WorldWideScience

Sample records for irrigation water methods

  1. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  2. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    The purpose of an irrigation system is to apply the desired amount of water, at the correct application rate and uniformly to the whole field, at the right time, with the least amount of non-beneficial water consumption (losses), and as economically as possible. We know that irrigated agriculture plays a major role in the ...

  3. Impact of Irrigation Method on Water Use Efficiency and Productivity of Fodder Crops in Nepal

    Directory of Open Access Journals (Sweden)

    Ajay K Jha

    2016-01-01

    Full Text Available Improved irrigation use efficiency is an important tool for intensifying and diversifying agriculture in Nepal, resulting in higher economic yield from irrigated farmlands with a minimum input of water. Research was conducted to evaluate the effect of irrigation method (furrow vs. drip on the productivity of nutritious fodder species during off-monsoon dry periods in different elevation zones of central Nepal. A split-block factorial design was used. The factors considered were treatment location, fodder crop, and irrigation method. Commonly used local agronomical practices were followed in all respects except irrigation method. Results revealed that location effect was significant (p < 0.01 with highest fodder productivity seen for the middle elevation site, Syangja. Species effects were also significant, with teosinte (Euchlaena mexicana having higher yield than cowpea (Vigna unguiculata. Irrigation method impacted green biomass yield (higher with furrow irrigation but both methods yielded similar dry biomass, while water use was 73% less under drip irrigation. Our findings indicated that the controlled application of water through drip irrigation is able to produce acceptable yields of nutritionally dense fodder species during dry seasons, leading to more effective utilization and resource conservation of available land, fertilizer and water. Higher productivity of these nutritional fodders resulted in higher milk productivity for livestock smallholders. The ability to grow fodder crops year-round in lowland and hill regions of Nepal with limited water storages using low-cost, water-efficient drip irrigation may greatly increase livestock productivity and, hence, the economic security of smallholder farmers.

  4. Cotton Water Use Efficiency under Two Different Deficit Irrigation Scheduling Methods

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Baker

    2015-08-01

    Full Text Available Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE of cotton (Gossypium hirsutum L. In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST method with irrigation triggers set at 5.5 (ST_5.5 and 8.5 h (ST_8.5 and the Crop Water Stress Index (CWSI method with irrigation triggers set at 0.3 (CWSI_0.3 and 0.6 (CWSI_0.6. When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW control irrigated at 110% of potential evapotranspiration and a dry land (DL treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ≤ 0.05 peak near 3.6 to 3.7 kg ha−1 mm−1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield.

  5. Irrigation water management: Basic principles and applications

    OpenAIRE

    Ella, Victor B.

    2007-01-01

    This presentation defines the term, irrigation, as well as explains the common methods of irrigation in attempt to define the fundamental principles needed to wisely design an irrigation system. It outlines a typical drip irrigation set-up, and discusses management of an irrigation system, including water volume application suggestions. LTRA-5 (Agroforestry and Sustainable Vegetable Production)

  6. Evaluation of Irrigation Methods for Highbush Blueberry. I. Growth and Water Requirements of Young Plants

    Science.gov (United States)

    A study was conducted in a new field of northern highbush blueberry (Vaccinium corymbosum L. 'Elliott') to determine the effects of different irrigation methods on growth and water requirements of uncropped plants during the first 2 years after planting. The plants were grown on mulched, raised beds...

  7. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    at farm level requires careful consideration of the implications of decisions made during both development (planning and design), and .... water if the emitter package is properly designed and the wind speed is less .... The structure and con-.

  8. Root Development of Transplanted Cotton and Simulation of Soil Water Movement under Different Irrigation Methods

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-07-01

    Full Text Available Winter wheat and cotton are the main crops grown on the North China Plain (NCP. Cotton is often transplanted after the winter wheat harvest to solve the competition for cultivated land between winter wheat and cotton, and to ensure that both crops can be harvested on the NCP. However, the root system of transplanted cotton is distorted due to the restrictions of the seedling aperture disk before transplanting. Therefore, the investigation of the deformed root distribution and water uptake in transplanted cotton is essential for simulating soil water movement under different irrigation methods. Thus, a field experiment and a simulation study were conducted during 2013–2015 to explore the deformed roots of transplanted cotton and soil water movement using border irrigation (BI and surface drip irrigation (SDI. The results showed that SDI was conducive to root growth in the shallow root zone (0–30 cm, and that BI was conducive to root growth in the deeper root zone (below 30 cm. SDI is well suited for producing the optimal soil water distribution pattern for the deformed root system of transplanted cotton, and the root system was more developed under SDI than under BI. Comparisons between experimental data and model simulations showed that the HYDRUS-2D model described the soil water content (SWC under different irrigation methods well, with root mean square errors (RMSEs of 0.023 and 0.029 cm3 cm−3 and model efficiencies (EFs of 0.68 and 0.59 for BI and SDI, respectively. Our findings will be very useful for designing an optimal irrigation plan for BI and SDI in transplanted cotton fields, and for promoting the wider use of this planting pattern for cotton transplantation.

  9. Response of Cotton to Irrigation Methods and Nitrogen Fertilization: Yield Components, Water-Use Efficiency, Nitrogen Uptake, and Recovery

    International Nuclear Information System (INIS)

    Janat, M.

    2009-01-01

    Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water- and N-use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf soil. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe. Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water-use efficiencies of the drip-fertigated treatments were in most cases 100% higher than those of the corresponding furrow-irrigated treatments. The highest water demand was during the fruit-setting growth stage. It was also concluded that under drip fertigation, 100 -150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip-fertigated treatments ranged between 101-118 kg and 116-188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94-113 and 111-144 kg N/ha for the furrow-irrigated treatments for 2001 and 2002, respectively. (author)

  10. Effect of Different Irrigation and Planting Methods on Water Productivity and Health of Commercial Varieties of Potato

    Directory of Open Access Journals (Sweden)

    H. R Salemi

    2016-07-01

    Full Text Available Introduction Water crisis as a main factor of agronomy limitation exists in all over the arid and semiarid regions such as Isfahan, province which is located in the central part of the Zayandehrud River Basin (ZRB. Due to the increase in the cultivated area of potato in Fareidan Region located in the west of Isfahan province, it will be necessary to use pressurized irrigation systems to achieve the highest irrigation application efficiency and water productivity. Materials and Methods The ZRB (41,500 km2 is a closed basin with no outlet to the sea. The research was conducted in the Fareidan region of Isfahan, which is located in the west part of the ZRB. The Rozveh Agricultural Research Station (32°, 58' N, 50°, 25' E is located at the altitude of 2390 m above the sea level. This study was conducted as a randomized complete blocks design as a split strip plot layout with three replications and during two years (2007-2008. Three irrigation systems (Drip tape, Sprinkler and furrow were considered as main plots, two planting methods (one - row planting and two-row planting as split subplots and two potato cultivars (Marfuna and Agria as split-split subplots. Production (Tuber-yield, the consumption water and cultivars reactions to common diseases were evaluated in different treatments. The soil of the experimental area, according to USDA Soil Taxonomy 1994 is of silty loamy. At the soil depth of 1m, soil salinity (1.1-2.0 dS m-1, water salinity (1.24 dS m-1, soil moisture at field capacity (23 Vol. %, and bulk density (BD = 1.44 g/cm3 at the field site were measured or experimentally obtained in the Isfahan Soil and Water Laboratory. The results were subjected to an ANOVA to analyze the effects of the treatments and their interactions. The data obtained were analyzed using the compound variance analysis and the averages of different treatments were separated using the Duncan multiple range test using the statistical software (SAS Institute, Inc

  11. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  12. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  13. Water Productivity of Irrigated Rice under Transplanting, Wet Seeding and Dry Seeding Methods of Cultivation

    Directory of Open Access Journals (Sweden)

    Murali, NS.

    1997-01-01

    Full Text Available Water productivity (WP of irrigated lowland rice was determined during the 1994 dry (January to May and wet (August to December seasons on a heavy clay acid sulphate soil. Treatments consisted of three cultivation methods : transplanted rice, pregerminated seeds broadcasted on puddled soil (wet seeding and dry seeds broadcasted on unpuddled soil (dry seeding. In wet and dry seeded plots, continuous standing water condition was initiated 17 days after sowing. Total water requirement for rice production was highest in transplanted plots (755 mm in wet season and 1154 mm in dry season and was lowest in dry seeded plots (505 mm in wet season and 1040 mm in dry season. Dry seeding required no water for land preparation but transplanting and wet seeding methods required 18 - 20 % of total water requirement in dry season and 27 - 29 % in wet season. Total percolation was maximum (99 mm in wet season and 215 mm in dry season in dry seeding method and was minimum (62 mm in wet season and 94 mm in dry season in transplanting method. In dry and wet seeding methods, daily percolation gradually decreased with the age of the crop. Total seepage loss did not show any significant difference between the cultivation methods in the two seasons. Grain yield was not affected by the three cultivation methods in both seasons. Water productivity (the ratio between grain yield and total amount of water used in production was 3.5 - 4.1 kg ha-1 mm-1, 3.8 - 4.4 kg ha-1 mm-1 and 4.1 - 5.5 kg ha-1 mm-1 in transplanted, wet seeded and dry seeded rice, respectively. Labour requirement for land preparation and sowing was maximum in transplanted (219 - 226 man-hours ha-1 followed by wet (104 -112 man-hours ha-1 and dry seeded (94 - 99 man-hours ha-1 methods. However, in wet season extra labour (77 man-hours ha-1 was required for weeding after crop establishment in dry and wet seeding methods. Crop maturity was 20 days earlier in wet and dry seeding methods compared to

  14. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    Science.gov (United States)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  15. Using container weights to determine irrigation needs: A simple method

    Science.gov (United States)

    R. Kasten Dumroese; Mark E. Montville; Jeremiah R. Pinto

    2015-01-01

    Proper irrigation can reduce water use, water waste, and incidence of disease. Knowing when to irrigate plants in container nurseries can be determined by weighing containers. This simple method is quantifiable, which is a benefit when more than one worker is responsible for irrigation. Irrigation is necessary when the container weighs some target as a proportion of...

  16. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.

    2007-01-01

    OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... cans were conducted with urban vegetable farmers. Trials were arranged in a completely randomised block design with each plot having all three irrigation methods tested. This was conducted in both dry and wet seasons. Three hundred and ninety-six lettuce, 72 soil, 15 poultry manure and 32 water samples...... were analysed for thermotolerant coliforms and helminth eggs. RESULTS: Lettuce irrigated with drip kits had the lowest levels of contamination, with, on average, 4 log units per 100 g, fewer thermotolerant coliforms than that irrigated with watering cans. However, drip kits often got clogged, required...

  17. Ancestral irrigation method by kanis in Bolivia

    Science.gov (United States)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  18. New soil water sensors for irrigation management

    Science.gov (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  19. Geospatial distribution modeling and determining suitability of groundwater quality for irrigation purpose using geospatial methods and water quality index (WQI) in Northern Ethiopia

    Science.gov (United States)

    Gidey, Amanuel

    2018-06-01

    Determining suitability and vulnerability of groundwater quality for irrigation use is a key alarm and first aid for careful management of groundwater resources to diminish the impacts on irrigation. This study was conducted to determine the overall suitability of groundwater quality for irrigation use and to generate their spatial distribution maps in Elala catchment, Northern Ethiopia. Thirty-nine groundwater samples were collected to analyze and map the water quality variables. Atomic absorption spectrophotometer, ultraviolet spectrophotometer, titration and calculation methods were used for laboratory groundwater quality analysis. Arc GIS, geospatial analysis tools, semivariogram model types and interpolation methods were used to generate geospatial distribution maps. Twelve and eight water quality variables were used to produce weighted overlay and irrigation water quality index models, respectively. Root-mean-square error, mean square error, absolute square error, mean error, root-mean-square standardized error, measured values versus predicted values were used for cross-validation. The overall weighted overlay model result showed that 146 km2 areas are highly suitable, 135 km2 moderately suitable and 60 km2 area unsuitable for irrigation use. The result of irrigation water quality index confirms 10.26% with no restriction, 23.08% with low restriction, 20.51% with moderate restriction, 15.38% with high restriction and 30.76% with the severe restriction for irrigation use. GIS and irrigation water quality index are better methods for irrigation water resources management to achieve a full yield irrigation production to improve food security and to sustain it for a long period, to avoid the possibility of increasing environmental problems for the future generation.

  20. Assessment of Irrigation Water Quality and Suitability for Irrigation in ...

    African Journals Online (AJOL)

    A number of factors like geology, soil, effluents, sewage disposal and other environmental conditions in which the water stays or moves and interacts are among the factors that affect the quality of irrigation water. This study was conducted to determine the quality and suitability of different water sources for irrigation purpose ...

  1. Effect of tillage on water advance and distribution under surge and continuous furrow irrigation methods for cotton in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.

    2006-01-01

    A field experiment was carried out to assess the effect of tillage on water advance and water distribution in the root zone area (0.5 m) under continuous and surge flow irrigation in a cotton field. The experiment was conducted at the Agriculture Experimental Station, Assiut University, Assiut,

  2. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  3. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  4. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  5. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  6. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  7. Comparing water options for irrigation farmers using Modern Portfolio Theory

    NARCIS (Netherlands)

    Gaydon, D.S.; Meinke, H.B.; Rodriguez, D.; McGrath, D.J.

    2012-01-01

    For irrigation farmers, the deregulation of water markets and consequent emergence of water as a tradeable commodity calls for a method of comparing traditional on-farm water options (growing crops) with off-farm market options (selling water seasonally, or selling water licences permanently). The

  8. Estimating irrigation water use in the humid eastern United States

    Science.gov (United States)

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  9. Summary of the Georgia Agricultural Water Conservation and Metering Program and evaluation of methods used to collect and analyze irrigation data in the middle and lower Chattahoochee and Flint River basins, 2004-2010

    Science.gov (United States)

    Torak, Lynn J.; Painter, Jaime A.

    2011-01-01

    between volumes of applied irrigation derived from groundwater and surface water. Analysis of per-acre irrigation depths provided a commonality for comparing irrigation practices across the entire range of field sizes in southern Georgia and indicated underreporting of irrigated acres for some systems. Well-to-pond systems supplied irrigation at depths similar to groundwater and can be combined with groundwater irrigation data for subsequent analyses. Average irrigation depths during 2010 indicated an increase from average irrigation depths during 2008 and 2009, most likely the result of relatively dry conditions during 2010 compared to conditions in 2008 and 2009. Geostatistical models facilitated estimation of irrigation water use for unmetered systems and demonstrated usefulness in redesigning the telemetry network. Geospatial analysis evaluated the ability of the telemetry network to represent annually reported water-meter data and presented an objective, unbiased method for revising the network.

  10. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    For sound land use and water management in irrigated area, knowledge of the chemical composition of soils, water, climate, drainage condition and irrigation methods before action are crucial for sustainability of irrigation projects. The study aimed to evaluate the physicochemical properties of soils and water for intended ...

  11. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  12. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  13. Water quality and irrigation [Chapter 10

    Science.gov (United States)

    Thomas D. Landis; Kim M. Wilkinson

    2009-01-01

    Water is the single most important biological factor affecting plant growth and health. Water is essential for almost every plant process: photosynthesis, nutrient transport, and cell expansion and development. In fact, 80 to 90 percent of a seedling's weight is made up of water. Therefore, irrigation management is the most critical aspect of nursery operations....

  14. Water users associations and irrigation water productivity in northern China

    NARCIS (Netherlands)

    Zhang, L.; Heerink, N.; Dries, L.K.E.; Qu, F.

    2013-01-01

    Traditional irrigation water management systems in China are increasingly replaced by user-based, participatory management through water users associations (WUAs) with the purpose to promote, economically and ecologically beneficial, water savings and increase farm incomes. Existing research shows

  15. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  16. Reuse of drainage water from irrigated areas

    NARCIS (Netherlands)

    Willardson, L.S.; Boels, D.; Smedema, L.K.

    1997-01-01

    Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the

  17. Methods to estimate irrigated reference crop evapotranspiration - a review.

    Science.gov (United States)

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  18. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  19. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  20. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    Impact of upstream industrial effluents on irrigation water quality, soils and ... Knowledge of irrigation water quality is critical to predicting, managing and reducing salt ... Presence of heavy metals in concentration higher than the recommended ...

  1. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  2. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  3. Evolution of Corn Transpiration and Leaf Water Potential During Sprinkler Irrigation

    OpenAIRE

    Martínez-Cob, Antonio; Fernández-Navajas, Julián; Durán, Víctor; Cavero Campo, José

    2009-01-01

    Corn (Zea mays L.) transpiration during daytime solid-set sprinkler irrigation was analyzed on two neighbouring subplots to determine the effect of the transpiration reduction on water application efficiency. During each irrigation event, one subplot was irrigated (moist treatment) while the other was not (dry treatment). Transpiration rates were determined at each subplot by the heat balance method (Dynamax Flow4 System) before, during and after the irrigations. During irri...

  4. Analysis of Irrigation Water Quality at Kadawa Irrigation Project for Improved Productivity

    Directory of Open Access Journals (Sweden)

    AR Sanda

    2014-09-01

    Full Text Available In the face of water scarcity and the several negative consequences, such as water wastage, flooding, water logging, soil losses and production losses, conserving the finite amount of fresh water is a must. The quality of irrigation water must therefore be ascertained. The chemical quality of three sources of irrigation water from canal and drainage water, namely drainage water, fresh irrigation water from canal, and drainage/irrigation water mixture, were analyzed from Kadawa irrigation Project for year 2013 and 2014 cropping seasons, with the view to evaluating the potential risks associated with their use in irrigation and hence their suitability or otherwise for irrigation purposes. The analysis revealed that the use of drainage water alone for irrigation may result in problems associated with salinity, while a blend of drainage/irrigation water in the ratio of 1:1 is a viable means of water conservation and a good means of crop production. DOI: http://dx.doi.org/10.3126/ije.v3i3.11082 International Journal of Environment Vol.3(3 2014: 235-240

  5. Water Reuse: Using Reclaimed Water For Irrigation

    OpenAIRE

    Haering, Kathryn; Evanylo, Gregory K.; Benham, Brian Leslie, 1960-; Goatley, Michael

    2009-01-01

    Describes water reuse and reclaimed water, explains how reclaimed water is produced, options for water reuse, water reuse regulations, and agronomic concerns with water reuse, and provides several case studies of water reuse.

  6. Evaluation of potential water conservation using site-specific irrigation

    Science.gov (United States)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  7. Limited irrigation research and infrared thermometry for detecting water stress

    Science.gov (United States)

    The USDA-ARS Limited Irrigation Research Farm, located outside of Greeley Colorado, is an experiment evaluating management perspectives of limited irrigation water. An overview of the farm systems is shown, including drip irrigation systems, water budgeting, and experimental design, as well as preli...

  8. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern

  9. Water Use and Crop Coefficients in Sprinkler Irrigated Rice

    Directory of Open Access Journals (Sweden)

    Antonino Spanu

    Full Text Available Field experiments were carried out during the years 2002, 2004, 2005 and 2006 to analyze water-soil-atmosphere interactions in sprinkler irrigated rice. The research was carried out in Sardinia (39º 59’ N; 8º 40’ E, at altitude 15 m. The cultivars used in the experiments, respectively in 2002 and in 2004-2005-2006, were Irat 212 and Eurosis. In each year cultivars were subjected to the same crop management. Irrigation was applied since the emergence with the sprinkler method, taking into account the loss of water from ‘Class A’ pan evaporation. Soil water content was monitored at 0.10 m intervals until 1.00-m depth using a ‘Diviner 2000’ (Sentek. In 2002 seven irrigation scheduling treatments were compared. In 2004, 2005, 2006 irrigation treatments provided for optimal soil water conditions during the growing season. In 2002 the results highlighted: 1 0-0.20 m depth was the most important layer for crop water uptake and the best correlated layer with rice rough yield; 2 the positive relationship between yield and water supply was significant until 6500 m3 ha-1 of water applied. Further seasonal irrigation volumes did not increase significantly yield. In 2004, 2005 and 2006 the analysis of the soil water balance at different crop phenological stages allowed to estimate crop coefficients (Kc using the Penman-Monteith equation and the ‘Class A’ pan evaporation (Kcev. Kc varied over the three-year period on average from 0.90 to 1.07 and 0.97, respectively for the emergence-end of tillering, end of tillering-heading and heading-maturing periods, while crop coefficients as a ratio between maximum crop evapotranspiration (ETc and Epan, Kcev ranged from 0.78 to 0.92 and 0.81 for the same time periods.

  10. Water economy in the irrigation of family farmland in arid zones

    International Nuclear Information System (INIS)

    Mhiri, A.; Elloumi, M.J.; Laouini, M.

    1983-01-01

    A simple irrigation technique based on the use of polyethylene bags was developed and tested so as to achieve maximum water economy in family-scale farming in arid zones. It simulates localized irrigation and eliminates water losses due to evaporation and drainage. The method was tried out in the cultivation of tomatoes in glasshouses. In comparison with the control experiment in the field with furrow irrigation, the saving of water was 60%, with a 30% drop in production. There was thus a net improvement in efficiency in the utilization of the irrigation water. (author)

  11. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  12. Irrigation method does not affect wild bee pollinators of hybrid sunflower

    Directory of Open Access Journals (Sweden)

    Hillary Sardiñas

    2016-09-01

    Full Text Available Irrigation method has the potential to directly or indirectly influence populations of wild bee crop pollinators nesting and foraging in irrigated crop fields. The majority of wild bee species nest in the ground, and their nests may be susceptible to flooding. In addition, their pollination of crops can be influenced by nectar quality and quantity, which are related to water availability. To determine whether different irrigation methods affect crop pollinators, we compared the number of ground-nesting bees nesting and foraging in drip- and furrow-irrigated hybrid sunflower fields in the Sacramento Valley. We found that irrigation method did not impact wild bee nesting rates or foraging bee abundance or bee species richness. These findings suggest that changing from furrow irrigation to drip irrigation to conserve water likely will not alter hybrid sunflower crop pollination.

  13. Automated Irrigation System using Weather Prediction for Efficient Usage of Water Resources

    Science.gov (United States)

    Susmitha, A.; Alakananda, T.; Apoorva, M. L.; Ramesh, T. K.

    2017-08-01

    In agriculture the major problem which farmers face is the water scarcity, so to improve the usage of water one of the irrigation system using drip irrigation which is implemented is “Automated irrigation system with partition facility for effective irrigation of small scale farms” (AISPF). But this method has some drawbacks which can be improved and here we are with a method called “Automated irrigation system using weather prediction for efficient usage of water resources’ (AISWP), it solves the shortcomings of AISPF process. AISWP method helps us to use the available water resources more efficiently by sensing the moisture present in the soil and apart from that it is actually predicting the weather by sensing two parameters temperature and humidity thereby processing the measured values through an algorithm and releasing the water accordingly which is an added feature of AISWP so that water can be efficiently used.

  14. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control

    OpenAIRE

    Kibret, Solomon; Wilson, G Glenn; Tekie, Habte; Petros, Beyene

    2014-01-01

    Background Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. Methods Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia...

  15. A comparative study on drip and furrow irrigation methods

    International Nuclear Information System (INIS)

    Babar, M.M.; Shaikh, A.

    2008-01-01

    This study was conducted at Field Laboratory of the IIDE-MUET (Institute of lrrigation and Drainage Engineering, Mehran University of Engineering and Technology), Jamshoro in April 2007 and completed in October 2007. The soil was out-wash of the surrounding hilly tracts. Thus, the texture of the soil was sandy loam mixed with various sizes of gravels. Consequently, its water holding capacity was low and drainability high. The field capacity, wilting point and available moisture of the soil were found to be 10.35, 5.56 and 4.79%, respectively. The soil was moderate (ECe 8-16 dS/m) to strongly saline (ECe> 16 dS/m) and slightly sodic in nature in drip and furrow irrigated plots under study before start of vegetable crops. Three summer vegetables, i.e. okra, long gourd and ridge gourd were cultivated under drip and furrow systems of irrigation. Tap water was used for irrigation, which was class-I quality water i.e. nonsaline and non-sodic. Yields of the three respective vegetables were 25, 16.5 and 7.9% higher than the yields obtained from furrow method. Likewise, WUE (Water Use Efficiency) was higher in drip at 1.27, 3.19 and 2.28 Kg/m/sup 3/ against 0.59, 1.46 and 1.16 Kg/m/sup 3/ in furrow for the respective vegetables. The water saving in drip over furrow method for okra, long gourd and ridge gourd was estimated at 42.2, 46.9 and 45.0%, respectively. The soil salinity and sodicity decreased and did not develop within wetted zone under drip irrigation method and at furrow beds. However the same increased at the wetted periphery and at tops of the ridges under drip and furrow methods of irrigation respectively. (author)

  16. Demand Estimation for Irrigation Water in the Moroccan Drâa Valley using Contingent Valuation

    OpenAIRE

    Storm, Hugo; Heckelei, Thomas; Heidecke, Claudia

    2010-01-01

    Irrigation water management is crucial for agricultural production and livelihood security in Morocco as in many other parts of the world. For the implementation of an effective water management knowledge about farmers’ irrigation water demand is crucial to assess demand reactions of a water pricing policy, to establish a cost-benefit analysis of water supply investments or to determine the optimal water allocation between different users. Previously used econometric methods providing this in...

  17. Soil and water management in spate irrigation systems in Eritrea

    NARCIS (Netherlands)

    Hadera, M.T.

    2001-01-01

    Spate irrigation has been practised over 100 years in the Red Sea coastal zone of Eritrea such as the Sheeb area. Main problem of the spate irrigation system is water shortage caused by irregular rainfall in the highlands of Eritrea and breaching of the irrigation structures by destructive

  18. The Temporal Variation of Leaf Water Potential in Pistachio under Irrigated and Non-Irrigated Conditions

    Directory of Open Access Journals (Sweden)

    Yusuf AYDIN

    2014-09-01

    Full Text Available The present study was carried out in the experimental field of Pistachio Research Institute on pistachio trees which has uzun variety that was 30 years old. The aim of this research was to determine the Leaf Water Potential (LWP of Pistacia vera L. under irrigated and non-irrigated conditions. In the study, the leaf water potential of pistachio was investigated under fully irrigated and non irrigated conditions. The leaf water potential values were measured one day before and after irrigation by using pressure chamber technique at the beginning, mid and end of irrigation season. According to the results obtained from measurements, the LWP value at the beginning of the irrigation season was -3.7 MPa at noon time due to relatively high temperature for both treatments. At the time of pre-dawn and sunset, this value increased and reached to - 1.6 MPa due to relatively low temperature. In general, the LWP values during the mid of irrigation season, in the irrigated treatments, reached to almost -2.5 MPa in the non-irrigated treatment and the value was measured as -3.68 MPa.

  19. An overview of soil water sensors for salinity & irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  20. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  1. [Ecological risks of reclaimed water irrigation: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Zhang, Wei-Ling; Pan, Neng; Jiao, Wen-Tao

    2012-12-01

    Wastewater reclamation and reuse have become an important approach to alleviate the water crisis in China because of its social, economic and ecological benefits. The irrigation on urban green space and farmland is the primary utilization of reclaimed water, which has been practiced world widely. To understand the risk of reclaimed water irrigation, we summarized and reviewed the publications associated with typical pollutants in reclaimed water including salts, nitrogen, heavy metals, emerging pollutants and pathogens, systematically analyzed the ecological risk posed by reclaimed water irrigation regarding plant growth, groundwater quality and public health. Studies showed that salt and salt ions were the major risk sources of reclaimed water irrigation, spreading disease was another potential risk of using reclaimed water, and emerging pollutants was the hot topic in researches of ecological risk. Based on overseas experiences, risk control measures on reclaimed water irrigation in urban green space and farmland were proposed. Five recommendations were given to promote the safe use of reclaimed water irrigation including (1) strengthen long-term in situ monitoring, (2) promote the modeling studies, (3) build up the connections of reclaimed water quality, irrigation management and ecological risk, (4) evaluate the soil bearing capacity of reclaimed water irrigation, (5) and establish risk management system of reclaimed water reuse.

  2. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  3. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  4. Evaluation of water productivity under climate change in irrigated areas of the arid Northwest China using an assemble statistical downscaling method and an agro-hydrological model

    Science.gov (United States)

    Liu, Liu; Guo, Zezhong; Huang, Guanhua

    2018-06-01

    The Heihe River Basin (HRB) is the second largest inland river basin, located in the arid region of Northwest China with a serious water shortage. Evaluation of water productivity will provide scientific implications for agricultural water-saving in irrigated areas of the arid region under climate change. Based on observed meteorological data, 23 GCMs outputs and the ERA-40 reanalysis data, an assemble statistical downscaling model was developed to generate climate change scenarios under RCP2.6, RCP4.5, RCP8.5 respectively, which were then used to drive the SWAP-EPIC model to simulate crop growth in the irrigated areas of the middle HRB for the future period from 2018 to 2047. Crop yield showed an increasing trend, while crop water consumption decreased gradually in Gaotai and Ganzhou irrigated areas. The water productivity in future 30 years showed an increasing trend in both Gaotai and Ganzhou areas, with the most significant increase under RCP4.5 scenario, which were both larger than 2 kg m-3. Compared with that of the period from 2012 to 2015, the water productivity during 2018-2047 under three RCP scenarios increased by 9.2, 14.3 and 11.8 % in the Gaotai area, and 15.4, 21.6, 19.9 % in the Ganzhou area, respectively.

  5. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  6. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies

    Directory of Open Access Journals (Sweden)

    Tewodros Assefa

    2018-04-01

    Full Text Available The study was conducted in Lake Tana Basin of Ethiopia to assess potentially irrigable areas for home gardens, water availability, and feasibility of water-lifting technologies. A GIS-based Multi-Criteria Evaluation (MCE technique was applied to access the potential of surface and groundwater sources for irrigation. The factors affecting irrigation practice were identified and feasibility of water-lifting technologies was evaluated. Pairwise method and expert’s opinion were used to assign weights for each factor. The result showed that about 345,000 ha and 135,000 ha of land were found suitable for irrigation from the surface and groundwater sources, respectively. The rivers could address about 1–1.2% of the irrigable land during dry season without water storage structure whereas groundwater could address about 2.2–2.4% of the irrigable land, both using conventional irrigation techniques. If the seven major dams within the basin were considered, surface water potential would be increased and satisfy about 21% of the irrigable land. If rainwater harvesting techniques were used, about 76% of the basin would be suitable for irrigation. The potential of surface and groundwater was evaluated with respect to water requirements of dominant crops in the region. On the other hand, rope pump and deep well piston hand pump were found with relatively the most (26% and the least (9% applicable low-cost water-lifting technologies in the basin.

  7. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  8. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    Directory of Open Access Journals (Sweden)

    mohammad saeed tadaion

    2017-12-01

    Full Text Available Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L. cv. Zarde-anar were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carried out in a constant plots and randomized complete block design (RCBD with four replicationsin five years.Treatmentswere 1- full flood irrigation (100 percent crop water requirement (T1 2- flood irrigation with 100 percent crop water requirement as alternate partial root-zone irrigation(every irrigation conducted on one side of tree (T2 3- flood irrigation with 50 percent crop water requirement as regular deficit irrigation (T3 4- full two-side drip irrigation(with regard to crop water requirement (eight drippers with twolit/hour flow by two different individual networks (T4 5- alternate partial root-zone drip irrigation with 100 percent crop water requirement (T5 6- regular deficit drip irrigation with 50 percent crop water requirement (T6 in every irrigation period. Each experimental treatment includes four trees and 96 similar twelve years old trees overall. Cultivation practice was conducted similarly on all of the trees. Results and Discussion: Results showed that the highest yield and water use efficiency based on statistical analysis belong to both PRD treatments i.e. alternate partial root-zone drip irrigation with 100 percent crop water requirement and alternate partial root-zone flood irrigation with 100 percent crop water requirement, respectively, that both of them decreased water requirement for irrigation up to 35 and 50 percent in comparison tocontrol. Application of partial root drying irrigation on both traditional flood irrigation and drip

  9. Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D

    Science.gov (United States)

    Drip irrigation under mulch is a major water-saving irrigation method that has been widely practiced for cotton production. The performance of such irrigation systems should be evaluated for proper design, management, operation, and efficient water use. The modeling approach has been used as a commo...

  10. Development of an irrigation scheduling software based on model predicted crop water stress

    Science.gov (United States)

    Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...

  11. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  12. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  13. Water-Yield Relations of Drip Irrigated Watermelon in Temperate Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2016-08-01

    Full Text Available The objective of the study, conducted in Vojvodina a northern part of the Serbia Republic, was to analyse the effect of drip irrigation on yield, evapotranspiration and water productivity of watermelon (Cirullus lanatus Thunb. grown with plasticulture. Irrigation was scheduled on the basis of water balance method. Daily evapotranspiration was computed using the reference evapotranspiration and crop coefficient. The yield of watermelon in irrigation conditions (37,28 t/ha was significantly higher compared to non irrigated (9,98 t/ha. Water used on evapotranspiration in irrigation conditions was 398 mm and 117 mm on non irrigated variant. The crop yield response factor of 1,04 for the whole growing season reveals that relative yield decrease was nearly equal to the rate of evapotranspiration deficit. The values of irrigation water use efficiency and evapotranspiration water use efficiency were 9,93 kg/m3 and 10,29 kg/m3 respectively. The determined results could be used as a good platform for watermelon growers in the region, in terms of improvement of the optimum utilization of irrigation water.

  14. Documentation of methods and inventory of irrigation data collected for the 2000 and 2005 U.S. Geological Survey Estimated use of water in the United States, comparison of USGS-compiled irrigation data to other sources, and recommendations for future compilations

    Science.gov (United States)

    Dickens, Jade M.; Forbes, Brandon T.; Cobean, Dylan S.; Tadayon, Saeid

    2011-01-01

    Every five years since 1950, the U.S. Geological Survey (USGS) National Water Use Information Program (NWUIP) has compiled water-use information in the United States and published a circular report titled "Estimated use of water in the United States," which includes estimates of water withdrawals by State, sources of water withdrawals (groundwater or surface water), and water-use category (irrigation, public supply, industrial, thermoelectric, and so forth). This report discusses the impact of important considerations when estimating irrigated acreage and irrigation withdrawals, including estimates of conveyance loss, irrigation-system efficiencies, pasture, horticulture, golf courses, and double cropping.

  15. Irrigation water policy analysis using a business simulation game

    Science.gov (United States)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  16. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    Science.gov (United States)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  17. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    Science.gov (United States)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    systems, one microirrigation system and three center pivots schemes. Field evaluations used the method advocated by Keller and Bliesner and conducted during farmer scheduled irrigation. Soil samples were taken before irrigations to investigate adequacy of water applied. Since the irrigation water management and the uniformity of water distribution are the two major factors used to define the quality of irrigation, the following criteria for uniformity was used: i) Localized irrigations (distribution uniformity - UD) - excellent (90% management criteria, in agricultural basins, once irrigation water becomes limiting and reduces basin water productivity.

  18. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  19. Water quality, pesticide occurrence, and effects of irrigation with reclaimed water at golf courses in Florida

    Science.gov (United States)

    Swancar, Amy

    1996-01-01

    Reuse of treated wastewater for golf course irrigation is an increasingly popular water management option in Florida, where growth has put stress on potable water supplies. Surface water, ground water, and irrigation water were sampled at three pairs of golf courses quarterly for one year to determine if pesticides were present, and the effect of irrigation with treated effluent on ground-water quality, with an emphasis on interactions of effluent with pesticides. In addition to the six paired golf courses, which were in central Florida, ground water was sampled for pesticides and other constituents at three more golf courses in other parts of the State. This study was the first to analyze water samples from Florida golf courses for a broad range of pesticides. Statistical methods based on the percentage of data above detection limits were used to determine the effects of irrigation with reclaimed water on ground-water quality. Shallow ground water at golf courses irrigated with treated effluent has higher concentrations of chloride, lower concentrations of bicarbonate, and lower pH than ground water at golf courses irrigated with water from carbonate aquifers. There were no statistically significant differences in nutrient concentrations in ground water between paired golf courses grouped by irrigation water type at a 95 percent confidence level. The number of wells where pesticides occurred was significantly higher at the paired golf courses using ground water for irrigation than at ones using reclaimed water. However, the limited occurrences of individual pesticides in ground water make it difficult to correlate differences in irrigation- water quality with pesticide migration to the water table. At some of the golf courses, increased pesticide occurrences may be associated with higher irrigation rates, the presence of well-drained soils, and shallow depths to the surficial aquifer. Pesticides used by golf courses for turf grass maintenance were detected in

  20. A Reevaluation of Price Elasticities for Irrigation Water

    Science.gov (United States)

    Howitt, Richard E.; Watson, William D.; Adams, Richard M.

    1980-08-01

    The effectiveness of pricing systems in the allocation of irrigation water is linked with the price elasticity of demand of farmers for water. Using microeconomic theory, it is shown that omission of the elasticity of demand for the crop produced leads to an inelastic bias in the demand for irrigated water. Linear programing approaches omit the product elasticity of demand and are consequently biased, whereas quadratic programing approaches to estimating derived demands for irrigation water include product demand functions. The difference between the resulting estimates are empirically demonstrated for regional derived demand functions estimated from a model of California's agricultural industry.

  1. Irrigation water quality as indicator of sustainable rural development

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2004-01-01

    Full Text Available The sustainable rural development more and more depends on the efficient usage of water resources. Most often, at least in one part of the year, the rain is not sufficient for plant growth and rain plant production significantly depends on the yearly precipitation variation. The increase and stability of the agricultural production is possible in the irrigation conditions. The most part (around 70% of the global water resources is used for food production. Irrigation water quality indicator is used to show if the available water resources have the required quality for application in agriculture. Irrigation is characterised by the complex water-plant-soil relationship, and in that eco-system the man as the end user of the irrigated fields occupies a very important place. That explains the difficulties in producing one universal classification of irrigation water quality. The paper analyses numerous water quality classifications from the aspect of the applicability on the quantifying of this indicator. The adopted classification should possess understandable, qualified and internationally comparable indicator. Thus, local classifications (Neigebauer, Miljkovic cannot be used for this indicator. United Nation Food and Agricultural Organization (FAO and US Salinity Laboratory (USSL classifications are used for the evaluation of the irrigation water quality throughout the world. FAO classification gives the complex picture of the usability of the irrigation water from the point of its influence on the soil and the plants. However, the scope of the analyses is not often suited to the needs of that classification, which makes it difficult to apply. The conclusion is that the USSL (US Salinity Laboratory classification is best suited to this range of chemical water analyses. The evaluation of the irrigation water quality indicator in the Juzna Morava river basin, upstream from the Toplica river estuary is given in this paper. Based on the obtained

  2. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  3. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  4. Alfalfa response to irrigation from limited water supplies

    Science.gov (United States)

    A five-year field study (2007-2011) of irrigated alfalfa production with a limited water supply was conducted in southwest Kansas with two years of above-average precipitation, one year of average precipitation, and two years of below-average precipitation. The irrigation treatments were designed to...

  5. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    Full Text Available Introduction: Olive (Olea europaea L. trees are mainly cultivated in the Mediterranean area and are grown for their oil or processed as table olives. Despite the fact that olive is known to be resistant to drought conditions due to its anatomical, physiological, and biochemical adaptations to drought stress, reports indicate that the olive can be adversely affected by drought stress, which has a negative effect on the growth of olive trees. In the absence of adequate supplies of water, the demand for water can be met by using improved irrigation methods or by using reclaimed water (RW. Reports have shown that recycled water has been used successfully for irrigating olive orchards with no negative effects on plant growth.Attention has been paid to reclaimed water as one of the most significant available water resources used in agriculture around large cities in arid and semi-arid regions. On the other hand, irrigation efficiency is low and does not meet the demands of farmers.In order to investigate the possibility of irrigating olive orchards with subsurface leakage irrigation (SLI in application of reclaimed water, an experiment was carried out with the aim of investigating the effect of reclaimed water on photosynthetic indices and morphological properties of olive fruit. Materials and Methods: Research was conducted using a split-plot experimental design with two factors (irrigation system and water quality on the campus of Isfahan University of Technology in Isfahan, Iran, on a sandy-clay soil with a pH of 7.5 and electrical conductivity (EC of 2.48 dSm-1.PVC leaky tubes were used for the SLI system. The SLI system was installed 40 cm from the crown of each tree at a depth of 30 - 40 cm.At the end of the experiment fruit yield, weight per fruit, volume, length and firmness were calculated. A portable gas exchange system (Li-6400., LICOR, Lincoln, NE, USA was used to measure the net rate photosynthesis (A, the internal partial pressure CO2

  6. Evaluation of dripper clogging using magnetic water in drip irrigation

    Science.gov (United States)

    Khoshravesh, Mojtaba; Mirzaei, Sayyed Mohammad Javad; Shirazi, Pooya; Valashedi, Reza Norooz

    2018-06-01

    This study was performed to investigate the uniformity of distribution of water and discharge variations in drip irrigation using magnetic water. Magnetic water was achieved by transition of water using a robust permanent magnet connected to a feed pipeline. Two main factors including magnetic and non-magnetic water and three sub-factor of salt concentration including well water, addition of 150 and 300 mg L-1 calcium carbonate to irrigation water with three replications were applied. The result of magnetic water on average dripper discharge was significant at ( P ≤ 0.05). At the final irrigation, the average dripper discharge and distribution uniformity were higher for the magnetic water compared to the non-magnetic water. The magnetic water showed a significant effect ( P ≤ 0.01) on distribution uniformity of drippers. At the first irrigation, the water distribution uniformity was almost the same for both the magnetic water and the non-magnetic water. The use of magnetic water for drip irrigation is recommended to achieve higher uniformity.

  7. Optimization of Water Allocation between Different Crops in Water Stress Conditions in Qazvin Irrigation Network

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad khani

    2017-06-01

    Full Text Available Introduction: Evaluations show the necessity of using optimization models in order to determine optimal allocation of water in different water conditions. Its use can be proposed according to developed model abilities in this study in order to optimize water productivity and provide sustainable management and development of water resources over irrigation and drainage networks. Basic needs of the earth growing population and limitation of water and soil resources remindnecessity of optimal use of resources. World’s more than 280 million hectare lands are covered by irrigation networks (Khalkhali et al., 2006. The efficiency of most projects is between 30-50 percent and studies show that performance of most irrigation and drainage networks is not desirable and they have not achieved their aims. Hirich et al. (2014 Used deficit irrigation to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season 2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of a crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of the full irrigation during the vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity. Moghaddasi et al. (2010 worked examines and compares this approach with that based on the optimization method to manage agricultural water demand during drought to minimize damage. The results show that the optimization method resulted in 42% more income for the agricultural sector using the

  8. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    Full Text Available A three-year study was conducted to evaluate the effects of different irrigation regimes with saline water on soil salinity, yield and water productivity of carrot as a fall-winter crop under actual commercial-farming conditions in the arid region of Tunisia. Carrot was grown on a sandy soil and surface-irrigated with a water having an ECi of 3.6 dS/m. For the three years, a complete randomized block design with four replicates was used to evaluate five irrigation regimes. Four irrigation methods were based on the use of soil water balance (SWB to estimate irrigation amounts and timing while the fifth consisted of using traditional farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI-100, 80% (DI-80 and 60% (DI-60. FI-100 was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-DI60 was also used. Farmer method (Farmer consisted in giving fixed amounts of water (25 mm every 7 days from planting till harvest. Results on carrot production and soil salinization are globally consistent between the three-year experiments and shows significant difference between irrigation regimes. Higher soil salinity in the root zone is observed at harvest under DI-60 (3.1, 3.4, 3.9 dS/m, respectively, for the three years and farmer irrigation (3.3, 3.6, 3.9 dS/m treatments compared to FI-100 treatment (2.3, 2.6 and 3.1 dS/m. Relatively low ECe values were also observed under FI-DI60 and DI-80 treatments with respectively (2.7, 3, 3.5 dS/m and (2.5, 2.9, 3.3 dS/m. ECe values under the different irrigation treatments were generally lower than or equal to the EC of irrigation water used. Rainfall received during fall and/or winter periods (57, 26 and 29 mm, respectively, during the three years contributed probably to leaching soluble

  9. Drip and Surface Irrigation Water Use Efficiency of Tomato Crop Using Nuclear Techniques

    International Nuclear Information System (INIS)

    Mellouli, H.J.; Askri, H.; Mougou, R.

    2003-01-01

    Nations in the arid and semi-arid regions, especially the Arab countries, will have to take up an important challenge at the beginning of the 21 st century: increasing food production in order to realise food security for growing population, wile optimising the use of limited water resources. Using and adapting management techniques like the drip irrigation system could obtain the later. This would allow reduction in water losses by bare soil evaporation and deep percolation. Consequently improved water use efficiency could be realised. In this way, this work was conducted as a contribution on the Tunisian national programs on the optimisation of the water use. By mean a field study at Cherfech Experimental Station (30 km from Tunis), the effect of the irrigation system on the water use efficiency (WUE)-by a season tomato crop-was monitored by comparing three treatments receiving equivalent quantities of fertiliser: Fertigation, Drip irrigation and Furrow irrigation. Irrigation was scheduled by mean calculation of the water requirement based on the agro meteorological data, the plant physiological stage and the soil water characteristics (Clay Loam). The plant water consumption (ETR) was determined by using soil water balance method, where rainfall and amount of irrigation water readily measured

  10. Using soil water sensors to improve irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  11. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Science.gov (United States)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  12. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  13. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    human consumption as they pose serious health risks due to contamination with the metals. For environmental ... mining activities, industrial and domestic effluents, urban ... drinking and bathing water, irrigation, food, fuel and energy.

  14. Effect of Irrigation Methods, Nitrogen and Phosphorus Fertilizer Rates on Sugar Beet Yield and Quality

    International Nuclear Information System (INIS)

    Janat, M.; Abudlkareem, J.

    2007-01-01

    The experiment was conducted at a research station near Adlib. Two irrigation methods, sprinkler irrigation and drip fertigation, two phosphorus rates and four nitrogen rates 0, 70, 140 and 210 kg N/ha were tested. All N fertilizers were injected for drip irrigation or broadcasted for the sprinkler-irrigated treatments in six equally split applications. Neutron probe Results revealed that the introduction of drip fertigation was not proved to be a water saving relative to sprinkler irrigation. Dry matter production was slightly increased for the drip-fertigated treatments relative to sprinkler irrigated treatments. Nitrogen use efficiency was not improved under drip fertigation relative to that of sprinkler irrigation. Application of phosphorus fertilizer improved sugar beet yield as well as N uptake. No significant differences in sugar beet yield were observed due to the application of N fertilizer under drip fertigation. On the other hand, there was a trend toward increasing sugar beet yield grown under sprinkler irrigation. Drip fertigation had no negative effects on sugar content and other related properties, furthermore some of those properties were enhanced due to the employment of drip fertigation. Field water-use efficiency followed a similar trend and was increased under sprinkler irrigation relative to drip-fertigation for sugar beet yield parameter.

  15. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    OpenAIRE

    mohammad saeed tadaion; Gholamreza Moafpourian

    2017-01-01

    Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L.) cv. Zarde-anar) were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carri...

  16. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  17. A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions

    Directory of Open Access Journals (Sweden)

    Lucia Bortolini

    2018-02-01

    Full Text Available In the Mediterranean arid and semi-arid regions, large amounts of low quality waters could be used for crop irrigation, but the adoption of articulated classifications with too rigid quality limits can often reduce the recoverable quantities of water and make the monitoring of water quality too much expensive. Therefore, an evaluation of irrigation water quality based on only a few crucial parameters, which consider the crop species to be irrigated and the type of irrigation system and management adopted, can be an easy and flexible method for maximizing the reuse of wastewater and low-quality water for agricultural purposes. In this view, an irrigation water quality tool (IWQT was developed to support farmers of arid and semi-arid regions on evaluating the use of low quality water for crop irrigation. The most significant and cheapest parameters of irrigation water quality were identified and clustered in three quality classes according to their effects on crop yield and soil fertility (agronomic quality indicators, human health (hygiene and health quality indicators, and irrigation systems (management quality indicators. According to IWQT parameters, a tool reporting a series of recommendations, including water treatment types, was implemented to guide farmers on the use of low quality irrigation water.

  18. Effect of Water Quality and Drip Irrigation Management on Yield and Water Use Efficiency in Late Summer Melon

    Directory of Open Access Journals (Sweden)

    javad baghani

    2016-02-01

    Full Text Available Introduction: Production and growth of plants in many parts of the world due to degradation and water scarcity have been limited and particularly, in recent decades, agriculture is faced with stress. In the most parts of Iran, especially in the Khorasan Razavi province, drought is a fact and water is very important. Due to melon cultivation in this province, and the conditions of quality and quantity of water resources and water used to produce the melon product in this province, any research done on the use of saline and brackish waters is statistically significant. Materials and Methods: To study the effects of different water salinity and water management on some of the agronomic traits of late summer melon with drip irrigation, an experiment with 7 treatments and 3 repetitions was conducted in a randomized complete block design, in Torogh station, Mashhad. The irrigation treatments were: 1- fresh water from planting to harvesting, 2- water (3 dS/m from planting to harvesting, 3- water (6 dS/m from planting to harvesting, 4- water (6 dS/m from 20 days after plantation to harvesting, 5-water (6 dS/m from 40 days after plantation to harvesting, 6-water (3 dS/m from 20 days after plantation to harvesting, 7-water (6 dS/m from 40 days after plantation to harvesting. Row spacing and plant spacing were 3 m and 60 cm, respectively and the pipe type had 6 liters per hour per unit of meters in the drip irrigation system. Finally, the amount of salinity water, number of male and female flowers, number of seed germination, dry leaves' weight, leaf area, chlorophyll (with SPAD etc. were measured and all data were analyzed by using MSTAT-C software and all averages of data, were compared by using the Duncan test. Results and Discussion The results of analysis of data showed the following: Number of seeds germination: Salinity in water irrigation had no significant effects on the number of seed germination. However, there was the most number of seed

  19. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    Science.gov (United States)

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a dry climate. However, the reclaimed water can also change biosolids properties, which will influence the effectiveness of willows to extract different metals. Copyright © 2015 Elsevier Ltd. All rights

  20. Quantification of hydrological fluxes in irrigated lands using isotopes for improved water use efficiency

    International Nuclear Information System (INIS)

    Iqbal, N.; Rafiq, M.; Iqbal, T.; Fazal, M.

    2012-01-01

    For the study of water percolation using stable and radioactive isotopes, two experimental plots each measuring 5m X 5m were prepared at NIAB Agriculture Farm, Faisalabad. One plot was given normal irrigation and the other was irrigated with almost double quantity of water than the first one. Study was carried out on wheat and maize crops during 2007-2010. Infiltration rates were calculated from the solute transport by advection. The infiltration rates were also calculated by the water balance approach using moisture content data obtained by neutron moisture probe and flow simulation approach using software 'HYDRUS 1D'. The moisture in the field with normal irrigation percolated up to 90 cm depth. It percolated up to 160 cm in the field with excess irrigation. Infiltration rates determined by different techniques are given. The infiltration rates varied during whole of the experiment period. The rates were highest right after irrigation and then decreased with increase in time. The maximum and minimum infiltration rates determined by different techniques are given, which shows that average infiltration rates calculated by the four methods in case of excess irrigation range between 0.4 and 0.51 cm/day and are in good agreement. Infiltration rates in case of normal irrigation were determined only by tritium and water balance approach and range between 0.21 and 0.34 cm/day. (orig./A.B.)

  1. Effects of different irrigation methods on pepper yield and soilborne diseases incidence

    Directory of Open Access Journals (Sweden)

    Seral YÜCEL

    2013-12-01

    Full Text Available In this study, the effect of different irrigation strategies and irrigation methods on yields and the incidence of wilt (Fusarium oxysporum and root rot (Fusarium solani and Macrophomina phaseolina diseases causing significant yield losses on field grown processing red pepper is determined. Experiments were carried out at Topçu Station of the Soil and Water Resources Research Institute of Tarsus in 2010 and 2011. Karaisalı processing pepper (Capsicum annuum L. was used in the experiments. Three furrows and five drip irrigation treatments were used in the study. The disease incidence rates were found 8.0-18.2% in furrow irrigation plots and 4.5-10.0% in drip irrigation plots in 2010, while it was 3.4-9.7% in furrow irrigation plots and 2.2-4.5% in drip irrigation plots in 2011. Pepper yields ranged from 3 416 to 4 417 kg da-1 and 3 376 to 4 779 kg da-1 in drip irrigated plots in 2010 and 2011, respectively. However, yields varied between 3 172-3 559 kg da-1 and 2 932-4 150 kg da-1 in furrow irrigated plots in 2010 and 2011 growing seasons.

  2. Assesing the suitability of water for irrigation theoretical and practical approach

    International Nuclear Information System (INIS)

    Hannan, A.; Javad, M.A.; Arif, M.; Rashid, A.

    2006-01-01

    Forced by the surface water shortage and prevalent drought like conditions in the country the farmers have started exploiting groundwater resource. On the other hand, seventy percent of the groundwater being marginal to unfit is a threat to the sustainability of irrigated agriculture. The judicious groundwater exploitation and application has also become imperative in context of ever increasing demographic pressure on soil, crop and water resources. Different classes of irrigation waters established by various research scientists / organizations within the country or abroad are not ultimate under all conditions but these serve as general guidelines. In some cases brackish water requires only minor modification under existing irrigation and ogronomic practices, while in most of the cases it requires major changes regarding type of crops grown, method of water application and the use of soil and water amendments. Therefore, before recommending water for irrigation. Soil characteristics, water management practices, drainage condition of the filed and climatic events must be taken into account as waters generally classified unsuitable for irrigation can be used successfully to grow crops without long term hazardous consequences to crops or soils. This can be attempted simply with the use of improved farming and management practices. Use of brackish water for irrigation may increase the resource base for irrigated agriculture in Pakistan. This article reviews various water classification schemes, salinity-crop yield interrelation with detailed discussion on brackish water application and associated problems. The article also covers a number of management options so as to mitigate the problem and sustain food security in the country. (author)

  3. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    Science.gov (United States)

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  4. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  5. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Science.gov (United States)

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  6. Approaches and challenges of soil water monitoring in an irrigated vineyard

    Science.gov (United States)

    Nolz, Reinhard; Loiskandl, Willibald

    2016-04-01

    Monitoring of water content is an approved method to quantify certain components of the soil water balance, for example as basis for hydrological studies and soil water management. Temporal soil water data also allow controlling water status by means of demand-oriented irrigation. Regarding spatial variability of water content due to soil characteristics, plant water uptake and other non-uniformities, it is a great challenge to select a location that is most likely representing soil water status of a larger area (e.g. an irrigated field). Although such an approach might not satisfy the requirements of precision farming - which becomes more and more related to industrial agriculture - it can help improving water use efficiency of small-scale farming. In this regard, specific conditions can be found in typical vineyards in the eastern part of Austria, where grapes are grown for high quality wine production. Generally, the local dry-subhumid climate supports grape development. However, irrigation is temporarily essential in order to guarantee stable yields and high quality. As the local winegrowers traditionally control irrigation based on their experience, there is a potential to improve irrigation management by means of soil water data. In order to gain experience with regard to irrigation management, soil water status was determined in a small vineyard in Austria (47°48'16'' N, 17°01'57'' E, 118 m elevation). The vineyard was equipped with a subsurface drip irrigation system and access tubes for measuring water content in soil profiles. The latter was measured using a portable device as well as permanently installed multi-sensor capacitance probes. Soil samples were taken at chosen dates and gravimetrically analyzed in the laboratory. Water content data were analyzed using simple statistical procedures and the temporal stability concept. Soil water content was interpreted considering different environmental conditions, including rainfall and irrigation periods

  7. Improved methods for irrigation and planting of major crops in waterlogged areas

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Raoof, A.

    2002-01-01

    The improved irrigation methods for wheat and cotton were evaluated in the fordwah Eastern Sadigia (South) Irrigation and Drainage Project area, during 1996-97 and 1997-98 cropping seasons, under three water table depths. Irrigation methods for wheat included 70, 95 and 120 cm Beds, with Flat Basin, as a check for comparative evaluation. Cotton had Ridge-planting on the top and side, Bed and Furrow, and Flat Basin as control. These irrigation methods were compared at water table depths of < 1 m, 1-2 and 2-3 m. The wheat variety inqalab-91, and cotton cultivar, CIM-109, were planted during the 3rd week of November and May every year. All the inputs and management practices, such as seed-rate, fertilizer, seeding method, weed control, plant-protection measures, etc. were kept common. The results on cotton indicated maximum water-use efficiency with the Bed and Furrow Method of irrigation Followed by ridge planting. The traditional Flat-planting had the lowest yield and the highest water-consumption, resulting in the minimum water-use efficiency. In harmony with cotton, the Flat Method of planting had maximum water-consumption. For wheat crop, the water-use efficiency was in descending order, with 120, 95 and 70 cm for Bed and Flat Methods. Bed planting of 95 cm had a fairly high water-use efficiency and yields were more were more comparable than Flat planting. This method had a high level of adaptabilities, especially when the groundwater was close to the root-zone and higher possibilities, especially when the groundwater was close to the root-zone and higher possibility of crop-submergence are existent during rainy spells. The results of the investigation strongly favoured the Bed and furrow methods to irrigate cotton and wheat. However, under well-drained soil conditions, Bed planting of wheat is not recommended. (author)

  8. Irrigation of pistachios : strategies to confront water scarcity

    NARCIS (Netherlands)

    Pérez-López, David; Memmi, Houssem; Gijón-López, Maria del Carmen; Moreno, Marta Maria; Couceiro, José Francisco; Centeno, Ana; Martín-Palomo, Maria J.; Corell, Mireia; Noguera-Artiaga, Luis; Galindo Egea, Alejandro; Torrecillas, Arturo; Moriana, Alfonso; Tejero, Ivan Francisco Garcia; Zuazo, Victor Hugo Duran

    2017-01-01

    Pistachio trees are capable to be profitable under rain-fed conditions. They also have a good response to low amounts of irrigation water, so are a great candidate to be considered for water-scarcity scenarios. The pistachio tree has a singular way of alternate bearing, losing a percentage of its

  9. Deficit irrigation of peach trees to reduce water consumption

    Science.gov (United States)

    Lack of water is a major limiting factor for production tree fruits such as peaches in the San Joaquin Valley of California and many other arid- or semi-arid regions in the world. Deficit irrigation can be used in some cropping systems as a water resource management strategy to reduce non-productiv...

  10. A review of mathematical programming models of irrigation water ...

    African Journals Online (AJOL)

    Crops modelled influence water values, but there is no apparent relationship between objective function specification and average value. Nor does the number of irrigation options seem to influence water value either. The policy implication is that while similar models for the same region produce consistent estimates, each ...

  11. Influence of Hudiara Drain Water Irrigation on Trace Elements Load ...

    African Journals Online (AJOL)

    ... Drain Water Irrigation on Trace Elements Load In Soil And Uptake By Vegetables. ... This polluted water not only contains organic matter and crop nutrients but also ... Plant samples were collected at maturity from all the monitoring points. ... (DO), Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) ...

  12. Effect of drip irrigation on yield, evapotranspiration and water use efficiency of sweet basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2017-01-01

    Full Text Available The experiments showing the effect of drip irrigation on yield, evapotranspiration and water productivity of sweet basil (Ocimum basilicum L. were conducted at the experimental field of the Alternative Crops Department, Institute of Field and Vegetable Crops, Novi Sad. Irrigation was scheduled on the basis of the water balance method. Daily evapotranspiration (ETd was computed from the reference evapotranspiration (ETo and crop coefficient (kc in May, June, July and August of 0.5, 0.6, 1.1 and 1.0, respectively. ETo was calculated using Hargreaves equation. The irrigation depth was restricted to the soil depth of 0.3 m. In other words, irrigation started when readily available water in the soil layer of 0.3 m was completely depleted by plants. The irrigation rate was 30 mm (30 l m-2 while the amount of water added by irrigation during the season was 140 mm. Basil sensitivity to water stress was determined using a yield response factor (Ky. According to the results, the yield of fresh herb of basil under irrigation (32.015 t ha-1 was higher by 9% compared to non-irrigated, control variant (29.364 t ha-1. Worthy of note, basil essential oil yield was significantly affected by irrigation (35.329/28.766 kg ha-1. The content of essential oil was significantly higher in irrigated (6.45 g kg-1 than in non-irrigated variant (5.33 g kg-1 in the first harvest, while no significant difference between irrigated and non-irrigated variants was obtained in the second harvest (6.83 and 6.62 g kg-1 , respectively. Water used on evapotranspiration in irrigation conditions (ETm was 431 mm and 270 mm in non-irrigated, control variant (ETa. The values of irrigation water use efficiency (Iwue and evapotranspiration water use efficiency (ETwue were 1.89 kg m-3 and 1.65 kg m-3 respectively. Ky value (0.22 exhibits all essential characteristics of climate conditions of 2016 rainy year. These preliminary results could be used as a good platform for basil growers in the

  13. Soil properties evolution after irrigation with reclaimed water

    Science.gov (United States)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after

  14. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  15. Economic optimization of photovoltaic water pumping systems for irrigation

    OpenAIRE

    Campana, Pietro Elia; Li, Hailong; Zhang, J.; Liu, J.; Yan, Jinyue

    2015-01-01

    Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availabil...

  16. Water relations and photosynthesis as criteria for adequate irrigation management in 'Tahiti' lime trees

    Directory of Open Access Journals (Sweden)

    Silva Cláudio Ricardo da

    2005-01-01

    Full Text Available Irrigation scheduling based on soil moisture status is one of the most useful methods because of its practicality and low cost. The effects of available soil water depletion on evapotranspiration (ETc, transpiration (E, leaf water potential at predawn (psiP and midday (psiM, stomatal conductance (gs and net CO2 assimilation (A in lime 'Tahiti' trees (Citrus latifolia were evaluated to improve irrigation schedule and minimize water use without causing water stress. The trees were spaced 7 4 m and drip-irrigated by four drippers with the available soil water content (AWC depleted by suspension of irrigation (40 days. Leaf water potential was measured on a pressure chamber (psiP and psiM and leaf gas exchange was measured by infrared gas analyzer (E, gs and A. Evapotranspiration was determined with the aid of weighing lysimeter. Water soil content and potential (psiS were monitored with TDR probes and tensiometers, respectively, installed at 0.3, 0.6 and 0.9 m depths. Meteorological variables were monitored with an automatic weather station in the experimental area. The threshold AWC level for the onset of ETc decline was 43%, and 60% for gs, A, E and Y P. Also, psiP was more sensitive to AWC than psiM, and is therefore a better tool for irrigation. When AWC was around 60%, values of psiP and psis were -0.62 MPa and -48.8 kPa, respectively.

  17. Estimated Colorado Golf Course Irrigation Water Use, 2005

    Science.gov (United States)

    Ivahnenko, Tamara

    2009-01-01

    Golf course irrigation water-use data were collected as part of the U.S. Geological Survey National Water Use Program's 2005 compilation to provide baseline information, as no golf course irrigation water-use data (separate from crop irrigation) have been reported in previous compilations. A Web-based survey, designed by the U.S. Geological Survey, in cooperation with the Rocky Mountain Golf Course Superintendents Association (RMGCSA), was electronically distributed by the association to the 237 members in Colorado. Forty-three percent of the members returned the survey, and additional source water information was collected by telephone for all but 20 of the 245 association member and non-member Colorado golf courses. For golf courses where no data were collected at all, an average 'per hole' coefficient, based on returned surveys from that same county, were applied. In counties where no data were collected at all, a State average 'per hole' value of 13.2 acre-feet was used as the coefficient. In 2005, Colorado had 243 turf golf courses (there are 2 sand courses in the State) that had an estimated 2.27 acre-feet per irrigated course acre, and 65 percent of the source water for these courses was surface water. Ground water, potable water (public supply), and reclaimed wastewater, either partially or wholly, were source waters for the remaining courses. Fifty-three of the 64 counties in Colorado have at least one golf course, with the greatest number of courses in Jefferson (23 courses), Arapahoe (22 courses), and El Paso Counties (20 courses). In 2005, an estimated 5,647.8 acre-feet in Jefferson County, 5,402 acre-feet in Arapahoe County, and 4,473.3 acre-feet in El Paso County were used to irrigate the turf grass.

  18. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water.

    Science.gov (United States)

    Lopez-Galvez, Francisco; Allende, Ana; Pedrero-Salcedo, Francisco; Alarcon, Juan Jose; Gil, Maria Isabel

    2014-11-17

    The impact of reclaimed and surface water on the microbiological safety of hydroponic tomatoes was assessed. Greenhouse tomatoes were irrigated with reclaimed and surface water and grown on two hydroponic substrates (coconut fiber and rock wool). Water samples (n=208) were taken from irrigation water, with and without the addition of fertilizers and drainage water, and hydroponic tomatoes (n=72). Samples were analyzed for indicator microorganisms, generic Escherichia coli and Listeria spp., and pathogenic bacteria such as Salmonella spp. and Shiga-toxigenic E. coli (STEC), using multiplex real-time PCR (RT-PCR) after enrichment. The correlation between climatological parameters such as temperature and the levels of microorganisms in water samples was also determined. In irrigation water, generic E. coli counts were higher in reclaimed than in surface water whereas Listeria spp. numbers increased after adding the fertilizers in both water sources. In drainage water, no clear differences in E. coli and Listeria numbers were observed between reclaimed and surface water. No positive samples for STEC were found in irrigation water. Presumptive positives for Salmonella spp. were found in 7.7% of the water samples and 62.5% of these samples were reclaimed water. Salmonella-positive samples by RT-PCR could not be confirmed by conventional methods. Higher concentrations of E. coli were associated with Salmonella-presumptive positive samples. Climatological parameters, such as temperature, were not correlated with the E. coli and Listeria spp. counts. Tomato samples were negative for bacterial pathogens, while generic E. coli and Listeria spp. counts were below the detection limit. The prevalence of presumptive Salmonella spp. found in irrigation water (reclaimed and surface water) was high, which might present a risk of contamination. The absence of pathogens on greenhouse hydroponic tomatoes indicates that good agricultural practices (GAP) were in place, avoiding the

  19. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    Science.gov (United States)

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    Science.gov (United States)

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  1. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  2. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Fathia El Mokh

    2014-12-01

    Full Text Available Field experiments were conducted on a sandy soil during spring of 2009 and autumn of 2010 in southern Tunisia for evaluating the effects of two drip irrigation methods and three irrigation regimes on soil moisture and salinity, yield and water use efficiency of potato (Solanum tuberosum L.. The surface drip (SDI and subsurface drip (SSDI irrigation methods were used. Irrigation regimes consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI100, 60% (DI60 and 30% (DI30. FI100 was considered as full irrigation while DI60 and DI30 were considered as deficit irrigation regimes. Well water with an ECi of 7.0 dS/m was used for irrigation. Findings are globally consistent between the two experiments. Results show that soil moisture content and salinity were significantly affected by irrigation treatments and methods. Higher soil moisture content and lower soil salinity were maintained with SSDI than SDI for all irrigation treatments. For both irrigation methods, higher salinity and lower moisture content in the root zone are observed under DI60 and DI30 treatments compared to FI100. Potato yields were highest over two cropping periods for the SSDI method although no significant differences were observed with the SDI. Irrigation regimes resulted in significant difference in both irrigation methods on yield and its components. Yields were highest under FI100. Compared to FI100, considerable reductions in potato yields were observed under DI60 and DI30 deficit treatments resulting from a reduction in tubers number/m² and average tuber weight and size. Water use efficiency (WUE was found to vary significantly among irrigation methods and treatments and varied between 5.9 and 20.5 kg/m3. WUE of SSDI method had generally higher values than SDI. The lowest WUE values were observed for the FI100 treatment, while the highest values were obtained under DI30 treatment for both methods. SSDI method provides

  3. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    To respond to agricultural water shortage impacted by climate change without affecting rice yield in the future, the application of water-saving irrigation, such as SRI methodology, is considered to be adopted in rice-cultivation in Taiwan. However, the flooded paddy fields could be considered as an important source of groundwater recharge in Central Taiwan. The water-saving benefit of this new methodology and its impact on the reducing of groundwater recharge should be integrally assessed in this area. The objective of this study was to evaluate the changes of groundwater recharge/ irrigation water use between the SRI and traditional irrigation schemes (continuous irrigation, rotational irrigation). An experimental paddy field located in the proximal area of the Choushui River alluvial fan (the largest groundwater pumping region in Taiwan) was chosen as the study area. The 3-D finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge process and amount under traditional irrigation schemes and SRI methodology. The use of effective rainfall was taken into account or not in different simulation scenarios for each irrigation scheme. The simulation results showed that there were no significant variations of infiltration rate in the use of effective rainfall or not, but the low soil moisture setting in deep soil layers resulted in higher infiltration rate. Taking the use of effective rainfall into account, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology in the first crop season of 2013 were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reducing 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly

  4. Determining the disaggregated economic value of irrigation water in the Musi sub-basin in India

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Davidson, B.

    2010-01-01

    In this paper the residual method is used to determine the disaggregated economic value of irrigation water used in agriculture across crops, zones and seasons. This method relies on the belief that the value of a good (its price by its quantity) is equal to the summation of the quantity of each

  5. Morphophysiology of guava under saline water irrigation and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Idelfonso L. Bezerra

    Full Text Available ABSTRACT The aim of this study was to evaluate the growth of grafted guava cv. ‘Paluma’ subjected to different concentrations of salts in irrigation water and nitrogen (N fertilization. The plants were transplanted to 150 L lysimeters and under field conditions at the Science and Agri-food Technology Center of the Federal University of Campina Grande, in the municipality of Pombal - PB. The experiment was conducted in randomized block design in a 5 x 4 factorial scheme, with three replicates, and the treatments corresponded to five levels of electrical conductivity of irrigation water - ECw (0.3; 1.1; 1.9; 2.7 and 3.5 dS m-1 and four N doses (70, 100, 130 and 160% of the N dose recommended for the crop. The doses equivalent to 100% corresponded to 541.1 mg of N dm-3 of soil. Irrigation water salinity above 0.3 dS m-1 negatively affects the number of leaves, leaf area, stem diameter, dry phytomass of leaves, branches and shoots . A significant interaction between irrigation water salinity and N fertilization was observed only for the number of leaves and leaf area at 120 days after transplanting. N dose above 70% of the recommendation (378.7 mg N dm-3 soil did not mitigate the deleterious effects caused by salt stress on plant growth.

  6. Using Audience Segmentation to Tailor Residential Irrigation Water Conservation Programs

    Science.gov (United States)

    Warner, Laura A.; Chaudhary, Anil Kumar; Rumble, Joy N.; Lamm, Alexa J.; Momol, Esen

    2017-01-01

    Today's complex issues require technical expertise as well as the application of innovative social science techniques within Extension contexts. Researchers have suggested that a social science approach will play a critical role in water conservation, and people who use home landscape irrigation comprise a critical target audience for agriculture…

  7. Masculinities among irrigation engineers and water professionals in Nepal

    NARCIS (Netherlands)

    Liebrand, J.

    2014-01-01

    Summary

    This thesis documents my attempt to study masculinities among irrigation engineers and water professionals in Nepal. It is based on the recognition that more than two decades of mainstreaming gender in development research and policy have failed to come to grips

  8. Sample container and storage for paclobutrazol monitoring in irrigation water

    Science.gov (United States)

    Paclobutrazol is a plant growth retardant commonly used on greenhouse crops. Residues from paclobutrazol applications can accumulate in recirculated irrigation water. Given that paclobutrazol has a long half-life and potential biological activity in parts per billion concentrations, it would be de...

  9. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    Directory of Open Access Journals (Sweden)

    N. Schütze

    2016-05-01

    Full Text Available Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF can serve as a central decision support tool for both, (i a cost benefit analysis of farm irrigation modernization on a local scale and (ii a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  10. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  11. Irrigation water quality of Al-Gharraf Canal, south of Iraq

    Science.gov (United States)

    Hussein Ewaid, Salam

    2018-05-01

    To evaluate the water quality of Al-Gharraf Canal south of Iraq for irrigation purpose, analysis of 12 physiochemical parameters of water samples by standard methods was carried out at five stations during the year 2016 (water temperature, pH, electrical conductivity, total dissolved solids, bicarbonate, chloride, calcium, magnesium, sulfate, nitrate, sodium, potassium). Seven irrigation water quality indices were calculated like; sodium percentage (% Na), soluble sodium percentage (SSP), residual sodium bicarbonate (RSBC), Kelly’s ratio (KR), permeability index (PI), magnesium adsorption ratio (MAR), and sodium adsorption ratio (SAR). The results represented as diagrams (Piper, Stiff, Schoeller, Durov, Gibbs, and Wilcox) using AquaChem and RockWork hydro-chemical software. Chemical analysis for canal water demonstrates the calcic chlorinated water type, the dominance of alkalis water, the major cations was in the order of: Na+ > Ca2+ > K+ > Mg2+ and major anions was: Cl- > SO42- > HCO3- > NO3-, the mean values of the irrigation water quality indices were (in meq/l) were; SAR (2.37), % Na (43.4), PI (%) (52.3), SSP (% (38.1), MAR (%) (34.5), KR (0.61), RSBC (-1.78). The results indicate the suitability of canal water for irrigational purposes based on the calculated indices for the majority of crops under special management for salinity and permeability control. The presentation of chemical analysis by diagrams and numbers makes understanding of complex water system too simpler and quicker. This study is a comprehensive assessment towards providing indicators and classification indices on irrigation water quality of the canal ecosystem, which will be the basis for future planning decisions on agricultural demand management measures and water quality monitoring to protect this principal water resource.

  12. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  13. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-12-01

    Full Text Available A two-year study was carried out in order to assess the effects of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated ETc at levels of 100% (FI, full irrigation, 80% (DI-80, 60% (DI-60, when the readily available water in the control treatment (FI is depleted, deficit irrigation during ripening stage (FI-MDI60 and farmer method corresponding to irrigation practices implemented by the local farmers (FM. Results on pepper yield and soil salinity are globally consistent between the two-year experiments and shows significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments resulted also in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha although we didn’t find significant differences with the regulated deficit irrigation treatment (FI-DI60. However, the DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m² and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments, respectively, in 2008 and 2009. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provides

  14. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    controllers, centralized and site-specific sensor inputs, leak detection sensors, and the use of harvested water (i.e., rainwater and air condition water ...include ET functionality with soil moisture sensor, and leak detection via flow meter. ESTCP Final Report Smart Water Conservation System 58... leakage . The minimum static pressure was not achieved because tank water levels were less than 10 feet in the selected low profile tank.) Adjust break

  15. Food security, irrigation, climate change, and water scarcity in India

    Science.gov (United States)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  16. WATER HAMMER OSCILLATIONS IN THE IRRIGATION FACILITIES

    Science.gov (United States)

    Kurata, Kouichi; Sasaki, Katsuhito; Makihata, Toshiaki

    In case a gate installed at the end of discharge conduit is vibrating during discharge, or an air valve is vibrating during water-filling operation into the conduit pipe between main gate and auxiliary gate, and vibration period tv is larger than tc (water hammer propagation time) that is equivalent to the phenomenon of slow closure, there is a possibility that water hammer oscillation in the discharge conduit could be induced. In this paper, by using two case examples, vibration phenomena transmitted to each part are analyzed, on the basis of water pressure fluctuation and pressure wave propagation due to occurrence of water hammer oscillation.

  17. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    Science.gov (United States)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  18. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  19. Effect of Timing and Amount of Irrigation Water on Bean Yield and Water Use Efficiency in Arid and Semi-arid Conditions

    Directory of Open Access Journals (Sweden)

    S.S. Nurbakhsh

    2016-02-01

    Full Text Available Introduction: Nowadays, due to lack of water resources and increasing demand for water, agricultural water planning issues need further consideration. With proper planning and determination of irrigation depth and time, the effects of stress and yield loss on the plants are reduced. Irrigation scheduling is one of the most important factors in crop’s quality and quantity. The main objective of irrigation scheduling is to control crop’s water conditions in order to achieve its optimum yield level. So irrigation timing is the vital factor on which crop water stress and eventually yield's level are dependent upon. Moreover, irrigation timing is used in irrigation scheduling. The aim of this study was to evaluate the effect of irrigation time on water consumption, water use efficiency and yield of beans. Materials and Methods: In order to observe the effect of the amount and the time of the irrigation on water consumption, yields rate and water use efficiency, the current research was carried out at the University of Shahrekord during the summer of 2012. The experiment was done as a completely randomized design with 4 repetitions consisting of irrigation time and the amount of irrigation in 4 and 2 levels (at 6, 8, 14 and 18 and (deficit irrigation, full irrigation, respectively. Beans seeds were planted in 32 similar vases with a diameter of 45 cm and height of 60 cm, in each experiment. Treatments were begun after 37 days from planting. Treatments were irrigated when the average moisture in the root zone was equal to the lower border of readily available water of full irrigation. At the end of the experiments, plants were completely harvested. Then the plant’s height, number of branches, numbers of pods per plant, pod and seed weight were measured. Results and Discussion: Results showed that irrigating at different times during the day influenced water use efficiency, water consumption, seeds yield and number of pods in the bush. The water

  20. pH Control of Untreated Water for Irrigation

    Science.gov (United States)

    Poyen, Faruk Bin; Kundu, Palash K.; Ghosh, Apurba K.

    2018-05-01

    Irrigation in India still plays a pivotal role in the country's economic and employment structure. But due to unawareness and lack of technological upgradations and ill and careless agricultural practices, the yield from the fields is poor and not to its best capacity. There exists a lot of reasons and factors that brings down the crop productivity. One among them is the quality of irrigation water that is supplied to the fields. It is a common practice in India and other sub-continental countries not to access the water qualitatively before getting fed to the fields. Albeit, it does not have catastrophic effects on the productivity, but it affects the nourishment of the crops to some good extent. Water pH has a strong effect on the soil and crop, when it comes to absorption of nutrients by the plant bodies. With properly regulating the pH level of the irrigation water, it is possible to create an ambiance where the symbiotic effects between the soil and the plant can be optimized. In this paper, it is tried to regulate the pH levels of the water based on the type of soil and the optimal requirement by the crop. The work in this paper involves neutralization of acidic or alkaline water before it is being supplied to the farmlands. The process model is simulation based which gave considerably good and acceptable results.

  1. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    ht ly M or e W or kl oa d; 5 -M or e W or kl oa d; 6 -S ig ni fic an lty M or...install the water harvesting and pump system was captured from the contractor cost proposal. 7.1.3 Water Cost Water purchased from the Port Hueneme Water...818) 737-2734 KDuke@valleycrest.com Contractor Tom Santoianni 1205 Mill Rd. Bldg. 1430 Public Works, Ventura (805) 982-4075 Tom.Santoianni@navy.mil Energy Manager

  2. Incentives and technologies for improving irrigation water use efficiency

    Science.gov (United States)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  3. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    Directory of Open Access Journals (Sweden)

    Linlin Chu

    2014-01-01

    Full Text Available Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  4. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  5. Impacts of crop insurance on water withdrawals for irrigation

    Science.gov (United States)

    Deryugina, Tatyana; Konar, Megan

    2017-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, crop insurance may have unintended consequences for water resources sustainability, as the vast majority of freshwater withdrawals go to agriculture. The causal impact of crop insurance on water use in agriculture remains poorly understood. Here, we determine the empirical relationship between crop insurance and irrigation water withdrawals in the United States. Importantly, we use an instrumental variables approach to establish causality. Our methodology exploits a major policy change in the crop insurance system - the 1994 Federal Crop Insurance Reform Act - which imposed crop insurance requirements on farmers. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, with most coming from groundwater aquifers. We identify farmers growing more groundwater-fed cotton as an important mechanism contributing to increased withdrawals. A 1% increase in insured crop acreage leads to a 0.624% increase in cotton acreage, or 95,602 acres. These results demonstrate that crop insurance causally leads to more irrigation withdrawals. More broadly, this work underscores the importance of determining causality in the water-food nexus as we endeavor to achieve global food security and water resources sustainability.

  6. Balancing water scarcity and quality for sustainable irrigated agriculture

    Science.gov (United States)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  7. Rational use of water in trickle irrigation design.

    Science.gov (United States)

    Saad, J. C. C.; da Silva Junior, H. M.

    2012-04-01

    In trickle irrigation systems, the design is based on the pre-established emission uniformity (EU) which is the combined result of the equipment characteristics and its hydraulic configuration. However, this desired value of the EU may not be confirmed by the final project (in field conditions) and neither by the yield uniformity. However, the most important is to assure yield uniformity with rational use of water. The hypotheses of this research were: a) the EU of a trickle irrigation system at field conditions is equal to the emission uniformity pre-established in the design; b) EU has always the lowest value when compared with other indicators of uniformity; c) the discharge variation coefficient is not equal to production variation coefficient in the operational unit; d) the productivity variation coefficient is more dependent on water depth applied than the EU. This study aimed to evaluate the relationships among EU used in the irrigation system design, water depth applied and the final yield uniformity. The uniformity indicators evaluated were: EU, distribution uniformity (UD) and the index proposed by Barragan & Wu (2005). They were compared estimating the performance of a trickle irrigation system applied in a citrus orchard with dimensions of 400m x 600m. The design of the irrigation system was optimized by a Linear Programming model. The tree rows were leveled in the larger direction and the spacing adopted in the orchard was 7m x 4m. The manifold line was always operating on a slope condition. The sensitivity analysis involved different slopes, 0, 3, 6, 9 and 12%, and different values of emission uniformity, 60, 70, 75, 80, 85, 90 and 94%. The citrus yield uniformity was evaluated by the variation coefficient. The emission uniformity (EU) after design differed from the EU pre-established, more sharply in the initial values lower than 90%. Comparing the uniformity indexes, the EU always generated lower values when compared with the UD and with the index

  8. Estimating irrigation water demand in the Moroccan Drâa Valley using contingent valuation.

    Science.gov (United States)

    Storm, Hugo; Heckelei, Thomas; Heidecke, Claudia

    2011-10-01

    Irrigation water management is crucial for agricultural production and livelihood security in Morocco as in many other parts of the world. For the implementation of an effective water management, knowledge about farmers' demand for irrigation water is crucial to assess reactions to water pricing policy, to establish a cost-benefit analysis of water supply investments or to determine the optimal water allocation between different users. Previously used econometric methods providing this information often have prohibitive data requirements. In this paper, the Contingent Valuation Method (CVM) is adjusted to derive a demand function for irrigation water along farmers' willingness to pay for one additional unit of surface water or groundwater. An application in the Middle Drâa Valley in Morocco shows that the method provides reasonable results in an environment with limited data availability. For analysing the censored survey data, the Least Absolute Deviation estimator was found to be a more suitable alternative to the Tobit model as errors are heteroscedastic and non-normally distributed. The adjusted CVM to derive demand functions is especially attractive for water scarce countries under limited data availability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Drought Tip: Irrigating Citrus with Limited Water

    OpenAIRE

    Faber, Ben

    2015-01-01

    As an evergreen in California's Mediterranean climate, with wet winters and dry summers, citrus requires some water all year long. Depending on the cultivar and rootstock, citrus can sustain certain levels of drought stress.

  10. The Effect of Different Levels of Irrigation and Nitrogen Fertilizer on Yield and Water Use Efficiency of Potato in Subsurface Drip Irrigation

    Directory of Open Access Journals (Sweden)

    Mohammad Jolaini

    2017-06-01

    Full Text Available Introduction: After wheat, rice and corn, potato is the fourth most important food plant in the world. In comparison with other species, potato is very sensitive to water stress because of its shallow root system: approximately 85% of the root length is concentrated in the upper 0.3-0.4 m of the soil. Several studies showed that drip irrigation is an effective method for enhancing potato yield. Fabeiro et al. (2001 concluded that tuber bulking and ripening stages were found to be the most sensitive stages of water stress with drip irrigation. Water deficit occurring in these two growth stages could result in yield reductions. Wang et al. (2006 investigated the effects of drip irrigation frequency on soil wetting pattern and potato yield. The results indicated that potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency while high frequency irrigation enhanced potato tuber growth and water use efficiency (WUE. Though information about irrigation and N management of this crop is often conflicting in the literature, it is accepted generally that production and quality are highly influenced by both N and irrigation amounts and these requirements are related to the cropping technique. Researches revealed that nitrogen fertilizers play a special role in the growth, production and quality of potatoes. Materials and Methods: A factorial experiment in randomized complete block design with three replications was carried out during two growing seasons. Studied factors were irrigation frequency (I1:2 and I2:4 days interval and nitrogen fertilizer levels (applying 100 (N1, 75 (N2 and 50 (N3 % of the recommended amount. Nitrogen fertilizer was applied through irrigation water. In each plot two rows with within-and between-row spacing of 45 and 105 cm and 20 m length. The amount of nitrogen fertilizer for the control treatment was determined by soil analysis (N1. In all treatments, nitrogen fertilizer

  11. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  12. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  13. Accounting for potassium and magnesium in irrigation water quality assessment

    Directory of Open Access Journals (Sweden)

    J.D. Oster

    2016-04-01

    Full Text Available Irrigation with treated wastewater is expected to increase significantly in California during the coming decade as a way to reduce the impact of drought and mitigate water transfer issues. To ensure that such wastewater reuse does not result in unacceptable impacts on soil permeability, water quality guidelines must effectively address sodicity hazard. However, current guidelines are based on the sodium adsorption ratio (SAR and thus assume that potassium (K and magnesium (Mg, which often are at elevated concentrations in recycled wastewaters, pose no hazard, despite many past studies to the contrary. Recent research has established that the negative effects of high K and Mg concentrations on soil permeability are substantial and that they can be accounted for by a new irrigation water quality parameter, the cation ratio of structural stability (CROSS, a generalization of SAR. We show that CROSS, when suitably optimized, correlates strongly with a standard measure of soil permeability reduction for an agricultural soil leached with winery wastewater, and that it can be incorporated directly into existing irrigation water quality guidelines by replacing SAR.

  14. Basin Irrigation Design with Multi-Criteria Analysis Focusing on Water Saving and Economic Returns: Application to Wheat in Hetao, Yellow River Basin

    Directory of Open Access Journals (Sweden)

    Qingfeng Miao

    2018-01-01

    Full Text Available The sustainability of the Hetao Irrigation System, located in the water scarce upper Yellow River basin, is a priority considering the need for water saving, increased water productivity, and higher farmers’ incomes. The upgrading of basin irrigation, the main irrigation method, is essential and includes the adoption of precise land levelling, cut-off management, improved water distribution uniformity, and adequate irrigation scheduling. With this objective, the current study focuses on upgrading wheat basin irrigation through improved design using a decision support system (DSS model, which considers land parcels characteristics, crop irrigation scheduling, soil infiltration, hydraulic simulation, and environmental and economic impacts. Its use includes outlining water saving scenarios and ranking alternative designs through multi-criteria analysis considering the priorities of stakeholders. The best alternatives concern flat level basins with a 100 and 200 m length and inflow rates between 2 and 4 L s−1 m−1. The total irrigation cost of designed projects, including the cost of the autumn irrigation, varies between 2400 and 3300 Yuan ha−1; the major cost component is land levelling, corresponding to 33–46% of total irrigation costs. The economic land productivity is about 18,000 Yuan ha−1. The DSS modelling defined guidelines to be applied by an extension service aimed at implementing better performing irrigation practices, and encouraged a good interaction between farmers and the Water Users Association, thus making easier the implementation of appropriate irrigation management programs.

  15. Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan

    OpenAIRE

    Muhammad Afzal

    1996-01-01

    Pakistan’s agriculture is almost wholly dependent on irrigation and irrigated land supplies more than 90 percent of agricultural production. Irrigation is central to Pakistan’s economy. Massive investments in irrigation contributed to the development of one of the largest Indus Basin Irrigation System. Despite heavy budgetary inputs in irrigation system, it is facing shortage of resources and suffering from operational problems. The sustainability of irrigated agriculture is threatened due to...

  16. Projected energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L. D.; Hellickson, M. L.; Schmisseur, W. E.; Shearer, M. N.

    1978-10-01

    A computer model has been developed to predict present and future regional water, energy, labor, and capital requirements of irrigated agricultural production in Idaho, Oregon, and Washington. The energy requirements calculated were on-farm pumping, and total energies. Total energies are the combined energies of on-farm pumping, manufacture, and installation. Irrigation system selections and modifications were based on an economic analysis utilizing the following input parameters: water, energy, labor, and capital costs and requirements; groundwater and surface water pumping lifts; improved application efficiencies; and pumping plant efficiencies. Major conclusions and implications of this analysis indicate that: as water application efficiencies increases additional quantities of water will not become available to other users; an overall increase in water application efficiencies resulted in decreases in gross water applications and increases in overall on-farm pumping and total energy consumptions; more energy will be consumed as pumping and total energies than will be conserved through decreased diversion pumping energy requirements; pump-back and similar technologies have the potential of both increasing application efficiencies and energy conservation; and the interrelationships understood between applying water in quantities greater than required for crop consumptive use and leaching, and late season in-steam flow augmentation and/or aquifer recharge are not well understood, and sound policy decisions concerning agricultural use of water and energy cannot be made until these interrelationships are better understood.

  17. Evaluation of different methods of measuring evapotranspiration as a scheduling guide for drip-irrigated cotton

    International Nuclear Information System (INIS)

    Rawitz, E.; Marani, A.; Mahrer, Y.; Berkovich, D.

    1983-01-01

    Evapotranspiration in a drip-irrigated cotton field was estimated by the energy balance method, net radiation, standard evaporation pan, evaporation pan in the field at canopy height, and by the Penman equation, and the results were compared with the soil-water balance based on neutron meter and tensiometer data from seven observation sites. Evapotranspiration according to the soil-water balance was only about 85% of that determined by the energy balance method, and this is attributed to the fact that irrigation laterals were placed every second row, and the soil-water balance was determined in the irrigated rows. The crop also utilized moisture stored from winter rains in the unirrigated inter-row spaces, which was detected by the energy balance method. Actual evapotranspiration (ET) was 96% of potential ET (Penman), and the latter equalled 98% of net radiation energy. The actual ET equalled 90% of free water evaporation from the pan in the field at canopy height, and 88% of net radiation. The high-frequency drip regime maintained ET very close to potential ET, and under these conditions the field-installed evaporation pan, or the net radiometer, are good indicators of crop water use, with the latter being adaptable to computer-controlled irrigation. (author)

  18. Can a canopy temperature-based stress index enhance water use efficiency in irrigated wine grape under arid conditions?

    Science.gov (United States)

    Enhancement of irrigation water use efficiency and water productivity in arid wine grape production regions is hindered by a lack of automated, real-time methods for monitoring and interpreting vine water status. A normalized, water stress index calculated from real-time vine canopy temperature meas...

  19. Effects of Furrow Irrigation on the Growth, Production, and Water Use Efficiency of Direct Sowing Rice

    Directory of Open Access Journals (Sweden)

    Chunlin He

    2010-01-01

    Full Text Available Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI system to improve water use efficiency (WUE and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI system (continuous flooding irrigation, for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1 a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2 a significant reduction in the reduced materials, such as ferrous ion (Fe2+, and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3 increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  20. Effects of furrow irrigation on the growth, production, and water use efficiency of direct sowing rice.

    Science.gov (United States)

    He, Chunlin

    2010-08-03

    Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI) system to improve water use efficiency (WUE) and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI) system (continuous flooding irrigation), for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1) a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2) a significant reduction in the reduced materials, such as ferrous ion (Fe2+), and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3) increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  1. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    GREG

    2013-05-08

    May 8, 2013 ... For sound land use and water management in irrigated area, knowledge of the chemical ... Nowadays, soil salinity has become important problem in irrigated ... hoe, shovel, plastic bags, hard paper or labeling, markers, rope,.

  2. Water distribution in an orchard irrigated by perforated distributors in stony ground

    International Nuclear Information System (INIS)

    Decroix, M.; Marcesse, J.; Normand, M.

    1975-01-01

    In the context of new irrigation techniques the Compagnie Nationale d'Amenagement du Bas-Rhone et du Languedoc (B.Rh.L.) has developed a process of localized irrigation by perforated distributors. Conditions were defined for the optimum use of this process, especially the distribution of water in the ground. The study was carried out in a peach orchard in stony ground. The neutronic method was used to measure the soil moisture content. Because of the heterogeneous stone size distribution it was necessary for the specific humidity determination to take into account the dry apparent density. This parameter was measured by gammametry [fr

  3. Willingness to Pay Additional Water Rate and Irrigation Knowledge of Farmers in Dinar Karakuyu Irrigation Areas in Turkey

    Directory of Open Access Journals (Sweden)

    Mevlüt Gül

    2017-08-01

    Full Text Available Water which has become commodity product which is an important product today. Turkey is not a water rich country. In this study, agricultural enterprises in the field of Irrigation Project in Dinar Karakuyu which was implemented in 1992 by DSI. The study analysed which factors affect the willingness to pay additional irrigation water rate with the help of logit model and the irrigation knowledge of farmers was determined by Likert scale. Dinar Karakuyu irrigation network has begun to lose the function in the region. It was supposed 100% irrigation rate but decreased by approximately 9% today. In this context, DSI (General Directorate of State Hydraulic Works plans to rehabilitation work in the same area. The main material of this study was data obtained from 67 agricultural enterprises through a survey covered by the Irrigation Rehabilitation Project in the province of Afyonkarahisar Karakuyu Dinar. The data was gathered with the help of questionnaires which were answered by farmers in Karakuyu Dinar region. The results indicated that 74.6% of farmers were willingness to pay additional water charge. The data were statistically analysed with the use of the logit model. The model results show that agricultural income, farmers’ educational level, computer ownership, attendance of agricultural training activities, family size and agricultural experience were positive factors affect farmers’ willingness to pay additional water fee.

  4. Irrigation water as a source of drinking water: is safe use possible?

    Science.gov (United States)

    van der Hoek, W; Konradsen, F; Ensink, J H; Mudasser, M; Jensen, P K

    2001-01-01

    In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water reservoirs is to use the water that has seeped from the irrigation canals and irrigated fields and that has formed a small layer of fresh water on top of the brackish groundwater. The objective of this study was to assess whether use of irrigation seepage water for drinking results in less diarrhoea than direct use of irrigation water and how irrigation water management would impact on health. The study was undertaken in an irrigated area in the southern Punjab, Pakistan. Over a one-year period, drinking water sources used and diarrhoea episodes were recorded each day for all individuals of 200 households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained by the generally poor quality of water in the in-house storage vessels, reflecting considerable in-house contamination of drinking water. Risk factors for diarrhoea were absence of a water connection and water storage facility, lack of a toilet, low standard of hygiene, and low socio-economic status. The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water was used (relative risk 1.68; 95% CI 1.31-2.15). For people with less water available the direction of the association between water quality and diarrhoea was different (relative risk 0.80; 95% CI 0

  5. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  6. Optimization strategies for improving irrigation water management of lower jhelum canal

    International Nuclear Information System (INIS)

    Rashid, M.U.

    2015-01-01

    The paper includes computing crop water requirement, identification of problems and optimization strategies for improved irrigation water management of a canal command. Lower Jhelum Canal (LJC) System was selected as a case study. Possible strategies for optimization are enhancing irrigation water productivity by high value and high yield crops, adoption of resource conservation interventions (RCIs) at the farm level, improving irrigation system efficiency and its management. Estimation of daily reference evapotranspiration of LJC command was carried out by Penman Montieth -2000 method and metrological data of Sargodha for the period 1999 to 2010 was used. Crop water requirements were computed from reference evapotranspiration, crop coefficients and periods of crops for existing cropping pattern. The comparison of the crop water requirements and available water supplies indicated shortage of more than 51% in Kharif and 54% in Rabi seasons. The gap between requirements and supplies is fulfilled by groundwater in the command. The structural measures identified in the present study for improving canal management include rationalization of canal capacities in keeping with the current water requirements and availability, rehabilitation and remodeling of canal network and lining of distributaries and minors in saline groundwater areas. An array of measures and practices identified for improved water management at the farm level include: improvement and lining of watercourses, proper farm design and layout, adoption of resource conservation technologies involving laser land leveling, zero tillage, and bed-furrow irrigation method. Adopting proper cropping systems considering land suitability and capacity building of farming community in improved soil, crop and water management technologies would enhance the water productivity in an effective and sustainable manner. (author)

  7. Safe and high quality food production using low quality waters and improved irrigation systems and management

    DEFF Research Database (Denmark)

    Plauborg, Finn; Andersen, Mathias Neumann; Liu, Fulai

    2010-01-01

    uneven irrigation patterns can increase the water use efficiency as well as the quality of vegetable crops. Furthermore, recent innovations in the water treatment and irrigation industry have shown potential for the use of low quality water resources, such as reclaimed water or surface water in peri...

  8. Maximizing the value of limited irrigation water: USDA researchers study how producers on limited irrigation can save water and be profitable

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  9. Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production.

    Science.gov (United States)

    Estrada-Acosta, M; Jiménez, M; Chaidez, C; León-Félix, J; Castro-Del Campo, N

    2014-07-01

    The implementation of good agricultural practices (GAP) from irrigation water to the tomato packaging process enhances the safety of fresh produce and its value throughout the food chain. The aim of the present study was to show that fresh produce farms that apply and enforce GAP could reduce the presence of Salmonella in finished produce. Samples were collected biweekly from six packing houses from the central region of Sinaloa, México, for the isolation of Salmonella spp by the ISO 6579:2002 method, and the isolated strains were serotyped and genotyped by the Kauffmman-White scheme and pulsed field gel electrophoresis (PFGE), respectively. Salmonella strains were detected in 13 (36.1 %) irrigation water samples, while only two tomato samples were positive (5.5 %). Eight different serotypes were identified in irrigation water, and Salmonella Oranienburg (34 %) was the most prevalent; however, only Salmonella Agona and Salmonella Weltevreden were present on tomatoes. Salmonella Oranienburg was the most widely dispersed and variable serotype, with 10 different PFGE profiles. Salmonella Weltevreden was isolated from both types of samples, albeit with distinct genetic profiles, implying that the sources of contamination differ. These results confirm the utility of implementing good agricultural practices to reduce Salmonella contamination in irrigation water and the packaging process.

  10. Varietal improvement of irrigated rice under minimal water conditions

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Marziah Mahmood; Sobri Hussein

    2010-01-01

    Varietal improvement of irrigated rice under minimal water condition is a research project under Program Research of Sustainable Production of High Yielding Irrigated Rice under Minimal Water Input (IRPA- 01-01-03-0000/ PR0068/ 0504). Several agencies were involved in this project such as Malaysian Nuclear Agency (MNA), Malaysian Agricultural Research and Development Institute (MARDI), Universiti Putra Malaysia (UPM) and Ministry of Agriculture (MOA). The project started in early 2004 with approved IRPA fund of RM 275,000.00 for 3 years. The main objective of the project is to generate superior genotypes for minimal water requirement through induced mutation techniques. A cultivated rice Oryza sativa cv MR219 treated with gamma radiation at 300 and 400 Gray were used in the experiment. Two hundred gm M2 seeds from each dose were screened under minimal water stress in greenhouse at Mardi Seberang Perai. Five hundred panicles with good filled grains were selected for paddy field screening with simulate precise water stress regime. Thirty eight potential lines with required adaptive traits were selected in M3. After several series of selection, 12 promising mutant line were observed tolerance to minimal water stress where two promising mutant lines designated as MR219-4 and MR219-9 were selected for further testing under several stress environments. (author)

  11. Water quality in irrigation and drainage networks of Thessaloniki plain in Greece related to land use, water management, and agroecosystem protection.

    Science.gov (United States)

    Litskas, Vassilis D; Aschonitis, Vassilis G; Antonopoulos, Vassilis Z

    2010-04-01

    A representative agricultural area of 150 ha located in a protected ecosystem (Axios River Delta, Thermaikos Gulf-N. Aegean, Greece) was selected in order to investigate water quality parameters [pH, electrical conductivity (EC(w)), NO(3)-N, NH(4)-N, total phosphorus (TP)] in irrigation and drainage water. In the study area, the cultivated crops are mainly rice, maize, cotton, and fodder. Surface irrigation methods are applied using open channels network, and irrigation water is supplied by Axios River, which is facing pollution problems. The return flow from surface runoff and the surplus of irrigation water are collected to drainage network and disposed to Thermaikos Gulf. A 2-year study (2006-2007) was conducted in order to evaluate the effects of land use and irrigation water management on the drainage water quality. The average pH and NO(3)-N concentration was higher in the irrigation water (8.0 and 1.3 mg/L, respectively) than that in the drainage water (7.6 and 1.0 mg/L, respectively). The average EC(W), NH(4)-N, and TP concentration was higher in the drainage water (1,754 muS/cm, 90.3 microg/L, and 0.2 mg/L, respectively) than that in the irrigation water (477.1 muS/cm, 46.7 microg/L, and 0.1 mg/L, respectively). Average irrigation efficiency was estimated at 47% and 51% in 2006 and 2007 growing seasons (April-October), respectively. The loads of NO(3)-N in both seasons were higher in the irrigation water (35.1 kg/ha in 2006 and 24.9 kg/ha in 2007) than those in the drainage water (8.1 kg/ha in 2006 and 7.6 kg/ha in 2007). The load of TP was higher in the irrigation water in season 2006 (2.8 kg/ha) than that in the drainage water (1.1 kg/ha). Total phosphorus load in 2007 was equal in irrigation and drainage water (1.2 kg/ha). Wetland conditions, due to rice irrigation regime, drainage network characteristics, and the crop distribution in the study area, affect the drainage water ending in the protected ecosystem of Thermaikos Gulf.

  12. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    Science.gov (United States)

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  13. Effects of seedbed preparation, irrigation, and water harvesting of seedling emergence at the Nevada Test Site

    International Nuclear Information System (INIS)

    Winkel, V.K.; Ostler, W.K.; Gabbert, W.D.; Lyon, G.E.

    1994-02-01

    Approximately 800 hectares on the US Department of Energy Nevada Test Site and vicinity are contaminated with plutonium. As part of a cleanup effort, both the indigenous vegetation and the top 5--10 cm of soil may be removed, and the soil may or may not be replaced. Technologies must be developed to stabilize and revegetate these lands. A study was developed to determine adaptable plant species, methods to prepare seedbeds for direct seeding and water harvesting, and proper irrigation rates. Plots were cleared of indigenous vegetation, and then prepared with various seedbed/water harvesting treatments including, pitting, land imprinting, and mulching. Other plots were treated with large water harvesting structures. Three irrigation treatments were superimposed over the seedbed/water harvesting treatments. Seedling emergence data was collected, and the treatment combinations compared. Supporting meteorological and soil data were collected with an automatic data-logger. Specific data included precipitation, and air temperature. In a year of above-average precipitation, irrigation did not generally aid germination and emergence of seeded species, and only slightly increased densities of species from the native seedbank. With the exception of increased shrub seedling densities in desert strips, there were no strong seedbed preparation/water harvesting treatment effects. In years of above-average rainfall, mulching and water harvesting treatments, irrigation may not be necessary to insure adequate germination and emergence of adapted perennial grasses, forbs, and shrubs in the Mojave/Great Basin Transition Desert. Future collection of survival data will determine whether a maintenance irrigation program is necessary to ensure establishmnent of native plants

  14. Factors Affecting the Ability of Agriculture to Pay Irrigation-Water Costs

    Energy Technology Data Exchange (ETDEWEB)

    Hagood, M. A. [Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome (Italy)

    1967-11-15

    There are no universally acceptable standard criteria for determining how much agriculture can pay for irrigation water. Justification of cost will depend upon the country's need to develop its soil and water resources for food, for international trade, and for its cumulative effect on other industries in comparison with other possible uses and their over-all contributions to the economy. Social and political conditions often have as much or more influence on development cost decisions than do strictly economic analyses. Many studies indicate that US $0.10/1000 US gal is an upper limit of acceptable costs for developing irrigation water at present economic levels. Under private development and on projects where water users must pay total water costs, methods are available for making feasibility budgets based on present prices. Because of inflation, world food shortage, recessions, future population and other unknown factors, it is hazardous to predict how much farmers or agriculture can pay for irrigation water. Better utilization of water available now offers opportunities for ''developing'' sources at costs much less than those for sources such as sea-water conversion. (author)

  15. Developing a Water Quality Index (WQI) for an Irrigation Dam.

    Science.gov (United States)

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-04-29

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl - , NO₃, SO₄, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.

  16. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  17. Farmers' laws and irrigation : water rights and dispute management in the hills of Nepal

    NARCIS (Netherlands)

    Poudel, R.

    2000-01-01

    The title of my Thesis is "Farmers' Laws and Irrigation: Water Rights and Dispute Management in the Hills of Nepal". This is based on a research I conducted in the Thulotar Kulo irrigation system in Nepal, during 1997 and 1998. Thulotar Kulo is a farmer-managed irrigation

  18. Gypsiferous mine water use in irrigation on rehabilitated open-cast mine land: Crop production, soil water and salt balance

    OpenAIRE

    Annandale, J.; Jovanovic, N.; Pretorius, J.; Lorentz, S.; Rethman, N.; Tanner, P.

    2001-01-01

    The use of gypsiferous mine water for irrigation of agricultural crops is a promising technology, which could alleviate a shortage of irrigation water and address the problem of disposal of mine effluent. A field trial was established at Kleinkopje Colliery in Witbank (Mpumalanga Province, South Africa) during the 1997-1998 season. Sugar beans and wheat were irrigated with three center pivots, on both virgin and rehabilitated land. The objectives were to determine crop response to irrigation ...

  19. Assessment of water quality from water harvesting using small farm reservoir for irrigation

    Science.gov (United States)

    Dewi, W. S.; Komariah; Samsuri, I. Y.; Senge, M.

    2018-03-01

    This study aims to assess the quality of rainfall-runoff water harvesting using small farm reservoir (SFR) for irrigation. Water quality assessment criteria based on RI Government Regulation number 82 the year 2001 on Water Quality Management and Pollution Control, and FAO Irrigation Water Quality Guidelines 1985. The experiment was conducted in the dry land of Wonosari Village, Gondangrejo District, Karanganyar Regency. SFR size was 10 m x 3 m x 2 m. Water quality measurements are done every week, ten times. Water samples were taken at 6 points, namely: distance of 2.5 m, 5 m, and 7.5 m from the inlet, at depth 25 cm and 175 cm from surface water. In each sampling point replicated three times. Water quality parameters include dissolved oxygen (DO), Turbidity (TSS), water pH, Nitrate (NO3), and Phosphate. The results show that water harvesting that collected in SFR meets both standards quality used, so the water is feasible for agricultural irrigation. The average value of harvested water was DO 2.6 mg/l, TSS 62.7 mg/l, pH 6.6, P 5.3 mg/l and NO3 0.16 mg/l. Rainfall-runoff water harvesting using SFR prospectus for increasing save water availability for irrigation.

  20. Monitoring plant water status and rooting depth for precision irrigation in the vineyards of Classic Karst

    Science.gov (United States)

    Savi, Tadeja; Moretti, Elisa; Dal Borgo, Anna; Petruzzellis, Francesco; Stenni, Barbara; Bertoncin, Paolo; Dreossi, Giuliano; Zini, Luca; Martellos, Stefano; Nardini, Andrea

    2017-04-01

    δ18O was about -6‰ and a significantly lower value was recorded after the irrigation treatments (-7.2‰)), highlighting absorption of irrigation water (-8‰)) by plants. However, Ψmin and yield of irrigated and non-irrigated grapevines were not significantly different. Interestingly, Ψmin and in particular Ψpd, were find to be slightly more negative in the MV compared to YV. On the other hand, gL measured in July, if compared to that of the spring period, decreased by about 92% in MV, but only about 70% in YV, suggesting a relatively more anisohydric and isohydric behavior in the two groups of plants, respectively. Our data demonstrate the feasibility of the development of precision irrigation methods in karstic areas, as based on physiological parameters reflecting actual water needs of plants (Ψmin), which would assure a more sustainable management and significative savings of the, already limited, water resource.

  1. [Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China].

    Science.gov (United States)

    Huang, Zhi-gang; Wang, Xiao-li; Xiao, Ye; Yang, Fei; Wang, Chen-xi

    2015-01-01

    Based on meteorological data from China national weather stations and climate scenario grid data through regional climate model provided by National Climate Center, rice water requirement was calculated by using McCloud model and Penman-Monteith model combined with crop coefficient approach. Then the rice irrigation water requirement was estimated by water balance model, and the changes of rice water requirement were analyzed. The results indicated that either in historical period or in climate scenario, rice irrigation water requirement contour lines during the whole growth period and Lmid period decreased along southwest to northeast, and the same irrigation water requirement contour line moved north with decade alternation. Rice irrigation water requirement during the whole growth period increased fluctuantly with decade alternation at 44.2 mm . 10 a-1 in historical period and 19.9 mm . 10 a-1 in climate scenario. The increase in rice irrigation water requirement during the Lmid period with decade alternation was significant in historical period, but not significant in climate scenario. Contribution rate of climate change to rice irrigation water requirement would be fluctuantly increased with decade alternation in climate scenario. Compared with 1970s, contribution rates of climate change to rice irrigation water requirement were 23.6% in 2000s and 34.4% in 2040s, which increased 14.8 x 10(8) m3 irrigation water in 2000s and would increase 21.2 x 10(8) m3 irrigation water in 2040s.

  2. INTEGRATED WATER MANAGEMENT AND DURABILITY OF LANDSCAPE OF PUBLIC IRRIGATED AREAS IN TUNISIA: CASES OF PUBLIC IRRIGATED AREAS OF CHOTT-MARIEM AND MORNAG

    OpenAIRE

    Abdelkarim Hamrita; Amira Boussetta; Rafael Mata Olmo; Mehdi Saqalli; Hichem Rejeb

    2017-01-01

    An important part of the landscape of irrigated areas in Tunisia is the result of morphology, organization and operation of agricultural policies implemented since independence, aimed at optimizing the exploitation of the best soils and natural resources, particularly water and productive crop intensification. The sustainability of the landscape of public irrigated areas has a strong bonding with the resources of irrigation water and their states of management. The scarcity of irrigation wate...

  3. Optimal crop selection and water allocation under limited water supply in irrigation

    Science.gov (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  4. Observation and Modelling of Soil Water Content Towards Improved Performance Indicators of Large Irrigation Schemes

    Science.gov (United States)

    Labbassi, Kamal; Akdim, Nadia; Alfieri, Silvia Maria; Menenti, Massimo

    2014-05-01

    Irrigation performance may be evaluated for different objectives such as equity, adequacy, or effectiveness. We are using two performance indicators: IP2 measures the consistency of the allocation of the irrigation water with gross Crop Water requirements, while IP3 measures the effectiveness of irrigation by evaluating the increase in crop transpiration between the case of no irrigation and the case of different levels of irrigation. To evaluate IP3 we need to calculate the soil water balance for the two cases. We have developed a system based on the hydrological model SWAP (Soil Water atmosphere Plant) to calculate spatial and temporal patterns of crop transpiration T(x, y, t) and of the vertical distribution of soil water content θ(x, y, z, t). On one hand, in the absence of ground measurement of soil water content to validate and evaluate the precision of the estimated one, a possibility would be to use satellite retrievals of top soil water content, such as the data to be provided by SMAP. On the other hand, to calculate IP3 we need root zone rather than top soil water content. In principle, we could use the model SWAP to establish a relationship between the top soil and root zone water content. Such relationship could be a simple empirical one or a data assimilation procedure. In our study area (Doukkala- Morocco) we have assessed the consistency of the water allocation with the actual irrigated area and crop water requirements (CWR) by using a combination of multispectral satellite image time series (i,e RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season). To obtain IP2 (x, y, t) we need to determine ETc (x, y, t). We have applied two (semi)empirical approaches: the first one is the Kc-NDVI method, based on the correlation between the Near Difference Vegetation Index (NDVI) and the value of crop coefficient (kc); the second one is the analytical approach based on the direct application of Penman

  5. Income Distribution Impacts of Irrigation Water Distribution Policy

    Science.gov (United States)

    Sampath, Rajan K.

    1984-06-01

    In the majority of lesser developed countries (LDC's) there is acute inequality in income distribution in the rural sector, particularly between large and small farms on the one hand and between land owners and the landless on the other. Irrigation water distribution policy of the government is both an economic and political problem. It has both equity and efficiency implications. It has effects on both the level and distribution of income. This paper deals with the conditions under which using water redistribution as an effective governmental policy variable can reduce inequality in the distribution of income. This paper also deals with the relationship between the objectives of equity and efficiency in water distribution under different objective realities, such as dualistic versus nondualistic conditions, two-sector versus three-sector modeling, optimum versus equal water distribution, specifically to derive the conditions under which promotion of equity promotes efficiency and vice versa and the conditions under which it does not.

  6. Economic Valuation of Sufficient and Guaranteed Irrigation Water Supply for Paddy Farms of Guilan Province

    Directory of Open Access Journals (Sweden)

    Mohammad Kavoosi Kalashami

    2014-08-01

    Full Text Available Cultivation of the strategic crop of rice highly depends to the existence of sufficient and guaranteed irrigation water, and water shortage stresses have irreparable effects on yield and quality of productions. Decrease of the Sefidrud river inflow in Guilan province which is the main source of supplying irrigation water for 171 thousand hectares under rice cropping area of this province, has been challenged sufficient and guaranteed irrigation water supply in many regions of mentioned province. Hence, in present study estimating the value that paddy farmers place on sufficient and guaranteed irrigation water supply has been considered. Economic valuation of sufficient and guaranteed irrigation water supply improves water resource management policies in demand side. Requested data set were obtained on the base of a survey and are collected from 224 paddy farms in rural regions that faced with irrigation water shortages. Then, using open-ended valuation approach and estimation of Tobit model via ML and two stages Heckman approach, eliciting paddy farmers' willingness to pay for sufficient and guaranteed irrigation water supply has been accomplished. Results revealed that farmers in investigated regions willing to pay 26.49 percent more than present costs of providing irrigation water in order to have sufficient and guaranteed irrigation water.

  7. Irrigation, risk aversion, and water right priority under water supply uncertainty

    Science.gov (United States)

    Li, Man; Xu, Wenchao; Rosegrant, Mark W.

    2017-09-01

    This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  8. Uptake of antibiotics from irrigation water by plants

    DEFF Research Database (Denmark)

    Azanu, David; Mortey, Christiana; Darko, Godfred

    2016-01-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through...... tested concentrations of 0.1-15 mg L(-1). Tetracycline was detected in all plant samples, at concentrations ranging from 4.4 to 28.3 ng/g in lettuce and 12.0-36.8 ng g(-1) fresh weight in carrots. Amoxicillin showed absorption with concentrations ranging from 13.7 ng g(-1) to 45.2 ng g(-1) for the plant...

  9. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  10. Quantifying runoff water quality characteristics from nurseries and avocado groves subjected to altered irrigation and fertilizer regimes

    Science.gov (United States)

    Samant, S. A.; Beighley, R. E.

    2007-12-01

    In agriculture, improper, excessive or poorly timed irrigation and fertilizer applications can result in increased pollutants in runoff and degraded water quality. Specifically, the cultivation of salt sensitive plants and nurseries require significant irrigation and fertilizer that leads to high nutrient leaching. In southern California, a large producer of Avocados and nursery plant, waterways are often subjected to elevated nutrient concentrations, which stress the aquatic ecosystem. In this research, the specific objectives are to determine optimal irrigation and fertilizer application rates for minimizing nutrient and sediment export from avocado groves and nurseries. Altered irrigation and fertilizer application experiments will be implemented and monitored at the San Diego State University's Santa Margarita Ecological Reserve, which contains a 12 ha avocado grove and newly constructed 0.4 ha nursery. The study will last for twelve months, with runoff from natural rainfall or irrigation sampled and analyzed for nutrient concentrations on a monthly basis. The growth rate, leaf nutrient content and plant yield will also be monitored monthly. The nursery site is divided into eight plots (13.5-m x 13.5-m), with each plot containing 1200 plants consisting of four commonly used landscaping varieties in southern California. The avocado grove of the Hass variety is divided into four 1-ha plots. The experimental plots represent combinations of irrigation and fertilization practices with different methods and rates. In all cases, irrigation is fully automated based on soil moisture. To assess the effectiveness of the altered irrigation and fertilizer strategies, runoff water quality and plant yield will be compared to controlled treatments. This research is intended to provide a better understanding of how irrigation and fertilizer management can be used for the long-term reduction of nutrients in the Santa Margarita Watershed, which in turn will lead to improved

  11. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  12. THE CURRENT SITUATION OF WATER RESOURCES IN IRRIGATED AGRICULTURE OF UZBEKISTAN

    OpenAIRE

    Djalalov, Sandjar

    1998-01-01

    Irrigation in Uzbekistan is of great importance since the country is an arid zone. The use of water in agriculture is described and its relationship as a constraint to economic development discussed. The current technical and organizational characteristics of irrigation systems need study and analysis to identify opportunities for improvements. The characteristics of demand for water at the farm level are described and irrigation and land improvement activities are outlined. Reform of water u...

  13. Mismanagement of Irrigation Water and Landslips in Yourjogh, Pakistan

    Directory of Open Access Journals (Sweden)

    Jawad Ali

    2017-05-01

    Full Text Available Risks and hazards associated with climate change and geological factors, especially in the world's youngest mountains, are inevitable and may have been exacerbated in recent decades. However reports about increased landslips and landslides in some areas are being presented as examples to argue that most natural hazards in mountain areas are due to climate change. Based on a field study in the Yourjogh area of Chitral District in Pakistan, we argue that this discourse is based on generalized conclusions that do not hold in all cases and for all types of disasters. Our study challenges the climate change discourse as disregarding the political dimension of water management that also contributes to landslides and landslips in Pakistan's mountainous regions. The climate change discourse has taken the politics out of external-donor-led development interventions that replaced traditional irrigation management practices and institutions with an arrangement in which external development agencies and the state control crucial economic and social processes that shape the distribution of water. This not only depoliticizes disasters and their effects but also leads to further mismanagement of abundantly available irrigation water, contributing to the frequent occurrence of landslips in our study area. We conclude that attributing hazards only to climatic or geological factors leaves little room to promote locally appropriate solutions for locally created hazards.

  14. Recycling of canteen waste water for irrigation purpose

    International Nuclear Information System (INIS)

    Ahmad, J.

    2005-01-01

    Recycling of wastewater of a canteen was done at Attock refinery Limited, Rawalpindi during 2002. The wastewater of the refinery canteen was recycled after a long process and was reused for irrigation of nearby garden and other landscape plants. The average outflow of the wastewater from the canteen was calculated as 4000 liters/day. Laboratory analysis for the quality of wastewater was conducted and it was found that suspended solid. Chemical Oxygen demand (COD) and biochemical oxygen demand (BOD) of the wastewater were above the National Environmental Quality Standards (NEQS) limits. Treatment system employed was composed of screening and settling tank for removing the suspended solids and aeration for decreasing the COD and BOD. It was a low cost system in which the materials used were mostly taken from the redundant stock. Air was given for aeration with the help of a compressor. The treated water was tested in the laboratory for the priority parameters i.e. temperature, pH, BOD, COD, Total suspended solids (TSS), Total dissolved (TDS), oil and grease and Phenols. These parameters were compared with the National Environmental Quality Standards (NEQS). Treated water was used for irrigation of the nearby garden and landscape. The recycling process was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was processes was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was recycled with a daily saving of Rs.100 at the rate of Rs.1/10 G water that was taken from market survey. (author)

  15. Simulated Impacts of Climate Change on Water Use and Yield of Irrigated Sugarcane in South Africa

    Science.gov (United States)

    Jones, M.R; Singels, A.; Ruane, A. C.

    2015-01-01

    Reliable predictions of climate change impacts on water use, irrigation requirements and yields of irrigated sugarcane in South Africa (a water-scarce country) are necessary to plan adaptation strategies. Although previous work has been done in this regard, methodologies and results vary considerably. The objectives were (1) to estimate likely impacts of climate change on sugarcane yields, water use and irrigation demand at three irrigated sugarcane production sites in South Africa (Malelane, Pongola and La Mercy) for current (1980-2010) and future (2070-2100) climate scenarios, using an approach based on the Agricultural Model Inter-comparison and Improvement Project (AgMIP) protocols; and (2) to assess the suitability of this methodology for investigating climate change impacts on sugarcane production. Future climate datasets were generated using the Delta downscaling method and three Global Circulation Models (GCMs) assuming atmospheric CO2 concentration [CO2] of 734 ppm(A2 emissions scenario). Yield and water use were simulated using the DSSAT-Canegro v4.5 model. Irrigated cane yields are expected to increase at all three sites (between 11 and 14%), primarily due to increased interception of radiation as a result of accelerated canopy development. Evapotranspiration and irrigation requirements increased by 11% due to increased canopy cover and evaporative demand. Sucrose yields are expected to decline because of increased consumption of photo-assimilate for structural growth and maintenance respiration. Crop responses in canopy development and yield formation differed markedly between the crop cycles investigated. Possible agronomic implications of these results include reduced weed control costs due to shortened periods of partial canopy, a need for improved efficiency of irrigation to counter increased demands, and adjustments to ripening and harvest practices to counter decreased cane quality and optimize productivity. Although the Delta climate data

  16. Irrigation water as a source of drinking water: is safe use possible?

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Konradsen, F; Ensink, J H

    2001-01-01

    BACKGROUND: In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water...... households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. RESULTS: Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained....... The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water...

  17. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  18. Gated or ungated : water control in government-built irrigation systems : comparative research in Nepal

    NARCIS (Netherlands)

    Pradhan, T.M.S.

    1996-01-01


    The control, allocation and distribution, of water is the core process of an irrigation system. It is the process by which the available water is divided and distributed to the smaller irrigation units within the system, which in turn is distributed further down to the individual water

  19. Correlation among fluoride and metals in irrigation water and soils of ...

    African Journals Online (AJOL)

    Correlation among fluoride and metals in irrigation water and soils of Ethiopian Rift Valley. ... The fluoride concentrations in water samples were found in the range of 0.14-8.0 mg/L which is below the WHO limit of fluoride concentration for irrigation (less than 10 mg/L). ... KEY WORDS: Fluoride, Metals, Water, Soil, Ethiopia.

  20. Economic impacts on irrigated agriculture of water conservation programs in drought

    Science.gov (United States)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  1. Soil water sensors for irrigation scheduling:Can they deliver a management allowed depletion?

    Science.gov (United States)

    Soil water sensors are widely marketed in the farming sector as aids for irrigation scheduling. Sensors report either volumetric water content (theta-v, m**3 m**-3) or soil water potential, with theta-v sensors being by far the most common. To obtain yield and quality goals, irrigations are schedule...

  2. The crop water stress index (CWSI) for drip irrigated cotton in a semi ...

    African Journals Online (AJOL)

    The crop water stress index (CWSI) for drip irrigated cotton in a semi-arid region of Turkey. ... Four irrigation treatments designated as full (I100) with no water stress and slight (DI70), moderate (DI50) and strong water ... from 32 Countries:.

  3. Analysis of grey-water used for irrigating vegetables and possible ...

    African Journals Online (AJOL)

    Analysis of grey-water used for irrigating vegetables and possible effects on soils in the ... The concentrations of nutrients and heavy metals found in the grey-water ... in order to lower the salt content and to improve the irrigation water quality.

  4. Potential microbial risk factors related to soil amendments and irrigation water of potato crops.

    Science.gov (United States)

    Selma, M V; Allende, A; López-Gálvez, F; Elizaquível, P; Aznar, R; Gil, M I

    2007-12-01

    This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons. The natural microbiota and potentially pathogenic micro-organisms were evaluated in the soil amendment, irrigation water, soil and produce. Uncomposted amendments and residual and creek water samples showed the highest microbial counts. The microbial load of potatoes harvested in spring was similar among the tested farms despite the diverse microbial levels of Listeria spp. and faecal coliforms in the potential risk sources. However, differences in total coliform load of potato were found between farms cultivated in the autumn. Immunochromatographic rapid tests and the BAM's reference method (Bacteriological Analytical Manual; AOAC International) were used to detect Escherichia coli O157:H7 from the potential risk sources and produce. Confirmation of the positive results by polymerase chain reaction procedures showed that the immunochromatographic assay was not reliable as it led to false-positive results. The potentially pathogenic micro-organisms of soil amendment, irrigation water and soil samples changed with the harvest seasons and the use of different agricultural practices. However, the microbial load of the produce was not always influenced by these risk sources. Improvements in environmental sample preparation are needed to avoid interferences in the use of immunochromatographic rapid tests. The potential microbial risk sources of fresh produce should be regularly controlled using reliable detection methods to guarantee their microbial safety.

  5. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  6. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  7. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  8. Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils

    Directory of Open Access Journals (Sweden)

    Le Qi

    2018-05-01

    Full Text Available In this study, we investigated the greenhouse gas emission under different application of biochar in the conditions of continuous flooding and water-saving irrigation in paddy fields, whereas, plant and soil carbon sequestration were considered in the calculation of net greenhouse gas emissions. The emission rates of methane (CH4, carbon dioxide (CO2, and nitrous oxide (N2O gases were simultaneously monitored once every 7–10 days using the closed-chamber method. As a whole, the net greenhouse gas emission in the water-saving irrigation was more than that of the continuous flooding irrigation conditions. Compared with the water-saving irrigation, the continuous flooding irrigation significantly increased the CH4 in the control (CK and chemical fertilizer treatments (NPK. The CO2 emissions increased in each treatment of the water-saving irrigation condition, especially in the chemical fertilizer treatments (NPKFW. Similarly, the soil N2O emission was very sensitive to the water-saving irrigation condition. An interesting finding is that the biochar application in soils cut down the soil N2O emission more significantly than NPKFW in the water-saving irrigation condition while the effect of biochar increased under the continuous flooding irrigation condition.

  9. INFLUENCE OF DIFFERENT SOURCES OF WATER FOR IRRIGATION ON PEPPER (Capsicum annuum L. YIELD IN GLASSHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jasna Šoštarić

    2002-06-01

    Full Text Available The aim of this paper was to determine the influence of different sources of water used for irrigation on the yield of pepper hybrids Cecil F1 and Bianca F1 in the early glasshouse production for the period 1998 - 2000 in the controlled glasshouse conditions in «D.G. – PROMET», Magadenovac, Croatia. Lagoon water and well water were two main sources of water used for irrigation in this experiment. Drip irrigation system was applied for pepper production. In comparison to lagoon water, chemical analyses of well water have shown increased values of the following elements: EC, sodium, potassium, calcium, chlorine, magnesium, bicarbonate, sulphate, iron and boron. Temperature of well water was lower than the allowed minimum and therefore had direct influence on the yield decrease. Consequently, areas which have been irrigated by well water have had problems with accumulation of slime and blocking of sprinklers, disturbed soil structure, fruit deformation and decreased crop yield. Statistical data analysis was conducted by the method of covariation three factorial trial (ABC with three repetitions for each treatment. The trial showed absolute difference regarding water efficiency of irrigation water from two sources, which has also been statistically determined (P<0,05. Furthermore, statistically justified difference in the average weight of the fruit of each investigated pepper hybrid (P<0,05 has been proven. Codependence of «water for irrigation» (A and «pepper hybrid» (B, i.e. (AB is statistically significant as well, and justified at the P<0,05 limit. This means that both pepper hybrids (Cecil F1 i Bianca F1 reacted differently to lagoon water and well water. Factor «year» (C has not proven to be statistically justified, and therefore does not have any significant influence on the crop yield due to controlled conditions in the glasshouse.

  10. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  11. Evaluation of Different Rice Genotypes Tolerance to Saline Irrigation Water

    Directory of Open Access Journals (Sweden)

    S. Jafari Rad

    2015-12-01

    Full Text Available To study the responses of seven rice genotypes (Khazar, SA13, Deylam, Sange Joe, Sepidrud, 831 and T5 to different levels of irrigation water salinity, and determining grain yield based on tolerance indices, a CRD based factorial pot experiment with five levels of irrigation water salinity (1, 2, 4, 6 and 8 dSm-1 and three replications was carried out at Rice Research Institute of Iran in 2011. Indices such as SSI, TOL, MP, GMP, HM, STI, YI and YSI were calculated and their correlations with grain yield were estimated for both stress and non-stress conditions. Results indicated significant differences among genotypes and the indices within both conditions. Results also showed that STI and MP indices could be considered as the best indices to screen salt tolerant genotypes. Among the genotypes used in the experiment, T5 produced the highest yield in both non-stress (19.71 g/plant and stress (10.69 g/plant conditions, while the lowest yield in normal (11.84 g/plant and stressful (4.29 g/plant conditions was recorded for Deylam and Khazar, respectively. The highest and the lowest percentage of yield reduction were found in Khazar (69.49% and Sange Joe (31.48% in stressful conditions, respectively. Overall, genotypes T5, 831, Sepidrud and Sange Joe can probably be considered as superior high yielding genotypes in both saline and non-saline conditions for further research.

  12. Field trials show the fertilizer value of nitrogen in irrigation water

    Directory of Open Access Journals (Sweden)

    Mike Cahn

    2017-04-01

    Full Text Available Increased regulatory activity designed to protect groundwater from degradation by nitrate-nitrogen (NO3-N is focusing attention on the efficiency of agricultural use of nitrogen (N. One area drawing scrutiny is the way in which growers consider the NO3-N concentration of irrigation water when determining N fertilizer rates. Four drip-irrigated field studies were conducted in the Salinas Valley evaluating the impact of irrigation water NO3-N concentration and irrigation efficiency on the N uptake efficiency of lettuce and broccoli crops. Irrigation with water NO3-N concentrations from 2 to 45 milligrams per liter were compared with periodic fertigation of N fertilizer. The effect of irrigation efficiency was determined by comparing an efficient (110% to 120% of crop evapotranspiration, ETc and an inefficient (160% to 200% of ETc irrigation treatment. Across these trials, NO3-N from irrigation water was at least as efficiently used as fertilizer N; the uptake efficiency of irrigation water NO3-N averaged approximately 80%, and it was not affected by NO3-N concentration or irrigation efficiency.

  13. Use of Dehydrated Agar to Estimate Microbial Water Quality for Horticulture Irrigation.

    Science.gov (United States)

    Meador, Dustin P; Fisher, Paul R; Guy, Charles L; Harmon, Philip F; Peres, Natalia A; Teplitski, Max

    2016-07-01

    Petrifilms are dehydrated agar culture plates that have been used to quantify colony forming units (CFU) mL of either aerobic bacteria (Petrifilm-AC) or fungus (Petrifilm-YM), depending on substrate composition. Microbes in irrigation systems can indicate biofilm risk and potential clogging of irrigation emitters. The research objective was to compare counts on Petrifilms versus traditional, hydrated-agar plates using samples collected from recirculated irrigation waters and cultures of isolated known species. The estimated count (in CFU mL) from a recirculated irrigation sample after 7 d of incubation on Petrifilm-YM was only 5.5% of the count quantified using sabouraud dextrose agar (SDA) with chloramphenicol after 14 d. In a separate experiment with a known species, Petrifilm-YM did not successfully culture zoospores of . Isolates of viable zoospores were cultured successfully on potato-dextrose agar (PDA), with comparable counts with a vegetable juice medium supplemented with the antibiotics pimaricin, ampicillin, rifamycin, pentochloronitrobenzene and hymexazol (PARP-H). The quantification of pv. Begoniaceae on Petrifilm-AC was not significantly different ( < 0.05) than on PDA, but was lower than on Reasoner and Goldrich agar (R2A) or with a hemocytometer. The current formulation of Petrifilm-YM is unlikely to be a useful monitoring method for plant pathogens in irrigation water because of the inability to successfully culture oomycetes. However, Petrifilm-AC was an effective method to quantify bacteria and can provide an easy-to-use on-farm tool to monitor biofilm risk and microbial density. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Behaviour Of Saline Irrigation Water Components In Pakistani Barley And Calcareous Soil Under Scheduling Irrigation Using Neutron Scattering Technique

    International Nuclear Information System (INIS)

    RIZK, M.A.

    2010-01-01

    This study aims to investigate the behaviour of cation uptake by Pakistani barley (genotype PK-30163) as affected by saline irrigation water, as well as cation distribution within the soil profile. This experiment was carried out at Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt. The soil was transferred from Wadi Sudr (South Sinai, Egypt). It is salted affected soil (calcareous soil, EC = 4.3 dS/m) and was irrigated using ground water irrigation (12.5 dS/m). Nine used lysimeters were irrigated with three artificial saline water (0.3, 4 and 8 dS/m) using drip irrigation system. The irrigation schedule was carried out using neutron scattering technique according to the hydro physical properties of the soil. Pakistani barley (halophytic plant) was used to remove salts from the soil especially sodium cations. The cation uptake and cation distribution (Na, K, Ca, Mg) within the soil profile were studied.The data indicated that roots of barley collected within 0-15 cm layer showed high cation uptake that made the salt concentrations in this layer low. Sodium uptake ratio was 43, 37 and 47% from total cation uptake by using fresh water (0.3 dS/m), 4 and 8 dS/m, respectively. The maximum uptake for Na, K, Ca and Mg was 20.51, 19.13, 3.98 and 12.81 g/lys at 5.69, 3.05, 6.56 and 4.15 dS/m, respectively. It was found that Pakistani barley preferred Mg uptake rather than Ca uptake.

  15. Accounting for user expectations in the valuation of reliable irrigation water access in the Ethiopian highlands

    DEFF Research Database (Denmark)

    Kassahun, Habtamu Tilahun; Nicholson, Charles F.; Jacobsen, Jette Bredahl

    2016-01-01

    We estimate the willingness-to-pay (WTP) for reliable access to irrigation water for a sample of farmers in a watershed of the Ethiopian highlands who do not have prior experience with irrigation. To address the lack of previous irrigation experience, we account for underlying expectations...... of future irrigation productivity using an Integrated Choice and Latent Variable (ICLV) econometric model. We then compare the ICLV estimates with alternative models that do not account for expectations regarding productivity increases with irrigation. Our results indicate that both the ICLV and alternative...

  16. A short overview of measures for securing water resources for irrigated crop production

    DEFF Research Database (Denmark)

    Jensen, Christian Richardt; Ørum, Jens Erik; Pedersen, Søren Marcus

    2014-01-01

    Agriculture is the main user of limited fresh water resources in the world. Optimisation of agricultural water resources and their use can be obtained by both agronomical and political incentives. Important options are: reduction of the loss of irrigation water in conveyance before it reaches...... of the 'virtual water' principles so that water-rich regions secure food supply to dry regions; reduction in waste of food, feed and biofuel from post-harvest to the end consumer; changing of food composition to less water-consuming products; regulating amount of irrigation water by rationing, subsidies or water...... pricing to support water-saving measures such as use of drip, irrigation scheduling and DI. The potential for water saving for different measures is discussed and estimated. Reduction in waste of food and loss of irrigation water from conveyance source to farm both has a great potential for water saving...

  17. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    Science.gov (United States)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    SummaryAs irrigation water is an input into a production process, its demand must be 'derived'. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an attempt is made to estimate the demand for irrigation water and the resulting own-price elasticity of demand, as the uses to which water is put are spatially, temporarily and geographically diverse. Because water is not generally freely traded, what normally passes for an estimate of the own-price elasticity of demand for irrigation water is usually a well argued assumption or an estimate that is derived from a simulation model of a hypothesized producer. Such approaches tend to provide an inadequate explanation of what is an extremely complex and important relationship. An adequate explanation of the relationship between the price and the quantity demanded of water should be one that not only accords with the theoretical expectations, but also accounts for the diversity of products produced from water (which includes the management practices of farmers), the seasons in which it is used and over the region within which it is used. The objective in this article is to present a method of estimating the demand curve for irrigation water. The method uses actual field data which is collated using the Residual Method to determine the value of the marginal product of water deployed over a wide range of crops, seasons and regions. These values of the marginal products, all which must lie of the input demand schedule for water, are then ordered from the highest value to the lowest. Then, the amount of irrigation water used for each product, in each season and in each region is cumulatively summed over the range of uses according to the order of the values of the marginal products. This data, once ordered, is then used to econometrically estimate the demand schedule from which

  18. Participatory Irrigation Management and Irrigation Water Use Efficiency in Maize Production: Evidence from Zhangye City, Northwestern China

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    2017-10-01

    Full Text Available Water has become increasingly scarce in northwestern China due to climate change, economic growth and burgeoning population. Improving agriculture water use efficiency is of strategic significance in promoting socio-economic water productivity for arid and semi-arid inland river basins. Based on the household-level data collected in Zhangye City, which is located in the middle reaches of Heihe River Basin (HRB in northwestern China, irrigation water use efficiency (IWUE of maize is estimated based on stochastic frontier analysis. The impacts of influential factors, especially the participatory irrigation management (PIM through water user associations (WUAs, on IWUE were further examined. Results show that the estimated average Technical efficiency (TE and IWUE of maize production are 0.74 and 0.24, respectively. The participation level in irrigation management is very low, with only 40% of the respondents participating in WUA meetings. In addition, most have a relatively superficial understanding of the roles and management scheme of WUAs. Empirical results show that though significantly positive, the magnitude of the impact of PIM on IWUE is relatively small. Households that participated in WUA meetings achieved only 0.002% higher IWUEs than those have never participated in. WUAs are not operating with their designed objectives. Consequently, reform of the traditional management form of WUAs to make them more transparent, fair, and extensively participated in among farmers is in urgently need. In addition, we also find that water price, source of irrigation water, irrigation technology adoption and famers’ education level and farming experience also have significant positive impacts on IWUE.

  19. A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm

    Science.gov (United States)

    Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew

    2016-04-01

    The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.

  20. Long-term Effects of Different Irrigation Methods with Treated Wastewater on Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    P. Najafi

    2016-02-01

    Full Text Available Introduction: Reuse of wastewater for agricultural irrigation is increasing due to an increased demand for water resources in different parts of the world. Almost 70% of deviated water from rivers and pumped groundwater is used for agriculture. If wastewater is used for irrigation in agriculture, then the amount of discharged water from natural sources will be decreased and the flow of wastewater to the environment and its ensuing pollution will be prevented. Using wastewater in applications such as irrigation of agricultural lands has caused an increase of some exchangeable ions, salts and suspended solids (organic and mineral in the soil and has significantly affected physical, chemical and biological features. Therefore, paying attention to the soil health is important during use of wastewater when it is the source of irrigation water. In such cases, there will be some worries about pollution of harvested products, contact of farm workers with pathogenes and environmental issues in the farm. In these conditions, attention to irrigation methods along with consideration of environmental protection standards is important. Materials and Methods: In this study, the effects of treated wastewater (TW irrigation were tested on some chemical properties of soil for three years under five different irrigation treatments. The treatments were as follows: surface furrow irrigation (FI, surface drip irrigation (SDI, subsurface drip irrigation in 30 cm depth (SDI30, subsurface drip irrigation in 60 cm depth (SDI60 and bubbler irrigation (BI. At the end of the experiment, soil samples were collected from a depth of 0-30, 30-60 and 60-90 cm in order to measure the electrical conductivity (EC, pH, sodium adsorption ratio (SAR, organic matter (OM and calcium carbonate equivalent (CaCO3. Results and Discussion: According to the results of soil analysis, the soil became more saline than the beginning by applying the treatments. Generally, in two plots of urban and

  1. Introduction: Panda or Hydra? The untold stories of drip irrigation

    NARCIS (Netherlands)

    Kuper, M.; Venot, J.P.; Zwarteveen, M.; Venot, J.P.; Kuper, M.; Zwarteveen, M.

    2017-01-01

    Irrigated areas in the world are witnessing a transformation from open canal systems to more ‘modern’ irrigation methods such as drip irrigation that convey water through closed pipe systems. Initially associated with hi-tech irrigated agriculture, drip irrigation is now being used by a wide range

  2. Forest Irrigation of Tritiated Water: A Proven Tritiated Water Management Tool - 13357

    Energy Technology Data Exchange (ETDEWEB)

    Prater, Phil; Blount, Gerald; Kmetz, Thomas; Vangelas, Karen [Savannah River National Laboratory, Bldg. 773-42A, Aiken, SC 29808 (United States)

    2013-07-01

    Tritium releases from the Old Radioactive Waste Burial Ground (ORWBG) at the SRS in South Carolina has impacted groundwater and surface water. Tritiated groundwater plumes discharge into Fourmile Branch which is a small tributary of the Savannah River, a regional water resource. Taking advantage of the groundwater flow paths and the local topography a water collection and irrigation system was constructed and has been used at the SRS for over a decade to reduce these tritiated water releases to Fourmile Branch. The tritiated water is transferred to the atmosphere by evaporation from the pond surface, and after irrigation, wetted surface evaporation and evapotranspiration through the forest vegetation. Over the last decade SRS has irrigated over 120,000,000 gallons of tritiated water, which diverted over 6000 curies away from Fourmile Branch and the Savannah River. The system has been effective in reducing the flux of tritiated groundwater by approximately 70%. Mass balance studies of tritium in the forest soils before operations and over the last decade indicate that approximately 90% of the tritiated water that is irrigated is transferred to the atmosphere. Dose studies indicate that exposure to site workers and offsite maximally exposed individual is very low, approximately 6 mrem/year and 0.004 mrem/year, respectively. To consistently meet the flux reduction goal of tritium into Fourmile Branch optimization activities are proposed. These efforts will increase irrigation capacity and area. An additional 17 acres are proposed for an expansion of the area to be irrigated and a planting of approximately 40 acres of pine forest plantations is underway to expand irrigation capacity. Co-mingled with the tritiated groundwater are low concentrations of chlorinated volatile organic compounds (cVOCs), and 1,4-dioxane. Research studies and SRS field data indicate the forest irrigation system may have an added benefit of reducing the mass of these co-contaminants via

  3. Reuse potential of laundry greywater for irrigation based on growth, water and nutrient use of tomato

    Science.gov (United States)

    Misra, R. K.; Patel, J. H.; Baxi, V. R.

    2010-05-01

    SummaryGreywater is considered as a valuable resource with a high reuse potential for irrigation of household lawns and gardens. However, there are possibilities of surfactant and sodium accumulation in soil from reuse of greywater which may affect agricultural productivity and environmental sustainability adversely. We conducted a glasshouse experiment to examine variation in growth, water and nutrient use of tomato ( Lycopersicon esculentum Mill. cv. Grosse Lisse) using tap water (TW), laundry greywater (GW) and solutions of low and high concentration of a detergent surfactant (LC and HC, respectively) as irrigation treatments. Each treatment was replicated five times using a randomised block design. Measurements throughout the experiment showed greywater to be significantly more alkaline and saline than the other types of irrigation water. Although all plants received 16 irrigations over a period of 9 weeks until flowering, there were little or no significant effects of irrigation treatments on plant growth. Soil water retention following irrigation reduced significantly when plants were irrigated with GW or surfactant solutions on only three of 12 occasions. On one occasion, water use measured as evapotranspiration (ET) with GW irrigation was similar to TW, but it was significantly higher than the plants receiving HC irrigation. At harvest, various components of plant biomass and leaf area for GW irrigated plants were found to be similar or significantly higher than the TW irrigated plants with a common trend of GW ⩾ TW > LC ⩾ HC. Whole-plant concentration was measured for 12 essential plant nutrients (N, P, K, Ca, Mg, S, Fe, Cu, Mn, Zn, Mo and B) and Na (often considered as a beneficial nutrient). Irrigation treatments affected the concentration of four nutrients (P, Fe, Zn and Na) and uptake of seven nutrients (P, K, Ca, Mg, Na, Fe and B) significantly. Uptake of these seven nutrients by tomato was generally in the order GW ⩾ TW > HC ⩾ LC. GW

  4. A coupled agronomic-economic model to consider allocation of brackish irrigation water

    Science.gov (United States)

    Ben-Gal, Alon; Weikard, Hans-Peter; Shah, Syed Hamid Hussain; van der Zee, Sjoerd E. A. T. M.

    2013-05-01

    In arid and semiarid regions, irrigation water is scarce and often contains high concentrations of salts. To reduce negative effects on crop yields, the irrigated amounts must include water for leaching and therefore exceed evapotranspiration. The leachate (drainage) water returns to water sources such as rivers or groundwater aquifers and increases their level of salinity and the leaching requirement for irrigation water of any sequential user. We develop a conceptual sequential (upstream-downstream) model of irrigation that predicts crop yields and water consumption and tracks the water flow and level of salinity along a river dependent on irrigation management decisions. The model incorporates an agro-physical model of plant response to environmental conditions including feedbacks. For a system with limited water resources, the model examines the impacts of water scarcity, salinity and technically inefficient application on yields for specific crop, soil, and climate conditions. Moving beyond the formulation of a conceptual frame, we apply the model to the irrigation of Capsicum annum on Arava Sandy Loam soil. We show for this case how water application could be distributed between upstream and downstream plots or farms. We identify those situations where it is beneficial to trade water from upstream to downstream farms (assuming that the upstream farm holds the water rights). We find that water trade will improve efficiency except when loss levels are low. We compute the marginal value of water, i.e., the price water would command on a market, for different levels of water scarcity, salinity and levels of water loss.

  5. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  6. Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2009-01-01

    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  7. Soil water sensors for irrigation management-What works, what doesn't, and why

    Science.gov (United States)

    Irrigation scheduling can be greatly improved if accurate soil water content data are available. There are a plethora of available soil water sensing systems, but those that are practical for irrigation scheduling are divided into two major types: the frequency domain (capacitance) sensors and the t...

  8. Adapting irrigation management to water scarcity: constraints of plant growth, hydraulics and carbon assimilation.

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  9. Impact of different irrigation systems on water quality in peri-urban areas of Gujarat, India

    OpenAIRE

    Vangani, Ruchi; Saxena, Deepak; Gerber, Nikolaus; Mavalankar, Dileep; von Braun, Joachim

    2016-01-01

    The ever-growing population of India, along with the increasing competition for water for productive uses in different sectors - especially irrigated agriculture and related local water systems and drainage - poses a challenge in an effort to improve water quality and sanitation. In rural and peri-urban settings, where agriculture is one of the main sources of livelihood, the type of water use in irrigated agriculture has complex interactions with drinking water and sanitation. In particular,...

  10. Impacts of Irrigation and Climate Change on Water Security: Using Stakeholder Engagement to Inform a Process-based Crop Model

    Science.gov (United States)

    Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.

    2016-12-01

    hydrologic budgets. This study reports our methodology to integrate perspectives of irrigators into projections of future water use and crop growth in the LBRB. It also highlights the need for more robust social data collection methods in socio-hydrologic studies.

  11. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  12. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  13. Assessment of water use and its productivity in the Spanish irrigation district "Río Adaja"

    Science.gov (United States)

    Rodriguez-Sinobas, Leonor; Naroua, Iliassou; Sánchez-Calvo, Raúl

    2015-04-01

    A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District "Río Adaja" that has analyzed the water use efficiency and the water productivity indicators for the main crops during the first three years of operation (2010/2011, 2011/2012 and 2012/2013). A soil water balance model was applied taking into account climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman-Monteith with the application of the dual crop coefficient and by considering the readily available soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP). The results show that the irrigation district applied deficit irrigation in most crops (ARIS<1), and also improved water productivity. This was higher in 2010/2011 which showed the highest effective precipitation Pe. The IWP (€/m3) index varied among crops with the highest values for onion (4.14), potato (2.79), carrot (1.37) and barley (1.21) for the first year and, onion (1.98), potato (1.69), carrot (1.70) and barley (1.16) in the second year. Thus, these crops would be a proper cropping pattern to maximize the gross income in the irrigation district.

  14. Produced water irrigation changes the soil mesofauna community in a semiarid agroecosystem.

    Science.gov (United States)

    Ferreira, Raimundo Nonato Costa; Weber, Olmar Baller; Crisóstomo, Lindbergue Araujo

    2015-08-01

    The scarcity of water in semiarid regions requires alternative sources for irrigation to improve agricultural production. Here, we aimed to evaluate the effects of produced water from oil exploration on the structure of soil mesofauna during the dry and rainy seasons in irrigated sunflower and castor bean fields in a Brazilian semiarid region. Three irrigation treatments were applied on plots cultivated with castor beans and sunflowers: produced water treated by filtration (filtrated) or treated by reverse osmosis (reverse osmosis) and groundwater. The mesofauna under the biofuel crops was collected and identified during the dry and rainy seasons. Although the abundance and richness of the total fauna did not differ between seasons in sunflower plots, the community was altered. In castor beans, the abundance, richness, and community of mesofauna observed in plots irrigated with produced water differed from the groundwater treatment. Irrigation with produced water promotes important changes in soil fauna community that justify their assessment for the maintenance and monitoring of agroecosystems.

  15. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  16. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  17. Temporal and spatial water use on irrigated and nonirrigated pasture-based dairy farms.

    Science.gov (United States)

    Higham, C D; Horne, D; Singh, R; Kuhn-Sherlock, B; Scarsbrook, M R

    2017-08-01

    Robust information for water use on pasture-based dairy farms is critical to farmers' attempts to use water more efficiently and the improved allocation of freshwater resources to dairy farmers. To quantify the water requirements of dairy farms across regions in a practicable manner, it will be necessary to develop predictive models. The objectives of this study were to compare water use on a group of irrigated and nonirrigated farms, validate existing water use models using the data measured on the group of nonirrigated farms, and modify the model so that it can be used to predict water use on irrigated dairy farms. Water use data were collected on a group of irrigated dairy farms located in the Canterbury, New Zealand, region with the largest area under irrigation. The nonirrigated farms were located in the Manawatu region. The amount of water used for irrigation was almost 52-fold greater than the amount of all other forms of water use combined. There were large differences in measured milking parlor water use, stock drinking water, and leakage rates between the irrigated and nonirrigated farms. As expected, stock drinking water was lower on irrigated dairy farms. Irrigation lowers the dry matter percentage of pasture, ensuring that the amount of water ingested from pasture remains high throughout the year, thereby reducing the demand for drinking water. Leakage rates were different between the 2 groups of farms; 47% of stock drinking water was lost as leakage on nonirrigated farms, whereas leakage on the irrigated farms equated to only 13% of stock drinking water. These differences in leakage were thought to be related to regional differences rather than differences in irrigated versus nonirrigated farms. Existing models developed to predict milking parlor, corrected stock drinking water, and total water use on nonirrigated pasture-based dairy farms in a previous related study were tested on the data measured in the present research. As expected, these models

  18. The real water consumption of orange trees irrigated by reused water in tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Zouhaier, M C [Center de recherche du Genie Rural B.P. No. 10-2080 Ariana (Tunisia)

    1995-10-01

    Our research experiments, have been conducted in the experiment station of `Oued souhil` situated under semi-arid climate in tunisia. We have studied the real water consumption of orange trees irrigated by reused water compared the results with trees using water from well. For measuring the different parameters, to determine soil humidity and the soil apparent density, we have used respectively neutron lead `Neutron probe` and radiation gamma instruments. However, the experiments results conducted for 7 years from 1987 to 1993 - allowed the evaluation of the read consumption of orange trees using reused water and well water and the production quantity. The effect of using the two different quality of water with different irrigation systems have been also studied. 6 figs., 4 tabs.

  19. The real water consumption of orange trees irrigated by reused water in tunisia

    International Nuclear Information System (INIS)

    Zouhaier, M.C.

    1995-01-01

    Our research experiments, have been conducted in the experiment station of 'Oued souhil' situated under semi-arid climate in tunisia. We have studied the real water consumption of orange trees irrigated by reused water compared the results with trees using water from well. For measuring the different parameters, to determine soil humidity and the soil apparent density, we have used respectively neutron lead 'Neutron probe' and radiation gamma instruments. However, the experiments results conducted for 7 years from 1987 to 1993 - allowed the evaluation of the read consumption of orange trees using reused water and well water and the production quantity. The effect of using the two different quality of water with different irrigation systems have been also studied. 6 figs., 4 tabs

  20. Awareness of Measures for Reducing Health Risk of Using Low-Quality Irrigation Water in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mayilla, Winfrida; Magayane, Flavianus; Konradsen, Flemming

    2016-01-01

    The study examined the awareness of farmers, vegetable traders, and consumers on the health risk reduction measures when using low-quality water in irrigated agriculture, and identifies farmers’ perceptions of the effectiveness of the health risk reduction measures. Data collection methods includ...... that health education targeting at specific exposed group and their social-demographic characteristics is the potential measure in raising awareness of the potential health risk reduction measures when using low-quality irrigation water in irrigated agriculture.......The study examined the awareness of farmers, vegetable traders, and consumers on the health risk reduction measures when using low-quality water in irrigated agriculture, and identifies farmers’ perceptions of the effectiveness of the health risk reduction measures. Data collection methods included...... a questionnaire survey with 60 farmers, 60 vegetable traders, and 70 consumers and four focus group discussions. General results show a low level of awareness of the health risk reduction measures in using low-quality irrigation water in all respondents’ categories. However, health protection measures...

  1. An example of treated waste water use for soil irrigation in the SAFIR project.

    Science.gov (United States)

    Cary, L.; Jovanovic, Z.; Stikic, R.; Blagojevic, S.; Kloppmann, W.

    2009-04-01

    focused on the fully irrigated plots because the potential impact of irrigation water quality on soil and plant quality are expected higher for fully irrigated soils compared to other irrigation strategies. Samples were taken within the soil volume of potential influence around each of the drip emitters. Potato (Solanum tuberosum) variety Liseta was used for investigation. The seeds tubers were planted in the similar period in all three seasons (middle of Spring) at the depth of 10 cm. Two irrigation methods were used in all three seasons: drip and furrow systems. Water for irrigation was supplied from a channel which is located 100m away from the experimental field. For all experiments, three sampling campaigns were foreseen for each of the three irrigation seasons: at pre-planting, at the end of irrigation, and at harvest. After three campaigns, the results show a variability of the elements concentrations in water and soil between the three years. The soil appears significantly depleted in CaO (a mean of -40 %), MgO (-20%), Na (-30%), and Sr (-10%) and Pb (-12%). On the contrary, concentrations of Mn, Ni, V and Li slightly increase (+15 to 20%) whereas SiO2, Al2O3, Fe2O3, Cu and Cr do not significantly increase (a mean of + 10%). Knowing that potatoes do need between 40 to 50 kg per ha of CaO and 15 to 30 kg per ha of MgO (Soltner, 1999), potato absorption of Ca and Mg may be the main sink for both elements. A statistical analysis (ACP) shows precisely a Ca-Mg-Sr pole which explains more than 90 % of the second component; the first component being explained by Al2O3, SiO2, Fe2O3 and TiO2 at the same percentage. Antonious, G.F. and Snyder, J.C., 2007. Accumulation of heavy metals in plants and potential phytoremediation of lead by potato, Solanum tuberosum L. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 42(6): 811-816. Bouwer, H., 2000. Groundwater problems caused by irrigation with sewage effluent. Journal

  2. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  3. Irrigation efficiency and water-policy implications for river basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2014-04-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  4. Design of a micro-irrigation system based on the control volume method

    Directory of Open Access Journals (Sweden)

    Chasseriaux G.

    2006-01-01

    Full Text Available A micro-irrigation system design based on control volume method using the back step procedure is presented in this study. The proposed numerical method is simple and consists of delimiting an elementary volume of the lateral equipped with an emitter, called « control volume » on which the conservation equations of the fl uid hydrodynamicʼs are applied. Control volume method is an iterative method to calculate velocity and pressure step by step throughout the micro-irrigation network based on an assumed pressure at the end of the line. A simple microcomputer program was used for the calculation and the convergence was very fast. When the average water requirement of plants was estimated, it is easy to choose the sum of the average emitter discharge as the total average fl ow rate of the network. The design consists of exploring an economical and effi cient network to deliver uniformly the input fl ow rate for all emitters. This program permitted the design of a large complex network of thousands of emitters very quickly. Three subroutine programs calculate velocity and pressure at a lateral pipe and submain pipe. The control volume method has already been tested for lateral design, the results from which were validated by other methods as fi nite element method, so it permits to determine the optimal design for such micro-irrigation network

  5. On the waterfront : water distribution, technology and agrarian change in a South Indian canal irrigation system

    OpenAIRE

    Mollinga, P.P.

    1998-01-01

    This book discusses water distribution in the Tungabhadra Left Bank Canal irrigation system in Raichur district, Karnataka, India. The system is located in interior South India, where rainfall is limited (approximately 600 mm annually) and extremely variable. The region suffered from failed harvests and famines in the past. A large scale irrigation system was constructed to solve these problems. The system is operational since 1953 and was completed in 1968. The area to be irrigated ...

  6. More crop per drop: Improving our knowledge on crop water requirements for irrigation scheduling

    CSIR Research Space (South Africa)

    Gush, Mark B

    2015-10-01

    Full Text Available South Africa is a dry country facing climate change, population expansion and economic growth, resulting in increasing water scarcity and competition for water. The irrigated agriculture and forestry sectors have been allocated approximately two...

  7. Irrigation efficiency and water-policy implications for river-basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2013-07-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  8. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    Science.gov (United States)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also

  9. Dual permeability soil water dynamics and water uptake by roots in irrigated potato fields

    DEFF Research Database (Denmark)

    Dolezal, Frantisek; Zumr, David; Vacek, Josef

    2007-01-01

    Water movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland...

  10. Irrigation-water quality during 1976 irrigation season in the Sulphur Creek basin, Yakima and Benton counties, Washington

    Science.gov (United States)

    Boucher, P.R.; Fretwell, M.O.

    1982-01-01

    A water-quality-sampling network was designed for the Sulphur Creek basin to observe the effects of farming practices on irrigation. Sediment and nutrient yield, discharge, and water temperature data were collected during the 1976 irrigation season and the following fall and winter. The suspended-sediment yield of the basin during this period was 2.0 tons per acre of irrigated cropland. Only about 3% of the net outflow of sediment occurred during the nonirrigation season. The yield computed by subbasin ranged from 0.7 to 7 tons per acre, depending mainly on land slope, but a high percentage of orchard land in the subbasins was probably also significant in reducing loads. Nutrient outflows during the study period were 1,180,000 pounds of nitrogen and 120,000 pounds of phosphorous. Nitrate-plus-nitrite represent 70% of the nitrogen outflow in the irrigation season and 84% in the nonirrigation season. The monitoring network was discontinued at the end of the study period, due largely to insufficient farmer participation. Network sensitivity in the control subbasins was inadequate to detect the effects of a planned demonstration program of best management practices. (USGS)

  11. Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience

    Science.gov (United States)

    Garrido, Alberto; Martínez-Santos, Pedro; Llamas, M. Ramón

    2006-03-01

    Over the last decades, groundwater irrigation has become commonplace in many arid and semiarid regions worldwide, including Spain. This is largely a consequence of the advances in drilling and pumping technologies, and of the development of Hydrogeology. Compared with traditional surface water irrigation systems, groundwater irrigation offers more reliable supplies, lesser vulnerability to droughts, and ready accessibility for individual users. Economic forces influence the groundwater irrigation sector and its development. In Spain's Mediterranean regions, abstraction costs often amount to a very small fraction of the value of crops. In the inner areas, groundwater irrigation supports a more stable flow of farm income than rainfed agriculture. The social (jobs/m3) and economic (€/m3) value of groundwater irrigation generally exceeds that of surface water irrigation systems. However, poor groundwater management and legal controversies are currently at the base of Spain's social disputes over water. A thorough and transparent assessment of the relative socio-economic value of groundwater in relation to surface water irrigation might contribute to mitigate or avoid potential future conflicts. Enforcement of the European Union's Water Framework Directive may deliver better groundwater governance and a more sustainable use.

  12. Innovations in Agriculture in Oregon: Farmers Irrigation District Improves Water Quality, Maximizes Water Conservation, and Generates Clean, Renewable Energy

    Science.gov (United States)

    The Hood River Farmers Irrigation District used $36.2 million in CWSRF loans for a multiple-year endeavor to convert the open canal system to a piped, pressurized irrigation system to maximize water conservation and restore reliable water delivery to crops

  13. Variable fuzzy assessment of water use efficiency and benefits in irrigation district

    Directory of Open Access Journals (Sweden)

    Ming-hui Wang

    2015-07-01

    Full Text Available In order to scientifically and reasonably evaluate water use efficiency and benefits in irrigation districts, a variable fuzzy assessment model was established. The model can reasonably determine the relative membership degree and relative membership function of the sample indices in each index's standard interval, and obtain the evaluation level of the sample through the change of model parameters. According to the actual situation of the Beitun Irrigation District, which is located in Fuhai County, in Altay City, Xinjiang Uyghur Autonomous Region, five indices were selected as evaluation factors, including the canal water utilization coefficient, field water utilization coefficient, crop water productivity, effective irrigation rate in farmland, and water-saving irrigation area ratio. The water use efficiency and benefits in the Beitun Irrigation District in different years were evaluated with the model. The results showed that the comprehensive evaluation indices from 2006 to 2008 were all at the third level (medium efficiency, while the index in 2009 increased slightly, falling between the second level (relatively high efficiency and third level, indicating an improvement in the water use efficiency and benefits in the Beitun Irrigation District, which in turn showed that the model was reliable and easy to use. This model can be used to assess the water use efficiency and benefits in similar irrigation districts.

  14. Achieving sustainable irrigation water withdrawals: global impacts on food security and land use

    Science.gov (United States)

    Liu, Jing; Hertel, Thomas W.; Lammers, Richard B.; Prusevich, Alexander; Baldos, Uris Lantz C.; Grogan, Danielle S.; Frolking, Steve

    2017-10-01

    Unsustainable water use challenges the capacity of water resources to ensure food security and continued growth of the economy. Adaptation policies targeting future water security can easily overlook its interaction with other sustainability metrics and unanticipated local responses to the larger-scale policy interventions. Using a global partial equilibrium grid-resolving model SIMPLE-G, and coupling it with the global Water Balance Model, we simulate the consequences of reducing unsustainable irrigation for food security, land use change, and terrestrial carbon. A variety of future (2050) scenarios are considered that interact irrigation productivity with two policy interventions— inter-basin water transfers and international commodity market integration. We find that pursuing sustainable irrigation may erode other development and environmental goals due to higher food prices and cropland expansion. This results in over 800 000 more undernourished people and 0.87 GtC additional emissions. Faster total factor productivity growth in irrigated sectors will encourage more aggressive irrigation water use in the basins where irrigation vulnerability is expected to be reduced by inter-basin water transfer. By allowing for a systematic comparison of these alternative adaptations to future irrigation vulnerability, the global gridded modeling approach offers unique insights into the multiscale nature of the water scarcity challenge.

  15. Gender and power contestations over water use in irrigation schemes: Lessons from the lake Chilwa basin

    Science.gov (United States)

    Nkhoma, Bryson; Kayira, Gift

    2016-04-01

    Over the past two decades, Malawi has been adversely hit by climatic variability and changes, and irrigation schemes which rely mostly on water from rivers have been negatively affected. In the face of dwindling quantities of water, distribution and sharing of water for irrigation has been a source of contestations and conflicts. Women who constitute a significant section of irrigation farmers in schemes have been major culprits. The study seeks to analyze gender contestations and conflicts over the use of water in the schemes developed in the Lake Chilwa basin, in southern Malawi. Using oral and written sources as well as drawing evidence from participatory and field observations conducted at Likangala and Domasi irrigation schemes, the largest schemes in the basin, the study observes that women are not passive victims of male domination over the use of dwindling waters for irrigation farming. They have often used existing political and traditional structures developed in the management of water in the schemes to competitively gain monopoly over water. They have sometimes expressed their agency by engaging in irrigation activities that fall beyond the control of formal rules and regulations of irrigation agriculture. Other than being losers, women are winning the battle for water and land resources in the basin.

  16. Molecular Characterization and Germination Analysis of Cotton (Gossypium hirsutum L. Genotypes under Water Deficit Irrigation

    Directory of Open Access Journals (Sweden)

    Eminur ELÇİ

    2016-09-01

    Full Text Available Cotton is an important crop in terms of economic and strategic impacts. Drought stress is one of the most important environmental stress factors which negatively affects growth and yield of plants in Turkey as occurred in many countries in the world. In this study, 11 different cotton cultivars selected based on their agronomical characters were tested under water deficit irrigation strategies. Thus, it was aimed to select and/or determine appropriate new varieties for breeding new national materials resistant to drought stress, and to characterize with the molecular microsatellite markers. According to the different irrigation levels (25%, 50%, 75% and 100% plants were observed under the stressed conditions at the irrigation levels of 50% and 25%. Among the tested varieties, Tamcot Sphinx, Tamcot 94, Tamcot CamdEs and BA525 varieties were found to be more water stress tolerant than others in terms of germination time and germinated plant. The UPGMA (Unweighted Pair-Group Method Using Arithmetic Averages analysis was carried out using 28 markers with average 0.306 polymorphism information content (PIC for molecular characterization studies. Based on the UPGMA results, the varieties were clustered into two groups. It is expected that the results obtained from this study might provide considerable data for improving new drought tolerant varieties.

  17. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  18. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  19. Water requirement and irrigation schedule for tomato in northern guinea savanna zone, Nigeria

    Directory of Open Access Journals (Sweden)

    Ibraheem Alhassan

    2015-06-01

    Full Text Available Assessment of water requirement and irrigation schedule for tomato with the support of FAO-CROPWAT simulation model was carried out for Yola, Nigeria with the aim of planning irrigation schedules for tomato and develop recommendations for improve irrigation practices. The climatic data for 2012/2013 and soil properties of the study area were input into the program. Tomato crop properties were updated by the FAO data and three irrigation intervals were tested (7 and 10 days irrigation intervals and irrigation schedule of 10 days interval during initial and development stage and 6 days interval at mid and late season stages of tomato crop. The simulated results analysis for tomato according to the irrigation schedule showed that highest yield reduction of 16.2% was recorded with 10 days irrigation interval treatment and the least of 0.4% with irrigation interval of 10 days at first two growth stages and 6 days at last two stages. FAO-CROPWAT 8.0 can be used in planning proper irrigation schedule for tomato in Yola, Nigeria.

  20. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Science.gov (United States)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  1. Water movement through a shallow unsaturated zone in an inland arid region: Field drip irrigation experiment under matrix potential control

    Science.gov (United States)

    Zhou, T.; Han, D.; Song, X.

    2017-12-01

    It is vital to study soil water movement in unsaturated zone for evaluating and improving current irrigation mode for prevention and control of soil secondary salinization, especially in inland arid area, where is characterized by strong evaporation, poor drainage system and shallow water table depth. In this study, we investigated the applicability of drip irrigation under matrix potential control during cotton growth seasons in an inland arid region of northwest China. Combined physical observation with stable isotopes tracing method, we studied soil water flow system and recharge sources of shallow groundwater in heavy (Pilot 1) and light (Pilot 2) saline-alkali cotton fields. Evaporation depths (about 50-60 cm) are about the same for both pilots, but infiltration depths (about 60 cm for Pilot 1 and 150 cm for Pilot 2) are very different due to different soil texture, soil structure and soil salt content. Middle layer (about 100 cm thick) is a critical barrier for water exchange between surface and deep layer. Irrigation water is the major source (about 79.6% for Pilot 1 and 81.6% for Pilot 2), while evapotranspiration is the major sink (about 80.7% for Pilot 1 and 83.1% for Pilot 2) of unsaturated zone. The increase of soil water storage is not enough to make up the water shortage of middle layer and thus drip irrigation water doesn't recharge into groundwater for both pilots. Water table rise (about 60 cm for Pilot 1 and 50 cm for Pilot 2) could be caused by lateral groundwater flow instead of vertical infiltration. This irrigation mode could retard the water table rise in this region. However, improving horizontal drainage system may be indispensable for sustainable agriculture development. The study can provide important basis for soil secondary salinization prevention and agricultural water management in inland arid areas.

  2. How much water do we need for irrigation under Climate Change in the Mediterranean?

    Science.gov (United States)

    Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi

    2014-05-01

    Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.

  3. Understanding water delivery performance in a large-scale irrigation system in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2005-01-01

    During a two-year field study the performance of the water delivery was evaluated in a large-scale irrigation system on the north coast of Peru. Flow measurements were carried out along the main canals, along two secondary canals, and in two tertiary blocks in the Chancay-Lambayeque irrigation

  4. Effects of application timing of saline irrigation water on broccoli production and quality

    Science.gov (United States)

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  5. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    the entire fruit and wine industries are dependent on irrigation. Cropping in the Eastern and Northern Cape also relies heavily on irrigation. ..... The soils were described as deep, fine sandy, dominantly red, ..... crops. For example, leaves of deciduous fruit trees (apri- ..... Laboratory Handbook 60, USDA, Washington. 160 pp.

  6. The relationship between sap flow and commercial soil water sensor readings in irrigated potato (Solanum tuberosum L.) production

    Science.gov (United States)

    Many irrigation scheduling methods utilized in commercial production settings rely on soil water sensors that are normally purchased as off-the-shelf technology or through contracted services that install and monitor readings throughout the season. These systems often assume a direct relationship be...

  7. Village-level supply reliability of surface water irrigation in rural China: effects of climate change

    Science.gov (United States)

    Li, Yanrong; Wang, Jinxia

    2018-06-01

    Surface water, as the largest part of water resources, plays an important role on China's agricultural production and food security. And surface water is vulnerable to climate change. This paper aims to examine the status of the supply reliability of surface water irrigation, and discusses how it is affected by climate change in rural China. The field data we used in this study was collected from a nine-province field survey during 2012 and 2013. Climate data are offered by China's National Meteorological Information Center which contains temperature and precipitation in the past 30 years. A Tobit model (or censored regression model) was used to estimate the influence of climate change on supply reliability of surface water irrigation. Descriptive results showed that, surface water supply reliability was 74 % in the past 3 years. Econometric results revealed that climate variables significantly influenced the supply reliability of surface water irrigation. Specifically, temperature is negatively related with the supply reliability of surface water irrigation; but precipitation positively influences the supply reliability of surface water irrigation. Besides, climate influence differs by seasons. In a word, this paper improves our understanding of the impact of climate change on agriculture irrigation and water supply reliability in the micro scale, and provides a scientific basis for relevant policy making.

  8. Endangered Species and Irrigated Agriculture, Water Resource Competition in Western River Systems

    OpenAIRE

    United States Department of Agriculture, Economic Research Service

    1995-01-01

    This report characterizes several aspects of water allocation tradeoffs between fish species listed under the Federal Endangered Species Act and agriculture in the American West. The geographic intersection between endangered/threatened (E/T) fish and agricultural production reliant on surface water for irrigation is identified. Three findings are: (1) 235 counties, representing 22 percent of the West's counties, contain irrigated production that relies on water from rivers with E/T fish, ...

  9. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    Science.gov (United States)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  10. Water-yield relationships of potato under different irrigation methods and regimens Relação água-produção na cultura da batata sob diferentes métodos e regimes de irrigação

    Directory of Open Access Journals (Sweden)

    Tolga Erdem

    2006-06-01

    Full Text Available Yield response to irrigation of different crops is of major importance in production planning where water resources are limited. This study aims to determine the effect of different irrigation methods and irrigation regimens on potato yield in the Trakya Region, Turkey, during 2003 and 2005. Potato was grown under furrow and drip irrigation methods and three regimens: irrigation applied when 30, 50, or 70% of the available water was consumed. The seasonal potato evapotranspiration ranged on 501 to 683 mm in 2003, and 464 to 647 mm in 2005. The furrow and drip irrigation methods had no significant effect on tuber yield for both years. Irrigation regimens influenced tuber yield (P Em casos de limitações de recursos hídricos, o planejamento da produção agrícola depende da resposta dos parâmetros de produção à prática da irrigação. Este estudo visa determinar o efeito de diferentes métodos e regimes de irrigação na produtividade da batata na região de Trakya, Turquia, durante os anos de 2003 e 2005. As batatas foram plantadas sob irrigação por sulcos e por gotejamento, em três regimes: prática de irrigação quando 30, 50 ou 70% da água disponível era consumida. A evapotranpisração sazonal da cultura variou entre 501 e 683 mm em 2003, e entre 464 e 647 mm em 2005. O método de irrigação não afetou significativamente a produção de tubérculos nos dois anos. Os regimes de irrigação influenciaram a produção de tubérculos (P < 0,05 em 2005, e as maiores produções foram registradas para o regime de irrigação 30%, 33,15 t ha-1 em 2003 e 44.56 t ha-1 em 2005. Os valores de eficiência do uso da água aumentaram de 4,70 para 6,63 nos tratamentos de irrigação por sulcos e de 5,19 para 9,47 kg m-3 nos tratamentos por gotejamento.

  11. Coordinated research project of the use of nuclear and related techniques in assessment of irrigation schedules of field crops to increase effective use of water in irrigation projects

    International Nuclear Information System (INIS)

    Anac, M.S.; Tuzel, I.H.; Anac, D.

    1995-01-01

    The study aimed at determining the followings; water consumptions. irrigation water requirements of new cotton variety N 84; specific growth stages of cotton which are less sensitive to stress so that the irrigation could be avoided without significant yield decrease; and interactions between deficit irrigation and nitrogen fertilizer use. The experiment was set up with 6 irrigation and three nitrogen fertilizer (0.60 , 120 kg.ha sup -1 ) treatments. The irrigation treatments employed single stress at vegetative, flowering and boll formation stages, in addition to full irrigation, continuous stress and the traditional practice. In stress conditions available soil water depleted to 75 - 80 %, whereas in normal irrigation the depletion was 40 % in 0.90 m. of root zone. In full irrigation treatment 8 irrigations were applied, whereas 3 or 4 irrigations were needed in continuous stress conditions. The number of irrigations were 6 or 7 for other stress treatments. Irrigation water applications varied form 424 to 751 mm. Seasonal ET were ranged between 659 and 899 mm. The highest monthly ET in august for all of the treatments. Daily ET were found to vary from 2.2 to 12.1 mm/day. The seed cotton yields, ky values and yield - N indices have indicated that the vegetative state was more sensitive to water stress. The stress at boll formation stage had slight effects on these parameters. Under limited water resource conditions, vegetative growth period of cotton should be given preference for irrigation, followed by flowering period. Omitting irrigation in boll formation period would result in 4.3 to 9.1 % water savings. Yield changes with respect to N rates showed that high N doses are accompanied by high yields. Nitrogen recoveries either from fertilizers or soil revealed high uptakes in full irrigation conditions. Nitrogen use efficiencies were also high in these conditions. Average of three years put forth that 19% of N in stress conditions and 29% in full irrigation were

  12. Changes in soil aggregate stability under different irrigation doses of waste water

    Science.gov (United States)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  13. Comparative efficiency of trickle and furrow irrigation

    International Nuclear Information System (INIS)

    Hanif, M.; Qureshi, R.H.; Sandhu, G.R.

    1976-01-01

    Comparison of furrow and trickle methods of irrigation to know their relative efficiency with respect to water applied and fertilizer used on tomatoes, cauliflower and lettuce as test crops using canal water, showed a significant saving of about 44 and 41 per cent respectively for irrigation water and fertilizer applied with trickle as compared to furrow irrigation. Trickle irrigated crops also showed a better response as regards the rate of survival, crop growth and time of maturity

  14. Long Term Effects of Acid Irrigation at the Hoeglwald on Seepage Water Chemistry and Nutrient Cycling

    International Nuclear Information System (INIS)

    Weis, Wendelin; Baier, Roland; Huber, Christian; Goettlein, Axel

    2007-01-01

    In order to test the hypothesis of aluminium toxicity induced by acid deposition, an experimental acid irrigation was carried out in a mature Norway spruce stand in Southern Germany (Hoeglwald). The experiment comprised three plots: no irrigation, irrigation (170 mm a -1 ), and acid irrigation with diluted sulphuric acid (pH of 2.6-2.8). During the seven years of acid irrigation (1984-1990) water containing 0.43 mol c m -2 a -1 of protons and sulphate was added with a mean pH of 3.2 (throughfall + acid irrigation water) compared to 4.9 (throughfall) on both control plots. Most of the additional proton input was consumed in the organic layer and the upper mineral soil. Acid irrigation resulted in a long lasting elevation of sulphate concentrations in the seepage water. Together with sulphate both aluminium and appreciable amounts of base cations were leached from the main rooting zone. The ratio between base cations (Ca + Mg + K) and aluminium was 0.79 during acid irrigation and 0.92 on the control. Neither tree growth and nutrition nor the pool of exchangeable cations were affected significantly. We conclude that at this site protection mechanisms against aluminium toxicity exist and that additional base cation runoff can still be compensated without further reduction of the supply of exchangeable base cations in the upper mineral soil

  15. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions.

    Directory of Open Access Journals (Sweden)

    Yunqi Wang

    Full Text Available The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE in winter wheat (Triticum aestivum L. were investigated under non-irrigation (W0, no irrigation during growth stage, one time irrigation (W1, irrigation applied at stem elongation and two times irrigation (W2, irrigation applied at stem elongation and anthesis conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%-6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%-34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%-28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition.

  16. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    Science.gov (United States)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  17. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Directory of Open Access Journals (Sweden)

    Ana Allende

    2015-07-01

    Full Text Available There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  18. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-01-01

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764

  19. Possible Use of Treated Wastewater as Irrigation Water at Urban Green Area

    Directory of Open Access Journals (Sweden)

    Elif Bozdoğan

    2014-08-01

    Full Text Available Ever increasing demands for fresh water resources have brought the reuse of treated wastewater into agendas. Wastewater has year-long potential to be used as an irrigation water source. Therefore, treated wastewater is used as irrigation water over agricultural lands and urban landscapes, as process water in industrial applications, as back-up water in environmental applications in water resources and wetlands of dry regions. The present study was conducted to investigate the possible use of domestic wastewater treated through pilot-scale constructed wetland of Adana-Karaisalı with dominant Mediterranean climate in irrigation of marigold (Tagetes erecta, commonly used over urban landscapes. Experiments were carried out between the dates May-November 2008 for 7 months with fresh water and treated wastewater. Plant growth parameters (plant height, plant diameter, number of branches and flowering parameters (number of flowers, flower diameter, flower pedicle thickness were monitored in monthly basis. Results revealed positive impacts of treated wastewater irrigations on plant growth during the initial 5 months between May-September but negative impacts in October and November. Similarly, treated wastewater irrigations had positive impacts on flowering parameters during the initial 3 months but had negative impacts during the subsequent 4 months. Such a case indicated shortened visual efficiencies of marigold. Therefore, treated wastewater can be used as an alternative water resource in irrigation of annual flowers, but better results can be attained by mixing treated wastewater with fresh water at certain ratios.

  20. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-07-03

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  1. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    Science.gov (United States)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  2. Soil water sensors:Problems, advances and potential for irrigation scheduling

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  3. Irrigation Water Value at Small-scale Schemes: Evidence from the North West Province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Farolfi, S.; Perret, S.; Haese, D' L.; Haese, D' M.

    2008-01-01

    Insight into the value of water is essential to support policy decision making about investments in the water sector, efficient allocation of water and water pricing. However, information on irrigation water values at small-scale schemes is scarce and in general little attention is paid to the

  4. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  5. Effect of Different Levels of Irrigation Water on Quantitative and Qualitative Characteristics of Potato and Determination of Its Optimum Consumptive Use of Water in Shahrekord

    Directory of Open Access Journals (Sweden)

    masoud Naderi

    2017-01-01

    Full Text Available Introduction: Owing to drought, increasing demand for fresh water resources and low water use efficiency, the optimum use of water is essential in the agricultural sector. Therefore, this study was conducted to investigate the effect of different levels of irrigation water on quantitative and qualitative Characteristics of potato (Burren cultivar and determination of its optimum consumptive use of water under Shahr-e kord environment. Materials and Methods: This study was conducted at the Agricultural Research Center and Natural Resources in Shahr-e kord with longitude and latitude of 32˚18΄ and 50˚51΄ , respectively, in 2013. This experiment was performed in randomized complete block design with 7 treatments consisted of different levels of irrigation water and 3 replications. Different levels of irrigation water were: 40, 55, 70, 85, 100, 115 and 130 % of the soil moisture deficit. Potato seeds (burren cultivar were planted with distance of 20 cm from each other and furrow width of 75 cm. Irrigation program were performed based on the measurement of soil moisture deficit. The irrigation intervals were considered as a fixed 7 day. Irrigation levels were applied to 105 days after planting and the total growth period was 130 days from planting to harvesting. The samples were taken from the two middle furrows. The evaluated parameters were included weight of tubers per plant, tuber diameter, weight of tuber in seed size, weight of tuber production in a plant in marketable size, tuber dry weight, the starch percent, percent of soluble sugars, nitrogen percent. The starch content was determined by Polarimetry method. The soluble sugars content was measured by Colorimetric method, the nitrogen content was measured by wet digestion method and using the Kjeldahl set. Then, the optimal depth of water consumption in conditions of limited water resources were determined by English method Statistical analysis of data and drawing graphs were done with

  6. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    Science.gov (United States)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the

  7. Capacitive Sensors and Breakthrough Curves in Automated Irrigation for Water and Soil Conservation

    Science.gov (United States)

    Fahmy Hussein, Mohamed

    2016-04-01

    when such sensors are used in farmers' fields. The second procedure was Breakthrough Curve (BTC) lab-method to follow the fate of chemical composition of water draining out of Ca-saturated soil columns and Exchangeable Sodium Percent, ESP, in soil materials under saturated-flow. The work was run on five packed soil-columns under hydraulic-gradient of about 6 in fine-grained soil materials (Nile clay-sediments) wetted with five NaCl aqueous solutions (10, 25, 50, 75 and 100 mEq/l). The results revealed the removal of 40 to 80% of sodium from irrigation water after 6 to 8 pore volumes flowed out in about 12 hours with the highest removal from the most dilute solution. Rapid increase of ESP was observed when the inlet solution had moderate to high TDS whereas the dilute solution (10 mEq/l) has resulted in no soil chemical degradation. The results were extrapolated to field situation and showed that Nile clayey soil would never get sodic (ESP>15) when wetted with high quality water regardless the water application duration whereas only 1-4 year of irrigation with moderate to poor-quality water (as takes place under perennial irrigation) would result in ESP increase to 15 and much higher values. A secondary but important outcome of BTC experiments was that marginal sediments could be used in multi-column cells (6 to 8 columns) to improve water-quality through removal of Na+ ions from water, whereas anions could be removed by positively-charged resins and the cells could be recycled in a proposed prototype scheme.

  8. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  9. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    Science.gov (United States)

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  10. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress.

    Science.gov (United States)

    le Roux, Betsie; van der Laan, Michael; Vahrmeijer, Teunis; Bristow, Keith L; Annandale, John G

    2017-12-01

    Future water scarcities in the face of an increasing population, climate change and the unsustainable use of aquifers will present major challenges to global food production. The ability of water footprints (WFs) to inform water resource management at catchment-scale was investigated on the Steenkoppies Aquifer, South Africa. Yields based on cropping areas were multiplied with season-specific WFs for each crop to determine blue and green water consumption by agriculture. Precipitation and evapotranspiration of natural vegetation and other uses of blue water were included with the agricultural WFs to compare water availability and consumption in a catchment sustainability assessment. This information was used to derive a water balance and develop a catchment WF framework that gave important insights into the hydrology of the aquifer through a simplified method. This method, which requires the monitoring of only a few key variables, including rainfall, agricultural production, WFs of natural vegetation and other blue water flows, can be applied to inform the sustainability of catchment scale water use (as opposed to more complex hydrological studies). Results indicate that current irrigation on the Steenkoppies Aquifer is unsustainable. This is confirmed by declining groundwater levels, and suggests that there should be no further expansion of irrigated agriculture on the Steenkoppies Aquifer. Discrepancies between in- and outflows of water in the catchment indicated that further development of the WF approach is required to improve understanding of the geohydrology of the aquifer and to set and meet sustainability targets for the aquifer. It is envisaged that this 'working' framework can be applied to other water-stressed aquifers around the world. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Quantitative assessment of human exposure to extended spectrum and AmpC β-lactamases bearing E. coli in lettuce attributable to irrigation water and subsequent horizontal gene transfer

    DEFF Research Database (Denmark)

    Njage, Patrick Murigu Kamau; Buys, E. M.

    2017-01-01

    and irrigation water E. coli isolates was previously reported. This stochastic modeling was aimed at quantitatively assessing human exposure to ESBL/AmpC bearing E. coli through lettuce attributable to irrigation water and subsequent horizontal gene transfer. Modular process risk approach was used.......15), and prevalence of E. coli in irrigation water (ρ=0.16) had highest influence on consumer exposure. The most effective single methods in reducing consumer exposure were reduction in irrigation water microbial quality variation (87.4% reduction), storage period (49.9-87.4% reduction) and growth rate reduction...... irrigation water quality variation. The exposure levels may impose higher consumer risk than acceptable for irrigation water risk. E. coli contamination and growth related measures, as well as measures to reduce contamination with antimicrobial resistant E. coli from lettuce production environment...

  12. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non

  13. Carbon and water fluxes and footprints in tropical agricultural systems under rainfed and irrigated conditions

    Science.gov (United States)

    Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.

    2017-12-01

    In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.

  14. Yield and water use efficiency of irrigated soybean in Vojvodina, Serbia

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2012-01-01

    Full Text Available Research was carried out at Rimski Šančevi experiment field of Institute of Field and Vegetable Crops in Novi Sad in the period 1993-2004. The experiment included an irrigated and non-irrigated control treatment. Irrigation water use efficiency (Iwue and evapotranspiration water use efficiency (ETwue were determined in order to assess the effectiveness of irrigation on soybean yield. The average yield increases of soybean due to irrigation practice was 0.82 t ha-1, ranging from 2.465 t ha-1 in years with limited precipitation and higher than average seasonal temperatures (2000 to 0 t ha-1 in rainy years (1996, 1997, 1999. Evapotranspiration water use efficiency (ETwue of soybean ranged from 0.11 kg m-3 to 1.36 kg m-3 with an average value of 0.66 kg m-3, while irrigation water use efficiency (Iwue varied from 0.11 kg m-3 to 1.04 kg m-3 with an average value of 0.56 kg m-3. Effect of irrigation on yield of soybean and results of both ETwue and Iwue which were similar to those obtained from the literature indicate that irrigation schedule of soybean in the study period was properly adapted to plant water requirements and water-physical soil properties. Determined values of ETwue and Iwue could be used for the planning, design and operation of irrigation systems, as well as for improving the production technology of soybean in the region.

  15. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water

    Directory of Open Access Journals (Sweden)

    Olufemi Olukemi Temiloluwa

    2017-01-01

    Full Text Available Introduction: Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. Methods: This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS or the distilled water (DW group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Results: Forty-one (42.3% of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315. The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389. Conclusions: It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities.

  16. Collective action and participation in irrigation water management: A ...

    African Journals Online (AJOL)

    A case study of Mooi River Irrigation Scheme in KwaZulu-Natal. Province ..... Seven principal components were extracted using Pearson cor- relations. By applying the ..... OLSON M (1965) The Logic of Collective Action: Public Goods and the.

  17. Effect of saline irrigation water on yield and yield components of rice ...

    African Journals Online (AJOL)

    vaio

    2013-05-29

    May 29, 2013 ... levels at different growth stages of rice on yield and its components. Treatments included ... Therefore, irrigation with saline water at the early growth stages has more negative effect on ...... diversification. Land Degrad. Dev.

  18. Hemolysis in Transurethral Resection of the Prostate Using Distilled Water as the Irrigant

    Directory of Open Access Journals (Sweden)

    Shiou-Sheng Chen

    2006-06-01

    Conclusion: Using distilled water as an irrigant for TURP might cause hemolysis, especially in patients with larger prostates and longer resection times. It is necessary to carry out every effort to shorten resection time and avoid extravasation during surgery.

  19. Yield and water use efficiency of deficit-irrigated maize in a semi ...

    African Journals Online (AJOL)

    Yield and water use efficiency of deficit-irrigated maize in a semi-arid region of Ethiopia. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE ... African Journal of Food, Agriculture, Nutrition and Development.

  20. Study of Investments in Irrigation Water Sector in Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2015-04-01

    Full Text Available Irrigation water sector is playing pivotal role in agricultural production and have prominent contribution to GDP (Gross Domestic Product both at provincial and country level. Many of the stakeholders including different ministries/department of Federal and Provincial governments, private sectors, farmers, and NGOs (Non-Government Organizations are investing in this sector. Although that the data and data analysis tools are present in most of the countries, yet a comprehensive information base on investments in irrigation water sector is missing. This has led to duplication at resources and beneficiaries? level on one side, as well as gaps in technical, infrastructural, institutional and managerial strategies of the irrigation water sector projects on the other. This paper analyzes investments in irrigation water sector made by government of KPK (Khyber Pakhtunkhwa during the last 10 fiscal years? time period (2003-2013 and identifies gaps. Besides recommendations are also made in order to overcome the identified gaps/issues.

  1. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation

    International Nuclear Information System (INIS)

    Chen, Weiping; Lu, Sidan; Peng, Chi; Jiao, Wentao; Wang, Meie

    2013-01-01

    Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties. -- Highlights: •Root zone soil Cd content was elevated by one time under long-term reclaimed water irrigation. •The STEM-profile model can well track the Cd balance in the soil profile. •Reclaimed water irrigation plays a limited role on soil Cd accumulation in Beijing croplands. -- There was a low risk of soil Cd pollution under long-term reclaimed water irrigation

  2. IRRIMET: a web 2.0 advisory service for irrigation water management

    Science.gov (United States)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  3. Farmers’ willingness to pay for surface water in the West Mitidja irrigated perimeter, northern Algeria

    Directory of Open Access Journals (Sweden)

    Malika Azzi

    2018-04-01

    Full Text Available Algeria is among the most water-stressed countries in the world. Because of its climatic conditions, irrigation is essential for agricultural production. Water prices paid by farmers in public irrigation districts are very low and do not cover the operation and maintenance (O&M costs of the irrigated perimeters, thus leading to the deterioration of these infrastructures. The objective of this paper is to analyse whether farmer’s in the West Mitidja irrigation district in northern Algeria would be willing to pay more for surface water in order to maintain the water supply service in its current conditions. We estimated farmers’ willingness to pay (WTP for water using data from a dichotomous choice contingent valuation survey to 112 randomly selected farmers. Farmers’ responses were modelled using logistic regression techniques. We also analysed which technical, structural, social and economic characteristics of farms and farmers explain the differences in WTP. Our results showed that nearly 80% of the surveyed farmers are willing to pay an extra price for irrigation water. The average WTP was 64% greater than the price currently paid by farmers, suggesting some scope for improving the financial resources of the Mitidja irrigated perimeter, but insufficient to cover all O&M costs. Some of the key identified factors that affect WTP for surface water relate to farm ownership, access to groundwater resources, cropping patterns, farmers’ agricultural training and risk exposure.

  4. Farmers’ willingness to pay for surface water in the West Mitidja irrigated perimeter, northern Algeria

    International Nuclear Information System (INIS)

    Azzi, M.; Calatrava, J.; Bedrani, S.

    2018-01-01

    Algeria is among the most water-stressed countries in the world. Because of its climatic conditions, irrigation is essential for agricultural production. Water prices paid by farmers in public irrigation districts are very low and do not cover the operation and maintenance (O&M) costs of the irrigated perimeters, thus leading to the deterioration of these infrastructures. The objective of this paper is to analyse whether farmer’s in the West Mitidja irrigation district in northern Algeria would be willing to pay more for surface water in order to maintain the water supply service in its current conditions. We estimated farmers’ willingness to pay (WTP) for water using data from a dichotomous choice contingent valuation survey to 112 randomly selected farmers. Farmers’ responses were modelled using logistic regression techniques. We also analysed which technical, structural, social and economic characteristics of farms and farmers explain the differences in WTP. Our results showed that nearly 80% of the surveyed farmers are willing to pay an extra price for irrigation water. The average WTP was 64% greater than the price currently paid by farmers, suggesting some scope for improving the financial resources of the Mitidja irrigated perimeter, but insufficient to cover all O&M costs. Some of the key identified factors that affect WTP for surface water relate to farm ownership, access to groundwater resources, cropping patterns, farmers’ agricultural training and risk exposure.

  5. EQUITY EVALUATION OF PADDY IRRIGATION WATER DISTRIBUTION BY SOCIETY-JUSTICE-WATER DISTRIBUTION RULE HYPOTHESIS

    Science.gov (United States)

    Tanji, Hajime; Kiri, Hirohide; Kobayashi, Shintaro

    When total supply is smaller than total demand, it is difficult to apply the paddy irrigation water distribution rule. The gap must be narrowed by decreasing demand. Historically, the upstream served rule, rotation schedule, or central schedule weight to irrigated area was adopted. This paper proposes the hypothesis that these rules are dependent on social justice, a hypothesis called the "Society-Justice-Water Distribution Rule Hypothesis". Justice, which means a balance of efficiency and equity of distribution, is discussed under the political philosophy of utilitarianism, liberalism (Rawls), libertarianism, and communitarianism. The upstream served rule can be derived from libertarianism. The rotation schedule and central schedule can be derived from communitarianism. Liberalism can provide arranged schedule to adjust supply and demand based on "the Difference Principle". The authors conclude that to achieve efficiency and equity, liberalism may provide the best solution after modernization.

  6. Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia

    Directory of Open Access Journals (Sweden)

    Sobri Harun

    2012-04-01

    Full Text Available Evapotranspiration (ET is a complex process in the hydrological cycle that influences the quantity of runoff and thus the irrigation water requirements. Numerous methods have been developed to estimate potential evapotranspiration (PET. Unfortunately, most of the reliable PET methods are parameter rich models and therefore, not feasible for application in data scarce regions. On the other hand, accuracy and reliability of simple PET models vary widely according to regional climate conditions. The objective of the present study was to evaluate the performance of three temperature-based and three radiation-based simple ET methods in estimating historical ET and projecting future ET at Muda Irrigation Scheme at Kedah, Malaysia. The performance was measured by comparing those methods with the parameter intensive Penman-Monteith Method. It was found that radiation based methods gave better performance compared to temperature-based methods in estimation of ET in the study area. Future ET simulated from projected climate data obtained through statistical downscaling technique also showed that radiation-based methods can project closer ET values to that projected by Penman-Monteith Method. It is expected that the study will guide in selecting suitable methods for estimating and projecting ET in accordance to availability of meteorological data.

  7. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Energy Technology Data Exchange (ETDEWEB)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-10-04

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (~3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  8. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Science.gov (United States)

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  9. Computer-Aided Design System Development of Fixed Water Distribution of Pipe Irrigation System

    OpenAIRE

    Zhou , Mingyao; Wang , Susheng; Zhang , Zhen; Chen , Lidong

    2010-01-01

    International audience; It is necessary to research a cheap and simple fixed water distribution device according to the current situation of the technology of low-pressure pipe irrigation. This article proposed a fixed water distribution device with round table based on the analysis of the hydraulic characteristics of low-pressure pipe irrigation systems. The simulation of FLUENT and GAMBIT software conducted that the flow of this structure was steady with a low head loss comparing to other t...

  10. Reduction of Fire Hazard in Materials for Irrigators and Water Collectors in Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, N. V.; Konstantinova, N. I., E-mail: konstantinova-n@inbox.ru [FGBU VNIIPO of EMERCOM of Russia (All-Russian Scientific-research Institute of Fire Protection) (Russian Federation); Gordon, E. P. [Research and Production Center “Kaustik” (Russian Federation); Poedintsev, E. A. [FGBU VNIIPO of EMERCOM of Russia (All-Russian Scientific-research Institute of Fire Protection) (Russian Federation)

    2016-09-15

    A way of reducing the fire hazard of PVC film used to make cooling-tower irrigators and water collectors is examined. A new generation of fire retardant, nanostructured magnesium hydroxide, is used to impart fire retardant properties. The fabrication technology is optimized with a roller-calendering manufacturing technique, and the permissible ranges of fire hazard indicators for materials in irrigators and water collectors are determined.

  11. Spatial Variation of Arsenic in Soil, Irrigation Water, and Plant Parts: A Microlevel Study

    OpenAIRE

    Kabir, M. S.; Salam, M. A.; Paul, D. N. R.; Hossain, M. I.; Rahman, N. M. F.; Aziz, Abdullah; Latif, M. A.

    2016-01-01

    Arsenic pollution became a great problem in the recent past in different countries including Bangladesh. The microlevel studies were conducted to see the spatial variation of arsenic in soils and plant parts contaminated through ground water irrigation. The study was performed in shallow tube well command areas in Sadar Upazila (subdistrict), Faridpur, Bangladesh, where both soil and irrigation water arsenic are high. Semivariogram models were computed to determine the spatial dependency of s...

  12. Evaluation of water distribution under pivot irrigation systems using remote sensing imagery in eastern Nile delta

    Directory of Open Access Journals (Sweden)

    E. Farg

    2017-04-01

    Full Text Available Traditional methods for center pivot evaluation depend on the water depth distribution along the pivot arm. Estimation and mapping the water depth under pivot irrigation systems using remote sensing data is essential for calculating the coefficient of uniformity (CU of water distribution. This study focuses on estimating and mapping water depth using Landsat OLI 8 satellite data integrated with Heerman and Hein (1968 modified equation for center pivot evaluation. Landsat OLI 8 image was geometrically and radiometrically corrected to calculate the vegetation and water indices (NDVI and NDWI in addition to land surface temperature. Results of the statistical analysis showed that the collected water depth in catchment cans is also highly correlated negatively with NDVI. On the other hand water, depth was positively correlated with NDWI and LST. Multi-linear regression analysis using stepwise selection method was applied to estimate and map the water depth distribution. The results showed R2 and adjusted R2 0.93 and 0.88 respectively. Study area or field level verification was applied for estimation equation with correlation 0.93 between the collected water depth and estimated values.

  13. Numerical assessment of water-saving irrigation on the water cycle at the oasis of the Manas River Basin

    OpenAIRE

    he

    2018-01-01

    As the birthplace of water-saving technology under mulch drip irrigation in China, the Manas River Basin (MRB) has developed into the largest oasis farming area in Xinjiang and the fourth largest irrigated agricultural area in China. This study presents systematic evaluation the effect of water-saving technologies on precipitation, runoff, infiltration and evapotranspiration in this basin. A model of the regional water cycle was developed for quantitatively assessing groundwater balance and g...

  14. Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools

    NARCIS (Netherlands)

    Dam, van J.C.; Singh, R.; Bessembinder, J.J.E.; Leffelaar, P.A.; Bastiaanssen, W.G.M.; Jhorar, R.K.; Kroes, J.G.; Droogers, P.

    2006-01-01

    In regions where water is more scarce than land, the water productivity concept (e.g. crop yield per unit of water utilized) provides a useful framework to analyse crop production increase or water savings in irrigated agriculture. Generic crop and soil models were applied at field and regional

  15. Effect of Irrigation Method on Yield and Quality of Soybean%灌溉方式对大豆产量及品质的影响

    Institute of Scientific and Technical Information of China (English)

    张丽华; 谭国波; 赵洪祥; 闫伟平; 孟祥盟; 方向前; 边少锋

    2011-01-01

    Soybean are sensitive to soil moisture,in order to study the effect of irrigation methods on yield,quality of soybean and water use efficiency( WUE) ,a field experiment was carried out in 2009 and 2010. Three irrigation methods including conventional furrow irrigation,fixed furrow irrigation and alternative furrow irrigation,and three irrigation amount including 15, 22.5 and 30 mm were used in the test. The results showed that appropriate irrigation could obviously improve WUE and yield of soybean. The soybean yield increased obviously with increase of irrigation amount in 2009 which the rainfall was infrequent. The yield,pods per plant,seeds weights and WUE of alternative furrow irrigation 22. 5 mm were higher than other irrigation combinations. Rainfall mainly focused in July and August in 2010,so irrigation was carried out in September. The yield of irrigation 22.5 and 15 mm was higher than 30 mm and control obviously. The yield of irrigation 22.5 mm was higher than 15 mm obviously. The difference of yield wasn't significant between irrigation 30 mm and control. The difference of yield of different irrigation methods wasn't significant with the same irrigation amount. Pods and seeds per plant and WUE of irrigation 22. 5 mm was extremely significant higher than other irrigation amount. The number of pods and seeds and WUE of alternative furrow irrigation 22. 5 mm was extremely significant higher than other irrigation methods. Irrigation could increase soybean protein content to a certain extent. However,oil content was reduced,but the difference of quality wasn' t significant between irrigation and control. The results of two years experiments showed that alternative furrow irrigation with irrigation amount of 22. 5 mm was the best irrigation combination.%于2009和2010年采取常规灌溉、固定隔沟灌溉和交替隔沟灌溉3种灌溉方式,设置15、22.5和30 mm3个灌水量,考察灌溉方式及灌溉量对大豆产量、植株性状、品质及土壤

  16. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    Science.gov (United States)

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  17. Analysis of the Economic and Welfare Impacts of Establishing Irrigation Water Market in Qazvin Province

    Directory of Open Access Journals (Sweden)

    2014-03-01

    Full Text Available In this study economic and welfare impacts of establishing irrigation water market in Qazvin province as well as potentiality of irrigation water transfer under stress irrigation conditions in the cities of Qazvin province were analyzed. To achieve the above objectives, Positive Mathematical Programming model and State Wide Agricultural Production functions were used. To achieve applicable results, the production function with a constant elasticity of substitution and cost function with an exponential form were included into the Positive Mathematical Programming model was imported. The study data for the year 2011-2012 was collected by asking the relevant offices in each city of Qazvin province. The proposed model was solved in six successive stages using the GAMS software. After solving the model, amount changes in the area of irrigated crops, farmer's gross profit and labor surplus under the two conditions of “existence of water market” and “lack of water market “at the regional level were calculated. The results showed that establishing irrigation water market increases total irrigated lands for 1/2 percent, total farmer’s gross profit for 1/86 percent and total labor force employed in agriculture for 1/8 percent in the province. Ultimately, considering the supportive and constructive role of regional water markets, it is recommended to provide necessary conditions and tools to establish an optimal use of such a mechanism associated with the type of market in Qazvin province.

  18. Development of a cost-effectiveness analysis of leafy green marketing agreement irrigation water provisions.

    Science.gov (United States)

    Jensen, Helen H; Pouliot, Sébastien; Wang, Tong; Jay-Russell, Michele T

    2014-06-01

    An analysis of the effectiveness of meeting the irrigation water provisions of the Leafy Green Marketing Agreement (LGMA) relative to its costs provides an approach to evaluating the cost-effectiveness of good agricultural practices that uses available data. A case example for lettuce is used to evaluate data requirements and provide a methodological example to determine the cost-effectiveness of the LGMA water quality provision. Both cost and field data on pathogen or indicator bacterial levels are difficult and expensive to obtain prospectively. Therefore, methods to use existing field and experimental data are required. Based on data from current literature and experimental studies, we calculate a cost-efficiency ratio that expresses the reduction in E. coli concentration per dollar expenditure on testing of irrigation water. With appropriate data, the same type of analysis can be extended to soil amendments and other practices and to evaluation of public benefits of practices used in production. Careful use of existing and experimental data can lead to evaluation of an expanded set of practices.

  19. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    Science.gov (United States)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.

  20. The Role of Water Governance and Irrigation Technologies in Regional-Scale Water Use and Consumption in the US West

    Science.gov (United States)

    Lammers, R. B.; Grogan, D. S.; Frolking, S. E.; Proussevitch, A. A.; Zuidema, S.; Fowler, L.; Caccese, R. T.; Peklak, D. L.; Fisher-Vanden, K.

    2017-12-01

    Water management in the Western USA is challenged by the demands of an increased population, ecological needs and changing values for water use, and a broadening of variability in climate, which together have created physical limits on water availability. The management of scarce water resources in this region is strictly constrained by the current legal structure (prior appropriation water rights) on one hand, and on the other assisted by the development of new, efficient water delivery and application technologies. Therefore, critical components for a complete understanding of the hydrological landscape include the institutions governing water rights, the technologies used for the highly water consumptive agricultural sector, and the role institutions and technologies play in altering when and where water is used and consumed by humans or reserved for the environment. To explore the sensitivities of water availability within the human-physical system, we present a method to incorporate water rights allocated under the prior appropriation doctrine for the western U.S. into the University of New Hampshire macro-scale Water Balance Model to capture the essential structure of these rights and their impacts on different economic sectors in Idaho and across the US West. In addition to legal structures, new irrigation technologies also alter the efficiency and timing of water use. We assess the impacts of a variety of technologies for both the delivery of water to the agricultural fields and the application methods for bringing water to the crops on consumptive and non-consumptive agricultural water use. We explore the impacts relative to natural climate variability, investigate the role that return flows from different agricultural technologies have on regional water balance, and examine the sensitivity of the entire system to extremes such as extended drought. These methods are sufficiently generalizable to be used by other hydrological models.

  1. Optimal Allocation of the Irrigation Water Through a Non Linear Mathematical Model

    Directory of Open Access Journals (Sweden)

    P. Rubino

    2008-09-01

    Full Text Available A study on the optimal allocation of the irrigation water among 9 crops (autumnal and spring sugar beet, spring and summer grain maize, dry and shell bean, eggplant, pepper and processing tomato has been carried out, utilizing experimental data of yield response to irrigation obtained in different years in Southern Italy (Policoro MT, 40° 12’ Northern Lat.; 16° 40’Western Long.. Fitting Mitscherlich’s equation modified by Giardini and Borin to the experimental data of each crop, the curve response parameters have been calculated: A = maximum achievable yield in the considered area (t ha-1; b = extra-irrigation water used by the crop (m3 ha-1; c = water action factor (ha m- 3; K, calculated only for tomato crop. ,decreasing factor due to the water exceeding the optimal seasonal irrigation volume (100% of the Crop Maximum Evapotranspiration less effective rainfall, ETMlr. The A values, using the prices of the agricultural produces and the irrigation water tariffs applied by the Consorzio Irriguo della Capitanata, have been converted in Value of Production (VP less the fixed and variable irrigation costs (VPlic. The equation parameters were used in a non linear mathematical model written in GAMS (General Algebraic Modelling System, in order to define the best irrigation water allocation amongst the 9 crops across the entire range of water availability and the volume of maximum economical advantage, hypothesising that each crop occupied the same surface (1 ha. This seasonal irrigation volume, that corresponded to the maximum total VPlic, was equal to 37000 m3. Moreover, the model allowed to define the best irrigation water distribution among the crops also for total available volumes lower than that of maximum economical advantage (37000 m3. Finally, it has been underlined that the vegetable crops should be irrigated with seasonal irrigation volumes equal to 100% of the ETM, whereas the summer and spring maize and the autumnal and spring

  2. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  3. Pricing Unmetered Irrigation Water under Asymmetric Information and Full Cost Recovery

    Directory of Open Access Journals (Sweden)

    Alban Lika

    2016-12-01

    Full Text Available The objective of this study is to define an efficient pricing scheme for irrigation water in conditions of unmetered water use. The study is based on a principal-agent model and identifies a menu of contracts, defined as a set of payments and share of irrigated area, able to provide incentives for an efficient use of the resource by maximizing social welfare. The model is applied in the case study of the Çukas region (Albania where irrigation water is not metered. The results demonstrate that using a menu of contracts makes it possible to define a second best solution that may improve the overall social welfare derived from irrigation water use compared with the existing pricing structure, though, in the specific case study, the improvement is small. Furthermore, the results also suggest that irrigation water pricing policy needs to take into account different farm types, and that appropriate contract-type pricing schemes have a potential role in providing incentives to farmers to make irrigation choices to the social optimum.

  4. The use of a rubble chimney for denitrification of irrigation return waters

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B; Kruger, Paul [Civil Engineering Department, Stanford University (United States)

    1970-05-15

    Biological denitrification has been proposed as a means of removing nitrates from waste waters to control eutrophication in receiving waters. A potential use for this method is the treatment of irrigation return waters containing high concentrations of nitrate-nitrogen, since direct discharge of such wastes may cause objectionable algal growth in the receiving waters. For example, the process may be used to treat agricultural waste waters in the San Joaquin Valley in California, where an estimated 580,000 acre-feet/year of return waters, containing 20 mg/l of nitrate-nitrogen, will require disposal by A.D. 2020. Two methods of biological denitrification are presently under study for possible use in the San Joaquin Valley. In one method nitrates are reduced to nitrogen gas by bacterial action in deep ponds; in the other method bacterial denitrification takes place in biological filters. In biological filters, bacteria are grown on columns of submerged stones. A possible alternative to the conventional construction of these filters is the creation of a rubble chimney by a contained nuclear explosion. This paper presents the results of a preliminary investigation of the feasibility of using a rubble chimney as a biological filter for denitrification. (author)

  5. The use of a rubble chimney for denitrification of irrigation return waters

    International Nuclear Information System (INIS)

    Evans, Roy B.; Kruger, Paul

    1970-01-01

    Biological denitrification has been proposed as a means of removing nitrates from waste waters to control eutrophication in receiving waters. A potential use for this method is the treatment of irrigation return waters containing high concentrations of nitrate-nitrogen, since direct discharge of such wastes may cause objectionable algal growth in the receiving waters. For example, the process may be used to treat agricultural waste waters in the San Joaquin Valley in California, where an estimated 580,000 acre-feet/year of return waters, containing 20 mg/l of nitrate-nitrogen, will require disposal by A.D. 2020. Two methods of biological denitrification are presently under study for possible use in the San Joaquin Valley. In one method nitrates are reduced to nitrogen gas by bacterial action in deep ponds; in the other method bacterial denitrification takes place in biological filters. In biological filters, bacteria are grown on columns of submerged stones. A possible alternative to the conventional construction of these filters is the creation of a rubble chimney by a contained nuclear explosion. This paper presents the results of a preliminary investigation of the feasibility of using a rubble chimney as a biological filter for denitrification. (author)

  6. Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-08-01

    Full Text Available Alfalfa (Medicago sativa is one of the major crops grown in Northern China in recent years, however, the current serious water shortage conditions present a challenge to the growth of this crop, especially if efficient use of water is considered in forage production for sustainability. This study aimed to evaluate alfalfa productivity and water use efficiency (WUE under different sprinkler irrigation levels. This experiment was conducted at Shiyanghe Experimental Station for Water-Saving in Agriculture and Ecology of China Agricultural University in Wuwei, Gansu, China, over a period of two years. There were three irrigation treatments: A1: 100% measured evapotranspiration (ETc of alfalfa; A2: irrigation amount was 66% of A1; A3: irrigation amount was 33% of A1; and a control of A4: no irrigation during the growing season. A randomized block design with three replications were applied. The results showed that the ETc and forage yield of alfalfa decreased, while WUE and crude protein (CP increased with the decreasing irrigation amounts. The seasonal average ETc and yield ranged from 412 mm to 809 mm and from 11,577 to 18,636 kg/ha, respectively, under different irrigation levels. The highest yields were obtained from the first growth period in all treatments in both years, due to the winter irrigation and the longest growth period. Alfalfa grown under lesser irrigation treatment conditions had higher variability in ETc and yield, mainly due to the variability in the amount of rainfall during the growth period. The seasonal average WUE of treatments ranged from 22.78 to 26.84 kg/(mm·ha, and the highest WUE was obtained at the first growth period, regardless of treatments. Seasonal average CP content ranged from 18.99% to 22.99%. A significant linear relationship was found between yield and ETc or irrigation amount, and the fitting results varied between growth periods and years. The present results also implied that winter irrigation provided the

  7. Golf Course Irrigation with Reclaimed Water in the Mediterranean: A Risk Management Matter

    Directory of Open Access Journals (Sweden)

    Miquel Salgot

    2012-04-01

    Full Text Available Controversy regarding the amount of water consumed or saved as a result of human activity is currently paramount in water-scarce areas. In recent decades, golf—a land and water consuming activity—has been implanted in several areas of the Mediterranean basin, where the scarcity of water resources is well-known. As a result, the use of conventional water resources for golf course irrigation is increasingly contested and its replacement by reclaimed water has become essential. This paper examines the wide range of issues involved in its use on golf courses, including hazards—due to the presence of microorganisms and pollutants—and the corresponding risks that can appear. The resulting biological, chemical and physical water quality concerns are analyzed. Legal aspects related to the use of reclaimed water are also discussed and good reuse practices are suggested, including a detailed examination of risk assessment procedures and tools through observation or chemical, physical and microbiological analysis. The HACCP system—which focuses on quality determination in water samples from relevant control points—is described in detail, as it is generally accepted as one of the most scientific ways to detect health problems on a golf course. The paper concludes that, given the increasing availability of treated and reclaimed water and the water needs of golf courses, the future development of the sport in areas without surplus water resources—such as the Mediterranean basin—will predictably depend upon the use of reclaimed water. In recent years, risk assessment or analysis has emerged as an essential tool to guarantee the application of reclaimed water at an acceptable risk level. There certainly have been considerable advances and improvements in the tools that guarantee the safe use of reclaimed water, although current methods available require simplification for their practical application. Nevertheless, protocols applied at present

  8. Soil Water Balance and Irrigation Strategies in an Agricultural District of Southern Italy

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2010-06-01

    Full Text Available An efficient management of water resources is considered very important for Mediterranean regions of Italy in order to improve the economical and environmental sustainability of the agricultural activity. The purpose of this study is to analyze the components of soil water balance in an important district included in the regions of Basilicata and Puglia and situated in the Jonical coastal area of Southern Italy and mainly cropped with horticultural crops. The study was performed by using the spatially distributed and physically based model SIMODIS in order to individuate the best irrigation management maximizing the water use efficiency and minimizing water losses by deep percolation and soil evaporation. SIMODIS was applied taking in to account the soil spatial variability and localization of cadastral units for two crops, durum wheat and water melon. For water melon recognition in 2007 a remote sensed image, from SPOT5 satellite, at the spatial resolution of 10 m, has been used. In 2008, a multi-temporal data set was available, from SPOT5 satellite to produce a land cover map for the classes water melon and durum wheat. Water melon cultivation was simulated adopting different water supply managements: rainfed and four irrigation strategies based on (i soil water availability and (ii plant water status adopting a threshold daily stress value. For each management, several water management indicators were calculated and mapped in GIS environment. For seasonal irrigation depth, actual evapotranspiration and irrigation efficiency were also determined. The analysis allowed to individuate the areas particularly sensitive to water losses by deep percolation because of their hydraulic functions characterized by low water retention and large values of saturated hydraulic conductivity. For these areas, the irrigation based on plant water status caused very high water losses by drainage. On the contrary, the irrigation scheduled on soil base allowed to

  9. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  10. Effects of Irrigation Methods on the Growth of Petunia Grown in Heat Fusion Polyester Fiber Hardened Medium without Polythylene Pot

    OpenAIRE

    後藤, 丹十郎; 島, 浩二; 東, 千里; 森下, 照久; 藤井, 一徳; 元岡, 茂治

    2006-01-01

    Recenty, polyethylene pots(PP) present a significant environmental issue for waste disposal. To develop bedding plant production system without PP, properties of compacted medium hardened by heat fusion polyester fiber were investigated. Effects of irrigation methods on the growth of vegetative propagated petunia grown in medium without PP were investigated. The effect of medium type was not as significant as the difference in water loss per pot. Water loss per pot of medium without PP was ab...

  11. Monitoring of water in soil in asparagus irrigated culture in Vale do Sao Francisco, Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Antonino, Antonio C. Dantas; Sampaio, Everardo V.S.B.; Dall' Ollio, Attilio; Bernardo, Ana L. Alves; Audry, Pierre

    1996-08-01

    For many years the brazilian government has inactivated the implantation of irrigated areas in the Sao Francisco valley, obtaining high productivity.After the most appropriated areas having been occupied, the irrigation of second choice soils, usually more shallower and more clay is been tried. In one of these areas, the productivity of asparagus is less than the expected. trying to improve productivity by optimization of irrigation, the movement of water on soil and plants is being monitored far the last year and a half. the main results are shown with emphasis on the raining season, the most problematic

  12. Arsenic transport in irrigation water across rice-field soils in Bangladesh

    International Nuclear Information System (INIS)

    Polizzotto, Matthew L.; Lineberger, Ethan M.; Matteson, Audrey R.; Neumann, Rebecca B.; Badruzzaman, A. Borhan M.; Ashraf Ali, M.

    2013-01-01

    Experiments were conducted to analyze processes impacting arsenic transport in irrigation water flowing over bare rice-field soils in Bangladesh. Dissolved concentrations of As, Fe, P, and Si varied over space and time, according to whether irrigation water was flowing or static. Initially, under flowing conditions, arsenic concentrations in irrigation water were below well-water levels and showed little spatial variability across fields. As flowing-water levels rose, arsenic concentrations were elevated at field inlets and decreased with distance across fields, but under subsequent static conditions, concentrations dropped and were less variable. Laboratory experiments revealed that over half of the initial well-water arsenic was removed from solution by oxidative interaction with other water-column components. Introduction of small quantities of soil further decreased arsenic concentrations in solution. At higher soil-solution ratios, however, soil contributed arsenic to solution via abiotic and biotic desorption. Collectively, these results suggest careful design is required for land-based arsenic-removal schemes. -- Highlights: •We analyzed the processes impacting arsenic transport in flowing irrigation water. •Arsenic in Bangladesh rice-field irrigation water varied over space and time. •Arsenic was correlated with Fe, P, and Si in flowing and static water. •Oxidation, adsorption and desorption reactions controlled arsenic concentrations. •Land-based arsenic removal from water will be impacted by hydraulic conditions. -- Arsenic concentrations in flowing and static irrigation water in Bangladesh varied over space and time, suggesting careful design is required for land-based pre-treatment schemes that aim to remove As from solution

  13. The potential use of treated brewery effluent as a water and nutrient source in irrigated crop production

    Directory of Open Access Journals (Sweden)

    Richard P. Taylor

    2018-06-01

    Full Text Available Brewery effluent (BE needs to be treated before it can be released into the environment, reused or used in down-stream activities. This study demonstrated that anaerobic digestion (AD followed by treatment in an integrated tertiary effluent treatment system transformed BE into a suitable solution for crop irrigation. Brewery effluent can be used to improve crop yields: Cabbage (Brassica oleracea cv. Star 3301, grew significantly larger when irrigated with post-AD, post-primary-facultative-pond (PFP effluent, compared with those irrigated with post-constructed-wetland (CW effluent or tap water only (p < 0.0001. However, cabbage yield when grown using BE was 13% lower than that irrigated with a nutrient-solution and fresh water; the electrical conductivity of BE (3019.05 ± 48.72 µs/cm2 may have been responsible for this. Post-CW and post-high-rate-algal-pond (HRAP BE was least suitable due to their higher conductivity and lower nutrient concentration. After three months, soils irrigated with post-AD and post-PFP BE had a significantly higher sodium concentration and sodium adsorption ratio (3919 ± 94.77 & 8.18 ± 0.17 mg/kg than soil irrigated with a commercial nutrient-solution (920.58 ± 27.46 & 2.20 ± 0.05 mg/kg. However, this was not accompanied by a deterioration in the soil's hydro-physical properties, nor a change in the metabolic community structure of the soil. The benefits of developing this nutrient and water resource could contribute to cost-reductions at the brewery, more efficient water, nutrient and energy management, and job creation. Future studies should investigate methods to reduce the build-up of salt in the soil when treated BE is used to irrigate crops. Keywords: Wastewater irrigation, Nutrient recovery, Agriculture, Brewery effluent

  14. Using Home Irrigation Users' Perceptions to Inform Water Conservation Programs

    Science.gov (United States)

    Warner, Laura A.; Chaudhary, Anil Kumar; Lamm, Alexa J.; Rumble, Joy N.; Momol, Esen

    2017-01-01

    Targeted agricultural education programs can play a role in solving complex water issues. This article applies importance-performance analysis to examine dimensions of water resources that may inform local water conservation campaigns in the United States. The purpose of this study was to generate a deep understanding of home irrigation users'…

  15. Green, blue and grey water footprint reduction in irrigated crop production

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie

    2017-01-01

    In the face of increasing water scarcity, reducing the consumptive and degradative water use of crop production is important to produce more food and/or for the environment. The thesis explores the potential for reducing the green, blue and grey water footprint (WF) of irrigated crop production by

  16. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    Science.gov (United States)

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  17. Regional application of one-dimensional water flow models for irrigation management

    NARCIS (Netherlands)

    Urso, D' G.; Menenti, M.; Santini, A.

    1999-01-01

    Numerical models for the simulation of soil water processes can be used to evaluate the spatial and temporal variations of crop water requirements; this information can support the irrigation management in a rationale usage of water resources. This latter objective requires the knowledge of

  18. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    Science.gov (United States)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  19. Rice production with less irrigation water is possible in a Sahelian environment

    NARCIS (Netherlands)

    Vries, de M.E.; Rodenburg, J.; Bado, B.V.; Sow, A.; Leffelaar, P.A.; Giller, K.E.

    2010-01-01

    We investigated the possibility of saving irrigation water in rice production in a Sahelian environment with different nitrogen rates and weed control treatments. A series of field experiments was conducted at Ndiaye (shallow water table, dry and wet season) and at Fanaye (deep water table, wet

  20. Prospective controlled trial comparing colostomy irrigation with "spontaneous-action" method.

    Science.gov (United States)

    Williams, N S; Johnston, D

    1980-07-12

    Thirty randomly selected patients with permanent colostomies entered a prospective controlled trial comparing colostomy irrigation with spontaneous action. Each patient was interviewed and examined before irrigation was begun and again after the technique had been used for three months. Each then reverted to spontaneous action for a further three months and was then reassessed. Eight patients abandoned irrigation and 22 (73%) adhered to the protocol. Irrigation caused no mishaps or complications. The mean time spent managing the stoma was 45 +/- SEM 9 min/24 hours during spontaneous action and 53 +/- 9 min/24 hours during irrigation. This difference was not significant. The numbers of bowel actions weekly were 13 +/ SEM 2 during spontaneous action and 6 +/- 1 during irrigation (p Irrigation reduced odour and flatus in 20 patients and enabled 12 out of 18 to stop using drugs and seven to discard their appliance. Irrigation also improved the social life of 18 patients and the working conditions of eight out of 14. These finding show that some patients may not be suitable for irrigation but that for many it is better than the conventional British method of colostomy management. With modern apparatus the technique is safe.

  1. Water deficit imposed by deficit irrigation at different plant growth stages of maize

    International Nuclear Information System (INIS)

    Calvache, M.; Reichardt, C.

    1995-01-01

    The purpose of this study was to identify specific growth stages of maize Crop, at which the plant is less sensitive to water stress so that irrigation can be omitted withhout significant decrease yield. The field experiment was conducted at a University experiment station, Tumbaco, Pichincha, Ecuador, during may - october 1993, on a sandy loam soil ( typic durustoll). Soil moisture was monitored with a neutron probe down to 0.70 m depth, before and 24 h after each irrigation. The actual evapotranspiration of the crop was estimated by the water - balance technique. Field water efficiency and crop water use efficiency were calculated by dividing actual grain yield by irrigation and by ETa, respectively. Nitrogen fertilizer use efficiency was calculated using N - 15 methodology in the 75 kg N/ ha treatment. From the yield data, it can be concluded that treatments which had irrigation deficit had lower yield than those that had suplementary irrigation. The flowering and yield formation stages were the most sensitive to moisture stress. Nitrogen fertilization significantly increased the grain yield. The crop water use effeciency was the lowest at the flowering and yield formation of the region, the treatments I1 and I7 had the same crop water use efficiency. The results of N - 15 labelled plots ( F1) showed that soil water deficiency significantly affects nitrogen was derived from fertilizer in treatments I3 and I7 and only 11 - 9% in the treatments I2 and I5 respectively. ( Author)

  2. The effect of applying different water levels and irrigation frequencies in propagating rosemary (Rosmarinus officinalis L.

    Directory of Open Access Journals (Sweden)

    Javier Giovanni Álvarez Herrera

    2010-01-01

    Full Text Available Rosemary seedlings are obtained by vegetative propagation because the seeds present low viability. Despite being an expanding crop, there is little information on water consumption during the propagation stage. Water levels and irrigation frequencies were therefore applied using a completely randomised design having a 4 x 2 factorial arrangement. The first factor concerned irrigation frequency (4 and 8 days and the second concerned water level (0.6, 0.8, 1.0 and 1.2 evaporation inside the greenhouse. A 1.0 coefficient combined with 4-day irrigation frequency presented the best results regarding height (39.3 cm, fresh weight, dry weight and branch length (146 cm. Water level affected the fresh and dry weight of leaves regardless of frequency. Relative water content in leaves did not present differences due to environmental conditions minimising treatment effect. Rooting percent- tage showed no significant differences regarding irrigation frequency or water level. Irrigation frequency did not affect rosemary growing pattern because sphagnum retains high moisture content. The best branch number (34 was obtained with 1.0 coefficient and 4-day frequency, this being important from the production point of view because this is the material which is sold. Water management changes photoassimilate distribution in rosemary plants.

  3. Effect of irrigation techniques and strategies on water footprint of growing crops

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.

    2014-12-01

    Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation

  4. Smart Water Conservation System for Irrigated Landscape. ESTCP Cost and Performance Report

    Science.gov (United States)

    2016-10-01

    irrigation practices (timer based and manual watering systems) that are no longer sustainable given the limited water supplies in many U.S. locations and...Areas that have high local water costs or limited water supply options may also benefit from water harvesting. The implementation of smart ET...in potable water use. Smart ET controllers with centralized and site-specific sensor inputs, such as ET gauge, rain, soil moisture, and leak

  5. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water.

    Science.gov (United States)

    Fernandez-Cassi, X; Timoneda, N; Gonzales-Gustavson, E; Abril, J F; Bofill-Mas, S; Girones, R

    2017-09-18

    Microbial food-borne diseases are still frequently reported despite the implementation of microbial quality legislation to improve food safety. Among all the microbial agents, viruses are the most important causative agents of food-borne outbreaks. The development and application of a new generation of sequencing techniques to test for viral contaminants in fresh produce is an unexplored field that allows for the study of the viral populations that might be transmitted by the fecal-oral route through the consumption of contaminated food. To advance this promising field, parsley was planted and grown under controlled conditions and irrigated using contaminated river water. Viruses polluting the irrigation water and the parsley leaves were studied by using metagenomics. To address possible contamination due to sample manipulation, library preparation, and other sources, parsley plants irrigated with nutritive solution were used as a negative control. In parallel, viruses present in the river water used for plant irrigation were analyzed using the same methodology. It was possible to assign viral taxons from 2.4 to 74.88% of the total reads sequenced depending on the sample. Most of the viral reads detected in the river water were related to the plant viral families Tymoviridae (66.13%) and Virgaviridae (14.45%) and the phage viral families Myoviridae (5.70%), Siphoviridae (5.06%), and Microviridae (2.89%). Less than 1% of the viral reads were related to viral families that infect humans, including members of the Adenoviridae, Reoviridae, Picornaviridae and Astroviridae families. On the surface of the parsley plants, most of the viral reads that were detected were assigned to the Dicistroviridae family (41.52%). Sequences related to important viral pathogens, such as the hepatitis E virus, several picornaviruses from species A and B as well as human sapoviruses and GIV noroviruses were detected. The high diversity of viral sequences found in the parsley plants

  6. Simulating Water Allocation and Cropping Decisions in Yemen’s Abyan Delta Spate Irrigation System

    Directory of Open Access Journals (Sweden)

    Derek Jin-Uk Marchant

    2018-01-01

    Full Text Available Agriculture employs more Yemenis than any other sector and spate irrigation is the largest source of irrigation water. Spate irrigation however is growing increasingly difficult to sustain in many areas due to water scarcity and unclear sharing of water amongst users. In some areas of Yemen, there are no institutionalised water allocation rules which can lead to water related disputes. Here, we propose a proof-of-concept model to evaluate the impacts of different water allocation patterns to assist in devising allocation rules. The integrated model links simple wadi flow, diversion, and soil moisture-yield simulators to a crop decision model to evaluate impacts of different water allocation rules and their possible implications on local agriculture using preliminary literature data. The crop choice model is an agricultural production model of irrigation command areas where the timing, irrigated area and crop mix is decided each month based on current conditions and expected allocations. The model is applied to Yemen’s Abyan Delta, which has the potential to be the most agriculturally productive region in the country. The water allocation scenarios analysed include upstream priority, downstream priority, equal priority (equal sharing of water shortages, and a user-defined mixed priority that gives precedence to different locations based on the season. Once water is distributed according to one of these allocation patterns, the model determines the profit-maximising plant date and crop selection for 18 irrigated command areas. This aims to estimate the impacts different water allocation strategies could have on livelihoods. Initial results show an equal priority allocation is the most equitable and efficient, with 8% more net benefits than an upstream scenario, 10% more net benefits than a downstream scenario, and 25% more net benefits than a mixed priority.

  7. Delineating shallow ground water irrigated areas in the Atankwidi ...

    African Journals Online (AJOL)

    user

    Basin Lan Use/Land Cover (LULC) and irrigated area Mapping using. Continuous Streams of MODIS Data. Remote Sensing Environ.,. 95(3): 317-341. Neckel H, Labs D (1984). The solar radiation between 3300 and 12500. A. Solar Phys., 90: 205-258. Tucker CJ, Grant DM, Dykstra JD (2005). NASA's global orthorectified.

  8. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    ADOWIE PERE

    is acidic, thus enhancing leaching and corrosive tendencies of the irrigation ... of heavy metals in the soil indicated contamination from the effluent from the .... well (SAR = 11.1), which contained high pH (pH= 6.65) and high Chloride ion (Cl-of.

  9. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Science.gov (United States)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  10. Effects of climate change on water abstraction restrictions for irrigation during droughts - The UK case

    Science.gov (United States)

    Rey Vicario, D.; Holman, I.

    2016-12-01

    The use of water for irrigation and on-farm reservoir filling is globally important for agricultural production. In humid climates, like the UK, supplemental irrigation can be critical to buffer the effects of rainfall variability and to achieve high quality crops. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. Currently, water abstraction from surface waters for agricultural irrigation can be restricted by the Environment Agency during droughts under Section 57 of the Water Resources Act (1991), based on abnormally low river flow levels and rainfall forecast, causing significant economic impacts on irrigated agricultural production. The aim of this study is to assess the impact that climate change may have on agricultural abstraction in the UK within the context of the abstraction restriction triggers currently in place. These triggers have been applied to the `Future Flows hydrology' database to assess the likelihood of increasing restrictions on agricultural abstraction in the future by comparing the probability of voluntary and compulsory restrictions in the baseline (1961-1990) and future period (2071-2098) for 282 catchments throughout the whole of the UK. The results of this study show a general increase in the probability of future agricultural irrigation abstraction restrictions in the UK in the summer, particularly in the South West, although there is significant variability between the 11 ensemble members. The results also indicate that UK winters are likely to become wetter in the future, although in some catchments the probability of abstraction restriction in the reservoir refilling winter months (November-February) could increase slightly. An increasing frequency of drought events due to climate change is therefore likely to lead to

  11. Aflaj’s Irrigation Water Demand/Supply Ratio: Two Case Studies

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Ghafri

    2006-01-01

    Full Text Available Due to the geographical location of Oman in an arid zone, agricultural production depends fully on irrigation. The traditional irrigation systems (Aflaj, sing. falaj supply more than one third of water for agriculture. Falaj is defined in the context of this paper as a canal system which provides water for domestic and agricultural uses. Oman has 3,107 active Aflaj producing about 680 Mm3 of water per year. The main objective of this study was to estimate the irrigation performance of Aflaj in Oman. Falaj al-Dariz and al-Nujaid were chosen as case studies. Both Aflaj are located in an extremely arid environment, where the rainfall is low and evapotranspiration is high. The study utilized an approach to estimate the irrigation performance of Aflaj by considering the falaj as a single unit of irrigation. The irrigation demand/supply ratio (D/S was used in the analysis as a tool of evaluation. Date palm, the dominant crop irrigated by Aflaj, was selected for the analysis. In falaj al-Dariz the date palms were slightly under irrigated on a yearly basis. On a monthly basis, in winter, the D/S was below 0.6 and in summer it was above 1.0. On the other hand, falaj al-Nujaid was supplying too much water than the date palms needed all round the year. In winter the D/S ratio was as low as 0.25. Even in summer, the D/S ratio did not much exceed 1.0.

  12. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  13. Perceptions of using low-quality irrigation water in vegetable production in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mayilla, Winfrida; Keraita, Bernard; Ngowi, Helena

    2017-01-01

    This study was conducted to examine perceptions of the farmers and key informants on the use of low-quality irrigation water for vegetable production in urban and peri-urban areas in Morogoro, Tanzania. The methods used to collect data were farmer surveys (n = 60), focus group discussions (n = 4)...... in formulating policies and creating health promotion awareness for safe use of low-quality water for benefit maximization and health risk reduction....... of buying commercial fertilizers, vegetable production all year round, sustainable income generation from selling vegetables and also jobs creation in the community among farmers and vegetable sellers. Findings from Mann–Whitney U test and Kruskal–Wallis test score on farmers perception scales indicate...

  14. [Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan Desert hinterland].

    Science.gov (United States)

    Xie, Ting-ting; Zhang, Xi-ming; Liang, Shao-min; Shan, Li-shan; Yang, Xiao-lin; Hua, Yong-hui

    2008-04-01

    By using heat-balance stem flow gauge and press chamber, the water physiological characteristics of Haloxylon ammodendron under different irrigations in Taklimakan Desert hinterland were measured and analyzed. The results indicated that the diurnal variation curve of H. ammodendron stem sap flow varied with irrigations. When irrigated 35 and 24.5 kg x plant(-1) once time, the diurnal variation of stem sap flow changed in single peak curve and the variation extent was higher; while irrigated 14 kg x plant(-1) once time, the diurnal variation changed in two-peak curve and the variation extent was small. With the decrease of irrigations, the average daily sap flow rate and the daily water consumption of H. ammodendron decreased gradually, the dawn and postmeridian water potential also had a gradual decrease, and the correlations of stem sap flow with total radiation, air temperature, relative humidity, and wind speed enhanced. Under different irrigations, the correlation between stem sap flow rate and total radiation was always the best.

  15. IRRIGATION SCHEDULING CALCULATOR (ISC TO IMPROVE WATER MANAGEMENT ON FIELD LEVEL IN EGYPT

    Directory of Open Access Journals (Sweden)

    Samiha Abou El-Fetouh Hamed Ouda

    2017-10-01

    Full Text Available The developed model is MS excel sheet called “Irrigation Scheduling Calculator, ISC”. The model requires to input daily weather data to calculate daily evapotranspiration using Penman-Monteith equation. The model calculates water depletion from the root zone to determine when to irrigate and how much water should be applied. The charge from irrigation pump is used to calculate how many hours should the farmer run the pump to deliver the needed amount of water. ISC model was used to developed irrigation schedule for wheat and maize planted in El-Gharbia governorate. The developed schedules were compared to the actual schedules for both crops. Furthermore, CropSyst model was calibrated for both crops and run using the developed schedules by ISC model. The simulation results indicated that the calculated irrigation amount by ISC model for wheat was lower than actual schedule by 6.0 mm. Furthermore, the simulated wheat productivity by CropSyst was higher than measured grain and biological by 2%. Similarly, the calculated applied irrigation amount by ISC model for maize was lower than actual schedule by 79.0 mm and the productivity was not changed.

  16. Water and energy footprint of irrigated agriculture in the Mediterranean region

    Science.gov (United States)

    Daccache, A.; Ciurana, J. S.; Rodriguez Diaz, J. A.; Knox, J. W.

    2014-12-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m3 kg-1) and energy (CO2 kg-1) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km3 yr-1 of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm-3 and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km3 of water but would correspondingly increase CO2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km3 yr-1 (+137%) whilst CO2 emissions would rise by +270%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.

  17. Effect of water irrigation volume on Capsicum frutescens growth and plankton abundance in aquaponics system

    Science.gov (United States)

    Andriani, Y.; Dhahiyat, Y.; Zahidah; Subhan, U.; Iskandar; Zidni, I.; Mawardiani, T.

    2018-03-01

    This study aimed to understand Capsicum frutescens growth and plankton abundance in aquaponics culture. A Completely Randomized Design (CRD) with six treatments in triplicates comprising of treatment A (positive control using organic liquid fertilizer), B (negative control without fertilizer), C (drip irrigation aquaponics with a water debit of 100 ml/day/plant), D (drip irrigation aquaponics with a water debit of 150 ml/day/plant), E (drip irrigation with a water debit of 200 ml/day/plant), and F (drip irrigation aquaponics with a water debit of 250 ml/day/plant) was applied. The water used in treatments C, D, E, and F contained comet fish feces as fertilizer. C. frutescens growth and plankton abundance were observed. Analysis was conducted using analysis of variance for plant productivity and descriptive analysis for plankton abundance and water quality. The results of this study showed that the highest plant growth was seen in plants receiving F treatment with 50 ml/day drip irrigation. However, no significant difference was found when compared to the positive control with organic artificial fertilizer. Eleven types of phytoplankton and six types of zooplankton were found, with Stanieria sp. as the most abundant phytoplankton and Brachionus sp. and Epistylis sp. as the most abundant zooplanktons.

  18. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.

    Science.gov (United States)

    Sengupta, Mita E; Keraita, Bernard; Olsen, Annette; Boateng, Osei K; Thamsborg, Stig M; Pálsdóttir, Guðný R; Dalsgaard, Anders

    2012-07-01

    Water from wastewater-polluted streams and dug-outs is the most commonly used water source for irrigation in urban farming in Ghana, but helminth parasite eggs in the water represent health risks when used for crop production. Conventional water treatment is expensive, requires advanced technology and often breaks down in less developed countries so low cost interventions are needed. Field and laboratory based trials were carried out in order to investigate the effect of the natural coagulant Moringa oleifera (MO) seed extracts in reducing helminh eggs and turbidity in irrigation water, turbid water, wastewater and tap water. In medium to high turbid water MO extracts were effective in reducing the number of helminth eggs by 94-99.5% to 1-2 eggs per litre and the turbidity to 7-11 NTU which is an 85-96% reduction. MO is readily available in many tropical countries and can be used by farmers to treat high turbid water for irrigation, however, additional improvements of water quality, e.g. by sand filtration, is suggested to meet the guideline value of ≤ 1 helminth egg per litre and a turbidity of ≤ 2 NTU as recommended by the World Health Organization and the U.S. Environmental Protection Agency for water intended for irrigation. A positive correlation was established between reduction in turbidity and helminth eggs in irrigation water, turbid water and wastewater treated with MO. This indicates that helminth eggs attach to suspended particles and/or flocs facilitated by MO in the water, and that turbidity and helminth eggs are reduced with the settling flocs. However, more experiments with water samples containing naturally occurring helminth eggs are needed to establish whether turbidity can be used as a proxy for helminth eggs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes

    Science.gov (United States)

    Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.

    2012-04-01

    In a changing climate context, with an increase of the need for food, it becomes increasingly important to improve our knowledge for monitoring agricultural surfaces by satellite for a better food management and to reduce the waste of natural resources (water storages and shortages, irrigation management, increase of soil and water salinity, soil erosion, threats on biodiversity). The main objective of this study is to evaluate the potentialities of multi-spectral and multi-resolution satellites for monitoring the temporal evolution of water bodies surfaces (mainly used for irrigation purposes). This analysis is based on the use of a series of images acquired between the years 2003 and 2011. The year 2010 is considered as a reference, with 110 acquisitions performed during the MCM'10 campaign (Multispectral Crop Monitoring 2010, http://www.cesbio.ups-tlse.fr/us/mcm.html). Those images are provided by 8 satellites (optical, thermal and RADAR) such as ALOS, TERRASAR-X, RADARSAT-2, FORMOSAT-2, SPOT-2, SPOT-4, SPOT-5, LANDSAT-5. The studied area is situated in the South-West of Toulouse in France; in a region governed by a temperate climate. The irrigated cultures represent almost 12% of the cultivated surface in 2009. The method consists in estimating the water bodies surfaces by using a generic approach suitable for all images, whatever the wavelength (optical, infrared, RADAR). The supervised parallelepiped classification allows discriminating four types of surfaces coverage: forests, water expanses, crops and bare soils. All RADAR images are filtered (Gamma) to reduce speckle effects and false detections of water bodies. In the context if the "South-West" project of the CESBIO laboratory, two spatial coverages are analyzed: SPOT 4 (4800km2) and FORMOSAT 2 (576km2). At these scales, 154 and 38 water bodies are identify. They respectively represent 4.85 km2 (0.10% of the image cover) and 2.06 km2 (0.36% of the image cover). Statistical analyses show that 8% of lakes

  20. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  1. Water production for irrigation and drinking needs in remote arid communities using closed-system greenhouse: A review

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2015-06-01

    Full Text Available Water needs for agriculture, food production and drinking are considered one of the most critical challenges facing the world in the present days. This is due mainly to the scarcity and lack of fresh water resources, and the increasing ground water salinity. Most of these countries have a high solar energy potential. This potential can be best developed by solar desalination concepts and methods specifically suited for rural water supply, irrigation. In this paper, a humidification–dehumidification (HD water desalination system with several technologies for irrigation and drinking needs in remote arid areas is introduced from technical and economic point of views. This study has investigated (1 detailed discussion of technical developments, economical and sustainable aspects; (2 benefits of the new design over traditional applications, desalination and other irrigation methods; (3 specific requirements and implementation challenges in remote and cold regions; (4 performance and reliability improvement possible techniques. Recommended researches and projects leading to high efficiency, economical and sustainable applications of some desalination devices driven by solar energy are highlighted.

  2. Correlation among fluoride and metals in irrigation water and soils of Ethiopian Rift Valley

    Directory of Open Access Journals (Sweden)

    Elias Gizaw

    2014-05-01

    Full Text Available The levels of fluoride and selected metals in Ethiopian Rift Valley soils and irrigation water in the nearby sources were determined by fluoride ion selective electrode and flame atomic absorption spectrophotometer, respectively. The pH, conductivity, salinity and total dissolved solids in water and soil samples were also determined. Accuracy of the optimized procedure was evaluated using standard addition (spiking method and an acceptable percentage recovery was obtained. The fluoride concentrations in water samples were found in the range of 0.14-8.0 mg/L which is below the WHO limit of fluoride concentration for irrigation (less than 10 mg/L. The water soluble and total fluorides in soil were 2.3-16 µg/g and 209-1210 µg/g, respectively and are within the ranges recommended by FAO and WHO. The range of metal concentration in soil samples (µg/g dry weight basis and in water samples (mg/L respectively were: Na (684-6703, 8.6-67, Mg (1608-11229, 23-67, K (1776-4394, 1.1-20, Ca (7547-22998, 17-267, Cr (9.8-79, 0.07-0.17, Mn (143-700, 0.05-37, Co (50-112, 0.35-1.5, Ni (446-1288, 0.27-41, Fe (12180-32681, 6.0-48, Cu (8.9-45, 0.09-0.25 and Zn (31-89, 0.14-0.56. Fluoride was found to have significant correlation with major trace metals (Fe, Cu and Cr, but the correlation with other trace metals was not significant. DOI: http://dx.doi.org/10.4314/bcse.v28i2.7

  3. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  4. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control.

    Science.gov (United States)

    Kibret, Solomon; Wilson, G Glenn; Tekie, Habte; Petros, Beyene

    2014-09-13

    Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia. Daily canal water releases were recorded during the study period and bi-weekly correlation analysis was done to determine relationships between canal water releases and larval/adult vector densities. Blood meal sources (bovine vs human) and malaria sporozoite infection were tested using enzyme-linked immunosorbent assay (ELISA). Monthly malaria data were also collected from central health centre of the study villages. Monthly malaria incidence was over six-fold higher in the irrigated villages than the non-irrigated villages. The number of anopheline breeding habitats was 3.6 times higher in the irrigated villages than the non-irrigated villages and the most common Anopheles mosquito breeding habitats were waterlogged field puddles, leakage pools from irrigation canals and poorly functioning irrigation canals. Larval and adult anopheline densities were seven- and nine-fold higher in the irrigated villages than in the non-irrigated villages, respectively, during the study period. Anopheles arabiensis was the predominant species in the study area. Plasmodium falciparum sporozoite rates of An. arabiensis and Anopheles pharoensis were significantly higher in the irrigated villages than the non-irrigated villages. The annual entomological inoculation rate (EIR) calculated for the irrigated and non-irrigated villages were 34.8 and 0.25 P. falciparum infective bites per person per year, respectively. A strong positive correlation was found between bi-weekly anopheline larval density and canal water

  5. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  6. Water and energy footprint of irrigated agriculture in the Mediterranean region

    International Nuclear Information System (INIS)

    Daccache, A; Ciurana, J S; Knox, J W; Rodriguez Diaz, J A

    2014-01-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m 3 kg −1 ) and energy (CO 2 kg −1 ) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km 3 yr −1 of water abstraction and 1.78 Gt CO 2 emissions yr −1 , with most emissions from sunflower (73 kg CO 2 /t) and cotton (60 kg CO 2 /t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm −3 and emissions of 31 kg CO 2 /t. Irrigation modernization would save around 8 km 3 of water but would correspondingly increase CO 2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km 3 yr −1 (+137%) whilst CO 2 emissions would rise by +270%. The study has major policy implications for understanding the water–energy–food nexus in the region and the trade-offs between strategies to save water, reduce CO 2 emissions and/or intensify food production. (letter)

  7. Application of Water Quality and Ecology Indices of Benthic Macroinvertebrate to Evaluate Water Quality of Tertiary Irrigation in Malang District

    Directory of Open Access Journals (Sweden)

    Desi Kartikasari

    2013-12-01

    Full Text Available This research aims to determine the water quality of tertiary irrigation in several subdistricts in Malang, namely Kepanjen, Karangploso, and Tumpang. The water quality depends on the water quality indices (National Sanitation Foundation’s-NSF Indices and O’Connor’s Indices based on variables TSS, TDS, pH, DO, and Nitrate concentrate and ecological indices of benthic macroinvertebrate (Diversity Indices Shannon-Wiener, Hilsenhof Biotic Indices-HBI, Average Score per Taxon-ASPT which is calculated by Biological Monitoring Working Party-BMWP, Ephemeroptera Indices, Plecoptera, Trichoptera-EPT. Observation of the physico-chemical water quality and benthic macroinvertebrate on May 2012 to April 2013. The sampling in each subdistrict was done at two selected stations in tertiary irrigation channel with three plot at each station. The data of physico-chemical quality of water were used to calculate the water quality indices, while the benthic macroinvertebrate data were used to calculate the ecological indices. The research findings showed that 27 taxa of benthic macroinvertebrates belong 10 classes were found in the three subdistrict. The pH, DO, Nitrate, TSS and TDS in six tertiary irrigation channels in Malang still met the water quality standards based on Government Regulation No. 82 of 2001 on Management of Water Quality and Water Pollution Control Class III. Based on NSF-WQI indices and O'Connor's Indices, water qualities in these irrigation channels were categorized into medium or moderate (yellow to good (green category. However, based on benthic macroinvertebrate communities which was used to determine the HBI, the water quality in the irrigation channels were categorized into the fair category (fairly significant organic pollution to fairly poor (significant organic pollution, while based on the value of ASPT, the water were categorized into probable moderate pollution to probable severe pollution. The irrigation water which was

  8. Physiology of ‘Paluma’ guava under irrigation with saline water and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Evandro Manoel da Silva

    2017-05-01

    Full Text Available The use of saline water in irrigation causes osmotic and toxic effects and nutritional imbalance in plants, leading to morphophysiological modifications in the leaves and compromising the production of photosynthetic pigments, which negatively reflects in the growth and development of the crops. Hence, this study aimed to evaluate the effect of irrigation water salinity on the content of photosynthetic pigments and leaf morphophysiology of guava seedlings cv. ‘Paluma’ under nitrogen (N fertilization. A randomized block design was used, testing five levels of irrigation water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1 and four N doses (541.1, 773.0, 1,004.9, and 1,236.8 mg of N dm-3 of soil in a 5 x 4 factorial scheme with three replicates and five plants per plot. The contents of photosynthetic pigments in the leaves of the guava seedlings cv. ‘Paluma’ were inhibited by the increase in irrigation water salinity at 190 days after emergence, and the salt stress was lessened with the N dose of 1,004.9 mg dm-3 up to an ECw level of 1.2 dS m-1. Leaf morphophysiology of guava seedlings was not compromised by irrigation water salinity up to 1.5 dS m-1, and the highest values were obtained in plants fertilized with 541.1 mg of N dm-3.

  9. Water deficit imposed by partial irrigation at different plant growth stages of common bean

    International Nuclear Information System (INIS)

    Calvache, M.; Reichardt, K.

    1995-01-01

    The purpose of this study was to identify specific growth stages of common bean crop, at which the plant is less sensitive to water stress so that irrigation can be omitted without significant decrease in biological nitrogen fixation and yield. Two field experiments were conducted at a University experiments station, Tumbaco, Pichincha, Ecuador, on a sandy loam soil ( Typic durustoll ). The climate is warm and dry ( mean air temperature 16 degree Celcius and mean relative humidity 74% ) during the cropping season and rainfall of 123 mm was recorded during the cropping period. The treatments consisted of combinations of 7 irrigation regimes ( I1 = all normal watering; I2 = all stres; I3 = traditional practice; I4 = single stress at vegetation; I5 flowering; I6 = yield formation and I7 = ripening stages ) and 2 levels of applied N ( 20 and 80 kg/ ha ). Differential irrigation was started after 3 uniform irrigations for germination and crop establishment. Soil moisture was monitored with a neutron probe down to 0.60 m depth, before and 24 h after each irrigation. Biological Nitrogen Fixation was calculated using the N- 15 metodology in the 20 kg N/ ha treatment. From the yield data, it can be concluded that treatments which had irrigation deficit had lower yield than those that had suplementary irrigation. The flowering stage was the most sensitive to number of pods and grain yield. Biological Nitrogen Fixation was significantly affected by water stress at flowering and formation stages. The crop water use efficiency ( kg/ m 3 ) was the lowest at flowering period and the yield response factor ( Ky ) was higher in treatments I2 ( all stress ) and I5 (stress at flowering ). Comparing with traditional practice by farmers of the region, only treatments I1 and I7 had 13 and 10 % higher crop water use effeciency. 15 tabs., 7 refs. ( Author )

  10. Using hydraulic modeling to simulate human interactions with water resources in an Omani irrigation system

    Science.gov (United States)

    Xanthopoulou, Themis; Ertsen, Maurits; Düring, Bleda; Kolen, Jan

    2017-04-01

    In the dry Southern Oman, more than a thousand years ago, a large water system that connected the mountain mass with the coastal region was constructed. Its length (up to 30 km) and the fact that the coastal region has a rich groundwater aquifer create confusion as to why the system was initially built. Nonetheless, it was abandoned a couple of centuries later only to be partially revived by small farming communities in the 17th to 18th century. The focus of our research is one of the irrigation systems that used the water conveyed from the large water system. Not much is known about these small irrigation systems functioning in the Wadi Al Jizzi of the greater Sohar region. There are no written records and we can only make guesses about the way the systems were managed based on ethnographical studies and the traditional Omani techniques. On the other hand, the good preservation state of the canals offers a great opportunity for hydraulic reconstruction of irrigation events. More than that, the material remains suggest and at the same time limit the ways in which humans interacted with the system and the water resources of the region. All irrigation activities and some daily activities had to be realized through the canal system and only if the canal system permits it these actions would have been feasible. We created a conceptual model of irrigation that includes the human agent and feedback mechanisms through hydraulics and then we simulated irrigation events using the Sobek software. Scenarios and sensibility analysis were used to address the unknown aspects of the system. Our research yielded insights about the way the farming community interacted with the larger water system, the levels of co-ordination and co-operation required for successful irrigation and the predisposition of conflict and power relations.

  11. Impact of organic amendments on soil carbon sequestration, water use efficiency and yield of irrigated wheat

    Directory of Open Access Journals (Sweden)

    Shehzadi, S.

    2017-01-01

    Full Text Available Description of the subject. Soil organic carbon (SOC plays critical role in terrestrial carbon (C cycling and is central to preserving soil quality, food security and environmental protection in agroecosystem. The prevailing soil and climatic conditions of cultivated and irrigated soils in warm semi-arid areas favor the rapid decomposition, mineralization and loss of SOC to the atmosphere which contribute to global warming. One potential strategy to address this C loss is the addition of organic amendments. Objectives. To investigate the effect of four contrasting organic wastes with and without NPK mineral fertilizer on SOC retention, water use efficiency (WUE and wheat yield in irrigated wheat-maize cropping system. Method. A 2-year field experiment was conducted using four organic wastes included municipal solid waste (MSW, farm yard manure (FYM, sugar industry waste (filter cake and maize cropping residues. All wastes were applied at 3 t C·ha-1 alone and with a full or half dose of NPK mineral fertilizer. Results. On average, among organic wastes as sole treatment, highest SOC content in the 0-15 cm layer was recorded in filter cake (6.5 t·ha-1 and MSW (5.9 t·ha-1. Addition of NPK fertilizer along with organic wastes, improved the SOC contents with the highest SOC (7.7 t·ha-1 by filter cake + full NPK treatment followed by the MSW + NPK (6.9 t·ha-1. On average, maximum wheat grain WUE (18 kg·ha-1·mm-1 and grain yield (4.8 t·ha-1 were obtained by MSW + full NPK treatment followed by filter cake + NPK. Conclusions. These results indicate that the targeted addition of organic wastes (filter cake or MSW have the best potential for improving SOC retention, WUE and wheat yield in irrigated maize-wheat cropping system.

  12. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    Science.gov (United States)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  13. Growth, gas exchange, foliar nitrogen content, and water use of subirrigated and overhead irrigated Populus tremuloides Michx. seedlings

    Science.gov (United States)

    Anthony S. Davis; Matthew M. Aghai; Jeremiah R. Pinto; Kent G. Apostal

    2011-01-01

    Because limitations on water used by container nurseries has become commonplace, nursery growers will have to improve irrigation management. Subirrigation systems may provide an alternative to overhead irrigation systems by mitigating groundwater pollution and excessive water consumption. Seedling growth, gas exchange, leaf nitrogen (N) content, and water use were...

  14. Can groundwater secure drinking-water supply and supplementary irrigation in new settlements of North-West Cambodia?

    Science.gov (United States)

    Vouillamoz, Jean Michel; Valois, Rémi; Lun, Sambo; Caron, Delphine; Arnout, Ludovic

    2016-02-01

    Since the end of the Cambodian Civil War in 1998, the population of the Oddar Meanchey province has drastically increased despite the lack of adequate infrastructure, including basic amenities such as drinking-water supply. To improve the access to drinking water, governmental and aid agencies have focussed on drilling shallow boreholes. The use of groundwater for irrigation is also a growing concern to cope with the occasional late arrival of the rainy season or to produce food during the dry season. Since the groundwater resource in the province has not been documented, a 4-year study was undertaken (2011-2014), aiming to estimate the capability of groundwater to supply domestic needs and supplementary irrigation for rice production. Aquifer properties were estimated by combined use of hydrogeological techniques with the geophysical magnetic resonance sounding method. Groundwater storage and recharge were estimated based on new developments in the application of the geophysical method for quantifying specific yield. The median groundwater storage of the targeted sandstone aquifer is 173 mm, the recharge is diffuse and annually ranges from 10 to 70 mm, and the transmissivity is low to medium. Simulations of pumping indicate that the aquifer can easily supply 100 L of drinking water per capita daily, even considering the estimated population in 2030. However, the shallow aquifer can generally not deliver enough water to irrigate paddy fields of several hectares during a 2-month delay in the onset of the monsoon.

  15. Willingness to pay for water and water rights definition: study among smallholder irrigators in Limpopo Province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Haese, D' M.F.C.; Frija, A.; Farolfi, S.; Haese, D' L.

    2009-01-01

    Internationally there is growing understanding that water rights are important and that a lack of effective water rights systems creates major problems for the management of increasingly scarce water supplies. In South Africa the smallholder irrigation sector faces two major challenges. Firstly

  16. The impact of the water rights definition on smallholder irrigators' willingness to pay for water in Limpopo province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Farolfi, S.; Haese, D' M.F.C.; Frija, A.; Haese, D' L.

    2010-01-01

    Water rights are currently receiving increased attention from scholars and policymakers due to the growing understanding that ill-defined water rights impair efficient use. In South Africa, smallholder irrigation faces problems of low water use efficiency and cost recovery of government investments.

  17. When should irrigators invest in more water-efficient technologies as an adaptation to climate change?

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.

    2015-12-01

    The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that

  18. Review of the water management systems in the Gujarat Medium Irrigation II Project (Credit 1496-IN)

    NARCIS (Netherlands)

    Brouwer, R.

    1993-01-01

    Different activities are ongoing in the Medium Irrigation II project simultaneously. These are: - emancipation of farmers through their involvement in the operation and management; - change over from Sheshpali type water management to RWS type water management; - design and construction of remaining

  19. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería

    Directory of Open Access Journals (Sweden)

    Pedro Garcia-Caparros

    2017-12-01

    Full Text Available The development of intensive horticulture in Almería, with a huge increase in greenhouse surface area, is related to three essential factors: climatic characteristics, groundwater use and mulching sandy soil. The purpose of the present paper is to draw a picture of the integral management of water irrigation in the intensive horticultural systems in the region, by identifying the most significant water resource contributions and alternative water resources. Results indicate that the use of groundwater for the irrigation of horticultural crops in the greenhouses presents a high degree of overexploitation of the aquifers, but due to the continuous search for alternative water resources, such as desalinated and reclaimed water, as well as in-depth knowledge of the integral management of water irrigation through automated fertigation and localized irrigation systems, the current status of the water resources could be sustainable. Moreover, being conscious of the pollution generated by agricultural leachates, the horticultural system of Almería is implementing complementary sustainable systems such as recirculation, cascade cropping systems and phytodepuration for the reuse of the leachate. Considering all these factors, it can be concluded that the intensive horticultural system is on the right path towards respecting the environment and being sustainable in terms of water use.

  20. The best farm-level irrigation strategy changes seasonally with fluctuating water availability

    NARCIS (Netherlands)

    Gaydon, D.S.; Meinke, H.B.; Rodriguez, D.

    2012-01-01

    Around the globe farmers managing irrigated crops face a future with a decreased and more variable water supply. To investigate generic adaptation issues, a range of on-farm strategies were evaluated for apportioning limited water between fields and enterprises using a typical case-study farm from

  1. Living with less water: development of viable adaptation options for Riverina irrigators

    NARCIS (Netherlands)

    Gaydon, D.S.

    2012-01-01

    In Australia, the best use of limited national water resources continues to be a major political and scientific issue. Average water allocations for rice-cereal irrigation farmers in the Riverina region have been drastically reduced since 1998 as a consequence of high rainfall variability and

  2. On the Waterfront. Water Distribution, Technology and Agrarian Change in a South Indian Canal Irrigation System

    NARCIS (Netherlands)

    Mollinga, P.P.

    2003-01-01

    This book analyses the struggle over water in a large-scale irrigation system in Raichur District, Karnataka, South India. It looks at water control as a simultaneously technical, managerial and socio-political process. The triangle of accommodation of different categories of farmers (head-enders

  3. Leaf temperature of maize and crop water stress index with variable irrigation and nitrogen supply

    Science.gov (United States)

    Water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Water stress indices based on crop canopy temperature can be useful for assessing plan...

  4. The Impact of Small Scale Mining on Irrigation Water Quality in ...

    African Journals Online (AJOL)

    Small scale mining is a major threat to water resources and agricultural activities in most mining communities across Ghana. This study investigated the effect of small scale mining on the quality of water for irrigation from some selected sites along a river and a reservoir which was used as a control. The physical and ...

  5. Estimating the Own-Price Elasticity for Irrigation Water in the Musi Catchment of India

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Davidson, B.

    2011-01-01

    As irrigation water is an input into a production process, its demand must be ‘derived’. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an

  6. Can irrigation water use be guided by market forces? Theory and practice

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Perry, C.J.

    2006-01-01

    This paper provides insight into the relevance of market forces to typical problems found in irrigated agriculture. It first considers the theoretical basis for the use of economic instruments, such as volumetric water charges and tradable water rights, then considers their usefulness in the context

  7. Stover removal effects on seasonal soil water availability under full and deficit irrigation

    Science.gov (United States)

    Removing corn (Zea mays L.) stover for livestock feed or bioenergy feedstock may impact water availability in the soil profile to support crop growth. The role of stover in affecting soil profile water availability will depend on annual rainfall inputs as well as irrigation level. To assess how res...

  8. Scalar alignment and sustainable water governance: The case of irrigated agriculture in Turkey

    NARCIS (Netherlands)

    Özerol, Gül; Bressers, Johannes T.A.

    2015-01-01

    Irrigated agriculture plays a significant role in global food security and poverty reduction. At the same time its negative impacts on water and land resources threaten environmental sustainability. With the objective of improving the understanding on the complexity of governing water resources for

  9. Quantification of the impacts of coalmine water irrigation on the underlying aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, D.; Usher, B.; van Tonder, G. [University of Free State, Bloemfontein (South Africa). Institute of Groundwater Studies

    2009-07-15

    It is predicted that vast volumes of affected mine water will be produced by mining activities in the Mpumalanga coalfields of South Africa, The potential environmental impact of this excess water is of great concern in a water-scarce country like South Africa. Research over a period of more than 10 years has shown that this water can be used successfully for the irrigation of a range of crops. There is, however, continuing concern from the local regulators regarding the long-term impact that large-scale mine water irrigation may have on groundwater quality and quantity. Detailed research has been undertaken over the last three years to supplement the groundwater monitoring programme at five different pilot sites, on both virgin soils (greenfields) and in coalmining spoils. These sites range from sandy soils to very clayey soils. The research has included soil moisture measurements, collection of in situ soil moisture over time, long-term laboratory studies of the leaching and attenuation properties of different soils and the impact of irrigation on acid rock drainage processes, and in depth determination of the hydraulic properties of the subsurface at each of these sites, including falling head tests, pumping tests and point dilution tests. This has been supported by geochemical modelling of these processes to quantify the impacts. The results indicate that many of the soils have considerable attenuation capacities and that in the period of irrigation, a large proportion of the salts have been contained in the upper portions of the unsaturated zones below each irrigation pivot. The volumes and quality of water leaching through to the aquifers have been quantified at each site. From this mixing ratios have been calculated in order to determine the effect of the irrigation water on the underlying aquifers.

  10. [Effects of irrigation amount on morphological characteristics and water use of Jatropha curcas].

    Science.gov (United States)

    Yang, Qi-Liang; Zhang, Jing; Liu, Xiao-Gang; Liu, Yan-Wei; Yang, Ju-Rui

    2014-05-01

    Jatropha curcas is the most promising energy tree, and soil moisture is the key factor which affects the seedling quality and water use efficiency of J. curcas. With aims to evaluate the effect of different irrigation amount on growth, morphological characteristics and water use of J. curcas, a pot experiment was conducted with four irrigation amounts, i. e., W1:472.49 mm, W2: 228.79 mm, W3:154.18 mm and W4:106.93 mm, respectively. Compared with W1 treatment, the leaf area and stem cross-section area of base significantly decreased in W2, W3 and W4 treatments, but Huber value significantly increased, which could improve the efficiency of water transfer from root to shoot, thus enhance the capability of resistance to drought stress. Compared with W, treatment, the healthy index of J. curcas seedlings decreased slightly in W2 treatment but significantly decreased in W3 and W4 treatments. Hence, the irrigation amount from 228.79 to 472.49 mm was beneficial to increase the healthy index of J. curcas seedlings. Compared with W1 treatment, irrigation water was saved by 67.4% in W3 treatment, and the total dry mass and evapotranspiration significantly decreased by 17.4% and 68.6%, and the irrigation water use efficiency and total water use efficiency increased by 153.2% and 163.2%, respectively. In the condition of this study, the irrigation amount of 154.18 mm was beneficial to increase water use efficiency.

  11. Simulation of Salinity Distribution in Soil Under Drip Irrigation Tape with Saline Water Using SWAP Model

    Directory of Open Access Journals (Sweden)

    M. Tabei

    2016-02-01

    Full Text Available Introduction: The to be limited available water amount from one side and to be increased needs of world population from the other side have caused increase of cultivation for products. For this reason, employing new irrigation ways and using new water resources like using the uncommon water (salty water, water drainage are two main strategies for regulating water shortage conditions. On the other side, accumulation of salts on the soil surface in dry regions having low rainfall and much evaporation, i.e. an avoidable case. As doing experiment for determining moisture distribution form demands needs a lot of time and conducting desert experiments are costly, stimulator models are suitable alternatives in answering the problem concerning moving and saltiness distribution. Materials and Methods: In this research, simulation of soil saltiness under drip irrigation was done by the SWAP model and potency of the above model was done in comparison with evaluated relevant results. SWAP model was performed based on measured data in a corn field equipped with drip irrigation system in the farming year 1391-92 in the number one research field in the engineering faculty of water science, ShahidChamran university of Ahvaz and hydraulic parameters of soil obtained from RETC . Statistical model in the form of a random full base plan with four attendants for irrigating water saltiness including salinity S1 (Karoon River water with salinity 3 ds/m as a control treatment, S2 (S1 +0/5, S3 (S1 +1 and S4 (S1 +1/5 dS/m, in 3 repetition and in 3 intervals of 10 cm emitter, 20 cm emitters on the stack, at a depth of 0-90 cm (instead of each 30 cm from soil surface and intervals of 30, 60 and 90 days after modeling cultiviation was done. The cultivation way was done handheld in plots including four rows of 3 m in distance of 75 cm rows and with denseness of 80 bushes in a hectar. Drip irrigation system was of type strip with space of 20 cm pores. Results and Discussion

  12. Spectral entropy as a mean to quantify water stress history for natural vegetation and irrigated agriculture in a water-stressed tropical environment

    Science.gov (United States)

    Kim, Y.; Johnson, M. S.

    2017-12-01

    Spectral entropy (Hs) is an index which can be used to measure the structural complexity of time series data. When a time series is made up of one periodic function, the Hs value becomes smaller, while Hs becomes larger when a time series is composed of several periodic functions. We hypothesized that this characteristic of the Hs could be used to quantify the water stress history of vegetation. For the ideal condition for which sufficient water is supplied to an agricultural crop or natural vegetation, there should be a single distinct phenological cycle represented in a vegetation index time series (e.g., NDVI and EVI). However, time series data for a vegetation area that repeatedly experiences water stress may include several fluctuations that can be observed in addition to the predominant phenological cycle. This is because the process of experiencing water stress and recovering from it generates small fluctuations in phenological characteristics. Consequently, the value of Hs increases when vegetation experiences several water shortages. Therefore, the Hs could be used as an indicator for water stress history. To test this hypothesis, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data for a natural area in comparison to a nearby sugarcane area in seasonally-dry western Costa Rica. In this presentation we will illustrate the use of spectral entropy to evaluate the vegetative responses of natural vegetation (dry tropical forest) and sugarcane under three different irrigation techniques (center pivot irrigation, drip irrigation and flood irrigation). Through this comparative analysis, the utility of Hs as an indicator will be tested. Furthermore, crop response to the different irrigation methods will be discussed in terms of Hs, NDVI and yield.

  13. Potential of deficit irrigation, irrigation cut-offs, and crop thinning to maintain yield and fruit quality with less water in northern highbush blueberry

    Science.gov (United States)

    Drought and mandatory water restrictions are limiting the availability of irrigation water in many important blueberry growing regions, including Oregon, Washington, and California. New strategies are needed to maintain yield and fruit quality with less water. Three potential options, including defi...

  14. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    International Nuclear Information System (INIS)

    Dahal, B.M.; Fuerhacker, M.; Mentler, A.; Karki, K.B.; Shrestha, R.R.; Blum, W.E.H.

    2008-01-01

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from -1 where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg -1 . The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg -1 ) > onion bulb (0.45 mg As kg -1 ) > cauliflower (0.33 mg As kg -1 ) > rice (0.18 mg As kg -1 ) > brinjal (0.09 mg As kg -1 ) > potato ( -1 ). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water

  15. Heavy metal accumulation imparts structural differences in fragrant Rosa species irrigated with marginal quality water.

    Science.gov (United States)

    Ahsan, Muhammad; Younis, Adnan; Jaskani, Muhammad Jafar; Tufail, Aasma; Riaz, Atif; Schwinghamer, Timothy; Tariq, Usman; Nawaz, Fahim

    2018-09-15

    Wastewater is an alternative to traditional sources of renewable irrigation water in agriculture, particularly in water-scarce regions. However, the possible risks due to heavy metals accumulation in plant tissues are often overlooked by producers. The present study aimed to identify heavy metals-induced structural modifications to roots of scented Rosa species that were irrigated with water of marginal quality. The chemical and mineral contents from the experimental irrigation canal water (control) and treated wastewater were below the limits recommended by the Pakistan Environmental Protection Agency (Pak-EPA) for medicinal plants. The experimentally untreated wastewater contained electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD), and heavy metals (Co, Cu, Cd, Pb) that were above the recommended limits. The responses by wastewater-treated Rosa species (Rosa damascena, R. bourboniana, R. Gruss-an-Teplitz, and R. centifolia) were evaluated. The experimental data revealed that treated wastewater significantly increased the thickness of collenchyma (cortex and pith) and parenchyma tissues (vascular bundle, xylem, and phloem) of R. Gruss-an-Teplitz. Root dermal tissues (epidermis) of R. bourboniana also responded to treated wastewater. R. damascena and R. centifolia were the least affected species, under the experimental irrigation conditions. Collenchyma and dermal tissues were thicker in R. damascena and R. Gruss-an-Teplitz under untreated wastewater conditions. In parenchyma tissues, vascular bundles were thicker in R. damascena in untreated wastewater conditions, while the xylem and phloem of R. Gruss-an-Teplitz were thicker where treated wastewater was applied. In tissues other than the vascular bundle, the differences in anatomical metrics due to the experimental irrigation treatments were greater during the second year of the experiment than in the first year. The contents of metals other than chromium in the roots and

  16. Surveying tubewell water suitability for irrigation in four tehsils of district Kasur

    Directory of Open Access Journals (Sweden)

    Ijaz Mehboob, Muhammad Siddique Shakir

    2011-11-01

    Full Text Available Four tehsils of district Kasur (Chunian, Pattoki, Kot Radha Kishan and Kasur were surveyed and five villages were selected in each tehsil at random. Two water samples were collected from each village and were analyzed for various irrigation water quality parameters. The results indicated that 60% tubewell were unfit from Chunian, 90% from Pattoki, 90% from Kot Radha Kishan and 80% from Kasur tehsil. Overall, 20% of total tubewells water sampled had quality parameters within the acceptable limits whereas 80% were unfit for irrigation. About 97% waters were unfit due to high salinity (EC > 1250 S cm¬-1, 63% were due to high sodium adsorption ratio (SAR > 10 mmol L-11/2 and 97% were due to high residual sodium carbonate (RSC > 2.5 me L-1. It may be inferred that use of poor quality irrigation water will cause deterioration in soil health, which consequently will result in poor crop production. Hence, it is emphasized that tubewell discharging unfit water should be used by following sound management practices like precision land leveling, inclusion of high salt tolerant crops in traditional cropping system, occasional deep ploughing in heavy textured soil, occasional flushing of the soil profile with heavy irrigation to reduce the salt concentration in the root zone and application of organic and inorganic amendments like pressmud, poultry manure, farm yard manure and gypsum or acid/acid formers etc, however the management options must be on the basis of analysis of water quality parameters.

  17. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Science.gov (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  18. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    Science.gov (United States)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  19. Chlorinated and ultraviolet radiation -treated reclaimed irrigation water is the source of Aeromonas found in vegetables used for human consumption

    Energy Technology Data Exchange (ETDEWEB)

    Latif-Eugenín, Fadua; Beaz-Hidalgo, Roxana; Silvera-Simón, Carolina [Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus (Spain); Fernandez-Cassi, Xavi [Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona (Spain); Figueras, María J., E-mail: mariajose.figueras@urv.cat [Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus (Spain)

    2017-04-15

    Wastewater is increasingly being recognized as a key water resource, and reclaimed water (or treated wastewater) is used for irrigating vegetables destined for human consumption. The aim of the present study was to determine the diversity and prevalence of Aeromonas spp. both in reclaimed water used for irrigation and in the three types of vegetables irrigated with that water. Seven of the 11 (63.6%) samples of reclaimed water and all samples of vegetables were positive for the presence of Aeromonas. A total of 216 Aeromonas isolates were genotyped and corresponded to 132 different strains that after identification by sequencing the rpoD gene belonged to 10 different species. The prevalence of the species varied depending on the type of sample. In the secondary treated reclaimed water A. caviae and A. media dominated (91.4%) while A. salmonicida, A. media, A. allosaccharophila and A. popoffii represented 74.0% of the strains in the irrigation water. In vegetables, A. caviae (75.0%) was the most common species, among which a strain isolated from lettuce had the same genotype (ERIC pattern) as a strain recovered from the irrigation water. Furthermore, the same genotype of the species A. sanarellii was recovered from parsley and tomatoes demonstrating that irrigation water was the source of contamination and confirming the risk for public health. - Highlights: • Reclaimed water (= treated wastewater) is used for the irrigation of vegetables. • Aeromonas was found in reclaimed water and irrigated vegetables with this water. • The prevalence of Aeromonas spp. varied between irrigation water and vegetables. • Epidemiological relationships were found between irrigation water and vegetables. • The water was the source of contamination which means a risk for the public health.

  20. Chlorinated and ultraviolet radiation -treated reclaimed irrigation water is the source of Aeromonas found in vegetables used for human consumption

    International Nuclear Information System (INIS)

    Latif-Eugenín, Fadua; Beaz-Hidalgo, Roxana; Silvera-Simón, Carolina; Fernandez-Cassi, Xavi; Figueras, María J.

    2017-01-01

    Wastewater is increasingly being recognized as a key water resource, and reclaimed water (or treated wastewater) is used for irrigating vegetables destined for human consumption. The aim of the present study was to determine the diversity and prevalence of Aeromonas spp. both in reclaimed water used for irrigation and in the three types of vegetables irrigated with that water. Seven of the 11 (63.6%) samples of reclaimed water and all samples of vegetables were positive for the presence of Aeromonas. A total of 216 Aeromonas isolates were genotyped and corresponded to 132 different strains that after identification by sequencing the rpoD gene belonged to 10 different species. The prevalence of the species varied depending on the type of sample. In the secondary treated reclaimed water A. caviae and A. media dominated (91.4%) while A. salmonicida, A. media, A. allosaccharophila and A. popoffii represented 74.0% of the strains in the irrigation water. In vegetables, A. caviae (75.0%) was the most common species, among which a strain isolated from lettuce had the same genotype (ERIC pattern) as a strain recovered from the irrigation water. Furthermore, the same genotype of the species A. sanarellii was recovered from parsley and tomatoes demonstrating that irrigation water was the source of contamination and confirming the risk for public health. - Highlights: • Reclaimed water (= treated wastewater) is used for the irrigation of vegetables. • Aeromonas was found in reclaimed water and irrigated vegetables with this water. • The prevalence of Aeromonas spp. varied between irrigation water and vegetables. • Epidemiological relationships were found between irrigation water and vegetables. • The water was the source of contamination which means a risk for the public health.

  1. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  3. Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa

    Directory of Open Access Journals (Sweden)

    Abdelaziz HIRICH

    2014-07-01

    Full Text Available Several experiments were conducted in the south of Morocco (IAV-CHA, Agadir during two seasons 2010 and 2011 in order to evaluate the effect of deficit irrigation with treated wastewater on several crops (quinoa, sweet corn, faba bean and chickpeas. During the first season (2010 three crops were tested, quinoa, chickpeas and sweet corn applying 6 deficit irrigation treatments during all crop stages alternating 100% of full irrigation as non-stress condition and 50% of full irrigation as water deficit condition applied during vegetative growth, flowering and grain filling stage. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season (2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of full irrigation during vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity.

  4. Renewable energy technologies for irrigation water pumping in India: A preliminary attempt towards potential estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Atul [Policy Analysis Division, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003 (India); Kandpal, Tara C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2007-05-15

    Simple frameworks have been developed for estimating the utilization potential of: (a) solar photovoltaic (SPV) pumps; (b) windmill pumps; (c) producer gas based dual fuel engine pumps; and (d) biogas based dual fuel engine pumps for irrigation water pumping in India. The approach takes into account factors such as: solar radiation intensity, wind speed, availability of bovine dung and agri-residues, and their alternative uses, ground water requirements for irrigation and its availability, affordability, and propensity of the users to invest in renewable energy devices, etc. SPV pumps are estimated to have the maximum utilization potential in India, followed by windmill pumps. (author)

  5. Renewable energy technologies for irrigation water pumping in India: A preliminary attempt towards potential estimation

    International Nuclear Information System (INIS)

    Kumar, Atul; Kandpal, Tara C.

    2007-01-01

    Simple frameworks have been developed for estimating the utilization potential of: (a) solar photovoltaic (SPV) pumps; (b) windmill pumps; (c) producer gas based dual fuel engine pumps; and (d) biogas based dual fuel engine pumps for irrigation water pumping in India. The approach takes into account factors such as: solar radiation intensity, wind speed, availability of bovine dung and agri-residues, and their alternative uses, ground water requirements for irrigation and its availability, affordability, and propensity of the users to invest in renewable energy devices, etc. SPV pumps are estimated to have the maximum utilization potential in India, followed by windmill pumps

  6. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    Science.gov (United States)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  7. Modelling Water Flow through Paddy Soils under Alternate Wetting and Drying Irrigation Practice

    Science.gov (United States)

    Shekhar, S.; Mailapalli, D. R.; Das, B. S.; Raghuwanshi, N. S.

    2017-12-01

    Alternate wetting and drying (AWD) irrigation practice in paddy cultivation requires an optimum soil moisture stress (OSMS) level at which irrigation water savings can be maximized without compromising the yield reduction. Determining OSMS experimentally is challenging and only possible with appropriate modeling tools. In this study, field experiments on paddy were conducted in thirty non-weighing type lysimeters during dry seasons of 2016 and 2017. Ten plots were irrigated using continuous flooding (CF) and the rest were irrigated with AWD practice at 40mb and 75mb soil moisture stress levels. Depth of ponding and soil suction at 10, 40 and 70 cm from the soil surface were measured daily from all lysimeter plots. The measured field data were used in calibration and validation of Hydrus-1D model and simulated the water flow for both AWD and CF plots. The Hydrus-1D is being used to estimate OSMS for AWD practice and compared the seasonal irrigation water input and deep percolation losses with CF practice.

  8. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Utilizing on-farm best management practices: Managing Nitrate Leaching Using Evapotranspiration Based Irrigation Methods

    Science.gov (United States)

    Zaragosa, I.; Melton, F. S.; Dexter, J.; Post, K.; Haffa, A.; Kortman, S.; Spellenberg, R.; Cahn, M.

    2017-12-01

    In efforts to provide tools to allow farmers to optimize and quantify water usage and fertilizer applications, University of California Cooperative Extension (UCCE) developed the CropManage irrigation and nitrogen scheduling tool that provides real time evapotranspiration (ETc) based irrigation recommendations and fertilizer recommendations on a per field basis. CropManage incorporates satellite based estimates of fractional cover from web data services from the Satellite Irrigation Management Information Support (SIMS) system developed by NASA Ames Research Center in collaboration with California State University Monterey Bay (CSUMB). In this study, we conducted field trials to quantify the benefits of using these tools to support best management practices (BMPs) for irrigation and nutrient management in strawberries and lettuce in the Salinas Valley, California. We applied two different irrigation treatments based on full replacement (100%) of crop evapotranspiration (ETc), and irrigation at 130% of ETc replacement to approximate irrigation under business as usual irrigation management. Both field studies used a randomized block design with four replicates each. We used CropManage to calculate the 100% and 130% ETc replacement requirements prior to each irrigation event. We collected drainage volume and samples and analyzed them for 8500 to nitrate as (NO3-) concentrations. Experimental results for both strawberries and lettuce showed a significant decrease in the percentage of applied nitrogen leached for the 100% ETc replacement treatment against the 130% ETc replacement treatment. For strawberries, we observed that 24% of applied nitrogen was leached under the 100% ETc replacement treatment, versus 51% of applied nitrogen that was leached under the 130% ETc replacement treatment. For lettuce, we observe that 2% of the applied nitrogen leached bellow the soil profile, versus 6% of the applied nitrogen for the 130%ETc replacement treatment. In both experiments

  10. CyanoHAB occurrence and water irrigation cyanotoxin contamination: ecological impacts and potential health risks.

    Science.gov (United States)

    Saqrane, Sana; Oudra, Brahim

    2009-12-01

    The world-wide occurrence of harmful cyanobacteria blooms "CyanoHAB" in fresh and brackish waters creates problems for all life forms. During CyanoHAB events, toxic cyanobacteria produce cyanotoxins at high levels that can cause chronic and sub-chronic toxicities to animals, plants and humans. Cyanotoxicity in eukaryotes has been mainly focused on animals, but during these last years, data, related to cyanotoxin (mainly microcystins, MCs) impact on both aquatic and terrestrials crop plants irrigated by water containing these toxins, have become more and more available. This last cited fact is gaining importance since plants could in a direct or indirect manner contribute to cyanotoxin transfer through the food chain, and thus constitute a potent health risk source. The use of this contaminated irrigation water can also have an economical impact which appears by a reduction of the germination rate of seeds, and alteration of the quality and the productivity of crop plants. The main objective of this work was to discuss the eventual phytotoxicity of cyanotoxins (microcystins) as the major agricultural impacts induced by the use of contaminated water for plant irrigation. These investigations confirm the harmful effects (ecological, eco-physiological, socio-economical and sanitary risk) of dissolved MCs on agricultural plants. Thus, cyanotoxin phytotoxicity strongly suggests a need for the surveillance of CyanoHAB and the monitoring of water irrigation quality as well as for drinking water.

  11. CyanoHAB Occurrence and Water Irrigation Cyanotoxin Contamination: Ecological Impacts and Potential Health Risks

    Science.gov (United States)

    Saqrane, Sana; Oudra, Brahim

    2009-01-01

    The world-wide occurrence of harmful cyanobacteria blooms “CyanoHAB” in fresh and brackish waters creates problems for all life forms. During CyanoHAB events, toxic cyanobacteria produce cyanotoxins at high levels that can cause chronic and sub-chronic toxicities to animals, plants and humans. Cyanotoxicity in eukaryotes has been mainly focused on animals, but during these last years, data, related to cyanotoxin (mainly microcystins, MCs) impact on both aquatic and terrestrials crop plants irrigated by water containing these toxins, have become more and more available. This last cited fact is gaining importance since plants could in a direct or indirect manner contribute to cyanotoxin transfer through the food chain, and thus constitute a potent health risk source. The use of this contaminated irrigation water can also have an economical impact which appears by a reduction of the germination rate of seeds, and alteration of the quality and the productivity of crop plants. The main objective of this work was to discuss the eventual phytotoxicity of cyanotoxins (microcystins) as the major agricultural impacts induced by the use of contaminated water for plant irrigation. These investigations confirm the harmful effects (ecological, eco-physiological, socio-economical and sanitary risk) of dissolved MCs on agricultural plants. Thus, cyanotoxin phytotoxicity strongly suggests a need for the surveillance of CyanoHAB and the monitoring of water irrigation quality as well as for drinking water. PMID:22069535

  12. Randomized cross-over trial of polyethylene glycol electrolyte solution and water for colostomy irrigation.

    Science.gov (United States)

    O'Bichere, Austin; Green, Colin; Phillips, Robin K S

    2004-09-01

    Water for colostomy irrigation is largely absorbed by the colon, which may result in less efficient expulsion of stool. This study compared the outcome of colonic cleansing with water and polyethylene glycol solution. In a cross-over study, 41 colostomy irrigators were randomly assigned to water or polyethylene glycol solution irrigation first and then the other regimen, each for one week. Patients recorded fluid inflow time, total washout time, cramps, leakage episodes, number of stoma pouches used, and satisfaction scores (Visual Analog Scale, 1-10: 1 = poor, and 10 = excellent). The median and interquartile range for each variable was calculated, and the two treatments were compared (Wilcoxon's test). Eight patients failed to complete the study. Thirty-three patients (20 females; mean age, 55 (range, 39-73) years) provided 352 irrigation sessions: water (n = 176), and polyethylene glycol solution (n = 176). Irrigation was performed every 24, 48, and 72 hours by 17, 9, and 7 patients respectively, using 500 ml (n = 1), 750 ml (n = 2), 1,000 ml (n = 16), 1,500 ml (n = 11), 2,000 ml (n = 2), and 3,500 ml (n = 1) of fluid. The median and interquartile range for water vs. polyethylene glycol solution were: fluid inflow time (6 (range, 4.4-10.8) vs. 6.3 (range, 4.1-11) minutes; P = 0.48), total washout time (53 (range, 33-69) vs. 38 (range, 28-55) minutes; P = 0.01), leakage episodes (2.3 (range, 1.7-3.8) vs. 0.7 (range, 0.2-1); P colostomy irrigation.

  13. Internalisation of microbes in vegetables: microbial load of Ghanaian vegetables and the relationship with different water sources of irrigation.

    Science.gov (United States)

    Donkor, Eric S; Lanyo, R; Kayang, Boniface B; Quaye, Jonathan; Edoh, Dominic A

    2010-09-01

    The occurrence of pathogens in the internal parts of vegetables is usually associated with irrigation water or contaminated soil and could pose risk to consumers as the internalised pathogens are unaffected by external washing. This study was carried out to assess the rate of internalisation of microbes in common Ghanaian vegetables. Standard microbiological methods were employed in microbial enumeration of vegetables collected at the market and farm levels, as well as irrigation water and soil samples. The overall mean counts of vegetables were 4.0 x 10(3) cfu g(-1); 8.1 x 10(2) cfu g(-1); 2.0 x 10(2) cfu g(-1); 3.5 x 10(2) cfu g(-1) for total bacteria, coliform counts, faecal coliform counts and yeast counts, respectively. The rate of internalisation of coliforms in vegetables irrigated with stream/well water was 2.7 times higher than those irrigated with pipe water. The mean coliform counts (4.7 x 10(7) cfu g(-1)) and faecal coliform counts (1.8 x 10(6) cfu g(-1)) of soil samples were similar to those of stream water suggesting both sources exerted similar contamination rates on the vegetables. Generally, there were no significant variations between the rates of internalisation of microbes at the market and farm levels at p vegetables mainly occurred at the farm level. The study has shown that microbial contamination of vegetables in Ghana is not limited to the external surface, but internal vegetable parts could harbour high microbial loads and pose risk to consumers. Safety practices associated with the commodity should therefore not be limited to external washing only. There is the additional need of heating vegetables to eliminate microbes both externally and internally before consumption.

  14. Analysis of Blue and Green Water Consumption at the Irrigation District Scale

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2018-01-01

    Full Text Available The concepts of virtual water and water footprint bring a new perspective for water management. Previous studies mainly focus on one type of water and the relationship between water footprint and water availability. In this study, three indicators were proposed to show water consumption and the influences of virtual water flows at the Hetao irrigation district, China, during 2001–2010, considering both blue and green water. Results indicate that the ratio of blue water footprint and blue water availability was 0.642 in 2010 and the value for green water was 0.148, coefficients on contribution of regional production on consumption in other areas were about 0.9, and coefficients on influences of trades from other regions to the district on regional water consumption were 0.528 (blue water and 0.433 (green water, respectively. Government should promote water pricing policies that can encourage the adoption of irrigation technologies and water-saving practices. Besides, the adjustment of the crop sowing date or the cultivation of new varieties may be helpful in using more rainfall. Lastly, a compensation mechanism for virtual water export should be built in the future, and virtual water importing can be advocated. Before actions are taken, the possible influences and related constraints should be considered.

  15. Development of seedlings of watermelon cv. Crimson Sweet irrigated with biosaline water

    Directory of Open Access Journals (Sweden)

    José E. S. B. da Silva

    2015-09-01

    Full Text Available ABSTRACTThe limited access and the scarcity of good quality water for agriculture are some of the major problems faced in agricultural areas, particularly in arid and semiarid regions. The aim of this study was to evaluate the quality of watermelon seedlings (cv. Crimson Sweet, irrigated with different concentrations of biosaline water of fish culture. The experimental design was completely randomized with five treatments, corresponding to biosaline water at different concentrations (0, 33, 50, 67 and 100%, and four replicates of 108 seedlings. Watermelon seeds were sown in plastic trays filled with commercial substrate and irrigated with different solutions of biosaline water. Seedlings were harvested for biometric analysis at 14, 21 and 28 days after sowing. The use of biosaline water did not affect emergence and establishment of seedlings until 14 days after sowing, the period recommended for transplantation. However, the use of biosaline water affected the development of seedlings with longer exposure time.

  16. Collective irrigation reloaded. Re-collection and re-moralization of water management after privatization in Spain

    NARCIS (Netherlands)

    González-Sanchis, María; Boelens, R.A.; Garcia-Molla, Marta

    2017-01-01

    In recent decades, water has been subjected to different commodification and de-collectivization processes. Increasingly, this is also affecting collective irrigation water management. Critical analysis of this privatization and de-collectivization wave in the irrigation sector has mainly focused on

  17. Jerusalem artichoke (Helianthus tuberosus, L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters

    Science.gov (United States)

    The scarcity of good quality water in semiarid regions of the world is the main limiting factor for increased irrigated agriculture in those regions. Saline water is generally widely available in arid regions at reduced costs, and can be a viable alternative for crop irrigation. However, the literat...

  18. PRODUCTION COMPONENTS OF Vigna unguiculata (L. Walp IRRIGATED WITH BRACKISH WATER UNDER DIFFERENT LEACHING FRACTIONS

    Directory of Open Access Journals (Sweden)

    JOSÉ FRANCISCO DE CARVALHO

    2016-01-01

    Full Text Available The objective of this work was to evaluate the production components of cowpea ( Vigna unguiculata L. Walp subjected to irrigation with brackish water and different leaching fractions. The experiment was conducted in a lysimeter system of the Department of Agricultural Engineering of the Federal Rural University of Pernambuco, Recife campus. The treatments, consisting of two water salinity levels (ECw (1.2 and 3.3 dS m - 1 and five leaching fractions (0, 5, 10, 15 and 20%, were evaluated using a completely randomized design in a 2x5 factorial arrangement with four replications. The variables evaluated were: number of pods per plant, 100 - grain weight, number of grains per pod, grain and shoot dry weight, grain yield and harvest index. The soil salinity increased with increasing salinity of the water used for irrigation, and reduced with increasing leaching fraction. The salinity of the water used for irrigation influenced only the variables number of pods per plant and grain yield. The estimated leaching fractions of 9.1% and 9.6% inhibited the damage caused by salinity on the number of pods per plant and grain yield, respectively. Therefore, the production of V. unguiculata irrigated with brackish water, leaching salts from the plant root environment, is possible under the conditions evaluated.

  19. Gendered participation in water management in Nepal : discourses, policies and practices in the irrigation and drinking water sectors

    NARCIS (Netherlands)

    Bhushan Udas, P.

    2014-01-01

    Abstract

    This thesis is about gendered policy processes in the irrigation and drinking water sectors in Nepal. Globally, increased women’s participation in formal decision making bodies such as water users’ associations is extensively advocated as a means to reduce

  20. GlobWat – a global water balance model to assess water use in irrigated agriculture (discussion paper)

    NARCIS (Netherlands)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are

  1. Occurrence of vancomycin-resistant and -susceptible Enterococcus spp. in reclaimed water used for spray irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Stephanie Ann; Goldstein, Rachel E. Rosenberg [Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD (United States); Gibbs, Shawn G. [Department of Environmental Health, School of Public Health-Bloomington, Indiana University, Bloomington, IN (United States); Claye, Emma [Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD (United States); He, Xin [Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD (United States); Sapkota, Amy R., E-mail: ars@umd.edu [Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD (United States)

    2016-05-15

    Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwest spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the sampled spray

  2. Occurrence of vancomycin-resistant and -susceptible Enterococcus spp. in reclaimed water used for spray irrigation

    International Nuclear Information System (INIS)

    Carey, Stephanie Ann; Goldstein, Rachel E. Rosenberg; Gibbs, Shawn G.; Claye, Emma; He, Xin; Sapkota, Amy R.

    2016-01-01

    Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwest spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the sampled spray

  3. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería

    OpenAIRE

    Pedro Garcia-Caparros; Juana Isabel Contreras; Rafael Baeza; Maria Luz Segura; Maria Teresa Lao

    2017-01-01

    The development of intensive horticulture in Almería, with a huge increase in greenhouse surface area, is related to three essential factors: climatic characteristics, groundwater use and mulching sandy soil. The purpose of the present paper is to draw a picture of the integral management of water irrigation in the intensive horticultural systems in the region, by identifying the most significant water resource contributions and alternative water resources. Results indicate that the use of gr...

  4. Comparative Study of Water and Nitrogen Fertilizer Application on Potato Crop under Fertigation and Surface Irrigating Systems by Using Labeled Nitrogen (15N)

    International Nuclear Information System (INIS)

    Abdullah Haidara, H. M.; Amin Alkirshi, A. H.; Saleh Husien, A.

    2007-01-01

    This research activity was conducted at Central Highland Research Station Farm-Dhamar, on potato Crop (Diamant cv.), during three seasons of 2000, 2001, and 2003.The objective of this activity was to study the Nitrogen Fertilizer Use Efficiency (WUE) which applied in different dosages with irrigation water (fertigation) and one dosage to the soil under surface irrigation, by using Labeled nitrogen fertilizer ( 15N ), comparing the quantity of irrigation water applied through Drip irrigation method and surface irrigation and its effect on WUE and yield of potato crop. The basic experiment was planted in randomized completely block design (RCBD) with five replications during 2000 season and six replication in 2001.and five treatments were tested (N1= 50kg N/ha, N2 =100kg N/ha, N3=150kg N/ha and N4=200kgN/ha as fertigated treatments under drip irrigation and Ns = 150kg N/ha as surface Nitrogen Application under surface irrigation. While in the 2003 season Verification trial was conducted with two replications, two treatments and RCB design. Results indicated that using Drip irrigation method in application of water saved 38% of irrigation water as compared to Surface irrigation. Fertigated treatments (N1, N2, N3 and N4) were, significantly superior to Surface Nitrogen Application treatment (NS), fertigated treatment (N3) gave the highest values of WUE which were 5.3, 6.4 and 6.1 kg/m3 for the three seasons (2000, 2001, 2003 respectively) with an average of 5.9 kg/m3 comparing to the surface Nitrogen Application treatment (NS) which gave the less yield per unit of water which was 3.8, 3.6 and 3.9 kg /m3 for the three seasons 2000, 2001 and 2003 respectively with an average of 3.7 kg/m3.The Average yield of potato tubers for (N3) treatment in the three seasons was 30 .3 t/ha comparing to the (NS) treatment, which gave an average of 29,5t/ha.The fertigatetd treatment (N1) recorded the highest efficient use of nitrogen Fertilizer followed by (N3) compare to the surface

  5. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... Many methods have been described and sensors developed to manage irrigation ... time, and automated irrigation systems based on crop water needs can .... output components, and a software program for decision support.

  6. Effects Of Irrigation With Saline Water, And Soil Type On Germination And Seedling Growth Of Sweet Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Mostafa, A.Z.; Amato, M.; Hamdi, A.; Mostafa, A.Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    Germination and early growth of maize Sweet Maize (Zea mays L.), var. (SEL. CONETA) under irrigation with saline water were investigated in a pot experiment with different soil types. Seven salinity levels of irrigation water up to 12 dS/m were used on a Clay soil (C) and a Sandy-Loam (SL). Emergence of maize was delayed under irrigation with saline water, and the final percentage of germination was reduced only at 8 dS/m or above. Seedling shoot and root growth were reduced starting at 4 dS/m of irrigation water. Salts accumulated more in the C soil but reductions in final germination rate and seedling growth were larger in the SL soil, although differences were not always significant. Data indicate that germination is rather tolerant to salinity level in var. SEL. CONETA whereas seedling growth is reduced at moderate salinity levels, and that soil type affects plant performance under irrigation with saline water

  7. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period

    Directory of Open Access Journals (Sweden)

    Y. García-Orellana

    2013-01-01

    Full Text Available Field-grown lemon trees (Citrus limon (L. Burm. fil. cv. Fino were subjected to different drip irrigation treatments: a control treatment, irrigated daily above crop water requirements in order to obtain non-limiting soil water conditions and two deficit irrigation treatments, reducing the water applied according to the maximum daily trunk shrinkage (MDS signal intensity (actual MDS/control treatment MDS threshold values of 1.25 (T1 treatment and 1.35 (T2 treatment, which induced two different drought stress levels. Daily variations in leaf (Yleaf and stem (Ystem water potentials, leaf conductance, net photosynthesis, sap flow (SF and trunk diameter fluctuations were studied on four occasions during the lemon fruit growth period. Ystem and Yleaf revealed a diurnal pattern in response to changes in evaporative demand of the atmosphere. Both water potentials decreased in response to water deficits, which were more pronounced in the T2 treatment. Ystem was seen to be a better plant water status indicator than Yleaf. The difference between the two values of Y (Ystem - Yleaf  = DY was closely correlated with sap flow, making it a suitable measure of leaf transpiration. Using the slope of this relationship, the canopy hydraulic conductance (KC was estimated. When other continuously recorded plant-based indicators are not accessible, the concurrent measurement of leaf and stem water potentials at midday, which are relatively inexpensive to measure and user-friendly, act as sufficiently good indicators of the plant water status in field grown Fino lemon trees.

  8. Simulation of Farmers’ Response to Irrigation Water Pricing and Rationing Policies (Case Study: Zabol City

    Directory of Open Access Journals (Sweden)

    abouzar parhizkari

    2014-10-01

    Full Text Available Considering that agricultural sector is the largest consumer of water, presenting integrated management for water resources and formulating effective policies to increase water productivity in this sector is essential. Therefore, using economic modeling , this study simulated the farmers’ responses to irrigation water pricing and rationing policies in Zabol city. To achieve the study purpose, the State Wide Agricultural Production Model and Positive Mathematical Programming were applied. The required data for the years 2010-2011 was collected by completing questionnaires and collecting data sets from the relevant agencies of Zabol city in personal attendance. The results showed that imposing irrigation water pricing and rationing policies in Zabol city leads to a reduction in the total cultivated area by 9/54 and 5/14 percent and a reduction in the water consumption by 6/23 and 7/01 percent, compared to the base year. Ultimately, irrigation water rationing policy, considering frugality of 18/9 million m3 of water, as the appropriate solution for the sustainability of water resources of Zabol city was proposed.

  9. Analysis of water footprints of rainfed and irrigated crops in Sudan

    Directory of Open Access Journals (Sweden)

    Shamseddin Musa Ahmed

    2011-12-01

    Full Text Available Water rather than land is the limiting factor for crop production in Sudan. This study attempts to use the water footprint (WFP and virtual water concepts to account for crops water consumption under the Sudanese rainfed and irrigated conditions. The general average of the green WFP of sorghum and millet were found to be about 7700 and 10700 m3 ton-1, respectively. According to experimental results at three different climates, in-situ rainwater harvesting techniques could reduce the WFP of rainfed sorghum by 56% on the average. The blue component (surface water shows the highest contribution to the total WFP of irrigated crops: 88% for cotton, 70% for sorghum, 68% for groundnut and 100% for wheat. However, the role of the green water (rainwater is not marginal since it largely influences the operation and maintenance (silt clearance of the gravity-fed irrigation system. Under normal conditions, the annual total virtual water demand of sorghum (the dominant food crop in Sudan is found to be 15 km3, of which 91% is green water. During a dry year, however, Sudan could experience a deficit of 2.3 km3 of water, necessitating the adoption of a wise food stocking-exporting policy.

  10. Effect of Mycorrhiza Symbiosis on Yield, Yield Components and Water Use Efficiency of Sesame (Sesamum indicum L. Affected by Different Irrigation Regimes in Mashhad Condition

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2016-02-01

    Full Text Available Introduction Plant association with mycorrhiza has been considered as one of the options to improve input efficiency particularly for water and nutrient - (Allen and Musik, 1993; Bolan, 1991. This has been due to kncreasing the absorbing area of the root and therefore better contact with water and nutrients. Inoculation with mycorrhiza enhances nutrient uptake with low immobility such as phosphorus and solphur-, improve association and could be an option to drought and other environmental abnormalities such as salinity (Rice et al., 2002. Moreover, higher water use efficiency (WUE for crops -has been reported in the literatures (Sekhara and Reddy, 1993.The sustainable use of scarce water resources in Iran is a priority for agricultural development. The pressure of using water in agriculture sector is increasing, so creating ways to improve water-use efficiency and taking a full advantage of available water are crucial. Water stress reduce crop yield by impairing the growth of crop canopy and biomass. Scheduling water application is very crucial for efficient use of drip irrigation system, as excessive irrigation reduces yield, while inadequate irrigation causes water stress and reduces production. The aim of present study was to evaluate the symbiotic effect of mycorrhiza on yield, yield components and water use efficiency of sesame under different irrigation regimes in Mashhad. Material and Methods In order to investigate the impact of inoculation with two species of Arbuscular mycorrhiza fungi on yield, yield components and water use efficiency (WUE of sesame (Sesamum indicum L. under different irrigation regimes, an experiment was conducted as split plot based on a randomized complete block design with three replications during two growing seasons 2009-2010 and 2010-2011 at the Agricultural Research Station, College of Agriculture, Ferdowsi University of Mashhad.. The experimental factors were three irrigation regimes include 2000, 3000 and

  11. Concentrations of Mercury, Lead, Chromium, Cadmium, Arsenic and Aluminum in Irrigation Water Wells and Wastewaters Used for Agriculture in Mashhad, Northeastern Iran

    Directory of Open Access Journals (Sweden)

    SR Mousavi

    2013-04-01

    Full Text Available Background: Contamination of water by toxic chemicals has become commonly recognized as an environmental concern. Based on our clinical observation in Mashhad, northeastern Iran, many people might be at risk of exposure to high concentrations of toxic heavy metals in water. Because wastewater effluents as well as water wells have been commonly used for irrigation over the past decades, there has been some concern on the toxic metal exposure of crops and vegetables irrigated with the contaminated water. Objective: To measure the concentrations of mercury, lead, chromium, cadmium, arsenic and aluminium in irrigation water wells and wastewaters used for agriculture in Mashhad, northeastern Iran. Methods: 36 samples were taken from irrigation water wells and a wastewater refinery in North of Mashhad at four times—May 2008, March 2009, and June and July 2010. Atomic absorption spectrometry was used to measure the concentration of toxic metals. Graphite furnace was used for the measurement of lead, chromium, cadmium and aluminum. Mercury and arsenic concentrations were measured by mercury/hydride system. Results: Chromium, cadmium, lead and arsenic concentrations in the samples were within the standard range. The mean±SD concentration of mercury in irrigation wells (1.02±0.40 μg/L exceeded the FAO maximum permissible levels. The aluminum concentration in irrigation water varied significantly from month to month (p=0.03. All wastewater samples contained high mercury concentrations (6.64±2.53 μg/L. Conclusion: For high mercury and aluminum concentrations, the water sources studied should not be used for agricultural use. Regular monitoring of the level of heavy metals in water and employing the necessary environmental interventions in this area are strongly recommended.

  12. Evaluation of water quality for drinking and irrigation purpose from simly lake, pakistan

    International Nuclear Information System (INIS)

    Iqbal, J.; Shah, M.H.; Tirmizi, S.A.

    2012-01-01

    Present study was carried out to assess the seasonal distribution of essential metals (Ca, K, Mg and Na) and physicochemical parameters (pH, T, DO, EC, TDS, TA, TH, Cl-, , PS, SAR, RSBC and MAR) in freshwater samples of Simly Lake, Pakistan. The suitability of water for drinking and agricultural purpose was assessed using various water quality parameters and indices. The average concentrations for most of the studied parameters were found to be within the national/international guidelines. However, the levels of bicarbonate ion and residual sodium bicarbonate (RSBC) in the water were significantly higher than international standards. Irrigation water quality (IWQ) index revealed that the water was of medium level suitability for the irrigation purpose. (author)

  13. Grey water treatment at a sports centre for reuse in irrigation: a case study.

    Science.gov (United States)

    Gabarró, J; Batchelli, L; Balaguer, M D; Puig, S; Colprim, J

    2013-01-01

    Grey water has long been considered a promising option for dealing with water scarcity and reuse. However, factors such as lack of macronutrients and low carbon content make its treatment challenging. The aim of this paper was to investigate the applicability of sequencing batch reactor (SBR) technology to on-site grey water treatment at a sports centre for reuse in irrigation. The results demonstrated that the regenerated water complied with microbiological parameters concerning restriction of solids and organic matter removal. Denitrification was not fully accomplished, but ammonium was totally oxidised and low concentrations of nitrates were achieved. Effluent with good appearance and no odour was used in an experimental study to irrigate a grid system containing natural and artificial grass sections. The conclusion is that SBR technology offers a promising treatment for grey water.

  14. Impact of Land Use Change and Land Management on Irrigation Water Supply in Northern Java Coast

    Directory of Open Access Journals (Sweden)

    Suria DarmaTarigan

    2013-05-01

    Full Text Available In Indonesia, paddy irrigation covers an area of 7,230,183 ha. Ten percent (10% of those area or 797,971 ha were supplied by reservoirs. As many as 237,790 ha (30% of those area supplied by reservoirs are situated downstream of Citarum Watershed called Northern Java Coast Irrigation Area or Pantura. Therefore, Citarum watershed is one of the most important watershed in Indonesia. Citarum is also categorized as one of most degraded watershed in Java. The study aimed to evaluate influence of land use change on irrigation water supply in Citarum watershed and land management strategies to reduce the impact. Tremendous land use change occurred in the past ten years in Citarum watershed. Settlement areas increases more than a double during 2000 to 2009 (81,686 ha to 176,442 ha and forest area decreased from 71,750 ha to 9,899 ha in the same time period. Land use change influences irrigation water supply through 2 factors: a decreasing storage capacity of watershed (hydrologic functions for dry season, and b decreasing storage capacity of reservoirs due to the sedimentation. Change of Citarum watershed hydrologic function was analyzed using 24 years’ time series discharge data (1984-2008 in combination with rainfall data from 2000 to 2008. Due to the land use change in this time period, discharge tend to decrease despite of increasing trend of rainfall. As a result irrigation area decreased 9,355 ha during wet season and 10,170 ha during dry season in the last ten years. Another threat for sustainability of water irrigation supply is reservoir sedimentation. Sedimentation rate in the past 10 years has reduced upper Citarum reservoir (Saguling half-life period (½ capacity sedimented from 294 to 28 years. If proper land management strategies be carried out, the half-life period of Saguling reservoir can be extended up to 86,4 years

  15. Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate

    NARCIS (Netherlands)

    Trujillo-González, Juan Manuel; Mahecha-Pulido, Juan D.; Torres-Mora, Marco Aurelio; Brevik, Eric C.; Keesstra, Saskia D.; Jiménez-Ballesta, Raimundo

    2017-01-01

    Globally, it is estimated that 20 million hectares of arable land are irrigated with water that contains residual contributions from domestic liquids. This potentially poses risks to public health and ecosystems, especially due to heavy metals, which are considered dangerous because of their

  16. Effects of limited irrigation on yield and water use efficiency of two ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... Although water deficit is unavoidable in the dry environment, studies have shown that judicious irrigation can to some extent counter the adverse effects on the deficit (Musick and. Dusek, 1980; Misra and ... soil organic carbon, 0.8 g•kg-1 total nitrogen, 37 mg•kg-1 alkaline hydrolysis and 4.58 mg•kg-1 ...

  17. Grey water treatment in a series anaerobic – Aerobic system for irrigation

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2010-01-01

    This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant

  18. Effects of limited irrigation on yield and water use efficiency of two ...

    African Journals Online (AJOL)

    The effects of irrigation on grain yield and water use efficiency was studied on two sequence replaced dryland winter wheat (Triticum aestivum L.) cultivars, Changwu 135 (CW, a new cultivar) and Pingliang 40 (PL, an old cultivar). Field experiments were carried out on Changwu country on Loess Plateau, China. Whereas ...

  19. An appraisal of ground water for irrigation in the Wadena area, central Minnesota

    Science.gov (United States)

    Lindholm, F.G.

    1970-01-01

    The Wadena area is part of a large sandy plain in central Minnesota whose soils have low water-holding capacity. Drought conditions which adversely affect plant growth frequently occur in the summer when moisture is most needed. To reduce the risk of crop failure in the area supplemental irrigation is on the increase.

  20. Salinity of irrigation water in the Philippi farming area of the Cape ...

    African Journals Online (AJOL)

    Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, ... Isotope analysis was done for the summer samples so as to assess effects of ... It is concluded that the accumulation of salts in groundwater and soil in the ...

  1. Interaction between Soil Physicochemical Parameters and Earthworm Communities in Irrigated Areas with Natural Water and Wastewaters

    Directory of Open Access Journals (Sweden)

    Kourtel Ghanem Nadra

    2017-01-01

    Full Text Available Our objective is to study interaction between physical and chemical properties of soils and their earthworm community characteristics in different areas irrigated by wastewaters and well waters. The fields have different topography and agricultural practices conditions and are located in two regions of Batna department (Eastern Algeria. Both regions are characterized by a semiarid climate with cold winters and Calcisol soils. Nine fields were subject of this study. Three of these fields are located in Ouled Si Slimane region whose irrigation is effectuated by natural waters of Kochbi effluent. The other six fields are located at edges of Wed El Gourzi, effluent from Batna city, and partially treated through water treatment station. The best rates of water saturation and infiltration as well as abundance of earthworms were recorded at sites characterized by irrigation with wastewaters downstream of El Gourzi effluent. PCA characterizes two major groups: a group of hydrodynamic infiltration parameters and structural index stability of soil, explained by fields irrigated with wastewaters downstream of El Gourzi effluent. This group includes chemical characteristics: pH and electric conductivity. The second group is the characteristics of earthworms and includes organic matter content, active limestone levels, and Shannon Biodiversity Index.

  2. In-Soil and Down-Hole Soil Water Sensors: Characteristics for Irrigation Management

    Science.gov (United States)

    The past use of soil water sensors for irrigation management was variously hampered by high cost, onerous regulations in the case of the neutron probe (NP), difficulty of installation or maintenance, and poor accuracy. Although many sensors are now available, questions of their utility still abound....

  3. Water as an economic good in irrigated agriculture: theory and practice

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Perry, C.J.

    2004-01-01

    This report describes the results of the Water Valuation and Pricing project, which aims to provide insight into the relevance of economics to typical problems found in irrigated agriculture. It first considers the theoretical basis for the use of economic instruments, then considers their

  4. Addressing water scarcity through limited irrigation cropping: Field experiments and modeling

    Science.gov (United States)

    Population growth in urbanizing areas such as the Front Range of Colorado has led to increased pressure to transfer water from agriculture to municipalities. In many cases this has led to complete dry up of productive irrigated lands. An option to complete dry-up is the practice of limited or defi...

  5. On the waterfront : water distribution, technology and agrarian change in a South Indian canal irrigation system

    NARCIS (Netherlands)

    Mollinga, P.P.

    1998-01-01

    This book discusses water distribution in the Tungabhadra Left Bank Canal irrigation system in Raichur district, Karnataka, India. The system is located in interior South India, where rainfall is limited (approximately 600 mm annually) and extremely variable. The region suffered from failed

  6. Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications

    Directory of Open Access Journals (Sweden)

    Nicole L Fahrenfeld

    2013-05-01

    Full Text Available Treated wastewater is increasingly being reused to achieve sustainable water management in arid regions. The objective of this study was to quantify the distribution of antibiotic resistance genes (ARGs in recycled water, particularly after it has passed through the distribution system, and to consider point-of-use implications for soil irrigation. Three separate reclaimed wastewater distribution systems in the western U.S. were examined. Quantitative polymerase chain reaction (qPCR was used to quantify ARGs corresponding to resistance to sulfonamides (sul1, sul2, macrolides (ermF, tetracycline (tet(A, tet(O, glycopeptides (vanA, and methicillin (mecA, in addition to genes present in waterborne pathogens Legionella pneumophila (Lmip, Escherichia coli (gadAB, and Pseudomonas aeruginosa (ecfx, gyrB. In a parallel lab study, the effect of irrigating an agricultural soil with secondary, chlorinated, or dechlorinated wastewater effluent was examined in batch microcosms. A broader range of ARGs were detected after the reclaimed water passed through the distribution systems, highlighting the importance of considering bacterial re-growth and the overall water quality at the point of use. Screening for pathogens with qPCR indicated presence of Lmip and gadAB genes, but not ecfx or gyrB. In the lab study, chlorination was observed to reduce 16S rRNA and sul2 gene copies in the wastewater effluent, while dechlorination had no apparent effect. ARGs levels did not change with time in soil slurries incubated after a single irrigation event with any of the effluents. However, when irrigated repeatedly with secondary wastewater effluent (not chlorinated or dechlorinated, elevated levels of sul1 and sul2 were observed. This study suggests that reclaimed water may be an important reservoir of ARGs, especially at the point of use, and that attention should be directed towards the fate of ARGs in irrigation water and the implications for human health.

  7. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas.

    Science.gov (United States)

    Adviento-Borbe, M Arlene A; Barnes, Brittany D; Iseyemi, Oluwayinka; Mann, Amanda M; Reba, Michele L; Robertson, William J; Massey, Joseph H; Teague, Tina G

    2018-02-01

    Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US and yet, nutrients can be transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of furrow tillage practices and nitrogen (N) fertilizer placement on characteristics of runoff water quality during the growing season. The experiment was designed as a randomized complete block design with conventional (CT) and conservation furrow tillage (FT) in combination with either urea (URN) broadcast or 32% urea ammonium nitrate (UAN) injected, each applied at 101kgNha -1 . Concentrations of ammonium (NH 4 -N), nitrate (NO 3 -N), nitrite (NO 2 -N), and dissolved phosphorus (P) in irrigation runoff water and lint yields were measured in all treatments. The intensity and chemical form of nutrient losses were primarily controlled by water runoff volume and agronomic practice. Across tillage and fertilizer N treatments, median N concentrations in the runoff were water. Water pH, specific electrical conductivity, alkalinity and hardness were within levels that common to local irrigation water and less likely to impair pollution in waterways. Lint yields averaged 1111kgha -1 and were higher (P-value=0.03) in FT compared to CT treatments. Runoff volumes across irrigation events were greater (P-value=0.02) in CT than FT treatments, which increased NO 3 -N mass loads in CT treatments (394gNO 3 -Nha -1 season -1 ). Nitrate-N concentrations in CT treatments were still low and pose little threat to N contaminations in waterways. The findings support the adoption of conservation practices for furrow tillage and N fertilizer placement that can reduce nutrient runoff losses in furrow irrigation systems. Published by Elsevier B.V.

  8. The Water Connection: Irrigation, Water Grabbing and Politics in Southern Morocco

    Directory of Open Access Journals (Sweden)

    Annabelle Houdret

    2012-06-01

    Full Text Available Water and land grabbing is often an indication of growing control by an elite group over natural resources for agricultural production, marginalising their previous users. It may drive and exacerbate social, economic and political disparities and so increase the potential for conflict. In Southern Morocco’s Souss valley, the overuse of water resources is causing aquifer levels to sink and agricultural land to be abandoned. At the same time, irrigated agriculture is still expanding, often permitting the growing of lucrative citrus fruits. This export-oriented agriculture mostly benefits the economic elite, increasing their political influence. Small farmers, on the other hand, face growing threats to their livelihoods. A public-private partnership (PPP project reallocating water through a 90 km pipeline from a mountain region to plantations in the valley has been implemented to enhance water supply and save dying citrus plantations. However, it is accentuating disparities between farmers. We trace the dynamics of marginalisation linked to this PPP and use emerging water conflicts as a lens to analyse the appropriation of water resources and the underlying political and economic relationships and strategies. On the basis of the case study, we show that water conflicts are as much struggles over political influence as over the resource itself and, consequently, that the related phenomenon of 'water grabbing' is not only driven by economic interests but also determined by a political agenda of regime stability and economic control. However, we also point to the opportunities presented by recent social and political changes in Morocco, including the influence of the 'Arab Spring', and argue that such processes as increasing transparency, decentralisation and the empowerment of local civil society support, the re-appropriation of water, livelihoods and power. We conclude by examining the limits of this PPP model, which has been internationally

  9. Regulated deficit irrigation as a water management strategy in Vitis vinifera production

    International Nuclear Information System (INIS)

    Wample, R.L.; Smithyman, R.

    2002-01-01

    An initial six-year study in a commercial vineyard located in the Columbia River Valley of Washington State, United States of America, examined the management practices and potential benefits of regulated deficit irrigation (RDI) on Vitis vinifera cv. Sauvignon blanc. The objective of the treatments was to evaluate the effect of deficit irrigation prior to, compared with after, veraison. Each of four irrigation treatments was applied to 1.6 ha and replicated four times for a total 27.0 ha. Irrigation treatments were based on desired soil moisture levels in the top metre of the profile where most of the root system is found. Soil moisture was monitored using a neutron probe and the information was combined with calculations of evaporative demand to determine the irrigation required on a weekly basis. Vine growth, yield, fruit quality and cold hardiness were monitored throughout the study. The results indicated that RDI prior to veraison was effective in controlling shoot growth, as determined by shoot length and elongation rate, as well as pruning weights. Sixteen wine lots, each of approximately 12,000 litres, were prepared each season. Although there was some effect on berry weight, yield was not always significantly reduced. Full irrigation prior to veraison resulted in excessive shoot growth. RDI applied after veraison to vines with large canopies resulted in greater water deficit stress. Fruit quality was increased by pre-veraison RDI compared to postveraison RDI based on wines made. Regulated deficit irrigation applied at anytime resulted in better early-season lignification of canes and cold hardening of buds. There was a slight improvement in mid-winter cold hardiness of vines subjected to RDI. However, this effect was inconsistent. Studies on Cabernet Sauvignon and White Riesling are underway to confirm these results and to investigate the impact of RDI on fruit quality and winemaking practices. (author)

  10. Irrigation water consumption modelling of a soilless cucumber crop under specific greenhouse conditions in a humid tropical climate

    Directory of Open Access Journals (Sweden)

    Galo Alberto Salcedo

    Full Text Available ABSTRACT: The irrigation water consumption of a soilless cucumber crop under greenhouse conditions in a humid tropical climate has been evaluated in this paper in order to improve the irrigation water and fertilizers management in these specific conditions. For this purpose, a field experiment was conducted. Two trials were carried out during the years 2011 and 2014 in an experimental farm located in Vinces (Ecuador. In each trial, the complete growing cycle of a cucumber crop grown under a greenhouse was evaluated. Crop development was monitored and a good fit to a sigmoidal Gompertz type growth function was reported. The daily water uptake of the crop was measured and related to the most relevant indoor climate variables. Two different combination methods, namely the Penman-Monteith equation and the Baille equation, were applied. However, the results obtained with these combination methods were not satisfactory due to the poor correlation between the climatic variables, especially the incoming radiation, and the crop's water uptake (WU. On contrary, a good correlation was reported between the crop's water uptake and the leaf area index (LAI, especially in the initial crop stages. However, when the crop is fully developed, the WU stabilizes and becomes independent from the LAI. A preliminary model to simulate the water uptake of the crop was adjusted using the data obtained in the first experiment and then validated with the data of the second experiment.

  11. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  12. Ring Irrigation System (RIS) design through customer preference representation

    OpenAIRE

    Ridwan Infandra I.Z.; Rianmora Suchada; Werawatganon Siwat

    2018-01-01

    In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent ...

  13. Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops

    Directory of Open Access Journals (Sweden)

    Maria Isabel Ferreira

    2017-06-01

    Full Text Available There are several causes for the failure of empirical models to estimate soil water depletion and to calculate irrigation depths, and the problem is particularly critical in tall, uneven, deficit irrigated (DI crops in Mediterranean climates. Locally measured indicators that quantify water status are useful for addressing those causes and providing feed-back information for improving the adequacy of simple models. Because of their high aerodynamic resistance, the canopy conductance of woody crops is an important factor in determining evapotranspiration (ET, and accurate stress coefficient (Ks values are needed to quantify the impact of stomatal closure on ET. A brief overview of basic general principles for irrigation scheduling is presented with emphasis on DI applications that require Ks modelling. The limitations of existing technology related to scheduling of woody crops are discussed, including the shortcomings of plant-based approaches. In relation to soil water deficit and/or predawn leaf water potential, several woody crop Ks functions are presented in a secondary analysis. Whenever the total and readily available water data were available, a simple Ks model was tested. The ultimate aim of this discussion is to illustrate the central concept: that a combination of simple ET models and water stress indicators is required for scheduling irrigation of deep-rooted woody crops.

  14. Supplemental irrigation to improve wheat production and water use efficiency under rainfed farming conditions

    International Nuclear Information System (INIS)

    Hussain, Q.; Bhatti, A.A.; Ahmad, M.M.

    2007-01-01

    The stochastic behaviors of rainfall pose serious limitations for sustained and profitable crop production in rainfed areas; farmers hesitate to apply fertilizers when they are not sure about rainfall. In view of these limitations a research study was conducted for three years (2003-2006) at field station of Water Resources Research Institute (WRRI), National Agricultural Research Centre(NARC), Islamabad to examine the effects of supplemental irrigation (SI) on wheat production and water use efficiency (WUE). Irrigation treatments employed under the experiment were: i) Rainfed without irrigation and fertilizer application (I/sub 0/); ii) SI of 25 mm was applied to non-fertilizer field at 75% management allowed deficit (MAD)(I/sub 1/); iii) Rainfed with fertilizer application at sowing time (I/sub 2/); and iv) SI of 25 mm was applied at 75% MAD and at the time of fertilizer application as top dressing (I/sub 3/). Supplemental irrigation increased the crop yield during the years 2003-2006 under both fertilizer and non-fertilizer conditions. Increased in grain yield under non-fertilizer conditions (I/sub 1/) ranges between 770-980 kg/ha, which is 27 to 48% higher than the rainfed yield (I/sub 0/). Supplemental irrigation and split application of fertilizer (treatment I/sub 3/) increased in grain yield within the range of 1000-1350 kg/ha, which is 27-49% higher than yield under treatment I/sub 2/. Whereas, due to synergetic effect of supplemental irrigation and fertilizer application, increased in grain yield ranges between 1550-2030 kg/ha, which is 49% to 100% higher than the rainfed and non-fertilizer field. WUE was calculated for rain (WUE/sub r/) for total water (grass: previous soil water storage + rain + irrigation) (WUE/sub g/), for SI water only (WUE/sub si/) and for synergetic effect (SI water + fertilizer application) (WUE/sub sis/) Water use efficiencies namely the WUE/sub r/, WUE/sub g/ and WUE/sub si/ during the period of three years under non fertilizer

  15. Evaluation of sanitary quality of lettuce (Lactuca sativa, L. irrigated with reused water in comparison with commercialized lettuce

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2011-08-01

    Full Text Available Inadequate use of water resources reduces their availability and therefore, research focused on their reutilization is required. This work evaluated the sanitary quality of lettuce irrigated with reused water in comparison with samples of lettuce commercialized in Taubaté (SP market. An experiment was developed in a greenhouse with three beds of lettuce irrigated with reused water and three beds of lettuce irrigated with urban water supply. After lettuce biological cycle had been completed, lettuce samples were collected from the beds (irrigated and non-irrigated with reused water and from samples of lettuce commercialized in the city market that were analyzed in the laboratory. The analyses were done using the multiple tubes methodology. The results showed that the samples from lettuce irrigated with urban water supply were not contaminated by either total or thermotolerant coliforms while samples of irrigated lettuce with reused water were contaminated by total coliforms. Samples from commercialized lettuce were contaminated by both kinds of coliforms. Results indicated that the application of reused water for agricultural purposes should occur only after carefully treatment to allow a safe use and to contribute to the water use sustainability.

  16. Impact of Magnetic Treatment of Irrigation Water on the Growth and Yield of Tomato

    Directory of Open Access Journals (Sweden)

    Kamorudeen Olaniyi YUSUF

    2015-09-01

    Full Text Available This study was carried out to determine whether magnetic treatment of the irrigation water may actually enhance vegetative growth and yield of tomato. Three magnetic flux densities of 124, 319 and 719 G (treatments T1, T2 and T3 were used to treat the water and a control experiment (Tc which was irrigated with non-magnetically treated water was also set up. The magnetic field was produced by an electromagnet that had a variable voltage unit varying the voltage from 4 to 12 V. The tomato were planted in buckets, kept in a transparent garden shed for 130 days and irrigated with magnetically treated water and non-magnetically treated water. A completely randomized design experimental layout was used in this study and each of the three treatments was replicated seven times. The results indicated that tomato crop irrigated with magnetically treated water grew faster than that of the non-magnetically treated water and the stem diameters were bigger than those of control. The heights of tomato plants (T1, T2 T3 and Tc after 47 days were 560.0, 556.4, 588.6 and 469.3 mm respectively. The total yield after 130 days of survey for T1, T2 T3 and Tc were 892.1, 1075.8, 1045.7 and 637.7 g respectively. The percentage increment in yield from the plants treated with magnetically treated water varied from 39.9 to 68.7% compared to the yield from untreated water.

  17. Quantification and characterization of putative diazotrophic bacteria from forage palm under saline water irrigation

    Directory of Open Access Journals (Sweden)

    Gabiane dos Reis Antunes

    2017-09-01

    Full Text Available The aim of this study was to evaluate the density and phenotypical diversity of diazotrophic endophytic bacteria from the forage palm irrigated with different saline water depths. Opuntia stricta (IPA-200016 received five depths of saline water (L1: 80%. ETo; L2: 60%.ETo; L3: 40%; ETo; L4: 20%; ETo and, L5: 0% ETo, where ETo is the reference evapotranspiration. The roots were collected in the field, disinfected, grounded and serial diluted from 10-1 to 10-4. The total concentration of diazotrophic bacteria was determined by the most probable number method (MPN and the isolated bacteria were characterized phenotipically. The concentration of bacteria found in forage palm roots ranged from 0.36 x 104 to 109.89 104 cells per gram of root, with highest occurrence on the 60 and 80% ETo. In the dendrogram of similarity it was possible to observe the formation of 24 phenotypic groups with 100% similarity. All bacteria presented similarity superior to 40%. Among these groups, 14 are rare groups, formed by only a single bacterial isolate. In the Semi-Arid conditions, the forage palm that receives the highest amount of saline water, presents a higher density of putative nitrogen-fixing endophytic bacteria with high phenotypic diversity.

  18. Saline irrigation water and its effect on N.use efficiency, growth and yield of Sorghum plant using 15N

    International Nuclear Information System (INIS)

    Abd El-Latteef, E.M.

    2010-01-01

    Series of pot experiments were conducted and randomly arranged under greenhouse conditions for evaluating the effect of irrigation with saline water (alternative source) in combination with different organic sources (amendments) i.e. leucaena plant residue (LU), Quail feces (QF) and chicken manure (ChM) added in different percentages against the mineral form (ammonium sulfate) either in ordinary or 15 N labeled (2 and 5% 15 N atom excess) forms, on sorghum growth and nutrients acquisition. Artificial saline water with different EC and SAR values was prepared at laboratory using computer program designed by the author with guiding of the designed Package named Artificial Saline Irrigation Water (ASIW) (Manual of Salinity Research Methods). In addition, proline acid was also sprayed (foliar) on leaves of sorghum plants at different concentrations. The experimental results indicated the positive effect of organic amendments, as compared to mineral fertilizer, and foliar application of proline acid on enhancement of plant growth and nutrient uptake. This phenomenon was pronounced under water salinity conditions. In this regard, increasing of water salinity levels induced reduction in plant growth as well as nutrients acquisition. Data of 14 N/ 15 N ratio analysis pointed out enhancement of N derived from mineral source as affected by organic amendments. At the same time, considerable amounts of N was derived from organic sources and utilized by plants. The superiority of organic sources on each others was fluctuated depending on interaction with water salinity levels and proline concentrations. In conclusion, organic additives and proline acid has an improvement effects especially under adverse condition of irrigation water salinity.

  19. Effect of Endodontic Irrigants on Microtensile Bond Strength to Dentin After Thermocycling and Long-Term Water Storage

    Directory of Open Access Journals (Sweden)

    Daniel Galafassi

    2013-01-01

    Full Text Available Objective: The bond strength of adhesives in irrigated dentin behaves differently over time. The aim of this study was to evaluate the influence of long-term water storage and thermocycling on the microtensile bond strength of adhesive systems to dentin irrigated with endodontic solutions.Materials and Methods: Sixty human molars were used after removal of the occlusal portion and exposure of the dentin by grinding. The specimens were irrigated with 2.5% NaOCl for 30 minutes and then 17% EDTA for 5 minutes and assigned to six groups according to the adhesive system (n=10: G1 and G2–Clearfil SE Bond; G3 and G4–Single Bond 2; and G5 and G6–XP Bond. The teeth were restored with composite and were subjected to water storage for different time periods. G1, G3 and G5 were stored for 24 h; G2, G4 and G6 were stored for 6 months and were subjected to thermocycling (12,000 cycles, 5°C to 55°C, 500 cycles per week for 6 months. After storage, the tooth/restoration assembly was sectioned to obtain four sticks of approximately 1 mm2, for microtensile bond strength testing. The results were analyzed by two-way ANOVA and Tukey’s test.Results: Significant differences were observed among the adhesives (p<0.01. No significant differences were observed in the microtensile bond strength between samples after 24 hours of storage without thermocycling and after 6-month storage with 12,000 cycles (p<0.05.Conclusion: The bond strengths of G5 and G6 after irrigation with 2.5% NaOCl and 17% EDTA were significantly different from those of other groups. Long-term <