  17. Game Theory in water resources management

    Science.gov (United States)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  18. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  19. Demand Estimation for Irrigation Water in the Moroccan Drâa Valley using Contingent Valuation

    OpenAIRE

    Storm, Hugo; Heckelei, Thomas; Heidecke, Claudia

    2010-01-01

    Irrigation water management is crucial for agricultural production and livelihood security in Morocco as in many other parts of the world. For the implementation of an effective water management knowledge about farmers’ irrigation water demand is crucial to assess demand reactions of a water pricing policy, to establish a cost-benefit analysis of water supply investments or to determine the optimal water allocation between different users. Previously used econometric methods providing this in...

  20. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  1. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  2. Participatory Irrigation Management and Irrigation Water Use Efficiency in Maize Production: Evidence from Zhangye City, Northwestern China

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    2017-10-01

    Full Text Available Water has become increasingly scarce in northwestern China due to climate change, economic growth and burgeoning population. Improving agriculture water use efficiency is of strategic significance in promoting socio-economic water productivity for arid and semi-arid inland river basins. Based on the household-level data collected in Zhangye City, which is located in the middle reaches of Heihe River Basin (HRB in northwestern China, irrigation water use efficiency (IWUE of maize is estimated based on stochastic frontier analysis. The impacts of influential factors, especially the participatory irrigation management (PIM through water user associations (WUAs, on IWUE were further examined. Results show that the estimated average Technical efficiency (TE and IWUE of maize production are 0.74 and 0.24, respectively. The participation level in irrigation management is very low, with only 40% of the respondents participating in WUA meetings. In addition, most have a relatively superficial understanding of the roles and management scheme of WUAs. Empirical results show that though significantly positive, the magnitude of the impact of PIM on IWUE is relatively small. Households that participated in WUA meetings achieved only 0.002% higher IWUEs than those have never participated in. WUAs are not operating with their designed objectives. Consequently, reform of the traditional management form of WUAs to make them more transparent, fair, and extensively participated in among farmers is in urgently need. In addition, we also find that water price, source of irrigation water, irrigation technology adoption and famers’ education level and farming experience also have significant positive impacts on IWUE.

  3. Increased water charges improve efficiency and equity in an irrigation system

    Directory of Open Access Journals (Sweden)

    Andrew Reid. Bell

    2016-09-01

    Full Text Available Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1 farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2 there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to

  4. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non

  5. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    Science.gov (United States)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  6. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  7. Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2009-01-01

    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  8. Soil water sensors for irrigation management-What works, what doesn't, and why

    Science.gov (United States)

    Irrigation scheduling can be greatly improved if accurate soil water content data are available. There are a plethora of available soil water sensing systems, but those that are practical for irrigation scheduling are divided into two major types: the frequency domain (capacitance) sensors and the t...

  9. Adapting irrigation management to water scarcity: constraints of plant growth, hydraulics and carbon assimilation.

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  10. EFFECTS OF IRRIGATION WATER QUALITY (DIFFERENT SALINITY LEVELS AND BORON CONCENTRATIONS ON MORPHOLOGICAL CHARACTERISTICS OF GRAFTED AND NON-GRAFTED EGGPLANTS

    Directory of Open Access Journals (Sweden)

    İsmail Taş

    2016-07-01

    Full Text Available High yield cultivars with quite high resistance against pests and diseases, irrigation water salinity and deficit irrigation conditions are significant in plant production activities. Researches have been conducted also to improve the resistance of available cultivars. Since 1990s, researchers have tried to use low quality irrigation waters just because of deficit water resources and current trends in global warming and climate change. The basic target in all these researches is to reduce production costs and to improve quality and yields. Availability of low quality irrigation waters is a basic component of sustainable agricultural production. The present study was conducted in 40 liter pots under greenhouse conditions. Grafted and non-grafted eggplant seedlings were planted into these pots. Then, plants were irrigated with irrigations waters with different salinity levels (0.25, 1, 1.5, 2, 4, 6, 10 and 15 dS/m and boron concentrations (0, 1, 2, 4, 8, 16, 32 and 64 ppm. In this way, effects of different irrigation water qualities on plant morphological characteristics were investigated.

  11. Some aspects of integrated water resources management in central Asia

    Science.gov (United States)

    Khaydarova, V.; Penkova, N.; Pak, E.; Poberejsky, L.; Beltrao, J.

    2003-04-01

    requirement in Afghanistan. (In particular, there is a conflict of interests concerning the functioning of the Toktogul reservoir: Kazakhstan and Uzbekistan are interested in the irrigation regime of operations of reservoir; Kyrgyzstan and Tajikistan are interested in the energy conditions of its functioning.) In the national diagnostic reports the numerical parameters of the water resources use dynamics for previous years, and also estimation of water resources do not coincide, that complicates development of principles and criteria of the intergovernmental water distribution. It also indirectly influences the solution of the water cost problem. Discrepancy of the specified settlement data is explained, basically, differences of techniques and algorithms of accounts. In the principal theses of national water strategy of all Central Asian states developed in the end of 90s years, it was marked the necessity of development of the uniform methodical approaches for the strong water consumption rates. The perspective water requirements should be estimated proceeding from the national economic programs of each state. In this connection the coordination by all interested states of region both the uniform approach for estimations of the future water consumption and the uniform settlement base for the improving of models and procedures of the intergovernmental water distribution is admitted as an urgent need. One of the corner-stone tasks in the framework of the common methodological basis for the intergovernmental water distribution is development of the unified method for estimation of irrigation water requirements, because one of the main consumers of water resources in the Central Asian states is irrigation. Last years authors were conducting investigations on development of new modification of the Heat and Water Balances Model (HWBM) and its adaptation to estimation of irrigation water requirements in arid an semi-arid regions in the framework of the INCO-COPERNICUS project

  12. Impact of different irrigation systems on water quality in peri-urban areas of Gujarat, India

    OpenAIRE

    Vangani, Ruchi; Saxena, Deepak; Gerber, Nikolaus; Mavalankar, Dileep; von Braun, Joachim

    2016-01-01

    The ever-growing population of India, along with the increasing competition for water for productive uses in different sectors - especially irrigated agriculture and related local water systems and drainage - poses a challenge in an effort to improve water quality and sanitation. In rural and peri-urban settings, where agriculture is one of the main sources of livelihood, the type of water use in irrigated agriculture has complex interactions with drinking water and sanitation. In particular,...

  13. Water Conservation Resource List.

    Science.gov (United States)

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  14. Nuclear techniques to evaluate the water use of field crops irrigated in different stages of their cycles

    International Nuclear Information System (INIS)

    Libardi, P.L.; Moraes, S.O.; Saad, M.A.; Jong Van Lier, Q.; Vieira, O.; Luis Tuon, R.

    1995-01-01

    The search for soil - water management systems that rationalize the water use of field crops should always be emphasized. The present coordinated research programme of the joint division FAO/ AEA has the objective to contribute to a better understanding of this subject by improving the use efficiency of water resources in irrigated agriculture. This project is a contribution to this programme and consisted in the identification of specified development stages of bean ( phaseolus vulgaris, L ) and corn (Zea mays, L ) crops in which plants are less sensitive to water deficit. Experiments were carried out in a tropical soil of agricultural importance in a traditional irrigation field site of the state of Sao Paulo, Brazil. Neutron probe tensiometers were used to determine the soil water balance in different treatments. 3 tabs, 16 refs, (Author)

  15. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    Science.gov (United States)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  16. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  17. Assessment of water use and its productivity in the Spanish irrigation district "Río Adaja"

    Science.gov (United States)

    Rodriguez-Sinobas, Leonor; Naroua, Iliassou; Sánchez-Calvo, Raúl

    2015-04-01

    A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District "Río Adaja" that has analyzed the water use efficiency and the water productivity indicators for the main crops during the first three years of operation (2010/2011, 2011/2012 and 2012/2013). A soil water balance model was applied taking into account climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman-Monteith with the application of the dual crop coefficient and by considering the readily available soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP). The results show that the irrigation district applied deficit irrigation in most crops (ARIS<1), and also improved water productivity. This was higher in 2010/2011 which showed the highest effective precipitation Pe. The IWP (€/m3) index varied among crops with the highest values for onion (4.14), potato (2.79), carrot (1.37) and barley (1.21) for the first year and, onion (1.98), potato (1.69), carrot (1.70) and barley (1.16) in the second year. Thus, these crops would be a proper cropping pattern to maximize the gross income in the irrigation district.

  18. Produced water irrigation changes the soil mesofauna community in a semiarid agroecosystem.

    Science.gov (United States)

    Ferreira, Raimundo Nonato Costa; Weber, Olmar Baller; Crisóstomo, Lindbergue Araujo

    2015-08-01

    The scarcity of water in semiarid regions requires alternative sources for irrigation to improve agricultural production. Here, we aimed to evaluate the effects of produced water from oil exploration on the structure of soil mesofauna during the dry and rainy seasons in irrigated sunflower and castor bean fields in a Brazilian semiarid region. Three irrigation treatments were applied on plots cultivated with castor beans and sunflowers: produced water treated by filtration (filtrated) or treated by reverse osmosis (reverse osmosis) and groundwater. The mesofauna under the biofuel crops was collected and identified during the dry and rainy seasons. Although the abundance and richness of the total fauna did not differ between seasons in sunflower plots, the community was altered. In castor beans, the abundance, richness, and community of mesofauna observed in plots irrigated with produced water differed from the groundwater treatment. Irrigation with produced water promotes important changes in soil fauna community that justify their assessment for the maintenance and monitoring of agroecosystems.

  19. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  20. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  1. - Oklahoma Water Resources Center

    Science.gov (United States)

    Development Ag Business Community & Rural Development Crops Family & Consumer Sciences Gardening Family & Consumer Sciences Food & Ag Products Center Horticulture & Landscape Architecture & Landscape Architecture Natural Resource Ecology & Management Plant & Soil Sciences

  2. The real water consumption of orange trees irrigated by reused water in tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Zouhaier, M C [Center de recherche du Genie Rural B.P. No. 10-2080 Ariana (Tunisia)

    1995-10-01

    Our research experiments, have been conducted in the experiment station of `Oued souhil` situated under semi-arid climate in tunisia. We have studied the real water consumption of orange trees irrigated by reused water compared the results with trees using water from well. For measuring the different parameters, to determine soil humidity and the soil apparent density, we have used respectively neutron lead `Neutron probe` and radiation gamma instruments. However, the experiments results conducted for 7 years from 1987 to 1993 - allowed the evaluation of the read consumption of orange trees using reused water and well water and the production quantity. The effect of using the two different quality of water with different irrigation systems have been also studied. 6 figs., 4 tabs.

  3. The real water consumption of orange trees irrigated by reused water in tunisia

    International Nuclear Information System (INIS)

    Zouhaier, M.C.

    1995-01-01

    Our research experiments, have been conducted in the experiment station of 'Oued souhil' situated under semi-arid climate in tunisia. We have studied the real water consumption of orange trees irrigated by reused water compared the results with trees using water from well. For measuring the different parameters, to determine soil humidity and the soil apparent density, we have used respectively neutron lead 'Neutron probe' and radiation gamma instruments. However, the experiments results conducted for 7 years from 1987 to 1993 - allowed the evaluation of the read consumption of orange trees using reused water and well water and the production quantity. The effect of using the two different quality of water with different irrigation systems have been also studied. 6 figs., 4 tabs

  4. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    Directory of Open Access Journals (Sweden)

    mohammad saeed tadaion

    2017-12-01

    Full Text Available Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L. cv. Zarde-anar were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carried out in a constant plots and randomized complete block design (RCBD with four replicationsin five years.Treatmentswere 1- full flood irrigation (100 percent crop water requirement (T1 2- flood irrigation with 100 percent crop water requirement as alternate partial root-zone irrigation(every irrigation conducted on one side of tree (T2 3- flood irrigation with 50 percent crop water requirement as regular deficit irrigation (T3 4- full two-side drip irrigation(with regard to crop water requirement (eight drippers with twolit/hour flow by two different individual networks (T4 5- alternate partial root-zone drip irrigation with 100 percent crop water requirement (T5 6- regular deficit drip irrigation with 50 percent crop water requirement (T6 in every irrigation period. Each experimental treatment includes four trees and 96 similar twelve years old trees overall. Cultivation practice was conducted similarly on all of the trees. Results and Discussion: Results showed that the highest yield and water use efficiency based on statistical analysis belong to both PRD treatments i.e. alternate partial root-zone drip irrigation with 100 percent crop water requirement and alternate partial root-zone flood irrigation with 100 percent crop water requirement, respectively, that both of them decreased water requirement for irrigation up to 35 and 50 percent in comparison tocontrol. Application of partial root drying irrigation on both traditional flood irrigation and drip

  5. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies

    Directory of Open Access Journals (Sweden)

    Tewodros Assefa

    2018-04-01

    Full Text Available The study was conducted in Lake Tana Basin of Ethiopia to assess potentially irrigable areas for home gardens, water availability, and feasibility of water-lifting technologies. A GIS-based Multi-Criteria Evaluation (MCE technique was applied to access the potential of surface and groundwater sources for irrigation. The factors affecting irrigation practice were identified and feasibility of water-lifting technologies was evaluated. Pairwise method and expert’s opinion were used to assign weights for each factor. The result showed that about 345,000 ha and 135,000 ha of land were found suitable for irrigation from the surface and groundwater sources, respectively. The rivers could address about 1–1.2% of the irrigable land during dry season without water storage structure whereas groundwater could address about 2.2–2.4% of the irrigable land, both using conventional irrigation techniques. If the seven major dams within the basin were considered, surface water potential would be increased and satisfy about 21% of the irrigable land. If rainwater harvesting techniques were used, about 76% of the basin would be suitable for irrigation. The potential of surface and groundwater was evaluated with respect to water requirements of dominant crops in the region. On the other hand, rope pump and deep well piston hand pump were found with relatively the most (26% and the least (9% applicable low-cost water-lifting technologies in the basin.

  6. HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain

    Directory of Open Access Journals (Sweden)

    Kangkang He

    2017-07-01

    Full Text Available Freshwater resources in the North China Plain (NCP are near depletion due to the unceasing overexploitation of deep groundwater, by far the most significant source of freshwater in the region. To deal with the deepening freshwater crisis, brackish water (rich but largely unused water in agriculture is increasingly being used in irrigation in the region. However, inappropriate irrigation with brackish water could lead to soil salinization and cropland degradation. To evaluate such negative impacts, the HYDRUS-1D model was used to simulate soil salt transport and accumulation under 15 years of irrigation with brackish water. The irrigation scenarios included brackish water irrigation during the wintering and jointing stages of winter wheat and then freshwater irrigation just before the sowing of summer maize. Freshwater irrigation was done to leach out soil salts, which is particularly vital in dry years. For the littoral region of the plain, HYDRUS-ID was used to simulate the irrigated cropping system stated above for a total period of 15 years. The results showed that it was feasible to use brackish water twice in one year, provided freshwater irrigation was performed before sowing summer maize. Freshwater irrigation, in conjunction with precipitation, leached out soil salts from the 100 cm root-zone depth. The maximum salt accumulation was in the 160–220 cm soil layer, which ensured that root-zone soil was free of restrictive salinity for crop growth. Precipitation was a critical determinant of the rate and depth leaching of soil salt. Heavy rainfall (>100 mm caused significant leaching of soluble salts in the 0–200 cm soil profile. Salt concentration under brackish water irrigation had no significant effect on the variations in the trend of soil salt transport in the soil profile. The variations of soil salinity were mainly affected by hydrological year type, for which the buried depth of soil salt was higher in wet years than in dry years

  7. Golf Course Irrigation with Reclaimed Water in the Mediterranean: A Risk Management Matter

    Directory of Open Access Journals (Sweden)

    Miquel Salgot

    2012-04-01

    Full Text Available Controversy regarding the amount of water consumed or saved as a result of human activity is currently paramount in water-scarce areas. In recent decades, golf—a land and water consuming activity—has been implanted in several areas of the Mediterranean basin, where the scarcity of water resources is well-known. As a result, the use of conventional water resources for golf course irrigation is increasingly contested and its replacement by reclaimed water has become essential. This paper examines the wide range of issues involved in its use on golf courses, including hazards—due to the presence of microorganisms and pollutants—and the corresponding risks that can appear. The resulting biological, chemical and physical water quality concerns are analyzed. Legal aspects related to the use of reclaimed water are also discussed and good reuse practices are suggested, including a detailed examination of risk assessment procedures and tools through observation or chemical, physical and microbiological analysis. The HACCP system—which focuses on quality determination in water samples from relevant control points—is described in detail, as it is generally accepted as one of the most scientific ways to detect health problems on a golf course. The paper concludes that, given the increasing availability of treated and reclaimed water and the water needs of golf courses, the future development of the sport in areas without surplus water resources—such as the Mediterranean basin—will predictably depend upon the use of reclaimed water. In recent years, risk assessment or analysis has emerged as an essential tool to guarantee the application of reclaimed water at an acceptable risk level. There certainly have been considerable advances and improvements in the tools that guarantee the safe use of reclaimed water, although current methods available require simplification for their practical application. Nevertheless, protocols applied at present

  8. Handling Uncertain Gross Margin and Water Demand in Agricultural Water Resources Management using Robust Optimization

    Science.gov (United States)

    Chaerani, D.; Lesmana, E.; Tressiana, N.

    2018-03-01

    In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.

  9. Energy and water resources

    International Nuclear Information System (INIS)

    1981-12-01

    This book presents data and other information for those who desire an understanding of the relationship between water and energy development. The book is not a tract for a grand plan. It does not present solutions. Many of the issues, especially regarding conflict over water allocations and use, are controlled and reconciled at the state level. This report draws together some of the physical and institutional data useful for identifying and understanding water issues which rise in regard to the various aspects of energy development. Three basic water-energy areas are considered in this report: water quality, water supply, and their institutional framework. Water consumption by energy was three percent of the nation's total consumption in 1975, not a large proportion. It is projected to increase to six percent by 2000. Water consumption rates by the energy technologies addressed in this document are tabulated. Water pollutant loadings expected from these technologies are summarized. Finally, a summary of water-related legislation which have particular ramifications in regard to the production of energy is presented

  10. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique?

    Science.gov (United States)

    van der Zaag, Pieter; Juizo, Dinis; Vilanculos, Agostinho; Bolding, Alex; Uiterweer, Nynke Post

    This paper verifies whether the water resources of the transboundary Limpopo River Basin are sufficient for the planned massive irrigation developments in the Mozambique part of this basin, namely 73,000 ha, in addition to existing irrigation (estimated at 9400 ha), and natural growth of common use irrigation (4000 ha). This development includes the expansion of sugar cane production for the production of ethanol as a biofuel. Total additional water requirements may amount to 1.3 × 10 9 m 3/a or more. A simple river basin simulation model was constructed in order to assess different irrigation development scenarios, and at two storage capacities of the existing Massingir dam. Many uncertainties surround current and future water availability in the Lower Limpopo River Basin. Discharge measurements are incomplete and sometimes inconsistent, while upstream developments during the last 25 years have been dramatic and future trends are unknown. In Mozambique it is not precisely known how much water is currently consumed, especially by the many small-scale users of surface and shallow alluvial groundwater. Future impacts of climate change increase existing uncertainties. Model simulations indicate that the Limpopo River does not carry sufficient water for all planned irrigation. A maximum of approx. 58,000 ha of irrigated agriculture can be sustained in the Mozambican part of the basin. This figure assumes that Massingir will be operated at increased reservoir capacity, and implies that only about 44,000 ha of new irrigation can be developed, which is 60% of the envisaged developments. Any additional water use would certainly impact downstream users and thus create tensions. Some time will elapse before 44,000 ha of new irrigated land will have been developed. This time could be used to improve monitoring networks to decrease current uncertainties. Meanwhile the four riparian Limpopo States are preparing a joint river basin study. In this study a methodology could be

  11. Water-Yield Relations of Drip Irrigated Watermelon in Temperate Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2016-08-01

    Full Text Available The objective of the study, conducted in Vojvodina a northern part of the Serbia Republic, was to analyse the effect of drip irrigation on yield, evapotranspiration and water productivity of watermelon (Cirullus lanatus Thunb. grown with plasticulture. Irrigation was scheduled on the basis of water balance method. Daily evapotranspiration was computed using the reference evapotranspiration and crop coefficient. The yield of watermelon in irrigation conditions (37,28 t/ha was significantly higher compared to non irrigated (9,98 t/ha. Water used on evapotranspiration in irrigation conditions was 398 mm and 117 mm on non irrigated variant. The crop yield response factor of 1,04 for the whole growing season reveals that relative yield decrease was nearly equal to the rate of evapotranspiration deficit. The values of irrigation water use efficiency and evapotranspiration water use efficiency were 9,93 kg/m3 and 10,29 kg/m3 respectively. The determined results could be used as a good platform for watermelon growers in the region, in terms of improvement of the optimum utilization of irrigation water.

  12. On the waterfront : water distribution, technology and agrarian change in a South Indian canal irrigation system

    OpenAIRE

    Mollinga, P.P.

    1998-01-01

    This book discusses water distribution in the Tungabhadra Left Bank Canal irrigation system in Raichur district, Karnataka, India. The system is located in interior South India, where rainfall is limited (approximately 600 mm annually) and extremely variable. The region suffered from failed harvests and famines in the past. A large scale irrigation system was constructed to solve these problems. The system is operational since 1953 and was completed in 1968. The area to be irrigated ...

  13. More crop per drop: Improving our knowledge on crop water requirements for irrigation scheduling

    CSIR Research Space (South Africa)

    Gush, Mark B

    2015-10-01

    Full Text Available South Africa is a dry country facing climate change, population expansion and economic growth, resulting in increasing water scarcity and competition for water. The irrigated agriculture and forestry sectors have been allocated approximately two...

  14. Effect of Different Levels of Irrigation Water on Quantitative and Qualitative Characteristics of Potato and Determination of Its Optimum Consumptive Use of Water in Shahrekord

    Directory of Open Access Journals (Sweden)

    masoud Naderi

    2017-01-01

    Full Text Available Introduction: Owing to drought, increasing demand for fresh water resources and low water use efficiency, the optimum use of water is essential in the agricultural sector. Therefore, this study was conducted to investigate the effect of different levels of irrigation water on quantitative and qualitative Characteristics of potato (Burren cultivar and determination of its optimum consumptive use of water under Shahr-e kord environment. Materials and Methods: This study was conducted at the Agricultural Research Center and Natural Resources in Shahr-e kord with longitude and latitude of 32˚18΄ and 50˚51΄ , respectively, in 2013. This experiment was performed in randomized complete block design with 7 treatments consisted of different levels of irrigation water and 3 replications. Different levels of irrigation water were: 40, 55, 70, 85, 100, 115 and 130 % of the soil moisture deficit. Potato seeds (burren cultivar were planted with distance of 20 cm from each other and furrow width of 75 cm. Irrigation program were performed based on the measurement of soil moisture deficit. The irrigation intervals were considered as a fixed 7 day. Irrigation levels were applied to 105 days after planting and the total growth period was 130 days from planting to harvesting. The samples were taken from the two middle furrows. The evaluated parameters were included weight of tubers per plant, tuber diameter, weight of tuber in seed size, weight of tuber production in a plant in marketable size, tuber dry weight, the starch percent, percent of soluble sugars, nitrogen percent. The starch content was determined by Polarimetry method. The soluble sugars content was measured by Colorimetric method, the nitrogen content was measured by wet digestion method and using the Kjeldahl set. Then, the optimal depth of water consumption in conditions of limited water resources were determined by English method Statistical analysis of data and drawing graphs were done with

  15. Dual permeability soil water dynamics and water uptake by roots in irrigated potato fields

    DEFF Research Database (Denmark)

    Dolezal, Frantisek; Zumr, David; Vacek, Josef

    2007-01-01

    Water movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland...

  16. Capacitive Sensors and Breakthrough Curves in Automated Irrigation for Water and Soil Conservation

    Science.gov (United States)

    Fahmy Hussein, Mohamed

    2016-04-01

    Shortness of water resources is the dominant criterion that dampens agricultural expansion in Egypt. Ten times population increase was recorded versus twice increase in the cultivated area during the last 100 years. Significant increase in freshwater supply is not expected in the near future. Consequently, a great deal of water-conservation is required to ameliorate water-use efficiency and to protect soils against sodicity under the prevailing arid-zone conditions. Modern irrigation (pivot, drip and sprinkling) was introduced during the last three decades in newly cultivated lands. However, this was done without automated watering. Moreover, dynamic chemical profile data is lacking in the cultivated lands. These current water conditions are behind this work. Two experimental procedures were used for a conjunctive goal of water and soil conservation. The first procedure used the resonance of analog-oscillators (relative permittivity sensors) based on capacitive Frequency Domain Reflectometry, FDR. Commercially available FDR sensors were calibrated for three soil textures, and solenoids were used to automatically turn on and off irrigation pipes in three experimental plots (via low power AC latching-valves on relay solid-state boards connected to sensors; the valve got closed when soil became sufficiently moist near saturation and opened before reaching wilting point as the relay contacts were defined by variable-resistor on board after sensor calibration). This article reports the results of sensor mV readings versus soil-moisture in the linear parts of calibration diagrams, for known moisture contents from wilting point to saturation, fitted as "power-law of dielectric mixing". The results showed close to optimum watering at soil-surface in the nursery beds when the sensors were sampled every 10 minutes to update the relays. This work is planned to extend to different sensors and drippers for soils with field crops / fruit trees to account for aspects of concern

  17. Irrigation-water quality during 1976 irrigation season in the Sulphur Creek basin, Yakima and Benton counties, Washington

    Science.gov (United States)

    Boucher, P.R.; Fretwell, M.O.

    1982-01-01

    A water-quality-sampling network was designed for the Sulphur Creek basin to observe the effects of farming practices on irrigation. Sediment and nutrient yield, discharge, and water temperature data were collected during the 1976 irrigation season and the following fall and winter. The suspended-sediment yield of the basin during this period was 2.0 tons per acre of irrigated cropland. Only about 3% of the net outflow of sediment occurred during the nonirrigation season. The yield computed by subbasin ranged from 0.7 to 7 tons per acre, depending mainly on land slope, but a high percentage of orchard land in the subbasins was probably also significant in reducing loads. Nutrient outflows during the study period were 1,180,000 pounds of nitrogen and 120,000 pounds of phosphorous. Nitrate-plus-nitrite represent 70% of the nitrogen outflow in the irrigation season and 84% in the nonirrigation season. The monitoring network was discontinued at the end of the study period, due largely to insufficient farmer participation. Network sensitivity in the control subbasins was inadequate to detect the effects of a planned demonstration program of best management practices. (USGS)

  18. Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience

    Science.gov (United States)

    Garrido, Alberto; Martínez-Santos, Pedro; Llamas, M. Ramón

    2006-03-01

    Over the last decades, groundwater irrigation has become commonplace in many arid and semiarid regions worldwide, including Spain. This is largely a consequence of the advances in drilling and pumping technologies, and of the development of Hydrogeology. Compared with traditional surface water irrigation systems, groundwater irrigation offers more reliable supplies, lesser vulnerability to droughts, and ready accessibility for individual users. Economic forces influence the groundwater irrigation sector and its development. In Spain's Mediterranean regions, abstraction costs often amount to a very small fraction of the value of crops. In the inner areas, groundwater irrigation supports a more stable flow of farm income than rainfed agriculture. The social (jobs/m3) and economic (€/m3) value of groundwater irrigation generally exceeds that of surface water irrigation systems. However, poor groundwater management and legal controversies are currently at the base of Spain's social disputes over water. A thorough and transparent assessment of the relative socio-economic value of groundwater in relation to surface water irrigation might contribute to mitigate or avoid potential future conflicts. Enforcement of the European Union's Water Framework Directive may deliver better groundwater governance and a more sustainable use.

  19. Innovations in Agriculture in Oregon: Farmers Irrigation District Improves Water Quality, Maximizes Water Conservation, and Generates Clean, Renewable Energy

    Science.gov (United States)

    The Hood River Farmers Irrigation District used $36.2 million in CWSRF loans for a multiple-year endeavor to convert the open canal system to a piped, pressurized irrigation system to maximize water conservation and restore reliable water delivery to crops

  20. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress.

    Science.gov (United States)

    le Roux, Betsie; van der Laan, Michael; Vahrmeijer, Teunis; Bristow, Keith L; Annandale, John G

    2017-12-01

    Future water scarcities in the face of an increasing population, climate change and the unsustainable use of aquifers will present major challenges to global food production. The ability of water footprints (WFs) to inform water resource management at catchment-scale was investigated on the Steenkoppies Aquifer, South Africa. Yields based on cropping areas were multiplied with season-specific WFs for each crop to determine blue and green water consumption by agriculture. Precipitation and evapotranspiration of natural vegetation and other uses of blue water were included with the agricultural WFs to compare water availability and consumption in a catchment sustainability assessment. This information was used to derive a water balance and develop a catchment WF framework that gave important insights into the hydrology of the aquifer through a simplified method. This method, which requires the monitoring of only a few key variables, including rainfall, agricultural production, WFs of natural vegetation and other blue water flows, can be applied to inform the sustainability of catchment scale water use (as opposed to more complex hydrological studies). Results indicate that current irrigation on the Steenkoppies Aquifer is unsustainable. This is confirmed by declining groundwater levels, and suggests that there should be no further expansion of irrigated agriculture on the Steenkoppies Aquifer. Discrepancies between in- and outflows of water in the catchment indicated that further development of the WF approach is required to improve understanding of the geohydrology of the aquifer and to set and meet sustainability targets for the aquifer. It is envisaged that this 'working' framework can be applied to other water-stressed aquifers around the world. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. Variable fuzzy assessment of water use efficiency and benefits in irrigation district

    Directory of Open Access Journals (Sweden)

    Ming-hui Wang

    2015-07-01

    Full Text Available In order to scientifically and reasonably evaluate water use efficiency and benefits in irrigation districts, a variable fuzzy assessment model was established. The model can reasonably determine the relative membership degree and relative membership function of the sample indices in each index's standard interval, and obtain the evaluation level of the sample through the change of model parameters. According to the actual situation of the Beitun Irrigation District, which is located in Fuhai County, in Altay City, Xinjiang Uyghur Autonomous Region, five indices were selected as evaluation factors, including the canal water utilization coefficient, field water utilization coefficient, crop water productivity, effective irrigation rate in farmland, and water-saving irrigation area ratio. The water use efficiency and benefits in the Beitun Irrigation District in different years were evaluated with the model. The results showed that the comprehensive evaluation indices from 2006 to 2008 were all at the third level (medium efficiency, while the index in 2009 increased slightly, falling between the second level (relatively high efficiency and third level, indicating an improvement in the water use efficiency and benefits in the Beitun Irrigation District, which in turn showed that the model was reliable and easy to use. This model can be used to assess the water use efficiency and benefits in similar irrigation districts.

  2. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  3. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  4. Water requirement and irrigation schedule for tomato in northern guinea savanna zone, Nigeria

    Directory of Open Access Journals (Sweden)

    Ibraheem Alhassan

    2015-06-01

    Full Text Available Assessment of water requirement and irrigation schedule for tomato with the support of FAO-CROPWAT simulation model was carried out for Yola, Nigeria with the aim of planning irrigation schedules for tomato and develop recommendations for improve irrigation practices. The climatic data for 2012/2013 and soil properties of the study area were input into the program. Tomato crop properties were updated by the FAO data and three irrigation intervals were tested (7 and 10 days irrigation intervals and irrigation schedule of 10 days interval during initial and development stage and 6 days interval at mid and late season stages of tomato crop. The simulated results analysis for tomato according to the irrigation schedule showed that highest yield reduction of 16.2% was recorded with 10 days irrigation interval treatment and the least of 0.4% with irrigation interval of 10 days at first two growth stages and 6 days at last two stages. FAO-CROPWAT 8.0 can be used in planning proper irrigation schedule for tomato in Yola, Nigeria.

  5. Water : a commodity or resource?

    International Nuclear Information System (INIS)

    Pomeroy, G.

    2003-01-01

    Over the past several years, natural gas demand has increased significantly, as it is seen as an environmentally friendly, convenient and cost effective fuel. As a result, Alberta should experience the development of a sustainable resource in the form of natural gas from coal, provided adequate management of associated water is in place. The environmental impact and volume of water produced with natural gas from coal can be significant. Water is scarce and demand is growing. Gas producers are faced with the challenge of high water production and disposal costs, and often choose the deep disposal option as the most economical solution. However, environmentalists and agriculture groups who view water as a valuable resource, warrant the costs associated with the treatment of produced water. The author proposed a conceptual solution to this dilemma concerning produced water. It was suggested that producers of water should be connected with consumers, while allowing free market supply and demand dynamics to price out the inefficient use of the resource. The author also discussed the related regulatory, environmental, technological, economic, and commercial issues. It was concluded that water is both a resource and a commodity. Alberta should implement measures to promote water conservation, pollute less, and manage supply and demand. figs

  6. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  7. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Science.gov (United States)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  8. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    OpenAIRE

    SU Yong-zhong; ZHANG Ke; LIU Ting-na; WANG Ting

    2016-01-01

    A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP) in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different texture...

  9. A new concept of irrigation response units for effective management of surface and groundwater resources: a case study from the multi-country Fergana Valley, Central Asia

    KAUST Repository

    Awan, Usman Khalid

    2016-09-09

    When estimating canal water supplies for large-scale irrigation schemes and especially in arid regions worldwide, the impact of all factors affecting the gross irrigation requirements (GIR) are not properly accounted for, which results in inefficient use of precious freshwater resources. This research shows that the concept of irrigation response units (IRU)—areas having unique combinations of factors effecting the GIR—allows for more precise estimates of GIR. An overlay analysis of soil texture and salinity, depth and salinity of groundwater, cropping patterns and irrigation methods was performed in a GIS environment, which yielded a total of 17 IRUs combinations of the Oktepa Zilol Chashmasi water consumers’ association in multi-country Fergana Valley, Central Asia. Groundwater contribution, leaching requirements, losses in the irrigation system through field application and conveyance and effective rainfall were included in GIR estimates. The GIR varied significantly among IRUs [average of 851 mm (±143 mm)] with a maximum (1051 mm) in IRU-12 and a minimum (629 mm) in IRUs-15, 16. Owing to varying groundwater levels in each IRU, the groundwater contribution played a key role in the estimation of the GIR. The maximum groundwater contribution occurred in IRUs dominated by cotton–fallow rotations as evidenced by an average value of 159 mm but a maximum of 254 mm and a minimum of 97 mm. Percolation losses depended on irrigation methods for different crops in their respective IRUs. The novel approach can guide water managers in this and similar regions to increase the accuracy of irrigation demands based on all the factor effecting the GIR. © 2016 Springer-Verlag Berlin Heidelberg

  10. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control

    OpenAIRE

    Kibret, Solomon; Wilson, G Glenn; Tekie, Habte; Petros, Beyene

    2014-01-01

    Background Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. Methods Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia...

  11. Cotton Water Use Efficiency under Two Different Deficit Irrigation Scheduling Methods

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Baker

    2015-08-01

    Full Text Available Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE of cotton (Gossypium hirsutum L. In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST method with irrigation triggers set at 5.5 (ST_5.5 and 8.5 h (ST_8.5 and the Crop Water Stress Index (CWSI method with irrigation triggers set at 0.3 (CWSI_0.3 and 0.6 (CWSI_0.6. When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW control irrigated at 110% of potential evapotranspiration and a dry land (DL treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ≤ 0.05 peak near 3.6 to 3.7 kg ha−1 mm−1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield.

  12. How much water do we need for irrigation under Climate Change in the Mediterranean?

    Science.gov (United States)

    Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi

    2014-05-01

    Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.

  13. Understanding water delivery performance in a large-scale irrigation system in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2005-01-01

    During a two-year field study the performance of the water delivery was evaluated in a large-scale irrigation system on the north coast of Peru. Flow measurements were carried out along the main canals, along two secondary canals, and in two tertiary blocks in the Chancay-Lambayeque irrigation

  14. Development of an irrigation scheduling software based on model predicted crop water stress

    Science.gov (United States)

    Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...

  15. Effects of application timing of saline irrigation water on broccoli production and quality

    Science.gov (United States)

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  16. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    the entire fruit and wine industries are dependent on irrigation. Cropping in the Eastern and Northern Cape also relies heavily on irrigation. ..... The soils were described as deep, fine sandy, dominantly red, ..... crops. For example, leaves of deciduous fruit trees (apri- ..... Laboratory Handbook 60, USDA, Washington. 160 pp.

  17. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  18. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    Science.gov (United States)

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  19. California Water Resources Development.

    Science.gov (United States)

    1977-01-01

    of disposing of waterborne wastes, includ- trol, navigation, salinity control, water supply, tidelands ing reclamation and reuse where appropriate...studies for Wilson and Wildwood Creeks streams in the South Coastal Basins have been com- Keys Canyon pleted: Moose Canyon Agua Hedionda Creek Otay...resulted from the De- cember 1966 flood. channel and conduit sections pass the reduced flows through Palm Springs and part of the Agua Caliente As a

  20. Changes in soil aggregate stability under different irrigation doses of waste water

    Science.gov (United States)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  1. Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios

    International Nuclear Information System (INIS)

    Martin-Gorriz, B.; Soto-García, M.; Martínez-Alvarez, V.

    2014-01-01

    Global warming is leading to a water resources decrease in the Mediterranean basin, where future farming resilience depends on incorporating alternative water sources and improving water-energy use efficiency. This paper assesses water and energy consumption when natural water sources are partially replaced by desalinated sea water. Initially, energy consumption, water supply and GHG (greenhouse gas) emissions were recorded for the current farming practices in SE (southeast) Spain. The results of our study indicate that citrus orchards have the lowest energy consumption and GHG emissions. Annual vegetables were the least energy efficient crops. Subsequently, two alternative water supply scenarios were analysed, in which the reduction of natural water resources associated to climate change was compensated with desalinated sea water. The use of 16.8% of desalinated seawater would increase energy consumption by 32.4% and GHG emissions by 19.6%, whereas for the use of 26.5% of desalinated seawater such increases would amount to 50.0% and 30.3%, respectively. Therefore maintaining irrigated agriculture in water-stressed regions by incorporating high energy demanding non-traditional water sources could negatively contribute to combat global warming. - Highlights: • Water supply, energy consumption and GHG (greenhouse gas) emissions in irrigated agriculture are very connected. • The use of desalinated sea water will increase the energy consumption, and GHG emissions will rise. • The use of non-traditional water resources enhances global warming processes. • Citrus orchards are the less sensitive crop to alternative water supplied scenarios. • Artichoke is the most sensitive crop to alternative water supplied scenarios

  2. Pakistan's water resources development and the global perspective

    International Nuclear Information System (INIS)

    Mushtaq, M.; Sufi, A.B.

    2005-01-01

    Pakistan's economy is dependent on irrigated agriculture. About 80% of agriculture is irrigated. It contributes 30% of GDP. Agriculture provides 55% job opportunities. This sector provides 60% of country's exports. The development of agriculture will prosper and up-lift 70% of the total population that is annually growing by 3%. The total area of Pakistan is 197.7 MA (79.6 Mha). Out of which about 103.2 MA (41.77 Mha) comprises of rugged mountains, narrow valleys and foot hills, the remaining area of 93.5 MA (37.83 Mha) consists about 54.6 MA (22.1 Mha) is currently cultivated. Remaining 22.5 MA (9.1 Mha) is lying barren lacking water for irrigation. The total surface water availability is 154.5 MAF. Population density is the highest in the canal irrigated areas in the north east of Indus Plains. The increasing population and the associated social, technical and economic activities all depend, directly or indirectly, on the exploitation of water-as a resource. The total surface water availability is 154.5 MAF. Presently water diverted at canal heads is 106 MAF. In Vision 2025 Programme WAPDA has identified to build water sector and hydropower projects such as: i) Water Sector Projects (Gomal Zam, Mirani, Raised Mangla, Satpara. Kurram Tangi Dams and Greater Thai, Kachhi and Rainee Canals) and ii) Hydropower Projects (Jinnah Barrage, Allai Khwar, Khan Khwar, Duber Khwar, Golen Gole, Neelum Jhelum and Low Head Hydropower Project). Besides the above some more projects are under various stages of planning i.e.; (i) Basha Diamer Dam Project - Feasibility Detailed Design and Tenders, (ii) Akhori Dam Project - Feasibility, (iii) Sehwan Barrage - Feasibility. (iv) Chashma Right Bank Canal Lift Scheme Feasibility and Design, (v) Bunji Hydropower Project Pre-feasibility, (vi) Dasu Hydropower Project - Pre-feasibility and Skardu Dam - Prefeasibility. While, keeping in view the planning and development activities regarding water sector and hydropower projects, the country will

  3. Long Term Effects of Acid Irrigation at the Hoeglwald on Seepage Water Chemistry and Nutrient Cycling

    International Nuclear Information System (INIS)

    Weis, Wendelin; Baier, Roland; Huber, Christian; Goettlein, Axel

    2007-01-01

    In order to test the hypothesis of aluminium toxicity induced by acid deposition, an experimental acid irrigation was carried out in a mature Norway spruce stand in Southern Germany (Hoeglwald). The experiment comprised three plots: no irrigation, irrigation (170 mm a -1 ), and acid irrigation with diluted sulphuric acid (pH of 2.6-2.8). During the seven years of acid irrigation (1984-1990) water containing 0.43 mol c m -2 a -1 of protons and sulphate was added with a mean pH of 3.2 (throughfall + acid irrigation water) compared to 4.9 (throughfall) on both control plots. Most of the additional proton input was consumed in the organic layer and the upper mineral soil. Acid irrigation resulted in a long lasting elevation of sulphate concentrations in the seepage water. Together with sulphate both aluminium and appreciable amounts of base cations were leached from the main rooting zone. The ratio between base cations (Ca + Mg + K) and aluminium was 0.79 during acid irrigation and 0.92 on the control. Neither tree growth and nutrition nor the pool of exchangeable cations were affected significantly. We conclude that at this site protection mechanisms against aluminium toxicity exist and that additional base cation runoff can still be compensated without further reduction of the supply of exchangeable base cations in the upper mineral soil

  4. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions.

    Directory of Open Access Journals (Sweden)

    Yunqi Wang

    Full Text Available The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE in winter wheat (Triticum aestivum L. were investigated under non-irrigation (W0, no irrigation during growth stage, one time irrigation (W1, irrigation applied at stem elongation and two times irrigation (W2, irrigation applied at stem elongation and anthesis conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%-6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%-34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%-28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition.

  5. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    Full Text Available A three-year study was conducted to evaluate the effects of different irrigation regimes with saline water on soil salinity, yield and water productivity of carrot as a fall-winter crop under actual commercial-farming conditions in the arid region of Tunisia. Carrot was grown on a sandy soil and surface-irrigated with a water having an ECi of 3.6 dS/m. For the three years, a complete randomized block design with four replicates was used to evaluate five irrigation regimes. Four irrigation methods were based on the use of soil water balance (SWB to estimate irrigation amounts and timing while the fifth consisted of using traditional farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI-100, 80% (DI-80 and 60% (DI-60. FI-100 was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-DI60 was also used. Farmer method (Farmer consisted in giving fixed amounts of water (25 mm every 7 days from planting till harvest. Results on carrot production and soil salinization are globally consistent between the three-year experiments and shows significant difference between irrigation regimes. Higher soil salinity in the root zone is observed at harvest under DI-60 (3.1, 3.4, 3.9 dS/m, respectively, for the three years and farmer irrigation (3.3, 3.6, 3.9 dS/m treatments compared to FI-100 treatment (2.3, 2.6 and 3.1 dS/m. Relatively low ECe values were also observed under FI-DI60 and DI-80 treatments with respectively (2.7, 3, 3.5 dS/m and (2.5, 2.9, 3.3 dS/m. ECe values under the different irrigation treatments were generally lower than or equal to the EC of irrigation water used. Rainfall received during fall and/or winter periods (57, 26 and 29 mm, respectively, during the three years contributed probably to leaching soluble

  6. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Directory of Open Access Journals (Sweden)

    Ana Allende

    2015-07-01

    Full Text Available There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  7. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-01-01

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764

  8. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-07-03

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  9. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    Science.gov (United States)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  10. Irrigation Water Value at Small-scale Schemes: Evidence from the North West Province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Farolfi, S.; Perret, S.; Haese, D' L.; Haese, D' M.

    2008-01-01

    Insight into the value of water is essential to support policy decision making about investments in the water sector, efficient allocation of water and water pricing. However, information on irrigation water values at small-scale schemes is scarce and in general little attention is paid to the

  11. Challenges to Stakeholder Participation in Water Reuse for Irrigation in Jordan

    Science.gov (United States)

    Carr, Gemma; Potter, Rob; Nortcliff, Stephen

    2010-05-01

    Developing new water resources continues to be a challenge in water scarce regions and water reuse offers a sustainable means by which water availability can be maximised. In Jordan, treated domestic wastewater (reclaimed water) already provides a valuable contribution to the annual water budget. This resource is used for irrigation either directly around wastewater treatment plants, or indirectly after reclaimed water released from treatment plants has been transferred though natural waterways and blended with surface runoff. Direct reuse is employed for the irrigation of fodder crops such as barley or alfalfa, while indirect reuse is employed for the irrigation of high-value fruit and vegetable crops grown in the Jordan Valley, a major commercial agricultural area. In order to ensure water reuse is conducted successfully, it is essential that the benefits of reclaimed water (water availability, high nutrient content) are maximised while the potential risks (to human health, soil sustainability and agricultural yields) are minimised. Stakeholder participation in water reuse management decisions could raise the capacity of the water user (such as the farmer) to manage the risks without compromising the benefits of this resource. To investigate the extent to which stakeholders are participating in water reuse management, semi-structured interviews with farmers and institutional representatives were conducted in Jordan. A particular aim of the interviews was to explore the variation in participation between those stakeholders using reclaimed water directly and indirectly. The data collected during 56 interviews with Jordanian farmers showed that the farmers' perception and management of reclaimed water varied considerably between the indirect and direct users. The direct users had a greater level of satisfaction with the water (55 per cent of those asked described the water as "good water") and recognised that they were able to produce larger yields and raise their

  12. Cybernetics in water resources management

    International Nuclear Information System (INIS)

    Alam, N.

    2005-01-01

    The term Water Resources is used to refer to the management and use of water primarily for the benefit of people. Hence, successful management of water resources requires a solid understanding of Hydrology. Cybernetics in Water Resources Management is an endeavor to analyze and enhance the beneficial exploitation of diverse scientific approaches and communication methods; to control the complexity of water management; and to highlight the importance of making right decisions at the right time, avoiding the devastating effects of drought and floods. Recent developments in computer technology and advancement of mathematics have created a new field of system analysis i.e. Mathematical Modeling. Based on mathematical models, several computer based Water Resources System (WRS) Models were developed across the world, to solve the water resources management problems, but these were not adaptable and were limited to computation by a well defined algorithm, with information input at various stages and the management tasks were also formalized in that well structured algorithm. The recent advancements in information technology has revolutionized every field of the contemporary world and thus, the WRS has also to be diversified by broadening the knowledge base of the system. The updation of this knowledge should be a continuous process acquired through the latest techniques of networking from all its concerned sources together with the expertise of the specialists and the analysis of the practical experiences. The system should then be made capable of making inferences and shall have the tendency to apply the rules based on the latest information and inferences in a given stage of problem solving. Rigid programs cannot adapt to changing conditions and new knowledge. Thus, there is a need for an evolutionary development based on mutual independence of computational procedure and knowledge with capability to adapt itself to the increasing complexity of problem. The subject

  13. A new conceptual model to understand the water budget of an Irrigated Basin with Groundwater Dependent Ecosystems

    Science.gov (United States)

    Foglia, L.; McNally, A.; Harter, T.

    2012-12-01

    The Scott River is one of four major tributaries in the Klamath River Basin that provide cold water habitat for salmonid populations. The Scott Valley is also a major agricultural growing region with extensive alfalfa and hay productions that are key to the local economy. Due to the Mediterranean climate in the area, discharge rates in the river are highly seasonal. Almost all annual discharge occurs during the winter precipitation season and spring snowmelt. During the summer months (July through September), the main-stem river becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the Scott Valley aquifer. Scott Valley agriculture relies on a combination of surface water and groundwater supplies for crop irrigation during April through September. Conflicts between ecosystem services needs to guarantee a sustainable water quality (mainly in-stream temperature) for the native salmon population and water demands for agricultural irrigation motivated the development of a new conceptual model for the evaluation of the soil-water budget throughout the valley, as a basis for developing alternative surface water and groundwater management practices. The model simulates daily hydrologic fluxes at the individual field scale (100 - 200 m), allocates water resources to nearby irrigation systems, and tracks soil moisture to determine groundwater recharge. The water budget model provides recharge and pumping values for each field. These values in turn are used as inputs for a valley-wide groundwater model developed with MODFLOW-2000. In a first step, separate sensitivity analysis and calibration of the groundwater model is used to provide insights on the accuracy of the recharge and pumping distribution estimated with the water budget model. In a further step, the soil water budget and groundwater flow models will be coupled and sensitivity analysis and calibration will be performed simultaneously. Field-based, local

  14. The financing of hydropower, irrigation and water supply infrastructure in developing countries

    International Nuclear Information System (INIS)

    Briscoe, J.

    1999-01-01

    A companion paper in the previous issue of this journal (Briscoe, 1999) describes the changing face of infrastructure financing in developing countries. This paper deals with the financing of major infrastructure in the water-related sectors - hydropower, water supply, and sanitation, irrigation, and overall water resources management (including the environment). The overall level of investment in water-related infrastructure in developing countries is estimated to be of the order of $65 billion annually, with the respective shares about $15 billion for hydro, $25 billion for water and sanitation and $25 billion for irrigation and drainage. About 90% of this investment comes from domestic sources, primarily from the public sector. Water-related infrastructure accounts for a large chunk - about 15% - of all government spending. This heavy dependence on the public sector means that the 'winds of change' in the respective roles of government and the private sector have major implications for the financing and structure of the water economy. The paper describes how each of the 'subsectors' is adapting to these winds of change. First, in recent years, competition and private sector provision have emerged as the characteristics of the new electricity industry. This change poses a fundamental challenge to hydro which, to a much greater degree than thermal, has risks (hydrological, geological, social and environmental) which are better assumed by the public than the private sector. The future of private hydro, and thus of hydo itself, depends heavily on the ability of the public sector to both share risks with the private sector, and to provide predictable social and environmental rules of the game. Second, the urban water supply sector is in the early stages of equally profound change. In recent years, there has been a dramatic shift towards the private sector, in developed and developing countries alike. An outline of the future shape of the a competitive urban water

  15. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  16. The potential use of treated brewery effluent as a water and nutrient source in irrigated crop production

    Directory of Open Access Journals (Sweden)

    Richard P. Taylor

    2018-06-01

    Full Text Available Brewery effluent (BE needs to be treated before it can be released into the environment, reused or used in down-stream activities. This study demonstrated that anaerobic digestion (AD followed by treatment in an integrated tertiary effluent treatment system transformed BE into a suitable solution for crop irrigation. Brewery effluent can be used to improve crop yields: Cabbage (Brassica oleracea cv. Star 3301, grew significantly larger when irrigated with post-AD, post-primary-facultative-pond (PFP effluent, compared with those irrigated with post-constructed-wetland (CW effluent or tap water only (p < 0.0001. However, cabbage yield when grown using BE was 13% lower than that irrigated with a nutrient-solution and fresh water; the electrical conductivity of BE (3019.05 ± 48.72 µs/cm2 may have been responsible for this. Post-CW and post-high-rate-algal-pond (HRAP BE was least suitable due to their higher conductivity and lower nutrient concentration. After three months, soils irrigated with post-AD and post-PFP BE had a significantly higher sodium concentration and sodium adsorption ratio (3919 ± 94.77 & 8.18 ± 0.17 mg/kg than soil irrigated with a commercial nutrient-solution (920.58 ± 27.46 & 2.20 ± 0.05 mg/kg. However, this was not accompanied by a deterioration in the soil's hydro-physical properties, nor a change in the metabolic community structure of the soil. The benefits of developing this nutrient and water resource could contribute to cost-reductions at the brewery, more efficient water, nutrient and energy management, and job creation. Future studies should investigate methods to reduce the build-up of salt in the soil when treated BE is used to irrigate crops. Keywords: Wastewater irrigation, Nutrient recovery, Agriculture, Brewery effluent

  17. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    Science.gov (United States)

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  18. Water and agriculture in arid systems: a dynamic model of irrigation of Mazarron and Aguilas; Agua y agricultural en sistemas aridos: un modelo dinamico del regadio de Mazarron y Aguilas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, J.; Esteve Selma, M. A.

    2009-07-01

    The intensive use of groundwater resources in the new irrigated lands of Mazarron-Aguilas has led to the over-exploitation of the local aquifer and thus, to seawater intrusion, water salinization and falling off water tables, all of them key processes of desertification. The simulation results show that the unrealistic perceptions about the relationships between irrigated land and water resources constitutes a key factor to explain the highly unsustainable dynamics of irrigated lands in Mazarron and Aguilas and the whole SE Spain. The increase in water resources does not eliminate the problem because the feedback loops and endogenous factors of the system lead to a further increase in irrigated land and continuation of the water deficit, which shows a highly counter-intuitive behaviour. (Author) 3 refs.

  19. Carbon and water fluxes and footprints in tropical agricultural systems under rainfed and irrigated conditions

    Science.gov (United States)

    Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.

    2017-12-01

    In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.

  20. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    Science.gov (United States)

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a dry climate. However, the reclaimed water can also change biosolids properties, which will influence the effectiveness of willows to extract different metals. Copyright © 2015 Elsevier Ltd. All rights

  1. Yield and water use efficiency of irrigated soybean in Vojvodina, Serbia

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2012-01-01

    Full Text Available Research was carried out at Rimski Šančevi experiment field of Institute of Field and Vegetable Crops in Novi Sad in the period 1993-2004. The experiment included an irrigated and non-irrigated control treatment. Irrigation water use efficiency (Iwue and evapotranspiration water use efficiency (ETwue were determined in order to assess the effectiveness of irrigation on soybean yield. The average yield increases of soybean due to irrigation practice was 0.82 t ha-1, ranging from 2.465 t ha-1 in years with limited precipitation and higher than average seasonal temperatures (2000 to 0 t ha-1 in rainy years (1996, 1997, 1999. Evapotranspiration water use efficiency (ETwue of soybean ranged from 0.11 kg m-3 to 1.36 kg m-3 with an average value of 0.66 kg m-3, while irrigation water use efficiency (Iwue varied from 0.11 kg m-3 to 1.04 kg m-3 with an average value of 0.56 kg m-3. Effect of irrigation on yield of soybean and results of both ETwue and Iwue which were similar to those obtained from the literature indicate that irrigation schedule of soybean in the study period was properly adapted to plant water requirements and water-physical soil properties. Determined values of ETwue and Iwue could be used for the planning, design and operation of irrigation systems, as well as for improving the production technology of soybean in the region.

  2. The Role of Water Governance and Irrigation Technologies in Regional-Scale Water Use and Consumption in the US West

    Science.gov (United States)

    Lammers, R. B.; Grogan, D. S.; Frolking, S. E.; Proussevitch, A. A.; Zuidema, S.; Fowler, L.; Caccese, R. T.; Peklak, D. L.; Fisher-Vanden, K.

    2017-12-01

    Water management in the Western USA is challenged by the demands of an increased population, ecological needs and changing values for water use, and a broadening of variability in climate, which together have created physical limits on water availability. The management of scarce water resources in this region is strictly constrained by the current legal structure (prior appropriation water rights) on one hand, and on the other assisted by the development of new, efficient water delivery and application technologies. Therefore, critical components for a complete understanding of the hydrological landscape include the institutions governing water rights, the technologies used for the highly water consumptive agricultural sector, and the role institutions and technologies play in altering when and where water is used and consumed by humans or reserved for the environment. To explore the sensitivities of water availability within the human-physical system, we present a method to incorporate water rights allocated under the prior appropriation doctrine for the western U.S. into the University of New Hampshire macro-scale Water Balance Model to capture the essential structure of these rights and their impacts on different economic sectors in Idaho and across the US West. In addition to legal structures, new irrigation technologies also alter the efficiency and timing of water use. We assess the impacts of a variety of technologies for both the delivery of water to the agricultural fields and the application methods for bringing water to the crops on consumptive and non-consumptive agricultural water use. We explore the impacts relative to natural climate variability, investigate the role that return flows from different agricultural technologies have on regional water balance, and examine the sensitivity of the entire system to extremes such as extended drought. These methods are sufficiently generalizable to be used by other hydrological models.

  3. Collective action and participation in irrigation water management: A ...

    African Journals Online (AJOL)

    A case study of Mooi River Irrigation Scheme in KwaZulu-Natal. Province ..... Seven principal components were extracted using Pearson cor- relations. By applying the ..... OLSON M (1965) The Logic of Collective Action: Public Goods and the.

  4. Water Resources of Israel: Trackrecord of the Development

    Directory of Open Access Journals (Sweden)

    Nicolai S. Orlovsky

    2018-01-01

    Full Text Available Israel is a country in the Near East consisting for 95% of the arid regions in which 60% of the territory are covered by the Negev Desert. Therefore, the water resources are scant here and formed mostly by atmospheric precipitations. In the period from 1989 to 2005 the average precipitations were 6 billion cu. m, of which 60–70% were evaporated soon after rainfalls, at least 5% run down by rivers into the sea (mostly in winter and the remaining 25% of precipitations infiltrated into soil from where the greater part of water got into the sea with ground waters. In Israel there are two groups of water resources: surface and underground. Israel is not rich in surface waters. The natural reservoir of surface fresh water is the Kinneret Lake in the northeast of the country. It gets water from the Jordan River and its tributaries. The average annual amount of available water of this lake is around 370 million cu. m, which accounts for one-third of the country’s water needs and still higher share of the drinking water needs. The greater part of fresh waters (37% of water supply of Israel as of 2011 in this country is supplied from ground water sources. Owing to insufficiency of available natural resources, unevenness of precipitations by years and seasons and with the growth of the population and economic development the issues of provision with the quality drinking water of the population as well as agriculture and industry, rehabilitation of natural environment cause permanently growing concern. In view of the water shortage untiring efforts have been taken to improve the irrigation efficiency and to reduce water use by improving the efficacy of irrigation techniques and application of advanced system management approaches. Among the water saving technologies applied in Israel there are: drop irrigation, advanced filtration, up to date methods of water leak detection from networks, rainwater collection and processing systems. At the same time

  5. Effects of supplemental irrigation on water consumption characteristics and grain yield in different wheat cultivars

    Directory of Open Access Journals (Sweden)

    Meng Weiwei

    2015-06-01

    Full Text Available Shortage of water resources is a major limiting factor for wheat (Triticum aestivum L. production in the North China Plain. The objectives of this study were to evaluate the effects of supplemental irrigation (SI on water use characteristics and grain yield of the wheat cultivars 'Jimai 22'and 'Zhouyuan 9369'. Two supplemental irrigation treatment regimens were designed based on target relative soil moisture contents in 0-140 cm soil layers at jointing rising to 75% of field capacity (FC for each cultivar, and at anthesis rising to 65% and 75% (W1, and 70% and 80% (W2 in 2009-2010 and 2010-2011, respectively. Rain-fed (W0 treatment was used as control. Under W1, grain yield of 'Jimai 22' was 5.22% higher than that of W2, and water use efficiency (WUE of 'Zhouyuan 9369' was 4.0% higher than that under W2. No significant differences in WUE of 'Jimai 22' and grain yield of 'Zhouyuan 9369' were observed for the two treatment regimens in 2009-2010. Grain yield and WUE in W1 were higher than those of W2 for both cultivars in 2010-2011. W1 enhanced soil water consumption compared to W2, especially in the 100-200 cm soil layers, for both cultivars in 2009-2011. Meanwhile, 'Jimai 22' showed higher soil water consumption and ET from anthesis to mature stage, which resulted in increase in grain yield and WUE of 'Jimai 22' by 8.15-21.7% and 7.75-11.73% in 2009-2010 and 2010-2011, respectively, compared with 'Zhouyuan 9369'. Thus, our results showed that SI increased the yield and WUE of 'Jimai 22' and W1 was the better treatment regimen.

  6. Effect of saline irrigation water on yield and yield components of rice ...

    African Journals Online (AJOL)

    vaio

    2013-05-29

    May 29, 2013 ... levels at different growth stages of rice on yield and its components. Treatments included ... Therefore, irrigation with saline water at the early growth stages has more negative effect on ...... diversification. Land Degrad. Dev.

  7. Hemolysis in Transurethral Resection of the Prostate Using Distilled Water as the Irrigant

    Directory of Open Access Journals (Sweden)

    Shiou-Sheng Chen

    2006-06-01

    Conclusion: Using distilled water as an irrigant for TURP might cause hemolysis, especially in patients with larger prostates and longer resection times. It is necessary to carry out every effort to shorten resection time and avoid extravasation during surgery.

  8. Yield and water use efficiency of deficit-irrigated maize in a semi ...

    African Journals Online (AJOL)

    Yield and water use efficiency of deficit-irrigated maize in a semi-arid region of Ethiopia. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE ... African Journal of Food, Agriculture, Nutrition and Development.

  9. Quantification of hydrological fluxes in irrigated lands using isotopes for improved water use efficiency

    International Nuclear Information System (INIS)

    Iqbal, N.; Rafiq, M.; Iqbal, T.; Fazal, M.

    2012-01-01

    For the study of water percolation using stable and radioactive isotopes, two experimental plots each measuring 5m X 5m were prepared at NIAB Agriculture Farm, Faisalabad. One plot was given normal irrigation and the other was irrigated with almost double quantity of water than the first one. Study was carried out on wheat and maize crops during 2007-2010. Infiltration rates were calculated from the solute transport by advection. The infiltration rates were also calculated by the water balance approach using moisture content data obtained by neutron moisture probe and flow simulation approach using software 'HYDRUS 1D'. The moisture in the field with normal irrigation percolated up to 90 cm depth. It percolated up to 160 cm in the field with excess irrigation. Infiltration rates determined by different techniques are given. The infiltration rates varied during whole of the experiment period. The rates were highest right after irrigation and then decreased with increase in time. The maximum and minimum infiltration rates determined by different techniques are given, which shows that average infiltration rates calculated by the four methods in case of excess irrigation range between 0.4 and 0.51 cm/day and are in good agreement. Infiltration rates in case of normal irrigation were determined only by tritium and water balance approach and range between 0.21 and 0.34 cm/day. (orig./A.B.)

  10. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation

    International Nuclear Information System (INIS)

    Chen, Weiping; Lu, Sidan; Peng, Chi; Jiao, Wentao; Wang, Meie

    2013-01-01

    Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties. -- Highlights: •Root zone soil Cd content was elevated by one time under long-term reclaimed water irrigation. •The STEM-profile model can well track the Cd balance in the soil profile. •Reclaimed water irrigation plays a limited role on soil Cd accumulation in Beijing croplands. -- There was a low risk of soil Cd pollution under long-term reclaimed water irrigation

  11. IRRIMET: a web 2.0 advisory service for irrigation water management

    Science.gov (United States)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  12. Comparative Analysis of Water Quality between the Runoff Entrance and Middle of Recycling Irrigation Reservoirs

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2015-07-01

    Full Text Available Recycling irrigation reservoirs (RIRs are an emerging aquatic ecosystem of critical importance, for conserving and protecting increasingly scarce water resources. Here, we compare water quality between runoff entrance and middle of four RIRs in nurseries in Virginia (VA and Maryland (MD. Surface water temperature (T and oxidation-reduction potential (ORP were lower in the middle than at the entrance, while the trend was opposite for dissolved oxygen (DO, pH and chlorophyll a (Chla. The magnitude of these differences between the entrance and middle decreased with increasing depth. These differences were magnified by water stratification from April to October. Minimum differences were observed for electrical conductivity (EC, total dissolved solids (TDS and turbidity (TUR. Cluster analyses were performed on water quality difference data to evaluate whether the differences vary with respect to reservoirs. Two clusters were formed with one consisting primarily of VA reservoirs, and the other consisting mostly of MD reservoirs in both years. Water quality in the middle and at the entrance of RIRs was expected to vary greatly because of runoff inflow. The two-point water quality differences observed here, although statistically significant, are not large enough to cause significant impact on crop health and productivity for most water quality parameters except pH. Additional analysis of outlet data shows that the range and magnitude of water quality difference between the middle and the outlet are comparable to those between the middle and entrance of RIRs. These results indicate that monitoring at a single point is sufficient to obtain reliable water quality estimates for most water quality parameters in RIRs except pH. This is important when considering the cost of labor and equipment necessary for documenting water quality in agricultural production systems. However, additional pH measurements are still necessary to make practical water quality

  13. EQUITY EVALUATION OF PADDY IRRIGATION WATER DISTRIBUTION BY SOCIETY-JUSTICE-WATER DISTRIBUTION RULE HYPOTHESIS

    Science.gov (United States)

    Tanji, Hajime; Kiri, Hirohide; Kobayashi, Shintaro

    When total supply is smaller than total demand, it is difficult to apply the paddy irrigation water distribution rule. The gap must be narrowed by decreasing demand. Historically, the upstream served rule, rotation schedule, or central schedule weight to irrigated area was adopted. This paper proposes the hypothesis that these rules are dependent on social justice, a hypothesis called the "Society-Justice-Water Distribution Rule Hypothesis". Justice, which means a balance of efficiency and equity of distribution, is discussed under the political philosophy of utilitarianism, liberalism (Rawls), libertarianism, and communitarianism. The upstream served rule can be derived from libertarianism. The rotation schedule and central schedule can be derived from communitarianism. Liberalism can provide arranged schedule to adjust supply and demand based on "the Difference Principle". The authors conclude that to achieve efficiency and equity, liberalism may provide the best solution after modernization.

  14. Guide to North Dakota's ground-water resources

    Science.gov (United States)

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  15. Computer-Aided Design System Development of Fixed Water Distribution of Pipe Irrigation System

    OpenAIRE

    Zhou , Mingyao; Wang , Susheng; Zhang , Zhen; Chen , Lidong

    2010-01-01

    International audience; It is necessary to research a cheap and simple fixed water distribution device according to the current situation of the technology of low-pressure pipe irrigation. This article proposed a fixed water distribution device with round table based on the analysis of the hydraulic characteristics of low-pressure pipe irrigation systems. The simulation of FLUENT and GAMBIT software conducted that the flow of this structure was steady with a low head loss comparing to other t...

  16. Reduction of Fire Hazard in Materials for Irrigators and Water Collectors in Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, N. V.; Konstantinova, N. I., E-mail: konstantinova-n@inbox.ru [FGBU VNIIPO of EMERCOM of Russia (All-Russian Scientific-research Institute of Fire Protection) (Russian Federation); Gordon, E. P. [Research and Production Center “Kaustik” (Russian Federation); Poedintsev, E. A. [FGBU VNIIPO of EMERCOM of Russia (All-Russian Scientific-research Institute of Fire Protection) (Russian Federation)

    2016-09-15

    A way of reducing the fire hazard of PVC film used to make cooling-tower irrigators and water collectors is examined. A new generation of fire retardant, nanostructured magnesium hydroxide, is used to impart fire retardant properties. The fabrication technology is optimized with a roller-calendering manufacturing technique, and the permissible ranges of fire hazard indicators for materials in irrigators and water collectors are determined.

  17. Spatial Variation of Arsenic in Soil, Irrigation Water, and Plant Parts: A Microlevel Study

    OpenAIRE

    Kabir, M. S.; Salam, M. A.; Paul, D. N. R.; Hossain, M. I.; Rahman, N. M. F.; Aziz, Abdullah; Latif, M. A.

    2016-01-01

    Arsenic pollution became a great problem in the recent past in different countries including Bangladesh. The microlevel studies were conducted to see the spatial variation of arsenic in soils and plant parts contaminated through ground water irrigation. The study was performed in shallow tube well command areas in Sadar Upazila (subdistrict), Faridpur, Bangladesh, where both soil and irrigation water arsenic are high. Semivariogram models were computed to determine the spatial dependency of s...

  18. Numerical assessment of water-saving irrigation on the water cycle at the oasis of the Manas River Basin

    OpenAIRE

    he

    2018-01-01

    As the birthplace of water-saving technology under mulch drip irrigation in China, the Manas River Basin (MRB) has developed into the largest oasis farming area in Xinjiang and the fourth largest irrigated agricultural area in China. This study presents systematic evaluation the effect of water-saving technologies on precipitation, runoff, infiltration and evapotranspiration in this basin. A model of the regional water cycle was developed for quantitatively assessing groundwater balance and g...

  19. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    Science.gov (United States)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  20. Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools

    NARCIS (Netherlands)

    Dam, van J.C.; Singh, R.; Bessembinder, J.J.E.; Leffelaar, P.A.; Bastiaanssen, W.G.M.; Jhorar, R.K.; Kroes, J.G.; Droogers, P.

    2006-01-01

    In regions where water is more scarce than land, the water productivity concept (e.g. crop yield per unit of water utilized) provides a useful framework to analyse crop production increase or water savings in irrigated agriculture. Generic crop and soil models were applied at field and regional

  1. Water production for irrigation and drinking needs in remote arid communities using closed-system greenhouse: A review

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2015-06-01

    Full Text Available Water needs for agriculture, food production and drinking are considered one of the most critical challenges facing the world in the present days. This is due mainly to the scarcity and lack of fresh water resources, and the increasing ground water salinity. Most of these countries have a high solar energy potential. This potential can be best developed by solar desalination concepts and methods specifically suited for rural water supply, irrigation. In this paper, a humidification–dehumidification (HD water desalination system with several technologies for irrigation and drinking needs in remote arid areas is introduced from technical and economic point of views. This study has investigated (1 detailed discussion of technical developments, economical and sustainable aspects; (2 benefits of the new design over traditional applications, desalination and other irrigation methods; (3 specific requirements and implementation challenges in remote and cold regions; (4 performance and reliability improvement possible techniques. Recommended researches and projects leading to high efficiency, economical and sustainable applications of some desalination devices driven by solar energy are highlighted.

  2. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    Science.gov (United States)

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  3. Analysis of the Economic and Welfare Impacts of Establishing Irrigation Water Market in Qazvin Province

    Directory of Open Access Journals (Sweden)

    2014-03-01

    Full Text Available In this study economic and welfare impacts of establishing irrigation water market in Qazvin province as well as potentiality of irrigation water transfer under stress irrigation conditions in the cities of Qazvin province were analyzed. To achieve the above objectives, Positive Mathematical Programming model and State Wide Agricultural Production functions were used. To achieve applicable results, the production function with a constant elasticity of substitution and cost function with an exponential form were included into the Positive Mathematical Programming model was imported. The study data for the year 2011-2012 was collected by asking the relevant offices in each city of Qazvin province. The proposed model was solved in six successive stages using the GAMS software. After solving the model, amount changes in the area of irrigated crops, farmer's gross profit and labor surplus under the two conditions of “existence of water market” and “lack of water market “at the regional level were calculated. The results showed that establishing irrigation water market increases total irrigated lands for 1/2 percent, total farmer’s gross profit for 1/86 percent and total labor force employed in agriculture for 1/8 percent in the province. Ultimately, considering the supportive and constructive role of regional water markets, it is recommended to provide necessary conditions and tools to establish an optimal use of such a mechanism associated with the type of market in Qazvin province.

  4. Climate change and water resources

    International Nuclear Information System (INIS)

    Younos, Tamim; Grady, Caitlin A.

    2013-01-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  5. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  6. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  7. Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes

    Science.gov (United States)

    Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.

    2012-04-01

    In a changing climate context, with an increase of the need for food, it becomes increasingly important to improve our knowledge for monitoring agricultural surfaces by satellite for a better food management and to reduce the waste of natural resources (water storages and shortages, irrigation management, increase of soil and water salinity, soil erosion, threats on biodiversity). The main objective of this study is to evaluate the potentialities of multi-spectral and multi-resolution satellites for monitoring the temporal evolution of water bodies surfaces (mainly used for irrigation purposes). This analysis is based on the use of a series of images acquired between the years 2003 and 2011. The year 2010 is considered as a reference, with 110 acquisitions performed during the MCM'10 campaign (Multispectral Crop Monitoring 2010, http://www.cesbio.ups-tlse.fr/us/mcm.html). Those images are provided by 8 satellites (optical, thermal and RADAR) such as ALOS, TERRASAR-X, RADARSAT-2, FORMOSAT-2, SPOT-2, SPOT-4, SPOT-5, LANDSAT-5. The studied area is situated in the South-West of Toulouse in France; in a region governed by a temperate climate. The irrigated cultures represent almost 12% of the cultivated surface in 2009. The method consists in estimating the water bodies surfaces by using a generic approach suitable for all images, whatever the wavelength (optical, infrared, RADAR). The supervised parallelepiped classification allows discriminating four types of surfaces coverage: forests, water expanses, crops and bare soils. All RADAR images are filtered (Gamma) to reduce speckle effects and false detections of water bodies. In the context if the "South-West" project of the CESBIO laboratory, two spatial coverages are analyzed: SPOT 4 (4800km2) and FORMOSAT 2 (576km2). At these scales, 154 and 38 water bodies are identify. They respectively represent 4.85 km2 (0.10% of the image cover) and 2.06 km2 (0.36% of the image cover). Statistical analyses show that 8% of lakes

  8. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    In the wake of the Chernobyl accident, the vulnerability of the water cycle to radionuclide contamination has been an issue of great concern. The impact of the event throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate the potential risk to drinking water supplies, soilwater and the food chain. This book provides information on radiological standards as they exist at present, on the methods of monitoring, and on concepts in design to minimize risk and to highlight the possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book is a unique source of information about present radiological standards and monitoring requirements. It also includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. There are 19 papers all indexed separately. These are divided into sections -introduction, present radiological standards relating to drinking water, radiological monitoring requirements, the consequences of a nuclear event on water resources and water resource management strategy. The discussion at the end of each section is recorded. (author)

  9. Approaches and challenges of soil water monitoring in an irrigated vineyard

    Science.gov (United States)

    Nolz, Reinhard; Loiskandl, Willibald

    2016-04-01

    Monitoring of water content is an approved method to quantify certain components of the soil water balance, for example as basis for hydrological studies and soil water management. Temporal soil water data also allow controlling water status by means of demand-oriented irrigation. Regarding spatial variability of water content due to soil characteristics, plant water uptake and other non-uniformities, it is a great challenge to select a location that is most likely representing soil water status of a larger area (e.g. an irrigated field). Although such an approach might not satisfy the requirements of precision farming - which becomes more and more related to industrial agriculture - it can help improving water use efficiency of small-scale farming. In this regard, specific conditions can be found in typical vineyards in the eastern part of Austria, where grapes are grown for high quality wine production. Generally, the local dry-subhumid climate supports grape development. However, irrigation is temporarily essential in order to guarantee stable yields and high quality. As the local winegrowers traditionally control irrigation based on their experience, there is a potential to improve irrigation management by means of soil water data. In order to gain experience with regard to irrigation management, soil water status was determined in a small vineyard in Austria (47°48'16'' N, 17°01'57'' E, 118 m elevation). The vineyard was equipped with a subsurface drip irrigation system and access tubes for measuring water content in soil profiles. The latter was measured using a portable device as well as permanently installed multi-sensor capacitance probes. Soil samples were taken at chosen dates and gravimetrically analyzed in the laboratory. Water content data were analyzed using simple statistical procedures and the temporal stability concept. Soil water content was interpreted considering different environmental conditions, including rainfall and irrigation periods

  10. Yield and resource use efficiency of Plukenetia volubilis plants at two distinct growth stages as affected by irrigation and fertilization.

    Science.gov (United States)

    Gong, He-De; Geng, Yan-Jing; Yang, Chun; Jiao, Dong-Ying; Chen, Liang; Cai, Zhi-Quan

    2018-01-08

    This study is to test how seedlings (vegetative) and large plants (reproductive) of an oilseed crop (Plukenetia volubilis) responded to regulated deficit irrigation techniques (conventional deficit irrigation, DI; alternative partial root-zone irrigation, APRI) in a tropical humid monsoon area. Seedlings were more sensitive to water deficit than large plants. Although APRI did better than DI in saving water for both seedlings and large plants at the same amount of irrigation, full irrigation (FI) is optimal for faster seedling growth at the expense of water-use efficiency (WUE). The seed number per unit area was responsible for the total seed oil yield, largely depending on the active process of carbon and nitrogen storages at the whole-plant level. The magnitude of the increase in total seed and seed oil yield by fertilization was similar under different irrigation regimes. Compared with FI, DI can save water, but reduced the total seed yield and had lower agronomic nutrient-use efficiency (NUE agr ); whereas APRI had similar total seed yield and NUE agr , but reduced water use greatly. Although the dual goal of increasing the yield and saving water was not compatible, maintaining a high yield and NUEagr at the cost of WUE is recommended for P. volubilis plantation in t he water-rich areas.

  11. Summary of the Georgia Agricultural Water Conservation and Metering Program and evaluation of methods used to collect and analyze irrigation data in the middle and lower Chattahoochee and Flint River basins, 2004-2010

    Science.gov (United States)

    Torak, Lynn J.; Painter, Jaime A.

    2011-01-01

    Since receiving jurisdiction from the State Legislature in June 2003 to implement the Georgia Agricultural Water Conservation and Metering Program, the Georgia Soil and Water Conservation Commission (Commission) by year-end 2010 installed more than 10,000 annually read water meters and nearly 200 daily reporting, satellite-transmitted, telemetry sites on irrigation systems located primarily in southern Georgia. More than 3,000 annually reported meters and 50 telemetry sites were installed during 2010 alone. The Commission monitored rates and volumes of agricultural irrigation supplied by groundwater, surface-water, and well-to-pond sources to inform water managers on the patterns and amounts of such water use and to determine effective and efficient resource utilization. Summary analyses of 4 complete years of irrigation data collected from annually read water meters in the middle and lower Chattahoochee and Flint River basins during 2007-2010 indicated that groundwater-supplied fields received slightly more irrigation depth per acre than surface-water-supplied fields. Year 2007 yielded the largest disparity between irrigation depth supplied by groundwater and surface-water sources as farmers responded to severe-to-exceptional drought conditions with increased irrigation. Groundwater sources (wells and well-to-pond systems) outnumbered surface-water sources by a factor of five; each groundwater source applied a third more irrigation volume than surface water; and, total irrigation volume from groundwater exceeded that of surface water by a factor of 6.7. Metered irrigation volume indicated a pattern of low-to-high water use from northwest to southeast that could point to relations between agricultural water use, water-resource potential and availability, soil type, and crop patterns. Normalizing metered irrigation-volume data by factoring out irrigated acres allowed irrigation water use to be expressed as an irrigation depth and nearly eliminated the disparity

  12. Evaluating Impacts of Land Use/Land Cover Change on Water Resources in Semiarid Regions

    Science.gov (United States)

    Scanlon, B. R.; Faunt, C. C.; Pool, D. R.; Reedy, R. C.

    2017-12-01

    Land use/land cover (LU/LC) changes play an integral role in water resources by controlling the partitioning of water at the land surface. Here we evaluate impacts of changing LU/LC on water resources in response to climate variation and change and land use change related to agriculture using data from semiarid regions in the southwestern U.S. Land cover changes in response to climate can amplify or dampen climate impacts on water resources. Changes from wet Pleistocene to much drier Holocene climate resulted in expansion of perennial vegetation, amplifying climate change impacts on water resources by reducing groundwater recharge as shown in soil profiles in the southwestern U.S.. In contrast, vegetation response to climate extremes, including droughts and floods, dampen impacts of these extremes on water resources, as shown by water budget monitoring in the Mojave Desert. Agriculture often involves changes from native perennial vegetation to annual crops increasing groundwater recharge in many semiarid regions. Irrigation based on conjunctive use of surface water and groundwater increases water resource availability, as shown in the Central Valley of California and in southern Arizona. Surface water irrigation in these regions is enhanced by water transported from more humid settings through extensive pipelines. These projects have reversed long-term declining groundwater trends in some regions. While irrigation design has often focused on increased efficiency, "more crop per drop", optimal water resource management may benefit more from inefficient (e.g. flood irrigation) surface-water irrigation combined with efficient (e.g. subsurface drip) irrigation to maximize groundwater recharge, as seen in parts of the Central Valley. Flood irrigation of perennial crops, such as almonds and vineyards, during winter is being considered in the Central Valley to enhance groundwater recharge. Managed aquifer recharge can be considered a special case of conjunctive use of

  13. Optimal Allocation of the Irrigation Water Through a Non Linear Mathematical Model

    Directory of Open Access Journals (Sweden)

    P. Rubino

    2008-09-01

    Full Text Available A study on the optimal allocation of the irrigation water among 9 crops (autumnal and spring sugar beet, spring and summer grain maize, dry and shell bean, eggplant, pepper and processing tomato has been carried out, utilizing experimental data of yield response to irrigation obtained in different years in Southern Italy (Policoro MT, 40° 12’ Northern Lat.; 16° 40’Western Long.. Fitting Mitscherlich’s equation modified by Giardini and Borin to the experimental data of each crop, the curve response parameters have been calculated: A = maximum achievable yield in the considered area (t ha-1; b = extra-irrigation water used by the crop (m3 ha-1; c = water action factor (ha m- 3; K, calculated only for tomato crop. ,decreasing factor due to the water exceeding the optimal seasonal irrigation volume (100% of the Crop Maximum Evapotranspiration less effective rainfall, ETMlr. The A values, using the prices of the agricultural produces and the irrigation water tariffs applied by the Consorzio Irriguo della Capitanata, have been converted in Value of Production (VP less the fixed and variable irrigation costs (VPlic. The equation parameters were used in a non linear mathematical model written in GAMS (General Algebraic Modelling System, in order to define the best irrigation water allocation amongst the 9 crops across the entire range of water availability and the volume of maximum economical advantage, hypothesising that each crop occupied the same surface (1 ha. This seasonal irrigation volume, that corresponded to the maximum total VPlic, was equal to 37000 m3. Moreover, the model allowed to define the best irrigation water distribution among the crops also for total available volumes lower than that of maximum economical advantage (37000 m3. Finally, it has been underlined that the vegetable crops should be irrigated with seasonal irrigation volumes equal to 100% of the ETM, whereas the summer and spring maize and the autumnal and spring

  14. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  15. Water Resources Research supports water economics submissions

    Science.gov (United States)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  16. Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-08-01

    Full Text Available Alfalfa (Medicago sativa is one of the major crops grown in Northern China in recent years, however, the current serious water shortage conditions present a challenge to the growth of this crop, especially if efficient use of water is considered in forage production for sustainability. This study aimed to evaluate alfalfa productivity and water use efficiency (WUE under different sprinkler irrigation levels. This experiment was conducted at Shiyanghe Experimental Station for Water-Saving in Agriculture and Ecology of China Agricultural University in Wuwei, Gansu, China, over a period of two years. There were three irrigation treatments: A1: 100% measured evapotranspiration (ETc of alfalfa; A2: irrigation amount was 66% of A1; A3: irrigation amount was 33% of A1; and a control of A4: no irrigation during the growing season. A randomized block design with three replications were applied. The results showed that the ETc and forage yield of alfalfa decreased, while WUE and crude protein (CP increased with the decreasing irrigation amounts. The seasonal average ETc and yield ranged from 412 mm to 809 mm and from 11,577 to 18,636 kg/ha, respectively, under different irrigation levels. The highest yields were obtained from the first growth period in all treatments in both years, due to the winter irrigation and the longest growth period. Alfalfa grown under lesser irrigation treatment conditions had higher variability in ETc and yield, mainly due to the variability in the amount of rainfall during the growth period. The seasonal average WUE of treatments ranged from 22.78 to 26.84 kg/(mm·ha, and the highest WUE was obtained at the first growth period, regardless of treatments. Seasonal average CP content ranged from 18.99% to 22.99%. A significant linear relationship was found between yield and ETc or irrigation amount, and the fitting results varied between growth periods and years. The present results also implied that winter irrigation provided the

  17. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    The impact of the Chernobyl accident throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate potential risk to drinking water supplies, soil water and the food chain. This book provides information on radiological standards as they exist at present, methods of monitoring, and concepts in design to minimize risk and to highlight possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. (author)

  18. Can groundwater secure drinking-water supply and supplementary irrigation in new settlements of North-West Cambodia?

    Science.gov (United States)

    Vouillamoz, Jean Michel; Valois, Rémi; Lun, Sambo; Caron, Delphine; Arnout, Ludovic

    2016-02-01

    Since the end of the Cambodian Civil War in 1998, the population of the Oddar Meanchey province has drastically increased despite the lack of adequate infrastructure, including basic amenities such as drinking-water supply. To improve the access to drinking water, governmental and aid agencies have focussed on drilling shallow boreholes. The use of groundwater for irrigation is also a growing concern to cope with the occasional late arrival of the rainy season or to produce food during the dry season. Since the groundwater resource in the province has not been documented, a 4-year study was undertaken (2011-2014), aiming to estimate the capability of groundwater to supply domestic needs and supplementary irrigation for rice production. Aquifer properties were estimated by combined use of hydrogeological techniques with the geophysical magnetic resonance sounding method. Groundwater storage and recharge were estimated based on new developments in the application of the geophysical method for quantifying specific yield. The median groundwater storage of the targeted sandstone aquifer is 173 mm, the recharge is diffuse and annually ranges from 10 to 70 mm, and the transmissivity is low to medium. Simulations of pumping indicate that the aquifer can easily supply 100 L of drinking water per capita daily, even considering the estimated population in 2030. However, the shallow aquifer can generally not deliver enough water to irrigate paddy fields of several hectares during a 2-month delay in the onset of the monsoon.

  19. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  20. Smart Markets for Water Resources

    Science.gov (United States)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  1. A new concept of irrigation response units for effective management of surface and groundwater resources: a case study from the multi-country Fergana Valley, Central Asia

    KAUST Repository

    Awan, Usman Khalid; Ibrakhimov, Mirzakhayot; Benli, Bogachan; Lamers, John P A; Liaqat, Umar Waqas

    2016-01-01

    When estimating canal water supplies for large-scale irrigation schemes and especially in arid regions worldwide, the impact of all factors affecting the gross irrigation requirements (GIR) are not properly accounted for, which results

  2. Monitoring of water in soil in asparagus irrigated culture in Vale do Sao Francisco, Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Antonino, Antonio C. Dantas; Sampaio, Everardo V.S.B.; Dall' Ollio, Attilio; Bernardo, Ana L. Alves; Audry, Pierre

    1996-08-01

    For many years the brazilian government has inactivated the implantation of irrigated areas in the Sao Francisco valley, obtaining high productivity.After the most appropriated areas having been occupied, the irrigation of second choice soils, usually more shallower and more clay is been tried. In one of these areas, the productivity of asparagus is less than the expected. trying to improve productivity by optimization of irrigation, the movement of water on soil and plants is being monitored far the last year and a half. the main results are shown with emphasis on the raining season, the most problematic

  3. Arsenic transport in irrigation water across rice-field soils in Bangladesh

    International Nuclear Information System (INIS)

    Polizzotto, Matthew L.; Lineberger, Ethan M.; Matteson, Audrey R.; Neumann, Rebecca B.; Badruzzaman, A. Borhan M.; Ashraf Ali, M.

    2013-01-01

    Experiments were conducted to analyze processes impacting arsenic transport in irrigation water flowing over bare rice-field soils in Bangladesh. Dissolved concentrations of As, Fe, P, and Si varied over space and time, according to whether irrigation water was flowing or static. Initially, under flowing conditions, arsenic concentrations in irrigation water were below well-water levels and showed little spatial variability across fields. As flowing-water levels rose, arsenic concentrations were elevated at field inlets and decreased with distance across fields, but under subsequent static conditions, concentrations dropped and were less variable. Laboratory experiments revealed that over half of the initial well-water arsenic was removed from solution by oxidative interaction with other water-column components. Introduction of small quantities of soil further decreased arsenic concentrations in solution. At higher soil-solution ratios, however, soil contributed arsenic to solution via abiotic and biotic desorption. Collectively, these results suggest careful design is required for land-based arsenic-removal schemes. -- Highlights: •We analyzed the processes impacting arsenic transport in flowing irrigation water. •Arsenic in Bangladesh rice-field irrigation water varied over space and time. •Arsenic was correlated with Fe, P, and Si in flowing and static water. •Oxidation, adsorption and desorption reactions controlled arsenic concentrations. •Land-based arsenic removal from water will be impacted by hydraulic conditions. -- Arsenic concentrations in flowing and static irrigation water in Bangladesh varied over space and time, suggesting careful design is required for land-based pre-treatment schemes that aim to remove As from solution

  4. Diet and resource partitioning among anurans in irrigated rice fields in Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    L. Piatti

    Full Text Available Artificial ponds or irrigated systems scattered throughout farmlands can offer important habitats for anurans and can be interesting sites for research on species resources use in a changing landscape. This study describes the diet and resource partitioning among anurans inhabiting irrigated rice fields in the Pantanal region. Twenty categories of prey were found in the stomachs of Leptodactylus chaquensis, L. elenae, L. podicipinus and Rhinella bergi, the most frequent being Coleoptera, Hymenoptera, larvae of Hexapoda, Hemiptera, Diptera and Orthoptera. The great differences found in the diet of these species in rice fields compared to other locations, according to available records in the literature, was the increased importance of Hemipitera and Orthoptera and the decrease in importance of Hymenoptera in the diet of leptodactylids. These differences might be attributed to changes in the availability of resources in response to habitat modification. Although diet composition was very similar among species, niche overlap was larger than expected by chance, suggesting that the competition for food resources is not, or has not been, a significant force in determining the structure of this frog community. Two non-exclusive hypotheses could be considered as a justification for this result: 1 the high niche overlap could result from resource availability, which is sufficient to satisfy all species without any strong competition; 2 or the high values of niche overlap could be a selective force driving species to compete, but there has not been enough time to express a significant divergence in the species diet because the study area is characterised as a dynamic habitat influenced by frequent and cyclical changes.

  5. Water resources development in the Molai area, Greece

    International Nuclear Information System (INIS)

    1981-01-01

    The first volume of this report describes the work, carried out by the Government of Greece, with the assistance of UNDP and FAO, to assess the availability of groundwater for the irrigation of up to 6000 km in the Molai plain, located in the southern Peloponnese. The limestone reservoir of groundwater is restricted to the area 10 km 2 . Its groundwater is of rather poor quality (EC more than 2.0 mmho/cm) and it has a low head 3-7 m above sea level, which is 77-150 m below land surface. A water balance is presented which has been confirmed on a groundwater model. The fresh water of the limestone aquifer is characterised by the admixture of a variable amount of sea-water. The water of the Neogene aquifer is of much better quality. Combining the available resources, the irrigated area in the Molai plain can be tripled to cover half the net irrigable area. The economic feasibility of such a project has been studied

  6. Quality of Irrigation Water Affects Soil Functionality and Bacterial Community Stability in Response to Heat Disturbance.

    Science.gov (United States)

    Frenk, Sammy; Hadar, Yitzhak; Minz, Dror

    2018-02-15

    Anthropogenic activities alter the structure and function of a bacterial community. Furthermore, bacterial communities structured by the conditions the anthropogenic activities present may consequently reduce their stability in response to an unpredicted acute disturbance. The present mesocosm-scale study exposed soil bacterial communities to different irrigation water types, including freshwater, fertilized freshwater, treated wastewater, and artificial wastewater, and evaluated their response to a disturbance caused by heat. These effectors may be considered deterministic and stochastic forces common in agricultural operations of arid and semiarid regions. Bacterial communities under conditions of high mineral and organic carbon availability (artificial wastewater) differed from the native bacterial community and showed a proteobacterial dominance. These bacterial communities had a lower resistance to the heat treatment disturbance than soils under conditions of low resource availability (high-quality treated wastewater or freshwater). The latter soil bacterial communities showed a higher abundance of operational taxonomic units (OTUs) classified as Bacilli These results were elucidated by soil under conditions of high resource availability, which lost higher degrees of functional potential and had a greater bacterial community composition change. However, the functional resilience, after the disturbance ended, was higher under a condition of high resource availability despite the bacterial community composition shift and the decrease in species richness. The functional resilience was directly connected to the high growth rates of certain Bacteroidetes and proteobacterial groups. A high stability was found in samples that supported the coexistence of both resistant OTUs and fast-growing OTUs. IMPORTANCE This report presents the results of a study employing a hypothesis-based experimental approach to reveal the forces involved in determining the stability of a

  7. Green, blue and grey water footprint reduction in irrigated crop production

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie

    2017-01-01

    In the face of increasing water scarcity, reducing the consumptive and degradative water use of crop production is important to produce more food and/or for the environment. The thesis explores the potential for reducing the green, blue and grey water footprint (WF) of irrigated crop production by

  8. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    Science.gov (United States)

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  9. Rice production with less irrigation water is possible in a Sahelian environment

    NARCIS (Netherlands)

    Vries, de M.E.; Rodenburg, J.; Bado, B.V.; Sow, A.; Leffelaar, P.A.; Giller, K.E.

    2010-01-01

    We investigated the possibility of saving irrigation water in rice production in a Sahelian environment with different nitrogen rates and weed control treatments. A series of field experiments was conducted at Ndiaye (shallow water table, dry and wet season) and at Fanaye (deep water table, wet

  10. Water deficit imposed by deficit irrigation at different plant growth stages of maize

    International Nuclear Information System (INIS)

    Calvache, M.; Reichardt, C.

    1995-01-01

    The purpose of this study was to identify specific growth stages of maize Crop, at which the plant is less sensitive to water stress so that irrigation can be omitted withhout significant decrease yield. The field experiment was conducted at a University experiment station, Tumbaco, Pichincha, Ecuador, during may - october 1993, on a sandy loam soil ( typic durustoll). Soil moisture was monitored with a neutron probe down to 0.70 m depth, before and 24 h after each irrigation. The actual evapotranspiration of the crop was estimated by the water - balance technique. Field water efficiency and crop water use efficiency were calculated by dividing actual grain yield by irrigation and by ETa, respectively. Nitrogen fertilizer use efficiency was calculated using N - 15 methodology in the 75 kg N/ ha treatment. From the yield data, it can be concluded that treatments which had irrigation deficit had lower yield than those that had suplementary irrigation. The flowering and yield formation stages were the most sensitive to moisture stress. Nitrogen fertilization significantly increased the grain yield. The crop water use effeciency was the lowest at the flowering and yield formation of the region, the treatments I1 and I7 had the same crop water use efficiency. The results of N - 15 labelled plots ( F1) showed that soil water deficiency significantly affects nitrogen was derived from fertilizer in treatments I3 and I7 and only 11 - 9% in the treatments I2 and I5 respectively. ( Author)

  11. Water relations and photosynthesis as criteria for adequate irrigation management in 'Tahiti' lime trees

    Directory of Open Access Journals (Sweden)

    Silva Cláudio Ricardo da

    2005-01-01

    Full Text Available Irrigation scheduling based on soil moisture status is one of the most useful methods because of its practicality and low cost. The effects of available soil water depletion on evapotranspiration (ETc, transpiration (E, leaf water potential at predawn (psiP and midday (psiM, stomatal conductance (gs and net CO2 assimilation (A in lime 'Tahiti' trees (Citrus latifolia were evaluated to improve irrigation schedule and minimize water use without causing water stress. The trees were spaced 7 4 m and drip-irrigated by four drippers with the available soil water content (AWC depleted by suspension of irrigation (40 days. Leaf water potential was measured on a pressure chamber (psiP and psiM and leaf gas exchange was measured by infrared gas analyzer (E, gs and A. Evapotranspiration was determined with the aid of weighing lysimeter. Water soil content and potential (psiS were monitored with TDR probes and tensiometers, respectively, installed at 0.3, 0.6 and 0.9 m depths. Meteorological variables were monitored with an automatic weather station in the experimental area. The threshold AWC level for the onset of ETc decline was 43%, and 60% for gs, A, E and Y P. Also, psiP was more sensitive to AWC than psiM, and is therefore a better tool for irrigation. When AWC was around 60%, values of psiP and psis were -0.62 MPa and -48.8 kPa, respectively.

  12. The effect of applying different water levels and irrigation frequencies in propagating rosemary (Rosmarinus officinalis L.

    Directory of Open Access Journals (Sweden)

    Javier Giovanni Álvarez Herrera

    2010-01-01

    Full Text Available Rosemary seedlings are obtained by vegetative propagation because the seeds present low viability. Despite being an expanding crop, there is little information on water consumption during the propagation stage. Water levels and irrigation frequencies were therefore applied using a completely randomised design having a 4 x 2 factorial arrangement. The first factor concerned irrigation frequency (4 and 8 days and the second concerned water level (0.6, 0.8, 1.0 and 1.2 evaporation inside the greenhouse. A 1.0 coefficient combined with 4-day irrigation frequency presented the best results regarding height (39.3 cm, fresh weight, dry weight and branch length (146 cm. Water level affected the fresh and dry weight of leaves regardless of frequency. Relative water content in leaves did not present differences due to environmental conditions minimising treatment effect. Rooting percent- tage showed no significant differences regarding irrigation frequency or water level. Irrigation frequency did not affect rosemary growing pattern because sphagnum retains high moisture content. The best branch number (34 was obtained with 1.0 coefficient and 4-day frequency, this being important from the production point of view because this is the material which is sold. Water management changes photoassimilate distribution in rosemary plants.

  13. Effect of irrigation techniques and strategies on water footprint of growing crops

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.

    2014-12-01

    Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation

  14. Smart Water Conservation System for Irrigated Landscape. ESTCP Cost and Performance Report

    Science.gov (United States)

    2016-10-01

    irrigation practices (timer based and manual watering systems) that are no longer sustainable given the limited water supplies in many U.S. locations and...Areas that have high local water costs or limited water supply options may also benefit from water harvesting. The implementation of smart ET...in potable water use. Smart ET controllers with centralized and site-specific sensor inputs, such as ET gauge, rain, soil moisture, and leak

  15. Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D

    Science.gov (United States)

    Drip irrigation under mulch is a major water-saving irrigation method that has been widely practiced for cotton production. The performance of such irrigation systems should be evaluated for proper design, management, operation, and efficient water use. The modeling approach has been used as a commo...

  16. Simulating Water Allocation and Cropping Decisions in Yemen’s Abyan Delta Spate Irrigation System

    Directory of Open Access Journals (Sweden)

    Derek Jin-Uk Marchant

    2018-01-01

    Full Text Available Agriculture employs more Yemenis than any other sector and spate irrigation is the largest source of irrigation water. Spate irrigation however is growing increasingly difficult to sustain in many areas due to water scarcity and unclear sharing of water amongst users. In some areas of Yemen, there are no institutionalised water allocation rules which can lead to water related disputes. Here, we propose a proof-of-concept model to evaluate the impacts of different water allocation patterns to assist in devising allocation rules. The integrated model links simple wadi flow, diversion, and soil moisture-yield simulators to a crop decision model to evaluate impacts of different water allocation rules and their possible implications on local agriculture using preliminary literature data. The crop choice model is an agricultural production model of irrigation command areas where the timing, irrigated area and crop mix is decided each month based on current conditions and expected allocations. The model is applied to Yemen’s Abyan Delta, which has the potential to be the most agriculturally productive region in the country. The water allocation scenarios analysed include upstream priority, downstream priority, equal priority (equal sharing of water shortages, and a user-defined mixed priority that gives precedence to different locations based on the season. Once water is distributed according to one of these allocation patterns, the model determines the profit-maximising plant date and crop selection for 18 irrigated command areas. This aims to estimate the impacts different water allocation strategies could have on livelihoods. Initial results show an equal priority allocation is the most equitable and efficient, with 8% more net benefits than an upstream scenario, 10% more net benefits than a downstream scenario, and 25% more net benefits than a mixed priority.

  17. Delineating shallow ground water irrigated areas in the Atankwidi ...

    African Journals Online (AJOL)

    user

    Basin Lan Use/Land Cover (LULC) and irrigated area Mapping using. Continuous Streams of MODIS Data. Remote Sensing Environ.,. 95(3): 317-341. Neckel H, Labs D (1984). The solar radiation between 3300 and 12500. A. Solar Phys., 90: 205-258. Tucker CJ, Grant DM, Dykstra JD (2005). NASA's global orthorectified.

  18. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    ADOWIE PERE

    is acidic, thus enhancing leaching and corrosive tendencies of the irrigation ... of heavy metals in the soil indicated contamination from the effluent from the .... well (SAR = 11.1), which contained high pH (pH= 6.65) and high Chloride ion (Cl-of.

  19. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Science.gov (United States)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  20. Aflaj’s Irrigation Water Demand/Supply Ratio: Two Case Studies

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Ghafri

    2006-01-01

    Full Text Available Due to the geographical location of Oman in an arid zone, agricultural production depends fully on irrigation. The traditional irrigation systems (Aflaj, sing. falaj supply more than one third of water for agriculture. Falaj is defined in the context of this paper as a canal system which provides water for domestic and agricultural uses. Oman has 3,107 active Aflaj producing about 680 Mm3 of water per year. The main objective of this study was to estimate the irrigation performance of Aflaj in Oman. Falaj al-Dariz and al-Nujaid were chosen as case studies. Both Aflaj are located in an extremely arid environment, where the rainfall is low and evapotranspiration is high. The study utilized an approach to estimate the irrigation performance of Aflaj by considering the falaj as a single unit of irrigation. The irrigation demand/supply ratio (D/S was used in the analysis as a tool of evaluation. Date palm, the dominant crop irrigated by Aflaj, was selected for the analysis. In falaj al-Dariz the date palms were slightly under irrigated on a yearly basis. On a monthly basis, in winter, the D/S was below 0.6 and in summer it was above 1.0. On the other hand, falaj al-Nujaid was supplying too much water than the date palms needed all round the year. In winter the D/S ratio was as low as 0.25. Even in summer, the D/S ratio did not much exceed 1.0.

  1. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  2. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water.

    Science.gov (United States)

    Lopez-Galvez, Francisco; Allende, Ana; Pedrero-Salcedo, Francisco; Alarcon, Juan Jose; Gil, Maria Isabel

    2014-11-17

    The impact of reclaimed and surface water on the microbiological safety of hydroponic tomatoes was assessed. Greenhouse tomatoes were irrigated with reclaimed and surface water and grown on two hydroponic substrates (coconut fiber and rock wool). Water samples (n=208) were taken from irrigation water, with and without the addition of fertilizers and drainage water, and hydroponic tomatoes (n=72). Samples were analyzed for indicator microorganisms, generic Escherichia coli and Listeria spp., and pathogenic bacteria such as Salmonella spp. and Shiga-toxigenic E. coli (STEC), using multiplex real-time PCR (RT-PCR) after enrichment. The correlation between climatological parameters such as temperature and the levels of microorganisms in water samples was also determined. In irrigation water, generic E. coli counts were higher in reclaimed than in surface water whereas Listeria spp. numbers increased after adding the fertilizers in both water sources. In drainage water, no clear differences in E. coli and Listeria numbers were observed between reclaimed and surface water. No positive samples for STEC were found in irrigation water. Presumptive positives for Salmonella spp. were found in 7.7% of the water samples and 62.5% of these samples were reclaimed water. Salmonella-positive samples by RT-PCR could not be confirmed by conventional methods. Higher concentrations of E. coli were associated with Salmonella-presumptive positive samples. Climatological parameters, such as temperature, were not correlated with the E. coli and Listeria spp. counts. Tomato samples were negative for bacterial pathogens, while generic E. coli and Listeria spp. counts were below the detection limit. The prevalence of presumptive Salmonella spp. found in irrigation water (reclaimed and surface water) was high, which might present a risk of contamination. The absence of pathogens on greenhouse hydroponic tomatoes indicates that good agricultural practices (GAP) were in place, avoiding the

  3. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    OpenAIRE

    mohammad saeed tadaion; Gholamreza Moafpourian

    2017-01-01

    Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L.) cv. Zarde-anar) were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carri...

  4. Simulation of Salinity Distribution in Soil Under Drip Irrigation Tape with Saline Water Using SWAP Model

    Directory of Open Access Journals (Sweden)

    M. Tabei

    2016-02-01

    Full Text Available Introduction: The to be limited available water amount from one side and to be increased needs of world population from the other side have caused increase of cultivation for products. For this reason, employing new irrigation ways and using new water resources like using the uncommon water (salty water, water drainage are two main strategies for regulating water shortage conditions. On the other side, accumulation of salts on the soil surface in dry regions having low rainfall and much evaporation, i.e. an avoidable case. As doing experiment for determining moisture distribution form demands needs a lot of time and conducting desert experiments are costly, stimulator models are suitable alternatives in answering the problem concerning moving and saltiness distribution. Materials and Methods: In this research, simulation of soil saltiness under drip irrigation was done by the SWAP model and potency of the above model was done in comparison with evaluated relevant results. SWAP model was performed based on measured data in a corn field equipped with drip irrigation system in the farming year 1391-92 in the number one research field in the engineering faculty of water science, ShahidChamran university of Ahvaz and hydraulic parameters of soil obtained from RETC . Statistical model in the form of a random full base plan with four attendants for irrigating water saltiness including salinity S1 (Karoon River water with salinity 3 ds/m as a control treatment, S2 (S1 +0/5, S3 (S1 +1 and S4 (S1 +1/5 dS/m, in 3 repetition and in 3 intervals of 10 cm emitter, 20 cm emitters on the stack, at a depth of 0-90 cm (instead of each 30 cm from soil surface and intervals of 30, 60 and 90 days after modeling cultiviation was done. The cultivation way was done handheld in plots including four rows of 3 m in distance of 75 cm rows and with denseness of 80 bushes in a hectar. Drip irrigation system was of type strip with space of 20 cm pores. Results and Discussion

  5. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  6. [Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan Desert hinterland].

    Science.gov (United States)

    Xie, Ting-ting; Zhang, Xi-ming; Liang, Shao-min; Shan, Li-shan; Yang, Xiao-lin; Hua, Yong-hui

    2008-04-01

    By using heat-balance stem flow gauge and press chamber, the water physiological characteristics of Haloxylon ammodendron under different irrigations in Taklimakan Desert hinterland were measured and analyzed. The results indicated that the diurnal variation curve of H. ammodendron stem sap flow varied with irrigations. When irrigated 35 and 24.5 kg x plant(-1) once time, the diurnal variation of stem sap flow changed in single peak curve and the variation extent was higher; while irrigated 14 kg x plant(-1) once time, the diurnal variation changed in two-peak curve and the variation extent was small. With the decrease of irrigations, the average daily sap flow rate and the daily water consumption of H. ammodendron decreased gradually, the dawn and postmeridian water potential also had a gradual decrease, and the correlations of stem sap flow with total radiation, air temperature, relative humidity, and wind speed enhanced. Under different irrigations, the correlation between stem sap flow rate and total radiation was always the best.

  7. IRRIGATION SCHEDULING CALCULATOR (ISC TO IMPROVE WATER MANAGEMENT ON FIELD LEVEL IN EGYPT

    Directory of Open Access Journals (Sweden)

    Samiha Abou El-Fetouh Hamed Ouda

    2017-10-01

    Full Text Available The developed model is MS excel sheet called “Irrigation Scheduling Calculator, ISC”. The model requires to input daily weather data to calculate daily evapotranspiration using Penman-Monteith equation. The model calculates water depletion from the root zone to determine when to irrigate and how much water should be applied. The charge from irrigation pump is used to calculate how many hours should the farmer run the pump to deliver the needed amount of water. ISC model was used to developed irrigation schedule for wheat and maize planted in El-Gharbia governorate. The developed schedules were compared to the actual schedules for both crops. Furthermore, CropSyst model was calibrated for both crops and run using the developed schedules by ISC model. The simulation results indicated that the calculated irrigation amount by ISC model for wheat was lower than actual schedule by 6.0 mm. Furthermore, the simulated wheat productivity by CropSyst was higher than measured grain and biological by 2%. Similarly, the calculated applied irrigation amount by ISC model for maize was lower than actual schedule by 79.0 mm and the productivity was not changed.

  8. Effect of water irrigation volume on Capsicum frutescens growth and plankton abundance in aquaponics system

    Science.gov (United States)

    Andriani, Y.; Dhahiyat, Y.; Zahidah; Subhan, U.; Iskandar; Zidni, I.; Mawardiani, T.

    2018-03-01

    This study aimed to understand Capsicum frutescens growth and plankton abundance in aquaponics culture. A Completely Randomized Design (CRD) with six treatments in triplicates comprising of treatment A (positive control using organic liquid fertilizer), B (negative control without fertilizer), C (drip irrigation aquaponics with a water debit of 100 ml/day/plant), D (drip irrigation aquaponics with a water debit of 150 ml/day/plant), E (drip irrigation with a water debit of 200 ml/day/plant), and F (drip irrigation aquaponics with a water debit of 250 ml/day/plant) was applied. The water used in treatments C, D, E, and F contained comet fish feces as fertilizer. C. frutescens growth and plankton abundance were observed. Analysis was conducted using analysis of variance for plant productivity and descriptive analysis for plankton abundance and water quality. The results of this study showed that the highest plant growth was seen in plants receiving F treatment with 50 ml/day drip irrigation. However, no significant difference was found when compared to the positive control with organic artificial fertilizer. Eleven types of phytoplankton and six types of zooplankton were found, with Stanieria sp. as the most abundant phytoplankton and Brachionus sp. and Epistylis sp. as the most abundant zooplanktons.

  9. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  10. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.

    Science.gov (United States)

    Sengupta, Mita E; Keraita, Bernard; Olsen, Annette; Boateng, Osei K; Thamsborg, Stig M; Pálsdóttir, Guðný R; Dalsgaard, Anders

    2012-07-01

    Water from wastewater-polluted streams and dug-outs is the most commonly used water source for irrigation in urban farming in Ghana, but helminth parasite eggs in the water represent health risks when used for crop production. Conventional water treatment is expensive, requires advanced technology and often breaks down in less developed countries so low cost interventions are needed. Field and laboratory based trials were carried out in order to investigate the effect of the natural coagulant Moringa oleifera (MO) seed extracts in reducing helminh eggs and turbidity in irrigation water, turbid water, wastewater and tap water. In medium to high turbid water MO extracts were effective in reducing the number of helminth eggs by 94-99.5% to 1-2 eggs per litre and the turbidity to 7-11 NTU which is an 85-96% reduction. MO is readily available in many tropical countries and can be used by farmers to treat high turbid water for irrigation, however, additional improvements of water quality, e.g. by sand filtration, is suggested to meet the guideline value of ≤ 1 helminth egg per litre and a turbidity of ≤ 2 NTU as recommended by the World Health Organization and the U.S. Environmental Protection Agency for water intended for irrigation. A positive correlation was established between reduction in turbidity and helminth eggs in irrigation water, turbid water and wastewater treated with MO. This indicates that helminth eggs attach to suspended particles and/or flocs facilitated by MO in the water, and that turbidity and helminth eggs are reduced with the settling flocs. However, more experiments with water samples containing naturally occurring helminth eggs are needed to establish whether turbidity can be used as a proxy for helminth eggs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Regional Water Balance Based on Remotely Sensed Evapotranspiration and Irrigation: An Assessment of the Haihe Plain, China

    Directory of Open Access Journals (Sweden)

    Yanmin Yang

    2014-03-01

    Full Text Available Optimal planning and management of the limited water resources for maximum productivity in agriculture requires quantifying the irrigation applied at a regional scale. However, most efforts involving remote sensing applications in assessing large-scale irrigation applied (IA have focused on supplying spatial variables for crop models or studying evapotranspiration (ET inversions, rather than directly building a remote sensing data-based model to estimate IA. In this study, based on remote sensing data, an IA estimation model together with an ET calculation model (ETWatch is set up to simulate the spatial distribution of IA in the Haihe Plain of northern China. We have verified this as an effective approach for the simulation of regional IA, being more reflective of regional characteristics and of higher resolution compared to single site-specific results. The results show that annual ET varies from 527 mm to 679 mm and IA varies from 166 mm to 289 mm, with average values of 602 mm and 225 mm, respectively, from 2002 to 2007. We confirm that the region along the Taihang Mountain in Hebei Plain has serious water resource sustainability problems, even while receiving water from the South-North Water Transfer (SNWT project. This is due to the region’s intensive agricultural production and declining groundwater tables. Water-saving technologies, including more timely and accurate geo-specific IA assessments, may help reduce this threat.

  12. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  13. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control.

    Science.gov (United States)

    Kibret, Solomon; Wilson, G Glenn; Tekie, Habte; Petros, Beyene

    2014-09-13

    Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia. Daily canal water releases were recorded during the study period and bi-weekly correlation analysis was done to determine relationships between canal water releases and larval/adult vector densities. Blood meal sources (bovine vs human) and malaria sporozoite infection were tested using enzyme-linked immunosorbent assay (ELISA). Monthly malaria data were also collected from central health centre of the study villages. Monthly malaria incidence was over six-fold higher in the irrigated villages than the non-irrigated villages. The number of anopheline breeding habitats was 3.6 times higher in the irrigated villages than the non-irrigated villages and the most common Anopheles mosquito breeding habitats were waterlogged field puddles, leakage pools from irrigation canals and poorly functioning irrigation canals. Larval and adult anopheline densities were seven- and nine-fold higher in the irrigated villages than in the non-irrigated villages, respectively, during the study period. Anopheles arabiensis was the predominant species in the study area. Plasmodium falciparum sporozoite rates of An. arabiensis and Anopheles pharoensis were significantly higher in the irrigated villages than the non-irrigated villages. The annual entomological inoculation rate (EIR) calculated for the irrigated and non-irrigated villages were 34.8 and 0.25 P. falciparum infective bites per person per year, respectively. A strong positive correlation was found between bi-weekly anopheline larval density and canal water

  14. Planning for Regional Water Resources in Northwest China Using a Dynamic Simulation Model

    Science.gov (United States)

    Chen, C.; Kalra, A.; Ahmad, S.

    2014-12-01

    Problem of water scarcity is prominent in northwest China due to its typical desert climate. Exceedence of sustainable yield of groundwater resources has resulted in groundwater depletion, which has raised a series of issues such as drying wells, increasing pumping costs and environmental damage. With a rapid agricultural and economic development, population increase has added extra stress on available water resources by increasing municipal, agricultural and industrial demands. This necessitates efficient water resources management strategies with better understanding of the causes of water stress and options for sustainable development of economy and management of environment. This study focuses on simulating the water supply and demand, under the influence of changing climate, for Shanshan County, located in northwest of China. A dynamic simulation model is developed using the modeling tool Stella for monthly water balance for the period ranging from 2000-2030. Different future water demand and supply scenarios are developed to represent: (1) base scenario- with current practices; (2) change of the primary water source; (3) improvement of irrigation efficiency; (4) reduction of irrigation area; and (5) reduction of industrial water demand. The results indicate that besides growing demand, the low water use efficiency and low level of water reuse are the primary concerns for water scarcity. Groundwater recharge and abstraction could be balanced by 2030, by reducing industrial demand by 50% and using high efficiency irrigation for agriculture. The model provided a better understanding of the effect of different policies and can help in identifying water resources management strategies.

  15. An index-based approach for the sustainability assessment of irrigation practice based on the water-energy-food nexus framework

    Science.gov (United States)

    de Vito, Rossella; Portoghese, Ivan; Pagano, Alessandro; Fratino, Umberto; Vurro, Michele

    2017-12-01

    Increasing pressure affects water resources, especially in the agricultural sector, with cascading impacts on energy consumption. This is particularly relevant in the Mediterranean area, showing significant water scarcity problems, further exacerbated by the crucial economic role of agricultural production. Assessing the sustainability of water resource use is thus essential to preserving ecosystems and maintaining high levels of agricultural productivity. This paper proposes an integrated methodology based on the Water-Energy-Food Nexus to evaluate the multi-dimensional implications of irrigation practices. Three different indices are introduced, based on an analysis of the most influential factors. The methodology is then implemented in a catchment located in Puglia (Italy) and a comparative analysis of the three indices is presented. The results mainly highlight that economic land productivity is a key driver of irrigated agriculture, and that groundwater is highly affordable compared to surface water, thus being often dangerously perceived as freely available.

  16. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  17. A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions

    Directory of Open Access Journals (Sweden)

    Lucia Bortolini

    2018-02-01

    Full Text Available In the Mediterranean arid and semi-arid regions, large amounts of low quality waters could be used for crop irrigation, but the adoption of articulated classifications with too rigid quality limits can often reduce the recoverable quantities of water and make the monitoring of water quality too much expensive. Therefore, an evaluation of irrigation water quality based on only a few crucial parameters, which consider the crop species to be irrigated and the type of irrigation system and management adopted, can be an easy and flexible method for maximizing the reuse of wastewater and low-quality water for agricultural purposes. In this view, an irrigation water quality tool (IWQT was developed to support farmers of arid and semi-arid regions on evaluating the use of low quality water for crop irrigation. The most significant and cheapest parameters of irrigation water quality were identified and clustered in three quality classes according to their effects on crop yield and soil fertility (agronomic quality indicators, human health (hygiene and health quality indicators, and irrigation systems (management quality indicators. According to IWQT parameters, a tool reporting a series of recommendations, including water treatment types, was implemented to guide farmers on the use of low quality irrigation water.

  18. Application of Water Quality and Ecology Indices of Benthic Macroinvertebrate to Evaluate Water Quality of Tertiary Irrigation in Malang District

    Directory of Open Access Journals (Sweden)

    Desi Kartikasari

    2013-12-01

    Full Text Available This research aims to determine the water quality of tertiary irrigation in several subdistricts in Malang, namely Kepanjen, Karangploso, and Tumpang. The water quality depends on the water quality indices (National Sanitation Foundation’s-NSF Indices and O’Connor’s Indices based on variables TSS, TDS, pH, DO, and Nitrate concentrate and ecological indices of benthic macroinvertebrate (Diversity Indices Shannon-Wiener, Hilsenhof Biotic Indices-HBI, Average Score per Taxon-ASPT which is calculated by Biological Monitoring Working Party-BMWP, Ephemeroptera Indices, Plecoptera, Trichoptera-EPT. Observation of the physico-chemical water quality and benthic macroinvertebrate on May 2012 to April 2013. The sampling in each subdistrict was done at two selected stations in tertiary irrigation channel with three plot at each station. The data of physico-chemical quality of water were used to calculate the water quality indices, while the benthic macroinvertebrate data were used to calculate the ecological indices. The research findings showed that 27 taxa of benthic macroinvertebrates belong 10 classes were found in the three subdistrict. The pH, DO, Nitrate, TSS and TDS in six tertiary irrigation channels in Malang still met the water quality standards based on Government Regulation No. 82 of 2001 on Management of Water Quality and Water Pollution Control Class III. Based on NSF-WQI indices and O'Connor's Indices, water qualities in these irrigation channels were categorized into medium or moderate (yellow to good (green category. However, based on benthic macroinvertebrate communities which was used to determine the HBI, the water quality in the irrigation channels were categorized into the fair category (fairly significant organic pollution to fairly poor (significant organic pollution, while based on the value of ASPT, the water were categorized into probable moderate pollution to probable severe pollution. The irrigation water which was

  19. Physiology of ‘Paluma’ guava under irrigation with saline water and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Evandro Manoel da Silva

    2017-05-01

    Full Text Available The use of saline water in irrigation causes osmotic and toxic effects and nutritional imbalance in plants, leading to morphophysiological modifications in the leaves and compromising the production of photosynthetic pigments, which negatively reflects in the growth and development of the crops. Hence, this study aimed to evaluate the effect of irrigation water salinity on the content of photosynthetic pigments and leaf morphophysiology of guava seedlings cv. ‘Paluma’ under nitrogen (N fertilization. A randomized block design was used, testing five levels of irrigation water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1 and four N doses (541.1, 773.0, 1,004.9, and 1,236.8 mg of N dm-3 of soil in a 5 x 4 factorial scheme with three replicates and five plants per plot. The contents of photosynthetic pigments in the leaves of the guava seedlings cv. ‘Paluma’ were inhibited by the increase in irrigation water salinity at 190 days after emergence, and the salt stress was lessened with the N dose of 1,004.9 mg dm-3 up to an ECw level of 1.2 dS m-1. Leaf morphophysiology of guava seedlings was not compromised by irrigation water salinity up to 1.5 dS m-1, and the highest values were obtained in plants fertilized with 541.1 mg of N dm-3.

  20. Land Cover Monitoring for Water Resources Management in Angola

    Science.gov (United States)

    Miguel, Irina; Navarro, Ana; Rolim, Joao; Catalao, Joao; Silva, Joel; Painho, Marco; Vekerdy, Zoltan

    2016-08-01

    The aim of this paper is to assess the impact of improved temporal resolution and multi-source satellite data (SAR and optical) on land cover mapping and monitoring for efficient water resources management. For that purpose, we developed an integrated approach based on image classification and on NDVI and SAR backscattering (VV and VH) time series for land cover mapping and crop's irrigation requirements computation. We analysed 28 SPOT-5 Take-5 images with high temporal revisiting time (5 days), 9 Sentinel-1 dual polarization GRD images and in-situ data acquired during the crop growing season. Results show that the combination of images from different sources provides the best information to map agricultural areas. The increase of the images temporal resolution allows the improvement of the estimation of the crop parameters, and then, to calculate of the crop's irrigation requirements. However, this aspect was not fully exploited due to the lack of EO data for the complete growing season.

  1. Water deficit imposed by partial irrigation at different plant growth stages of common bean

    International Nuclear Information System (INIS)

    Calvache, M.; Reichardt, K.

    1995-01-01

    The purpose of this study was to identify specific growth stages of common bean crop, at which the plant is less sensitive to water stress so that irrigation can be omitted without significant decrease in biological nitrogen fixation and yield. Two field experiments were conducted at a University experiments station, Tumbaco, Pichincha, Ecuador, on a sandy loam soil ( Typic durustoll ). The climate is warm and dry ( mean air temperature 16 degree Celcius and mean relative humidity 74% ) during the cropping season and rainfall of 123 mm was recorded during the cropping period. The treatments consisted of combinations of 7 irrigation regimes ( I1 = all normal watering; I2 = all stres; I3 = traditional practice; I4 = single stress at vegetation; I5 flowering; I6 = yield formation and I7 = ripening stages ) and 2 levels of applied N ( 20 and 80 kg/ ha ). Differential irrigation was started after 3 uniform irrigations for germination and crop establishment. Soil moisture was monitored with a neutron probe down to 0.60 m depth, before and 24 h after each irrigation. Biological Nitrogen Fixation was calculated using the N- 15 metodology in the 20 kg N/ ha treatment. From the yield data, it can be concluded that treatments which had irrigation deficit had lower yield than those that had suplementary irrigation. The flowering stage was the most sensitive to number of pods and grain yield. Biological Nitrogen Fixation was significantly affected by water stress at flowering and formation stages. The crop water use efficiency ( kg/ m 3 ) was the lowest at flowering period and the yield response factor ( Ky ) was higher in treatments I2 ( all stress ) and I5 (stress at flowering ). Comparing with traditional practice by farmers of the region, only treatments I1 and I7 had 13 and 10 % higher crop water use effeciency. 15 tabs., 7 refs. ( Author )

  2. Assessing the performance of surface and subsurface drip systems on irrigation water use efficiency of citrus orchards in Spain

    Science.gov (United States)

    Amparo Martinez-Gimeno, Maria; Provenzano, Giuseppe; Bonet, Luis; Intrigliolo, Diego S.; Badal, Eduardo; Ballestrer, Carlos

    2017-04-01

    In Mediterranean countries, water scarcity represents a real environmental concern at present and, according to the current climate change models predictions, the problem will be amplified in the future. In order to deal with this issue, application of strategies aimed to optimize the water resources in agriculture and to increase water use efficiency have become essential. On the one hand, it is important the election of the appropriate irrigation system for each particular case. On the other hand, identify the best management options for that specific irrigation system is crucial to optimize the available water resources without affecting yield. When using water saving strategies, however, it is a must to monitor the soil and/or crop water status in order to know the level of stress reached by the plants and to avoid levels that could lead to detrimental effects on yield. Stem water potential, ψstem, expressing the instantaneous condition of crop water stress, is considered a robust indicator of crop water status. The main objective of this study was to assess the performance of a surface (DI) and subsurface (SDI) drip irrigation system in a citrus orchard with 7 (DI7, SDI7) or 14 emitters (DI14, SDI14) per plant, in terms of irrigation water use efficiency (IWUE) and possible amount of water saving. The experiment was carried out in 2014 and 2015 in Alberique, Spain, (39˚ 7'31" N, 0˚ 33'17" W), in a commercial orchard (Citrus clementina, Hort. ex Tan. 'Arrufatina') in which four different treatments with three replications (12 sub-plots) were prepared according to a complete randomized block design. Irrigation doses and timing were scheduled based on the estimated maximum crop evapotranspiration corrected according to measurements of ψstem and soil water content, and weather forecasts. In order to limit the maximum crop water stress, the thresholds of ψstem were assumed in the range between -0.8 and -1.0 MPa from January to June and between -1.0 and -1

  3. Reuse of treated waste water for the irrigation of ornamental plants. The case of Pistoia; Riuso di acque reflue depurate di specie ornamentali: l'impianto pilota di Pistoia

    Energy Technology Data Exchange (ETDEWEB)

    Gori, R.; Lubello, C. [Florence Univ., Florence (Italy). Dipt. di Ingegneria Civile

    1999-12-01

    After a brief introduction on irrigation waste water reuse, the paper deals with the case of Pistoia (italy), the most important nursery area in Italy, which has developed an experiment for evaluating the effects of waste water treatment plant effluent irrigation. The better physiological and growth parameters of plants irrigated with the effluent shows that it could be a valid alternative of water and fertilizer nutrients resources for ornamental plants. [Italian] Dopo una breve introduzione sul riuso delle acque reflue a fini irrigui, il lavoro affronta il caso di Pistoia, sede della maggiore area vivaistica italiana, che utilizza le acque reflue dal 1998 con una sperimentazione volta a verificare gli effetti dell'irrigazione con l'effluente dell'impianto di depurazione centrale. Le piante cosi' irrigate hanno mostrato parametri di crescita e fisiologici generalmente migliori di quelli riscontrati sulle piante irrigate con i metodi tradizionali.

  4. Linear programming model to optimize the water resource use in irrigation projects: an application to the Senator Nilo Coelho Project Modelo de programação linear para otimizar o uso da água em projetos de irrigação: uma aplicação ao projeto Senador Nilo Coelho

    Directory of Open Access Journals (Sweden)

    J.A. Frizzone

    1997-06-01

    Full Text Available The main objective of this paper was to develop a separable linear programming model, considering a set of technical factors which may influence the profit of an irrigation project The model presents an objective function that maximizes the net income and specifies the range of water availability. It is assumed that yield functions in response to water application are available for differents crops and describe very well the water-yield relationships. The linear programming model was developed genetically, so that, the rational use of the available water resource could be included in an irrigation project Specific equations were developed and applied in the irrigation project "Senator Nilo Coelho" (SNCP, located in Petrolina - Brazil Based on the water-yield functions considered, cultivated land constraints, production costs and products prices, it was concluded that: (a the model was suitable for the management of the SNCP, resulting in optimal cropping patterns and showing the water requirements; (b for 7,424 ha of land and 66, 644,500 m³ of water available on a year basis, the shadow price of these resources were respectively, US$ 1,115.20/ha e USS 281.60/1000 m³; (c for the total monthly water availability of 9,861,040 m³, the total annual water availability of 66,644,500 m³ became an effective restriction to the increase of the net income of the production system in the SNCP; (d maintaining the total monthly water availability of 9,861,040 m³, annual volumes lower than 88,338,983 m³ were used fully to reach the optimal solution, and that higher volumes than this limit, did not increase the net return; (e the optimization model presented, estimated a net return of 5234 % higher than the traditional cropping pattern used hi the SNCP, considering the agricultural year of 1992.O objetivo deste trabalho foi desenvolver um modelo de programação linear separável, que considera um conjunto de fatores técnicos que influencia a

  5. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?

    Science.gov (United States)

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei

    2016-10-01

    Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation groundwater can be best utilized without corn yield loss when the total irrigation was reduced from the current 750 mm to 491 mm. This reduced irrigation rate facilitated

  6. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    Science.gov (United States)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  7. Growth, gas exchange, foliar nitrogen content, and water use of subirrigated and overhead irrigated Populus tremuloides Michx. seedlings

    Science.gov (United States)

    Anthony S. Davis; Matthew M. Aghai; Jeremiah R. Pinto; Kent G. Apostal

    2011-01-01

    Because limitations on water used by container nurseries has become commonplace, nursery growers will have to improve irrigation management. Subirrigation systems may provide an alternative to overhead irrigation systems by mitigating groundwater pollution and excessive water consumption. Seedling growth, gas exchange, leaf nitrogen (N) content, and water use were...

  8. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    Science.gov (United States)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  9. Greenhouse evaluation of deficit irrigation on the growth of tomato ...

    African Journals Online (AJOL)

    Deficit irrigation is considered to be an important approach for crop cultivation in dry regions where water resources are scarce. Deficit irrigation can be used also to decrease the level of infections by some moisturedependent plant pests and diseases such as root-knot nematode disease. Therefore, deficit irrigation at levels ...

  10. Willingness to pay for water and water rights definition: study among smallholder irrigators in Limpopo Province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Haese, D' M.F.C.; Frija, A.; Farolfi, S.; Haese, D' L.

    2009-01-01

    Internationally there is growing understanding that water rights are important and that a lack of effective water rights systems creates major problems for the management of increasingly scarce water supplies. In South Africa the smallholder irrigation sector faces two major challenges. Firstly

  11. The impact of the water rights definition on smallholder irrigators' willingness to pay for water in Limpopo province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Farolfi, S.; Haese, D' M.F.C.; Frija, A.; Haese, D' L.

    2010-01-01

    Water rights are currently receiving increased attention from scholars and policymakers due to the growing understanding that ill-defined water rights impair efficient use. In South Africa, smallholder irrigation faces problems of low water use efficiency and cost recovery of government investments.

  12. The nexus between integrated natural resources management and integrated water resources management in southern Africa

    Science.gov (United States)

    Twomlow, Stephen; Love, David; Walker, Sue

    The low productivity of smallholder farming systems and enterprises in the drier areas of the developing world can be attributed mainly to the limited resources of farming households and the application of inappropriate skills and practices that can lead to the degradation of the natural resource base. This lack of development, particularly in southern Africa, is of growing concern from both an agricultural and environmental perspective. To address this lack of progress, two development paradigms that improve land and water productivity have evolved, somewhat independently, from different scientific constituencies. One championed by the International Agricultural Research constituency is Integrated Natural Resource Management (INRM), whilst the second championed predominantly by Environmental and Civil Engineering constituencies is Integrated Water Resources Management (IWRM). As a result of similar objectives of working towards the millennium development goals of improved food security and environmental sustainability, there exists a nexus between the constituencies of the two paradigms, particularly in terms of appreciating the lessons learned. In this paper lessons are drawn from past INRM research that may have particular relevance to IWRM scientists as they re-direct their focus from blue water issues to green water issues, and vice-versa. Case studies are drawn from the management of water quality for irrigation, green water productivity and a convergence of INRM and IWRM in the management of gold panning in southern Zimbabwe. One point that is abundantly clear from both constituencies is that ‘one-size-fits-all’ or silver bullet solutions that are generally applicable for the enhancement of blue water management/formal irrigation simply do not exist for the smallholder rainfed systems.

  13. Interactive Online Real-time Groundwater Model for Irrigation Water Allocation in the Heihe Mid-reaches, China

    Science.gov (United States)

    Pedrazzini, G.; Kinzelbach, W.

    2016-12-01

    In the Heihe Basin and many other semi-arid regions in the world the ongoing introduction of smart meter IC-card systems on farmers' pumping wells will soon allow monitoring and control of abstractions with the goal of preventing further depletion of the resource. In this regard, a major interest of policy makers concerns the development of new and the improvement of existing legislation on pricing schemes and groundwater/surface water quotas. Predictive knowledge on the development of groundwater levels for different allocation schemes or climatic change scenarios is required to support decision-makers in this task. In the past groundwater models have been a static component of investigations and their results delivered in the form of reports. We set up and integrated a groundwater model into a user-friendly web-based environment, allowing direct and easy access to the novice user. Through operating sliders the user can select an irrigation district, change irrigation patterns such as partitioning of surface- and groundwater, size of irrigation area, irrigation efficiency, as well as a number of climate related parameters. Reactive handles allow to display the results in real-time. The implemented software is all license free. The tool is currently being introduced to irrigation district managers in the project area. Findings will be available after some practical experience to be expected in a given time. The accessibility via a web-interface is a novelty in the context of groundwater models. It allows delivering a product accessible from everywhere and from any device. The maintenance and if necessary updating of model or software can occur remotely. Feedback mechanisms between reality and prediction will be introduced and the model periodically updated through data assimilation as new data becomes available. This will render the model a dynamic tool steadily available and evolving over time.

  14. When should irrigators invest in more water-efficient technologies as an adaptation to climate change?

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.

    2015-12-01

    The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that