WorldWideScience

Sample records for irrigation project contract

  1. 77 FR 10767 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2012-02-23

    ... Irrigation Project on the proposed rates about the following issues: (1) The methodology for O&M rate setting..., Irrigation Project Manager, (Project operations and management contracted to Tribes), R.R.1, Box 980, Harlem... Projects AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of rate adjustments. SUMMARY: The...

  2. Analysis of Irrigation Water Quality at Kadawa Irrigation Project for Improved Productivity

    Directory of Open Access Journals (Sweden)

    AR Sanda

    2014-09-01

    Full Text Available In the face of water scarcity and the several negative consequences, such as water wastage, flooding, water logging, soil losses and production losses, conserving the finite amount of fresh water is a must. The quality of irrigation water must therefore be ascertained. The chemical quality of three sources of irrigation water from canal and drainage water, namely drainage water, fresh irrigation water from canal, and drainage/irrigation water mixture, were analyzed from Kadawa irrigation Project for year 2013 and 2014 cropping seasons, with the view to evaluating the potential risks associated with their use in irrigation and hence their suitability or otherwise for irrigation purposes. The analysis revealed that the use of drainage water alone for irrigation may result in problems associated with salinity, while a blend of drainage/irrigation water in the ratio of 1:1 is a viable means of water conservation and a good means of crop production. DOI: http://dx.doi.org/10.3126/ije.v3i3.11082 International Journal of Environment Vol.3(3 2014: 235-240

  3. Economic Analysis of Crop Production under Jibiya Irrigation Project ...

    African Journals Online (AJOL)

    Majority of the farmers were married and can read and write. Most of ... The performance of the farmers, though ... holder irrigation dependent on the shadoof system of lifting water as .... implies that in Jibiya Irrigation Project, women were not.

  4. Incentive contracts for development projects

    Science.gov (United States)

    Finley, David T.; Smith, Byron; DeGroff, B.

    2012-09-01

    Finding a contract vehicle that balances the concerns of the customer and the contractor in a development project can be difficult. The customer wants a low price and an early delivery, with as few surprises as possible as the project progresses. The contractor wants sufficient cost and schedule to cover risk. Both want to clearly define what each party will provide. Many program offices do not want to award cost plus contracts because their funding sources will not allow it, their boards do not want an open ended commitment, and they feel like they lose financial control of the project. A fixed price incentive contract, with a mutually agreed upon target cost, provides the owner with visibility into the project and input into the execution of the project, encourages both parties to save costs, and stimulates a collaborative atmosphere by aligning the respective interests of customers and contractors.

  5. 30 CFR 881.6 - Project contract.

    Science.gov (United States)

    2010-07-01

    ... contractors or suppliers for the construction, installation, services or work to be performed. (b) Project... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Project contract. 881.6 Section 881.6 Mineral... LAND RECLAMATION SUBSIDENCE AND STRIP MINE REHABILITATION, APPALACHIA § 881.6 Project contract. (a...

  6. Farmers’ Logics in Engaging With Projects Promoting Drip Irrigation Kits in Burkina Faso

    NARCIS (Netherlands)

    Wanvoeke, J.; Venot, J.-P.; Zwarteveen, M.; de Fraiture, C.

    2016-01-01

    Development agencies enthusiastically promote micro-drip irrigation as an affordable water and labor-saving device, yet most farmers stop using it as soon as development projects end. This article analyzes why farmers engage in projects promoting drip irrigation kits, even though they appear not to

  7. Farmers’ Logics in Engaging With Projects Promoting Drip Irrigation Kits in Burkina Faso

    NARCIS (Netherlands)

    Wanvoeke, Jonas; Venot, Jean Philippe; Zwarteveen, Margreet; Fraiture, de Charlotte

    2016-01-01

    Development agencies enthusiastically promote micro-drip irrigation as an affordable water and labor-saving device, yet most farmers stop using it as soon as development projects end. This article analyzes why farmers engage in projects promoting drip irrigation kits, even though they appear not

  8. 76 FR 58293 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2011-09-20

    ...) Vehicle and equipment repairs; (d) Equipment costs, including lease fees; (e) Depreciation; (f... Mexico 87104, Telephone: (505) 563-3100. Pine River Irrigation Project..... John Waconda, Superintendent...

  9. 75 FR 67095 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2010-11-01

    ...; (c) Vehicle and equipment repairs; (d) Equipment costs, including lease fees; (e) Depreciation; (f... Mexico 87104, Telephone: (505) 563-3100. Pine River Irrigation Project..... John Waconda, Superintendent...

  10. Farmers' logics in engaging with projects promoting drip irrigation kits in Burkina Faso

    OpenAIRE

    Wanvoeke, J.; Venot, Jean-Philippe; Zwarteveen, M.; de Fraiture, C.

    2016-01-01

    Development agencies enthusiastically promote micro-drip irrigation as an affordable water and labor-saving device, yet most farmers stop using it as soon as development projects end. This article analyzes why farmers engage in projects promoting drip irrigation kits, even though they appear not to be interested in their water and labor-saving attributes. We combine practice-based theories of innovation with insights from the anthropology of development to explain that in development project ...

  11. The Middle Eastern Regional Irrigation Management Information Systems project-update

    Science.gov (United States)

    The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...

  12. Simple steps help minimize costs, risks in project contracts

    International Nuclear Information System (INIS)

    Camps, J.A.

    1996-01-01

    Contrary to prevailing opinion, risks and project financing costs can be higher for lump sum (LS) project contracts than under reimbursable-type contracts. An element-by-element analysis of the risks and costs associated with a project enables investors to develop variations of reimbursable contracts. Project managers can use this three-step procedure, along with other recommendations, to measure the hidden project costs and risks associated with LS contracts. The author bases his conclusions on case studies of recent projects in the petroleum refining and petrochemical industries. The findings, however, are general enough to be applicable in other industrial sectors

  13. 7 CFR 1726.403 - Project construction contract closeout.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Project construction contract closeout. 1726.403... § 1726.403 Project construction contract closeout. This section is applicable to contracts executed on... American” certificate. (iii) RUS Form 224, Waiver and Release of Lien, from each manufacturer, supplier...

  14. Contract types for nuclear power projects, non-turnkey type contracts in particular

    International Nuclear Information System (INIS)

    Nyte'n, T.

    1975-01-01

    A non-turnkey contract differs from a turnkey contract in no special formal way. The way the buyer chooses to exercise his project leadership must be concretized in the contract. The way and extent he wishes to exercise technical checking must be laid down in the form of clear rules. The way information has to flow from one contractor over buyer to others and vice versa has to be laid down in detail and the consequences of non conformance fixed in such a manner that optimum project performance is reached. (orig./FW) [de

  15. Post contract / Project management in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim

    2010-01-01

    Full-text: Post contract is a period from issuance certificate of practical completion until final statement of account of the project. If this procedure not completed the whole project will at large, create customers un-satisfaction, contractual obligation not complied, record not completed and financial setback. With the usage terms of contract, standard JKR circulars, treasury circulars and JKR quality manual BKJ will produce new Standard operating procedure, SOP with regards to these matters. In doing so it shall increase customer satisfaction and reduce time to finalise project and provide good record system. Keywords: Post contract, certificate of practical completion, final account, customer satisfaction, Standard operating procedure. (author)

  16. Dissemination of sustainable irrigation strategies for almond and olive orchards via a participatory approach. Project LIFE+IRRIMAN

    Science.gov (United States)

    Garcia-Vila, Margarita; Gamero-Ojeda, Pablo; Ascension Carmona, Maria; Berlanga, Jose; Fereres, Elias

    2017-04-01

    Dissemination of sustainable irrigation strategies for almond and olive orchards via a participatory approach. Project LIFE+IRRIMAN Spain is the world's first and third largest producer of olive oil and almond, respectively. Despite huge efforts in the last years by the production sector towards intensification, cultural issues relative to the traditional rain-fed crop management know how, prevent farmers from adoption of sustainable irrigation management practices. Consequently, even though there has been progress in irrigation management research for these two crops, adoption of modern irrigation techniques by farmers has been slow. Sustainable irrigation strategies for olive and almond orchards are being designed, implemented, validated and disseminated under the framework of the LIFE+ IRRIMAN project, through a participatory approach. The implementation of the LIFE+ IRRIMAN innovative and demonstrative actions has been carried out in an irrigation district of Southern Spain (Genil-Cabra Irrigation Scheme, Andalusia). The approach designed has four phases: i) design and implementation of sustainable irrigation strategies in demonstration farms; ii) dissemination of best irrigation practices which were tested in the initial year throughout the irrigation scheme by the irrigation advisory service; iii) assessment of degree of adoption and re-design of the dissemination strategies; and, iv) based on the results obtained, elaboration of sustainable irrigation guidelines for knowledge transfer in the district at regional and national levels to promote changes in irrigation practices. Participatory approaches have proven to be effective tools for successful irrigation strategies design and diffusion, especially in traditional rain fed crops such as olive and almond trees in the Mediterranean countries. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  17. 48 CFR 301.607-78 - Contracting Officer designation of a Program/Project Manager as the Contracting Officer's...

    Science.gov (United States)

    2010-10-01

    ... designation of a Program/Project Manager as the Contracting Officer's Technical Representative. 301.607-78... Contracting Officer designation of a Program/Project Manager as the Contracting Officer's Technical... acquisition. However, for those individuals serving as a Program or Project Manager under a FAC-P/PM...

  18. Outdoor Irrigation Measurement and Verification Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoughton, Kate M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Figueroa, Jorge [Western Resource Advocates, Boulder, CO (United States)

    2017-12-05

    This measurement and verification (M&V) protocol provides procedures for energy service companies (ESCOs) and water efficiency service companies (WESCOs) to determine water savings resulting from water conservation measures (WCMs) in energy performance contracts associated with outdoor irrigation efficiency projects. The water savings are determined by comparing the baseline water use to the water use after the WCM has been implemented. This protocol outlines the basic structure of the M&V plan, and details the procedures to use to determine water savings.

  19. Rainfall response to dam/irrigation projects in northern Nigeria ...

    African Journals Online (AJOL)

    In this paper, we examine the possibility that the increasing number and size of dam/irrigation projects in northern Nigeria are having a corresponding increase in rainfall in spite of the threat of climate change. We modeled the rainfall trends over 11 meteorological stations over a period of 34 years (1971 - 2004). The trends ...

  20. Project Delivery Acquisition and Contracting Plan for the Tank Farm Contractor

    International Nuclear Information System (INIS)

    MERCADO, L.C.

    2000-01-01

    This document is a plan presenting the process, strategies and approaches for vendor contracting by the Tank Farm Contractor. The plan focuses on contracting structures, practices, methods, and desired approaches in contracting. The U.S. Department of Energy (DOE), Office of River Protection (ORP) has contracted with the CH2M HILL Hanford Group, Inc. (CHG), as the Tank Farm Contractor (TFC), to support vitrification of Hanford Site tank waste by the Privatization Contractor. During Waste Feed Delivery Phase 1, waste will be retrieved from certain double-shell tanks and delivered to the Privatization Contractor to meet contract feed delivery requirements. Near-term project goals include upgrading infrastructure systems; retrieving and delivering the waste; and accepting the waste packages for interim onsite storage and disposal. Project Delivery includes individual projects assigned to provide the infrastructure and systems responsible to provide engineering, design, procurement, installation/construction, and testing/turnover of systems for retrieval of waste from Hanford double-shell tanks. This plan sets the requirements for projects work scope, contracting practices, structures, methods, and performance measurements. The plan is designed to integrate Life-Cycle Projects acquisitions and provide a consistent contracting approach. This effort will serve as a step improvement in contract reform implementing commercial practices into DOE projects

  1. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  2. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    Science.gov (United States)

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  3. Pricing Unmetered Irrigation Water under Asymmetric Information and Full Cost Recovery

    Directory of Open Access Journals (Sweden)

    Alban Lika

    2016-12-01

    Full Text Available The objective of this study is to define an efficient pricing scheme for irrigation water in conditions of unmetered water use. The study is based on a principal-agent model and identifies a menu of contracts, defined as a set of payments and share of irrigated area, able to provide incentives for an efficient use of the resource by maximizing social welfare. The model is applied in the case study of the Çukas region (Albania where irrigation water is not metered. The results demonstrate that using a menu of contracts makes it possible to define a second best solution that may improve the overall social welfare derived from irrigation water use compared with the existing pricing structure, though, in the specific case study, the improvement is small. Furthermore, the results also suggest that irrigation water pricing policy needs to take into account different farm types, and that appropriate contract-type pricing schemes have a potential role in providing incentives to farmers to make irrigation choices to the social optimum.

  4. Scheduling of Irrigation and Leaching Requirements

    Directory of Open Access Journals (Sweden)

    Amer Hassan Al-haddad

    2015-03-01

    Full Text Available Iraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigation program as a solution for the scarcity of irrigation water, the increase of irrigation efficiency, lessening the salinity in the projects and preparing an integral irrigation calendar through field measurements of soil physical properties and chemical for project selected and compared to the results of the irrigation scheduling and leaching with what is proposed by the designers. The process is accomplished by using a computer program which was designed by Water Resources Department at the University of Baghdad, with some modification to generalize it and made it applicable to various climatic zone and different soil types. Study area represented by large project located at the Tigris River, and this project was (Al-Amara irrigation project. Sufficient samples of project's soil were collected so as to identify soil physical and chemical properties and the salinity of soil and water as well as identifying the agrarian cycles virtually applied to this project. Finally, a comparison was conducted between the calculated water quantities and the suggested ones by the designers. The research results showed that using this kind of scheduling (previously prepared irrigation and leaching scheduling with its properties

  5. Operational Space-Assisted Irrigation Advisory Services: Overview Of And Lessons Learned From The Project DEMETER

    Science.gov (United States)

    Osann Jochum, M. A.; Demeter Partners

    2006-08-01

    The project DEMETER (DEMonstration of Earth observation TEchnologies in Routine irrigation advisory services) was dedicated to assessing and demonstrating improvements introduced by Earth observation (EO) and Information and Communication Technologies (ICT) in farm and Irrigation Advisory Service (IAS) day-to-day operations. The DEMETER concept of near-real-time delivery of EO-based irrigation scheduling information to IAS and farmers has proven to be valid. The operationality of the space segment was demonstrated for Landsat 5-TM in the Barrax pilot zone during the 2004 and 2005 irrigation campaigns. Extra-fast image delivery and quality controlled operational processing make the EO-based crop coefficient maps available at the same speed and quality as ground-based data (point samples), while significantly extending the spatial coverage and reducing service cost. Leading-edge online analysis and visualization tools provide easy, intuitive access to the information and personalized service to users. First feedback of users at IAS and farmer level is encouraging. The paper gives an overview of the project and its main achievements.

  6. 25 CFR 171.420 - Can I dispose of sewage, trash, or other refuse on a BIA irrigation project?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can I dispose of sewage, trash, or other refuse on a BIA... AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Facilities § 171.420 Can I dispose of sewage, trash, or other refuse on a BIA irrigation project? No. Sewage, trash, or other refuse are considered...

  7. Contractual Efficiency of PPP Infrastructure Projects: An Incomplete Contract Model

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2018-01-01

    Full Text Available This study analyses the contractual efficiency of public-private partnership (PPP infrastructure projects, with a focus on two financial aspects: the nonrecourse principal and incompleteness of debt contracts. The nonrecourse principal releases the sponsoring companies from the debt contract when the special purpose vehicle (SPV established by the sponsoring companies falls into default. Consequently, all obligations under the debt contract are limited to the liability of the SPV following its default. Because the debt contract is incomplete, a renegotiation of an additional loan between the bank and the SPV might occur to enable project continuation or liquidation, which in turn influences the SPV’s ex ante strategies (moral hazard. Considering these two financial features of PPP infrastructure projects, this study develops an incomplete contract model to investigate how the renegotiation triggers ex ante moral hazard and ex post inefficient liquidation. We derive equilibrium strategies under service fees endogenously determined via bidding and examine the effect of equilibrium strategies on contractual efficiency. Finally, we propose an optimal combination of a performance guarantee, the government’s termination right, and a service fee to improve the contractual efficiency of PPP infrastructure projects.

  8. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  9. Project Hanford management contract quality improvement project management plan; TOPICAL

    International Nuclear Information System (INIS)

    ADAMS, D.E.

    1999-01-01

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process

  10. D-Area Drip Irrigation/Phytoremediation Project: SRTC Report on Phase 1

    International Nuclear Information System (INIS)

    Wilde, E.W.

    2001-01-01

    The overall objective of this project is to evaluate a novel drip irrigation-phytoremediation process for remediating volatile organic contaminants (VOCs), primarily trichloroethylene (TCE), from groundwater in D-Area at the Savannah River Site (SRS). The process is expected to be less expensive and more beneficial to the environment than alternative TCE remediation technologies

  11. Perceived Effects of Prevalent Errors in Contract Documents on Construction Projects

    Directory of Open Access Journals (Sweden)

    Oluwaseun Sunday Dosumu

    2018-03-01

    Full Text Available One of the highly rated causes of poor performance is errors in contract documents. The objectives of this study are to investigate the prevalent errors in contract documents and their effects on construction projects. Questionnaire survey and 51 case study projects (mixed method were adopted for the study. The study also involved the use of Delphi technique to extract the possible errors that may be contained in contract documents; it did not however constitute the empirical data for the study. The sample of the study consists of 985 consulting and 275 contracting firms that engaged in the construction of building projects that were completed between 2013 and 2016 and were above the ground floor. The two-stage stratified random sampling technique was adopted for the study. The data for the study were analysed with descriptive and inferential statistics (based on Shapiro-Wilk’s test. The results of the study indicate that errors in contract documents were moderately prevalent. However, overmeasurement in bill of quantities was prevalent in private, institutional and management procured projects. Traditionally procured projects contain 68% of the errors in contract documents among the procurement methods. Drawings contain the highest number of errors, followed by bill of quantities and specifications. The severe effects of errors in contract documents were structural collapse, deterioration of buildings and contractors’ claims among others. The result of the study implies that, management procurement method is the route to error minimization in developing countries, but it may need to be backed by law and guarded against overmeasurement.

  12. Optimizing nitrogen fertilizer application to irrigated wheat. Results of a co-ordinated research project. 1994-1998

    International Nuclear Information System (INIS)

    2000-07-01

    This TECDOC summarizes the results of a Co-ordinated Research Project (CRP) on the Use of Nuclear Techniques for Optimizing Fertilizer Application under Irrigated Wheat to Increase the Efficient Use of Nitrogen Fertilizer and Consequently Reduce Environmental Pollution. The project was carried out between 1994 and 1998 through the technical co-ordination of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. Fourteen Member States of the IAEA and FAO carried out a series of field experiments aimed at improving irrigation water and fertilizer-N uptake efficiencies through integrated management of the complex Interactions involving inputs, soils, climate, and wheat cultivars. Its goals were: to investigate various aspects of fertilizer N uptake efficiency of wheat crops under irrigation through an interregional research network involving countries growing large areas of irrigated wheat; to use 15 N and the soil-moisture neutron probe to determine the fate of applied N, to follow water and nitrate movement in the soil, and to determine water balance and water-use efficiency in irrigated wheat cropping systems; to use the data generated to further develop and refine various relationships in the Ceres-Wheat computer simulation model; to use the knowledge generated to produce a N-rate-recommendation package to refine specific management strategies with respect to fertilizer applications and expected yields

  13. Irrigation et paludisme : un couple infernal?

    Directory of Open Access Journals (Sweden)

    Mergeai, G.

    2016-01-01

    Full Text Available Irrigation and Malaria - a Terrible Combination?. Increasing agricultural productivity is a priority in most of the developing countries and using irrigation is one of the most efficient ways of achieving this goal. Almost half a billion people in the world contract malaria every year and approximately one million die as a result. The majority of these victims are farmers or members of their families. In infected areas, malaria continues to have major negative impacts on agricultural productivity. For example, in the Equateur province of the DRC, after access to production means, fevers are considered the second biggest obstacle to the development of agricultural activities. In the Ivory Coast, a study has shown that growers suffering from malaria were about half as productive as their healthy colleagues. The disease often strikes at the start of the rainy season when work begins again in the fields. It reduces the amount of land cultivated and affects the amount of care taken with crops. Agricultural practices influence the risk of contracting malaria. Irrigation, in particular, can encourage the proliferation of vectors of the disease and make it more likely to spread. This tendency can be observed in many locations where irrigated rice production is on the increase. Paradoxically, however, an increased number of mosquitoes does not systematically result in more malaria. In Ethiopia, malaria is more prevalent close to the micro-dams sponsored by the government, whereas, in Tanzania, there is less malaria in irrigated areas. Various theories can be put forward in order to explain this paradox. In particular, increased income due to higher rice yields enables farmers to purchase insecticide-treated mosquito nets. It also allows them to eat better, which strengthens their immune systems. It also appears that the negative impact of irrigation systems is greater in areas, in which immunity levels were low in the population prior to the creation of

  14. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M.; Bielza, J.; Garrido, A.; Iglesias, A.

    2015-07-01

    Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk. (Author)

  15. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Directory of Open Access Journals (Sweden)

    Jorge Ruiz

    2015-12-01

    Full Text Available Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk.

  16. The Impact of a Local Development Project on Social Capital: Evidence from the Bohol Irrigation Scheme in the Philippines

    Directory of Open Access Journals (Sweden)

    Hogeun Park

    2017-03-01

    Full Text Available The purpose of this paper is to investigate the connection between local development projects and the residents’ social capital in Bohol, The Philippines. From this perspective, we hypothesized that social behaviors of local farmers are influenced by the availability of canal irrigation due to the collective water management required in irrigated societies. By combining the results of the ultimatum game (UG with a household survey on 245 villagers in Bohol, this paper (1 measures the degree of social capital at the individual level and (2 quantifies the effects of irrigation on social capital by controlling household as well as individual characteristics. Moreover, we employed a Spatial Autoregressive model to explore the spatial effects and social contexts of farmers’ behavioral patterns. The empirical results show that the level of measured social behavior is strongly associated with access to community irrigation water and asset holdings. Additionally, increased physical distance between residents leads to a decrease in social capital, or interdependency, among them. The results suggest that community engagement (e.g., irrigation management committee and turnout service association with local development projects would not only improve agricultural productivity but also enhance social relationships among farmers, highlighting its importance.

  17. Behavioural changes experienced by contract managers while working on remote project sites

    OpenAIRE

    2012-01-01

    M.B.A. This research project is concerned with the behavioural changes of contract managers while working on 'remote' project sites. While working on such a project, the researcher became aware that the behaviour of certain contract managers changed over the course of the project, and that this behaviour was not the same as they demonstrated when at home or in the office environment. In many instances these behavioural changes were of a negative nature, the consequences of which often resu...

  18. ARS irrigation research priorities and projects-An update

    Science.gov (United States)

    The USDA Agricultural Research Service focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) Irrigation Scheduling Technologies for Water Productivity; 2) Water Productivity (WP) at Multiple Scales; 3) Irrigation Applicatio...

  19. A conceptual model of psychological contracts in construction projects

    Directory of Open Access Journals (Sweden)

    Yongjian Ke

    2016-09-01

    Full Text Available The strategic importance of relationship style contracting is recognised in the construction industry. Both public and private sector clients are stipulating more integrated and collaborative forms of procurement. Despite relationship and integrated contractual arrangement being available for some time, it is clear that construction firms have been slow to adopt them. Hence it is timely to examine how social exchanges, via unwritten agreement and behaviours, are being nurtured in construction projects. This paper adopted the concept of Psychological Contracts (PC to describe unwritten agreement and behaviours. A conceptual model of the PC is developed and validated using the results from a questionnaire survey administered to construction professionals in Australia. The results uncovered the relationships that existed amongst relational conditions and relational benefits, the PC and the partners’ satisfaction. The results show that all the hypotheses in the conceptual model of the PC are supported, suggesting the PC model is important and may have an effect on project performance and relationship quality among contracting parties. A validated model of the PC in construction was then developed based on the correlations among each component. The managerial implications are that past relationships and relationship characteristics should be taken into account in the selection of procurement partners and the promise of future resources, support and tangible relational outcomes are also vital. It is important for contracting parties to pay attention to unwritten agreements (the PC and behaviours when managing construction projects.

  20. 26 CFR 1.1033(c)-1 - Disposition of excess property within irrigation project deemed to be involuntary conversion.

    Science.gov (United States)

    2010-04-01

    ... project deemed to be involuntary conversion. 1.1033(c)-1 Section 1.1033(c)-1 Internal Revenue INTERNAL... Nontaxable Exchanges § 1.1033(c)-1 Disposition of excess property within irrigation project deemed to be... project or division shall be treated as an involuntary conversion to which the provisions of section 1033...

  1. A Social Contract for University-Industry Collaboration: A Case of Project-Based Learning Environment

    Science.gov (United States)

    Vartiainen, Tero

    This study determines a social contract for a form of university-industry collaboration to a project-based learning environment in close collaboration with industry. The author's previous studies on moral conflicts in a project-based learning (PjBL) environment and his 5-year engagement in the PjBL environment are used as background knowledge, and John Rawls' veil of ignorance is used as a method in the contract formulation. Fair and impartial treatment of actors is strived for with the contract which constitutes of sets of obligations for each party, students, clients, and university (instructors) in the chosen project course. With the contract fair and impartial treatment of actors is strived for and the most dilemmatic moral conflicts are tried to be avoided. The forming of the social contract is evaluated, and implications for research and collaborations in practice are offered.

  2. Shadow management applied in the first AP1000 project under the islands contract condition

    International Nuclear Information System (INIS)

    Liu Xiao

    2010-01-01

    As the global first AP1000 nuclear project, Sanmen phase I nuclear project itself has many challenges from design, procurement to construction managements for non practical nuclear project and experience can be referenced. Islands contract pattern was adopted by this project and this contract pattern has its own strength and weakness. Considering the negative influence result from the first unit, this project has the great postpone risk. Shadow management here tries to reduce these risks and enhance the project surveillance and control by the owner to promote the final goal of this project. (authors)

  3. Farm-Level Optimal Water Management : assistent for irrigation under deficit, second Executive summery report for FP6-European project nr. 036958

    NARCIS (Netherlands)

    Balendonck, J.

    2008-01-01

    FLOW-AID is a 6th Framework European project which started in autumn 2006. Its objective is to contribute to sustainability of irrigated agriculture by developing, testing in relevant conditions, and then optimizing an irrigation management system that can be used at farm level. The system will be

  4. Client’s flexibility in renovation projects with long-term DBFMO contracts

    NARCIS (Netherlands)

    Kuhlmann, M.; Blokhuis, E.G.J.; Han, Q.; Schaefer, W.F.; Yildiz, H.T.

    2009-01-01

    Construction project clients are faced with long-term commitments when opting for a DBFMO contract, the Dutch version of PFI. This way of contracting is characterized by the delivery of a full housing service to the client over a period of decades, offered by a construction consortium including

  5. Coordinated research project of the use of nuclear and related techniques in assessment of irrigation schedules of field crops to increase effective use of water in irrigation projects

    International Nuclear Information System (INIS)

    Anac, M.S.; Tuzel, I.H.; Anac, D.

    1995-01-01

    The study aimed at determining the followings; water consumptions. irrigation water requirements of new cotton variety N 84; specific growth stages of cotton which are less sensitive to stress so that the irrigation could be avoided without significant yield decrease; and interactions between deficit irrigation and nitrogen fertilizer use. The experiment was set up with 6 irrigation and three nitrogen fertilizer (0.60 , 120 kg.ha sup -1 ) treatments. The irrigation treatments employed single stress at vegetative, flowering and boll formation stages, in addition to full irrigation, continuous stress and the traditional practice. In stress conditions available soil water depleted to 75 - 80 %, whereas in normal irrigation the depletion was 40 % in 0.90 m. of root zone. In full irrigation treatment 8 irrigations were applied, whereas 3 or 4 irrigations were needed in continuous stress conditions. The number of irrigations were 6 or 7 for other stress treatments. Irrigation water applications varied form 424 to 751 mm. Seasonal ET were ranged between 659 and 899 mm. The highest monthly ET in august for all of the treatments. Daily ET were found to vary from 2.2 to 12.1 mm/day. The seed cotton yields, ky values and yield - N indices have indicated that the vegetative state was more sensitive to water stress. The stress at boll formation stage had slight effects on these parameters. Under limited water resource conditions, vegetative growth period of cotton should be given preference for irrigation, followed by flowering period. Omitting irrigation in boll formation period would result in 4.3 to 9.1 % water savings. Yield changes with respect to N rates showed that high N doses are accompanied by high yields. Nitrogen recoveries either from fertilizers or soil revealed high uptakes in full irrigation conditions. Nitrogen use efficiencies were also high in these conditions. Average of three years put forth that 19% of N in stress conditions and 29% in full irrigation were

  6. Review of the water management systems in the Gujarat Medium Irrigation II Project (Credit 1496-IN)

    NARCIS (Netherlands)

    Brouwer, R.

    1993-01-01

    Different activities are ongoing in the Medium Irrigation II project simultaneously. These are: - emancipation of farmers through their involvement in the operation and management; - change over from Sheshpali type water management to RWS type water management; - design and construction of remaining

  7. 77 FR 16828 - Turlock Irrigation District, & Modesto Irrigation District; Notice of Dispute Resolution Process...

    Science.gov (United States)

    2012-03-22

    ... 8--Salmon and Steelhead Full Life-Cycle Population Models; and Request 9--Effects of the Project and... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Don Pedro Hydroelectric Project Project... relicensing proceeding for the Don Pedro Hydroelectric Project No. 2299-075.\\1\\ Turlock Irrigation District...

  8. The interplay between formal and informal contracting in integrated project delivery

    NARCIS (Netherlands)

    Bygballe, L.E.; Dewulf, Geert P.M.R.; Levitt, R.

    2015-01-01

    This research examines the interplay between formal and informal contracting in integrated project delivery (IPD). It investigates how the interplay enables parties in health-care construction projects to cope with uncertainty and complexities, due to, among others, changing demands. New delivery

  9. Optimum contracted-for water supply for hotels in arid coastal regions.

    Science.gov (United States)

    Lamei, A; von Münch, E; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water for their domestic water demands, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their domestic water needs. There is normally a contractual agreement stating a minimum requirement that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). This paper describes a model to determine what value a hotel should choose for its contracted-for water supply in order to minimize its total annual water costs. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh, Egypt.The managers of hotels with expected high occupancy rates (74% and above) can contract for more than 80%. On the other hand, hotels with expected lower occupancy rates (60% and less) can contract for less than 70% of the peak daily domestic water demand. With a green area ratio of 40 m(2)/room or less, an on-site wastewater treatment plant can satisfy the required irrigation demand for an occupancy rate as low as 42%. Increasing the ratio of green irrigated area to 100 m(2)/room does not affect the contracted-for water supply at occupancy rates above 72%; at lower occupancy rates, however, on-site treated wastewater is insufficient for irrigating the green areas. Increasing the green irrigated area to 120 m(2)/room increases the need for additional water, either from externally sourced treated wastewater or potable water. The cost of the former is much lower than the latter (0.58 versus 1.52 to 2.14 US$/m(3) in the case study area).

  10. Traditional Irrigation Management in Betmera-Hiwane, Ethiopia: The Main Peculiarities for the Persistence of Irrigation Practices

    Institute of Scientific and Technical Information of China (English)

    Solomon Habtu; Kitamura Yoshinobu

    2006-01-01

    Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C.,while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: the presence of communally constructed local rules, locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.

  11. Renewable energy technologies for irrigation water pumping in India: projected levels of dissemination, energy delivery and investment requirements using available diffusion models

    Energy Technology Data Exchange (ETDEWEB)

    Pallav Purohit; Kandpal, T.C. [Indian Institute of Technology, New Delhi (India). Centre for Energy Studies

    2005-12-01

    Using the past diffusion trends of four renewable energy technologies for irrigation water pumping in India (SPV pumps, windmill pumps and biogas/producer gas driven dual fuel engine pumps), results of an attempt to project their future dissemination levels, have been presented in this study. The likely contribution of the renewable energy options considered in the study to the projected energy demand for irrigation water pumping in India has been estimated. Estimates of the associated investment requirements taking into account the learning effect have also been presented. (author)

  12. Irrigation development and management in Ghana: Prospects and ...

    African Journals Online (AJOL)

    ... existing schemes. It is envisaged that irrigation will be seen in its right perspective as a multidisciplinary activity to ensure the success of schemes. There is the need for running a postgraduate programme in irrigation at the KNUST to enhance the nations efforts at developing and managing irrigation projects successfully.

  13. A post-contract project analysis of material waste and cost overrun ...

    African Journals Online (AJOL)

    Material waste and cost overrun have been identified as common problems in the construction industry. These problems occur at both pre- and post-contract stages of a construction project. As a result of a dearth of empirical research and low level of awareness, the majority of managers of construction projects in Nigeria ...

  14. Reform of irrigation management and investment policy in African development

    Directory of Open Access Journals (Sweden)

    KW Easter

    2004-11-01

    Full Text Available This paper examines the reform of water and irrigation management in Africa and compares it with similar reforms in Asia.  Several things are evident from the review.  First, Sub-Saharan Africa (SSA is at an earlier stage of irrigation development and reform than Asia.  Second, the articulated need for reform is much stronger in Asia than it is in SSA.  Third, the productivity of small-scale irrigated farms is significantly lower in SSA compared to Asia.  Thus any irrigation investment strategy in SSA should be different from Asia and focus on increasing small-farm productivity as well as small-scale irrigation projects.  Finally, all direct government irrigation investments should be done jointly with decisions regarding the type of project management.

  15. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    Science.gov (United States)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  16. Modelling income distribution impacts of water sector projects in Bangladesh.

    Science.gov (United States)

    Ahmed, C S; Jones, S

    1991-09-01

    Dynamic analysis was conducted to assess the long-term impacts of water sector projects on agricultural income distribution, and sensitivity analysis was conducted to check the robustness of the 5 assumptions in this study of income distribution and water sector projects in Bangladesh. 7 transitions are analyzed for mutually exclusive irrigation and flooding projects: Nonirrigation to 1) LLP irrigation, 2) STW irrigation, 3) DTW irrigation, 4) major gravity irrigation, and manually operated shallow tubewell irrigation (MOSTI) and Flood Control Projects (FCD) of 6) medium flooded to shallow flooded, and 7) deeply flooded to shallow flooded. 5 analytical stages are involved: 1) farm budgets are derived with and without project cropping patterns for each transition. 2) Estimates are generated for value added/hectare from each transition. 3) Assumptions are made about the number of social classes, distribution of land ownership between classes, extent of tenancy for each social class, term of tenancy contracts, and extent of hiring of labor for each social class. 4) Annual value added/hectare is distributed among social classes. 5) Using Gini coefficients and simple ratios, the distribution of income between classes is estimated for with and without transition. Assumption I is that there are 4 social classes defined by land acreage: large farmers (5 acres), medium farmers (1.5-5.0), small farmers, (.01-1.49), and landless. Assumption II is that land distribution follows the 1978 Land Occupancy Survey (LOS). Biases, if any, are indicated. Assumption III is that large farmers sharecrop out 15% of land to small farmers. Assumption IV is that landlords provide nonirrigated crop land and take 50% of the crop, and, under irrigation, provide 50% of the fertilizer, pesticide, and irrigation costs and take 50% of the crop. Assumption V is that hired and family labor is assumed to be 40% for small farmers, 60% for medium farmers, and 80% for large farmers. It is understood that

  17. Evaluation model based on FAHP for nuclear power project contract performance

    International Nuclear Information System (INIS)

    Liu Bohang; Cheng Jing

    2012-01-01

    Fuzzy Comprehensive Evaluation is a common tool to analyze comprehensive integration. Fuzzy Analytic Hierarchy Process is an improvement for Analytic Hierarchy Process. Firstly the paper pointed out the concept of FAHP, and then used FAHP to setup an evaluation system model for nuclear power project contract performance. Based on this model, all the evaluation factors were assigned to different weightiness. By weighting the score of each factor, output would be the result which could evaluate the contract performance. On the basis of the research, the paper gave the principle of evaluating contract performance of nuclear power suppliers, which can assure the procurement process. (authors)

  18. Best in Class Project Management and Contract Management Initiative at the Department of Energy's Office of Environmental Management

    International Nuclear Information System (INIS)

    Van Camp, S.G.; Stevenson, J.S.; Deiters, M.G.

    2009-01-01

    Since its founding in 1989, the U.S. Department of Energy (DOE), Office of Environmental Management (EM) has struggled with a legacy of inadequate project and contract management. This has been manifested in recurring scope changes, cost overruns and schedule delays, and has been documented in multiple internal and external reviews. To address this issue, EM has developed a vision for building a 'Best in Class' Project Management and Contract Management (BICPM) organization. To develop the strategy and implement the process to accomplish this vision, EM contracted with the U.S. Army Corps of Engineers (USACE) and their support contractors. EM and the USACE Team developed a five-phased approach to implement the BICPM Initiative: (I) develop assessment criteria, (II) assess existing project and contract management capabilities, (III) develop an implementation plan, (IV) implement corrective actions, and (V) institutionalize BICPM. Under Phases I and II, the USACE Team assessed the status of project and contract management capabilities at 16 EM offices. These assessments evaluated strengths and weaknesses in 12 key project management capabilities and benchmarks and three contract management benchmarks. Under Phase III, EM and the USACE Team developed the Corporate Implementation Plan which identified the key challenges and provided a road-map to address these challenges and to implement BICPM. These challenges included: Federal staffing shortages; integration of project and contract management; further development of project-oriented culture; project baseline maintenance; consistent implementation of the DOE order for project management, 413.3A; and role of EM Headquarters in BICPM. The shortage of qualified resources dedicated to supporting Federal project and contract management functions was identified as a primary cause for project and contract management difficulties within EM. The Corporate Implementation Plan outlined a set of 18 specific Recommended Priority

  19. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-06-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  20. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-03-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  1. Flexibility in PPP contracts : Dealing with potential change in the pre-contract phase of a construction project

    NARCIS (Netherlands)

    Demirel, H.C.; Leendertse, W.L.; Volker, L.; Hertogh, M.J.C.M.

    2016-01-01

    Public Private Partnerships (PPPs) cover a range of possible relationships between public and private parties. PPP contracts are typically used in contexts of great uncertainty, such as large construction and infrastructure projects that are realized over a longer period of time. Hence, a major

  2. Coolidge solar powered irrigation pumping project

    Science.gov (United States)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  3. 75 FR 15453 - Central Valley Project Improvement Act, Westlands Water District Drainage Repayment Contract

    Science.gov (United States)

    2010-03-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Westlands Water District Drainage Repayment Contract AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of Proposed Repayment Contract. SUMMARY: The Bureau of Reclamation will be initiating negotiations with the...

  4. Willingness to Pay Additional Water Rate and Irrigation Knowledge of Farmers in Dinar Karakuyu Irrigation Areas in Turkey

    Directory of Open Access Journals (Sweden)

    Mevlüt Gül

    2017-08-01

    Full Text Available Water which has become commodity product which is an important product today. Turkey is not a water rich country. In this study, agricultural enterprises in the field of Irrigation Project in Dinar Karakuyu which was implemented in 1992 by DSI. The study analysed which factors affect the willingness to pay additional irrigation water rate with the help of logit model and the irrigation knowledge of farmers was determined by Likert scale. Dinar Karakuyu irrigation network has begun to lose the function in the region. It was supposed 100% irrigation rate but decreased by approximately 9% today. In this context, DSI (General Directorate of State Hydraulic Works plans to rehabilitation work in the same area. The main material of this study was data obtained from 67 agricultural enterprises through a survey covered by the Irrigation Rehabilitation Project in the province of Afyonkarahisar Karakuyu Dinar. The data was gathered with the help of questionnaires which were answered by farmers in Karakuyu Dinar region. The results indicated that 74.6% of farmers were willingness to pay additional water charge. The data were statistically analysed with the use of the logit model. The model results show that agricultural income, farmers’ educational level, computer ownership, attendance of agricultural training activities, family size and agricultural experience were positive factors affect farmers’ willingness to pay additional water fee.

  5. Irrigating lives : development intervention and dynamics of social relationships in an irrigation project

    NARCIS (Netherlands)

    Magadlela, D.

    2000-01-01

    This study is about rural agricultural development and social processes of change in rural Zimbabwe. It is aimed at understanding how irrigation intervention in a remote rural context changed the cultural, social, political and farming lives of people. It is a study of people coping with

  6. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Science.gov (United States)

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  7. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Directory of Open Access Journals (Sweden)

    Do Guen Yoo

    2015-01-01

    Full Text Available Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6. The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.

  8. Estimation of Truck Trips on Large-Scale Irrigation Project: A Combinatory Input-Output Commodity-Based Approach

    Directory of Open Access Journals (Sweden)

    Ackchai Sirikijpanichkul

    2015-01-01

    Full Text Available For the agricultural-based countries, the requirement on transportation infrastructure should not only be limited to accommodate general traffic but also the transportation of crop and agricultural products during the harvest seasons. Most of the past researches focus on the development of truck trip estimation techniques for urban, statewide, or nationwide freight movement but neglect the importance of rural freight movement which contributes to pavement deterioration on rural roads especially during harvest seasons. Recently, the Thai Government initiated a plan to construct a network of reservoirs within the northeastern region, aiming at improving existing irrigation system particularly in the areas where a more effective irrigation system is needed. It is expected to bring in new opportunities on expanding the cultivation areas, increasing the economy of scale and enlarging the extent market of area. As a consequence, its effects on truck trip generation needed to be investigated to assure the service quality of related transportation infrastructure. This paper proposes a combinatory input-output commodity-based approach to estimate truck trips on rural highway infrastructure network. The large-scale irrigation project for the northeastern of Thailand is demonstrated as a case study.

  9. Assessments of aquifer sensitivity on Navajo Nation and adjacent lands and ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project, Arizona, New Mexico, and Utah

    Science.gov (United States)

    Blanchard, Paul J.

    2002-01-01

    The U.S. Environmental Protection Agency requested that the Navajo Nation conduct an assessment of aquifer sensitivity on Navajo Nation lands and an assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project. Navajo Nation lands include about 17,000 square miles in northeastern Arizona, northwestern New Mexico, and southeastern Utah. The Navajo Indian Irrigation Project in northwestern New Mexico is the largest area of agriculture on the Navajo Nation. The Navajo Indian Irrigation Project began operation in 1976; presently (2001) about 62,000 acres are available for irrigated agriculture. Numerous pesticides have been used on the Navajo Indian Irrigation Project during its operation. Aquifer sensitivity is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest. Aquifer sensitivity is a function of the intrinsic characteristics of the geologic material in question, any underlying saturated materials, and the overlying unsaturated zone. Sensitivity is not dependent on agronomic practices or pesticide characteristics.' Ground-water vulnerability is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and aquifer sensitivity conditions.' The results of the aquifer sensitivity assessment on Navajo Nation and adjacent lands indicated relative sensitivity within the boundaries of the study area. About 22 percent of the study area was not an area of recharge to bedrock aquifers or an area of unconsolidated deposits and was thus assessed to have an insignificant potential for contamination. About 72 percent of the Navajo Nation study area was assessed to be in the categories of most potential

  10. Middle East Regional Irrigation Management Information Systems project-Some science products

    Science.gov (United States)

    Similarities in the aridity of environments and water scarcity for irrigation allow common approaches to irrigation management problems and research methods in the Southern Great Plains of the United States and the Middle East. Measurement methods involving weighing lysimeters and eddy covariance sy...

  11. An example of treated waste water use for soil irrigation in the SAFIR project.

    Science.gov (United States)

    Cary, L.; Jovanovic, Z.; Stikic, R.; Blagojevic, S.; Kloppmann, W.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops on soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). In this context, the European FP6 SAFIR project (Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management) investigates the geochemical quality of the root zone soil, knowing it is the main transit and storage compartment for pollutants. The type of reaction (sorption, co-precipitation…) and the reactive mineral phases also determine the availability of trace elements for the plant and determine the passage towards crops and products. Reactions of the infiltrating water with the soil solid phase are important for the solute cycling, temporary fixation and remobilisation of trace pollutants. Therefore the soil water quality was directly or indirectly assessed. Direct measurements of soil water were made through porous cups. The experiments were carried out during the growing season of 2006, 2007 and 2008 in a vegetable commercial farm, located at 10 km north of Belgrade. The soil is silty clayey, and developed on alluvial deposits. It was classified as humogley according to USDA Soil Classification. The climate of the field side is a continental type with hot and dry summers and cold and rainy winters. As in the rest of Serbia, farm suffers from water deficits during the main growing season. The initial soil quality was assessed through a sampling campaign before the onset of first year irrigation; the soil quality was then monitored throughout three years. Soil sampling

  12. The Reticulation Irrigation Scheme at Sankana, Upper West Region ...

    African Journals Online (AJOL)

    farmers utilizing the irrigation project are food secure. ... The effects of ... Often, lack of maintenance, bad management and financial difficulties decrease the ...... and Mushunje A. (2010), 'Analysis of Irrigation Development Post Fast Track Land ...

  13. AHP-based risk analysis of energy performance contracting projects in Russia

    International Nuclear Information System (INIS)

    Garbuzova-Schlifter, Maria; Madlener, Reinhard

    2016-01-01

    Understanding and properly managing risks that could potentially affect the target- and performance-based profits of energy performance contracting (EPC) projects are essential. It is particularly important for the establishment and success of energy service companies (ESCOs) acting in the vulnerable environment of the vast but highly energy-inefficient Russian market. This study systematically explores common risk factors and causes of risk associated with EPC projects executed in three Russian sectors: (1) industrial; (2) housing and communal services; and (3) public. Several interviews with the Russian EPC experts were accomplished and a qualitative risk assessment by using an analytic hierarchy process (AHP) approach. The data were obtained from a web-based questionnaire survey conducted among Russian EPC project executors. For each focus sector, a specific preference-based ranking of the identified risk factors and causes of risk was derived. The AHP results show that causes of risk related to the financial and regulatory aspects contribute most to the riskiness of EPC projects performed in all three focus sectors in Russia, calling for the special attention of EPC policy- and business-makers. Due to sectorial particularities and different actors involved, we conclude that there is a need for elaboration of sector-specific contractual schemes for EPC projects. - Highlights: • AHP- and survey-based study of energy performance contracting (EPC) projects in Russia. • Main risk factors and causes of risk associated with EPC projects are investigated. • In practice, lack of a feasible risk management approach in EPC projects. • Regulatory and financial risks contribute most to the EPC projects’ riskiness. • Elaboration of the sector-specific EPC project contractual scheme is required.

  14. Critical parameters for maize yield under irrigation farming in the ...

    African Journals Online (AJOL)

    This study examines the critical variables that determine maize yield under irrigation farming in the savanna ecological zone of Kwara State. Seventy-five soil samples were randomly collected from irrigation farm of Oke-Oyi irrigation project of the Lower Niger River Basin Development Authority Ilorin and bulked into 15 ...

  15. FIDIC contracts: analysis of the impact of general and particular conditions on the financial risk management in Romanian infrastructure projects

    Directory of Open Access Journals (Sweden)

    Constanţa-Nicoleta Bodea

    2016-12-01

    Full Text Available Construction projects are characterized by risks and uncertainties mainly due to technical and economic complexity. Risk management is an important tool in making decisions involving the identification and reduction, avoidance or transfer risk and uncertainties consequences of events that occurs during project implementation. For this reason, the objective of the contract between the beneficiary and the contractor is the allocation of risk. The distribution of risk in contracts for the execution of construction works was and is an ongoing challenge faced by parties having a significant impact on the type of contract is used. On the one hand, the beneficiaries tend to transfer to the contractors as many of the project risks and uncertainties, on the other hand, the contractors look to exploit any weakness contract, so as to reduce their impact on the expected profit. One of the most important risks assumed by the contractor by signing the contract which is also increasingly common in the current economic situation is the reduced financial capacity to support the project. A purely legal or purely technical interpretation is not meant to describe the complexity of issues related to implementation of construction projects. For this reason the authors have adopted a multi-disciplinary approach, which includes the legal issues related to the nature of the contract, but also the financial and technical aspects of construction projects. The paper aims to analyze how special contract clauses can influence the implementation of construction projects and in particular the financial management of contractors. The authors propose a model for analyzing the impact of FIDIC contract conditions applied on a case study of five transport infrastructure projects.

  16. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    For sound land use and water management in irrigated area, knowledge of the chemical composition of soils, water, climate, drainage condition and irrigation methods before action are crucial for sustainability of irrigation projects. The study aimed to evaluate the physicochemical properties of soils and water for intended ...

  17. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  18. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  19. Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2009-01-01

    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  20. Irrigation System through Intelligent Agents Implemented with Arduino Technology

    Directory of Open Access Journals (Sweden)

    Rodolfo SALAZAR

    2013-11-01

    Full Text Available The water has become in recent years a valuable and increasingly scarce. Its proper use in agriculture has demanded incorporate new technologies, mainly in the area of ICT. In this paper we present a smart irrigation system based on multi-agent architecture using fuzzy logic. The architecture incorporates different types of intelligent agents that an autonomous way monitor and are responsible for deciding if required enable / disable the irrigation system. This project proposes a real and innovative solution to the problem of inadequate water use with current irrigation systems employed in agricultural projects. This article presents the different technologies used, their adaptation to the solution of the problem and briefly discusses the first results obtained.

  1. Improving conveyance and distribution efficiency through conversion of an open channel lateral canal to a low pressure pipeline at Al-Hassa Irrigation Project, Saudi Arabia

    International Nuclear Information System (INIS)

    Aldakheel, Y.; Zeineldin, F.

    2007-01-01

    This paper describes a field case study on the use of a semi-buried poly-vinyl chloride (PVC) pipeline system in Al-Hassa oasis, Saudi Arabia and its contribution in improving water conservation. Deteriorated concrete canals at Al-Hassa irrigation project, enhanced irrigation water losses, and the annual cost of maintenance became uneconomical for the long term. The PVC pipes easy maintenance, durability, modification and flexibility give them the potential to be an economical alternative to replace a concrete lateral canal, P1H4, at Al-Hassa irrigation project. Due to the availability of PVC pipes at low cost in the Kingdom and their common use in irrigation, they were selected to construct a pipeline, 362 m in length. An energy head, 2.7 m of water, was used in determining the pipeline capacity and its internal diameter, using the continuity equation. Dismantling of the concrete canal and installing of the pipeline took place simultaneously without water stresses to the grown crops. The conveyance and distribution efficiencies increased by 25.3% and 25% respectively due to installation of pipeline. The water use with illegal extra siphons was reduced by 29.2% under the pipeline system. (author)

  2. Reengineering and health physics within the project Hanford management contract

    International Nuclear Information System (INIS)

    Atencio, E.M.

    1997-01-01

    The impending transition of the Hartford Site management and operations (M ampersand O) contract to a management and integrating (M ampersand I) contract format, together with weak radiological performance assessments by external organizations and reduced financial budgets prompted the 're-engineering' of the previous Hanford prime contractor Radiological Control (Rad Con) organization. This paper presents the methodology, identified areas of improvements, and results of the re-engineering process. The conversion from the M ampersand O to the M ampersand I contract concept resulted in multiple independent Rad Con organizations reporting to separate major contractors who are managed by an integrating contractor. This brought significant challenges when establishing minimum site standards for sitewide consistency, developing roles and responsibilities, and maintaining site Rad Con goals. Championed by the previous contractor's Rad Con Director, Denny Newland, a five month planning effort was executed to address the challenges of the M ampersand I and to address identified weaknesses. Fluor Daniel Hanford assumed the responsibility as integrator of the Project Hanford Management Contract on October 1, 1996. The Fluor Daniel Hanford Radiation Protection Director Jeff Foster presents the results of the re-engineering effort, including the significant cost savings, process improvements, field support improvements, and clarification of roles and responsibilities that have been achieved

  3. Point irrigation for locality Buchel in the north desert Gobi in Mongolia

    Directory of Open Access Journals (Sweden)

    Pavel Spitz

    2009-01-01

    Full Text Available The design of point irrigation, created by Filip et al. (2007, was worked up as the bilateral projekt in the frame of abroad developing cooperation between the Czech Republic and Mongolia „Rehabilitation of plant production in semiarid territories of northern Gobi”. The period of project realization are years 2006–2009. The responsible institution for the project is Ministery of Agriculture of the Czech Republic and with the realization of the project was encharged Mendel University of Agriculture and Forestry in Brno. The task was work irrigation design for experimental plants and vegetables on the choosen land in Gobi desert in Mongolia. To disposition was underground water source – bore with capacity about 2 l / s and temperature about 10 °C, electric power and land about area cca 1 ha. The condition was use simple irrigation equipment. The fundamental limitation was im­pos­si­bi­li­ty using technically more complex and more sophisticated equipment e.g. drip irrigation. The map was not to the disposition, only a judgment of slope 0,2 % in flat terrain. The technical design of surface and subsurface point irrigation are introduced, shortly described are hydrotechnical basis used to created and described the original PC program HYBOZAM (hydraulics of point irrigation for Mongolia developed in table editor of Microsoft Excel for pipe dimensions of point irrigation design. Part of the program is also evaluation of the irrigation uniformity from outflows on irrigation line.

  4. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  5. Convergence Properties of Projection and Contraction Methods for Variational Inequality Problems

    International Nuclear Information System (INIS)

    Xiu, N.; Wang, C.; Zhang, J.

    2001-01-01

    In this paper we develop the convergence theory of a general class of projection and contraction algorithms (PC method), where an extended stepsize rule is used, for solving variational inequality (VI) problems. It is shown that, by defining a scaled projection residue, the PC method forces the sequence of the residues to zero. It is also shown that, by defining a projected function, the PC method forces the sequence of projected functions to zero. A consequence of this result is that if the PC method converges to a nondegenerate solution of the VI problem, then after a finite number of iterations, the optimal face is identified. Finally, we study local convergence behavior of the extragradient algorithm for solving the KKT system of the inequality constrained VI problem

  6. Impact of climate change on irrigation management for olive orchards at southern Spain

    Science.gov (United States)

    Lorite, Ignacio; Gabaldón-Leal, Clara; Santos, Cristina; Belaj, Angjelina; de la Rosa, Raul; Leon, Lorenzo; Ruiz-Ramos, Margarita

    2017-04-01

    The irrigation management for olive orchards under future weather conditions requires the development of advanced tools for considering specific physiological and phenological components affected by the foreseen changes in climate and atmospheric [CO2]. In this study a new simulation model named AdaptaOlive has been considered to develop controlled deficit irrigation and full irrigation scheduling for the traditional olive orchards located in Andalusia region (southern Spain) under the projected climate generated by an ensemble of 11 climate models from the ENSEMBLES European project corresponding to the SRES A1B scenario. Irrigation requirements, irrigation water productivity (IWP) and net margin (NM) were evaluated for three periods (baseline, near future and far future) and three irrigation strategies (rainfed, RF, controlled deficit irrigation, CDI, and full irrigation, FI). For irrigation requirements, a very limited average increase for far future compared with baseline period was found (2.6 and 1.3%, for CDI and FI, respectively). Equally, when IWP was analyzed, significant increases were identified for both irrigation strategies (77.4 and 72.2%, for CDI and FI, respectively) due to the high simulated increase in yield. Finally, when net margin was analyzed, the irrigation water cost had a key significance. For low water costs FI provided higher net margin values than for CDI. However, for high water costs (expected in the future due to the foreseen reduction in rainfall and the increase of the competence for the available water resources), net margin is reduced significantly, generating a very elevated number of years with negative net margin. All the described results are affected by a high level of uncertainty as the projections from the ensemble of 11 climate models show large spread. Thus, for a representative location within Andalusia region as Baeza, a reduction of irrigation requirements under full irrigation strategy was found for the ensemble mean

  7. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 89

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Summaries are presented for the DOE contracts related to supported research for thermal recovery of petroleum, geoscience technology, and field demonstrations in high-priority reservoir classes. Data included for each project are: title, contract number, principal investigator, research organization, beginning date, expected completion date, amount of award, objectives of the research, and summary of technical progress.

  8. Analysis of the 314th Contracting Squadrons Contract Management Capability Using the Contract Management Maturity Model (CMMM)

    National Research Council Canada - National Science Library

    Jackson, Jr, Carl J

    2007-01-01

    .... The purpose of this research project is to analyze the 314th Contracting Squadron contracting processes and requirement target areas for improvement efforts by the application of the Contract Management Maturity Model (CMMM...

  9. Water rights of the head reach farmers in view of a water supply scenario at the extension area of the Babai Irrigation Project, Nepal

    Science.gov (United States)

    Adhikari, B.; Verhoeven, R.; Troch, P.

    The farmer managed irrigation systems (FMIS) represent those systems which are constructed and operated solely by the farmers applying their indigenous technology. The FMIS generally outperform the modern irrigation systems constructed and operated by the government agencies with regard to the water delivery effectiveness, agricultural productivity etc., and the presence of a sound organization responsible to run the FMIS, often referred to as the ‘social capital’, is the key to this success. This paper studies another important aspect residing in the FMIS: potentials to expand the irrigation area by means of their proper rehabilitation and modernization. Taking the case study of the Babai Irrigation Project in Nepal, it is demonstrated that the flow, which in the past was used to irrigate the 5400 ha area covered by three FMIS, can provide irrigation to an additional 8100 ha in the summer, 4180 ha vegetables in the winter and 1100 ha maize in the spring season after the FMIS rehabilitation. The “priority water rights” of the FMIS part have been evaluated based on relevant crop water requirement calculations and is found to be equal to 85.4 million m 3 per year. Consequently, the dry season irrigation strategy at the extension area could be worked out based on the remaining flow. By storing the surplus discharge of the monsoon and autumn in local ponds, and by consuming them in dry period combined with nominal partial irrigation practice, wheat and mustard can be cultivated over about 4000 ha of the extension area. Furthermore, storage and surface irrigation both contribute to the groundwater recharge. The conjunctive use of ground, surface and harvested water might be the mainstream in the future for a sustainable irrigation water management in the region.

  10. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  11. Hydrological drought index insurance for irrigation districts in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, T.; Bielza, M.; Garrido, A.

    2016-11-01

    Hydrological droughts are a major risk for irrigated agriculture in many regions of the world. The aim of this article is to propose an insurance tool to help irrigators manage the risk of water scarcity in the framework of the Spanish Crop Insurance System (SCIS). Only the United States Insurance System provides this type of coverage, but has very restrictive conditions. To determine the type of insurance scheme that better fits with the SCIS and to the Spanish irrigated agriculture, an expert panel was held with the participation of all stakeholders involved in crop insurance. Following the expert panel conclusions, an hydrological drought index insurance (HDII) addressed to irrigation districts (ID) is proposed. It would compensate water deficits suffered in the whole ID. We detail the conditions that the ID should fulfill to be eligible for HDII. HDII is applied to the Bardenas Irrigation District V (ID-V) in Spain, and the hedging effectiveness of the instrument is analyzed comparing ID-V’s gross margins with and without the insurance contract. Results suggest that the proposed insurance scheme could provide an effective means of reducing farmers’ vulnerability to water shortages and there is no major impediment for it to be included as a new line in the SCIS. This type of insurance can be generalized to any ID fulfilling the conditions mentioned in this paper. (Author)

  12. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  13. Modified Streamflows 1990 Level of Irrigation : Columbia River and Coastal Basins, 1928-1989.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; A.G. Crook Company

    1993-04-01

    The annual operation plans described in the following sections require detailed system regulation computer model studies. These system regulation studies are necessary to evaluate potential new projects and to develop operational rule curves for the existing system of projects. The objective is to provide a basis for evaluating alternative system regulation scenarios. This provides essential input for optimizing the management of existing projects and planning future projects for the most beneficial use of the water supply and resources in the entire region. Historical streamflows per se are inadequate for system regulation studies because the pattern of observed flow has continually changed with each successive stage of irrigation and e development. The problem, therefore, is to adjust for past operation of storage projects and to determine the necessary adjustments that should be made to recorded flows to reflect current stages of irrigation development. Historical flows which have been adjusted to a common level of irrigation development by correcting for the effects of diversion demand, return flow, and change-of-contents and evaporation in upstream reservoirs and lakes are referred to as modified flows. This report describes the development of irrigation depletion adjustments and modified flows for the 1990 level of development for the 61-year period 1928--1989. incremental depletion adjustments were computed in this report for each month of the 61-year period to adjust the effects of actual irrigation in each year up to that which would have been experienced with the irrigation as practiced in 1990.

  14. 75 FR 2463 - Continuing Contract for Civil Works Project Managed by the United States Army Corps of Engineers...

    Science.gov (United States)

    2010-01-15

    ... be considered a breach of contract and shall not entitle the Contractor to a price adjustment under... constitute a breach of this contract and shall not entitle the Contractor to any price adjustment under the... Continuing Contract for Civil Works Project Managed by the United States Army Corps of Engineers Clauses...

  15. Improved contraction schemes for projected entangled pair states

    Energy Technology Data Exchange (ETDEWEB)

    Lubasch, Michael; Cirac, Juan Ignacio; Banuls, Mari-Carmen [Max Planck Institute of Quantum Optics, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)

    2013-07-01

    Projected Entangled Pair States (PEPS) represent the natural generalization of Matrix Product States (MPS) in higher dimensions. The strength of MPS in the numerical simulation of 1D quantum many-body systems is well established, as they are the variational class of states underlying the Density Matrix Renormalization Group and the latter is nowadays considered numerically exact for systems comprising hundreds of quantum particles. In algorithms based on MPS or PEPS, the bond dimension D of the state determines the number of variational parameters and the computational cost. While bond dimensions on the order of hundreds and thousands are feasible with MPS, standard 2D PEPS algorithms are limited to values in the range 2 to 6 due to the much worse scaling of the computational cost with D. Recently, a new algorithm based on an alternative contraction has been proposed that reduces this cost significantly. It resorts to the single-layer picture where the contraction is done in ket and bra separately. We investigate the advantages and disadvantages of this algorithm which can be understood in terms of the PEPS's boundary approximation.

  16. Technical note: Analysis of claims and disputes in contracts for oil and gas development projects in Iran with solutions

    Directory of Open Access Journals (Sweden)

    Fathollah Sajedi

    2017-08-01

    Full Text Available Contracts for oil and gas development projects are naturally complex, they are explained with some of maps and technical specifications. To supply the goals of contracts, it is necessary to construct by a team having owner, consulting engineer and contractor. The unique aspects of each project and team working are resulting to disagreements. It should be noted that the majority of team workers have not previously worked together. It may not be expected to forecast all project aspects in design and preparation of tender documents process. However, in some cases it will occur inconsistencies in contract documents and possibly may be disagreements on commentary of the cases which there are in the provisions of the contract. Every root of disagreement resulted in to claim and finally dispute. Lack of foresight and/or existing ambiguous texts in some provisions of contract, not being aware of components of the project to conditions and obligations and rules of contract will complex and sometimes impossible the agreement on implementation problems. Therefore, the claims will be resulted in disputes and inflict financial losses to contractors and/or owners and then the projects will not be completed. In Iran many activities have not been carried out about claims and disputes in different orientations especially in areas futures and hence, it was studied in this research. Firstly, research history was considered and the causes of claims and disputes were identified in process of different levels of oil projects construction from primary to exploitation and then a questionnaire was prepared using the comments of experts. Finally, the questionnaire was analysed by SPSS and the approved factors in creation of claims and disputes and in their roots were ranked.

  17. Engineering and construction projects for oil and gas processing facilities: Contracting, uncertainty and the economics of information

    International Nuclear Information System (INIS)

    Berends, Kees

    2007-01-01

    The amount of oil and gas processing capacity required to meet demand during the next 20 years is more than twice the amount realised during the last decades. Engineering and Construction contractors (ECs) play a key role in the development and implementation of Large Engineering and Construction Projects (LECPs) for these facilities. We examine the characteristics of LECPs, demand and supply of the contracting market and the strategies traditionally adopted by owners to contract out the development and implementation of these projects to ECs. We demonstrate that these traditional strategies are not longer effective, in the current 'sellers market', to mitigate the oligopolistic economic inefficiencies. As the 'overheating' of the contracting market is expected to continue for a considerable period of time, alternative contracting strategies are required. Contract theory, particularly the economics of information on LECPs, indicates how alternative contracting strategies can be used to overcome economic inefficiencies. The effective use of these alternative strategies requires increased owner involvement and their effectiveness is contingent upon owner competency and ECs acting as the owner's agent rather than its adversary. This will require an organisational and behavioural change process for both owners and ECs

  18. Analysis to develop a program for energy conservation in irrigated agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Cone, B.W.; Brix, V.L.; Eakin, D.E.; Laughlin, B.M.

    1978-09-01

    It is estimated by the FEA that 0.26 quadrillion Btus of energy is annually required to irrigate crops in the USA. The development of a DOE program for energy conservation in irrigation is described. Information is included on: studies of how this energy consumption can be reduced and by how much; engineering and economic studies of irrigation equipment and methods; proposals for improving the efficiency of pumps and prime movers; projects selected for demonstrating irrigation energy conservation; and recommendations for further research. (LCL)

  19. Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia.

    Science.gov (United States)

    Hussain, Mahbub; Ahmed, Syed Munaf; Abderrahman, Walid

    2008-01-01

    A multivariate statistical technique, cluster analysis, was used to assess the logged surface water quality at an irrigation project at Al-Fadhley, Eastern Province, Saudi Arabia. The principal idea behind using the technique was to utilize all available hydrochemical variables in the quality assessment including trace elements and other ions which are not considered in conventional techniques for water quality assessments like Stiff and Piper diagrams. Furthermore, the area belongs to an irrigation project where water contamination associated with the use of fertilizers, insecticides and pesticides is expected. This quality assessment study was carried out on a total of 34 surface/logged water samples. To gain a greater insight in terms of the seasonal variation of water quality, 17 samples were collected from both summer and winter seasons. The collected samples were analyzed for a total of 23 water quality parameters including pH, TDS, conductivity, alkalinity, sulfate, chloride, bicarbonate, nitrate, phosphate, bromide, fluoride, calcium, magnesium, sodium, potassium, arsenic, boron, copper, cobalt, iron, lithium, manganese, molybdenum, nickel, selenium, mercury and zinc. Cluster analysis in both Q and R modes was used. Q-mode analysis resulted in three distinct water types for both the summer and winter seasons. Q-mode analysis also showed the spatial as well as temporal variation in water quality. R-mode cluster analysis led to the conclusion that there are two major sources of contamination for the surface/shallow groundwater in the area: fertilizers, micronutrients, pesticides, and insecticides used in agricultural activities, and non-point natural sources.

  20. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  1. Strategic urban projects in Amsterdam and New York : Incomplete contracts and good faith in different legal systems

    NARCIS (Netherlands)

    Van der Veen, M.; Korthals Altes, W.K.

    2009-01-01

    Contracts between local government and private investment agencies play an important role in strategic urban projects. Real estate cycles provide only a narrow window of opportunity within which to draft such contracts. A legal system should therefore not impede the possibility of reaching an

  2. Irrigation Capability Evaluation of Illushi Floodplain, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    A.S. Umweni

    2014-06-01

    Full Text Available Many irrigation projects, especially in the developing tropical regions, are embarked upon without any land capability assessment, resulting in avoidable and undesirable ecological consequences. The aim of this study is to assess the irrigation capability potentials of the soils of a rice growing Illushi/Ega community in Edo State of Nigeria. Soils of Illushi/Ega (200 ha were studied to establish their irrigation capabilities. Water samples were collected from the rivers within and near the sites at the proposed points of intake structures and analyzed for salinity (ECw, permeability (SAR and ion toxicity [Chlorine (Cl and Boron (B]. Gravity irrigation suitability assessment was carried out following the guidelines of the United States Bureau for Land Reclamation (USBR, 1953 and FAO (1979. Results showed that about 5.5 % of the land was non-irrigable, 11.5 % was marginally irrigable, 30.5% was moderately irrigable and 52.5 % highly irrigable.Thus about 83 % of the total land area was found to be irrigable. The results of analyses of irrigation water [ECw, SAR and Cl and B (ion toxicity problems in water sources were 0.1 – 0.7 dS m-1, 1.2 – 1.7, 0.6 – 1.8 cmol kg-1 and 0.5 – 0.7 mg kg-1] also show that there is no indication of salinity or ion toxicity problem.

  3. Communication between irrigation engineers and farmers : the case of project design in North Senegal

    OpenAIRE

    Scheer, S.H.

    1996-01-01

    Introduction

    Irrigation schemes all over the world are often marked by a large number of related problems that have an important human dimension and are too complex to be straightforwardly solved. A starting point of this thesis is that these problems have to be dealt with in a learning process that involves all groups and organizations that are relevant to the irrigation scheme. This thesis explores communication processes between irrigation design engineers and ...

  4. Male and mosquito larvae survey at the Arenal-Tempisque irrigation project, Guanacaste, Costa Rica

    Directory of Open Access Journals (Sweden)

    Mario Vargas V

    2003-09-01

    Full Text Available A monitoring of male and larvae of mosquitoes was conducted during 1991-1994, at the Irrigation Project in Arenal-Tempisque, Guanacaste, Costa Rica. CDC CO2 -baited traps were used to collect adults of mosquitoes and dips were used for immatures of culicids. A total of 1 480 larvae and 1 129 males of culicids were identified resulting in, Aedes with 6 species, Anopheles, Mansonia and Psorophora with 2 species, Culex with 21 species and Haemagogus, Limatus, Toxorhynchites and Uranotaenia with only one species each. The results indicate that, as occurred in other countries, irrigation projects must be under strict monitoring programs to prevent and control possible health problems in which mosquitoes act as vectorsSe realizó un monitoreo de machos y larvas de mosquitos durante los años 1991 a 1994 en el Proyecto de Riego Arenal-Tempisque, Guanacaste, Costa Rica. Los especímenes fueron colectados en 32 giras de cuatro días cada una y cada 15 días. La colecta de adultos se hizo mediante trampas tipo CDC y la de larvas con la técnica estándar del cucharón. Se identificaron un total de 1 480 larvas y 1 129 machos de culícidos, correspondientes a 21 especies de Culex, 6 especies de Aedes, 2 especies de Anopheles, Mansonia, y Psorophora y una especie de Haemagogus, Limatus, Toxorhynchites y Uranotaenia. Los resultados indican que tal y como ha ocurrido en proyectos de riego en otros países, se deben mantener estrictos programas de monitoreo con el fin de prevenir y controlar posibles problemas de salud humana y animal, en los cuales los mosquitos actúen como vectores

  5. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    International Nuclear Information System (INIS)

    Gelles, C. M.; Sheppard, F. R.

    2002-01-01

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program

  6. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 83, quarter ending June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.

  7. Agricultural irrigated land-use inventory for Polk County, Florida, 2016

    Science.gov (United States)

    Marella, Richard L.; Berry, Darbi; Dixon, Joann F.

    2017-08-16

    An accurate inventory of irrigated crop acreage is not available at the level of resolution needed to better estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage was developed for Polk County, Florida, during the 2016 growing season. This cooperative project between the U.S. Geological Survey and the Office of Agricultural Water Policy of the Florida Department of Agriculture and Consumer Services is part of an effort to improve estimates of water use and projections of future demands across all counties in the State. The irrigated areas were delineated by using land-use data provided by the Florida Department of Agriculture and Consumer Services, along with information obtained from the South and Southwest Florida Water Management Districts consumptive water-use permits. Delineations were field verified between April and December 2016. Attribute data such as crop type, primary water source, and type of irrigation system were assigned to the irrigated areas.The results of this inventory and field verification indicate that during the 2016 growing seasons (spring, summer, fall, and winter), an estimated 88,652 acres were irrigated within Polk County. Of the total field-verified crops, 83,995 acres were in citrus; 2,893 acres were in other non-citrus fruit crops (blueberries, grapes, peaches, and strawberries); 621 acres were in row crops (primarily beans and watermelons); 1,117 acres were in nursery (container and tree farms) and sod production; and 26 acres were in field crops including hay and pasture. Of the total inventoried irrigated acreage within Polk County, 98 percent (86,566 acres) was in the Southwest Florida Water Management District, and the remaining 2 percent (2,086 acres) was in the South Florida Water Management District.About 85,788 acres (96.8 percent of the acreage inventoried) were irrigated by a microirrigation system, including drip, bubblers, and

  8. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  9. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  10. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  11. Proposal for the award of a contract for the wood construction work for the Globe of Innovation project

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the wood construction work for the Globe of Innovation project. A call for tenders (IT-3260/ST/GIR) was sent on 31 October 2003 to twelve firms in one Member State. By the closing date, CERN had received five tenders from four firms and one consortium. The Finance Committee is invited to agree to the negotiation of a contract with CIB (CH), the lowest bidder, for the wood construction work for the Globe of Innovation project for an estimated amount not exceeding 820 000 Swiss francs, not subject to revision. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: CH - 100%.

  12. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 80. Quarterly report, July--September, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This report contains information on petroleum enhanced recovery projects. In addition to project descriptions, contract numbers, principal investigators and project management information is included.

  13. Towards sustainable infrastructure development through integrated contracts : Experiences with inclusiveness in Dutch infrastructure projects

    NARCIS (Netherlands)

    Lenferink, Sander; Tillema, Taede; Arts, Jos

    Current complex society necessitates finding inclusive arrangements for delivering sustainable road infrastructure integrating design, construction and maintenance stages of the project lifecycle. In this article we investigate whether linking stages by integrated contracts can lead to more

  14. Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016

    Directory of Open Access Journals (Sweden)

    Eric W. Chance

    2018-01-01

    Full Text Available Understanding irrigator responses to changes in water availability is critical for building strategies to support effective management of water resources. Using remote sensing data, we examine farmer responses to seasonal changes in water availability in Idaho’s Snake River Plain for the time series 1984–2016. We apply a binary threshold based on the seasonal maximum of the Normalized Difference Moisture Index (NDMI using Landsat 5–8 images to distinguish irrigated from non-irrigated lands. We find that the NDMI of irrigated lands increased over time, consistent with trends in irrigation technology adoption and increased crop productivity. By combining remote sensing data with geospatial data describing water rights for irrigation, we show that the trend in NDMI is not universal, but differs by farm size and water source. Farmers with small farms that rely on surface water are more likely than average to have a large contraction (over −25% in irrigated area over the 33-year period of record. In contrast, those with large farms and access to groundwater are more likely than average to have a large expansion (over +25% in irrigated area over the same period.

  15. Evaluation of reservoir operation strategies for irrigation in the Macul Basin, Ecuador

    Directory of Open Access Journals (Sweden)

    Vicente Tinoco

    2016-03-01

    Full Text Available Study focus: An irrigation project is planned in the study basin for developing the agriculture as the main income in the region. The proposed water system comprises three large reservoirs damming the rivers Macul and Maculillo. The river basin planning and operation were investigated by modelling alternative reservoir operation strategies aiming at a sustainable balance between irrigation and river ecology by integrated reservoir/river management. New hydrological insights for the region: After simulation of long-term meteorological series in a model of the integrated water system, covering several historical extreme events, results indicate that the planned irrigation volumes are higher than the available water for a sustainable irrigation strategy. Two lines of action are suggested for reaching the target irrigation demands: design of a deficit irrigation system, and modifications to the reservoir's spillway height. Keywords: Reservoir operation, Conceptual model, Irrigation

  16. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  17. Irrigation in dose assessments models

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Barkefors, Catarina

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  18. Power generation using the irrigation water in the community of Venthone. Preliminary project; Turbinage des eaux d'irrigation de la commune de Venthone. Etude d'avant-projet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This final report prepared for the Swiss Federal Office of Energy (SFOE) presents a nice example of how electric power from renewable energy sources can be generated using an existing infrastructure. The irrigation system of Venthone in the southwestern Swiss Alps collects water from various mountain torrents into a reservoir at 885 m above sea level from where it is distributed over 3 branches to the vineyards. Due to various boundary conditions (especially the priority of the irrigation requirements) only a quarter of the full potential for power generation can be used, but nevertheless the project remains promising, providing electricity at a cost of 0.107 CHF/kWh. The usable height-difference amounts to 267 m and some pipe sections would have to be replaced by ones with larger diameters to avoid excessive pressure losses. The authors recommend a Pelton turbine with a single injector. Due to the lack of water in winter, power generation would be restricted to 8 months per year, i.e. mid-March to mid-November.

  19. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  20. Memory of irrigation effects on hydroclimate and its modeling challenge

    Science.gov (United States)

    Chen, Fei; Xu, Xiaoyu; Barlage, Michael; Rasmussen, Roy; Shen, Shuanghe; Miao, Shiguang; Zhou, Guangsheng

    2018-06-01

    Irrigation modifies land-surface water and energy budgets, and also influences weather and climate. However, current earth-system models, used for weather prediction and climate projection, are still in their infancy stage to consider irrigation effects. This study used long-term data collected from two contrasting (irrigated and rainfed) nearby maize-soybean rotation fields, to study the effects of irrigation memory on local hydroclimate. For a 12 year average, irrigation decreases summer surface-air temperature by less than 1 °C and increases surface humidity by 0.52 g kg‑1. The irrigation cooling effect is more pronounced and longer lasting for maize than for soybean. Irrigation reduces maximum, minimum, and averaged temperature over maize by more than 0.5 °C for the first six days after irrigation, but its temperature effect over soybean is mixed and negligible two or three days after irrigation. Irrigation increases near-surface humidity over maize by about 1 g kg‑1 up to ten days and increases surface humidity over soybean (~ 0.8 g kg‑1) with a similar memory. These differing effects of irrigation memory on temperature and humidity are associated with respective changes in the surface sensible and latent heat fluxes for maize and soybean. These findings highlight great need and challenges for earth-system models to realistically simulate how irrigation effects vary with crop species and with crop growth stages, and to capture complex interactions between agricultural management and water-system components (crop transpiration, precipitation, river, reservoirs, lakes, groundwater, etc.) at various spatial and temporal scales.

  1. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 78, quarter ending March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report presents descriptions of various research projects and field projects concerned with the enhanced recovery of petroleum. Contract numbers, principal investigators, company names, and project management information is included.

  2. Detailed study of selenium and other constituents in water, bottom sediment, soil, alfalfa, and biota associated with irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-93

    Science.gov (United States)

    Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.

    1996-01-01

    In 1985, the U.S. Department of the Interior began a program to study the effects of irrigation drainage in the Western United States. These studies were done to determine whether irrigation drainage was causing problems related to human health, water quality, and fish and wildlife resources. Results of a study in 1991-93 of irrigation drainage associated with the Uncompahgre Project area, located in the lower Gunnison River Basin, and of the Grand Valley, located along the Colorado River, are described in this report. The focus of the report is on the sources, distribution, movement, and fate of selenium in the hydrologic and biological systems and the effects on biota. Generally, other trace- constituent concentrations in water and biota were not elevated or were not at levels of concern. Soils in the Uncompahgre Project area that primarily were derived from Mancos Shale contained the highest concentrations of total and watrer-extractable selenium. Only 5 of 128\\x11alfalfa samples had selenium concentrations that exceeded a recommended dietary limit for livestock. Selenium data for soil and alfalfa indicate that irrigation might be mobilizing and redistributing selenium in the Uncompahgre Project area. Distribution of dissolved selenium in ground water is affected by the aqueous geochemical environment of the shallow ground- water system. Selenium concentrations were as high as 1,300\\x11micrograms per liter in water from shallow wells. The highest concentrations of dissolved selenium were in water from wells completed in alluvium overlying the Mancos Shale of Cretaceous age; selenium concentrations were lower in water from wells completed in Mancos Shale residuum. Selenium in the study area could be mobilized by oxidation of reduced selenium, desorption from aquifer sediments, ion exchange, and dissolution. Infiltration of irrigation water and, perhaps nitrate, provide oxidizing conditions for mobilization of selenium from alluvium and shale residuum and for

  3. Global contract automation for E and P: project overview; Contrato global de automacao para E e P: visao geral do projeto

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Luiz Alberto Barbosa; Cintra, Paulo Cesar Vogel; Gaban, Allan Rodrigo Martins [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Corazza, Andre [Altus Sistemas de Automacao S.A., Sao Leopoldo, RS (Brazil)

    2012-07-01

    This paper aims to present a technical overview of Global Contract for Automation (CGA in Portuguese) for the segment of E and P (Exploration and Production) in Oil and Gas. This paper presents the theory of this type of contract showing the first contract of its kind in Brazil, ongoing for Pre-Salt FPSOs. The idea of using this contract as a reference is relate theory to practice. In the study is done an analysis of 'win-win' relationship in when performing pre-detailing and detail engineering, project development and automation directly with the manufacturer of the automation solution. The project herein includes automation and control of eight FPSOs (Float Production Storage and Offloading), to be produced in series. The system contracted in CGA consists of 12 systems and integrated sub-systems related to production process, fire and gas detection and emergency shutdown (shutdown). The eight FPSO have the same design, are replicas of a single project. The CGA has in its scope to interface simultaneously with different contractors: FEED project; hull constructor; construction and assembly of modules; integration of the FPSO and direct contracts with equipment suppliers. It will also be detail in this paper the scope of supply of subsystems equipment, pre-detail and detail engineering services, automation and control systems integration, consistency and testing of automation system and technical assistance for pre operation and operation of the FPSO. (author)

  4. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    Science.gov (United States)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.

  5. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    fresh weight, yield and quality of the harvest were also measured. The irrigation applied in CTL during the 2015-16 was 6770, 7691, 6673, 6774 and 7020 m3 ha-1 year-1 while the decrease in irrigation in RDIs was 28, 40, 12, 34 and 25% for nectarine, peach, apricot, paraguayan and table grapes, respectively. The plant water status indicators used were sensitive to water deficit and showed moderate water stress in RDI. The water deficit affected, to a greater or lesser extent, the vegetative growth of the crop. On the other hand, the yield and fruit quality parameters (size, firmness, total soluble solids, acidity and maturity index) at harvest were not affected by the deficit irrigation. In this way, the water use efficiency increased significantly in RDI treatments. From the information obtained in the demonstration plots irrigation recommendations were made to the farmers of the irrigation community through the project web page. Farmers in the irrigation community are using this information to manage irrigation on their farms, thus improving the profitability of their crops. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  6. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  7. Construction contract risk and reasonable evasions

    International Nuclear Information System (INIS)

    Wu Yunpeng

    2012-01-01

    Construction project has the characteristics such as large-scale investment, long-period implementation, excessive uncertainties,a single piece of production, etc. These characteristics determine the complexity of a construction project contract. To guarantee the time limit and quality of a project, finding ways to reduce and evade the contract risks as well as avoid unnecessary disputes are urgent requirements for each project manager. According to the practical situation, project contract risks are analyzed and illustrated in detail, and the concrete solutions for evading those risks are put forward. (authors)

  8. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  9. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation pot...

  10. Drip irrigation using a PLC based adaptive irrigation system

    OpenAIRE

    Shahidian, S.; Serralheiro, R. P.; Teixeira, J. L.; Santos, F. L.; Oliveira, M. R. G.; Costa, J. L.; Toureiro, C.; Haie, Naim; Machado, R. M.

    2009-01-01

    Most of the water used by man goes to irrigation. A major part of this water is used to irrigate small plots where it is not feasible to implement full-scale Evapotranspiration based irrigation controllers. During the growth season crop water needs do not remain constant and varies depending on the canopy, growth stage and climate conditions such as temperature, wind, relative humidity and solar radiation. Thus, it is necessary to find an economic irrigation controller that can adapt the dail...

  11. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  12. Implementation of the best in class project management and contract management initiative at the Department Of Energy's Office Of Environmental Management - 16062

    International Nuclear Information System (INIS)

    Van Camp, Scott G.; Stevenson, Jeremy S.; Deiters, Michael G.; Jamison, Timothy P.

    2009-01-01

    Since its creation in 1989, the Department of Energy (DOE), Office of Environmental Management (EM) has struggled with a legacy of inadequate project management and contract management. This has been manifested in recurring scope changes, cost overruns and schedule delays, and has been documented in multiple internal and external reviews. EM has committed itself to improving project performance and undertaken a number of proactive management initiatives including the development of a 'Best in Class' Project Management and Contract Management organization (i.e., the BICPM Initiative). During 2007, EM assessed the status of project management and contract management at 15 EM sites. These assessments evaluated strengths and weaknesses in 12 key project management capabilities and three contract management benchmarks. The January 2008 Compilation Assessment Report showed that EM faces significant challenges in its mission execution due to staffing shortages, project and contract management integration, insufficient project-oriented culture, and lack of a clear role for Headquarters in BICPM. EM then formulated a strategy to meet their objectives in the March 2008 Corporate Implementation Plan. It summarizes BICPM efforts, introduces the vision for BICPM, identifies the strategy for achieving BICPM, and describes a process for implementing BICPM. That is, it acts as a road-map to address EM's challenges. It also documents 18 Recommended Priority Actions (RPAs) that are the key to correcting these challenges. These RPAs provide a clear path forward that can be communicated to the entire EM organization and provide the foundation upon which a BICPM culture can be built. EM has since gained considerable momentum and progress towards institutionalizing BICPM. This paper provides a discussion of the BICPM Initiative and its implementation. (authors)

  13. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  14. Low-Level Waste Vitrification Plant Project contracting strategy decision analysis report

    International Nuclear Information System (INIS)

    Felise, P.; Phillips, J.D.

    1994-01-01

    Ten basic contracting strategies were developed after a review of past strategies that had been used at the Hanford Site, other US Department of Energy (DOE) sites, other US government agencies, and in the private sector. As applicable to the Low-Level Waste Vitrification Plant (LLWVP) Project, each strategy was described and depicted in a schedule format to assess compatibility with the Hanford Federal Facility Agreement and Consent Order, al so known as the Tri-Party Agreement (Ecology et al. 1994) milestones, key decision points, and other project requirements. The-pro and con aspects of each strategy also were tabulated. Using this information as a basis, the LLWVP Project team members, along with representatives of Tank Waste Remediation System (TWRS) Engineering, TWRS Programs, and Procurement Materials Management, formed a Westinghouse Hanford Company (WHC) evaluation team to select the best strategy. Kepner-Tregoe decision analysis techniques were used in facilitated meetings to arrive at the best balanced choice

  15. Low-Level Waste Vitrification Plant Project contracting strategy decision analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Felise, P.; Phillips, J.D.

    1994-10-17

    Ten basic contracting strategies were developed after a review of past strategies that had been used at the Hanford Site, other US Department of Energy (DOE) sites, other US government agencies, and in the private sector. As applicable to the Low-Level Waste Vitrification Plant (LLWVP) Project, each strategy was described and depicted in a schedule format to assess compatibility with the Hanford Federal Facility Agreement and Consent Order, al so known as the Tri-Party Agreement (Ecology et al. 1994) milestones, key decision points, and other project requirements. The-pro and con aspects of each strategy also were tabulated. Using this information as a basis, the LLWVP Project team members, along with representatives of Tank Waste Remediation System (TWRS) Engineering, TWRS Programs, and Procurement Materials Management, formed a Westinghouse Hanford Company (WHC) evaluation team to select the best strategy. Kepner-Tregoe decision analysis techniques were used in facilitated meetings to arrive at the best balanced choice.

  16. The contract - introduction

    International Nuclear Information System (INIS)

    Loeffler, G.

    1975-01-01

    The contract is the last and final step of project planning and the first step of project implementation. The contract has to specify in detail and to the point, as concisely as possible, the complete scope of supplies and work, define all technical particulars and requirements, put forward the conditions of legal, regulatory, administrative and financial procedure, prepare for operating and maintenance instructions to be issued after commissioning. In short, the contract is expected to be a reliable instrument during the manufacturing and construction period as well as a guide-book to assist the owner afterwards in the operation and maintenance of the plant. (orig./FW) [de

  17. IAEA research contracts. First annual report

    International Nuclear Information System (INIS)

    1961-01-01

    The present volume is the first issue of what will become a regular annual publication by the Agency. It contains summaries of the final reports on all those contracts which have expired before 31 December 1960 with a few exceptions. In every case, the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been closely connected with that particular subject of research. Thus, the scientific data reported in the summary remain the responsibility of the contractor, the Agency being responsible for any additional observations. The reports of the following contracts are included: Research Contract No.2, The investigation of electrophysiological responses of biological systems, in particular of nerve cells, to irradiation with small doses of X-ray and other types of ionizing radiation, Research Contract No.3, Investigation on the mode of the protective action of certain sulfhydryl compounds against radiation effects on the synthesis of deoxyribonucleic acid, using tritium-labelled thymidine, Research Contract No.6, Investigation and development of a new method of monitoring and dosimetry for low fluxes of fast neutrons, involving the use of a bubble chamber, Research Contract No.13, Effects of incorporated radioisotopes upon the stability of genetic materials, Research Contract No.16, Interrelationship of root absorption and leaf absorption of radioisotopes in herbaceous plants, Research Contract No. 23, The uptake of radioactive wastes by lowland rice from contaminated soils due to irrigation water and its decontamination, Research Contract No.28, Comparison between mutation rates induced by acute and chronic gamma irradiation

  18. IAEA research contracts. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-07-01

    The present volume is the first issue of what will become a regular annual publication by the Agency. It contains summaries of the final reports on all those contracts which have expired before 31 December 1960 with a few exceptions. In every case, the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been closely connected with that particular subject of research. Thus, the scientific data reported in the summary remain the responsibility of the contractor, the Agency being responsible for any additional observations. The reports of the following contracts are included: Research Contract No.2, The investigation of electrophysiological responses of biological systems, in particular of nerve cells, to irradiation with small doses of X-ray and other types of ionizing radiation, Research Contract No.3, Investigation on the mode of the protective action of certain sulfhydryl compounds against radiation effects on the synthesis of deoxyribonucleic acid, using tritium-labelled thymidine, Research Contract No.6, Investigation and development of a new method of monitoring and dosimetry for low fluxes of fast neutrons, involving the use of a bubble chamber, Research Contract No.13, Effects of incorporated radioisotopes upon the stability of genetic materials, Research Contract No.16, Interrelationship of root absorption and leaf absorption of radioisotopes in herbaceous plants, Research Contract No. 23, The uptake of radioactive wastes by lowland rice from contaminated soils due to irrigation water and its decontamination, Research Contract No.28, Comparison between mutation rates induced by acute and chronic gamma irradiation.

  19. ROOT CANAL IRRIGANTS AND IRRIGATION TECHNIQUES: A REVIEW

    OpenAIRE

    Aniketh; Mohamed; Geeta; Nandakishore; Gourav Kumar; Patrick Timothy; Jayson Mathew; Sahle Abdul

    2015-01-01

    Root canal irrigation is not much emphasised in endodontic therapy. Most articles discussed are on root canal shaping and obturation not much emphasis is given for irrigation. There are many irrigation solutions which are introduced into market. The primary objective of root canal therapy is the ret ention of the pulpless or pulpally involved tooth with its associated periapical tissues in a healthy state. Achievement of this objective requires that the pulpal spaces and con...

  20. 76 FR 35886 - Orange Cove Irrigation District, and Friant Power Authority; Notice of Availability of...

    Science.gov (United States)

    2011-06-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 11068-014--California] Orange Cove Irrigation District, and Friant Power Authority; Notice of Availability of Environmental... has prepared an Environmental Assessment (EA) regarding Orange Cove Irrigation District's and Friant...

  1. Two staged incentive contract focused on efficiency and innovation matching in critical chain project management

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2014-09-01

    Full Text Available Purpose: The purpose of this paper is to define the relative optimal incentive contract to effectively encourage employees to improve work efficiency while actively implementing innovative behavior. Design/methodology/approach: This paper analyzes a two staged incentive contract coordinated with efficiency and innovation in Critical Chain Project Management using learning real options, based on principle-agent theory. The situational experiment is used to analyze the validity of the basic model. Finding: The two staged incentive scheme is more suitable for employees to create and implement learning real options, which will throw themselves into innovation process efficiently in Critical Chain Project Management. We prove that the combination of tolerance for early failure and reward for long-term success is effective in motivating innovation. Research limitations/implications: We do not include the individual characteristics of uncertain perception, which might affect the consistency of external validity. The basic model and the experiment design need to improve. Practical Implications: The project managers should pay closer attention to early innovation behavior and monitoring feedback of competition time in the implementation of Critical Chain Project Management. Originality/value: The central contribution of this paper is the theoretical and experimental analysis of incentive schemes for innovation in Critical Chain Project Management using the principal-agent theory, to encourage the completion of CCPM methods as well as imitative free-riding on the creative ideas of other members in the team.

  2. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  3. Root canal irrigants

    OpenAIRE

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  4. Estimating irrigated areas from satellite and model soil moisture data over the contiguous US

    Science.gov (United States)

    Zaussinger, Felix; Dorigo, Wouter; Gruber, Alexander

    2017-04-01

    Information about irrigation is crucial for a number of applications such as drought- and yield management and contributes to a better understanding of the water-cycle, land-atmosphere interactions as well as climate projections. Currently, irrigation is mainly quantified by national agricultural statistics, which do not include spatial information. The digital Global Map of Irrigated Areas (GMIA) has been the first effort to quantify irrigation at the global scale by merging these statistics with remote sensing data. Also, the MODIS-Irrigated Agriculture Dataset (MirAD-US) was created by merging annual peak MODIS-NDVI with US county level irrigation statistics. In this study we aim to map irrigated areas by confronting time series of various satellite soil moisture products with soil moisture from the ERA-Interim/Land reanalysis product. We follow the assumption that irrigation signals are not modelled in the reanalysis product, nor contributing to its forcing data, but affecting the spatially continuous remote sensing observations. Based on this assumption, spatial patterns of irrigation are derived from differences between the temporal slopes of the modelled and remotely sensed time series during the irrigation season. Results show that a combination of ASCAT and ERA-Interim/Land show spatial patterns which are in good agreement with the MIrAD-US, particularly within the Mississippi Delta, Texas and eastern Nebraska. In contrast, AMSRE shows weak agreements, plausibly due to a higher vegetation dependency of the soil moisture signal. There is no significant agreement to the MIrAD-US in California, which is possibly related to higher crop-diversity and lower field sizes. Also, a strong signal in the region of the Great Corn Belt is observed, which is generally not outlined as an irrigated area. It is not yet clear to what extent the signal obtained in the Mississippi Delta is related to re-reflection effects caused by standing water due to flood or furrow

  5. Nuclear techniques to assess irrigation schedules for field crops. Results of a co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This TECDOC summarizes the results of a Co-ordinated Research Programme on The Use of Nuclear and Related Techniques in Assessment of Irrigation Schedules of Field Crops to Increase Effective Use of Water in Irrigation Projects. The programme was carried out between 1990 and 1995 through the technical co-ordination of the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture of the International Atomic Energy Agency. Fourteen Member States of the IAEA and FAO carried out a series of field experiments aimed at improving irrigation water use efficiency through a type of irrigation scheduling known as deficit irrigation. Refs, figs, tabs.

  6. Nuclear techniques to assess irrigation schedules for field crops. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1996-06-01

    This TECDOC summarizes the results of a Co-ordinated Research Programme on The Use of Nuclear and Related Techniques in Assessment of Irrigation Schedules of Field Crops to Increase Effective Use of Water in Irrigation Projects. The programme was carried out between 1990 and 1995 through the technical co-ordination of the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture of the International Atomic Energy Agency. Fourteen Member States of the IAEA and FAO carried out a series of field experiments aimed at improving irrigation water use efficiency through a type of irrigation scheduling known as deficit irrigation. Refs, figs, tabs

  7. The relationship between sap flow and commercial soil water sensor readings in irrigated potato (Solanum tuberosum L.) production

    Science.gov (United States)

    Many irrigation scheduling methods utilized in commercial production settings rely on soil water sensors that are normally purchased as off-the-shelf technology or through contracted services that install and monitor readings throughout the season. These systems often assume a direct relationship be...

  8. 24 CFR 891.560 - HAP contract.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HAP contract. 891.560 Section 891... Assistance § 891.560 HAP contract. (a) HAP contract. The housing assistance payments contract sets forth.... (b) HAP contract execution. (1) Upon satisfactory completion of the project, the Borrower and HUD...

  9. R and D contract management systems in the USA; Beikoku ni okeru R and D contract kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    Outlined herein are the US Government's R and D contract management, which is considered to have greatly contributed to promotion of innovation in the USA. The procedures for the R and D contracts are managed through the mechanisms of the (government procurement), following the FAR (Federal Acquisition Regulations) that govern the government procurement rules. The procedural flow includes planning, public announcement of inviting the application documents, examination of the applications, negotiations, granting the fund, project management, suspension of the project and completion of the project. The audition sometimes takes several years to complete. The staff managing the individual contract is fairly specialized, and a team consisting of several professionals is responsible for each project. The substantial lifetime training systems the contract officers can receive are established. The alternative contract system encourages the applications from consortiums, and private enterprises frequently tie up with academic organizations to apply for the funds. Granting the funds to consortiums have many advantages, e.g., cost sharing and technological transfer. (NEDO)

  10. Development of a project on North Unit Irrigation District’s Main Canal at the Monroe Drop, using a novel low-head hydropower technology called the SLH100

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abraham [Natel Energy, Inc., Alameda, CA (United States); Schneider, Gia [Natel Energy, Inc., Alameda, CA (United States); McKinstry, Katherine [Natel Energy, Inc., Alameda, CA (United States); Harwood, Meghan [Natel Energy, Inc., Alameda, CA (United States)

    2017-03-14

    Natel Energy is a low­-head, distributed hydropower company based out of Alameda, CA. Natel manufactures and sells proprietary hydroelectric turbines called hydroEngines® that are suitable for low-­head, high-­flow settings, and range from 30kW to 1 MW of capacity per unit. Natel’s hydroEngine is a state­-of­the-­art two stage impulse turbine, using blades mounted symmetrically on two belts perpendicular to the axis of travel, and using linearly­-moving foils, rather than a rotor, to enable efficient conversion of kinetic energy of large volumes of water at low head with no risk of cavitation. In addition, the hydroEngine can be installed at or above tailwater level, reducing the excavation necessary to build the powerhouse and thus reducing total installed cost and project footprint. Thus, the hydroEngine technology enables a new generation of small hydro installations with low cost of project development, fish-­friendly operations, and small project footprint. In September of 2015, Natel Energy formally commissioned its first project installation in Madras, Oregon, installing 1 SLH100 turbine at an existing drop structure on the North Unit Irrigation District (NUID) Main Canal. The water falls between 13.5 feet to 16.5 feet at this structure, depending on flow. The plant has an installed capacity of 250 kW and an expected annual generation of approximately 873 MWh. The plant operates at an annual capacity factor of 40%, and a capacity factor over the irrigation season, or period of available flow, of 80%. Annual capacity factor is calculated as a percentage of plant operating hours relative to a total of 8,760 hours in a year; because the irrigation canal in which the Project is located only runs water from April to October, the available flow capacity factor is higher. Net greenhouse gas reductions from the Monroe Project are estimated to be 602 tCO2/year. The purpose of this report is to provide an overview of the specifications for Natel’s first

  11. An Evaluation of Water and Land Uses in the Kano River Project ...

    African Journals Online (AJOL)

    MICHAEL

    project farmers apply irrigation water and cultivate land to the levels specified by the project ... to efficient performance of the irrigation project, and, hence a threat to a sustainable irrigation development. @JASEM ... sectors and for implementation and management of ..... complex innovations, which require a lot of time for.

  12. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; van der Sluis, L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  13. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  14. 77 FR 63850 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2012-10-17

    ... 1st Avenue, Parker, AZ 85344, Telephone: (928) 669-7111. Duck Valley Irrigation Joseph McDade... Water per acre- 17.00 17.00 foot over 5.75 acre- feet. ������������������������������������� Duck Valley..., we did not conduct or use a study, experiment, or survey requiring peer review under the Information...

  15. Static Verification for Code Contracts

    Science.gov (United States)

    Fähndrich, Manuel

    The Code Contracts project [3] at Microsoft Research enables programmers on the .NET platform to author specifications in existing languages such as C# and VisualBasic. To take advantage of these specifications, we provide tools for documentation generation, runtime contract checking, and static contract verification.

  16. Enhancing the Productivity of High Value Crops and Income Generation with Small-Scale Irrigation Technologies in Kenya. Final Report 2009-2013

    International Nuclear Information System (INIS)

    2014-02-01

    The project was implemented by the Kenya Agricultural Research Institute in collaboration with key irrigation stakeholders including Horticultural Crops Development Authority (HCDA), G North and Son limited, Kenya Irrigation and Drainage Association (KIDA), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Greenbelt Movement and Ministry of Agriculture. The objective was to develop and pilot test appropriate irrigation systems (methods and related water/nutrient management practices) for small-scale farmers for increasing yield, quality of high value crops and farmers income to improved livelihood. The project built on earlier work on low head drip irrigation in Kenya involving KARI led promotion among the peri-urban and rural communities. The Equipment used include Neutron Probe Hydroprobe, Ammonium Sulphate Fertilizers (5% a.e), drip irrigation kits, MoneyMaker irrigation pumps, Pessl imetos weather station, SDEC tensimetre and tensiometers), Venturi injectors, among others.

  17. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  18. Economic risk assessment of drought impacts on irrigated agriculture

    Science.gov (United States)

    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.

    2017-07-01

    In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.

  19. The socio-economic base line survey; first chapter of the handbook under preparation: "Managing farmers: a handbook for working with farmers in irrigation and drainage projects"

    NARCIS (Netherlands)

    Schrevel, A.

    2002-01-01

    The text The socio-economic base line survey is the first chapter of a book under preparation meant to instruct senior staff of irrigation and drainage projects on techniques to work with farmers. It informs the reader of best practices to set up and execute a socio-economic baseline survey. The

  20. Drilling contract issues

    International Nuclear Information System (INIS)

    Davison, G.B.; Worden, D.R.; Borbridge, G.K.D.

    1997-01-01

    Some selected issues which are facing both operators and contractors in drilling for oil and gas, such as the allocation of risk by contract and by statute and the implementation of new technologies, were discussed. There are three varieties of written drilling contracts used in Canada: (1) day work and meterage contracts, (2) master drilling agreements, and (3) contracts that are used in construction projects that do not specifically relate to drilling. Issues relevant to the contractual allocation of risk, to implementing new drilling technologies, to reconciling contract and statute liability, and the formation of strategic alliances for mutual benefit, and the factors contributing to the success of such alliances were explored. 12 refs

  1. Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations

    International Nuclear Information System (INIS)

    Closas, Alvar; Rap, Edwin

    2017-01-01

    The increasing demand for solar-powered irrigation systems in agriculture has spurred a race for projects as it potentially offers a cost-effective and sustainable energy solution to off-grid farmers while helping food production and sustaining livelihoods. As a result, countries such as Morocco and Yemen have been promoting this technology for farmers and national plans with variable finance and subsidy schemes like in India have been put forward. By focusing on the application of solar photovoltaic (PV) pumping systems in groundwater-fed agriculture, this paper highlights the need to further study the impacts, opportunities and limitations of this technology within the Water-Energy-Food (WEF) nexus. It shows how most policies and projects promoting solar-based groundwater pumping for irrigation through subsidies and other incentives overlook the real financial and economic costs of this solution as well as the availability of water resources and the potential negative impacts on the environment caused by groundwater over-abstraction. There is a need to monitor groundwater abstraction, targeting subsidies and improving the knowledge and monitoring of resource use. Failing to address these issues could lead to further groundwater depletion, which could threaten the sustainability of this technology and dependent livelihoods in the future. - Highlights: • Solar pumping projects require assessing environmental and financial sustainability. • Subsidies for solar pumping need to be tied to groundwater pumping regulations. • Solar irrigation projects need to consider groundwater availability and depletion. • Data and monitoring are needed to improve water resource impact assessments.

  2. A comprehensive guide for designing more efficient irrigation systems with respect to application control

    Science.gov (United States)

    Khaddam, Issam; Schuetze, Niels

    2017-04-01

    The worldwide water scarcity problems are expected to aggravate due to the increasing population and the need to produce more food. Irrigated agriculture is considered the highest consumer of fresh water resources with a rate exceeds 70% of global consumption. Consequently, an improvement in the efficiency of all irrigation methods, such as furrow or drip irrigation, becomes more necessary and urgent. Therefore, a more precise knowledge about soil water distribution in the root zone and the water balance components is required. For this purpose and as a part of the SAPHIR project (Saxonian Platform for high Performance Irrigation), a 2D simulation- based study was performed with virtual field conditions. The study investigates the most important design parameters of many irrigation systems, such as irrigation intensity and duration, and shows there influence on the water distribution efficiency. Furthermore, three main soil textures are used to test the impact of the soil hydraulic properties on irrigation effectiveness. A numerous number of irrigation scenarios of each irrigation system was simulated using HYDRUS 2D. Thereafter, the results were digitally calculated, compiled and made available online in the so called "Irrigation Atlases". The irrigation atlases provide graphical results of the soil moisture and pressure head distributions in the root zone. Moreover, they contain detailed information of the water balance for all simulated scenarios. The most studies evaluate the irrigation water demands on local, regional or global scales and for that an efficient water distribution is required. In this context, the irrigation atlases can serve as a valuable tool for the implementation of planned irrigation measures.

  3. Capital budgeting under relational contracting: optimal ranking and duration criteria for schemes of concession, project-financing and public-private partnership

    OpenAIRE

    Biondi, Yuri

    2009-01-01

    International audience; Project-financing and public-private partnership schemes are joint projects of investment that are generally submitted to investment valuation criteria based on compound discounting. However, the theoretical basis of these criteria is at issue nowadays. According to recent studies on relational contracting economics and behavioral finance, joint projects of investment can be considered as special relational environments where the project's returns improve on alternativ...

  4. Irrigated Agriculture in Morocco: An Agent-Based Model of Adaptation and Decision Making Amid Increasingly Frequent Drought Events

    Science.gov (United States)

    Norton, M.

    2015-12-01

    In the past 100 years, Morocco has undertaken a heavy investment in developing water infrastructure that has led to a dramatic expansion of irrigated agriculture. Irrigated agriculture is the primary user of water in many arid countries, often accounting for 80-90% of total water usage. Irrigation is adopted by farmers not only because it leads to increased production, but also because it improves resilience to an uncertain climate. However, the Mediterranean region as a whole has also seen an increase in the frequency and severity of drought events. These droughts have had a dramatic impact on farmer livelihoods and have led to a number of coping strategies, including the adoption or disadoption of irrigation. In this study, we use a record of the annual extent of irrigated agriculture in Morocco to model the effect of drought on the extent of irrigated agriculture. Using an agent-based socioeconomic model, we seek to answer the following questions: 1) Do farmers expand irrigated agriculture in response to droughts? 2) Do drought events entail the removal of perennial crops like orchards? 3) Can we detect the retreat of irrigated agriculture in the more fragile watersheds of Morocco? Understanding the determinants of irrigated crop expansion and contractions will help us understand how agro-ecological systems transition from 20th century paradigms of expansion of water supply to a 21st century paradigm of water use efficiency. The answers will become important as countries learn how to manage water in new climate regimes characterized by less reliable and available precipitation.

  5. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  6. Legal issues in power sale contract negotiations

    International Nuclear Information System (INIS)

    Goodwin, L.M.

    1990-01-01

    The Public Utility Regulatory Policies Act of 1978 (PURPA) is the foundation of the cogeneration industry. However, few cogeneration projects could be financed on the basis of PURPA alone. PURPA guarantees project owners the right to sell power at the purchasing utility's Avoided Cost, whatever that may be from time to time. However, the development and financing of a cogeneration project requires a secure and dependable income stream, not a mere guarantee of the right to receive the spot price for power. Accordingly, developers have found that a formal power sale contract with the purchasing utility is a prerequisite to successful project development. This paper summarizes some current issues in power sale contract negotiation, with a particular emphasis on contract terms which shift risks from the utility and its ratepayers to the developer. Many of these trends originally appeared before the advent of competitive bidding systems, but most will continue to affect power sale contracts under competitive bidding, and under IPP project development as well

  7. LandCaRe-DSS - model based tools for irrigation management under climate change

    Science.gov (United States)

    Dotterweich, Markus; Wilkinson, Kristina; Cassel, Martin; Scherzer, Jörg; Köstner, Barbara; Berg, Michael; Grocholl, Jürgen

    2015-04-01

    Climate change is expected to have a strong influence on agricultural systems in the future. It will be important for decision makers and stakeholders to assess the impact of climate change at the farm and regional level in order to facilitate and maintain a sustainable and profitable farming infrastructure. Climate change impact studies have to incorporate aspects of uncertainty and the underlying knowledge is constantly expanding and improving. Decision support systems (DSS) with flexible data bases are therefore a useful tool for management and planning: different models can be applied under varying boundary conditions within a conceptual framework and the results can be used e.g. to show the effects of climate change scenarios and different land management options. Within this project, the already existing LandCaRe DSS will be further enhanced and improved. A first prototype had been developed for two regions in eastern Germany, mainly to show the effects of climate change on yields, nutrient balances and farm economy. The new model version will be tested and applied for a region in north-western Germany (Landkreis Uelzen) where arable land makes up about 50% of overall land-use and where 80 % of the arable land is already irrigated. For local decision makers, it will be important to know how water demand and water availability are likely to change in the future: Is more water needed for irrigation? Is more water actually available for irrigation? Will the existing limits for ground water withdrawal be sufficient for farmers to irrigate their crops? How can the irrigation water demand be influenced by land management options like the use of different crops and varieties or different farming and irrigation techniques? The main tasks of the project are (I) the integration of an improved irrigation model, (II) the development of a standardized interface to apply the DSS in different regions, (III) to optimize the graphical user interface, (IV) to transfer and

  8. River Protection Project: Interface Management in the Multi Contract Project Environment at Hanford

    International Nuclear Information System (INIS)

    SHIKASHIO, L.A.

    2000-01-01

    The Office of River Protection (ORP) is implementing the River Protection Project (RPP) using two prime contractors. CH2M Hill Hanford Group, Inc. (CHG) is responsible for operating the existing tank system, delivering the waste feed to the waste treatment plant, and managing the resulting low- and high-level glass waste ''product'' through a performance-based fee type contract. A separate prime contractor will be responsible for designing, constructing and commissioning of a new Waste Treatment and Immobilization Plant (WTP), and preparing the waste for ultimate disposal. In addition to the prime contractors and their interfaces, the River Protection Project is being conducted on the Hanford Site, which is under the management of another DOE organization, DOE Richland Field Office (DOE-RL). The infrastructure and utilities are provided by DOE-RL, for example. In addition, there are multiple other technical interfaces with federal, state and other regulatory agencies that influence the management of the activities. This paper provides an overview of the approach employed by ORP to identify, coordinate, and manage the technical interfaces of RPP. In addition, this paper describes the approach and methodologies used to: Establish an overall framework for interface management. Establish the requirements for defining and managing interfaces for the prime contractors and DOE. Contractually requiring the prime contractors to control and manage the interfaces

  9. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Vermejo Project area and the Maxwell National Wildlife Refuge, Colfax County, northeastern New Mexico, 1993

    Science.gov (United States)

    Bartolino, J.R.; Garrabrant, L.A.; Wilson, Mark; Lusk, J.D.

    1996-01-01

    Based on findings of limited studies during 1989-92, a reconnaissance investigation was conducted in 1993 to assess the effects of the Vermejo Irrigation Project on water quality in the area of the project, including the Maxwell National Wildlife Refuge. This project was part of a U.S. Department of the Interior National Irrigation Water-Quality Program to determine whether irrigation drainage has caused or has the potential to cause significant harmful effects on human health, fish, and wildlife and whether irrigation drainage may adversely affect the suitability of water for other beneficial uses. For this study, samples of water, sediment, and biota were collected from 16 sites in and around the Vermejo Irrigation Project prior to, during the latter part of, and after the 1993 irrigation season (April, August-September, and November, respectively). No inorganic constituents exceeded U.S. Environmental Protection Agency drinking-water standards. The State of New Mexico standard of 750 micrograms per liter for boron in irrigation water was exceeded at three sites (five samples), though none exceeded the livestock water standard of 5,000 micrograms per liter. Selenium concentrations exceeded the State of New Mexico chronic standard of 2 micrograms per liter for wildlife and fisheries water in at least eight samples from five sites. Bottom-sediment samples were collected and analyzed for trace elements and compared to concentrations of trace elements in soils of the Western United States. Concentrations of three trace elements at eight sites exceeded the upper values of the expected 95-percent ranges for Western U.S. soils. These included molybdenum at one site, selenium at seven sites, and uranium at four sites. Cadmium and copper concentrations exceeded the National Contaminant Biomonitoring Program 85th percentile in fish from six sites. Average concentrations of selenium in adult brine flies (33.7 mg/g dry weight) were elevated above concentrations in other

  10. 24 CFR 983.203 - HAP contract information.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HAP contract information. 983.203... DEVELOPMENT PROJECT-BASED VOUCHER (PBV) PROGRAM Housing Assistance Payments Contract § 983.203 HAP contract information. The HAP contract must specify: (a) The total number of contract units by number of bedrooms; (b...

  11. Study of Investments in Irrigation Water Sector in Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2015-04-01

    Full Text Available Irrigation water sector is playing pivotal role in agricultural production and have prominent contribution to GDP (Gross Domestic Product both at provincial and country level. Many of the stakeholders including different ministries/department of Federal and Provincial governments, private sectors, farmers, and NGOs (Non-Government Organizations are investing in this sector. Although that the data and data analysis tools are present in most of the countries, yet a comprehensive information base on investments in irrigation water sector is missing. This has led to duplication at resources and beneficiaries? level on one side, as well as gaps in technical, infrastructural, institutional and managerial strategies of the irrigation water sector projects on the other. This paper analyzes investments in irrigation water sector made by government of KPK (Khyber Pakhtunkhwa during the last 10 fiscal years? time period (2003-2013 and identifies gaps. Besides recommendations are also made in order to overcome the identified gaps/issues.

  12. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    Science.gov (United States)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in

  13. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Fix, N.J.

    2008-01-01

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff

  14. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  15. Fossil Energy Program report, 1 October 1976--30 September 1977. [Objectives, progress and plans for each contract or project

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, H. Neal; Batchelor, James; Crim, Winfred; Furlong, Leroy; Harvie, Robert; Hunter, Juanita; Jones, William; Karnes, Anita; Ludwig, Linda; Miller, C. Lowell; Mills, G. Alex; Sacks, Stephen; Watkins, J. Wade; Watson, Coni; Weaver, Val

    1978-08-01

    This report is an integral part of the documentation system of the Fossil Energy Program of the Department of Energy. It contains descriptions of each contract and project, arranged in conformance with planning and budgetary documents. The results of contracts are reported at various intervals, depending on the type of contract, but at least annually. These reports are not listed individually in the ''Publications'' sections but are available from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. The Department of Energy also publishes several abstract journals: Fossil Energy Update, Energy Research Abstracts, and Energy Abstracts for Policy Analysis.

  16. The Temporal Variation of Leaf Water Potential in Pistachio under Irrigated and Non-Irrigated Conditions

    Directory of Open Access Journals (Sweden)

    Yusuf AYDIN

    2014-09-01

    Full Text Available The present study was carried out in the experimental field of Pistachio Research Institute on pistachio trees which has uzun variety that was 30 years old. The aim of this research was to determine the Leaf Water Potential (LWP of Pistacia vera L. under irrigated and non-irrigated conditions. In the study, the leaf water potential of pistachio was investigated under fully irrigated and non irrigated conditions. The leaf water potential values were measured one day before and after irrigation by using pressure chamber technique at the beginning, mid and end of irrigation season. According to the results obtained from measurements, the LWP value at the beginning of the irrigation season was -3.7 MPa at noon time due to relatively high temperature for both treatments. At the time of pre-dawn and sunset, this value increased and reached to - 1.6 MPa due to relatively low temperature. In general, the LWP values during the mid of irrigation season, in the irrigated treatments, reached to almost -2.5 MPa in the non-irrigated treatment and the value was measured as -3.68 MPa.

  17. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.

    2007-01-01

    OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... cans were conducted with urban vegetable farmers. Trials were arranged in a completely randomised block design with each plot having all three irrigation methods tested. This was conducted in both dry and wet seasons. Three hundred and ninety-six lettuce, 72 soil, 15 poultry manure and 32 water samples...... were analysed for thermotolerant coliforms and helminth eggs. RESULTS: Lettuce irrigated with drip kits had the lowest levels of contamination, with, on average, 4 log units per 100 g, fewer thermotolerant coliforms than that irrigated with watering cans. However, drip kits often got clogged, required...

  18. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    Science.gov (United States)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support

  19. Projected energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L. D.; Hellickson, M. L.; Schmisseur, W. E.; Shearer, M. N.

    1978-10-01

    A computer model has been developed to predict present and future regional water, energy, labor, and capital requirements of irrigated agricultural production in Idaho, Oregon, and Washington. The energy requirements calculated were on-farm pumping, and total energies. Total energies are the combined energies of on-farm pumping, manufacture, and installation. Irrigation system selections and modifications were based on an economic analysis utilizing the following input parameters: water, energy, labor, and capital costs and requirements; groundwater and surface water pumping lifts; improved application efficiencies; and pumping plant efficiencies. Major conclusions and implications of this analysis indicate that: as water application efficiencies increases additional quantities of water will not become available to other users; an overall increase in water application efficiencies resulted in decreases in gross water applications and increases in overall on-farm pumping and total energy consumptions; more energy will be consumed as pumping and total energies than will be conserved through decreased diversion pumping energy requirements; pump-back and similar technologies have the potential of both increasing application efficiencies and energy conservation; and the interrelationships understood between applying water in quantities greater than required for crop consumptive use and leaching, and late season in-steam flow augmentation and/or aquifer recharge are not well understood, and sound policy decisions concerning agricultural use of water and energy cannot be made until these interrelationships are better understood.

  20. An Optional Instrument for European Insurance Contract Law

    OpenAIRE

    Mandeep Lakhan; Helmut Heiss

    2010-01-01

    The Principles of European Insurance Contract Law, also referred tousing the acronym PEICL, were published in September 2009. They are the result of ten years of academic work undertaken by the"Restatement of European Insurance Contract Law" Project Group. In the time since its establishment in 1999, the project has been transformed from being a stand-alone project to a part of the CoPECL (Common Principles of European Insurance Contract Law) network, drafting a specific part of the Common Fr...

  1. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  2. The effectiveness of Microsoft Project in assessing extension of time under PAM 2006 standard form of contract

    Science.gov (United States)

    Suhaida, S. K.; Wong, Z. D.

    2017-11-01

    Time is equal to money; and it is applies in the construction industry where time is very important. Most of the standard form of contracts provide contractual clauses to ascertain time and money related to the scenarios while Extension of Time (EOT) is one of them. Under circumstance and delays, contractor is allow to apply EOT in order to complete the works on a later completion date without Liquidated Damages (LD) imposed to the claimant. However, both claimants and assessors encountered problems in assessing the EOT. The aim of this research is to recommend the usage of Microsoft Project as a tool in assessing EOT associated with the standard form of contract, PAM 2006. A quantitative method is applied towards the respondents that consisted of architects and quantity surveyors (QS) in order to collect data on challenges in assessing EOT claims and the effectiveness of Microsoft Project as a tool. The finding of this research highlighted that Microsoft Project can serve as a basis to perform EOT tasks as this software can be used as a data bank to store handy information which crucial for preparing and evaluating EOT.

  3. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  4. Ghana - Agriculture - Irrigation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  5. 76 FR 12720 - City of Escondido, CA, and Vista Irrigation District; Notice of Application Accepted for Filing...

    Science.gov (United States)

    2011-03-08

    ..., CA, and Vista Irrigation District; Notice of Application Accepted for Filing, Ready for Environmental...: City of Escondido, California (Escondido) and Vista Irrigation District (Vista). e. Name of Project... owned by the La Jolla, San Pasqual, and Rincon Indian Tribes. g. Filed Pursuant to: Federal Power Act...

  6. Analysis of foreign petroleum contracts

    International Nuclear Information System (INIS)

    Moran, S.S.

    1991-01-01

    Most foreign exploration and production contracts are of two basic types: Production-Sharing contracts in which a portion of oil revenues, 'cost oil,' is available to the contractor for recoupment of exploration and production costs with the remainder, 'profit oil,' being shared according to an agreed-upon formula, and the familiar Tax-Royalty contract in which a share of petroleum revenues goes to the host country 'off the top' as royalties, and operating profits are taxed at the going rate. Bottom line splits of profits between host governments and contractors, which are approximately 50-50 in the United States, are typically in the 60-40 to 85-15 range elsewhere, with lower profit shares being offset by the higher volume potential and lower costs that may be associated with less mature exploration areas. Foreign contract qualities can be grossly compared by walking typical field models through the contracts to arrive at the bottom line profit splits. Variations within the contract forms include government participation, sliding scale contract elements, special taxes related to rates of return, etc. Often, contract terms are subject to negotiation and the tradeoffs between contract elements must be understood. Contract life, amortization schedules, fund repatriation, currency exchange rates, and the interaction of foreign and United States tax regimens are among the other factors that must be considered. Final decisions on foreign ventures must combine consideration of contracts, economic projections, hydrocarbon volumes, exploration cost estimates, and the estimated probability of success into an overall project assessment

  7. Performance-based contracts for road projects comparative analysis of different types

    CERN Document Server

    Gajurel, Ashish

    2014-01-01

    This book focuses on the aspects of contracting contracts, basically related to road construction and management contracts. The book presents an analytical study of Performance-Based Road Management and Maintenance (PMMR), Funktionsbauvertrag (FBV) (Function-Based Construction Contract) and Public Private Partnerships (PPP). A separate chapter is also included about the comparative study of these contract types. The book provides useful material for university libraries, construction companies and government departments of construction.

  8. Limiting nutrient emission from a cut rose closed system by high-flux irrigation and low nutrient concentrations?

    NARCIS (Netherlands)

    Baas, R.; Berg, van der D.

    2004-01-01

    A two-year project was aimed at decreasing nutrient emission from closed nutrient systems by using high irrigation rates in order to allow lower EC levels in the presence of accumulated Na and Cl. Experimental variables were growing media, irrigation frequencies, EC and NaCl concentrations for cut

  9. Non-turnkey contract

    International Nuclear Information System (INIS)

    Shimoyama, Shunji

    1975-01-01

    A turnkey contract is recommended to such a country which is in the initial stage of nuclear power development with respect to a few plants being constructed earlier. The prime contractor may not necessarily be a reactor supplier. In some cases an architect engineering company may be a contractor. If this arrangement is not possible and the contract had to be a non-turnkey type, there might be some advantage to such a developing country capable of undertaking some major portions of the project works. Even if she might face with troubles and difficulties during construction of the first nuclear power station, she might have chance of aquiring technical kowledge and experience which would later enable her to make the plant of her own manufacture. In such a case it is advisable to limit the number of main contracts as small as possible and to utilize an organization to assist the owner in project management or to assume this function in his behalf. (orig./FW) [de

  10. Non-turnkey contract

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, S

    1975-01-01

    A turnkey contract is recommended to such a country which is in the initial stage of nuclear power development with respect to a few plants being constructed earlier. The prime contractor may not necessarily be a reactor supplier. In some cases an architect engineering company may be a contractor. If this arrangement is not possible and the contract had to be a non-turnkey type, there might be some advantage to such a developing country capable of undertaking some major portions of the project works. Even if she might face troubles and difficulties during construction of the first nuclear power station, she might have a chance of aquiring technical kowledge and experience which would later enable her to make the plant of her own manufacture. In such a case it is advisable to limit the number of main contracts as small as possible and to utilize an organization to assist the owner in project management or to assume this function in his behalf.

  11. Food security, irrigation, climate change, and water scarcity in India

    Science.gov (United States)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  12. Sustainability Assessment of Large Irrigation Dams in Senegal: A Cost-Benefit Analysis for the Senegal River Valley

    Directory of Open Access Journals (Sweden)

    Stanislaw eManikowski

    2016-03-01

    Full Text Available Starting in the 1970s, the Senegalese Government invested in the development of irrigated schemes in the Senegalese part of the Senegal River Valley (S-SRV. From that time to 2012, the irrigated schemes increased from 10,000 ha to more than 110,000 ha. In the meantime, the economic viability of these schemes started to be questioned. It also appeared that the environmental health and social costs might outweigh the benefits of irrigation. Using a life cycle assessment approach and project cost-benefits modelling, this study (i quantified the costs and benefits of the S-SRV irrigated rice production, (ii evaluated the costs and benefits of its externalities and (iii discussed the irrigated rice support policy. The net financial revenues from the irrigated schemes were positive, but their economic equivalences. The economic return rate (EER was below the expected 12% and the net present value (NPV over 20 years of the project represented a loss of about US$-19.6 million. However, if we also include the project’s negative externalities, such as the reduced productivity of the valley ecosystems, protection cost of human health, environmental degradation and social impacts, then the NPV would be much worse, approximately US$-572.1 million. Therefore, the results show that to stop the economic loss and alleviate the human suffering, the S-SRV development policy should be revised using an integrated approach and the exploitation technology should aim at environmental sustainability. This paper may offer useful insights for reviewing the current Senegalese policies for the valley, as well as for assessing other similar cases or future projects worldwide, particularly in critical zones of developing countries.

  13. Collaborative Contracting in Projects

    NARCIS (Netherlands)

    Suprapto, M.

    2016-01-01

    Project practitioners have increasingly recognized the importance of collaborative relationships to ensure successful executions of projects. However, the ability to sustain and consistenly drive real collaborative attitudes and behavior for achieving the desired outcomes remains of enduring

  14. Managing Projects with the Public, -bringing Partnering, Contracts and Financing together in Building Public Services

    DEFF Research Database (Denmark)

    Koch, Christian

    2004-01-01

    of opportunity shows that on the operational level the contractual, financial and skill basis for the project has to be mobilized, negotiated, partly stabilized and renegotiated. The participating actors thus have to develop a new set of skills in dealing with municipalities and managing operations in PPPs....... of projects have had trouble to develop. The paper views PPP as an interaction between an emergent governance frame and operational activities in the project. PPP is an element of a networked public sector and the paper takes a network and political process approach to the shaping of PPP in Denmark....... It is analysed how the governance frame for these type of projects constituted a window of opportunity in the late nineties for “sale and lease back” arrangements, combined with partnering and more traditional design-build contracts. A case of a municipality renewing its school services, exploiting this window...

  15. Soil Fertility Assessment of The Lugu Main Canal Of Wurno Irrigation ...

    African Journals Online (AJOL)

    Soil Fertility Assessment of The Lugu Main Canal Of Wurno Irrigation Project, Sokoto State, ... Nigerian Journal of Basic and Applied Sciences ... Soil chemical properties such as pH, total N, available P, CEC and exchangeable bases were

  16. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  17. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  18. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  19. Irrigation in endodontic treatment.

    Science.gov (United States)

    Basrani, Bettina

    2011-01-01

    The primary endodontic treatment goal is to optimize root canal disinfection and to prevent reinfection. Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal system. In this review of the literature, various irrigants and the interactions between irrigants are discussed and new delivery systems are introduced.

  20. The effect of irrigation time and type of irrigation fluid on cartilage surface friction.

    Science.gov (United States)

    Stärke, F; Awiszus, F; Lohmann, C H; Stärke, C

    2018-01-01

    It is known that fluid irrigation used during arthroscopic procedures causes a wash-out of lubricating substances from the articular cartilage surface and leads to increased friction. It was the goal of this study to investigate whether this effect depends on the time of irrigation and type of fluid used. Rabbit hind legs were used for the tests. The knees were dissected and the friction coefficient of the femoral cartilage measured against glass in a boundary lubrication state. To determine the influence of irrigation time and fluid, groups of 12 knees received either no irrigation (control), 15, 60 or 120min of irrigation with lactated Ringer's solution or 60min of irrigation with normal saline or a sorbitol/mannitol solution. The time of irrigation had a significant effect on the static and kinetic coefficient of friction (CoF), as had the type of fluid. Longer irrigation time with Ringer's solution was associated with increased friction coefficients (relative increase of the kinetic CoF compared to the control after 15, 60 and 120min: 16%, 76% and 88% respectively). The sorbitol/mannitol solution affected the static and kinetic CoF significantly less than either Ringer's or normal saline. The washout of lubricating glycoproteins from the cartilage surface and the associated increase of friction can be effectively influenced by controlling the time of irrigation and type of fluid used. The time of exposure to the irrigation fluid should be as short as possible and monosaccharide solutions might offer a benefit compared to salt solutions in terms of the resultant friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  2. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured

  3. Optimal crop selection and water allocation under limited water supply in irrigation

    Science.gov (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  4. Principles of European Contract Law

    DEFF Research Database (Denmark)

    Lando, Ole; Beale, Hugh

    This text provides a comprehensive guide to the principles of European contract law. They have been drawn up by an independent body of experts from each Member State of the EU, under a project supported by the European Commission and many other organizations. The principles are stated in the form...... of articles, with a detailed commentary explaining the purpose and operation of each article and its relation to the remainder. Each article also has extensive comparative notes surveying the national laws and other international provisions on the topic. "The Principles of European Contract Law Parts I &...... in developing a common European legal culture. The European Parliament has twice called for the creation of a European Civil Code. The principles of European contract law are essential steps in these projects. This text provides a comprehensive guide to the Principles of European contract law. They have been...

  5. How Patients Experience Antral Irrigation

    Directory of Open Access Journals (Sweden)

    Karin Blomgren

    2015-01-01

    Full Text Available Background Antral irrigation earlier had an important role in the diagnosis and treatment of rhinosinusitis. Nowadays, it is often considered too unpleasant. However, the experience of patients of this procedure has been very seldom evaluated. Nor has the effect on pain in rhinosinusitis been evaluated. The aim of this study was to evaluate patients’ experience of discomfort and pain during antral irrigation. We also assessed facial pain caused by rhinosinusitis before the procedure and pain soon after the procedure. Methods Doctors and 121 patients completed their questionnaires independently after antral irrigation in a university clinic, in a private hospital, and at a communal health center. Results Patients experienced mild pain during antral irrigation (mean and median visual analog scale score: <3. Their experience of pain during antral irrigation was closely comparable to pain during dental calculus scaling. Facial pain assessed before antral irrigation decreased quickly after the procedure. Conclusions Antral irrigation was well tolerated as an outpatient procedure. The procedure seems to relieve facial pain caused by the disease quickly. The role of antral irrigation in the treatment of acute rhinosinusitis will need further investigation.

  6. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  7. Varietal improvement of irrigated rice under minimal water conditions

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Marziah Mahmood; Sobri Hussein

    2010-01-01

    Varietal improvement of irrigated rice under minimal water condition is a research project under Program Research of Sustainable Production of High Yielding Irrigated Rice under Minimal Water Input (IRPA- 01-01-03-0000/ PR0068/ 0504). Several agencies were involved in this project such as Malaysian Nuclear Agency (MNA), Malaysian Agricultural Research and Development Institute (MARDI), Universiti Putra Malaysia (UPM) and Ministry of Agriculture (MOA). The project started in early 2004 with approved IRPA fund of RM 275,000.00 for 3 years. The main objective of the project is to generate superior genotypes for minimal water requirement through induced mutation techniques. A cultivated rice Oryza sativa cv MR219 treated with gamma radiation at 300 and 400 Gray were used in the experiment. Two hundred gm M2 seeds from each dose were screened under minimal water stress in greenhouse at Mardi Seberang Perai. Five hundred panicles with good filled grains were selected for paddy field screening with simulate precise water stress regime. Thirty eight potential lines with required adaptive traits were selected in M3. After several series of selection, 12 promising mutant line were observed tolerance to minimal water stress where two promising mutant lines designated as MR219-4 and MR219-9 were selected for further testing under several stress environments. (author)

  8. Contribution of Wastewater Irrigation to Soil Transmitted Helminths Infection among Vegetable Farmers in Kumasi, Ghana.

    Directory of Open Access Journals (Sweden)

    Isaac Dennis Amoah

    2016-12-01

    Full Text Available Wastewater irrigation is associated with several benefits but can also lead to significant health risks. The health risk for contracting infections from Soil Transmitted Helminths (STHs among farmers has mainly been assessed indirectly through measured quantities in the wastewater or on the crops alone and only on a limited scale through epidemiological assessments. In this study we broadened the concept of infection risks in the exposure assessments by measurements of the concentration of STHs both in wastewater used for irrigation and the soil, as well as the actual load of STHs ova in the stool of farmers and their family members (165 and 127 in the wet and dry seasons respectively and a control group of non-farmers (100 and 52 in the wet and dry seasons, respectively. Odds ratios were calculated for exposure and non-exposure to wastewater irrigation. The results obtained indicate positive correlation between STH concentrations in irrigation water/soil and STHs ova as measured in the stool of the exposed farmer population. The correlations are based on reinfection during a 3 months period after prior confirmed deworming. Farmers and family members exposed to irrigation water were three times more likely as compared to the control group of non-farmers to be infected with Ascaris (OR = 3.9, 95% CI, 1.15-13.86 and hookworm (OR = 3.07, 95% CI, 0.87-10.82. This study therefore contributes to the evidence-based conclusion that wastewater irrigation contributes to a higher incidence of STHs infection for farmers exposed annually, with higher odds of infection in the wet season.

  9. Year-Round Irrigation Schedule for a Tomato–Maize Rotation System in Reservoir-Based Irrigation Schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Ephraim Sekyi-Annan

    2018-05-01

    Full Text Available Improving irrigation management in semi-arid regions of Sub-Saharan Africa is crucial to respond to increasing variability in rainfall and overcome deficits in current irrigation schemes. In small-scale and medium-scale reservoir-based irrigation schemes in the Upper East region of Ghana, we explored options for improving the traditional, dry season irrigation practices and assessed the potential for supplemental irrigation in the rainy season. The AquaCrop model was used to (i assess current water management in the typical tomato-maize rotational system; (ii develop an improved irrigation schedule for dry season cultivation of tomato; and (iii determine the requirement for supplemental irrigation of maize in the rainy season under different climate scenarios. The improved irrigation schedule for dry season tomato cultivation would result in a water saving of 130–1325 mm compared to traditional irrigation practices, accompanied by approximately a 4–14% increase in tomato yield. The supplemental irrigation of maize would require 107–126 mm of water in periods of low rainfall and frequent dry spells, and 88–105 mm in periods of high rainfall and rare dry spells. Therefore, year-round irrigated crop production may be feasible, using water saved during dry season tomato cultivation for supplemental irrigation of maize in the rainy season.

  10. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    Science.gov (United States)

    2005-12-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, announced today that it has signed a contract with the consortium led by Alcatel Alenia Space and composed also of European Industrial Engineering (Italy) and MT Aerospace (Germany), to supply 25 antennas for the Atacama Large Millimeter Array (ALMA) project, along with an option for another seven antennas. The contract, worth 147 million euros, covers the design, manufacture, transport and on-site integration of the antennas. It is the largest contract ever signed in ground-based astronomy in Europe. The ALMA antennas present difficult technical challenges, since the antenna surface accuracy must be within 25 microns, the pointing accuracy within 0.6 arc seconds, and the antennas must be able to be moved between various stations on the ALMA site. This is especially remarkable since the antennas will be located outdoor in all weather conditions, without any protection. Moreover, the ALMA antennas can be pointed directly at the Sun. ALMA will have a collecting area of more than 5,600 square meters, allowing for unprecedented measurements of extremely faint objects. The signing ceremony took place on December 6, 2005 at ESO Headquarters in Garching, Germany. "This contract represents a major milestone. It allows us to move forward, together with our American and Japanese colleagues, in this very ambitious and unique project," said ESO's Director General, Dr. Catherine Cesarsky. "By building ALMA, we are giving European astronomers access to the world's leading submillimetre facility at the beginning of the next decade, thereby fulfilling Europe's desire to play a major role in this field of fundamental research." Pascale Sourisse, Chairman and CEO of Alcatel Alenia Space, said: "We would like to thank ESO for trusting us to take on this new challenge. We are bringing to the table not only our recognized expertise in antenna development, but also our long-standing experience in

  11. 24 CFR 983.202 - Purpose of HAP contract.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Purpose of HAP contract. 983.202... DEVELOPMENT PROJECT-BASED VOUCHER (PBV) PROGRAM Housing Assistance Payments Contract § 983.202 Purpose of HAP contract. (a) Requirement. The PHA must enter into a HAP contract with the owner. The HAP contract must be...

  12. 32 CFR 3.9 - Follow-on production contracts.

    Science.gov (United States)

    2010-07-01

    ...) Use competition to select parties for participation in the OT prototype agreement and evaluate the... THAN CONTRACTS, GRANTS, OR COOPERATIVE AGREEMENTS FOR PROTOTYPE PROJECTS § 3.9 Follow-on production contracts. (a) Authority. A competitively awarded OT agreement for a prototype project that satisfies the...

  13. Soil Fertility Assessment of The Lugu Main Canal Of Wurno Irrigation ...

    African Journals Online (AJOL)

    acer

    Sokoto State, Nigeria, Five Years After Rehabilitation. A.U. Dikko* ... the soil fertility. Key words: Soil fertility, Soil chemical properties, Wurno Irrigation Project, Lugu main canal. .... 17oC recorded in December/January to 40oC in. April/May.

  14. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    Science.gov (United States)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  15. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  16. Wireless sensor networks for irrigation management

    Science.gov (United States)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  17. Design and Installation of Irrigation System for the Expansion of Sugar cane- Industries in Ahvaz, IRAN.

    Science.gov (United States)

    Afshari, E.; Afshari, S.

    2005-12-01

    This paper presents achievements of a twelve years ongoing project expansion of sugar cane- industries as a major agricultural development in Ahvaz, IRAN. The entire project is divided in to seven units and each unit provides irrigation water for 30,000 acres of sugar cane farms in Ahwaz. Absou Inc. is one of the consulting firms that is in charge of design and overseeing installation of irrigation system as well as the development of lands for sugar-cane cultivation at one of the units, called Farabi unit .In general, the mission of project is to Pump fresh water from Karoon River and direct it to the sugar cane farm for irrigation. In particular, the task of design and installation include, (1) build a pumping station at Karoon River with capacity of 1271 ft3/sec, (2) transfer water by main channel from Karoon rive to the farm site 19 miles (3) install a secondary pumping stations which direct water from main channel to drainage pipes and provides water for local farms (4) build a secondary channels which carries water with pipe lines with total length of 42 miles and diameter of 16 to 32 inch. (5) install drainage pump stations and collectors (6) level the ground surface and prepare it for irrigation (7) build railroad for carrying sugar canes (23 miles). Thus far, more than 15,000 acres of farm in Farabi unit is under sugar cane cultivation. The presentation will illustrate more details about different aspects of the project including design, installation and construction phases.

  18. Scintigraphic assessment of colostomy irrigation.

    Science.gov (United States)

    Christensen, P.; Olsen, N.; Krogh, K.; Laurberg, S.

    2002-09-01

    OBJECTIVE: This study aims to evaluate colonic transport following colostomy irrigation with a new scintigraphic technique. MATERIALS AND METHODS: To label the bowel contents 19 patients (11 uncomplicated colostomy irrigation, 8 complicated colostomy irrigation) took 111In-labelled polystyrene pellets one and two days before investigation. 99mTc-DTPA was mixed with the irrigation fluid to assess its extent within the bowel. Scintigraphy was performed before and after a standardized washout procedure. The colon was divided into three segments 1: the caecum andascending colon; 2: the transverse colon; 3: the descending and sigmoid colon. Assuming ordered evacuation of the colon, the contribution of each colonic segment to the total evacuation was expressed as a percentage of the original segmental counts. These were added to reach a total defaecation score (range: 0-300). RESULTS: In uncomplicated colostomy irrigation, the median defaecation score was 235 (range: 145-289) corresponding to complete evacuation of the descending and transverse colon and 35% evacuation of the caecum/ascending colon. In complicated colostomy irrigation it was possible to distinguish specific emptying patterns. The retained irrigation fluid reached the caecum in all but one patient. CONCLUSION: Scintigraphy can be used to evaluate colonic emptying following colostomy irrigation.

  19. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  20. Assessment of Irrigation Water Quality and Suitability for Irrigation in ...

    African Journals Online (AJOL)

    A number of factors like geology, soil, effluents, sewage disposal and other environmental conditions in which the water stays or moves and interacts are among the factors that affect the quality of irrigation water. This study was conducted to determine the quality and suitability of different water sources for irrigation purpose ...

  1. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  2. Input and output constraints affecting irrigation development

    Science.gov (United States)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  3. Incentives and technologies for improving irrigation water use efficiency

    Science.gov (United States)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  4. An assessment of colostomy irrigation.

    Science.gov (United States)

    Laucks, S S; Mazier, W P; Milsom, J W; Buffin, S E; Anderson, J M; Warwick, M K; Surrell, J A

    1988-04-01

    One hundred patients with permanent sigmoid colostomies were surveyed to determine their satisfaction and success with the "irrigation" technique of colostomy management. Most patients who irrigate their colostomies achieve continence. Odors and skin irritation are minimized. The irrigation method is economical, time efficient, and allows a reasonably liberal diet. It avoids bulky appliances and is safe. In appropriately selected patients, the irrigation technique is the method of choice for management of an end-sigmoid colostomy.

  5. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    2017-01-01

    . We argue that the effect has historical origins: irrigation allowed landed elites in arid areas to monopolize water and arable land. This made elites more powerful and better able to oppose democratization. Consistent with this conjecture, we show that irrigation dependence predicts land inequality...

  6. STUDY ON MICROBIAL COMMUNITIES AND SOIL ORGANIC MATTER IN IRRIGATED AND NON-IRRIGATED VERTISOL FROM BOIANU

    Directory of Open Access Journals (Sweden)

    Sorina Dumitru

    2012-12-01

    Full Text Available Irrigation, when administered correctly, confers the producers the possibility to overcome drought effects and obtain higher yields, supplementing the quality of food for animals or human consumers. In the mean time, soil erosion, pathogens attack and nutrients or pesticides spreading can be prevented by an adequate management of irrigation water. As a consequence, soil microbial community structure, composition and activities, as well as the organic matter quality can be different from those in non-irrigated soil. Research have been carried out in order to assess changes in bacterial and fungal communities and activity in irrigated Vertisol from Boianu, as compared with non-irrigated. The paper presents the results concerning the taxonomical composition of bacterial and fungalmicroflora in the horizons of the two soil profiles, as well as the level of CO2 released by microorganisms. Chromatographic aspects of humus fractions were used to characterize the organic matter in irrigated and nonirrigated soil. Increased moisture and lowered temperature in Ap horizon of irrigated soil increased bacterial counts(18 x106 viable cells x g-1 dry soil and their metabolic activity expressed by carbon dioxide released (46.838mg CO2 x g-1 dry soil comparatively with non- irrigated soil. Fungal microflora was more abundant after 25-50cm under irrigation. Species diversity slightly increased under irrigation in both upper and lower part of soil profile. In irrigated soil, associations of species belonging to bacterial genera Pseudomonas and Bacillus were dominant in surface and white actinomycetes in the depth. Fungal consortia of Penicillium, Aspergillus and Fusarium dominated in both soil profiles.Irrigation induced changes in the quantity and quality of soil organic matter, as well as in the aspect of their migration pattern, as revealed on circular chromatograms.

  7. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  8. When should irrigators invest in more water-efficient technologies as an adaptation to climate change?

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.

    2015-12-01

    The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that

  9. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    Science.gov (United States)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    evaluate the tomato crop adaptability to future climate. To this purpose, for several tomato cultivars, threshold values of their yield responses to soil water availability were determined (data from scientific literature). Cultivars' threshold values were evaluated, in all soil units, against the indicators' values, for irrigation levels with different ΔT/I. Less water intensive cultivars and irrigation volumes that optimize transpiration (and yield) could thus be identified in both climate scenarios, and irrigation management scenarios were determined taking into account soils' hydrological properties, crop biodiversity, and efficient use of water resource. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, adaptation, simulation models, deficit irrigation, water resource efficiency, SWAP

  10. Are There Infinite Irrigation Trees?

    Science.gov (United States)

    Bernot, M.; Caselles, V.; Morel, J. M.

    2006-08-01

    In many natural or artificial flow systems, a fluid flow network succeeds in irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree and many irrigation and draining systems. Such systems have raised recently a lot of interest and some attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws [25], [26]. In contrast, several mathematical models [5], [22], [10], propose an idealization of these irrigation trees, where a countable set of tubes irrigates any point of a volume with positive Lebesgue measure. There is no geometric obstruction to this infinitesimal model and general existence and structure theorems have been proved. As we show, there may instead be an energetic obstruction. Under Poiseuille law R(s) = s -2 for the resistance of tubes with section s, the dissipated power of a volume irrigating tree cannot be finite. In other terms, infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies that the usual principle analysis performed for the biological models needs not to impose a minimal size for the tubes of an irrigating tree; the existence of the minimal size can be proven from the only two obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.

  11. Rainfall Variability, Adaptation through Irrigation, and Sustainable Management of Water Resources in India

    Science.gov (United States)

    Fishman, R.

    2013-12-01

    Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.

  12. Variations in government contract in Malaysia

    Directory of Open Access Journals (Sweden)

    Jaspal Singh Nachatar

    2010-12-01

    Full Text Available The complexity of construction works means that it is hardly possible to complete a project without changes to the plans or the construction process itself. There can only be a minority of contracts of any size in which the subject matter when completed is identical in every respect with what was contemplated at the outset. As such, variations are inevitable in even the best-planned contracts. This study is attempted to examine the ways a variation was formed in law and project, in finding out whether the Standard Form of Contract used in Malaysia particularly the government Public Works Department (PWD form has been utilized to the best level in variation cases. Additionally, this study examined the benefits of variations to parties in contract and also provides suggestions and assumptions in an effort to contribute solutions to issues and problem detected. The research methodology used in this study was an extensive review of relevant literature, case study, empirical questionnaires and structured interviews and general observations based on experience and surroundings. The academic study approach incorporated stages such as initial understanding, data and information gathering, analysis of data, findings and conclusion and general suggestions in the study. The major findings of this study, among others, revealed that the existences of variations are common in projects. The main cause of variations was due to client request because of inadequate project objectives for the designer to develop comprehensive design. Besides, the analysis pointed out that the government form of contract the Public Works Department (PWD 203/203A can help in overcoming projects with variation because of the clear defined procedure. This study also found that proper planning and coordination at tender stage can minimize the risk of ‘unwanted’ variations. In conclusion, this study recommended that future research should be done in design and build based contract

  13. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  14. Governance variety in the energy service contracting market

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, Katrin; Huelsmann, Friederike

    2008-07-01

    There is a surprisingly high variety of actors involved in the supply of energy service contracting arrangements. Based on an empirical record of approximately 2,500 contracting projects in the domain of space heating in Germany, the paper analyses specialisation patterns of contractors. An econometric model is used to test hypotheses derived from transaction cost economics, which contractor type should be expected for which kind of contracting project. According to our results, if physical, site and human asset specificity are high, governance modes are preferred, for which contracting represents a downward integration of business activities along the value-added chain. This includes the supply of contracting by municipal utilities. More specifically, municipal utilities occur as superior suppliers of contracting if combined heat and power is implemented, if the building served is connected to their gas grid and if it is a public building. This pattern could orient the development of contracting activities for utilities reconsidering their strategic position following the liberalisation of the electricity market. (orig.)

  15. Water as an economic good in irrigated agriculture: theory and practice

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Perry, C.J.

    2004-01-01

    This report describes the results of the Water Valuation and Pricing project, which aims to provide insight into the relevance of economics to typical problems found in irrigated agriculture. It first considers the theoretical basis for the use of economic instruments, then considers their

  16. Local land-atmosphere feedbacks limit irrigation demand

    Science.gov (United States)

    Decker, Mark; Ma, Shaoxiu; Pitman, Andy

    2017-05-01

    Irrigation is known to influence regional climate but most studies forecast and simulate irrigation with offline (i.e. land only) models. Using south eastern Australia as a test bed, we demonstrate that irrigation demand is fundamentally different between land only and land-atmosphere simulations. While irrigation only has a small impact on maximum temperature, the semi-arid environment experiences near surface moistening in coupled simulations over the irrigated regions, a feedback that is prevented in offline simulations. In land only simulations that neglect the local feedbacks, the simulated irrigation demand is 25% higher and the standard deviation of the mean irrigation rate is 60% smaller. These local-scale irrigation-driven feedbacks are not resolved in coarse-resolution climate models implying that use of these tools will overestimate irrigation demand. Future studies of irrigation demand must therefore account for the local land-atmosphere interactions by using coupled frameworks, at a spatial resolution that captures the key feedbacks.

  17. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  18. Software Support for Industrial Controls Contract

    CERN Document Server

    Sánchez-Corral, E

    2001-01-01

    The contract covers the development and the operation and maintenance (O&M) of the monitoring and control systems used for supervising CERN's technical infrastructure. The contract involves those responsible for equipment in any current or future technical installation. We are outsourcing a complex activity which will require efforts on both preparing the specifications for new projects and setting clear definitions of tasks and procedures for O&M. It is a result-oriented contract in which performance will be continually evaluated by different methods and tools: project management plan and project follow-up, and CAMMS (Computerised Assets and Maintenance Management system). To be used effectively, this approach requires complete traceability of activities and documentation of the systems. Based on the analysis of the results measured and the shared (CERN and contractor) experience, the O&M activities will be reviewed and reorganised and operational procedures will be changed according to needs. A ...

  19. 24 CFR 983.205 - Term of HAP contract.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Term of HAP contract. 983.205... DEVELOPMENT PROJECT-BASED VOUCHER (PBV) PROGRAM Housing Assistance Payments Contract § 983.205 Term of HAP contract. (a) Ten-year initial term. The PHA may enter into a HAP contract with an owner for an initial...

  20. Irrigation of steppe soils in the south of Russia: Problems and solutions (Analysis of Irrigation Practices in 1950-1990)

    Science.gov (United States)

    Minashina, N. G.

    2009-07-01

    Experience in irrigation of chernozems in the steppe zone of Russia for a period from 1950 to 1990 is analyzed. By the end of this period and in the subsequent years, the areas under irrigation reduced considerably, and the soil productivity worsened. This was caused by the improper design of irrigation systems, on the one hand, and by the low tolerance of chernozems toward increased moistening upon irrigation, on the other hand. The analysis of the factors and regimes of soil formation under irrigation conditions shows that irrigation-induced changes in the soil hydrology also lead to changes in the soil physicochemical, biochemical, and other properties. In particular, changes in the composition of exchangeable cations lead to the development of solonetzic process. In many areas, irrigation of chernozems was accompanied by the appearance of solonetzic, vertic, saline, and eroded soils. The development of soil degradation processes is described. In general, the deterioration of irrigated chernozems was related to the absence of adequate experience in irrigation of steppe soils, unskilled personnel, improper regime of irrigation, and excessively high rates of watering. In some cases, the poor quality of irrigation water resulted in the development of soil salinization and alkalization. To improve the situation, the training of personnel is necessary; the strategy of continuous irrigation should be replaced by the strategy of supplementary irrigation in the critical periods of crop development.

  1. Relationship Contracting: The South Australian Experience - A Case Study

    Directory of Open Access Journals (Sweden)

    Jian Zou

    2012-11-01

    Full Text Available The construction industry has long been accusedof poor performance. The confrontational attitudeof its members and the resultant adversarial atmosphere has been identified as a major factor responsible for this poor performance. A cultural change is required to remove these barriers and to promote optimum project outcomes. Relationship contracting is promoted as a way to support the shift from the adversarial culture to the co-operative and collaborative culture within the industry and the project team.The Adelaide Convention Centre Extensions project was the first in South Australia to be procure und r the principles of relationship contract1ng. Usmg the case study approach, this paper reviews the form of relationship contracting used in this milestone project. The paper documents the lessons learned from this project and makes recommendations that can lead to improvements for future projects.

  2. Irrigation management of sigmoid colostomy.

    Science.gov (United States)

    Jao, S W; Beart, R W; Wendorf, L J; Ilstrup, D M

    1985-08-01

    Questionnaires were sent to 270 patients who had undergone abdominoperineal resection and sigmoid colostomy at the Mayo Clinic, Rochester, Minn, during the ten years from 1972 to 1982; 223 patients returned their questionnaires with evaluable data. Sixty percent of the patients were continent with irrigation, and 22% were incontinent with irrigation. Eighteen percent had discontinued irrigation for various reasons. The proportion continent was higher in women, younger patients, and previously constipated patients. A poorly constructed colostomy may cause acute angle, parastoma hernia, stomal prolapse, or stenosis and thus be the cause of failure of irrigation.

  3. 75 FR 39034 - Public Housing Annual Contributions Contract

    Science.gov (United States)

    2010-07-07

    ... Contributions Contract AGENCY: Office of the Chief Information Officer, HUD. ACTION: Notice. SUMMARY: The... Contributions Contract (ACC) with certain requirements applicable to all project and other requirements... Contributions Contract. OMB Approval Number: 2577-New. Form Numbers: Certain information collections do not have...

  4. 24 CFR 891.565 - Term of HAP contract.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Term of HAP contract. 891.565... 8 Assistance § 891.565 Term of HAP contract. The term of the HAP contract for assisted units shall be 20 years. If the project is completed in stages, the term of the HAP contract for assisted units...

  5. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    To respond to agricultural water shortage impacted by climate change without affecting rice yield in the future, the application of water-saving irrigation, such as SRI methodology, is considered to be adopted in rice-cultivation in Taiwan. However, the flooded paddy fields could be considered as an important source of groundwater recharge in Central Taiwan. The water-saving benefit of this new methodology and its impact on the reducing of groundwater recharge should be integrally assessed in this area. The objective of this study was to evaluate the changes of groundwater recharge/ irrigation water use between the SRI and traditional irrigation schemes (continuous irrigation, rotational irrigation). An experimental paddy field located in the proximal area of the Choushui River alluvial fan (the largest groundwater pumping region in Taiwan) was chosen as the study area. The 3-D finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge process and amount under traditional irrigation schemes and SRI methodology. The use of effective rainfall was taken into account or not in different simulation scenarios for each irrigation scheme. The simulation results showed that there were no significant variations of infiltration rate in the use of effective rainfall or not, but the low soil moisture setting in deep soil layers resulted in higher infiltration rate. Taking the use of effective rainfall into account, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology in the first crop season of 2013 were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reducing 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly

  6. The advantages of cost plus award fee contracts

    Science.gov (United States)

    Keathley, William C.

    1994-01-01

    A Cost Plus Award Fee contract is the best procurement vehicle for the high-tech, one-of-a-kind, development projects that constitute most of NASA'S projects. The use of this type of contract requires more government and contractor effort than any other forms of contracts. An award fee contract is described as an arrangement whereby the government periodically awards a fee consistent with the cost, schedule and technical performance that is achieved by a contractor during a preset period with preset award fee pools. It's the only contracting method where both the government and contractor goals are closely linked. It also has a built-in mechanism to conveniently alter and emphasize program events in order to current external and internal situations. The award fee process also demands good communication between government and contractor participants.

  7. Irrigation water management: Basic principles and applications

    OpenAIRE

    Ella, Victor B.

    2007-01-01

    This presentation defines the term, irrigation, as well as explains the common methods of irrigation in attempt to define the fundamental principles needed to wisely design an irrigation system. It outlines a typical drip irrigation set-up, and discusses management of an irrigation system, including water volume application suggestions. LTRA-5 (Agroforestry and Sustainable Vegetable Production)

  8. Irrigation-based livelihood challenges and opportunities : a gendered technology of irrigation development intervention in the Lower Moshi irrigation scheme Tanzania

    NARCIS (Netherlands)

    Kissawike, K.

    2008-01-01

    This thesis is a study of a modernised irrigation scheme in Tanzania. It aims to
    understand how irrigation and agricultural technologies have interacted with local
    society to transform production, paying particular attention to gender relations and
    changes for women farmers. The

  9. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  10. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  11. Proposal to negotiate an amendment to an existing blanket purchase contract for the supply of Burndy connectors for the LHC project and LHC experiments

    CERN Document Server

    2006-01-01

    This document concerns the proposal to negotiate an amendment to an existing blanket purchase contract for the supply of Burndy connectors for the LHC project and LHC experiments. For the reasons explained in this document, the Finance Committee is invited to agree to the negotiation of an amendment to the blanket purchase contract for the supply of Burndy connectors for the LHC project and LHC experiments with the company SOURIAU (CH), for the next three years for up to 600 000 euros (954 600 Swiss francs), subject to revision for inflation from January 2007, bringing the total amount of the blanket purchase contract to a maximum amount of 1 200 000 euros (1 909 200 Swiss francs), subject to revision for inflation from January 2007. The amounts in Swiss francs have been calculated using the present rate of exchange. 2006/60/5/e

  12. Effective colostomy irrigation.

    Science.gov (United States)

    Mazier, W P; Dignan, R D; Capehart, R J; Smith, B G

    1976-06-01

    The ultimate goal of the cone method of colostomy irrigation is to return patients with colostomies to their former role in society with confidence in themselves to the extent that having a colostomy is not considered a handicap. The results have generally been excellent. We believe all patients with stomas should be afforded the opportunity to attempt colostomy irrigation.

  13. Potato yield and yield structure depending on irrigation

    Directory of Open Access Journals (Sweden)

    Milić Stanko

    2010-01-01

    Full Text Available In the agroclimatic conditions of the Vojvodina Province, the application of an economic water regime and modern technology is necessary for stable and intensive potato production. A two-year experiment on calcareous chernozem was carried out to determine how irrigation and different pre-irrigation soil moisture affect potato yield and distribution of tuber fraction in the potato yield. The block-design trial had four replicates and was adapted for sprinkler irrigation conditions. It included four treatments: irrigation with pre-irrigation moisture levels of 60 % of field water capacity (FC, irrigation with pre-irrigation moisture levels of 70 % (FC, irrigation with pre-irrigation moisture levels of 80% (FC, and a non-irrigated control treatment. Irrigation significantly increased the yield of potato, which increased from 37.27 % to 75.86 %. Under irrigation, the percentage of small fractions decreased in favour of the 55 mm one, or fractions above the 45-55 mm range. On average, irrigated treatments produced significantly more tubers than the conditions of natural water supply. .

  14. Complexity, Contract Design and Incentive Design in the Construction Management Industry

    OpenAIRE

    Beg, Zeshawn Afsari

    2015-01-01

    In this paper I examine how one construction management company uses contract design and incentive design to respond to aspects of task complexity and relationship complexity present in its construction projects. In terms of contract design, I find that the company is unable to increase its use of cost-plus pricing when faced with technically complex projects. Instead, the company uses increased pre-execution design modification and price markups when technically complex projects are contract...

  15. Contract types - turnkey

    International Nuclear Information System (INIS)

    Loeffler, G.

    1975-01-01

    Turnkey or the turnkey type of contract refers to a system of management according to which one organization accepts total responsibility for completing all parts and all phases of a project. In the case of a power project the turnkey contractor undertakes to design the plant, supply or procure and erect the equipment, build the station and put it into operation. (orig./FW) [de

  16. Project brief of pre-contract in project management

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Mohd Azmi Sidid Omar; Abdul Rahman Norazumin; Zakaria Dris; Abdul Murad Abu Bakar; Alwi Othman

    2010-01-01

    Project brief is a comprehensive document used in translating the user needs and requirement for the project implementation. This document is important for the designer as a main guidance towards establishing project details. Research shown that problem usually arises from not well-defined scope and needs by the user. With lack of information the designer tend to assume and interprets wrong translation. Other issues arise from project management are time, cost, budgetary, lack of communication and establishing quality management. Some ideas of improvement were gain by doing cross reference with JKR quality system management, workshop and brainstorming. It shows that an improvement of data collection system has to be integrating with some basic format details, drawings and declaration forms to be established. (author)

  17. Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh

    Directory of Open Access Journals (Sweden)

    Najmul Hoque

    2016-02-01

    Full Text Available In the summer season, irrigation sector in Bangladesh suffers a lot due to the country wide electricity crisis. Solar pump offers a clean and simple alternative to the conventional fuel fired engine or grid electricity driven pump in this regard to resolve the issue. In this paper, the techno-economic analyses of solar irrigation plants installed in Bangladesh are evaluated.  It was observed that systems were running around 70% to 80% of the rated power which was quite acceptable. A 10 hp pump was able to pump 600 liter of water per minute which was also satisfactory to irrigate the land. Average operating time was found to be 8 hour/day. It was found that the overall efficiency of the systems were in between 11.39% to 16.52% whereas the typical average value of lit/Wp/year was 9200. On the other hand, the cost of irrigation to cultivate paddy in 0.161 hectares’ land for one season was 1,750 BDT by solar irrigation which was found to be lower than that of other available modes. This charge for grid electricity based irrigation was about 3,000 to 3500 BDT per 0.161 hectares’ and 2,300 to 2,600 BDT per 0.161 hectares’ for diesel engine based irrigation. According to the current financial scheme (15% equity investment, 35% credit support and remaining 50% from government through IDCOL the average value of payback period was 5.43 years, NPV in the range from 7 to 15% and IRR was 18%. By considering 100% equity investment, however, these projects were not economically attractive. The payback period for this case was about 18 years. Study also revealed that each solar irrigation plant reduces 42.8 kg of CO2 emission per day compare to diesel engine operated pump and 2566.24 kg/day compared to grid electricity operated pump. A comprehensive effort from the Government as well as from all the stakeholders is required for further expansion of solar irrigation plants in Bangladesh. Article History: Received Sept 05, 2015; Received in revised form

  18. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMIS). Thinking along

  19. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  20. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  1. Evaluation of hydraulic performance of downstream-controlled Maira-PHLC irrigation canals under crop-based irrigation operations

    NARCIS (Netherlands)

    Munir, S.; Schultz, B.; Suryadi, F.X.; Bharati, L.

    2012-01-01

    Demand-based irrigation systems are operated according to crop water requirements. As crop water requirements remain variable throughout the growing season, the discharges in the canal also vary to meet demands. The irrigation system under study is a demand-based semi-automatic irrigation system,

  2. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since

  3. Newer Root Canal Irrigants in Horizon: A Review

    Directory of Open Access Journals (Sweden)

    Sushma Jaju

    2011-01-01

    Full Text Available Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation.

  4. Regulated deficit irrigation can decrease soil CO2 emissions in fruit orchards

    Science.gov (United States)

    Zornoza, Raul; Acosta, José Alberto; Martínez-Martínez, Silvia; De la Rosa, Jose M.°; Faz, Angel; Pérez-Pastor, Alejandro

    2016-04-01

    Irrigation water restrictions in the Mediterranean area have created a growing interest in water conservation. Apart from environmental and economic benefits by water savings, regulated deficit irrigation (RDI) may contribute to reduce soil CO2 emissions and enhance C sequestration in soils, by decreasing microbial and root activity in response to decreased soil moisture levels. An experiment was established in four orchards (peach, apricot, Saturn peach and grape) to investigate the effects of regulated deficit irrigation (RDI) on soil CO2 emissions. Two irrigation treatments were assayed: full irrigation (FI), and RDI, irrigated as FI except for postharvest period (peach, apricot, Saturn peach) or post-veraison period (grape) were 50% of FI was applied. The application of deficit caused a significant decrease in CO2 emission rates, with rates in average of 90 mg CO2-C m-2 h-1, 120 mg CO2-C m-2 h-1, 60 mg CO2-C m-2 h-1 and 60 mg CO2-C m-2 h-1 lower than FI during the period when deficit was applied for peach, apricot, Saturn peach and grape. This confirms the high effectiveness of the RDI strategies not only to save water consumption but also to decrease soil CO2 emissions. However, monitoring during longer periods is needed to verify that this trend is long-term maintained, and assess if soil carbon stocks are increase or most CO2 emissions derive from root respiration. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  5. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  6. [Irrigants and intracanal medicaments in endodontics].

    Science.gov (United States)

    Zehnder, Matthias; Lehnert, Birgit; Schönenberger, Kathrin; Waltimo, Tuomas

    2003-01-01

    Modern, biologic root canal therapy should be performed with suitable irrigating solutions and intracanal medicaments. The goal of endodontic treatment is to free the treated tooth from infection and prevent reinfection as thoroughly as possible by means which do not put the organism at risk. In this review of the literature, an evidence-based concept for irrigation and medication of root canal systems is presented. Irrigants and medicaments are discussed with respect to their antimicrobial, tissue-dissolving and endotoxin-decontaminating capacity in relation to their systemic toxicity. Recent findings pertaining to interactions of root canal medicaments and irrigating solutions and their impact on a sound irrigating and medicating concept are discussed.

  7. On the Techniques and Tools for Privacy-Preserving Smart Contracts

    Directory of Open Access Journals (Sweden)

    Anastasia A. Barinova

    2017-06-01

    Full Text Available Currently, business processes become more and more complicated. Data used in these processes circulates mainly through the digital communications. Due to these conditions some kind of electronic contracts for business deals becomes necessary. Smart contracts should describe a set of conditions, implemented through some events in the real world and digital systems. The most important requirement for this technology is privacy ensuring. In this work we have explored existing projects of privacy-preserving smart contracts, defined comparison criteria, compared projects and made a conclusion about options required for smart contract frameworks.

  8. Successful contracting of prevention services: fighting malnutrition in Senegal and Madagascar.

    Science.gov (United States)

    Marek, T; Diallo, I; Ndiaye, B; Rakotosalama, J

    1999-12-01

    There are very few documented large-scale successes in nutrition in Africa, and virtually no consideration of contracting for preventive services. This paper describes two successful large-scale community nutrition projects in Africa as examples of what can be done in prevention using the contracting approach in rural as well as urban areas. The two case-studies are the Secaline project in Madagascar, and the Community Nutrition Project in Senegal. The article explains what is meant by 'success' in the context of these two projects, how these results were achieved, and how certain bottlenecks were avoided. Both projects are very similar in the type of service they provide, and in combining private administration with public finance. The article illustrates that contracting out is a feasible option to be seriously considered for organizing certain prevention programmes on a large scale. There are strong indications from these projects of success in terms of reducing malnutrition, replicability and scale, and community involvement. When choosing that option, a government can tap available private local human resources through contracting out, rather than delivering those services by the public sector. However, as was done in both projects studied, consideration needs to be given to using a contract management unit for execution and monitoring, which costs 13-17% of the total project's budget. Rigorous assessments of the cost-effectiveness of contracted services are not available, but improved health outcomes, targeting of the poor, and basic cost data suggest that the programmes may well be relatively cost-effective. Although the contracting approach is not presented as the panacea to solve the malnutrition problem faced by Africa, it can certainly provide an alternative in many countries to increase coverage and quality of services.

  9. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  10. Dynamic Predictions of Crop Yield and Irrigation in Sub-Saharan Africa Due to Climate Change Impacts

    Science.gov (United States)

    Foster-Wittig, T.

    2012-12-01

    The highest damages from climate change are predicted to be in the agricultural sector in sub-Saharan Africa. Agriculture is predicted to be especially vulnerable in this region because of its current state of high temperature and low precipitation and because it is usually rain-fed or relies on relatively basic technologies which therefore limit its ability to sustain in increased poor climatic conditions [1]. The goal of this research is to quantify the vulnerability of this ecosystem by projecting future changes in agriculture due to IPCC predicted climate change impacts on precipitation and temperature. This research will provide a better understanding of the relationship between precipitation and rain-fed agriculture in savannas. In order to quantify the effects of climate change on agriculture, the impacts of climate change are modeled through the use of a land surface vegetation dynamics model previously developed combined with a crop model [2,4]. In this project, it will be used to model yield for point cropland locations within sub-Saharan Africa between Kenya and Botswana with a range of annual rainfall. With this model, future projections are developed for what can be anticipated for the crop yield based on two precipitation climate change scenarios; (1) decreased depth and (2) decreased frequency as well as temperature change scenarios; (3) only temperature increased, (4) temperature increase dand decreased precipitation depth, and (5) temperature increased and decreased precipitation frequency. Therefore, this will allow conclusions to be drawn about how mean precipitation and a changing climate effect food security in sub-Saharan Africa. As an additional analysis, irrigation is added to the model as it is thought to be the solution to protect food security by maximizing on the potential of food production. In water-limited areas such as Sub-Saharan Africa, it is important to consider water efficient irrigation techniques such as demand-based micro-irrigation

  11. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    Science.gov (United States)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  12. Evaluation model development for sprinkler irrigation uniformity ...

    African Journals Online (AJOL)

    use

    Sprinkle and trickle irrigation. The. Blackburn Press, New Jersey, USA. Li JS, Rao MJ (1999). Evaluation method of sprinkler irrigation nonuniformity. Trans. CSAE. 15(4): 78-82. Lin Z, Merkley GP (2011). Relationships between common irrigation application uniformity indicators. Irrig Sci. Online First™, 27 January. 2011.

  13. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    Science.gov (United States)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of

  14. The North Sea contracting industry

    International Nuclear Information System (INIS)

    Wright, P.J.C.

    1996-09-01

    The North Sea Contracting Industry provides in-depth profiles of major contracting organisations including manpower, facilities, expertise, future directions and financial details. It addresses key issues such as: how will the role of operators and contractors change toward 2000 and beyond?; how will the contractor-operator relationship develop?; will the contractors take a more speculative role in projects such as leasing and contract to produce?; does the future belong to broad skilled providers or small specialised niche players, or both?; and how will rapid technological improvements affect the industry? (author)

  15. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    Directory of Open Access Journals (Sweden)

    mohammad saeed tadaion

    2017-12-01

    Full Text Available Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L. cv. Zarde-anar were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carried out in a constant plots and randomized complete block design (RCBD with four replicationsin five years.Treatmentswere 1- full flood irrigation (100 percent crop water requirement (T1 2- flood irrigation with 100 percent crop water requirement as alternate partial root-zone irrigation(every irrigation conducted on one side of tree (T2 3- flood irrigation with 50 percent crop water requirement as regular deficit irrigation (T3 4- full two-side drip irrigation(with regard to crop water requirement (eight drippers with twolit/hour flow by two different individual networks (T4 5- alternate partial root-zone drip irrigation with 100 percent crop water requirement (T5 6- regular deficit drip irrigation with 50 percent crop water requirement (T6 in every irrigation period. Each experimental treatment includes four trees and 96 similar twelve years old trees overall. Cultivation practice was conducted similarly on all of the trees. Results and Discussion: Results showed that the highest yield and water use efficiency based on statistical analysis belong to both PRD treatments i.e. alternate partial root-zone drip irrigation with 100 percent crop water requirement and alternate partial root-zone flood irrigation with 100 percent crop water requirement, respectively, that both of them decreased water requirement for irrigation up to 35 and 50 percent in comparison tocontrol. Application of partial root drying irrigation on both traditional flood irrigation and drip

  16. Transferability Of DEMETER. A Case Study Of The Irrigation Scheme Of Veiga De Chaves

    Science.gov (United States)

    Baptista, A.; Sousa, V.

    2006-08-01

    DEMETER is a research and demonstration project, designed to assess and demonstrate how the integration of Earth Observation techniques in routine Irrigation Advisory Services can improve efficiency in the use of irrigation water. The objectives of this paper are: (1) to analyze the interest in the feasibility of transferring the DEMETER technology to the irrigation scheme of Chaves: (2) to identify the factors that, in general, favour the usefulness of this technology. The irrigation infrastructure and methods, the size and number of irrigation parcels and the main crops grown at the irrigation scheme of Chaves have been recorded. Also a socio-economic description has been done. Field visits, interviews with the staff of water association, and an inquiry to a sample of 107 farmers were made. The main results are: each farmer pays an area based annual fee, independent of the amount of water used for irrigation; most of the irrigated parcels are of very small size, 0.3 ha in average, mostly irrigated by surface methods; the most representative crops grown are potato, forage maize, and several different horticultural crops; an important part of the production is for self-consumption. The farmers are aging and the new generations prefer other jobs than agriculture. A considerable number of farmers have another job in the nearby cities. The small size of the irrigated parcels limits the use of earth observation technologies to expensive high space resolution images. For the time being, farmers do not feel the need for an irrigation advisory service, manly because there is plenty of water which is not bought proportionally to its use. However, circumstances are changing rapidly and, relatively new for the region, environmental concerns related with irrigation, manly nitrate leaching by excess watering of crops prompts the need for an irrigation advisory service in order to maintain crop production with a more rational use of water. The DEMETER technology could be a

  17. 14 CFR 151.47 - Performance of construction work: Letting of contracts.

    Science.gov (United States)

    2010-01-01

    ... Development Projects § 151.47 Performance of construction work: Letting of contracts. (a) Advertising required... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Performance of construction work: Letting... project, each contract for construction work on a project in the amount of more than $2,000 must be...

  18. An Integrated Modeling System for Water Resource Management Under Climate Change, Socio-Economic Development and Irrigation Management

    Science.gov (United States)

    SU, Q.; Karthikeyan, R.; Lin, Y.

    2017-12-01

    Water resources across the world have been increasingly stressed in the past few decades due to the population and economic growth and climate change. Consequently, the competing use of water among agricultural, domestic and industrial sectors is expected to be increasing. In this study, the water stresses under various climate change, socio-economic development and irrigation management scenarios are predicted over the period of 2015-2050 using an integrated model, in which the changes in water supply and demand induced by climate change, socio-economic development and irrigation management are dynamically parameterized. Simulations on the case of Texas, Southwest U.S. were performed using the newly developed integrated model, showing that the water stress is projected to be elevated in 2050 over most areas of Texas, particularly at Northern and Southern Plain and metropolitan areas. Climate change represents the most pronounce factor affecting the water supply and irrigation water demand in Texas. The water supply over East Texas is largely reduced in future because of the less precipitation and higher temperature under the climate change scenario, resulting in an elevated irrigation water demand and thus a higher water stress in this region. In contrast, the severity of water shortage in West Texas would be alleviated in future because of climate change. The water shortage index over metropolitan areas would increase by 50-90% under 1.0% migration scenario, suggesting that the population growth in future could also greatly stress the water supply, especially megacities like Dallas, Houston, Austin and San Antonio. The projected increase in manufacturing water demand shows little effects on the water stress. Increasing irrigation rate exacerbates the water stress over irrigated agricultural areas of Texas.

  19. Colostomy irrigation: are we offering it enough?

    Science.gov (United States)

    Woodhouse, Fran

    This article discusses the use of irrigation for suitable colostomists and reasons why it can have a very positive effect on lifestyle. While it is evidence-based it also includes anecdotal tips from patients who irrigate. The suitability of patients to irrigate and ways to 'get started' with irrigation are discussed.

  20. Decreasing Agricultural Irrigation has not reversed Groundwater Depletion in the Yellow River Basin

    Science.gov (United States)

    Kang, Z.; Xie, X.; Zhu, B.

    2017-12-01

    Agricultural irrigation is considered as the major water use sector accounting for over 60% of the global freshwater withdrawals. Especially in the arid and semiarid areas, irrigation from groundwater storage substantially sustain crop growth and food security. China's Yellow River Basin (YRB) is a typical arid and semiarid area with average annual precipitation about 450 mm. In this basin, more than 52 million hm2 of arable land needs irrigation for planting wheat, cotton, paddy rice etc, and groundwater contributes over one-third irrigation water. However, agricultural irrigation remained a certain level or decreased to some degree due to water-saving technologies and returning farmland to forest projects. Then an interesting question arises: has the groundwater storage (GWS) in YRB kept a consistent variation with the agricultural irrigation? In this study, to address this question, we employed multi-source data from ground measurements, remote sensing monitoring and large-scale hydrological modeling. Specifically, groundwater storage variation was identified using Gravity Recovery and Climate Experiment (GRACE) data and ground observations, and groundwater recharge was estimated based on the Variable Infiltration Capacity (VIC) modeling. Results indicated that GWS in YRB still holds a significant depletion with a rate of about -3 mm per year during the past decade, which was consistently demonstrated by the GRACE and the ground observations. Ground water recharge shows negligible upward trends despite climate change. The roles of different sectors contributing to groundwater depletion have changed. Agricultural irrigation accounting for over 60% of groundwater depletion, but its impact decreased. However, the domestic and the industrial purposes play an increasing role in shaping groundwater depletion.

  1. A scintigraphic study of colostomy irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige (Nara Medical Univ., Kashihara (Japan))

    1991-09-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with {sup 99m}Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author).

  2. A scintigraphic study of colostomy irrigation

    International Nuclear Information System (INIS)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige

    1991-01-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with 99m Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author)

  3. Belene nuclear power plant contracting approach

    International Nuclear Information System (INIS)

    Tankosic, D.; Mignone, O.

    2004-01-01

    Historically, three main types of project execution and contractual approaches have been applied to energy and industrial projects, including nuclear projects. These approaches are grouped into three broad categories: 1) Turnkey Approach; 2) Split Package (Island) Approach; and 3)Multiple Package Approach. Based on a preliminary screening done by an ongoing feasibility study work for NPP Belene (NEK contract to Parsons E and C), the recommended approach is going to follow that general trend i.e., with some variation between the Split Package and the Turnkey approach. Before deciding on an execution approach or at least before issuing bid specifications for the nuclear power plant, it is prudent, even for a country with existing nuclear power program (like Bulgaria), to re-check/verify capabilities of the interested bidders to handle contracts of this size and nature. During the last decades, nuclear energy went through a substantial restructuring and most of the capabilities (human and financial) that existed before are not any more available. This re-checking should mainly cover the experience of the bidders as regards the design, construction and operation of the stations where they were involved, but also include items such as local experience, capability to bring favorable financing, liability coverage, general background, potential and organizational structures. The advantages and disadvantages for the Owner of the three contracting approaches can be briefly summarized as follows: Turnkey Approach - main advantages: all responsibilities rest in a Contractor or Consortium. Main disadvantages - limited project control by Owner and restricted local participation. For Split Package Contract Approach main advantage are more favorable financing conditions and increased local participation. Main disadvantage is the increased interface problems. For Multiple package Contract Approach main advantages are the opportunity to tailor the plant and maximum increase of local

  4. Anatomy of a cogeneration deal : natural gas contracts and regulatory issues

    International Nuclear Information System (INIS)

    Brett, J.T.

    1999-01-01

    The special features of gas contracts for cogeneration projects were discussed. It was recommended that a gas power purchase contract should be entered early in a project development cycle to justify requests for new pipeline facilities. Issues regarding buyer's commitments, market prices, and volumes were also discussed. In the event of failure to deliver, the contract should include provisions which would make it possible to source gas elsewhere, terminate the contract or seek damages. This paper also discussed various pricing provisions in a gas commodity contract, security of supplies, gas transportation arrangements, regulatory considerations, outstanding issues, and IMO (independent market operator) requirements

  5. Raise the management level of EPC contracting in six aspects

    International Nuclear Information System (INIS)

    Wang Baowei; Feng Shoujia

    2010-01-01

    Nuclear power construction develops rapidly today and EPC contracting for nuclear power projects, as a strategic decision of CNNC, has become a tendency. The target of engineering management can be smoothly realized or achieved by doing a good job in the following six aspects: effective communication between divisions of project department, high-degree consistency of managerial concepts for project management staff, clear objective for different divisions in the project department, presence of rules to be observed in construction management work, avoidance of human-initiated errors in the project, and clear distinction of management control concept. It is hoped that, through exchange and practice, management procedures and consciousness for EPC contracting can be further standardized and thus the level of management for EPC contracting will be raised finally. (authors)

  6. Raise the management level of EPC contracting in six aspects

    International Nuclear Information System (INIS)

    Wang Baowei; Feng Shoujia

    2010-01-01

    Nuclear power construction develops rapidly today and EPC contracting for nuclear power projects, as a strategic decision of CNNC, has become a tendency. The target of engineering management can be smoothly realized or achieved by doing a good job in the following six aspects:effective communication between divisions of project department, high-degree consistency of managerial concepts for project management staff, clear objective for different divisions in the project department, presence of rules to be observed in construction management work, avoidance of human-initiated errors in the project, and clear distinction of management control concept. It is hoped that, through exchange and practice, management procedures and consciousness for EPC contracting can be further standardized and thus the level of management for EPC contracting will be raised finally. (authors)

  7. Agricultural irrigated land-use inventory for Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama, 2014

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.

    2015-09-18

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate water use or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas for 2014 within Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama. The irrigated areas were delineated using land-use data and orthoimagery that were then field verified between June and November 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results of the 2014 study indicate that an estimated 31,608 acres were irrigated in Jackson County during 2014. This estimate includes 25,733 acres of field crops, 1,534 acres of ornamentals and grasses (including pasture), and 420 acres of orchards. Specific irrigated crops include cotton (11,759 acres), peanuts (9,909 acres), field corn (2,444 acres), and 3,235 acres of various vegetable (row) crops. The vegetable acreage includes 1,714 acres of which 857 acres were planted with both a spring and fall crop on the same field (double cropped). Overall, groundwater was used to irrigate 98.6 percent of the total irrigated acreage in Jackson County during 2014, whereas surface water and wastewater were used to irrigate the remaining 1.4 percent.

  8. 76 FR 35208 - Pacific Gas and Electric Company; Nevada Irrigation District; Notice of Environmental Site Review

    Science.gov (United States)

    2011-06-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 2310-193--California; Project No. 2266-102--California] Pacific Gas and Electric Company; Nevada Irrigation District; Notice of Environmental Site Review On July 6-8, 2011, the Federal Energy Regulatory Commission (Commission) staff and the Pacific Gas and Electric Company ...

  9. Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration's power marketing alternatives

    International Nuclear Information System (INIS)

    Edwards, B.K.; Flaim, S.J.; Howitt, R.E.; Palmer, S.C.

    1995-03-01

    Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation's irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration's Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western's wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western's power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western's Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage

  10. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India.

    Science.gov (United States)

    Sishodia, Rajendra P; Shukla, Sanjay; Wani, Suhas P; Graham, Wendy D; Jones, James W

    2018-09-01

    Simultaneous effects of future climate and irrigation intensification on surface and groundwater systems are not well understood. Efforts are needed to understand the future groundwater availability and associated surface flows under business-as-usual management to formulate policy changes to improve water sustainability. We combine measurements with integrated modeling (MIKE SHE/MIKE11) to evaluate the effects of future climate (2040-2069), with and without irrigation expansion, on water levels and flows in an agricultural watershed in low-storage crystalline aquifer region of south India. Demand and supply management changes, including improved efficiency of irrigation water as well as energy uses, were evaluated. Increased future rainfall (7-43%, from 5 Global Climate Models) with no further expansion of irrigation wells increased the groundwater recharge (10-55%); however, most of the recharge moved out of watershed as increased baseflow (17-154%) with a small increase in net recharge (+0.2mm/year). When increased rainfall was considered with projected increase in irrigation withdrawals, both hydrologic extremes of well drying and flooding were predicted. A 100-year flow event was predicted to be a 5-year event in the future. If irrigation expansion follows the historical trends, earlier and more frequent well drying, a source of farmers' distress in India, was predicted to worsen in the future despite the recharge gains from increased rainfall. Storage and use of excess flows, improved irrigation efficiency with flood to drip conversion in 25% of irrigated area, and reduced energy subsidy (free electricity for 3.5h compared to 7h/day; $1 billion savings) provided sufficient water savings to support future expansion in irrigated areas while mitigating well drying as well as flooding. Reductions in energy subsidy to fund the implementation of economically desirable (high benefit-cost ratio) demand (drip irrigation) and supply (water capture and storage

  11. Communication between irrigation engineers and farmers : the case of project design in North Senegal

    NARCIS (Netherlands)

    Scheer, S.H.

    1996-01-01

    Introduction

    Irrigation schemes all over the world are often marked by a large number of related problems that have an important human dimension and are too complex to be straightforwardly solved. A starting point of this thesis is that these problems have to be dealt

  12. Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin

    Science.gov (United States)

    Abdella, E. J.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Due to the growing pressure in water resource and climate change there is great uncertainty in the availability of water for existing as well as proposed irrigation and hydropower projects in the Upper Blue Nile basin (longitude 34oE and 39oE and latitude 7oN and 12oN). This study quantitatively assessed the impact of climate change on the hydrological regime of the basin which intern affect water availability for different use including hydropower and irrigation. Ensemble of four bias corrected regional climate models (RCM) of CORDEX Africa domain and two scenarios (RCP 4.5 and RCP 8.5) were used to determine climate projections for future (2021-2050) period. The outputs from the climate models used to drive the calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to simulate future runoff. The simulated discharge were used as input to a Water Evaluation and Planning (WEAP) water allocation model to determine the implication in hydropower and irrigation potential of the basin. The WEAP model was setup to simulate three scenarios which includes Current, Medium-term (by 2025) and Long-term (by 2050) Development scenario. The projected mean annual temperature of the basin are warmer than the baseline (1982 - 2005) average in the range of 1 to 1.4oC. Projected mean annual precipitation varies across the basin in the range of - 3% to 7%, much of the expected increase is in the highland region of the basin. The water use simulation indicate that the current annual average irrigation water demand in the basin is 1.29Bm3y-1 with 100% coverage. By 2025 and 2050, with the development of new schemes and changing climate, water demand for irrigation is estimated to increase by 2.5 Bm3y-1 and 3.4 Bm3y-1 with 99 % and 96% coverage respectively. Simulation for domestic water demand coverage for all scenarios shows that there will be 100% coverage for the two major cities in the basin. The hydropower generation simulation indicate that 98% of hydroelectricity

  13. FACTORS INFLUENCING THE ACCURACY OF PRE-CONTRACT STAGE ESTIMATION OF FINAL CONTRACT PRICE IN NEW ZEALAND

    Directory of Open Access Journals (Sweden)

    Cong Ji

    2014-12-01

    Full Text Available Establishing and prioritising the factors that may influence the final contract price when responding to a call for tenders is crucial for proper risk analysis and reliable forecasting; it could make or mar the ability to achieve expected profit margin in an era of lump sum fixed price contracts where clients often contest variation claims. In New Zealand, these factors have not been researched; hence estimators rely only on judgement to ‘guess-estimate’ in their price forecasting. This study aimed to fill the knowledge gap by investigating the priority factors. 150 responses from professional members of the New Zealand Institute of Quantity Surveyors were analysed using multi-attribute method. Results showed thirty-seven factors which could influence the final contract price; the three most influential being poor tender documentation, complexity of design & construction, and completeness of project information. Other factors relating to project, client and contractor characteristics, design consultants and tendering conditions, estimating practice and external factors were reported. Concordance analysis indicated high level of agreement amongst survey participants in the rank-ordering of the relative importance of the identified factors. The findings could assist quantity surveyors to prepare more reliable contract price estimates at the pre-contract stage. It would also improve construction-stage cost control.

  14. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability

  15. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  16. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  17. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  18. Colonic irrigation for defecation disorders after dynamic graciloplasty.

    Science.gov (United States)

    Koch, Sacha M; Uludağ, Ozenç; El Naggar, Kadri; van Gemert, Wim G; Baeten, Cor G

    2008-02-01

    Dynamic graciloplasty (DGP) improves anal continence and quality of life for most patients. However, in some patients, DGP fails and fecal incontinence is unsolved or only partially improved. Constipation is also a significant problem after DGP, occurring in 13-90%. Colonic irrigation can be considered as an additional or salvage treatment for defecation disorders after unsuccessful or partially successful DGP. In this study, the effectiveness of colonic irrigation for the treatment of persistent fecal incontinence and/or constipation after DGP is investigated. Patients with defecation disorders after DGP visiting the outpatient clinic of the University Hospital Maastricht were selected for colonic irrigation as additional therapy or salvage therapy in the period between January 1999 and June 2003. The Biotrol(R) Irrimatic pump or the irrigation bag was used for colonic irrigation. Relevant physical and medical history was collected. The patients were asked to fill out a detailed questionnaire about colonic irrigation. Forty-six patients were included in the study with a mean age of 59.3 +/- 12.4 years (80% female). On average, the patients started the irrigation 21.39 +/- 38.77 months after the DGP. Eight patients started irrigation before the DGP. Fifty-two percent of the patients used the irrigation as additional therapy for fecal incontinence, 24% for constipation, and 24% for both. Irrigation was usually performed in the morning. The mean frequency of irrigation was 0.90 +/- 0.40 times per day. The mean amount of water used for the irrigation was 2.27 +/- 1.75 l with a mean duration of 39 +/- 23 min. Four patients performed antegrade irrigation through a colostomy or appendicostomy, with good results. Overall, 81% of the patients were satisfied with the irrigation. Thirty-seven percent of the patients with fecal incontinence reached (pseudo-)continence, and in 30% of the patients, the constipation completely resolved. Side effects of the irrigation were

  19. Wartime Construction Project Outcomes as a Function of Contract Type

    Science.gov (United States)

    2016-07-01

    contract types has been well established. The theory of contractual incentives promulgated by Sherer (1964) established expected contractor...behaviors using a max- imization problem. The theory focuses on expected contractor behaviors in incentive contracts (cf. Federal Acquisition Regulation...Scherer, F. M. (1964). The theory of contractual incentives for cost reduction. Quarterly Journal of Economics, 78, 257–280. Tawazuh Commercial and

  20. Balancing water scarcity and quality for sustainable irrigated agriculture

    Science.gov (United States)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  1. The Impact of Regular and Periodic Irrigation on the Fertility and Productivity of an Ordinary Chernozem of the Azov Irrigation System

    Science.gov (United States)

    Shchedrin, V. N.

    2016-02-01

    The effect of regular and periodic irrigation on the fertility and productivity of an ordinary chernozem cultivated under different conditions within the same cereal-fodder crop rotation is discussed. The investigation object is located in the area of the Azov irrigation system on the second terrace of the Don River in Rostov oblast. Irrigation water for the system is taken from the Veselovsk water reservoir. Its salinity is 1.7-2.1 g/dm3, and the salt composition is sulfate-sodium. The field experiments were performed in 2006-2013 on three experimental plots. Two of them were regularly irrigated; the third plot was periodically irrigated with alternation of 2-year-long periods with and without irrigation. Our study proved that periodic irrigation could be applied in the chernozemic zone. This new irrigation mode contributes to the preservation of the natural soil-forming process and stops the development of unfavorable processes typical of the lands irrigated with water of inadequate quality. In eight years of cultivation of the ordinary chernozem with periodic irrigation, the soil humus content increased by 10% (from 3.80 to 4.15%), and the yield reached 66.0 t/ha of fodder units. This was 9% higher than the yield obtained upon regular irrigation without agroameliorative measures and 12% lower than the yield upon regular irrigation in combination with soil-protective measures. Our data suggest that periodic irrigation is promising for the chernozemic zone, because it ensures lower water loads and preservation of the irrigated chernozems.

  2. Factors Affecting the Ability of Agriculture to Pay Irrigation-Water Costs

    Energy Technology Data Exchange (ETDEWEB)

    Hagood, M. A. [Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome (Italy)

    1967-11-15

    There are no universally acceptable standard criteria for determining how much agriculture can pay for irrigation water. Justification of cost will depend upon the country's need to develop its soil and water resources for food, for international trade, and for its cumulative effect on other industries in comparison with other possible uses and their over-all contributions to the economy. Social and political conditions often have as much or more influence on development cost decisions than do strictly economic analyses. Many studies indicate that US $0.10/1000 US gal is an upper limit of acceptable costs for developing irrigation water at present economic levels. Under private development and on projects where water users must pay total water costs, methods are available for making feasibility budgets based on present prices. Because of inflation, world food shortage, recessions, future population and other unknown factors, it is hazardous to predict how much farmers or agriculture can pay for irrigation water. Better utilization of water available now offers opportunities for ''developing'' sources at costs much less than those for sources such as sea-water conversion. (author)

  3. 21 CFR 876.5895 - Ostomy irrigator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food... DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator. (a) Identification. An ostomy irrigator is a device that consists of a container for fluid, tubing with a cone-shaped...

  4. Hydrochemical assessment of groundwater used for irrigation in Rumphi and Karonga districts, Northern Malawi

    Science.gov (United States)

    Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Ambrose

    Irrigation water quality is an essential component of sustainable agriculture. Irrigation water quality concerns have often been neglected over concerns of quantity in most irrigation projects in Malawi. In this study, a hydrochemical assessment of groundwater was carried out to characterize, classify groundwater and evaluate its suitability for irrigation use in Karonga and Rumphi districts, Northern Malawi. Groundwater samples were collected during wet (January-April 2011) and dry (July-September 2011) seasons from 107 shallow wells and boreholes drilled for rural water supply using standard sampling procedures. The water samples were analysed for pH, major ions, total dissolved solids and electrical conductivity (EC), using standard methods. Multivariate chemometric (such as Kruskal Wallis test), hydrographical methods (i.e. Piper diagram) and PHREEQC geochemical modelling program were used to characterise the groundwater quality. Electrical conductivity, percentage sodium ion (% Na+), residual sodium carbonate (RSC), total dissolved solids (TDS), sodium adsorption ratio (SAR), Kelly’s ratio (KR) and permeability index (PI) were used to evaluate the suitability of water for irrigation. It was established that groundwater is neutral to alkaline and mostly freshwater (TDS management is suggested for sustainable development of the water resources for better plant growth, long-term as well as maintaining human health in the study area.

  5. Cokriging of Electromagnetic Induction Soil Electrical Conductivity Measurements and Soil Textural Properties to Demarcate Sub-field Management Zones for Precision Irrigation.

    Science.gov (United States)

    Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.

    2017-12-01

    There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each

  6. Utility Energy Services Contracts Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    This document describes best practices in the use of Utility Energy Services Contracts. The recommendations were generated by a group of innovative energy managers in many successful projects. The topics include project financing, competition between utility franchises, and water conservation.

  7. Energy Savings Performance Contract Energy Sales Agreement Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    FEMP developed the Energy Savings Performance Contracting Energy Sales Agreement (ESPC ESA) Toolkit to provide federal agency contracting officers and other acquisition team members with information that will facilitate the timely execution of ESPC ESA projects.

  8. Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA

    Science.gov (United States)

    The use of irrigation scheduling tools to produce cotton under-surface irrigation in the arid southwesternUSA is minimal. In the State of Arizona, where traditional irrigation scheduling is the norm, producersuse an average of 1460 mm annually to grow a cotton crop. The purpose of this paper was to ...

  9. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes

    DEFF Research Database (Denmark)

    Jensen, Christian Richardt; Battilano, Adriano; Plauborg, Finn

    2010-01-01

    Agriculture is a big consumer of fresh water in competition with other sectors of the society. Within the EU-project SAFIR new water-saving irrigation strategies were developed based on pot, semi-field and field experiments with potatoes (Solanum tuberosum L.), fresh tomatoes (Lycopersicon escule...

  10. Rational use of water in trickle irrigation design.

    Science.gov (United States)

    Saad, J. C. C.; da Silva Junior, H. M.

    2012-04-01

    In trickle irrigation systems, the design is based on the pre-established emission uniformity (EU) which is the combined result of the equipment characteristics and its hydraulic configuration. However, this desired value of the EU may not be confirmed by the final project (in field conditions) and neither by the yield uniformity. However, the most important is to assure yield uniformity with rational use of water. The hypotheses of this research were: a) the EU of a trickle irrigation system at field conditions is equal to the emission uniformity pre-established in the design; b) EU has always the lowest value when compared with other indicators of uniformity; c) the discharge variation coefficient is not equal to production variation coefficient in the operational unit; d) the productivity variation coefficient is more dependent on water depth applied than the EU. This study aimed to evaluate the relationships among EU used in the irrigation system design, water depth applied and the final yield uniformity. The uniformity indicators evaluated were: EU, distribution uniformity (UD) and the index proposed by Barragan & Wu (2005). They were compared estimating the performance of a trickle irrigation system applied in a citrus orchard with dimensions of 400m x 600m. The design of the irrigation system was optimized by a Linear Programming model. The tree rows were leveled in the larger direction and the spacing adopted in the orchard was 7m x 4m. The manifold line was always operating on a slope condition. The sensitivity analysis involved different slopes, 0, 3, 6, 9 and 12%, and different values of emission uniformity, 60, 70, 75, 80, 85, 90 and 94%. The citrus yield uniformity was evaluated by the variation coefficient. The emission uniformity (EU) after design differed from the EU pre-established, more sharply in the initial values lower than 90%. Comparing the uniformity indexes, the EU always generated lower values when compared with the UD and with the index

  11. Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia

    Directory of Open Access Journals (Sweden)

    Sobri Harun

    2012-04-01

    Full Text Available Evapotranspiration (ET is a complex process in the hydrological cycle that influences the quantity of runoff and thus the irrigation water requirements. Numerous methods have been developed to estimate potential evapotranspiration (PET. Unfortunately, most of the reliable PET methods are parameter rich models and therefore, not feasible for application in data scarce regions. On the other hand, accuracy and reliability of simple PET models vary widely according to regional climate conditions. The objective of the present study was to evaluate the performance of three temperature-based and three radiation-based simple ET methods in estimating historical ET and projecting future ET at Muda Irrigation Scheme at Kedah, Malaysia. The performance was measured by comparing those methods with the parameter intensive Penman-Monteith Method. It was found that radiation based methods gave better performance compared to temperature-based methods in estimation of ET in the study area. Future ET simulated from projected climate data obtained through statistical downscaling technique also showed that radiation-based methods can project closer ET values to that projected by Penman-Monteith Method. It is expected that the study will guide in selecting suitable methods for estimating and projecting ET in accordance to availability of meteorological data.

  12. Integrated project management type contracts

    International Nuclear Information System (INIS)

    Heisler, S.I.

    1975-01-01

    The concept of integrated project management represents a single source to which the owner can turn for all project management functions excepting for those relating to outside parties such as site purchase, personnel selection etc. Other functions such as design, procurement, construction management, schedule and cost control, quality assurance/quality control are usually handled by the integrated project manager as the agent of the owner. The arrangement is flexible and the responsibilities can be varied to suit the size and experience of the owner. Past experience in the United States indicates an increase in the trend toward IPM work and it appears that overseas this trend is developing also. (orig./RW) [de

  13. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Science.gov (United States)

    2010-07-27

    ... to the Turlock Irrigation District's Tuolumne Substation; (2) 23-mile-long, 69-kV Don Pedro-Hawkins Line extending from the Don Pedro switchyard to the Turlock Irrigation District's Hawkins Substation...

  14. 48 CFR 1552.237-70 - Contract publication review procedures.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Contract publication review... journal article to the Project Officer, and one copy to the Contracting Officer. (d) If the Government has... AGENCY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses...

  15. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  16. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  17. LEGAL PRINCIPLES IN FUNCTION AND PERFORMANCE OF BOT CONTRACT

    Directory of Open Access Journals (Sweden)

    Reifon Cristabella Eventia

    2017-09-01

    Full Text Available Build, Operate and Transfer (BOT represents a long term partnership of the government and private sector. In BOT project, either the government or a private sector identifies a need for a development project. The philosophy in BOT contract begins from the increasing infrastructural needs in all areas and with a limited budget, government are required to commit the duties and functions state governance so that the concept of BOT give a solution through a partnership with the private sector. The government then gives a concession to the private sector to build the project and operate it for a fixed period years, after the period ended, the building shall be transferred to the government. Through BOT, the country is able to gain asset without government spending while maintaining a measure of regulatory control over the project. BOT permits the government to use private sector fund to finance public infrastructure development. The main issues elaborated in this article are the legal principle in the formation of BOT contract and the legal principle in the performance of BOT contract. There are two results; firstly, in the formation of a BOT contract, the principles of partnership and the principle of transparency should be emphasized. Secondly, in performance of the BOT contract, the principle of risk management and the principle of proportionality should be clearly stated in the rules and legal norms.

  18. Contract policy for CERN staff members

    CERN Multimedia

    HR Department

    2009-01-01

    Public information meeting on Monday 28 September 2009 at 10.00 a.m. With effect from 1 August 2009, new provisions regarding staff employment contract policy have entered into force. These provisions are set out in: The Staff Rules and Regulations and Administrative Circular No. 2 (Rev. 4). Further details are available in: Frequently Asked Questions. The new provisions are outlined below: Limited-duration contracts From 1 August 2009, limited-duration contracts will be awarded for a maximum period of five years (instead of four years previously) and no extensions beyond five years will be granted. Contracts for periods shorter than five years can be exceptionally awarded, e.g. for a project whose mission or financial resources are time-limited. Indefinite contracts : award procedure A number of changes have been introduced regarding the procedure for the award of indefinite contracts. From now on, posts leading to the award of an indefinite contract will be opened at le...

  19. Changes in soil aggregate stability under different irrigation doses of waste water

    Science.gov (United States)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    increasing. A study in the medium or long-term is necessary to continue to ascertain the impact on soil of the irrigation and to assess the feasibility of using these waters in this type of soil. Aknowledgements: This research was supported by the Water Reuse project (Reference STREP- FP6-2003-INCO-Russia+NIS-1. PL 516731). A. Morugán acknowledge the grants from 'Caja Mediterraneo'. The authors also acknowledge the "Biar waste water treatment station", 'Entidad pública de saneamiento de aguas residuales de la Comunidad Valenciana' and "Proaguas Costablanca" for the collaboration and to Frances Young for improving the English.

  20. Uncertainties in modelling the climate impact of irrigation

    Science.gov (United States)

    de Vrese, Philipp; Hagemann, Stefan

    2017-11-01

    Irrigation-based agriculture constitutes an essential factor for food security as well as fresh water resources and has a distinct impact on regional and global climate. Many issues related to irrigation's climate impact are addressed in studies that apply a wide range of models. These involve substantial uncertainties related to differences in the model's structure and its parametrizations on the one hand and the need for simplifying assumptions for the representation of irrigation on the other hand. To address these uncertainties, we used the Max Planck Institute for Meteorology's Earth System model into which a simple irrigation scheme was implemented. In order to estimate possible uncertainties with regard to the model's more general structure, we compared the climate impact of irrigation between three simulations that use different schemes for the land-surface-atmosphere coupling. Here, it can be shown that the choice of coupling scheme does not only affect the magnitude of possible impacts but even their direction. For example, when using a scheme that does not explicitly resolve spatial subgrid scale heterogeneity at the surface, irrigation reduces the atmospheric water content, even in heavily irrigated regions. Contrarily, in simulations that use a coupling scheme that resolves heterogeneity at the surface or even within the lowest layers of the atmosphere, irrigation increases the average atmospheric specific humidity. A second experiment targeted possible uncertainties related to the representation of irrigation characteristics. Here, in four simulations the irrigation effectiveness (controlled by the target soil moisture and the non-vegetated fraction of the grid box that receives irrigation) and the timing of delivery were varied. The second experiment shows that uncertainties related to the modelled irrigation characteristics, especially the irrigation effectiveness, are also substantial. In general the impact of irrigation on the state of the land

  1. Analysis of Groundwater Resources Vulnerability from Agricultural Activities in the Large Irrigation District along the Yellow River

    OpenAIRE

    He, Bin; Oki, Taikan; Kanae, Shinjiro; Runkle, Benjamin; Liang, Xu; Zeng, Ayan; Hao, Fanghua

    2008-01-01

    Groundwater forms an important source of water supply in arid and semi-arid region. Optimum conjunctive utilization of surface and groundwater resources has become extremely important to fill the gap between water demand and supply. Hetao Irrigation District (HID) is the largest irrigation district along the Yellow River and its groundwater table is shallow. The project of Water Saving Reconstruction (WSR) has been conducted for the purpose of keeping the Yellow River free from drying up. The...

  2. Climate model performance and change projection for freshwater fluxes: Comparison for irrigated areas in Central and South Asia

    Directory of Open Access Journals (Sweden)

    Shilpa M. Asokan

    2016-03-01

    Full Text Available Study region: The large semi-arid Aral Region in Central Asia and the smaller tropical Mahanadi River Basin (MRB in India. Study focus: Few studies have so far evaluated the performance of the latest generation of global climate models on hydrological basin scales. We here investigate the performance and projections of the global climate models in the Coupled Model Intercomparison Project, Phase 5 (CMIP5 for freshwater fluxes and their changes in two regional hydrological basins, which are both irrigated but of different scale and with different climate. New hydrological insights for the region: For precipitation in both regions, model accuracy relative to observations has remained the same or decreased in successive climate model generations until and including CMIP5. No single climate model out-performs other models across all key freshwater variables in any of the investigated basins. Scale effects are not evident from global model application directly to freshwater assessment for the two basins of widely different size. Overall, model results are less accurate and more uncertain for freshwater fluxes than for temperature, and particularly so for model-implied water storage changes. Also, the monsoon-driven runoff seasonality in MRB is not accurately reproduced. Model projections agree on evapotranspiration increase in both regions until the climatic period 2070–2099. This increase is fed by precipitation increase in MRB and by runoff water (thereby decreasing runoff in the Aral Region. Keywords: CMIP5 global climate models, Hydro-climate, Freshwater change, Central Asia, South Asia, Monsoon driven seasonality

  3. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  4. Evaluation some Forage Legumes in Limited Irrigation Condition

    Directory of Open Access Journals (Sweden)

    Hassan Moniri Far

    2015-11-01

    Full Text Available Forage legumes respond differently to limited irrigation regimes. Their evaluation may, thus, help to select drought tolerant types for limited irrigation conditions. In this study four type of forage legume were studied for two years in Tikma-Dash Research Station of East Azarbaijan Agricultural and Natural Research Center, Tabriz, Iran, in a randomized complete block design using split-plot experiment in 2011-2013 years. Irrigation regimes (without irrigation, one irrigation and two irrigations were assigned to main plots and four forage types (hairy vetch, grass pea, Pannonica sativa and lathyrus were assigned to subplots. The results of analysis of variance showed that the effect of irrigation on plant height, number of shoots, leaf area and plant fresh and dry weights were not significant. Howere, legume types affected these traits significantly (P≤0.01. The effect of irrigation levels and legume types on protein content of hay were significant (P

  5. Improved methods for irrigation and planting of major crops in waterlogged areas

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Raoof, A.

    2002-01-01

    The improved irrigation methods for wheat and cotton were evaluated in the fordwah Eastern Sadigia (South) Irrigation and Drainage Project area, during 1996-97 and 1997-98 cropping seasons, under three water table depths. Irrigation methods for wheat included 70, 95 and 120 cm Beds, with Flat Basin, as a check for comparative evaluation. Cotton had Ridge-planting on the top and side, Bed and Furrow, and Flat Basin as control. These irrigation methods were compared at water table depths of < 1 m, 1-2 and 2-3 m. The wheat variety inqalab-91, and cotton cultivar, CIM-109, were planted during the 3rd week of November and May every year. All the inputs and management practices, such as seed-rate, fertilizer, seeding method, weed control, plant-protection measures, etc. were kept common. The results on cotton indicated maximum water-use efficiency with the Bed and Furrow Method of irrigation Followed by ridge planting. The traditional Flat-planting had the lowest yield and the highest water-consumption, resulting in the minimum water-use efficiency. In harmony with cotton, the Flat Method of planting had maximum water-consumption. For wheat crop, the water-use efficiency was in descending order, with 120, 95 and 70 cm for Bed and Flat Methods. Bed planting of 95 cm had a fairly high water-use efficiency and yields were more were more comparable than Flat planting. This method had a high level of adaptabilities, especially when the groundwater was close to the root-zone and higher possibilities, especially when the groundwater was close to the root-zone and higher possibility of crop-submergence are existent during rainy spells. The results of the investigation strongly favoured the Bed and furrow methods to irrigate cotton and wheat. However, under well-drained soil conditions, Bed planting of wheat is not recommended. (author)

  6. Smart Irrigation From Soil Moisture Forecast Using Satellite And Hydro -Meteorological Modelling

    Science.gov (United States)

    Corbari, Chiara; Mancini, Marco; Ravazzani, Giovanni; Ceppi, Alessandro; Salerno, Raffaele; Sobrino, Josè

    2017-04-01

    Increased water demand and climate change impacts have recently enhanced the need to improve water resources management, even in those areas which traditionally have an abundant supply of water. The highest consumption of water is devoted to irrigation for agricultural production, and so it is in this area that efforts have to be focused to study possible interventions. The SIM project funded by EU in the framework of the WaterWorks2014 - Water Joint Programming Initiative aims at developing an operational tool for real-time forecast of crops irrigation water requirements to support parsimonious water management and to optimize irrigation scheduling providing real-time and forecasted soil moisture behavior at high spatial and temporal resolutions with forecast horizons from few up to thirty days. This study discusses advances in coupling satellite driven soil water balance model and meteorological forecast as support for precision irrigation use comparing different case studies in Italy, in the Netherlands, in China and Spain, characterized by different climatic conditions, water availability, crop types and irrigation techniques and water distribution rules. Herein, the applications in two operative farms in vegetables production in the South of Italy where semi-arid climatic conditions holds, two maize fields in Northern Italy in a more water reach environment with flood irrigation will be presented. This system combines state of the art mathematical models and new technologies for environmental monitoring, merging ground observed data with Earth observations. Discussion on the methodology approach is presented, comparing for a reanalysis periods the forecast system outputs with observed soil moisture and crop water needs proving the reliability of the forecasting system and its benefits. The real-time visualization of the implemented system is also presented through web-dashboards.

  7. Optimization of modern irrigation for biosaline agriculture

    International Nuclear Information System (INIS)

    Shahid, S.A.; Hasbini, B.

    2007-01-01

    Supplementation water is a must to offset the water requirement to produce profitable crops in most arid and semiarid zones, where fresh water resources are insufficient to meet the pressure of irrigated agriculture. This necessitates the use of poor quality water resources. These waters if not properly managed and used can cause serious soil related problems (salinity, sodicity, destruction of soil structure) in addition to decline in crop yields. Biosaline agriculture (using saline water on saline soils to grow salt-tolerant crops) becomes the only option for the farmer when both soil and water resources are saline and the water resource is scarce. In this regards key design considerations must be taken into account when irrigating with salty waters to optimize water uses and to reduce subsequent soil salinity development. Sprinkler irrigation systems are commonly used in irrigation of large-scale irrigational production systems. However they tend to concentrate salts on the leaves of plants. For this reason discharge and degree of overlap between consecutive sprinkler heads, are key design parameters when applying salty waters. Trickle irrigation is the most efficient system and is gaining importance in the GCC countries in the agriculture and landscape irrigation. The objective of this study was to optimize modern irrigation systems through development of design standards for drip (emitters spacing) and sprinkler irrigation systems (single head jet and overlapping) by applying saline water. The effect of emitter spacing (drip) and overlapping (sprinkler) were tested for the formation of salt contours in soil. The leaching ratio (LR) is the overall soil sanity within rhizosphere divided by the average irrigation water salinity. In this study LR is used to evaluate the effectiveness of irrigation systems in developing soil sanity. From the present investigations it is concluded that when using saline water for irrigation, the soil sanity development can be

  8. Mechanisms of basin-scale nitrogen load reductions under intensified irrigated agriculture.

    Directory of Open Access Journals (Sweden)

    Rebecka Törnqvist

    Full Text Available Irrigated agriculture can modify the cycling and transport of nitrogen (N, due to associated water diversions, water losses, and changes in transport flow-paths. We investigate dominant processes behind observed long-term changes in dissolved inorganic nitrogen (DIN concentrations and loads of the extensive (465,000 km2 semi-arid Amu Darya River basin (ADRB in Central Asia. We specifically considered a 40-year period (1960-2000 of large irrigation expansion, reduced river water flows, increased fertilizer application and net increase of N input into the soil-water system. Results showed that observed decreases in riverine DIN concentration near the Aral Sea outlet of ADRB primarily were due to increased recirculation of irrigation water, which extends the flow-path lengths and enhances N attenuation. The observed DIN concentrations matched a developed analytical relation between concentration attenuation and recirculation ratio, showing that a fourfold increase in basin-scale recirculation can increase DIN attenuation from 85 to 99%. Such effects have previously only been observed at small scales, in laboratory experiments and at individual agricultural plots. These results imply that increased recirculation can have contributed to observed increases in N attenuation in agriculturally dominated drainage basins in different parts of the world. Additionally, it can be important for basin scale attenuation of other pollutants, including phosphorous, metals and organic matter. A six-fold lower DIN export from ADRB during the period 1981-2000, compared to the period 1960-1980, was due to the combined result of drastic river flow reduction of almost 70%, and decreased DIN concentrations at the basin outlet. Several arid and semi-arid regions around the world are projected to undergo similar reductions in discharge as the ADRB due to climate change and agricultural intensification, and may therefore undergo comparable shifts in DIN export as shown here

  9. Ancestral irrigation method by kanis in Bolivia

    Science.gov (United States)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  10. 48 CFR 31.201-7 - Construction and architect-engineer contracts.

    Science.gov (United States)

    2010-10-01

    ...-engineer contracts. 31.201-7 Section 31.201-7 Federal Acquisition Regulations System FEDERAL ACQUISITION... Organizations 31.201-7 Construction and architect-engineer contracts. Specific principles and procedures for... architect-engineer contracts related to construction projects, are in 31.105. The applicability of these...

  11. Converting Surface Irrigation to Pressurized Irrigation Systems and its Effecton Yield of OrangeTrees (Case Study:North of Khouzestan

    Directory of Open Access Journals (Sweden)

    M. Khorramian

    2017-01-01

    Full Text Available Introduction: North of the Khouzestan is one of the most important citrus production center. Usually border irrigation is used to irrigate citrus in this area. This system has generally low application efficiency. Several investigations in other arid region have demonstrated in addition to improved irrigation efficiency with low-volume pressurized irrigation systems, citrus trees have adapted with these new irrigation systems. However limited information exists on the performance of mature orchards converted from border surface irrigation to pressurized irrigation systems. Therefore, the current research was conducted to evaluate the feasibility of converting surface irrigation to pressurized irrigation systems on mature citrus trees in climate conditions of North Khouzestan. Materials and Methods: This study was conducted during three years at Safiabad Agricultural Research Center to evaluate the yield of citrus trees and the quality of fruits for two Marss and Valencia varieties which grow 7 years previously with surface irrigation and converted to pressurized irrigation systems. The treatments consisted of six irrigation methods including Overhead sprinkle irrigation (OHSI, Under tree sprinkle irrigation(UTSI, Trickle irrigation(TI(six 8 L/h Netafim emitters, Microjet irrigation (MI(two 180 microjet were located under canopy near of the trunk at opposite sides of trunk,Bubbler irrigation(BI(a single located under the canopy of each treeandSurface irrigation(SI method.Soil texture was clay loam well drained without salinity(ECe=0.69ds m-1, with 1.25 percent organic carbon. The experimental design was completely randomized design. The trees were irrigated during spring and summer seasons. For calculating irrigation water depth in TI, MI and BI systems, daily evaporation from a class A evaporation pan of the Safiabad weather station (nearby the experimental field was collected, and evapotranspiration of the citrus trees was calculated applying a

  12. Group contractions in quantum field theory

    International Nuclear Information System (INIS)

    Concini, C. De; Vitiello, G.

    1979-01-01

    General theorems are given for SU(n) and SO(n). A projective geometry argument is also presented with disclosure of the occurrence a group contraction mechanism as a geometric consequence of spontaneous breakdown of symmetry. It is also shown that a contraction of the conformal group gives account of the number of degrees of freedom of an n-pseudoparticle system in an Euclidean SU(2) gauge invariant Yang-Mills theory, in agreement with the result obtained by algebraic geometry methods. Low-energy theorems and ordered states symmetry patterns are observable manifestations of group contractions. These results seem to support the conjecture that the transition from quantum to classical physics involves a group contraction mechanism. (author)

  13. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  14. Comparative efficiency of trickle and furrow irrigation

    International Nuclear Information System (INIS)

    Hanif, M.; Qureshi, R.H.; Sandhu, G.R.

    1976-01-01

    Comparison of furrow and trickle methods of irrigation to know their relative efficiency with respect to water applied and fertilizer used on tomatoes, cauliflower and lettuce as test crops using canal water, showed a significant saving of about 44 and 41 per cent respectively for irrigation water and fertilizer applied with trickle as compared to furrow irrigation. Trickle irrigated crops also showed a better response as regards the rate of survival, crop growth and time of maturity

  15. Complete Instruction and Project Book for Contracting. A Library Cooperation Tool.

    Science.gov (United States)

    Radcliffe, Walter H.; Kemper, Robert E.

    An important tool for establishing efficient total library service is contracting, which allows a unit of government or a library to obtain the use of the resources of another library according to its specific needs. A contract can cover services to be purchased, financial arrangements, administrative responsibilities, legal considerations, and…

  16. 25 CFR 173.2 - Project engineer's authority.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Project engineer's authority. 173.2 Section 173.2 Indians... LANDS WITHDRAWN OR ACQUIRED IN CONNECTION WITH INDIAN IRRIGATION PROJECTS § 173.2 Project engineer's authority. The project engineer is the official charged with the responsibility for the enforcement of this...

  17. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA

    Science.gov (United States)

    Lauffenburger, Zachary H.; Gurdak, Jason J.; Hobza, Christopher M.; Woodward, Duane; Wolf, Cassandra

    2018-01-01

    Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains

  18. Effect of Irrigation Regimes on Yield of Two Commercial Varieties of Pomegranate in the Climatic Condition in Yazd

    Directory of Open Access Journals (Sweden)

    ali bafkar

    2017-02-01

    Full Text Available Introduction: The maximum water efficiency and water productivity of the agricultural sector is one of the most important and effective ways to deal with the water crisis and mitigate the effects of drought. Therefore, scientific and practical agricultural water productivity in terms of planning and development must be followed. Local or drip irrigation systems supply some of the moist around the roots and the plant uses the moisture in the soil. Irrigation systems and irrigation scheduling affect water uptake by plants. Matrials and Methods: In order to evaluate the effect of irrigation on the yield of 4-year-old pomegranate trees with local irrigation system (Bubbler in sandy loam soil with bulk density 1.15 grams per cubic centimeter a research was performed in Agriculture and Natural Resources Research Center of Yazd province with an altitude of 1230 meters . The region has an arid climate with 51 mm average annual rainfall and average annual temperature of 20 ° C, which is located 10 kilometers from the center of the city of Yazd. This project was designed in a factorial experiment with a randomized complete block with three irrigation regimes I1, I2, I3, including irrigation (FC100%, 25% of deficit irrigation (FC75% and 50 percent deficit irrigation (FC50% on two commercial cultivars of pomegranates, which have been growing at 3 × 4 with three replications. To prevent penetration of water per tree, plots adjacent to each block strip (three meters between rows and between plants within one and a half meters without irrigation tape were used as a guard. Trees around the pool shaped a rectangular building with a flow rate of 96 liters per hour for each tree using Bubbler system. The use of such a system with high flow rate, suitability and cost of such a system in orchards and vineyards, water supply reduces energy consumption in a tree in a short time. To prevent clogging of the filter, disc dropper was used at the beginning of the project

  19. Research on the energy-saving and revenue sharing strategy of ESCOs under the uncertainty of the value of Energy Performance Contracting Projects

    International Nuclear Information System (INIS)

    Qian, Dong; Guo, Ju’e

    2014-01-01

    Under the uncertainty of the value of Energy Performance Contracting Projects (EPCPs), this paper develops a revenue-sharing bargaining model between an Energy Service Company (ESCO) and an Energy-Using Organization (EU). Based on the model the paper analyzes the impacts of energy prices, risk-adjusted discount rates and accidents on the ESCO’s bargaining strategies. The research shows that the greater the probability of adverse circumstances is, the higher is the revenue share (of the EU), and the more disadvantageous is the ESCO’s position in the game. Furthermore, we design a forecast–commitment contract between an ESCO and an EU and analyze the optimal product’s energy savings commitment strategy of the ESCO to cope with uncertain energy savings and contract risk. The research illustrates that by introducing penalties and commitments, the contract can eliminate the impact of the uncertain energy savings on the contract execution to a certain extent; when the EU takes a greater commitment risk, the ESCO is willing to provide a higher commitment, thus enhancing the strategy value of the bilateral relationship and reducing the contract risk. Finally, the policy recommendations about improving shared savings contract standard, third-party energy savings measurement and verification mechanism and arbitration mechanism of EPCs are provided. - Highlights: • We provide a method for determining the revenue-sharing bargaining strategy space in a finite bargaining game of the ESCO. • The increase of the probability of adverse circumstances will increase the revenue share (of the EU). • We design a forecast–commitment contract between an ESCO and an EU. • The forecast–commitment contract can eliminate the impact of the uncertain energy savings on the contract execution to a certain extent. • When the EU takes a greater commitment risk, the ESCO is willing to provide a higher commitment

  20. Dual permeability soil water dynamics and water uptake by roots in irrigated potato fields

    DEFF Research Database (Denmark)

    Dolezal, Frantisek; Zumr, David; Vacek, Josef

    2007-01-01

    Water movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland...

  1. Energy performance of sprinkler irrigated maize, wheat and sunflower in Vigia irrigation district

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Sandra; Rodrigues, Goncalo Caleia; Paredes, Paula; Pereira, Luis S. [Centro de Engenharia dos Biossistemas (CEER/ISA), Lisboa (Portugal)], E-mail: lspereira@isa.utl.pt

    2008-07-01

    The energy potential of a crop may be evaluated through life cycle assessment methodologies. These refer to the computation of the crop's energy balance and other related indicators, such as the energy ratio and the energetic efficiency, that may be used as to assess how a given irrigated crop may be used for production of biofuel. This study concerns sprinkler irrigated sunflower, wheat and maize crops using data relative to the campaign of 2007 in the Vigia Irrigation District, Alentejo. A model was developed and various scenarios were considered. The modelling results lead to the conclusion that the maize crop is the most efficient in producing energy and sunflower is the least one for all the alternative scenarios considered. (author)

  2. Scenario Studies on Effects of Soil Infiltration Rates, Land Slope, and Furrow Irrigation Characteristics on Furrow Irrigation-Induced Erosion.

    Science.gov (United States)

    Dibal, Jibrin M; Ramalan, A A; Mudiare, O J; Igbadun, H E

    2014-01-01

    Furrow irrigation proceeds under several soil-water-furrow hydraulics interaction dynamics. The soil erosion consequences from such interactions in furrow irrigation in Samaru had remained uncertain. A furrow irrigation-induced erosion (FIIE) model was used to simulate the potential severity of soil erosion in irrigated furrows due to interactive effects of infiltration rates, land slope, and some furrow irrigation characteristics under different scenarios. The furrow irrigation characteristics considered were furrow lengths, widths, and stream sizes. The model itself was developed using the dimensional analysis approach. The scenarios studied were the interactive effects of furrow lengths, furrow widths, and slopes steepness; infiltration rates and furrow lengths; and stream sizes, furrow lengths, and slopes steepness on potential furrow irrigation-induced erosion, respectively. The severity of FIIE was found to relate somewhat linearly with slope and stream size, and inversely with furrow lengths and furrow width. The worst soil erosion (378.05 t/ha/yr) was found as a result of the interactive effects of 0.65 m furrow width, 50 m furrow length, and 0.25% slope steepness; and the least soil erosion (0.013 t/ha/yr) was induced by the combined effects of 0.5 l/s, 200 m furrow length, and 0.05% slope steepness. Evidently considering longer furrows in furrow irrigation designs would be a better alternative of averting excessive FIIE.

  3. Irrigation management in organic greenhouse

    NARCIS (Netherlands)

    Voogt, W.; Balendonck, J.; Berkelmans, R.; Enthoven, N.

    2017-01-01

    Irrigation in protected cultivation is essential due to the absence of natural precipitation. High evapotranspiration, due to higher temperature and prolonged cropping period, requires ample an adequate supply of water. The water supply in a greenhouse is solely carried out by irrigation and thus

  4. Trash-polluted irrigation: characteristics and impact on agriculture

    Science.gov (United States)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  5. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    Science.gov (United States)

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  6. Explaining the contract terms of energy performance contracting in China: The importance of effective financing

    International Nuclear Information System (INIS)

    Li, Yan; Qiu, Yueming; Wang, Yi David

    2014-01-01

    Energy service company (“ESCO”) uses Energy Performance Contracting (“EPC”) to provide energy-saving services to its clients. Under an EPC, both ESCO and the client invest in the energy efficiency measures, according to a negotiated share of investment. Within the length of the contract, the ESCO and its client divide up the saved energy bill according to a negotiated share. Once the contract expires, the client claims all of the saved energy bills if the energy efficiency measures still last. Different EPC projects have different contract terms, including total investment, share of investment and length of contract. These contract terms directly determine the resulted energy savings. Thus it is essential and important to look at how these contract terms are formed and what are the major influencing factors. This paper first builds a theoretical bargain model between ESCO and its client to find out the structural relationship among these contract terms. Then, using the information of about 140 EPC contracts in China in 2010 and 2011, the paper empirically estimates the impacts of various factors on the contract terms and the resulted energy savings. We find that cost of capitals for ESCOs and the clients, especially for ESCOs, is a major factor influencing contract terms and the resulted energy savings. Thus providing effective financing is critical for the development of EPC in China. - Highlights: • We build a theoretical bargain model between an ESCO and its client. • We empirically quantify the impacts of various factors on EPC contract terms. • Cost of capital is a key factor determining EPC contract terms. • Providing effective financing, especially for ESCOs is important

  7. performance evaluation of sprinkler irrigation system at mambilla

    African Journals Online (AJOL)

    HOD

    ratio (DPR), irrigation productivity (IP), labour requirements and water quality. Standard procedure was ... The exchangeable cations analysis of Kakara irrigation ... Keywords: Tea, irrigation System, Performance Evaluation. 1. INTRODUCTION.

  8. Expanding the Annual Irrigation Maps (AIM) Product to the entire High Plains Aquifer (HPA): Addressing the Challenges of Cotton and Deficit-Irrigated Fields

    Science.gov (United States)

    Rapp, J. R.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    The High Plains Aquifer (HPA) is the most extensively irrigated aquifer in the continental United States and is the largest major aquifer in North America with an area of 500,000 km2. Increased demand for agricultural products has led to expanded irrigation extent, but brought with it declining groundwater levels that have made irrigation unsustainable in some locations. Understanding these irrigation dynamics and mapping irrigated areas through time are essential for future sustainable agricultural practices and hydrological modeling. Map products using remote sensing have only recently been able to track annual dynamics at relatively high spatial resolution (30 m) for a large portion of the northern HPA. However follow-on efforts to expand these maps to the entire HPA have met with difficulty due to the challenge of distinguishing irrigation in crop types that are commonly deficit- or partially-irrigated. Expanding these maps to the full HPA requires addressing unique features of partially irrigated fields and irrigated cotton, a major water user in the southern HPA. Working in Google Earth Engine, we used all available Landsat imagery to generate annual time series of vegetation indices. We combined this information with climate covariables, planting dates, and crop specific training data to algorithmically separate fully irrigated, partially irrigated, and non-irrigated field locations. The classification scheme was then applied to produce annual maps of irrigation across the entire HPA. The extensive use of ancillary data and the "greenness" time series for the algorithmic classification generally increased accuracy relative to previous efforts. High-accuracy, representative map products of irrigation extent capable of detecting crop type and irrigation intensity within aquifers will be an essential tool to monitor the sustainability of global aquifers and to provide a scientific bases for political and economic decisions affecting those aquifers.

  9. Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan

    OpenAIRE

    Muhammad Afzal

    1996-01-01

    Pakistan’s agriculture is almost wholly dependent on irrigation and irrigated land supplies more than 90 percent of agricultural production. Irrigation is central to Pakistan’s economy. Massive investments in irrigation contributed to the development of one of the largest Indus Basin Irrigation System. Despite heavy budgetary inputs in irrigation system, it is facing shortage of resources and suffering from operational problems. The sustainability of irrigated agriculture is threatened due to...

  10. An Optional Instrument for European Insurance Contract Law

    Directory of Open Access Journals (Sweden)

    Helmut Heiss

    2010-08-01

    Full Text Available The Principles of European Insurance Contract Law, also referred tousing the acronym PEICL, were published in September 2009. They are the result of ten years of academic work undertaken by the"Restatement of European Insurance Contract Law" Project Group. In the time since its establishment in 1999, the project has been transformed from being a stand-alone project to a part of the CoPECL (Common Principles of European Insurance Contract Law network, drafting a specific part of the Common Frame of Reference. Having continually worked under the guiding principle that "the law of insurance [in Europe] must be one," it now represents a serious option for providing Europe with a single legal framework for insurance contracts.Despite the European Council's proclamations that the Common Frame of Reference will remain a non-binding instrument, the implementation of one or more optional instruments in the future does not appear to beimprobable considering recent developments. The possibility of anoptional instrument has been expressed more than once by the European Commission in its Action Plan and Communication on European Contract Law. Other indications in favour of an optional instrument include the European Parliament's repeated references to the Common Frame of Reference as providing, at the very least, a model for a futureoptional instrument, as well as the EESC's earlier proposal of anoptional instrument as an alternative to standardising insurancecontract law. The preparation by the EESC of another (own-initiative opinion on European contract law is underway, and its presentation is anticipated in 2010. Hence, the optional instrument is evidently the subject of serious political deliberation. Using Article 1:102, the Principles of European Insurance Contract Law represent a prototype for such an instrument.

  11. An Optional Instrument for European Insurance Contract Law

    Directory of Open Access Journals (Sweden)

    Mandeep Lakhan

    2010-08-01

    Full Text Available The Principles of European Insurance Contract Law, also referred tousing the acronym PEICL, were published in September 2009. They are the result of ten years of academic work undertaken by the"Restatement of European Insurance Contract Law" Project Group. In the time since its establishment in 1999, the project has been transformed from being a stand-alone project to a part of the CoPECL (Common Principles of European Insurance Contract Law network, drafting a specific part of the Common Frame of Reference. Having continually worked under the guiding principle that "the law of insurance [in Europe] must be one," it now represents a serious option for providing Europe with a single legal framework for insurance contracts. Despite the European Council's proclamations that the Common Frame of Reference will remain a non-binding instrument, the implementation of one or more optional instruments in the future does not appear to beimprobable considering recent developments. The possibility of anoptional instrument has been expressed more than once by the European Commission in its Action Plan and Communication on European Contract Law. Other indications in favour of an optional instrument include the European Parliament's repeated references to the Common Frame of Reference as providing, at the very least, a model for a futureoptional instrument, as well as the EESC's earlier proposal of anoptional instrument as an alternative to standardising insurancecontract law. The preparation by the EESC of another (own-initiative opinion on European contract law is underway, and its presentation is anticipated in 2010. Hence, the optional instrument is evidently the subject of serious political deliberation. Using Article 1:102, the Principles of European Insurance Contract Law represent a prototype for such an instrument.

  12. Effects of Contract Delivery Method on the LEED(trademark) Score of U.S. Navy Military Construction Projects (Fiscal Years 2004-2006) (CD-ROM)

    National Research Council Canada - National Science Library

    Carpenter, Deanna S

    2005-01-01

    ...: 1 CD-ROM; 4 3/4 in.; 484 KB. ABSTRACT: This research study focused on determining the effects that the two major contract delivery methods had on the LEED score of projects over the design and construction time horizon...

  13. Comparative analysis of JKR Sarawak form of contract and Malaysia Standard form of building contract (PWD203A)

    Science.gov (United States)

    Yunus, A. I. A.; Muhammad, W. M. N. W.; Saaid, M. N. F.

    2018-04-01

    Standard form of contract is normally being used in Malaysia construction industry in establishing legal relation between contracting parties. Generally, most of Malaysia federal government construction project used PWD203A which is a standard form of contract to be used where Bills of Quantities Form Part of the Contract and it is issued by Public Works Department (PWD/JKR). On the other hand in Sarawak, the largest state in Malaysia, the state government has issued their own standard form of contract namely JKR Sarawak Form of Contract 2006. Even both forms have been used widely in construction industry; there is still lack of understanding on both forms. The aim of this paper is to identify significant provision on both forms of contract. Document analysis has been adopted in conducting an in-depth review on both forms. It is found that, both forms of contracts have differences and similarities on several provisions specifically matters to definitions and general; execution of the works; payments, completion and final account; and delay, dispute resolution and determination.

  14. 24 CFR 983.207 - Condition of contract units.

    Science.gov (United States)

    2010-04-01

    ... URBAN DEVELOPMENT PROJECT-BASED VOUCHER (PBV) PROGRAM Housing Assistance Payments Contract § 983.207... in accordance with the HQS. The PHA may not make any HAP payment to the owner for a contract unit.... Such remedies include termination of housing assistance payments, abatement or reduction of housing...

  15. An improved delivery system for bladder irrigation.

    Science.gov (United States)

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-10-05

    Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse

  16. 33 CFR 211.109 - Contract of sale.

    Science.gov (United States)

    2010-07-01

    ... Navigation Project in Oklahoma, to Former Owners § 211.109 Contract of sale. Upon determination of the price... and deliver it to the applicant for acceptance. The contract of sale shall provide for the deposit of earnest money equal to twenty (20) percent of the price at which the land will be sold or the estimated...

  17. Review of root canal irrigant delivery techniques and devices

    Directory of Open Access Journals (Sweden)

    Yeon-Jee Yoo

    2011-05-01

    Full Text Available Introduction Eliminating the residual debris and bacteria in the root canal system is one of the main purposes of the endodontic treatment. However, the complexity on the anatomy of the root canal system makes it difficult to eliminate the bacterial biofilm existing along the root canal surface and necrotic pulp tissue by mechanical instrumentation and chemical irrigation. Recently, more effective irrigant delivery systems for root canal irrigation have been developed. The purpose of this review was to present an overview of root canal irrigant delivery techniques and devices available in endodontics. Review The contents of this paper include as follows; - syringe-needle irrigation, manual dynamic irrigation, brushes - sonic and ultrasonic irrigation, passive ultrasonic irrigation, rotary brush, RinsEndo, EndoVac, Laser Conclusion Though technological advances during the last decade have brought to fruition new agitation devices that rely on various mechanisms, there are few evidence based study to correlate the clinical efficacy of these devices with improved outcomes except syringe irrigation with needle and ultrasonic irrigation. The clinicians should try their best efforts to deliver antimicrobial and tissue solvent solutions in predictable volumes safely to working length.

  18. Size and stochasticity in irrigated social-ecological systems

    Science.gov (United States)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-03-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  19. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-07-01

    Full Text Available In the semi-arid Texas High Plains, the underlying Ogallala Aquifer is experiencing continuing decline due to long-term pumping for irrigation with limited recharge. Accurate simulation of irrigation and other associated water balance components are critical for meaningful evaluation of the effects of irrigation management strategies. Modelers often employ auto-irrigation functions within models such as the Soil and Water Assessment Tool (SWAT. However, some studies have raised concerns as to whether the function is able to adequately simulate representative irrigation practices. In this study, observations of climate, irrigation, evapotranspiration (ET, leaf area index (LAI, and crop yield derived from an irrigated lysimeter field at the USDA-ARS Conservation and Production Research Laboratory at Bushland, Texas were used to evaluate the efficacy of the SWAT auto-irrigation functions. Results indicated good agreement between simulated and observed daily ET during both model calibration (2001–2005 and validation (2006–2010 periods for the baseline scenario (Nash-Sutcliffe efficiency; NSE ≥ 0.80. The auto-irrigation scenarios resulted in reasonable ET simulations under all the thresholds of soil water deficit (SWD triggers as indicated by NSE values > 0.5. However, the auto-irrigation function did not adequately represent field practices, due to the continuation of irrigation after crop maturity and excessive irrigation when SWD triggers were less than the static irrigation amount.

  20. Basin Irrigation Design with Multi-Criteria Analysis Focusing on Water Saving and Economic Returns: Application to Wheat in Hetao, Yellow River Basin

    Directory of Open Access Journals (Sweden)

    Qingfeng Miao

    2018-01-01

    Full Text Available The sustainability of the Hetao Irrigation System, located in the water scarce upper Yellow River basin, is a priority considering the need for water saving, increased water productivity, and higher farmers’ incomes. The upgrading of basin irrigation, the main irrigation method, is essential and includes the adoption of precise land levelling, cut-off management, improved water distribution uniformity, and adequate irrigation scheduling. With this objective, the current study focuses on upgrading wheat basin irrigation through improved design using a decision support system (DSS model, which considers land parcels characteristics, crop irrigation scheduling, soil infiltration, hydraulic simulation, and environmental and economic impacts. Its use includes outlining water saving scenarios and ranking alternative designs through multi-criteria analysis considering the priorities of stakeholders. The best alternatives concern flat level basins with a 100 and 200 m length and inflow rates between 2 and 4 L s−1 m−1. The total irrigation cost of designed projects, including the cost of the autumn irrigation, varies between 2400 and 3300 Yuan ha−1; the major cost component is land levelling, corresponding to 33–46% of total irrigation costs. The economic land productivity is about 18,000 Yuan ha−1. The DSS modelling defined guidelines to be applied by an extension service aimed at implementing better performing irrigation practices, and encouraged a good interaction between farmers and the Water Users Association, thus making easier the implementation of appropriate irrigation management programs.

  1. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  2. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    Science.gov (United States)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  3. Intervention processes and irrigation institutions : sustainability of farmer managed irrigation systems in Nepal

    OpenAIRE

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation management practices in irrigation systems in Nepal. In this respect, this study aimed to understand the social, administrative and political processes involved in the social and institutional chang...

  4. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    Science.gov (United States)

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Irrigation and avifaunal change in coastal Northwest Mexico: has irrigated habit attracted threatened migratory species?

    Science.gov (United States)

    Grason, Emily; Navarro-Sigüenza, Adolfo G.

    2015-01-01

    Irrigation in desert ecosystems can either reduce or increase species diversity. Groundwater pumping often lowers water tables and reduces natural wetlands, whereas canal irrigation often creates mesic habitat, resulting in great increases in avian diversity from irrigation. Here we compare a dataset of potential natural vegetation to recent datasets from areal and satellite imagery to show that 60% of the land in the coastal plain of southern Sonora and northern Sinaloa lying below 200 m elevation has been converted by irrigation to more mesic habitats. We then use the record of bird specimens in the world’s museums from this same region of Mexico to examine the avian community before and after the development of extensive irrigation. In general these museum records show an increase in the abundance and diversity of breeding birds associated with mesic habitats. Although thorn forest birds have likely decreased in total numbers, most are common enough in the remaining thorn forest that collection records did not indicate their probable decline. Four migrants having most of their breeding ranges in the US or Canada, Yellow-billed Cuckoo, Cliff Swallow, Bell’s Vireo, and Orchard Oriole, apparently have increased dramatically as breeders in irrigated habitats of NW Mexico. Because these species have decreased or even largely disappeared as breeding birds in parts of the US or Canada, further research should assess whether their increases in new mesic habitats of NW Mexico are linked to their declines as breeding birds in Canada and the US For Bell’s Vireo recent specimens from Sinaloa suggest its new breeding population in NW Mexico may be composed partly of the endangered Least Bell’s Vireo. PMID:26312181

  6. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  7. Improving irrigation efficiency : the need for a relevant sequence of the management tools

    Science.gov (United States)

    Fayolle, Y.

    2009-04-01

    With 70 % of worldwide withdrawals, irrigation efficiency is a key issue in the overall problem of water resources. Management of water dedicated to agriculture should be improved to secure food production and save water to deal with increasing domestic and industrial demands. This paper is based on the results of a collaborative research project conducted in India with a local NGO (the Aga Khan Rural Support Programme, AKRSP(I)) during which GIS were tested. It is aimed at analyzing the efficiency of water usage in a water development programme conducted by the partner NGO in the semi-arid margins of Gujarat state. The analysis raises the question of the articulation of legal, institutional, economical, and technical tools to improve water efficiency. The NGO supervises the construction of surface water harvesting structures for irrigation purposes. Following a participatory approach, it creates and trains user groups to which the management of dams would then be devolved. User group membership depends on financial contribution to the building costs. A legal vacuum regarding surface water management combined with unequal investment capacities favor the concentration of water resources in the hands of a limited number of farmers. This causes low water use efficiency, irrigation choices being mostly oriented to high water consumptive crops and recipient farmers showing no interest in investing in water saving techniques. Our observations favor equality of access and paying more attention to the sequence in which management tools are articulated. On a national scale, as a prerequisite, water user rights as well as NGO's intervention legal framework should be clarified. On a project scale, before construction, information systems could help to identify all potential beneficiaries and optimize equality of access. It aims at reducing the volume of water per farmer to encourage them to irrigate low water consumptive crops and invest in water saving techniques. Depending

  8. Framework for Structuring Procurement Contracts

    Directory of Open Access Journals (Sweden)

    Lena Borg

    2014-12-01

    Full Text Available The aim of this paper is to propose a new framework for structuring contract types and payment methods. Concerning procurement contracts, the first important new feature of this framework is a stepwise structure with three main steps in the contract design: (1 what will be procured—should the contract only include construction, or should it include both construction and operation/maintenance (2 who will do the detailed design of the premise and (3 how many contractors will the client use? The second important new feature of this framework is that both step 2 and step 3 include a continuum of alternatives. Concerning payment methods, the new framework is primarily based on how the specific risks of the project are shared. These frameworks can be useful for policy formulation in that they can help to avoid some problematic ways of formulating policies.

  9. improving of irrigation management: a learning based approach

    African Journals Online (AJOL)

    p2333147

    Irrigation farms are small businesses and like any other business, the managers or ... human factors and constraints that impact on the adoption of irrigation ... Informal interaction with other irrigation farmers and social networks played a ...

  10. 43 CFR 422.9 - Reclamation law enforcement contracts and cooperative agreements.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Reclamation law enforcement contracts and... PROJECTS Program Requirements § 422.9 Reclamation law enforcement contracts and cooperative agreements. (a... Federal laws. (b) Each contract and cooperative agreement authorizing the exercise of Reclamation law...

  11. Assessment of village-wise groundwater draft for irrigation: a field-based study in hard-rock aquifers of central India

    Science.gov (United States)

    Ray, R. K.; Syed, T. H.; Saha, Dipankar; Sarkar, B. C.; Patre, A. K.

    2017-12-01

    Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982-2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ˜44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.

  12. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  13. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  14. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium

    Science.gov (United States)

    Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; Vithanage, J.; Schull, M.A.; Dutta, R.

    2009-01-01

    A Global Irrigated Area Map (GIAM) has been produced for the end of the last millennium using multiple satellite sensor, secondary, Google Earth and groundtruth data. The data included: (a) Advanced Very High Resolution Radiometer (AVHRR) 3-band and Normalized Difference Vegetation Index (NDVI) 10 km monthly time-series for 1997-1999, (b) Syste me pour l'Observation de la Terre Vegetation (SPOT VGT) NDVI 1 km monthly time series for 1999, (c) East Anglia University Climate Research Unit (CRU) rainfall 50km monthly time series for 1961-2000, (d) Global 30 Arc-Second Elevation Data Set (GTOPO30) 1 km digital elevation data of the World, (e) Japanese Earth Resources Satellite-1 Synthetic Aperture Radar (JERS-1 SAR) data for the rain forests during two seasons in 1996 and (f) University of Maryland Global Tree Cover 1 km data for 1992-1993. A single mega-file data-cube (MFDC) of the World with 159 layers, akin to hyperspectral data, was composed by re-sampling different data types into a common 1 km resolution. The MFDC was segmented based on elevation, temperature and precipitation zones. Classification was performed on the segments. Quantitative spectral matching techniques (SMTs) used in hyperspectral data analysis were adopted to group class spectra derived from unsupervised classification and match them with ideal or target spectra. A rigorous class identification and labelling process involved the use of: (a) space-time spiral curve (ST-SC) plots, (b) brightness-greenness-wetness (BGW) plots, (c) time series NDVI plots, (d) Google Earth very-high-resolution imagery (VHRI) 'zoom-in views' in over 11 000 locations, (e) groundtruth data broadly sourced from the degree confluence project (3 864 sample locations) and from the GIAM project (1 790 sample locations), (f) high-resolution Landsat-ETM+ Geocover 150m mosaic of the World and (g) secondary data (e.g. national and global land use and land cover data). Mixed classes were resolved based on decision tree

  15. The Politics, Development and Problems of Small Irrigation Dams in Malawi: Experiences from Mzuzu ADD

    Directory of Open Access Journals (Sweden)

    Bryson Gwiyani Nkhoma

    2011-10-01

    Full Text Available The paper examines the progress made regarding the development of small irrigation dams in Malawi with the view of establishing their significance in improving rural livelihoods in the country. The paper adopts a political economy theory and a qualitative research approach. Evidence from Mzuzu Agricultural Development Division (ADD, where small reservoirs acquire specific relevance, shows that despite the efforts made, the development of small dams is making little progress. The paper highlights that problems of top-down planning, high investment costs, negligence of national and local interests, over-dependency on donors, and conflicts over the use of dams – which made large-scale dams unpopular in the 1990s – continue to affect the development of small irrigation dams in Malawi. The paper argues that small irrigation dams should not be simplistically seen as a panacea to the problems of large-scale irrigation dams. Like any other projects, small dams are historically and socially constructed through interests of different actors in the local settings, and can only succeed if actors, especially those from formal institutions, develop adaptive learning towards apparent conflicting relations that develop among them in the process of implementation. In the case of Mzuzu ADD, it was the failure of the government to develop this adaptive learning to the contestations and conflicts among these actors that undermined successful implementation of small irrigation dams. The paper recommends the need to consider local circumstances, politics, interests, rights and institutions when investing in small irrigation dams.

  16. The lifecycle approach as a driver for innovative power contracting; Der Lifecycle-Ansatz als Treiber fuer innovatives Energie-Contracting

    Energy Technology Data Exchange (ETDEWEB)

    Gayer, Alfred [RWE Energiedienstleistungen GmbH (Germany)

    2011-07-01

    The sensible and efficient use of energy raises more and more the general awareness. The efficiency of projects will be influenced not only by the replacement of existing technology, but also mainly by the general conception of the design of decentralized energy supplies. The integration of waste heat from production-related processes as well as the use of all forms of energy such as electricity, heat, refrigeration and compressed air to meet the customer needs in a comprehensive energy plan increase the complexity and significantly the efficiencies. In the implementation of such projects the contracting is becoming increasingly important because the future gains in efficiency are taken into account directly. Contracting projects include the traditional total-cost-of-ownership approach (lifecycle approach). This approach considers the investment costs as well as the consequential costs of a project and shows how to optimize the total cost.

  17. Evaluation of the Effect of Different Irrigation Levels of Drip Irrigation (Tape on Yield and Yield Components of Corn

    Directory of Open Access Journals (Sweden)

    mohammad karimi

    2016-02-01

    Full Text Available Introduction: One of the serious problems in the further development of maize cultivation is increasing irrigation efficiency. Using conventional irrigation causes a shortage of water resources to increase the acreage of the crop. With regard to the development of maize cultivation, agronomic and executable methods must be studied to reduce water consumption. Using drip irrigation system is most suitable for row crops. Hamedi et al. (2005 compared drip (tape and surface irrigation systems on yield of maize in different levels of water requirement and indicated that drip irrigation increases the amount of yield to 2015 kg/ha and water use efficiency to 3 time. Kohi et al. (2005 investigated the effects of deficit irrigation use of drip (tape irrigation on water use efficiency on maize in planting of one and two rows. The results showed that maximum water use efficiency related to crop density, water requirement and planting pattern 85000, 125% and two rows, respectively with 1.46 kg/m3. Jafari and Ashrafi (2011 studied the effects of irrigation levels, plant density and planting pattern in drip irrigation (tape on corn. The results showed that the amount of irrigation water and crop density on the level of 1% and their interactions and method of planting were significant at the 5 and 10% on water use efficiency, respectively. The yield was measured under different levels of irrigation, crop density and method of planting and the difference was significant on the level of 1%. Lamm et al. (1995 studied water requirement of maize in field with silt loam texture under sub drip irrigation and reported that water use reduced to 75%; but yield of maize remained at maximum amount of 12.5 t/ha. The objective of this study was to evaluate the drip (tape irrigation method for corn production practices in the Qazvin province in Iran. Materials and Methods: In this study, yield and yield components of corn (SC 704 were investigated under different levels of

  18. Introduction: Panda or Hydra? The untold stories of drip irrigation

    NARCIS (Netherlands)

    Kuper, M.; Venot, J.P.; Zwarteveen, M.; Venot, J.P.; Kuper, M.; Zwarteveen, M.

    2017-01-01

    Irrigated areas in the world are witnessing a transformation from open canal systems to more ‘modern’ irrigation methods such as drip irrigation that convey water through closed pipe systems. Initially associated with hi-tech irrigated agriculture, drip irrigation is now being used by a wide range

  19. [Ecological risks of reclaimed water irrigation: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Zhang, Wei-Ling; Pan, Neng; Jiao, Wen-Tao

    2012-12-01

    Wastewater reclamation and reuse have become an important approach to alleviate the water crisis in China because of its social, economic and ecological benefits. The irrigation on urban green space and farmland is the primary utilization of reclaimed water, which has been practiced world widely. To understand the risk of reclaimed water irrigation, we summarized and reviewed the publications associated with typical pollutants in reclaimed water including salts, nitrogen, heavy metals, emerging pollutants and pathogens, systematically analyzed the ecological risk posed by reclaimed water irrigation regarding plant growth, groundwater quality and public health. Studies showed that salt and salt ions were the major risk sources of reclaimed water irrigation, spreading disease was another potential risk of using reclaimed water, and emerging pollutants was the hot topic in researches of ecological risk. Based on overseas experiences, risk control measures on reclaimed water irrigation in urban green space and farmland were proposed. Five recommendations were given to promote the safe use of reclaimed water irrigation including (1) strengthen long-term in situ monitoring, (2) promote the modeling studies, (3) build up the connections of reclaimed water quality, irrigation management and ecological risk, (4) evaluate the soil bearing capacity of reclaimed water irrigation, (5) and establish risk management system of reclaimed water reuse.

  20. Ocean-Atmosphere Interactions Modulate Irrigation's Climate Impacts

    Science.gov (United States)

    Krakauer, Nir Y.; Puma, Michael J.; Cook, Benjamin I.; Gentine, Pierre; Nazarenko, Larissa

    2016-01-01

    Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean- atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and mid-latitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.

  1. Heavy metal input to agricultural soils from irrigation with treated wastewater: Insight from Pb isotopes

    Science.gov (United States)

    Kloppmann, Wolfram; Cary, Lise; Psarras, Georgios; Surdyk, Nicolas; Chartzoulakis, Kostas; Pettenati, Marie; Maton, Laure

    2010-05-01

    A major objective of the EU FP6 project SAFIR was to overcome certain drawbacks of wastewater reuse through the development of a new irrigation technology combining small-scale modular water treatment plants on farm level and improved irrigation hardware, in the aim to lower the risks related to low quality water and to increase water use efficiency. This innovative technology was tested in several hydro-climatic contexts (Crete, Italy, Serbia, China) on experimental irrigated tomato and potato fields. Here we present the heavy metal variations in soil after medium-term (3 irrigation seasons from 2006-2008) use of treated municipal wastewater with a special focus on lead and lead isotope signatures. The experimental site is located in Chania, Crete. A matrix of plots were irrigated, combining different water qualities (secondary, primary treated wastewater, tap water, partially spiked with heavy metals, going through newly developed tertiary treatment systems) with different irrigation strategies (surface and subsurface drip irrigation combined with full irrigation and partial root drying). In order to assess small scale heavy metal distribution around a drip emitter, Pb isotope tracing was used, combined with selective extraction. The sampling for Pb isotope fingerprinting was performed after the 3rd season of ww-irrigation on a lateral profile from a drip irrigator (half distance between drip lines, i.e. 50cm) and three depth intervals (0-10, 10-20, 20-40 cm). These samples were lixiviated through a 3 step selective extraction procedure giving rise to the bio-accessible, mobile and residual fraction: CaCl2/NaNO3 (bio-accessible fraction), DPTA (mobile fraction), total acid attack (residual fraction). Those samples were analysed for trace elements (including heavy metals) and major inorganic compounds by ICP-MS. The extracted fractions were then analysed by Thermal Ionisation Mass Spectrometry (TIMS) for their lead isotope fingerprints (204Pb, 206Pb, 207Pb, 208Pb

  2. Mapping Irrigation Potential in the Upper East Region of Ghana

    Science.gov (United States)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  3. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  4. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  5. Matching agricultural freshwater supply and demand: using industrial and domestic treated wastewater for sub-irrigation purposes

    Science.gov (United States)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan

    2017-04-01

    Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the

  6. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    2010-09-01

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  7. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  8. Irrigation and crop management in Gandak Canal command of India

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The Gandak Project is one of the biggest irrigation projects in India, covering a culturable command area (CCA) of 4.44 lakh ha in U.P., 9.6 lakh ha CCA in Bihar and 0.44 lakh ha in Nepal (Singh and Khan, 2002). The total culturable command areas are 14.44 lakh hectares. The command area is located in between latitude 25 deg 40' to 27 deg 25' and longitude between 83 deg 15' to 85 deg 15'. It is a diversion project through construction of a barrage on the river Gandak. This project area covers up to five districts in the Command of Tirhut Main Canal (TMC) and 3 districts in the Saran Main Canal (SMC) command. The length of main canal is usually long (990 and 650 R.D.'s in eastern and western side, respectively) and the channels are unlined and seepage loss is quite high. (author)

  9. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  10. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  11. Contracting and building renovation - does it work together?

    Energy Technology Data Exchange (ETDEWEB)

    Tritthart, Wibke; Bruner-Lienhart, Susanne [Inter-Univ. Research Centre for Technology, Work and Culture, Graz (Austria); Bleyl, Jan W.; Bucar, Gerhard [Graz Energy Agency (Austria)

    2007-07-01

    The renovation or refurbishment is an important point in the life cycle of a building that makes it possible to achieve both environmental and climate protection goals and a higher quality of living of the inhabitants. However, lack of money often leads to a renovation that covers only the basic requirements, whereas measures that are valuable in a long term perspective like energy saving measures are not realised. Energy performance contracting (EPC) is widely used as an instrument to reduce long term operating costs significantly by guaranteed energy savings. An energy service company (ESCo) implements saving technologies, especially in the field of heating, HVAC, lighting and plug loads, and in particular in public buildings. It is the aim of this paper to investigate the possibilities to incorporate construction measures like building envelope insulation into standard energy performance contracting.For this purpose a qualitative survey is presented that was performed among experts and stakeholders in the business: ESCos, building owners and facility managers, representatives of construction companies and financing institutions were interviewed. The focus was on their experiences with such projects, on difficulties that arose or barriers that exist from their point of view and on the chances they perceived. This provides the basis for identifying restraints and supporting factors for the integration of contracting and constructional measures.Three pilot projects that have been renovated in Austria are outlined subsequently. They are evaluated with respect to the contractual network between the project partners, types of guarantees and financing issues. Special emphasis is put on the assignment of tasks and the cash flow between the project partners. Various constellations of trades acted as energy service provider: a general contractor, an energy supply company, a consortium of a builder and a plumber. The projects reveal some differences to the standard energy

  12. Grower demand for sensor-controlled irrigation

    Science.gov (United States)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  13. PROJECT HANFORD MANAGEMENT CONTRACT (PHMC) PERFORMANCE REPORT 05/2004 (WWW.HANFORD.GOV/EMPR.INDEX.CFM)

    International Nuclear Information System (INIS)

    PIELSTICK, R.M.

    2004-01-01

    This report is the monthly performance summary of the Central Plateau Contractors. FH work scope responsibilities are described, and other contractor/RL-managed work is excluded. Section A, Overview, provides a summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides key performance activities as extracted from the contractor baseline. Subsequent sections of this report provide detailed performance data relative to contract sections (e.g., Project Hanford Cleanup Work Summary, Waste and Spent Nuclear Fuel Management Operations, Infrastructure and Hanford Site Services, and other Work Scope). All information is as of the end of May 2004 unless otherwise noted

  14. Development and perspectives of principles of european insurance contract law

    Directory of Open Access Journals (Sweden)

    Ana Keglević

    2013-01-01

    Full Text Available Summary: Principles of European Insurance Contract Law (PEICL provides for a set of principles, definitions and model rules exclusively addressing general law for insurance contract. This work has been preformed within greater project for the creation of Common frame of reference on European contract law initiated by the Commission in 2003. PEICL is essentially designed to perform two basic functions. It would improve the quality of the EU acquis in the area of contract law, remove differences and achieve higher degree of divergences between contract laws of the Member states, and even help the national legislators when enacting legislation or Courts with the possible interpretation of the acquis. On the other hand PEICL could be adopted as an optional instrument, thus offering the common platform for contracting in the area of insurance law on the EU level. Possible Optional instrument would exist parallel with, rather instead of, national insurance contract laws. European Parliament resolution of 2011 on policy options for progress towards a European Contract Law for consumers and businesses and corresponding Green Paper of 2010 show positive tendency towards optional instrument in the legal form of Regulation. This would suit the requirements of the insurance sector. However, there are numerous signals showing adversely. For that reason this paper analyses the development and the status of Principles of European Insurance Contract Law particularly the status and perspectives of Principles within the project for the creation of European contract law.

  15. EVALUATION OF RADIONUCLIDE ACCUMULATION IN SOIL DUE TO LONG-TERM IRRIGATION

    International Nuclear Information System (INIS)

    De Wesley Wu

    2006-01-01

    Radionuclide accumulation in soil due to long-term irrigation is an important part of the model for predicting radiation dose in a long period of time. The model usually assumes an equilibrium condition in soil with a constant irrigation rate, so that radionuclide concentration in soil does not change with time and can be analytically solved. This method is currently being used for the dose assessment in the Yucca Mountain project, which requires evaluating radiation dose for a period of 10,000 years. There are several issues associated with the method: (1) time required for the equilibrium condition, (2) validity of constant irrigation rate, (3) agricultural land use for a long period of time, and (4) variation of a radionuclide concentration in water. These issues are evaluated using a numerical method with a simple model built in the GoldSim software. Some key radionuclides, Tc-99, Np-237, Pu-239, and Am-241 are selected as representative radionuclides. The results indicate that the equilibrium model is acceptable except for a radionuclide that requires long time to accumulate in soil and that its concentration in water changes dramatically with time (i.e. a sharp peak). Then the calculated dose for that radionuclide could be overestimated using the current equilibrium method

  16. Reducing microbial contamination on wastewater-irrigated lettuce by cessation of irrigation before harvesting

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay

    2007-01-01

    OBJECTIVE: To assess the effectiveness of cessation of irrigation before harvesting in reducing microbial contamination of lettuce irrigated with wastewater in urban vegetable farming in Ghana. METHODS: Assessment was done under actual field conditions with urban vegetable farmers in Ghana. Trials...... were arranged in completely randomized block design and done both in the dry and wet seasons. Seven hundred and twenty-six lettuce samples and 36 water samples were analysed for thermotolerant coliforms and helminth eggs. RESULTS: On average, 0.65 log units for indicator thermotolerant coliforms and 0.......4 helminth eggs per 100 g of lettuce were removed on each non-irrigated day from lettuce in the dry season. This corresponded to a daily loss of 1.4 tonnes/ha of fresh weight of lettuce. As an input for exposure analysis to make risk estimates, the decay coefficient, k, for thermotolerant coliforms was 0...

  17. Energy conservation. Federal shared energy savings contracting

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Milans, Flora H.; Kirk, Roy J.; Welker, Robert A.; Sparling, William J.; Butler, Sharon E.; Irwin, Susan W.

    1989-04-01

    A number of impediments have discouraged federal agencies from using shared energy savings contracts. As of November 30, 1988, only two federal agencies - the U.S. Postal Service (USPS) and the Department of the Army -had awarded such contracts even though they can yield significant energy and cost savings. The three major impediments we identified were uncertainty about the applicability of a particular procurement policy and practice, lack of management incentives, and difficulty in measuring energy and cost savings. To address the first impediment, the Department of Energy (DOE) developed a manual on shared energy savings contracting. The second impediment was addressed when the 100th Congress authorized incentives for federal agencies to enter into shared savings contracts. DOE addressed the third impediment by developing a methodology for calculating energy consumption and cost savings. However, because of differing methodological preferences, this issue will need to be addressed on a contract-by-contract basis. Some state governments and private sector firms are using performance contracts to reduce energy costs in their buildings and facilities. We were able to identify six states that were using performance contracts. Five have established programs, and all six states have projects under contract. The seven energy service companies we contacted indicated interest in federal shared energy savings contracting

  18. Drip Irrigation for Commercial Vegetable and Fruit Production

    OpenAIRE

    Maughn, Tiffany; Allen, Niel; Drost, Dan

    2017-01-01

    Drip irrigation is a highly efficient irrigation method well suited to many fruit and vegetable row crops. Drip tubing or tape discharges water to the soil through emitters positioned close to the plant. The drip tubing can be placed uncovered on the soil surface, under plastic mulch, buried in the soil, or suspended above the ground (e.g., on a trellis system). Water application rate is relatively low and irrigations are usually frequent. Properly designed and maintained drip-irrigation syst...

  19. Groundwater pollution by nitrates in irrigated areas with drainage

    International Nuclear Information System (INIS)

    Chandio, B.M.; Azam, M.; Abdullah, M.

    2001-01-01

    Field studies were conducted at three selected sites in irrigated areas of Pakistan to assess magnitude and severity of groundwater pollution by nitrates. The results of these studies indicate that concentration of nitrates in most of the samples collected from irrigated areas having drainage facility is much lower than threshold limit. The nitrate-nitrogen level within drainage projects ranges from 0.01-9.00 mg/l and in the area without drainage system ranges from 10.1-12.5 mg/l. The mineral fertilizers though are making contribution of NO3-N to the groundwater sources but that is much lower than threshold limits. The presence of septic tanks or farmyard manure dumps is also significant contributors of NO3-N to the groundwater. Thus drinking water sources near these polluting points are probable danger to human health. It is, therefore, concluded that still there is a lot of potential for fertilizer use in the agriculture but proper drainage facilities should be provided to minimize the potential threat of NO/sub 3/ pollution. (author)

  20. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  1. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  2. Long-term irrigation effects on Spanish holm oak growth and its black truffle symbiont

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Egli, S.; Schneider, L.; von Arx, G.; Rigling, A.; Camarero, J. J.; Sangueesa-Barreda, G.; Fischer, C. R.; Oliach, D.; Bonet, J. A.; Colinas, C.; Tegel, W.; Barbarin, J. I. R.; Martinez-Pena, F.

    2015-01-01

    Roč. 202, apr (2015), s. 148-159 ISSN 0167-8809 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : primary succession * Dendroecology * Irrigation * Fungus-host symbiosis * Truffle orchard * Tuber melanosporum * Wood anatomy Subject RIV: EH - Ecology, Behaviour Impact factor: 3.564, year: 2015

  3. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    Science.gov (United States)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  4. Computer-based irrigation scheduling for cotton crop

    International Nuclear Information System (INIS)

    Laghari, K.Q.; Memon, H.M.

    2008-01-01

    In this study a real time irrigation schedule for cotton crop has been tested using mehran model, a computer-based DDS (Decision Support System). The irrigation schedule was set on selected MAD (Management Allowable Depletion) and the current root depth position. The total 451 mm irrigation water applied to the crop field. The seasonal computed crop ET (Evapotranspiration) was estimated 421.32 mm and actual (ET/sub ca/) observed was 413 mm. The model over-estimated seasonal ET by only 1.94. WUE (Water Use Efficiency) for seed-cotton achieved 6.59 Kg (ha mm)/sup -1/. The statistical analysis (R/sup 2/=0.96, ARE%=2.00, T-1.17 and F=550.57) showed good performance of the model in simulated and observed ET values. The designed Mehran model is designed quite versatile for irrigation scheduling and can be successfully used as irrigation DSS tool for various crop types. (author)

  5. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Pine River Project area, Southern Ute Indian Reservation, southwestern Colorado and northwestern New Mexico, 1988-89

    Science.gov (United States)

    Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Thompson, A.L.; Formea, J.J.; Wickman, D.W.

    1993-01-01

    During 1988-89, water, bottom sediment, biota, soil, and plants were sampled for a reconnaissance investigation of the Pine River Project area in southwestern Colorado. Irrigation drainage does not seem to be a major source of dissolved solids in streams. Concentrations of manganese, mercury, and selenium exceeded drinking-water regulations in some streams. The maximum selenium concentration in a stream sample was 94 microg/L in Rock Creek. Irrigation drainage and natural groundwater are sources of some trace elements to streams. Water from a well in a nonirrigated area had 4,800 microg/L of selenium. Selenium concentrations in soil on the Oxford Tract were greater in areas previously or presently irrigated than in areas never irrigated. Some forage plants on the Oxford Tract had large selenium concentrations, including 180 mg/km in alfalfa. Most fish samples had selenium concentrations greater than the National Contaminant Biomonitoring Program 85th percentile. Selenium concentrations in aquatic plants, aquatic inverte- brates, and small mammals may be of concern to fish and wildlife because of possible food-chain bioconcentration. Selenium concentrations in bird samples indicate selenium contamination of biota on the Oxford Tract. Mallard breasts had selenium concentrations exceeding a guideline for human consumption. The maximum selenium concentration in biota was 50 microg/g dry weight in a bird liver from the Oxford Tract. In some fish samples, arsenic, cadmium, copper, and zinc exceeded background concentrations, but concentrations were not toxic. Mercury concentrations in 16 fish samples exceeded the background concentration. Ten mercury concentrations in fish exceeded a guideline for mercury in food for consumption by pregnant women.

  6. 7 CFR 1942.126 - Planning, bidding, contracting, constructing, procuring.

    Science.gov (United States)

    2010-01-01

    ...) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE.../build type contract, section 4, “Conflict of Interest,” may need revision. (l) Construction contract... materially affect the ability to attain program objectives or prevent the meeting of project work units by...

  7. [Continent colostomy and colon irrigation].

    Science.gov (United States)

    Kostov, D; Temelkov, T; Kiriazov, E; Ivanov, K; Ignatov, V; Kobakov, G

    2000-01-01

    The authors have studied a functional activity of a continent colostomy at 20 patients, undergone an abdomeno-perineal extirpation of rectum and carried out periodic colonirrigations, during a period of 6 months. A conus type, closed irrigating system has been used. The degree of an incontinency at patients has been compared before and after the beginning of the colonirrigations. The irrigating procedures have reduced spontaneous defications at patients during a week 28 times and have improved the quality of life significantly. The application of colostomy bags has been restricted in 8 (40%) patients. An intraluminal ultrasonographic investigation has been done at 12 (60%) patients at the end of 6 month irrigating period. No changes of the ultrasonographic image of the precolostomic segment of colon has been observed.

  8. Modelling human agency in ancient irrigation

    NARCIS (Netherlands)

    Ertsen, M.W.

    2011-01-01

    Human activity is key in understanding ancient irrigation systems. Results of short term actions build up over time, affecting civilizations on larger temporal and spatial scales. Irrigation systems, with their many entities, social and physical, their many interactions within a changing environment

  9. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Science.gov (United States)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  10. Scheduling irrigation for jujube ( Ziziphus jujuba Mill. ) | Zhang ...

    African Journals Online (AJOL)

    This study was performed to select suitable indicator for scheduling the irrigation of jujube (Ziziphus jujuba Mill.) grown in the Loess Plateau. The relationships between plant-based indicators and soil matrix potential as well as meteorological factors of jujube under deficit irrigation compared with well irrigation were ...

  11. Fluid regimens for colostomy irrigation: a systematic review.

    Science.gov (United States)

    Lizarondo, Lucylynn; Aye Gyi, Aye; Schultz, Tim

    2008-09-01

    Background  Various techniques for managing faecal evacuation have been proposed; however, colostomy irrigation is favoured as it leads to better patient outcomes. Alternative fluid regimens for colostomy irrigation have been suggested to achieve effective evacuation. Aim  The objective of this review was to summarise the best available evidence on the most effective fluid regimen for colostomy irrigation. Search strategy  Trials were identified by electronic searches of CINAHL, PubMed, MEDLINE, Current Contents, the Cochrane Library and EMBASE. Unpublished articles and references lists from included studies were also searched. Selection criteria  Randomised controlled trials and before-and-after studies investigating any fluid regimen for colostomy irrigation were eligible for inclusion. Outcomes measured included fluid inflow time, total wash-out time, haemodynamic changes during irrigation, cramps, leakage episodes, quality of life and level of satisfaction. Data collection and analysis  Trial selection, quality appraisal and data extraction were carried out independently by two reviewers. Differences in opinion were resolved by discussion. Main results  The systematic literature search strategy identified two cross-over trials that compared water with another fluid regimen. Owing to the differences in irrigating solutions used, the results were not pooled for analysis. Both the polyethylene glycol electrolyte solution and glyceryl trinitrate performed significantly better than water. Conclusion  There is some evidence to support the effectiveness of fluid regimens other than water, such as polyethylene glycol electrolyte and glyceryl trinitrate, for colostomy irrigation. Further well-designed clinical trials are required to establish solid evidence on the effectiveness of other irrigating solutions that might enhance colonic irrigation. © 2008 The Authors. Journal Compilation © Blackwell Publishing Asia Pty Ltd.

  12. Contract theory and EU Contract Law

    OpenAIRE

    Hesselink, M.W.; Twigg-Flesner, C.

    2016-01-01

    This paper explores the relationship between contract theory and European contract law. In particular, it confronts the leading contract law theories with the main characteristics of EU contract law. The conclusion is that the two do not match well. In particular, monist normative contract theories are largely irreconcilable with the contract law of the EU. The paper further addresses the main implications of this mismatch, both for contract theory and for EU contract law. It suggests that in...

  13. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  14. Comparison of Manual and Automatic Irrigation of Pot Experiments

    DEFF Research Database (Denmark)

    Haahr, Vagner

    1975-01-01

    An air-lift principle for transport of water was adapted for automatic irrigation of experimental pots originally constructed for manual irrigation by the weighing method. The two irrigation techniques were compared in an experiment with increasing amounts of nitrogen fertilizer to spring barley....... Productions of grain and straw and chemical composition were almost the same after the two irrigation methods, and it was concluded that the laborious manual watering could be replaced by automatic irrigation. Comparison of the yield from individual plants in the pots showed a large difference between centre...... plants and border plants independent of irrigation principle. The increase in yield per pot with increasing N fertilization was at the highest N level caused only by an increase in yield of the border plants....

  15. Field verification of social and environmental issues of selected water sector projects in Punjab-Pakistan

    International Nuclear Information System (INIS)

    Ayesha, A.

    2012-01-01

    Irrigation helps in increasing the agricultural yield and the irrigation projects are carried out for the welfare of people. The importance of environment for sustainable development of irrigation projects has been realized. Environmental Impact Assessment is being increasingly used as a tool for appropriate environmental planning. In Pakistan, PEP A (Pakistan Environmental Protection Act),1997 establishes the framework to carry out Environmental Assessment of development projects. Various national and international agencies have developed Environmental Assessment Guidelines and Checklists for systematic evaluation of environmental impacts and their mitigation. The Social and Environmental Management Unit of Punjab Irrigation and Drainage Authority developed checklist for assessment of irrigation projects in 2007. The present study was conducted on three water sector projects namely: Concrete Lining of Dhudi Minor, Improving Nikki Deg Drain System and Rehabilitation of Khanki Barrage. The field verification of social and environmental issues of the projects was carried out according to the checklist of Social and Environmental Management Unit. The most noticeable impacts which were identified include: extended canal closure, emissions and effluents, waste generation and disposal, effect on flora, public health and safety, land acquisition, and social issues. The mitigatory measures proposed: proper project scheduling to minimize the canal closure periods, waste disposal through proper planning, preparation of detailed resettlement action plans and compensation, location of labor camps away from the settlements, avoiding unnecessary cutting of trees, and deployed machinery should be in good working condition. The recommendations of the study are to review and improve the checklists through a gradual and phased process into a more comprehensive social and environmental assessment process; capacity building of all the stake holders; collaboration between different

  16. Secondary salinisation in the Indus basin of Pakistan: an environmental issue of irrigated agriculture

    International Nuclear Information System (INIS)

    Aslam, M.; Kahlown, M.A.; Prathapar, S.A.; Ashraf, M.

    2005-01-01

    The increasing awareness of environmental issues has created a serious concern about the adverse social and environmental impacts of irrigation and water resources development projects in many developing countries. In Pakistan, development of the Indus Basin Irrigation System (IBIS), which serves 16 million ha, and distributes 172 billion cubic meters of high quality river water per annum, has caused the secondary salinization. An area of about 2 Mha is estimated to be severely salinized. In most of the cases, secondary salinity is caused by shallow saline groundwater and inadequate amounts of irrigation water for leaching salts from root zone. However, intensive use of poor quality groundwater without improving its quality also converts good agricultural lands into salt-affected lands. About 70 to 80 percent of tube wells of the Indus Plain pump sodic water, as a result of which large tracts of irrigated land have become sodic. The secondary salinity has devoured the potential of agricultural lands causing poor yield of crops. The affected lands are either lying barren or give poor yield of crops. As a result of salinization about 28,000 to 40,000 ha of irrigated land are going out of production per year. In response, researchers, policy makers, agency personnel and farmers in Pakistan have continuously devised strategies to mitigate secondary salinization. In this paper, nature and causes of secondary salinization, and review of strategies developed and tested in the IBIS to mitigate salinization are presented. Appropriate combination of strategies for various canal commands, and areas requiring further investigations are identified. (author)

  17. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    Full Text Available Introduction: Olive (Olea europaea L. trees are mainly cultivated in the Mediterranean area and are grown for their oil or processed as table olives. Despite the fact that olive is known to be resistant to drought conditions due to its anatomical, physiological, and biochemical adaptations to drought stress, reports indicate that the olive can be adversely affected by drought stress, which has a negative effect on the growth of olive trees. In the absence of adequate supplies of water, the demand for water can be met by using improved irrigation methods or by using reclaimed water (RW. Reports have shown that recycled water has been used successfully for irrigating olive orchards with no negative effects on plant growth.Attention has been paid to reclaimed water as one of the most significant available water resources used in agriculture around large cities in arid and semi-arid regions. On the other hand, irrigation efficiency is low and does not meet the demands of farmers.In order to investigate the possibility of irrigating olive orchards with subsurface leakage irrigation (SLI in application of reclaimed water, an experiment was carried out with the aim of investigating the effect of reclaimed water on photosynthetic indices and morphological properties of olive fruit. Materials and Methods: Research was conducted using a split-plot experimental design with two factors (irrigation system and water quality on the campus of Isfahan University of Technology in Isfahan, Iran, on a sandy-clay soil with a pH of 7.5 and electrical conductivity (EC of 2.48 dSm-1.PVC leaky tubes were used for the SLI system. The SLI system was installed 40 cm from the crown of each tree at a depth of 30 - 40 cm.At the end of the experiment fruit yield, weight per fruit, volume, length and firmness were calculated. A portable gas exchange system (Li-6400., LICOR, Lincoln, NE, USA was used to measure the net rate photosynthesis (A, the internal partial pressure CO2

  18. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  19. Predicting deep percolation with eddy covariance under mulch drip irrigation

    Science.gov (United States)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  20. Short-Term Contract Work in Adult Education (I) and (II).

    Science.gov (United States)

    Hall, Dorothea; McMath, Patricia

    1986-01-01

    This two-part article discusses short-term project contracts for adult education staff. Part one covers implications of this trend for the service and for the staff involved. Part two looks at short-term contracts from the management viewpoint. (CH)

  1. Customer Attraction in a Design-Build-Finance-Maintain-Operate Contract

    NARCIS (Netherlands)

    Favie, R.; Nordennen, van A.; Kleine, A.J.; Maas, G.J.; Ceric, A.; Radujkovic, M.

    2009-01-01

    In the Netherlands, large public customers use integrated contracts more and more often for complicated civil engineering and architectural works. Projects with integrated contracts such as Design, Build, Finance, Maintenance and Operate require tenderers to behave differently than they are

  2. Gain-P: A new strategy to increase furrow irrigation efficiency

    International Nuclear Information System (INIS)

    Schmitz, G.H.; Wohling, T.; Paly, M. D.; Schutze, N.

    2007-01-01

    The new methodology GAIN-P combines Genetic Algorithms, Artificial Intelligence techniques and rigorous Process modeling for substantially improving irrigation efficiency. The new strategy simultaneously identifies optimal values of both scheduling and irrigation parameters for an entire growing season and can be applied to irrigation systems with adequate or deficit water supply. In this contribution, GAIN-P is applied to furrow irrigation tackling the more difficult subject of the more effective deficit irrigation. A physically -based hydrodynamic irrigation model is iteratively coupled with a 2D subsurface flow model for generating a database containing all realistically feasible scenarios of water application in furrow irrigation. It is used for training a problem-adapted artificial neural network based on self-organized maps, which in turn portrays the inverse solution of the hydrodynamic furrow irrigation model and thus enormously speeds up the overall performance of the complete optimization tool. Global optimization with genetic algorithm finds the schedule with maximum crop yield for the given water volume. The impact of different irrigation schedules on crop yield is calculated by the coupled furrow irrigation model which also simulates soil evaporation, precipitation and root water uptake by the plants over the whole growing seasons, as well as crop growth and yield. First results with the new optimization strategy show that GAIN-P has a high potential to increase irrigation efficiency. (author)

  3. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    geo database and used for experiment program managment. Quite good agreement between measured and calculated biomass and LAI were obtained. Estimation of effectiveness of water efficiency as well as estimation of applied water losses were done in the base of supplied irrigation water provided by local operating irrigation water supply companies and data of soil moisture monitoring. Following analyse of the remote sensing use to estimate of crop water requirement will be presented. ACKNOWLEDGMENTS. This study was financially supported by G2G project

  4. Green Performance Contracting Strategy for Highway Construction Projects

    OpenAIRE

    2014-01-01

    With the growing awareness of sustainability and global climate change, state highway agencies are taking essential steps to reduce carbon emissions from highway infrastructure on a life cycle basis. While much is known regarding climate change mitigation and adaption strategies during highway operation, very little is understood about how climate change issues should be integrated into highway planning, delivery, and construction processes. This paper presents the current contracting pra...

  5. Contract design

    International Nuclear Information System (INIS)

    Bradley, P.

    2006-01-01

    The current state of the electric power industry in Ontario was discussed with particular reference to the procurement of contracts and why the Ontario Power Authority (OPA) must be contracting to resolve many of Ontario's electricity issues. As Ontario increasingly relies on imports and natural gas-fired generation, the price of electricity continues to rise given that supply is at a low level. In addition to the generation gap, there are also several transmission constrained areas in Ontario, particularly in the Greater Toronto Area (GTA). The OPA announced 2 projects totalling 1900 MW to relieve congestion. According to the Independent Electricity System Operator (IESO), the total potential opportunity for new generation by 2015 is about 5,000 to 7,000 megawatts. OPA is expected to launch procurement processes for up to 1000 MW of cogeneration, 250 MW of province-wide conservation initiatives, 1900 MW of generation in the western part of the GTA, and 600 MW of generation in downtown Toronto. New nuclear capacity is also anticipated in addition to renewables and conservation/demand management (CDM) initiatives. The OPA's competitive procurement processes will include requests for expressions of interest, requests for qualifications and requests for proposals. The challenge of balancing the technical complexities and realities of procuring generation assets with the need for a fair procurement process was discussed. Contracts will be designed to react to market signals and will include 3 styles: tariff style, tolling style and standard offer contract. OPA will make every effort to balance generator and ratepayer interests. 6 figs

  6. The Regularity of Optimal Irrigation Patterns

    Science.gov (United States)

    Morel, Jean-Michel; Santambrogio, Filippo

    2010-02-01

    A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.

  7. Closed chamber globe stabilization and needle capsulorhexis using irrigation hand piece of bimanual irrigation and aspiration system

    Directory of Open Access Journals (Sweden)

    Rai Harminder K

    2005-08-01

    Full Text Available Abstract Background The prerequisites for a good capsulorhexis include a deep, well maintained anterior chamber, globe stabilization and globe manipulation. This helps to achieve a capsulorhexis of optimal size, shape and obtain the best possible position for a red glow under retroillumination. We report the use of irrigation handpiece of bimanual irrigation aspiration system to stabilize the globe, maintain a deep anterior chamber and manipulate the globe to a position of optimal red reflex during needle capsulorhexis in phacoemulsification. Methods Two side ports are made with 20 G MVR 'V' lance knife (Alcon, USA. The irrigation handpiece with irrigation on is introduced into the anterior chamber through one side port and the 26-G cystitome (made from 26-G needle is introduced through the other. The capsolurhexis is completed with the needle. Results Needle capsulorhexis with this technique was used in 30 cases of uncomplicated immature senile cataracts. 10 cases were done under peribulbar anaesthesia and 20 under topical anaesthesia. A complete capsulorhexis was achieved in all cases. Conclusion The irrigating handpiece maintains deep anterior chamber, stabilizes the globe, facilitates pupillary dilatation, and helps in maintaining the eye in the position with optimal red reflex during needle capsulorhexis. This technique is a safe and effective way to perform needle capsulorhexis.

  8. Irrigation scheduling of spring wheat using infrared thermometry

    International Nuclear Information System (INIS)

    Stegman, E.C.; Soderlund, M.G.

    1989-01-01

    Irrigation scheduling for spring wheat requires information on different irrigation timing methods. Irrigation timing based on allowable root zone available water depletion and selected crop water stress index (CWSI) thresholds were evaluated in terms of their effect on spring wheat yield. A field study was conducted at Oakes, North Dakota in 1987 and 1988 on a Maddock sandy loam soil with two varieties of spring wheat (Marshall and Wheaton) using a split plot randomized block design. Irrigation was metered to each plot using trickle irrigation tubing. Neutron soil water measurements along with a water balance model were used to time irrigations that were based on different allowed root zone depletions. Infrared thermometer sensors (IRT) were used to measure in situ canopy temperatures and along with measured climatic information were used to time irrigations using the CWSI approach. Additionally, crop phenological stages and final grain yield were measured. The non-water-stressed baselines necessary for the CWSI differed between the two seasons but were similar to those from previous studies. The CWSI methods were feasible from the Feekes scale S4 (beginning pseudo-stem) to S11.2 (mealy ripe). Minimal yield reductions were observed using the CWSI method for thresholds less than 0.4-0.5 during this period. Minimal yield reductions were observed by maintaining the root zone allowable depletion below 50%. The grain yield-evapotranspiration (ET) relationship was linear in both years but with different slopes and intercepts. When analyzed on a relative basis to maximum ET (ETm), a single relationship fit both years’ data with a yield sensitivity factor of 1.58. Irrigations timed at CWSI = 0.5 reduced seasonal water application by 18% relative to treatments irrigated at CWSI = 0.2. (author)

  9. Artificial Intelligence Project

    Science.gov (United States)

    1990-01-01

    Symposium on Aritificial Intelligence and Software Engineering Working Notes, March 1989. Blumenthal, Brad, "An Architecture for Automating...Artificial Intelligence Project Final Technical Report ARO Contract: DAAG29-84-K-OGO Artificial Intelligence LaboratO"ry The University of Texas at...Austin N>.. ~ ~ JA 1/I 1991 n~~~ Austin, Texas 78712 ________k A,.tificial Intelligence Project i Final Technical Report ARO Contract: DAAG29-84-K-0060

  10. Estimating irrigation water use in the humid eastern United States

    Science.gov (United States)

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  11. Charts for Guiding Adjustments of Irrigation Interval to Actual Weather Conditions

    International Nuclear Information System (INIS)

    Kipkorir, E.C.

    2002-01-01

    Major problems in irrigation management at short time-step during the season are unreliability of rainfall and absence of guidance. By considering the climate of region, crop and soil characteristics, the irrigation method and local irrigation practices, this paper presents the concept of irrigation charts. The charts are based on soil water technique. As an example irrigation chart for a typical irrigation system located in the semi-arid area in Naivasha, Kenya is presented. The chart guides the user in adjustment of irrigation interval to the actual weather conditions throughout the growing season. It is believed that the simplicity of the chart makes it a useful tool for a better utilisation of the limited irrigation water

  12. Technical realization of the VISA-2 Project, contract: 2.01/ I phase, Volume No. I

    International Nuclear Information System (INIS)

    1963-12-01

    Cooperation between the Institutes in Vinca and Saclay has started by carrying out the task 'Technical realization of the VISA-2 project' which should enable: obtaining new experimental spaces in the RA reactor with high fast neutron flux for sample irradiation; obtaining experience in reactor continual operation for few months at nominal power of 6.5 MW and increase of RA reactor utilization; solving the problem of activated channels and samples transport, problems of working in hot cells; obtaining irradiated samples for examining radiation effects first in Saclay and later in Vinca. The project is divided in three phases. Phase one covers the reconstruction of the RA reactor fuel channels according to the VISA-2 project demands. The second phase includes the activities related to measuring devices for measuring the temperatures at the incoming and outgoing heavy water in 5 VISA-2 channels, as well as temperature of the samples (55 thermocouples) and testing the channels and capsules after their insertion in the reactor. The third phase includes activities are related to problems of transport of radioactive channels and VISA-2 capsules, problems of cutting as well as packing and transporting of irradiated samples from Vinca to Saclay. This volume includes all the relevant documents for completing the task including contracts, needed preliminary calculations as well as safety analysis [sr

  13. Irrigation water policy analysis using a business simulation game

    Science.gov (United States)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  14. Chemical colostomy irrigation with glyceryl trinitrate solution.

    Science.gov (United States)

    O'Bichere, A; Bossom, C; Gangoli, S; Green, C; Phillips, R K

    2001-09-01

    Colostomy irrigation may improve patient quality of life, but is time consuming. This study tests the hypothesis that irrigation with glyceryl trinitrate solution, by inducing gastrointestinal smooth muscle relaxation, may accelerate expulsion of stool by passive emptying, thereby reducing irrigation time. Fifteen colostomy irrigators(with more than 3 years' experience) performed washout with tap water compared with water containing 0.025 mg/kg glyceryl trinitrate. Fluid inflow time, total washout time, and hemodynamic changes occurring during glyceryl trinitrate irrigation were documented by an independent observer. Subjects recorded episodes of fecal leakage and overall satisfaction on a visual analog scale. Cramps, headaches, and whether or not a stoma bag was used were expressed as a percentage of number of irrigations. Comparison of fluid inflow time, total washout time, leakage, and satisfaction was by Wilcoxon's signed-rank test and headaches, cramps, and stoma bag use was by McNemar's test. Pulse rate (paired t-test), systolic and diastolic blood pressures (Wilcoxon's test) at 20 and 240 minutes after washout with glyceryl trinitrate solution were compared with baseline. Fifteen patients (9 female), with a mean age of 53 (31-73) years, provided 30 sessions (15 with water and 15 with glyceryl trinitrate). Medians (interquartile ranges) for water vs. glyceryl trinitrate were fluid inflow time 7 (4-10) vs. 4, (3-5; P = 0.001); total washout time 40 (30-55) vs. 21, (15-24; P colostomy irrigation time compared with the generally recommended tap water. Patients suffer fewer leakages and are highly satisfied, but side effects are potential drawbacks. Other colonoplegic agent solutions should now be evaluated.

  15. Prospective controlled trial comparing colostomy irrigation with "spontaneous-action" method.

    Science.gov (United States)

    Williams, N S; Johnston, D

    1980-07-12

    Thirty randomly selected patients with permanent colostomies entered a prospective controlled trial comparing colostomy irrigation with spontaneous action. Each patient was interviewed and examined before irrigation was begun and again after the technique had been used for three months. Each then reverted to spontaneous action for a further three months and was then reassessed. Eight patients abandoned irrigation and 22 (73%) adhered to the protocol. Irrigation caused no mishaps or complications. The mean time spent managing the stoma was 45 +/- SEM 9 min/24 hours during spontaneous action and 53 +/- 9 min/24 hours during irrigation. This difference was not significant. The numbers of bowel actions weekly were 13 +/ SEM 2 during spontaneous action and 6 +/- 1 during irrigation (p Irrigation reduced odour and flatus in 20 patients and enabled 12 out of 18 to stop using drugs and seven to discard their appliance. Irrigation also improved the social life of 18 patients and the working conditions of eight out of 14. These finding show that some patients may not be suitable for irrigation but that for many it is better than the conventional British method of colostomy management. With modern apparatus the technique is safe.

  16. Experimental study of faecal continence and colostomy irrigation.

    Science.gov (United States)

    O'Bichere, A; Sibbons, P; Doré, C; Green, C; Phillips, R K

    2000-07-01

    Colostomy irrigation is a useful method of achieving faecal continence in selected conditions, but remains largely underutilized because it is time consuming. This study investigated the effect of modifying irrigation technique (route, infusion regimen and pharmacological manipulation) on colonic emptying time in a porcine model. An end-colostomy and caecostomy were fashioned in six pigs. Twenty markers were introduced into the caecum immediately before colonic irrigation. Irrigation route (antegrade or retrograde), infusion regimen (tap water, polyethylene glycol (PEG), 1.5 per cent glycine) and pharmacological agent (glyceryl trinitrate (GTN) 0.25 mg/kg, diltiazem 3.9 mg/kg, bisacodyl 0.25 mg/kg) were assigned to each animal at random. Colonic transit was assessed by quantifying cumulative expelled markers (CEM) and stool every hour for 12 h. Mean CEM at 6 h for bisacodyl, GTN and diltiazem were 18.17, 12.17 and zero respectively; all pairwise differences in means were significant (P irrigation. PEG and glycine enhance emptying similar to bisacodyl and GTN solution. These findings show promise for improved faecal continence by colostomy irrigation and may justify construction of a Malone conduit at the time of colostomy in selected patients who wish to irrigate. Presented in part to the British Society of Gastroenterology in Glasgow, UK, March 1999, and published in abstract form as Gut 1999; 44(Suppl 1): A135

  17. Contract theory and EU Contract Law

    NARCIS (Netherlands)

    Hesselink, M.W.; Twigg-Flesner, C.

    2016-01-01

    This paper explores the relationship between contract theory and European contract law. In particular, it confronts the leading contract law theories with the main characteristics of EU contract law. The conclusion is that the two do not match well. In particular, monist normative contract theories

  18. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  19. Dominant control of agriculture and irrigation on urban heat island in India.

    Science.gov (United States)

    Kumar, Rahul; Mishra, Vimal; Buzan, Jonathan; Kumar, Rohini; Shindell, Drew; Huber, Matthew

    2017-10-25

    As is true in many regions, India experiences surface Urban Heat Island (UHI) effect that is well understood, but the causes of the more recently discovered Urban Cool Island (UCI) effect remain poorly constrained. This raises questions about our fundamental understanding of the drivers of rural-urban environmental gradients and hinders development of effective strategies for mitigation and adaptation to projected heat stress increases in rapidly urbanizing India. Here we show that more than 60% of Indian urban areas are observed to experience a day-time UCI. We use satellite observations and the Community Land Model (CLM) to identify the impact of irrigation and prove for the first time that UCI is caused by lack of vegetation and moisture in non-urban areas relative to cities. In contrast, urban areas in extensively irrigated landscapes generally experience the expected positive UHI effect. At night, UHI warming intensifies, occurring across a majority (90%) of India's urban areas. The magnitude of rural-urban temperature contrasts is largely controlled by agriculture and moisture availability from irrigation, but further analysis of model results indicate an important role for atmospheric aerosols. Thus both land-use decisions and aerosols are important factors governing, modulating, and even reversing the expected urban-rural temperature gradients.

  20. Tank Operations Contract Construction Management Methodology. Utilizing The Agency Method Of Construction Management

    International Nuclear Information System (INIS)

    Lesko, K.F.; Berriochoa, M.V.

    2010-01-01

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business constructioin subcontractors while performing high hazard work in a safe and productive manner. Previous to the WRPS contract, construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper descirbes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method (John E Schaufelberger, Len Holm, 'Management of Construction Projects, A Constructor's Perspective', University of Washington, Prentice Hall 2002). This method was implemented in the first quarter of Fiscal Year 2009 (FY2009), where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted

  1. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    LESKO KF; BERRIOCHOA MV

    2010-02-26

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business constructioin subcontractors while performing high hazard work in a safe and productive manner. Previous to the WRPS contract, construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper descirbes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method (John E Schaufelberger, Len Holm, "Management of Construction Projects, A Constructor's Perspective", University of Washington, Prentice Hall 2002). This method was implemented in the first quarter of Fiscal Year 2009 (FY2009), where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are

  2. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  3. Field trials show the fertilizer value of nitrogen in irrigation water

    Directory of Open Access Journals (Sweden)

    Mike Cahn

    2017-04-01

    Full Text Available Increased regulatory activity designed to protect groundwater from degradation by nitrate-nitrogen (NO3-N is focusing attention on the efficiency of agricultural use of nitrogen (N. One area drawing scrutiny is the way in which growers consider the NO3-N concentration of irrigation water when determining N fertilizer rates. Four drip-irrigated field studies were conducted in the Salinas Valley evaluating the impact of irrigation water NO3-N concentration and irrigation efficiency on the N uptake efficiency of lettuce and broccoli crops. Irrigation with water NO3-N concentrations from 2 to 45 milligrams per liter were compared with periodic fertigation of N fertilizer. The effect of irrigation efficiency was determined by comparing an efficient (110% to 120% of crop evapotranspiration, ETc and an inefficient (160% to 200% of ETc irrigation treatment. Across these trials, NO3-N from irrigation water was at least as efficiently used as fertilizer N; the uptake efficiency of irrigation water NO3-N averaged approximately 80%, and it was not affected by NO3-N concentration or irrigation efficiency.

  4. effect of deficit irrigation on growth and yield of okro

    African Journals Online (AJOL)

    User

    reduce the demand for irrigation water (Boland et al., 1993). Deficit irrigation is another way in which water use efficiency can be maximized for higher yields per unit of irrigation water. Stegman (1982) reported that the yield of maize, sprinkler irrigated to induce a 30 - 40 percent depletion of available water between.

  5. Safeguarding water availability for food and ecosystems under global change

    NARCIS (Netherlands)

    Pastor, Amandine V.

    2017-01-01

    In a context of future population increase and intensification of water cycle by climate change, water demand for irrigation is projected to double. However, freshwater resources have been degraded the last decades especially in rivers via fragmentation, dam contraction and pollution. Flow

  6. Precision overhead irrigation is suitable for several Central Valley crops

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Mitchell

    2016-04-01

    Full Text Available Overhead systems are the dominant irrigation technology in many parts of the world, but they are not widely used in California even though they have higher water application efficiency than furrow irrigation systems and lower labor requirements than drip systems. With water and labor perennial concerns in California, the suitability of overhead systems merits consideration. From 2008 through 2013, in studies near Five Points, California, we evaluated overhead irrigation for wheat, corn, cotton, tomato, onion and broccoli as an alternative to furrow and drip irrigation. With the exception of tomato, equal or increased yields were achieved with overhead irrigation. Many variables are involved in the choice of an irrigation system, but our results suggest that, with more research to support best management practices, overhead irrigation may be useful to a wider set of California farmers than currently use it.

  7. INTEGRATED WATER MANAGEMENT AND DURABILITY OF LANDSCAPE OF PUBLIC IRRIGATED AREAS IN TUNISIA: CASES OF PUBLIC IRRIGATED AREAS OF CHOTT-MARIEM AND MORNAG

    OpenAIRE

    Abdelkarim Hamrita; Amira Boussetta; Rafael Mata Olmo; Mehdi Saqalli; Hichem Rejeb

    2017-01-01

    An important part of the landscape of irrigated areas in Tunisia is the result of morphology, organization and operation of agricultural policies implemented since independence, aimed at optimizing the exploitation of the best soils and natural resources, particularly water and productive crop intensification. The sustainability of the landscape of public irrigated areas has a strong bonding with the resources of irrigation water and their states of management. The scarcity of irrigation wate...

  8. Irrigation scheduling with the neutron probe

    International Nuclear Information System (INIS)

    Travers, P.

    1987-01-01

    The operational theory of the neutron probe is briefly outlined and its application and uses discussed in relation to determination of soil compaction and irrigation scheduling. Graphic examples are given of alluvial soil moisture profiles and how this information can be used to improve trickle irrigation in vineyards. 3 refs., 7 figs

  9. Effects of Supplemental Irrigation on Yield and Growth Indices of Three

    Directory of Open Access Journals (Sweden)

    M. Parsa

    2012-04-01

    Full Text Available In order to investigate the effects of different irrigation regimes on yield and growth indices of three chickpea cultivars, an experiment was conducted during the 2007 growing season at Mashhad (Iran. Six irrigation regimes including I1; full irrigation, I2; irrigation at branching, I3; irrigation at flowering, I4; irrigation at pod formation, I5; irrigation at seed filling stage and I6; dry farming without irrigation (main factors. Three Kabuli chickpea cultivars ILC482, Jam, Karaj 12-60-31 (sub factors in a spilt block experiment based on randomized block design with three replications. There were significant differences between supplemental irrigation levels on grain yield. The results showed that grain yield in supplemental irrigation at flowering stage was more than to supplemental irrigation at branching, podding and seed filling stages (respectively 3.3, 3.1 and 23%. Within the three cultivars, grain yield, biological yield and harvest index were highest and lowest in ILC482 and Karaj 12-60-31 cultivars respectively. The results showed that supplemental irrigation at flowering stage increased dry matter, leaf area index, crop growth rate, relative growth rate and net assimilation rate. The results showed that flowering stage in chickpea cultivars was sensitive to drought stress so, ILC482 cultivar also showed more tolerance to water stress condition.

  10. Evaluation of potential water conservation using site-specific irrigation

    Science.gov (United States)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  11. Sustainable Irrigation Development in the White Volta Sub-Basin

    NARCIS (Netherlands)

    Ofosu, E.A.

    2011-01-01

    This study on sustainable irrigation development identified growing markets for irrigated products as an important driving force behind the expansion of irrigation which has given rise to new technologies. The new technologies have spread because they gave farmers direct control over water sources.

  12. The Weyl law for contractive maps

    Science.gov (United States)

    Spina, Maria E.; Rivas, Alejandro M. F.; Carlo, Gabriel

    2013-11-01

    We find an empirical Weyl law followed by the eigenvalues of contractive maps. An important property is that it is mainly insensitive to the dimension of the corresponding invariant classical set, the strange attractor. The usual explanation for the fractal Weyl law emergence in scattering systems (i.e., having a projective opening) is based on the classical phase space distributions evolved up to the quantum to classical correspondence (Ehrenfest) time. In the contractive case this reasoning fails to describe it. Instead, we conjecture that the support for this behavior is essentially given by the strong non-orthogonality of the eigenvectors of the contractive superoperator. We test the validity of the Weyl law and this conjecture on two paradigmatic systems, the dissipative baker and kicked top maps.

  13. The Weyl law for contractive maps

    International Nuclear Information System (INIS)

    Spina, Maria E; Rivas, Alejandro M F; Carlo, Gabriel

    2013-01-01

    We find an empirical Weyl law followed by the eigenvalues of contractive maps. An important property is that it is mainly insensitive to the dimension of the corresponding invariant classical set, the strange attractor. The usual explanation for the fractal Weyl law emergence in scattering systems (i.e., having a projective opening) is based on the classical phase space distributions evolved up to the quantum to classical correspondence (Ehrenfest) time. In the contractive case this reasoning fails to describe it. Instead, we conjecture that the support for this behavior is essentially given by the strong non-orthogonality of the eigenvectors of the contractive superoperator. We test the validity of the Weyl law and this conjecture on two paradigmatic systems, the dissipative baker and kicked top maps. (paper)

  14. Ring Irrigation System (RIS) design through customer preference representation

    OpenAIRE

    Ridwan Infandra I.Z.; Rianmora Suchada; Werawatganon Siwat

    2018-01-01

    In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent ...

  15. Stability of Adrenaline in Irrigating Solution for Intraocular Surgery.

    Science.gov (United States)

    Shibata, Yuuka; Kimura, Yasuhiro; Taogoshi, Takanori; Matsuo, Hiroaki; Kihira, Kenji

    2016-01-01

    Intraocular irrigating solution containing 1 µg/mL adrenaline is widely used during cataract surgery to maintain pupil dilation. Prepared intraocular irrigating solutions are recommended for use within 6 h. After the irrigating solution is admistered for dilution, the adrenaline may become oxidized, and this may result in a decrease in its biological activity. However, the stability of adrenaline in intraocular irrigating solution is not fully understood. The aim of this study was to evaluate the stability of adrenaline in clinically used irrigating solutions of varying pH. Six hours after mixing, the adrenaline percentages remaining were 90.6%±3.7 (pH 7.2), 91.1%±2.2 (pH 7.5), and 65.2%±2.8 (pH 8.0) of the initial concentration. One hour after mixing, the percentages remaining were 97.6%±2.0 (pH 7.2), 97.4%±2.7 (pH 7.5), and 95.6%±3.3 (pH 8.0). The degradation was especially remarkable and time dependent in the solution at pH 8.0. These results indicate that the concentration of adrenaline is decreased after preparation. Moreover, we investigated the influence of sodium bisulfite on adrenaline stability in irrigating solution. The percentage adrenaline remaining at 6 h after mixing in irrigating solution (pH 8.0) containing sodium bisulfite at 0.5 µg/mL (concentration in irrigating solution) or at 500 µg/mL (concentration in the undiluted adrenaline preparation) were 57.5 and 97.3%, respectively. Therefore, the low concentration of sodium bisulfite in the irrigating solution may be a cause of the adrenaline loss. In conclusion, intraocular irrigation solution with adrenaline should be prepared just prior to its use in surgery.

  16. Go Grey - A Laundry to Landscape Irrigation System

    Science.gov (United States)

    Rajmohan, S.

    2017-12-01

    California residents have dealt with severe drought and high water bills for the few past years[1]. The objective of our project is to use the concept of greywater irrigation to build a low cost, adaptable, and easy to install irrigation system to collect the greywater from the washing machine and use it to water the plants. This system can reduce a household's water usage, extend the life of a septic system, and save time on watering plants by recycling the water from the washing machine. Our simple system requires PVC pipes, a three-way water diverter (valve), a mesh coffee filter, and a water (rain) barrel. The water from the washing machine travels through the three-way valve, which diverts it either to the garden or to the sewer. The PVC pipes lead outside to the garden, where the water barrel is located. The water goes through the mesh coffee filter that is attached on top of the barrel, so that lint and other impurities can be filtered out. The water collected in the barrel will travel through drip irrigation or through a hose to directly water the roots of the plants. This fully functional greywater system was successfully constructed and tested through various trails. We used a Kenmore standard 4.5 cubic feet front load high efficiency washer which uses less water compared to the traditional washers and measured the water collected in water barrel after each wash. Irrespective of the size of the load, the amount of water collected from each wash remained almost the same.. However, we collected enough grey water from each washer load to fill the rain barrel and water the plants in the garden. We were able apply the concept of greywater irrigation successfully to build our own low cost, adaptable, and easy to install greywater system that can be used in any household to water plants in the garden. Our system recycles the water from the washer instead of just wasting it thereby reducing a household's water usage and water bill especially during the time of

  17. Impacts of Irrigation and Climate Change on Water Security: Using Stakeholder Engagement to Inform a Process-based Crop Model

    Science.gov (United States)

    Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.

    2016-12-01

    hydrologic budgets. This study reports our methodology to integrate perspectives of irrigators into projections of future water use and crop growth in the LBRB. It also highlights the need for more robust social data collection methods in socio-hydrologic studies.

  18. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  19. Technical Evaluation of Sprinkler Irrigation Systems which were Implemented in Tea Fields of the Guilan Province

    Directory of Open Access Journals (Sweden)

    kourosh majdsalimi

    2016-02-01

    Full Text Available Introduction: Designing and management of sprinkler irrigation systems depend on the situation and location of its implementation and often rely on professional and long-term tests (9. Having a good irrigation system depends on knowledge of the relationship between soil, water, plants, irrigation scheduling, the required amount of irrigation water to the water-holding capacity of soil, climate and plant growth (6.The less use of sprinkler irrigation systems and less performed research projects in the Guilan province, lack of correct design parameters due to shortage of the required parameters for local and regional planning, has led to reliance on charts and tables. Therefore, planning water resources cannot be performed well and with accurate details. According to many researchers (8, the technical evaluation should be a regular and short-term process to review the problems and possible performance of irrigation systems. Merriam and Keller (10 defined the assessment of an irrigation system analysis, based on field measurements in real terms during the normal work of the system. Therefore, to develop these systems over the next few years, it is essential to evaluate the use of irrigation systems and review the performance of existing problems and utilizing the results to improve it. The aim of this study was to assess the current status of implemented irrigation systems in the tea plantations of Guilan and evaluate their performance. Materials and Methods: In this study, six classic sprinkler irrigation systems in tea fields of Guilan province were evaluated during two years. Sprinkler irrigation systems of semi-portable, solid-set and solid-set (hand-move sprinkler were selected randomly. To evaluate this irrigation systems, Christiansen’s uniformity coefficient (CU, distribution uniformity (DU, potential application efficiency of low-quarter (PELQ and application efficiency of low-quarter (AELQ in the form of trial blocks were estimated by

  20. Using container weights to determine irrigation needs: A simple method

    Science.gov (United States)

    R. Kasten Dumroese; Mark E. Montville; Jeremiah R. Pinto

    2015-01-01

    Proper irrigation can reduce water use, water waste, and incidence of disease. Knowing when to irrigate plants in container nurseries can be determined by weighing containers. This simple method is quantifiable, which is a benefit when more than one worker is responsible for irrigation. Irrigation is necessary when the container weighs some target as a proportion of...

  1. A Fuzzy analytical hierarchy process approach in irrigation networks maintenance

    Science.gov (United States)

    Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi'i

    2017-11-01

    Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.

  2. Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model

    Science.gov (United States)

    Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit

    2017-01-01

    Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in

  3. [Irrigation in colostomies].

    Science.gov (United States)

    Campo, Juana; Lecona, Ana; Caparrós, M Rosario; Barbero, M Antonia; Javier Cerdán, F

    2002-01-01

    The degree of acceptation of irrigation from a colostomy varies ostensibly from some cases to others, therefore, we study what occurs in our medium, separating those patients which have previously undergone other procedures (Group A) from those patients who have been informed and trained about the immediate postoperative period (Group B). 48 patients, 22 or 46% of these patients were considered not apt for irrigation. Of the 26 to whom this procedure was proposed, 14 or 54% accepted. Of these, 5 or 36% abandoned its use while 9 continued its use; this is 64% of those who accepted this procedure, 35% of those to whom it was proposed and 19% of the total study group. 189 patients. This procedure was not recommended to 95 patients, 50%. Of the 94 patients to whom this procedure was proposed, 65 or 69% accepted. Of these, 22 or 34% abandoned its use while 43 continued its use; this is 66% of those; who accepted this procedure, 46% of those to whom it was proposed and 23% of the total study group. In our medium, the practice of irrigation oscillates between 19 and 23% of patients who have undergone a colostomy, without any significant difference referring to the moment when a patient started this procedure. A first report on this study was submitted in the III National Congress for Nursing in Colostomies.

  4. Clinical value of colonic irrigation in patients with continence disturbances.

    Science.gov (United States)

    Briel, J W; Schouten, W R; Vlot, E A; Smits, S; van Kessel, I

    1997-07-01

    Continence disturbances, especially fecal soiling, are difficult to treat. Irrigation of the distal part of the large bowel might be considered as a nonsurgical alternative for patients with impaired continence. This study is aimed at evaluating the clinical value of colonic irrigation. Thirty-two patients (16 females; median age, 47 (range, 23-72) years) were offered colonic irrigation on an ambulatory basis. Sixteen patients suffered from fecal soiling (Group I), whereas the other 16 patients were treated for fecal incontinence (Group II). Patients were instructed by enterostomal therapists how to use a conventional colostomy irrigation set to obtain sufficient irrigation of the distal part of their large bowel. Patients with continence disturbances during the daytime were instructed to introduce 500 to 1,000 ml of warm (38 degrees C) water within 5 to 10 minutes after they passed their first stool. In addition, they were advised to wait until the urge to defecate was felt. Patients with soiling during overnight sleep were advised to irrigate during the evening. To determine clinical outcome, a detailed questionnaire was used. Median duration of follow-up was 18 months. Ten patients discontinued irrigation within the first month of treatment. Symptoms resolved completely in two patients. They believed that there was no need to continue treatment any longer. Irrigation had no effect in two patients. Despite the fact that symptoms resolved, six patients discontinued treatment because they experienced pain (n = 2) or they considered the irrigation to be too time-consuming (n = 4). Twenty-two patients are still performing irrigations. Most patients irrigated the colon in the morning after the first stool was passed. Time needed for washout varied between 10 and 90 minutes. Frequency of irrigations varied from two times per day to two times per week. In Group I, irrigation was found to be beneficial in 92 percent of patients, whereas 60 percent of patients in Group II

  5. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  6. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  7. Biochar enhances yield and quality of tomato under reduced irrigation

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Li, Guitong; Andersen, Mathias Neumann

    2014-01-01

    tBiochar is an amendment that can be used for enhancing soil water storage which may increase cropproductivity. The objective of this study was to investigate the effects of biochar on physiology, yield andquality of tomato under different irrigation regimes. From early flowering to fruit maturity...... stages, theplants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation(PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot waterholding capacity while in DI and PRD, 70% of FI was irrigated on either...... the whole or one side of the pots,respectively. In PRD, irrigation was switched between sides when the soil water content of the dry sidedecreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DIand PRD, which consequently improved physiology, yield, and quality...

  8. Agro-ecology and irrigation technology : comparative research on farmer-managed irrigation systems in the Mid-hills of Nepal

    NARCIS (Netherlands)

    Parajuli, U.N.

    1999-01-01

    Design and management of irrigation infrastructure in farmer managed irrigation systems (FMISs) are strongly influenced by social and agro-ecological conditions of an area. This thesis analyzes the elements of social and agro-ecological conditions in FMISs in the mid-hills of Nepal and

  9. Modelling the economic trade-offs of irrigation pipeline investments ...

    African Journals Online (AJOL)

    The Soil Water Irrigation Planning and Energy Management (SWIP-E) mathematical programming model was developed and applied in this paper to provide decision support regarding the optimal mainline pipe diameter, irrigation system delivery capacity and size of the irrigation system. SWIP-E unifies the interrelated ...

  10. Irrigation and fertigation frequencies with nitrogen in the watermelon culture

    Directory of Open Access Journals (Sweden)

    Carlos Newdmar Vieira Fernandes

    2014-06-01

    Full Text Available This study evaluates the influence of different irrigation frequencies and different nitrogen fertigation frequencies on the growth performance of the watermelon (Citrullus lanatus culture. Two experiments were conducted at the Paraguay farm in the Cruz municipality, Ceará, Brazil. They was randomized blocks design with six treatments and four replications. The irrigation frequency experiment consisted of the application of different irrigation frequencies. The treatments were: DM - daily irrigation in the morning with 100% daily dosage; DT - daily irrigation in the afternoon, with 100% daily dosage; DMT - twice daily irrigation, with 50% daily dosage in the morning and 50% daily dosage in the afternoon; 2D - irrigation every two days; 3D - irrigation every three days and 4D - irrigation every four days. To the experiment with different nitrogen fertigation frequencies, the treatments used were: 2F - 2 fertigations in a cycle; 4F - 4 fertigations in a cycle; 8F - 8 fertigations in a cycle; 16F - 16 fertigations in a cycle; 32F - 32 fertigations in a cycle and 64F - 64 fertigations in a cycle. We evaluated the marketable yield (PC, fruit weight (M, polar diameter (DP, equatorial diameter (DE, shell thickness (EC and soluble solids (SS. The irrigation frequency treatments influenced all variables significantly, with twice daily irrigation (DMT, 50% in the morning and the 50% in the afternoon promoting the highest productivity (69.79 t ha-1. The different frequencies of fertigation also significantly influenced all variables, except for the shell thickness, the highest yield (80.69 t ha-1 being obtained with treatment 64 fertigations in a cycle.

  11. Building Information Modelling and Standardised Construction Contracts: a Content Analysis of the GC21 Contract

    Directory of Open Access Journals (Sweden)

    Aaron Manderson

    2015-08-01

    Full Text Available Building Information Modelling (BIM is seen as a panacea to many of the ills confronting the Architectural, Engineering and Construction (AEC sector. In spite of its well documented benefits the widespread integration of BIM into the project lifecycle is yet to occur. One commonly identified barrier to BIM adoption is the perceived legal risks associated with its integration, coupled with the need for implementation in a collaborative environment. Many existing standardised contracts used in the Australian AEC industry were drafted before the emergence of BIM. As BIM continues to become ingrained in the delivery process the shortcomings of these existing contracts have become apparent. This paper reports on a study that reviewed and consolidated the contractual and legal concerns associated with BIM implementation. The findings of the review were used to conduct a qualitative content analysis of the GC21 2nd edition, an Australian standardised construction contract, to identify possible changes to facilitate the implementation of BIM in a collaborative environment. The findings identified a number of changes including the need to adopt a collaborative contract structure with equitable risk and reward mechanisms, recognition of the model as a contract document and the need for standardisation of communication/information exchange.

  12. Alkaline Sodium Hypochlorite Irrigant and Its Chemical Interactions

    Directory of Open Access Journals (Sweden)

    Patricia P. Wright

    2017-09-01

    Full Text Available Endodontic irrigating solutions may interact chemically with one another. This is important, because even when solutions are not admixed, they will come into contact with one another during an alternating irrigation technique, forming unwanted by-products, which may be toxic or irritant. Mixing or alternating irrigants can also reduce their ability to clean and disinfect the root canal system of teeth by changing their chemical structure with subsequent loss of the active agent, or by inducing precipitate formation in the root canal system. Precipitates occlude dental tubules, resulting in less penetration of antimicrobials and a loss of disinfection efficacy. Sodium hypochlorite is not only a very reactive oxidizing agent, but is also the most commonly used endodontic irrigant. As such, many interactions occurring between it and other irrigants, chelators and other antimicrobials, may occur. Of particular interest is the interaction between sodium hypochlorite and the chelators EDTA, citric acid and etidronate and between sodium hypochlorite and the antimicrobials chlorhexidine, alexidine, MTAD and octenisept.

  13. Field evaluation of deficit irrigation effects on tomato growth ...

    African Journals Online (AJOL)

    Two field experiments were conducted using a common tomato cultivar (GS12) to assess the effect of deficit irrigation (DI) regimes on tomato growth performance, and on root-knot nematode Meloidogyne javanica galling and abundance. Irrigation treatments consisted of five irrigation regimes: 20%, 40%, 60%, 80% and ...

  14. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  15. Evaluation of mulched drip irrigation for cotton in arid Northwest China

    NARCIS (Netherlands)

    Wang, Z.; Jin, M.; Simunek, J.; van Genuchten, M.T.

    2014-01-01

    Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control

  16. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  17. Normative structures, collaboration and conflict in irrigation; a case study of the Pillaro North Canal Irrigation System, Ecuadorian Highlands

    Directory of Open Access Journals (Sweden)

    Jaime Hoogesteger

    2015-03-01

    Full Text Available This paper analyzes conflict and collaboration and their relation to normative structures based on a case study of the history and external interventions of the Píllaro North Canal Irrigation System in the Ecuadorian Highlands. It does so by using Ostrom’s framework for analyzing the sustainability of socio-ecological systems together with an analysis of the normative structures that define the governance systems through which the interactions in irrigation systems are mediated. I argue that the external interventions by the state and NGOs imposed a new governance system that undermined the existing normative structures and related organizations, leading to internal conflicts. The case study suggests that a reformulation of irrigation policies and state intervention methodologies in user managed supra-community irrigation systems in the Andes could lead to higher levels of cooperation.

  18. Automation in irrigation process in family farm with Arduino platform

    Directory of Open Access Journals (Sweden)

    Kianne Crystie Bezerra da Cunha

    2016-03-01

    Full Text Available The small farmers tend not to use mechanical inputs in the irrigation process due to the high cost than conventional irrigation systems have and in other cases, the lack of knowledge and technical guidance makes the farmer theme using the system. Thus, all control and monitoring are made by hand without the aid of machines and this practice can lead to numerous problems from poor irrigation, and water waste, energy, and deficits in production. It is difficult to deduce when to irrigate, or how much water applied in cultivation, measure the soil temperature variables, temperature, and humidity, etc. The objective of this work is to implement an automated irrigation system aimed at family farming that is low cost and accessible to the farmer. The system will be able to monitor all parameters from irrigation. For this to occur, the key characteristics of family farming, Arduino platform, and irrigation were analyzed.

  19. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Science.gov (United States)

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  20. Irrigation Scheduling for Green Bell Peppers Using Capacitance Soil Moisture Sensors

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Femminella, K.; Munoz-Carpena, R.

    2011-01-01

    Vegetable production areas are intensively managed with high inputs of fertilizer and irrigation. The objectives of this study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling using soil moisture sensor irrigation controllers (SMS) on yield, irrigation water use

  1. Re-Linking Governance of Energy with Livelihoods and Irrigation in Uttarakhand, India

    Directory of Open Access Journals (Sweden)

    Stephanie Buechler

    2016-10-01

    Full Text Available Hydropower is often termed “green energy” and proffered as an alternative to polluting coal-generated electricity for burgeoning cities and energy-insecure rural areas. India is the third largest coal producer in the world; it is projected to be the largest coal consumer by 2050. In the Himalayan state of Uttarakhand, India, over 450 hydroelectric power schemes are proposed or are under development. Hydropower projects ranging from micro hydro (run-of-the-river systems with generating capacity up to 100 kW to large reservoirs (storage systems up to 2000 MW such as the Tehri Dam are in various stages of planning, construction or implementation. Run-of-the-river hydropower projects are being developed in Uttarakhand in order to avoid some of the costs to local communities created by large dams. Stakeholders in this rapid hydropower expansion include multiple actors with often diverging sets of interests. The resulting governance challenges are centered on tradeoffs between local electricity and revenue from the sale of hydropower, on the one hand, and the impacts on small-scale irrigation systems, riparian-corridor ecosystem services, and other natural resource-based livelihoods, on the other. We focus on the Bhilangana river basin, where water dependent livelihoods differentiated by gender include farming, fishing, livestock rearing and fodder collection. We examine the contradictions inherent in hydropower governance based on the interests of local residents and other stakeholders including hydropower developers, urban and other regional electricity users, and state-level policymakers. We use a social justice approach applied to hydropower projects to examine some of the negative impacts, especially by location and gender, of these projects on local communities and then identify strategies that can safeguard or enhance livelihoods of women, youth, and men in areas with hydropower projects, while also maintaining critical ecosystem services

  2. Types of contracts and contracting procedures

    International Nuclear Information System (INIS)

    Zijl, N.A. van

    1977-01-01

    Contracting for a nuclear power plant can be carried out in many different ways, from a bilateral agreement between two countries to an international open bidding competition. Also the kind of contracts (turnkey, split-package or multi-contract type) are discussed with their pros and cons as well as the contracting procedures which can be followed to come to the conclusion of a contract. (orig.) [de

  3. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  4. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, Christos; van der Sluis, Lucas; Basrani, Bettina

    2015-01-01

    This book reviews the available information on bacterial disinfection in endodontics, with emphasis on the chemical treatment of root canals based on current understanding of the process of irrigation. It describes recent advances in knowledge of the chemistry associated with irrigants and delivery

  5. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  6. The phenology of malaria mosquitos in irrigated rice fields in Mali

    NARCIS (Netherlands)

    Klinkenberg, E.; Takken, W.; Huibers, F.P.; Touré, Y.T.

    2003-01-01

    A field study was carried out in the large-scale rice irrigation scheme of the Office du Niger in Mali to investigate the relation between anopheline mosquito larval development and small-scale differences in irrigation practices, such as water level, irrigation application and irrigation frequency.

  7. Alternate partial root-zone drying irrigation improves fruit quality in tomatoes

    DEFF Research Database (Denmark)

    Sun, Y.; Holm, Peter Engelund; Liu, Fulai

    2014-01-01

    Alternate partial root-zone drying (PRD) irrigation and deficit irrigation (DI) are water-saving irrigation strategies. Here, comparative effects of PRD and DI on fruit quality of tomato (Solanum lycopersicum L.) were investigated. The results showed that the irrigation treatments had no effect o...

  8. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  9. Climate Change Implications to Irrigated Rice Production in Southern Brazil: A Modelling Approach

    Science.gov (United States)

    Dos Santos, Thiago

    Rice is one of the staple foods for more than three billion people worldwide. When cultivated under irrigated conditions (i.e. lowland rice), rice is one of the most intensive water consumer crops globally. Therefore, representation of rice growth should be integrated into the latest land surface models to allow studies on food security and to ensure that accurate simulations of the bidirectional feedbacks between the land surface and atmosphere take place. In this study, I present a new process-based model for rice fields that includes rice growth and rice irrigation as modules within the Agro-IBIS dynamic agro-ecosystem model. The model includes a series of equations, agricultural management parameters and an irrigation scheme that are specifically tailored for rice crops. The model was evaluated against leaf area index and biomass observations, obtained for one growing season in Rio Grande do Sul state (southern Brazil), and in Los Banos, Philippines. The model accurately captured the temporal dynamics of leaf area index in both the Brazilian and the Philippine sites, and predicted end-of-season biomass with an error of between -9.5% and 11.3% depending on the location and the plant organ. Rice phenology is predicted by the model based on experimentally-derived growth rates, and was evaluated by comparing simulated and observed durations of the four growth phases considered by the model. Agro-IBIS showed a tendency to overestimate the duration of the growth stages between 3% and 16%, but underestimated by 8% the duration of the panicle formation phase in one growing season. The new irrigation model is based on the water balance at the surface and applies irrigation in order to keep the water layer at the paddy field always in the optimum level. A set of climate projections from global climate models under two emission scenarios, and excluding and considering CO2 fertilizations effects, was used to drive the updated Agro-IBIS to estimate the effects of climate

  10. LOW COST SMART SOLAR POWERED AUTOMATIC IRRIGATION SYSTEM

    OpenAIRE

    Hinsermu Alemayehu*, Kena Likassa

    2016-01-01

    In developing countries Photovoltaic energy can find many applications in agriculture, providing electrical energy in various cases, particularly OFF grid and desert area. Today Modern irrigation methods in developing country are needed to fulfill the food demands. Although in these countries Ethiopia, there are many diesel engine operated and rare solar operated water pumps for irrigation; but due to the running cost of diesel and capital cost of photovoltaic irrigation system. So Photovolta...

  11. Project finance of hydroelectric power plants in Brazil; 'Project finance' de usinas hidroeletricas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Filho, Valfredo de Assis; Ramos, Maria Olivia de Souza [Universidade Salvador (UNIFACS), BA (Brazil)

    2008-07-01

    The aim of this paper is to discuss the modality of project finance of financing of enterprises, which is the main modality of structuring of hydroelectric projects in Brazil. In the discussion will be highlighted the importance of contracts EPC (Engineering, Search and Construction) in the structuring of project finances. This financing model has particular characteristics related to risk sharing and financial flexibility that enable the financing of projects with long-term capital, however, due to participation of various actors and the nature of the structure of project finance, the negotiation and drafting of contracts are always very complex.

  12. Lessons learned : pavement marking warranty contract.

    Science.gov (United States)

    2013-12-01

    In 2012, UDOT implemented a performance-based warranty on a portion of an I-15 pavement marking : project. The awarded contract requested a contractor warranty on the implemented markings for a total : duration of six years. This is the first time th...

  13. Column leaching experiments of a uranium ore by atomizing irrigation technique

    International Nuclear Information System (INIS)

    Zeng Yingying; Lei Zeyong; Chen Haihui

    2007-01-01

    Column leaching experiments ora uranium ore were made by atomizing irrigation technique. The leaching results are compared with the results obtained by spray irrigation and drip irrigation techniques respectively under the same conditions of column leaching experiments. The results show that the atomizing irrigation technique has more uniform solution distribution, higher leaching rate, shorter leaching period, and less ratio of liquid to solid. Consequently, the atomizing irrigation technique is suitable to the ore. (authors)

  14. Evaluation of best management practices under intensive irrigation using SWAT model

    OpenAIRE

    Dechmi, Farida; Skhiri, Ahmed

    2013-01-01

    Land management practices such as conservation tillage and optimum irrigation are routinely used to reduce non-point source pollution and improve water quality. The calibrated and validated SWAT-IRRIG model is the first modified SWAT version that reproduces well the irrigation return flows (IRF) when the irrigation source is outside of the watershed. The application of this SWAT version in intensive irrigated systems permits to better evaluate the best management practices (BMPs) in such syst...

  15. Prospective controlled trial comparing colostomy irrigation with "spontaneous-action" method.

    OpenAIRE

    Williams, N S; Johnston, D

    1980-01-01

    Thirty randomly selected patients with permanent colostomies entered a prospective controlled trial comparing colostomy irrigation with spontaneous action. Each patient was interviewed and examined before irrigation was begun and again after the technique had been used for three months. Each then reverted to spontaneous action for a further three months and was then reassessed. Eight patients abandoned irrigation and 22 (73%) adhered to the protocol. Irrigation caused no mishaps or complicati...

  16. Soil Suitability Classification of Tomas Irrigation Scheme for Irrigated ...

    African Journals Online (AJOL)

    The need for sustainable rice production in Nigeria cannot be over-emphasized. Since rice can be grown both under rain-fed and irrigated conditions, the need for soil suitability evaluation becomes very necessary in order for supply to meet up with demand. Six land qualities viz; climate, soil physical properties, drainage, ...

  17. Streamflow Prediction in Ungauged, Irrigated Basins

    Science.gov (United States)

    Zhang, M.; Thompson, S. E.

    2016-12-01

    The international "predictions in ungauged basins" or "PUB" effort has broadened and improved the tools available to support water resources management in sparsely observed regions. These tools have, however, been primarily focused on regions with limited diversion of surface or shallow groundwater resources. Incorporating anthropogenic activity into PUB methods is essential given the high level of development of many basins. We extended an existing stochastic framework used to predict the flow duration curve to explore the effects of irrigation on streamflow dynamics. Four canonical scenarios were considered in which irrigation water was (i) primarily sourced from water imports, (ii) primarily sourced from direct in-channel diversions, (iii) sourced from shallow groundwater with direct connectivity to stream channels, or (iv) sourced from deep groundwater that is indirectly connected to surface flow via a shallow aquifer. By comparing the predicted flow duration curves to those predicted by accounting for climate and geomorphic factors in isolation, specific "fingerprints" of human water withdrawals could be identified for the different irrigation scenarios, and shown to be sensitive to irrigation volumes and scheduling. The results provide a first insight into PUB methodologies that could be employed in heavily managed basins.

  18. Organization and management of the LHC civil-engineering contracts

    CERN Document Server

    Watson, T

    1999-01-01

    Since July 1994, the CERN Civil Engineering group within the ST division has been preparing and engaging contracts related to the Large Hadron Collider (LHC) project. Several of these contracts have values in excess of 10 MCHF and will be executed over a number of years; as such they represent an important part of the infrastructure works required for the LHC. To date, in excess of two hundred and fifty companies have been consulted in relation to these contracts. Contracts or orders have been placed with over thirty companies or joint ventures of companies from nearly all the CERN Member States. This paper aims to show the inter-relationships between these contracts and how the Civil Engineering group is carrying out the management of these important LHC contracts. The organization of the group will be explained along with the roles of individual members within the group.

  19. Behaviour Of Saline Irrigation Water Components In Pakistani Barley And Calcareous Soil Under Scheduling Irrigation Using Neutron Scattering Technique

    International Nuclear Information System (INIS)

    RIZK, M.A.

    2010-01-01

    This study aims to investigate the behaviour of cation uptake by Pakistani barley (genotype PK-30163) as affected by saline irrigation water, as well as cation distribution within the soil profile. This experiment was carried out at Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt. The soil was transferred from Wadi Sudr (South Sinai, Egypt). It is salted affected soil (calcareous soil, EC = 4.3 dS/m) and was irrigated using ground water irrigation (12.5 dS/m). Nine used lysimeters were irrigated with three artificial saline water (0.3, 4 and 8 dS/m) using drip irrigation system. The irrigation schedule was carried out using neutron scattering technique according to the hydro physical properties of the soil. Pakistani barley (halophytic plant) was used to remove salts from the soil especially sodium cations. The cation uptake and cation distribution (Na, K, Ca, Mg) within the soil profile were studied.The data indicated that roots of barley collected within 0-15 cm layer showed high cation uptake that made the salt concentrations in this layer low. Sodium uptake ratio was 43, 37 and 47% from total cation uptake by using fresh water (0.3 dS/m), 4 and 8 dS/m, respectively. The maximum uptake for Na, K, Ca and Mg was 20.51, 19.13, 3.98 and 12.81 g/lys at 5.69, 3.05, 6.56 and 4.15 dS/m, respectively. It was found that Pakistani barley preferred Mg uptake rather than Ca uptake.

  20. An Evaluation of the Lower Rio Grande Valley Contracts with Non-VA Providers

    National Research Council Canada - National Science Library

    Piihl, Janet

    1999-01-01

    ... (DRGs with a HCFA average length of stay of three days or less). Surprisingly, four months after the contracts were implemented actual utilization of the contracts was significantly lower than projected...