WorldWideScience

Sample records for irrigation frequency effects

  1. Effect of irrigation frequencies on grain yield of maize

    International Nuclear Information System (INIS)

    Ahmad, M.; Chaudhry, M.H.; Amjed, M.T.

    2008-01-01

    To find out the water requirement and its application frequencies in spring Maize a trial was designed. The trial was comprised of five maize varieties (Ev-5098, EV-6098, EV-1098, Composite-20 and Pack Afgoyee) and five irrigation frequencies (7,8,9,10 and 11). The trial was sown in split plot design with three replication, keeping varieties in main plots and irrigation frequencies in sub plots. The plot size was 5m x 4.5 with 75cm apart rows and plant to plant distance was 15 com to maintain the 88888 plants per hectare. The trial was conducted during spring 2000 and 2001. Data were collected for days to 50% silking. Plant height (cm), cob height (cm) and grain yield per hectare. The data were analyzed and results obtained which revealed highly significant differences among varieties and also among irrigation frequencies in all the characters studied during both the years and in pooled analysis over years. The interaction between varieties and irrigation frequencies was highly significant for grain yield kg ha/sup -1/ and significant for other characters studied in year wise as well as in pooled analysis. Years effect was also high significant which is clear from the table of weather data which shows that temperature remained high during the crop season of 2001 as compared to 2000 along with high temperature more rains were also received in March. April and May in 2001 while in 2000 rain was received only in February. Three was gradual decrease in days to 50% silking with the increase in number of irrigations in all the varieties while plant height, cob height and grain yield increased with every addition of irrigation. Trend of increase or decrease remained the same during both the year. All the varieties separately or in combine showed better results during spring 2001, maximum grain yield was obtained by EV-5098 (full duration variety) with 11 irrigations during both the years 2000 and 2001 i.e. 3511 and 6140 kg ha/sup -1/ while EV-1098 (short duration variety

  2. The effect of applying different water levels and irrigation frequencies in propagating rosemary (Rosmarinus officinalis L.

    Directory of Open Access Journals (Sweden)

    Javier Giovanni Álvarez Herrera

    2010-01-01

    Full Text Available Rosemary seedlings are obtained by vegetative propagation because the seeds present low viability. Despite being an expanding crop, there is little information on water consumption during the propagation stage. Water levels and irrigation frequencies were therefore applied using a completely randomised design having a 4 x 2 factorial arrangement. The first factor concerned irrigation frequency (4 and 8 days and the second concerned water level (0.6, 0.8, 1.0 and 1.2 evaporation inside the greenhouse. A 1.0 coefficient combined with 4-day irrigation frequency presented the best results regarding height (39.3 cm, fresh weight, dry weight and branch length (146 cm. Water level affected the fresh and dry weight of leaves regardless of frequency. Relative water content in leaves did not present differences due to environmental conditions minimising treatment effect. Rooting percent- tage showed no significant differences regarding irrigation frequency or water level. Irrigation frequency did not affect rosemary growing pattern because sphagnum retains high moisture content. The best branch number (34 was obtained with 1.0 coefficient and 4-day frequency, this being important from the production point of view because this is the material which is sold. Water management changes photoassimilate distribution in rosemary plants.

  3. Irrigation and fertigation frequencies with nitrogen in the watermelon culture

    Directory of Open Access Journals (Sweden)

    Carlos Newdmar Vieira Fernandes

    2014-06-01

    Full Text Available This study evaluates the influence of different irrigation frequencies and different nitrogen fertigation frequencies on the growth performance of the watermelon (Citrullus lanatus culture. Two experiments were conducted at the Paraguay farm in the Cruz municipality, Ceará, Brazil. They was randomized blocks design with six treatments and four replications. The irrigation frequency experiment consisted of the application of different irrigation frequencies. The treatments were: DM - daily irrigation in the morning with 100% daily dosage; DT - daily irrigation in the afternoon, with 100% daily dosage; DMT - twice daily irrigation, with 50% daily dosage in the morning and 50% daily dosage in the afternoon; 2D - irrigation every two days; 3D - irrigation every three days and 4D - irrigation every four days. To the experiment with different nitrogen fertigation frequencies, the treatments used were: 2F - 2 fertigations in a cycle; 4F - 4 fertigations in a cycle; 8F - 8 fertigations in a cycle; 16F - 16 fertigations in a cycle; 32F - 32 fertigations in a cycle and 64F - 64 fertigations in a cycle. We evaluated the marketable yield (PC, fruit weight (M, polar diameter (DP, equatorial diameter (DE, shell thickness (EC and soluble solids (SS. The irrigation frequency treatments influenced all variables significantly, with twice daily irrigation (DMT, 50% in the morning and the 50% in the afternoon promoting the highest productivity (69.79 t ha-1. The different frequencies of fertigation also significantly influenced all variables, except for the shell thickness, the highest yield (80.69 t ha-1 being obtained with treatment 64 fertigations in a cycle.

  4. Agronomic and physiological impacts of irrigation frequency on green basil (Ocimum basilicum L.)

    OpenAIRE

    Gao, Peng; Dodd, Ian

    2015-01-01

    Water scarcity is a major factor restricting agricultural production and irrigation globally, with sustainable agricultural development calling for less irrigation water use and more production per unit of water applied. Improved understanding of plant physiological responses to water stress, and the effect of irrigation frequency on plant biomass production and quality, may help to optimize irrigation scheduling. Glasshouse-grown basil (Ocimum basilicum L.) received three different irrigatio...

  5. Effects of dripper discharge and irrigation frequency on growth and yield of maize in loess plateau of northwest china

    International Nuclear Information System (INIS)

    Xiukang, W.; Zhanbin, L.; Yingying, X.

    2014-01-01

    A field experiment was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, in northwestern China from 2010 to 2011 with four treatments and six replicates in a randomized complete block design to determine appropriate dripper discharge and irrigation frequency for maize (Zea mays, L.) irrigated by drip irrigated system. Dripper discharge was applied to maize 1L/h of dripper discharge, 2 days irrigation frequency and 100% of evaporation from a class a pan (T1), 2, 3 and 4 L/h corresponding to 4, 6 and 8 days irrigation frequency, and deficit irrigation water levels was 90%, 80% and 70% of evaporation (T2, T3 and T4), respectively. The results indicated that longest root, root activity, plant height, leaf area, biomass and grain yields values were highest in T1 in both years. The highest grain yield was obtained of 8.78 and 8.84 t ha-1 under T1 in both years, and the minimum yield was obtained with 8.15 and 7.78 t ha-1 under T4 in 2010 and 2011, respectively. The maximum irrigation water use efficiency (IWUE) was 3.247 and 3.283 kg m-3 in both years under T4. Despite the reduction of growth and grain yield in T3, the dripper discharge was 3L/h, 6 days irrigation frequency and 80% of evaporation was still high and acceptable for maize production and irrigation water use efficiency in Loess Plateau of Northwest China. (author)

  6. Growth and Flowering Responses of Cut Chrysanthemum Grown under Restricted Root Volume to Irrigation Frequency

    Directory of Open Access Journals (Sweden)

    Viyachai Taweesak

    2014-01-01

    Full Text Available Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium “Reagan White” were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm3. Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL, 6 (400 mL, and 8 (533 mL times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm3 substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm3 substrate were significantly higher than those grown in 73 cm3 substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes.

  7. EFFECTS OF IRRIGATION FREQUENCY AND LEAF DETACHMENT ON CHRYSANTHEMUM GROWN IN TWO TYPES OF PLASTIC HOUSE

    Directory of Open Access Journals (Sweden)

    K. Budiarto

    2016-10-01

    Full Text Available Chrysanthemum is one of important ornamentals in Indonesia and it ranks in the first quantity of cut flower marketed every year. In most cases, the low productivity is still a constraint for the traditional growers to make production process profitable. Several problems revealed in chrysanthemum production were investigated. The study dealt with the effect of two types of plastic house constructions, irrigation frequency, and leaf detachment on the growth and development of chrysanthemum. The experiment was conducted at Segunung, Indonesian Ornamental Plants Research Institute during the dry season of 2005. A nested design with six replications was used. The results showed that plants grown in wood-constructed plastic house had better growth performance and flower quality than those under bamboo plastic house. Longer stem and higher plant fresh weight with more flowers and longer life span were also observed on chrysanthemum irrigated four times per week than those irrigated twice per week. Leaf removal often practiced by the growers is no longer recommended, since the number of leaves on the plant influenced all parameters observed. The more leaves were detached, the more negative impacts on plant growth were found.

  8. Effect of irrigation frequency and application levels of sulphur ...

    African Journals Online (AJOL)

    A field experiment was conducted at Indian Agricultural Research Institute, New Delhi during the crop season of 2007 to 2008 and 2008 to 2009 to study the effect of irrigation and sulphur on yield and water use efficiency of Indian mustard (Brassica juncea var. PusaJagannath). The experiment was carried out in split plot ...

  9. Effect of different irrigation frequencies on growth and yield of different wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, B.; Hussain, I.

    2010-01-01

    Irrigation at critical growth stages could improve wheat yield significantly. A study was conducted during 2000-2002 to determine effect of different irrigation levels on growth and yield of different wheat genotypes in the province of Sindh. The trial was laid out in split block design at Wheat Research Institute, Sindh, Sakrand, in which four irrigation treatments I3 (irrigation at crown root, booting and soft dough stage), I4 (irrigation at crown root, tillering, booting and soft dough stage), I5 (irrigation at crown root, tillering, booting, anthesis and soft dough stage) and I6 (irrigation at crown root, tillering, booting, anthesis, soft dough and hard dough stage) were in blocks and six wheat genotypes; V-7001, V-7002, V-7004, NARC-9 and CO-9043 and Abadgar-93 were planted. Number of irrigation did not have any significant effect on plant height, whereas plant height was affected significantly in different cultivars. Application of five irrigations at different wheat growth stages resulted in higher spike length, higher number of grains and wheat grain yield. Wheat variety Abadgar-93 and V-7004, had taller plants in comparison with cultivars NARC-9 and V-7004 however, wheat grain yield was not affected significantly among different cultivars. (author)

  10. The Effect of Different Levels of Irrigation and Nitrogen Fertilizer on Yield and Water Use Efficiency of Potato in Subsurface Drip Irrigation

    Directory of Open Access Journals (Sweden)

    Mohammad Jolaini

    2017-06-01

    Full Text Available Introduction: After wheat, rice and corn, potato is the fourth most important food plant in the world. In comparison with other species, potato is very sensitive to water stress because of its shallow root system: approximately 85% of the root length is concentrated in the upper 0.3-0.4 m of the soil. Several studies showed that drip irrigation is an effective method for enhancing potato yield. Fabeiro et al. (2001 concluded that tuber bulking and ripening stages were found to be the most sensitive stages of water stress with drip irrigation. Water deficit occurring in these two growth stages could result in yield reductions. Wang et al. (2006 investigated the effects of drip irrigation frequency on soil wetting pattern and potato yield. The results indicated that potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency while high frequency irrigation enhanced potato tuber growth and water use efficiency (WUE. Though information about irrigation and N management of this crop is often conflicting in the literature, it is accepted generally that production and quality are highly influenced by both N and irrigation amounts and these requirements are related to the cropping technique. Researches revealed that nitrogen fertilizers play a special role in the growth, production and quality of potatoes. Materials and Methods: A factorial experiment in randomized complete block design with three replications was carried out during two growing seasons. Studied factors were irrigation frequency (I1:2 and I2:4 days interval and nitrogen fertilizer levels (applying 100 (N1, 75 (N2 and 50 (N3 % of the recommended amount. Nitrogen fertilizer was applied through irrigation water. In each plot two rows with within-and between-row spacing of 45 and 105 cm and 20 m length. The amount of nitrogen fertilizer for the control treatment was determined by soil analysis (N1. In all treatments, nitrogen fertilizer

  11. Yield of cherry tomatoes as a function of water salinity and irrigation frequency

    Directory of Open Access Journals (Sweden)

    Alexandre N. Santos

    2016-02-01

    Full Text Available ABSTRACT The use of brackish water in agriculture can cause salinization of soils and reduce plant yield. This problem can be minimized by hydroponic cultivation, which improves plant development. The aim of this study was to evaluate the yield of cherry tomatoes grown in hydroponic system with substrate under salinity levels of the nutrient solution (NS, exposure time to salinity and irrigation frequency. The experiment was conducted in a greenhouse, in a randomized complete block design, in a 6 x 2 x 2 factorial scheme with five replicates: six salinity levels of NS prepared with brackish water (3.01; 4.51; 5.94; 7.34; 8.71 and 10.40 dS m-1; two exposure times to NS (60 and 105 days and two irrigation frequencies (one irrigation per day and irrigation every two days. Yield and production components of cherry tomatoes cv. 'Rita' were evaluated. NS salinity affected plant yield, reducing fruit production, which was more significant when plants were subjected to a longer time of exposure to salinity. There was no difference between NS applications on fruit production, when these applications were performed once a day or once every two days.

  12. Effect of irrigation frequency and application levels of sulphur ...

    African Journals Online (AJOL)

    Administrator

    2011-09-21

    Sep 21, 2011 ... both years of experimentation, application of two irrigations significantly increased the India ... marginal lands with poor fertility under rainfed conditions. ... and 40 kg K20 ha-1 as muriate of potash was applied to each plot.

  13. Evaluation of superabsorbent efficiency in response to dehydration frequencies, salinity and temperature and its effect on yield and quality of cotton under deficit irrigation

    Directory of Open Access Journals (Sweden)

    Hamid-Reza Fallahi

    2016-03-01

    Full Text Available Introduction Reduced availability of water resources in many arid countries including Iran, particularly in response to the indiscriminate harvesting of water reservoirs and climate change, has created concerns. Therefore, the sustainable use of water resources especially in agriculture is a necessity for these countries. Strategies such as deficit irrigation and superabsorbent application are two important ways for improving water use efficiency in agricultural lands. In deficit irrigation the crop must be irrigated less than its required water. Therefore, some reduction may occur in crop yield, but the savings in water will improve the water use efficiency (Akbari Nodehi, 2011. Superabsorbent polymers also increase the nutrients and water holding capacity of soil for a long time and thereby reduce crop water requirement. However, the effectiveness of these materials could be affected by dehydration frequencies, temperature and irrigation water quality (Karimi et al., 2009. Due to the limitation of water resources in many parts of Iran, the aim of this study was to investigate the possibility of cotton production under deficit irrigation along with application of different rates of superabsorbent. In addition, simulation of superabsorbent efficiency at different levels of salinity, temperature and dehydration frequencies (swelling and de-swelling were the other objectives in this study. Materials and methods 1. Laboratory experiments In these experiments the effects of temperature (4, 10, 20, 30 and 40 °C, salinity (0, 0.25, 0.5, 0.75 and 1% NaCl solutions at two temperatures of 10 and 25°C and frequency of partial dehydration (from 1 to 5 stages watering and 70% dewatering were simulated on water absorption capacity of superabsorbent polymer at laboratory of environmental stresses, Sarayan Faculty of Agriculture, Birjand University. 2- Field experiment This experiment was designed at Research Station of Sarayan Faculty of Agriculture

  14. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    Energy Technology Data Exchange (ETDEWEB)

    Abalos, Diego, E-mail: diego.abalos@upm.es [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Sanchez-Martin, Laura; Garcia-Torres, Lourdes [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Groenigen, Jan Willem van [Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Vallejo, Antonio [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH{sub 4}{sup +} and NO{sub 3}{sup −}) regulating the emissions of greenhouse gases (i.e. N{sub 2}O, CO{sub 2} and CH{sub 4}) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N{sub 2}O, NO, CH{sub 4} and CO{sub 2} were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N{sub 2}O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO{sub 2} emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N{sub 2}O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO{sub 3}{sup −}-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. - Highlights: • The effect of fertigation management techniques on GHG and NO emissions was studied. • Fertigation with urea instead of calcium nitrate increased N{sub 2}O by a factor of 2.4. • Daily irrigation reduced NO (42%) but increased CO

  15. Effect of different drip irrigation regimes on yield and oil quality of sunflower

    Directory of Open Access Journals (Sweden)

    Semih Metin SEZEN

    2016-06-01

    Full Text Available This study examines the effects of different irrigation regimes on yield, yield components, oil yield and quality and water use of sunflower (Oleko variety irrigated with a drip system under field conditions in 2010 and 2011 growing seasons at the Alata Horticultural Research Institute, Tarsus Soil and Water Resources area in the Mediterranean region of Turkey. Irrigation regimes consisted of three irrigation intervals (A1:= 25 mm; A2:= 50 mm; A3: = 75 mm of cumulative pan evaporation and six irrigation levels (I1=0.50, I2=0.75, I3=1.00 and I4=1.25. In addition, I5=PRD75 and I6=PRD50 treatments were considered. They received 75 and 50% of the full irrigation (I3 treatment from alternative laterals, respectively. Also, rainfed treatment is a control plot in the experiment. Maximum and minimum yields were obtained from the A2I4 and rainfed treatments, respectively in all experimental years. As the irrigation level value decreased the total yields in each irrigation interval also decreased. Seasonal irrigation amounts in the treatments varied from 199 mm to 563 mm in the experimental years. Seasonal evapotranspiration values in the treatments varied from 243 mm to 611 mm in the experimental years. Both irrigation amounts and irrigation frequencies had significantly effects on oil content of sunflower. The saturated (palmitic and stearic acid and unsaturated (oleic and linoleic acid fatty acid contents were significantly affected by water stress. In conclusion, A2I4 irrigation regime is recommended for sunflower production in the Mediterranean region in order to attain higher yields with improved quality. In case of water shortage, A2I13 irrigation regime is recommended to increase sunflower yield and quality.

  16. Effects of irrigation, fertilization and drought on the occurrence of Lophodermium piceae in Picea abies needles

    Energy Technology Data Exchange (ETDEWEB)

    Lehtijaervi, Asko; Barklund, Pia [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1999-08-01

    Effects of irrigation, drought and fertilization on the frequency of the fungal endophyte Lophodermium piceae in green needles was assessed in a 30-year-old experimental stand of Picea abies in southern Sweden. Frequencies of needles with L. piceae were lower in irrigation and ammonium sulphate fertilization treatments than in the control. Drought treatment frequencies were similar to the control. Needles were susceptible to colonization for at least 3 years; colonization increased with needle age. The results indicate that the increased availability of water to the root system as well as ammonium sulphate fertilization indirectly delays colonization of needles by L. piceae 21 refs, 3 figs, 2 tabs

  17. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  18. The effect of irrigation time and type of irrigation fluid on cartilage surface friction.

    Science.gov (United States)

    Stärke, F; Awiszus, F; Lohmann, C H; Stärke, C

    2018-01-01

    It is known that fluid irrigation used during arthroscopic procedures causes a wash-out of lubricating substances from the articular cartilage surface and leads to increased friction. It was the goal of this study to investigate whether this effect depends on the time of irrigation and type of fluid used. Rabbit hind legs were used for the tests. The knees were dissected and the friction coefficient of the femoral cartilage measured against glass in a boundary lubrication state. To determine the influence of irrigation time and fluid, groups of 12 knees received either no irrigation (control), 15, 60 or 120min of irrigation with lactated Ringer's solution or 60min of irrigation with normal saline or a sorbitol/mannitol solution. The time of irrigation had a significant effect on the static and kinetic coefficient of friction (CoF), as had the type of fluid. Longer irrigation time with Ringer's solution was associated with increased friction coefficients (relative increase of the kinetic CoF compared to the control after 15, 60 and 120min: 16%, 76% and 88% respectively). The sorbitol/mannitol solution affected the static and kinetic CoF significantly less than either Ringer's or normal saline. The washout of lubricating glycoproteins from the cartilage surface and the associated increase of friction can be effectively influenced by controlling the time of irrigation and type of fluid used. The time of exposure to the irrigation fluid should be as short as possible and monosaccharide solutions might offer a benefit compared to salt solutions in terms of the resultant friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Climate forcing and desert malaria: the effect of irrigation.

    Science.gov (United States)

    Baeza, Andres; Bouma, Menno J; Dobson, Andy P; Dhiman, Ramesh; Srivastava, Harish C; Pascual, Mercedes

    2011-07-14

    Rainfall variability and associated remote sensing indices for vegetation are central to the development of early warning systems for epidemic malaria in arid regions. The considerable change in land-use practices resulting from increasing irrigation in recent decades raises important questions on concomitant change in malaria dynamics and its coupling to climate forcing. Here, the consequences of irrigation level for malaria epidemics are addressed with extensive time series data for confirmed Plasmodium falciparum monthly cases, spanning over two decades for five districts in north-west India. The work specifically focuses on the response of malaria epidemics to rainfall forcing and how this response is affected by increasing irrigation. Remote sensing data for the Normalized Difference Vegetation Index (NDVI) are used as an integrated measure of rainfall to examine correlation maps within the districts and at regional scales. The analyses specifically address whether irrigation has decreased the coupling between malaria incidence and climate variability, and whether this reflects (1) a breakdown of NDVI as a useful indicator of risk, (2) a weakening of rainfall forcing and a concomitant decrease in epidemic risk, or (3) an increase in the control of malaria transmission. The predictive power of NDVI is compared against that of rainfall, using simple linear models and wavelet analysis to study the association of NDVI and malaria variability in the time and in the frequency domain respectively. The results show that irrigation dampens the influence of climate forcing on the magnitude and frequency of malaria epidemics and, therefore, reduces their predictability. At low irrigation levels, this decoupling reflects a breakdown of local but not regional NDVI as an indicator of rainfall forcing. At higher levels of irrigation, the weakened role of climate variability may be compounded by increased levels of control; nevertheless this leads to no significant decrease

  20. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.

    2007-01-01

    OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... cans were conducted with urban vegetable farmers. Trials were arranged in a completely randomised block design with each plot having all three irrigation methods tested. This was conducted in both dry and wet seasons. Three hundred and ninety-six lettuce, 72 soil, 15 poultry manure and 32 water samples...... were analysed for thermotolerant coliforms and helminth eggs. RESULTS: Lettuce irrigated with drip kits had the lowest levels of contamination, with, on average, 4 log units per 100 g, fewer thermotolerant coliforms than that irrigated with watering cans. However, drip kits often got clogged, required...

  1. Memory of irrigation effects on hydroclimate and its modeling challenge

    Science.gov (United States)

    Chen, Fei; Xu, Xiaoyu; Barlage, Michael; Rasmussen, Roy; Shen, Shuanghe; Miao, Shiguang; Zhou, Guangsheng

    2018-06-01

    Irrigation modifies land-surface water and energy budgets, and also influences weather and climate. However, current earth-system models, used for weather prediction and climate projection, are still in their infancy stage to consider irrigation effects. This study used long-term data collected from two contrasting (irrigated and rainfed) nearby maize-soybean rotation fields, to study the effects of irrigation memory on local hydroclimate. For a 12 year average, irrigation decreases summer surface-air temperature by less than 1 °C and increases surface humidity by 0.52 g kg‑1. The irrigation cooling effect is more pronounced and longer lasting for maize than for soybean. Irrigation reduces maximum, minimum, and averaged temperature over maize by more than 0.5 °C for the first six days after irrigation, but its temperature effect over soybean is mixed and negligible two or three days after irrigation. Irrigation increases near-surface humidity over maize by about 1 g kg‑1 up to ten days and increases surface humidity over soybean (~ 0.8 g kg‑1) with a similar memory. These differing effects of irrigation memory on temperature and humidity are associated with respective changes in the surface sensible and latent heat fluxes for maize and soybean. These findings highlight great need and challenges for earth-system models to realistically simulate how irrigation effects vary with crop species and with crop growth stages, and to capture complex interactions between agricultural management and water-system components (crop transpiration, precipitation, river, reservoirs, lakes, groundwater, etc.) at various spatial and temporal scales.

  2. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  3. The effect of different sowing patterns and deficit irrigation ...

    African Journals Online (AJOL)

    . The responses of sweet corn (Zea mays) to irrigation frequency and sowing patterns were studied in the field from December 2005 to December 2006. This research was laid out in split plot, with water quantity as main plot and sowing ...

  4. Scenario Studies on Effects of Soil Infiltration Rates, Land Slope, and Furrow Irrigation Characteristics on Furrow Irrigation-Induced Erosion.

    Science.gov (United States)

    Dibal, Jibrin M; Ramalan, A A; Mudiare, O J; Igbadun, H E

    2014-01-01

    Furrow irrigation proceeds under several soil-water-furrow hydraulics interaction dynamics. The soil erosion consequences from such interactions in furrow irrigation in Samaru had remained uncertain. A furrow irrigation-induced erosion (FIIE) model was used to simulate the potential severity of soil erosion in irrigated furrows due to interactive effects of infiltration rates, land slope, and some furrow irrigation characteristics under different scenarios. The furrow irrigation characteristics considered were furrow lengths, widths, and stream sizes. The model itself was developed using the dimensional analysis approach. The scenarios studied were the interactive effects of furrow lengths, furrow widths, and slopes steepness; infiltration rates and furrow lengths; and stream sizes, furrow lengths, and slopes steepness on potential furrow irrigation-induced erosion, respectively. The severity of FIIE was found to relate somewhat linearly with slope and stream size, and inversely with furrow lengths and furrow width. The worst soil erosion (378.05 t/ha/yr) was found as a result of the interactive effects of 0.65 m furrow width, 50 m furrow length, and 0.25% slope steepness; and the least soil erosion (0.013 t/ha/yr) was induced by the combined effects of 0.5 l/s, 200 m furrow length, and 0.05% slope steepness. Evidently considering longer furrows in furrow irrigation designs would be a better alternative of averting excessive FIIE.

  5. Field evaluation of deficit irrigation effects on tomato growth ...

    African Journals Online (AJOL)

    Two field experiments were conducted using a common tomato cultivar (GS12) to assess the effect of deficit irrigation (DI) regimes on tomato growth performance, and on root-knot nematode Meloidogyne javanica galling and abundance. Irrigation treatments consisted of five irrigation regimes: 20%, 40%, 60%, 80% and ...

  6. The effect of frequency of defoliation on Themeda triandra in the ...

    African Journals Online (AJOL)

    Tufts of Themeda triandra were subjected to different frequencies of defoliation during a single season under irrigated and non-irrigated conditions. Frequent defoliation (> 5 times per year) severely reduced clipped yield on both moisture treatments. On irrigated treatments, root mass declined and shoot apex elevation was ...

  7. Effective colostomy irrigation.

    Science.gov (United States)

    Mazier, W P; Dignan, R D; Capehart, R J; Smith, B G

    1976-06-01

    The ultimate goal of the cone method of colostomy irrigation is to return patients with colostomies to their former role in society with confidence in themselves to the extent that having a colostomy is not considered a handicap. The results have generally been excellent. We believe all patients with stomas should be afforded the opportunity to attempt colostomy irrigation.

  8. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    Science.gov (United States)

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Colonic irrigation for defecation disorders after dynamic graciloplasty.

    Science.gov (United States)

    Koch, Sacha M; Uludağ, Ozenç; El Naggar, Kadri; van Gemert, Wim G; Baeten, Cor G

    2008-02-01

    Dynamic graciloplasty (DGP) improves anal continence and quality of life for most patients. However, in some patients, DGP fails and fecal incontinence is unsolved or only partially improved. Constipation is also a significant problem after DGP, occurring in 13-90%. Colonic irrigation can be considered as an additional or salvage treatment for defecation disorders after unsuccessful or partially successful DGP. In this study, the effectiveness of colonic irrigation for the treatment of persistent fecal incontinence and/or constipation after DGP is investigated. Patients with defecation disorders after DGP visiting the outpatient clinic of the University Hospital Maastricht were selected for colonic irrigation as additional therapy or salvage therapy in the period between January 1999 and June 2003. The Biotrol(R) Irrimatic pump or the irrigation bag was used for colonic irrigation. Relevant physical and medical history was collected. The patients were asked to fill out a detailed questionnaire about colonic irrigation. Forty-six patients were included in the study with a mean age of 59.3 +/- 12.4 years (80% female). On average, the patients started the irrigation 21.39 +/- 38.77 months after the DGP. Eight patients started irrigation before the DGP. Fifty-two percent of the patients used the irrigation as additional therapy for fecal incontinence, 24% for constipation, and 24% for both. Irrigation was usually performed in the morning. The mean frequency of irrigation was 0.90 +/- 0.40 times per day. The mean amount of water used for the irrigation was 2.27 +/- 1.75 l with a mean duration of 39 +/- 23 min. Four patients performed antegrade irrigation through a colostomy or appendicostomy, with good results. Overall, 81% of the patients were satisfied with the irrigation. Thirty-seven percent of the patients with fecal incontinence reached (pseudo-)continence, and in 30% of the patients, the constipation completely resolved. Side effects of the irrigation were

  10. Response of lettuce to Cd-enriched water and irrigation frequencies ...

    African Journals Online (AJOL)

    Also, shoot Cd content showed a significant positive correlation with the final accumulated Cd concentration of soil and was expressed by a plateau model under the dry irrigation regime and linear models at other irrigation intervals. Overall, shoot Cd concentration was predicted by using a simple linear regression model ...

  11. Evaluation of the Effect of Different Irrigation Levels of Drip Irrigation (Tape on Yield and Yield Components of Corn

    Directory of Open Access Journals (Sweden)

    mohammad karimi

    2016-02-01

    Full Text Available Introduction: One of the serious problems in the further development of maize cultivation is increasing irrigation efficiency. Using conventional irrigation causes a shortage of water resources to increase the acreage of the crop. With regard to the development of maize cultivation, agronomic and executable methods must be studied to reduce water consumption. Using drip irrigation system is most suitable for row crops. Hamedi et al. (2005 compared drip (tape and surface irrigation systems on yield of maize in different levels of water requirement and indicated that drip irrigation increases the amount of yield to 2015 kg/ha and water use efficiency to 3 time. Kohi et al. (2005 investigated the effects of deficit irrigation use of drip (tape irrigation on water use efficiency on maize in planting of one and two rows. The results showed that maximum water use efficiency related to crop density, water requirement and planting pattern 85000, 125% and two rows, respectively with 1.46 kg/m3. Jafari and Ashrafi (2011 studied the effects of irrigation levels, plant density and planting pattern in drip irrigation (tape on corn. The results showed that the amount of irrigation water and crop density on the level of 1% and their interactions and method of planting were significant at the 5 and 10% on water use efficiency, respectively. The yield was measured under different levels of irrigation, crop density and method of planting and the difference was significant on the level of 1%. Lamm et al. (1995 studied water requirement of maize in field with silt loam texture under sub drip irrigation and reported that water use reduced to 75%; but yield of maize remained at maximum amount of 12.5 t/ha. The objective of this study was to evaluate the drip (tape irrigation method for corn production practices in the Qazvin province in Iran. Materials and Methods: In this study, yield and yield components of corn (SC 704 were investigated under different levels of

  12. Frequency inverter and irrigation management in irrigated perimeter on Jaiba region - MG, Brazil; Uso de inversor de frequencia e do manejo da irrigacao em perimetro da regiao do Jaiba, MG

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Maria Joselma de; Oliveira Filho, Delly; Vieira, Gustavo H.S. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], Emails: maria.moraes@ufv.br, delly@ufv.br, ghsvieira@ifes.edu.br; Scarcelli, Ricardo de O.C. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Eletrica], E-mail: rocvenceslau@yahoo.com.br

    2010-07-01

    The electric energy expenditure and the irrigation depth for one irrigated perimeter on Jaiba region/MG, Brazil, for the cultures: pineapple, banana, guava, lemon, papaya, mango, passion fruit, cantaloupe, pine cone and grape. With the monthly irrigation depth data for an hypothetical area of 12 lots (10 ha each), it was simulated, with Galateia software, the head pressure for 4 combinations of cultures: first - papaya (12 lots); second - banana (8 lots), guava (1), papaya (1), mango (1) and passion fruit (1); third - papaya (8), guava (1), pineapple (1), (1) and lemon (1); and fourth - guava (8), mango (1), papaya (1), pine cone (1) and passion fruit (1). It was dimensioned the necessary power and the electrical energy expenses with TOU (green category tariff) for the biggest irrigation depth. The frequency inverter use and the management of the number of working hours were simulated for each combination, in order to maximize the motor's load and the pump-motor set performance. For the combinations 2, 3, and 4 occurred reduction on the electrical energy consumption of 6%, 8% and 20%, respectively in respect of the combination 1. (author)

  13. Desenvolvimento e produtividade do tomateiro sob diferentes freqüências de irrigação em estufa Tomato development and yield under different irrigation frequencies in greenhouse

    Directory of Open Access Journals (Sweden)

    Regina CM Pires

    2009-06-01

    Full Text Available O crescimento de plantas em substrato em cultivo protegido requer conhecimento técnico apropriado para uso racional e eficientede água e de nutrientes. O objetivo deste trabalho foi avaliar o efeito de seis freqüências de irrigação no desenvolvimento e na produção do tomateiro cultivado em ambiente protegido. O experimento foi conduzido em Campinas, de novembro de 2003 a abril de 2004. O delineamento experimental foi de blocos ao acaso com seis tratamentos e quatro repetições. Os tratamentos consistiram em seis freqüências de irrigação: cinco, quatro, três, duas, uma vez por dia e irrigação em dias alternados. A irrigação foi aplicada por gotejamento. O substrato utilizado foi o composto de fibra de coco. As freqüências de irrigação de uma, três, quatro e cinco vezes por dia resultaram nas maiores produções de frutos comerciáveis de tomateiro. O maior número e peso médio dos frutos foram obtidos nos tratamentos com freqüência de irrigação de uma, duas, três, quatro e cinco vezes por dia. As freqüências de irrigação de uma vez por dia e em dias alternados proporcionaram maior número de frutos não comerciáveis (fundo preto.Plant cultivation in substrate under greenhouse conditions needs technical knowledge to promote water and nutrient use efficiency. In this work were evaluated the tomato development and yield under different irrigation frequencies cultivated in greenhouse. The experiment was carried out in Campinas, São Paulo State, Brazil, from November, 2003 to April, 2004. The experimental design consisted of six treatments in randomized blocks with four replications. The treatments consisted of the irrigation frequencies: five, four, three, two and one times a day and irrigation on alternating days. The irrigation was applied by drip irrigation system. The substrate consisted of coconut fiber. The one, three, four and five times a day irrigation frequency provided better total marketable tomato yield

  14. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    Directory of Open Access Journals (Sweden)

    mohammad saeed tadaion

    2017-12-01

    Full Text Available Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L. cv. Zarde-anar were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carried out in a constant plots and randomized complete block design (RCBD with four replicationsin five years.Treatmentswere 1- full flood irrigation (100 percent crop water requirement (T1 2- flood irrigation with 100 percent crop water requirement as alternate partial root-zone irrigation(every irrigation conducted on one side of tree (T2 3- flood irrigation with 50 percent crop water requirement as regular deficit irrigation (T3 4- full two-side drip irrigation(with regard to crop water requirement (eight drippers with twolit/hour flow by two different individual networks (T4 5- alternate partial root-zone drip irrigation with 100 percent crop water requirement (T5 6- regular deficit drip irrigation with 50 percent crop water requirement (T6 in every irrigation period. Each experimental treatment includes four trees and 96 similar twelve years old trees overall. Cultivation practice was conducted similarly on all of the trees. Results and Discussion: Results showed that the highest yield and water use efficiency based on statistical analysis belong to both PRD treatments i.e. alternate partial root-zone drip irrigation with 100 percent crop water requirement and alternate partial root-zone flood irrigation with 100 percent crop water requirement, respectively, that both of them decreased water requirement for irrigation up to 35 and 50 percent in comparison tocontrol. Application of partial root drying irrigation on both traditional flood irrigation and drip

  15. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  16. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  17. An optimization model to design and manage subsurface drip irrigation system for alfalfa

    Science.gov (United States)

    Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.

    2010-12-01

    Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.

  18. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    Full Text Available Introduction: Olive (Olea europaea L. trees are mainly cultivated in the Mediterranean area and are grown for their oil or processed as table olives. Despite the fact that olive is known to be resistant to drought conditions due to its anatomical, physiological, and biochemical adaptations to drought stress, reports indicate that the olive can be adversely affected by drought stress, which has a negative effect on the growth of olive trees. In the absence of adequate supplies of water, the demand for water can be met by using improved irrigation methods or by using reclaimed water (RW. Reports have shown that recycled water has been used successfully for irrigating olive orchards with no negative effects on plant growth.Attention has been paid to reclaimed water as one of the most significant available water resources used in agriculture around large cities in arid and semi-arid regions. On the other hand, irrigation efficiency is low and does not meet the demands of farmers.In order to investigate the possibility of irrigating olive orchards with subsurface leakage irrigation (SLI in application of reclaimed water, an experiment was carried out with the aim of investigating the effect of reclaimed water on photosynthetic indices and morphological properties of olive fruit. Materials and Methods: Research was conducted using a split-plot experimental design with two factors (irrigation system and water quality on the campus of Isfahan University of Technology in Isfahan, Iran, on a sandy-clay soil with a pH of 7.5 and electrical conductivity (EC of 2.48 dSm-1.PVC leaky tubes were used for the SLI system. The SLI system was installed 40 cm from the crown of each tree at a depth of 30 - 40 cm.At the end of the experiment fruit yield, weight per fruit, volume, length and firmness were calculated. A portable gas exchange system (Li-6400., LICOR, Lincoln, NE, USA was used to measure the net rate photosynthesis (A, the internal partial pressure CO2

  19. The phenology of malaria mosquitos in irrigated rice fields in Mali

    NARCIS (Netherlands)

    Klinkenberg, E.; Takken, W.; Huibers, F.P.; Touré, Y.T.

    2003-01-01

    A field study was carried out in the large-scale rice irrigation scheme of the Office du Niger in Mali to investigate the relation between anopheline mosquito larval development and small-scale differences in irrigation practices, such as water level, irrigation application and irrigation frequency.

  20. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  1. Effects of Supplemental Irrigation on Yield and Growth Indices of Three

    Directory of Open Access Journals (Sweden)

    M. Parsa

    2012-04-01

    Full Text Available In order to investigate the effects of different irrigation regimes on yield and growth indices of three chickpea cultivars, an experiment was conducted during the 2007 growing season at Mashhad (Iran. Six irrigation regimes including I1; full irrigation, I2; irrigation at branching, I3; irrigation at flowering, I4; irrigation at pod formation, I5; irrigation at seed filling stage and I6; dry farming without irrigation (main factors. Three Kabuli chickpea cultivars ILC482, Jam, Karaj 12-60-31 (sub factors in a spilt block experiment based on randomized block design with three replications. There were significant differences between supplemental irrigation levels on grain yield. The results showed that grain yield in supplemental irrigation at flowering stage was more than to supplemental irrigation at branching, podding and seed filling stages (respectively 3.3, 3.1 and 23%. Within the three cultivars, grain yield, biological yield and harvest index were highest and lowest in ILC482 and Karaj 12-60-31 cultivars respectively. The results showed that supplemental irrigation at flowering stage increased dry matter, leaf area index, crop growth rate, relative growth rate and net assimilation rate. The results showed that flowering stage in chickpea cultivars was sensitive to drought stress so, ILC482 cultivar also showed more tolerance to water stress condition.

  2. Effects of irrigation frequency and grit color on the germination of lodgepole pine seeds

    Science.gov (United States)

    Jeremy R. Pinto; R. Kasten Dumroese; Douglas R. Cobos

    2009-01-01

    Nursery cultural practices during germination can be highly variable between existing production facilities. Although nursery guidebooks suggest keeping seeds moist, there are no known scientific answers indicating what sufficient moisture levels are. This study objective was to characterize differing irrigation regimes and grit color choices on different germination...

  3. Soil salinisation and irrigation management of date palms in a Saharan environment.

    Science.gov (United States)

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  4. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong

    2017-08-01

    In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.

  5. Response of Biomass Development, Essential Oil, and Composition of Plectranthus amboinicus (Lour.) Spreng. to Irrigation Frequency and Harvest Time.

    Science.gov (United States)

    Sabra, Ali S; Astatkie, Tessema; Alataway, Abed; Mahmoud, Abeer A; Gendy, Ahmed S H; Said-Al Ahl, Hussein A H; Tkachenko, Kirill G

    2018-03-01

    A greenhouse experiment was conducted to study the effects of four irrigation intervals (4, 8, 12, and 16 days) and six harvests (2, 4, 6, 8, 10, and 12 months after transplanting) on biomass, essential oil content, and composition of Plectranthus amboinicus (Lour.) Spreng. Fresh weight and essential oil yield decreased with increasing irrigation interval; whereas, essential oil content was stimulated by water stress and increased as the irrigation interval increased. Fresh weight of Plectranthus amboinicus irrigated every 4 days peaked when harvested at 6 months, but essential oil content peaked when irrigated every 16 days and harvested at 2 months after transplantation. On the other hand, essential oil yield peaked when irrigated every 8 days and harvested at 6 months. Thymol, p-cymene, γ-terpinene, and β-caryophyllene were the major compounds, and they peaked at different irrigation intervals and harvest times. This study showed biomass, essential oil content, and yield as well as the major and minor constituents of Plectranthus amboinicus are influenced by irrigation interval and the timing of harvest. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  6. Comparison of the Effects of Various Irrigating Solutions on Dentine Permeability.

    Science.gov (United States)

    1980-09-01

    during intra-appointment periods. Therefore, in cases of flare -up, further instrumentation with irrigation may be more effective than irrigation alone...contents than irrigation alone. . . t , . . ’ ,... ... ’ . ,. . . .. Dr. Cecic is a second year endodontic resident at Madigan Army Medical Center, Tacoma...Washington; Dr. Peters is assistant director, endodontic residency program, US Army Institute of Dental Research, Washington, DC; and Dr. Grower is

  7. The Effects of Two Different Deficit Irrigation Managements on the Root Length of Maize

    Directory of Open Access Journals (Sweden)

    M. Gheysari

    2015-06-01

    Full Text Available The response of root to water stress is one of the most important parameters for researchers. Study of growth and distribution of root under different irrigation managements helpsresearchersto a better understanding of soil water content, and the availability of water and nutrition in water stress condition. To investigate the effects of four levels of irrigation under two different deficit irrigation managements on the root length of maize, a study was conducted in 2009. Irrigation managements included fixed irrigation interval-variable irrigation depth (M1 and variable irrigation interval-fixed irrigation depth (M2. Maize plants were planted in 120 large 110-liter containers in a strip-plot design in a randomized complete block with three replications. Root data sampling was done after root washing in five growth stages. The results showed that the effect of irrigation levels on root length was significant (P

  8. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  9. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  10. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  11. Control of soil moisture with radio frequency in a photovoltaic-powered drip irrigation system

    OpenAIRE

    DURSUN, Mahir; ÖZDEN, Semih

    2015-01-01

    Solar-powered irrigation systems are becoming increasingly widespread. However, the initial setup costs of these systems are very high. To reduce these costs, both the energy usage and the prevention of losses from irrigation systems are very important. In this study, a drip irrigation control system of 1000 dwarf cherry trees was controlled using soil moisture sensors in order to prevent excessive water consumption and energy losses in a solar-powered irrigation system. The control sys...

  12. Effects of climate change on water abstraction restrictions for irrigation during droughts - The UK case

    Science.gov (United States)

    Rey Vicario, D.; Holman, I.

    2016-12-01

    The use of water for irrigation and on-farm reservoir filling is globally important for agricultural production. In humid climates, like the UK, supplemental irrigation can be critical to buffer the effects of rainfall variability and to achieve high quality crops. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. Currently, water abstraction from surface waters for agricultural irrigation can be restricted by the Environment Agency during droughts under Section 57 of the Water Resources Act (1991), based on abnormally low river flow levels and rainfall forecast, causing significant economic impacts on irrigated agricultural production. The aim of this study is to assess the impact that climate change may have on agricultural abstraction in the UK within the context of the abstraction restriction triggers currently in place. These triggers have been applied to the `Future Flows hydrology' database to assess the likelihood of increasing restrictions on agricultural abstraction in the future by comparing the probability of voluntary and compulsory restrictions in the baseline (1961-1990) and future period (2071-2098) for 282 catchments throughout the whole of the UK. The results of this study show a general increase in the probability of future agricultural irrigation abstraction restrictions in the UK in the summer, particularly in the South West, although there is significant variability between the 11 ensemble members. The results also indicate that UK winters are likely to become wetter in the future, although in some catchments the probability of abstraction restriction in the reservoir refilling winter months (November-February) could increase slightly. An increasing frequency of drought events due to climate change is therefore likely to lead to

  13. Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.

    Science.gov (United States)

    Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F

    2012-02-01

    The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.

  14. Effect of Irrigation Intervals on Some Morphophysiological Traits of Basil (Ocimum basilicum L. Ecotypes

    Directory of Open Access Journals (Sweden)

    M Goldani

    2012-10-01

    Full Text Available In order to determine the effect of different irrigation intervals on some morphophysiological traits of basil (Ocimum basilicum L., an experiment was conducted as factorial based on randomized complete block design with three replications under greenhouse conditions during 2010. Treatments included five irrigation intervals with 4, 8, 12, 16 and 20 days intervals and two ecotypes of basil (green and purple. The results showed that by increasing irrigation interval plant height, spike number, spike weight and shoot dry weight between irrigation intervals decreased. Purple basil was more tolerant than basil green ecotype to drought stress. Interaction between irrigation intervals and ecotypes showed that the best treatment related to four days irrigation interval and purple basil ecotype. The effect of irrigation intervals on root area, root diameter mean, total length, root volume and dry weight of root was significant. In all irrigation intervals, purple basil had better performance compared to green ecotype. The results showed that by increasing in irrigation interval decreased root surface area, but increased total root length. It was concluded that increasing irrigation interval up to 12 days decreased shoot and root surface areas. Increasing irrigation interval decreased chlorophyll- a, b and increased prolin amino acid content of basil leaf.

  15. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM.

    Science.gov (United States)

    Balwinder-Singh; Humphreys, E; Gaydon, D S; Eberbach, P L

    2016-10-01

    loam soil. There was little effect of mulch on irrigation requirement for late October sowings. There were large trade-offs between irrigation input, yield, WP ET and WP I on the sandy loam with regard to the optimum irrigation schedule. Maximum yield occurred with very frequent irrigation (10-20% SWD) which also had the greatest irrigation input, while WP I was highest with least frequent irrigation (70% SWD), and WP ET was highest with irrigation at 40-50% SWD. This was the case with and without mulch. On the clay loam, the trade-offs were not so pronounced, as maximum yield was reached with irrigation at 50% SWD, with and without mulch. However, both WP ET and WP I were maximum and irrigation input least at the lowest irrigation frequency (70% SWD). On both soils, maximum yield, WP ET and WP I were higher with mulch, while irrigation input was slightly lower, but mulch had very little effect on the irrigation thresholds at which each parameter was maximised.

  16. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation

    International Nuclear Information System (INIS)

    Zhang, Yuping; Sallach, J. Brett; Hodges, Laurie; Snow, Daniel D.; Bartelt-Hunt, Shannon L.; Eskridge, Kent M.; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. - Highlights: • Higher sand content in soil caused higher internalization of sulfamethoxazole and Salmonella in lettuce. • Drought

  17. Effects of different irrigation methods on pepper yield and soilborne diseases incidence

    Directory of Open Access Journals (Sweden)

    Seral YÜCEL

    2013-12-01

    Full Text Available In this study, the effect of different irrigation strategies and irrigation methods on yields and the incidence of wilt (Fusarium oxysporum and root rot (Fusarium solani and Macrophomina phaseolina diseases causing significant yield losses on field grown processing red pepper is determined. Experiments were carried out at Topçu Station of the Soil and Water Resources Research Institute of Tarsus in 2010 and 2011. Karaisalı processing pepper (Capsicum annuum L. was used in the experiments. Three furrows and five drip irrigation treatments were used in the study. The disease incidence rates were found 8.0-18.2% in furrow irrigation plots and 4.5-10.0% in drip irrigation plots in 2010, while it was 3.4-9.7% in furrow irrigation plots and 2.2-4.5% in drip irrigation plots in 2011. Pepper yields ranged from 3 416 to 4 417 kg da-1 and 3 376 to 4 779 kg da-1 in drip irrigated plots in 2010 and 2011, respectively. However, yields varied between 3 172-3 559 kg da-1 and 2 932-4 150 kg da-1 in furrow irrigated plots in 2010 and 2011 growing seasons.

  18. Effects of different irrigation regimes on vegetative growth, fruit yield ...

    African Journals Online (AJOL)

    This study was conducted during five growing seasons from 2004 to 2008 to investigate effects of different irrigation regimes on vegetative growth, fruit yield and quality of Salak apricot trees in semiarid climatic conditions. There were six irrigation treatments, five of which (S1, S2, S3, S4 and S5) were based on adjustment ...

  19. Colostomy irrigation in the elderly. Effective recovery regardless of age.

    Science.gov (United States)

    Venturini, M; Bertelli, G; Forno, G; Grandi, G; Dini, D

    1990-12-01

    One hundred forty elderly cancer outpatients with colostomy in the authors' rehabilitation department were included in an analysis of the feasibility, effectiveness, and safety of periodic irrigation of remaining colon with lukewarm tap water with the aim of regaining full continence. Sixteen patients did not have a sufficiently long remaining bowel (cecostomy, transverse colostomy) and 17 were considered unsuitable to learn the technique because of advanced neoplastic disease with poor life expectancy, intercurrent disease, or stomal problems. One hundred seven patients were proposed to perform the irrigation: 17 refused to do so with the remaining 90 able to learn the method without problems. Nearly all patients achieved full continence for at least 24 hours. Three patients refused to continue, and nine interrupted for minor complications. The median duration of irrigation in the whole group is 257 days (range, 1 to 2669 days): 32 patients have been irrigating from one to five years, and 9 patients for more than 5 years. Based on these results, we recommend irrigation as standard rehabilitative treatment for elderly patients.

  20. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  1. The effects of different irrigation levels on flowering and flower ...

    African Journals Online (AJOL)

    Water usage is a vital issue for all agricultural crops as well as for ornamental crops. To obtain high quality flowers, it is essential to supply water when it is required. A problem which is common with cut flower growers are determining when to irrigate and the amount of water to apply. The effect of two irrigation intervals (I1: ...

  2. Effect of Timing and Amount of Irrigation Water on Bean Yield and Water Use Efficiency in Arid and Semi-arid Conditions

    Directory of Open Access Journals (Sweden)

    S.S. Nurbakhsh

    2016-02-01

    consumption was affected by irrigation time. Among full irrigation treatments, irrigation at 2 p.m. and 6 a.m. had the highest and lowest water consumption, respectively. The total amount of water used in irrigation at 8 a.m., 2:00 p.m. and 6 p.m. compared to 6:00 a.m. was increased by1.6, 9.5 and 4.1 percent, respectively. The results showed that irrigation at 2:00 p.m., caused a significant reduction in yield. Moreover, water use efficiency in 6 a.m. treatments had increased 18.5 percent more than that of the 2:00 p.m. irrigation treatment. The time of irrigation did not have a meaningful effect on bush height, the number of minor branches, the pod's length. The effect of the amount of irrigation water was meaningful on bush height, number of minor branches, seeds yield, the number of pods in the bush, pods length and seed weight. Seed yield at 8:00 a.m., 2:00 p.m. and 6:00 p.m. treatments has shown 0.29, 17.1 and 7.6 percent decrease in comparison with 6:00 a.m. irrigation treatment, respectively. Moreover, 100-seed weights were significantly affected by the irrigation time. The maximum and minimum weights of 100-seed weights were obtained at 6:00 a.m. and 6:00 p.m. irrigation, respectively. Analysis of variance showed that the number of pods per plant was affected by irrigation time. The maximum number of pods per plant was 101 which belong to the 6:00 a.m. treatment. In this experiment in the case of irrigation at 2:00 p.m., the number of pods per plant was significantly decreased in full and deficit irrigation. The results showed that although the irrigation frequency was the same, irrigation at maximum evapo-transpiration caused the plant to be under stress and the yield was reduced. In other word, it can be said that time of irrigation had no meaningful effect on the appearance and shape of the plant while it was effective in terms of the yield. Overall assessments showed that maximum of the measured features were obtained in the case of 6:00 a.m. treatment

  3. Eficiência do uso da água pelo meloeiro sob diferentes freqüências de irrigação Water use efficiency of the melon crop under different irrigation frequencies

    Directory of Open Access Journals (Sweden)

    Valdemício Ferreira de Sousa

    2000-01-01

    Full Text Available Objetivou-se, com este estudo, avaliar o efeito de cinco freqüências de irrigação por gotejamento, na maximização da produtividade e na eficiência do uso da água pelo meloeiro cultivado em solo arenoso de Tabuleiro Costeiro do Piauí. O experimento foi conduzido no Campo Experimental da Embrapa Meio-Norte, localizado no município de Parnaíba, PI, latitude 3º5'S longitude 41º47'W e altitude de 46,8 m. O delineamento experimental foi o de blocos ao acaso, com cinco tratamentos e seis repetições, em que os tratamentos foram: freqüências de irrigação de 0,50, 1,0, 2,0, 3,0 e 4,0 dias. Foram avaliadas as produtividades comercial e total e a eficiência do uso de água, constatando-se que a maior produtividade total (77.985 kg ha-1 e a máxima eficiência do uso da água (EUAEt pelo meloeiro (282,83 kg ha-1 mm-1 são obtidas com freqüência de irrigação de um dia. As freqüências de irrigação de 3 e 4 dias, ou superiores, não são recomendadas para o meloeiro e, se a água é escassa, utilizam-se irrigações com freqüência diária.The objective of this work was to evaluate the effect of five trickle irrigation frequencies to obtain high yields and maximum water use efficiency in a melon crop cultivated in sandy soil of the Coastal Tablelands of Piauí, Brazil. The experiment was carried out in an experimental area of Embrapa Meio-Norte in Parnaíba, Piauí State, Brazil, latitude 3º5' S, longitude 41º47' W and altitude 46.8 m. A randomized block with five treatments and six replications was used, with irrigation frequencies of 0.5, 1.0, 2.0, 3.0 and 4.0 days. The total and commercial yield and water use efficiency were evaluated. The highest total yield (77.985 kg ha-1 and the maximum water use efficiency by melon crop (282.83 kg ha-1 mm-1 were obtained with an irrigation frequency of one day. The irrigation frequencies of 3 and 4 days or higher are not recommended for the melon crop, and if the water is scarce an

  4. Effects of fertilisation and irrigation practices on yield, maturity and storability of onions

    Directory of Open Access Journals (Sweden)

    T. SUOJALA

    2008-12-01

    Full Text Available The study aimed to establish whether a high onion yield and good storage performance could be obtained with low fertilisation rates if irrigation was applied when necessary. Two-year experiments investigated the effects of three NPK fertiliser levels (N 50, 100, 125/150 kg/ha, with and without irrigation, on yield, advancement of maturity, storage losses and shelf life. High fertilisation advanced maturity but irrigation had no effect. High fertilisation increased yield only in 1996 (5B7%, but irrigation increased the yield noticeably: by 33.5% in 1995 and 8.5% in 1996. There was no interaction between fertilisation and irrigation. The low fertilisation optimum is attributed to the mineralisation of soil nitrogen, as the soil was rich in organic matter. At the low fertilisation level, plants took up twice as much nitrogen as present in the fertiliser, and with increased fertilisation the nitrogen uptake increased markedly. The foliage nitrogen content was low, evidently as a result of late harvesting. Treatments had only a minor effect on the storage performance and shelf life of onions. The results suggest that fertilisation rates could be reduced in onion production. Irrigation during warm and dry periods is essential to achieve the maximum yield potential and does not impair the storage quality of onions.;

  5. Short-term effects of irrigation with treated domestic wastewater on microbiological activity of a Vertic xerofluvent soil under Mediterranean conditions.

    Science.gov (United States)

    Kayikcioglu, Huseyin Husnu

    2012-07-15

    Approximately 70% of the world water use, including all the water diverted from rivers and pumped from underground, is used for agricultural irrigation, so the reuse of treated domestic wastewater (TWW) for purposes such as agricultural and landscape irrigation reduces the amount of water that needs to be extracted from natural water sources as well as reducing discharge of wastewater to the environment. Thus, TWW is a valuable water source for recycling and reusing in arid and semi-arid regions which are frequently confronting water shortages. In this regard, this study was planned to reveal the short-term effects of advanced-TWW irrigation on microbial parameters of Vertic xerofluvent soil. For this purpose, certain parameters were measured in the study, including soil total organic carbon (C(org)), N-mineralization (N(min)), microbial biomass carbon (C(mic)), soil microbial quotient (C(mic)/C(org)) and the activities of the enzymes dehydrogenase (DHG), urease (UA), alkaline phosphatase (ALKPA), β-glucosidase (GLU) and aryl sulphatase (ArSA) in soils irrigated with TWW and fresh water (FW). All of the microbial parameters were negatively affected by TWW irrigation. Microbial parameters decreased by 10.1%-54.1% in comparison with the FW plots. This decrease especially in enzymatic activities of soil irrigated with TWW, presumably due to some heavy metals inhibited their activity associated with the soil types and the concentrations of heavy metals in wastewater. In contrast, C(mic)/C(org) was found higher in the plots irrigated with TWW at the end of the experiment. The addition of organic matter to soil by irrigation with TWW is cause for the increase in this ratio. The dose of irrigation should be modified to reduce the quantity and to increase the frequency of application to avoid the loss of aggregation and salt accumulation. TWW irrigation is a strategy with many benefits to agricultural land management; however, long-term studies should be implemented to

  6. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    Science.gov (United States)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  7. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  8. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    Science.gov (United States)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  9. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  10. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat and carbon fluxes in semi-arid basin

    Science.gov (United States)

    Xie, Zhenghui; Zeng, Yujin

    2017-04-01

    Irrigation, which constitutes 70% of the total amount of fresh water consumed by the human population, is significantly impacting the land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM 4.5) with an active crop model, two high resolution ( 1 km) simulations investigating the effects of irrigation on Latent Heat (LH), Sensible Heat (SH) and Carbon Fluxes (or net ecosystem exchange, NEE) from land to atmosphere on the Heihe River Basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity and viability of the developed models to reproduce ecological and hydrological processes. The results revealed the effects of irrigation on LH and SH are strongest during summer with a LH increase of 100 W/m2 and a SH decrease of 60 W/m2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate below 5 mm/day, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm/day, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC/m2/day, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by 0.8 gC/m2/day. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH and NEE. The study indicates that how a land surface model with high spatial resolution can represent crop growing and its effects over basin scale.

  11. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation.

    Science.gov (United States)

    Zhang, Yuping; Sallach, J Brett; Hodges, Laurie; Snow, Daniel D; Bartelt-Hunt, Shannon L; Eskridge, Kent M; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The effect of four different irrigation systems in the removal of a root canal sealer.

    Science.gov (United States)

    Grischke, J; Müller-Heine, A; Hülsmann, M

    2014-09-01

    The aim of this study was to compare the efficiency of sonic, ultrasonic, and hydrodynamic devices in the removal of a root canal sealer from the surface and from simulated irregularities of root canals. Fifty-three root canals with two standardized grooves in the apical and coronal parts of longitudinally split roots were covered with AH Plus root canal sealer. Compared were the effects of (control) syringe irrigation, (1) CanalBrush, (2) passive ultrasonic irrigation, (3) EndoActivator, and (4) RinsEndo on the removal of the sealer. The specimens were divided into four groups (N = 12) and one control group (N = 5) via randomization. The amount of remaining sealer in the root canal irregularities was evaluated under a microscope using a 4-grade scoring system, whereas the remaining sealer on the root canal surface was evaluated with a 7-grade scoring system. Passive ultrasonic irrigation is more effective than the other tested irrigation systems or syringe irrigation in removing sealer from root canal walls (p irrigation shows a superior effect on sealer removal from the root canal surface during endodontic retreatment. Cleaning of lateral grooves seems not to be possible with one of the techniques investigated. Incomplete removal of root canal sealer during re-treatment may cause treatment failure. Passive Ultrasonic irrigation seems to be the most effective system to remove sealer from a root canal.

  13. Therapeutic effect of intraductal irrigation of the salivary gland: A technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chena [Dept. of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul (Korea, Republic of); Kim, Jo Eun; Huh, Kyoung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2017-06-15

    Obstructive and inflammatory disease often occurs in the major salivary glands, and no predictive treatment has yet been developed for this condition. The aim of this report was to introduce an intraductal irrigation procedure and to illustrate its application to practical patient cases. Two patients complaining of pain and swelling in the parotid gland during meals who underwent sialography were diagnosed as having sialodochitis with sialadenitis. Intraductal irrigation was then performed on the parotid gland on the side of the complaint. The irrigation procedure was conducted in the same manner as the sialography procedure, except that saline was used as the filling solution. Symptom severity was evaluated with a numerical rating scale (NRS) at the initial visit and a month after the irrigation. The initial NRS value of patient 1 was 10. The value decreased to 6 and then to 0 after 2 irrigation procedures. The NRS value of patient 2 regarding the symptoms involving the left parotid gland decreased from 4-5 to 1 after 4 irrigation procedures performed at 1-month intervals. Intraductal irrigation of the salivary gland may be a simple, safe, and effective treatment option for patients with obstructive and inflammatory disease of the salivary gland that is capable of resolving their symptoms.

  14. Therapeutic effect of intraductal irrigation of the salivary gland: A technical report.

    Science.gov (United States)

    Lee, Chena; Kim, Jo-Eun; Huh, Kyoung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul

    2017-06-01

    Obstructive and inflammatory disease often occurs in the major salivary glands, and no predictive treatment has yet been developed for this condition. The aim of this report was to introduce an intraductal irrigation procedure and to illustrate its application to practical patient cases. Two patients complaining of pain and swelling in the parotid gland during meals who underwent sialography were diagnosed as having sialodochitis with sialadenitis. Intraductal irrigation was then performed on the parotid gland on the side of the complaint. The irrigation procedure was conducted in the same manner as the sialography procedure, except that saline was used as the filling solution. Symptom severity was evaluated with a numerical rating scale (NRS) at the initial visit and a month after the irrigation. The initial NRS value of patient 1 was 10. The value decreased to 6 and then to 0 after 2 irrigation procedures. The NRS value of patient 2 regarding the symptoms involving the left parotid gland decreased from 4-5 to 1 after 4 irrigation procedures performed at 1-month intervals. Intraductal irrigation of the salivary gland may be a simple, safe, and effective treatment option for patients with obstructive and inflammatory disease of the salivary gland that is capable of resolving their symptoms.

  15. The effects of drip line depths and irrigation levels on yield, quality ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effects of different drip irrigation methods and different irrigation levels on yield, quality and water use characteristics of lettuce (Lactuca sativa var. longifolia cv. Lital) cultivated in a solar greenhouse from 07 October 2009 to 03 December 2009 in the Eastern Mediterranean region ...

  16. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    2017-01-01

    . We argue that the effect has historical origins: irrigation allowed landed elites in arid areas to monopolize water and arable land. This made elites more powerful and better able to oppose democratization. Consistent with this conjecture, we show that irrigation dependence predicts land inequality...

  17. Does colostomy irrigation affect functional outcomes and quality of life in persons with a colostomy?

    Science.gov (United States)

    Kent, Dea J; Long, Mary Arnold; Bauer, Carole

    2015-01-01

    Colostomy irrigation may be used by patients with colostomies to regulate bowel evacuations by stimulating emptying of the colon at regularly scheduled times. This Evidence-Based Report Card reviews the effect of colostomy irrigation on frequency of bowel evacuation, flatus production, odor, and health-related quality of life. We systematically reviewed the literature for studies that evaluated health-related quality of life in persons aged 18 years or older with colostomies of the sigmoid or descending left colon. A professional librarian performed the literature search, which yielded 499 articles using the search terms "colostomy," "colostomies," "therapeutic irrigation," "irrigation," and "irrigator." Following title and abstract reviews, we identified and retrieved 4 studies that met inclusion criteria. Colostomy irrigation reduces the frequency of bowel evacuations when compared to spontaneous evacuation and containment using a pouching system. Regular irrigation is associated with reductions in pouch usage. This change in bowel evacuation function frequently results in absence of bowel evacuations for 24 hours or longer, enabling some to discontinue ongoing use of a pouching system. Subjects using CI report reductions in flatus and odors associated with presence of a colostomy. One study was identified that found persons using CI reported higher health-related quality of life than did those who managed their colostomies with spontaneous evacuation using the Digestive Disease Quality of Life-15, but no differences were found when health-related quality of life was measured using the more generic instrument, the Medical Outcomes Study: Short Form-36. Instruction on principles and techniques of colostomy irrigation should be considered when managing patients with a permanent, left-sided colostomy.

  18. Effect of Deficit Irrigation Treatments on Vegetative Characteristics and Quantity and Quality of Golden Delicious Apple

    Directory of Open Access Journals (Sweden)

    I. Arji

    2016-07-01

    Full Text Available Introduction: Since Iran is located in arid and semi-arid region of the world, so consumption and saving of water must be taking into account. Water is often a valuable natural resource, thus proper application methods - for increase water efficiency can be very important. Regulated deficit irrigation (RDI is one of the most important methods to increase water use efficiency and fruit quality. Apple is one of the most important fruit trees from economical point of view. Studies showed that regulated deficit irrigation led to growth reduction in apple trees and sometimes fruit quality increased. The aim of this study was to evaluate the effect deficit irrigation on vegetative growth and fruit quantity and quality of Golden delicious apple trees in Gahvareh region of Kermanshah province. Materials and Methods: This experiment was conducted on 10 years old Golden delicious apple trees in a randomized complete block design with 5 irrigation treatments and three replications during 2006. Three apple trees assigned to each experimental unit. Irrigation treatments were: T1= early deficit irrigation (40% water requirement, T2= early deficit irrigation (60% water requirement, T3= late deficit irrigation (40% water requirement, T4=late deficit irrigation (60% water requirement, T5=control (C (100% water requirement. Early deficit irrigation starts 55 days after full bloom (15th Jun and continued 60 days (16th Aug, while late deficit irrigation starts 115 days after from full bloom (16th Aug and continued 40 days near to harvesting time (23th Sept. Control trees were full irrigated based on water requirement, which calculated based on national water document of Iran and irrigation amount was calculated based on the following formulas: Q=0.0184.L.H3/2 Where Q is volumetric flow rate (liter/Second, L is parshall flume crown length (cm and H is water height (cm. Irrigation time was calculated based on national water document of Iran and volumetric flow rate

  19. Effect of Supplementary Irrigation on Yield, Yield Components and Protein Percentages of Chickpea Cultivars in Ilam, Iran

    Directory of Open Access Journals (Sweden)

    A. Maleki

    2012-01-01

    Full Text Available In order to study the effect of supplementary irrigation on yield, yield components and protein percentages of three cultivars of chickpea an experiment carried out as split plot, based on randomized complete blocks design, with three replications in Ilam, in 2009-2010 growing season. Irrigation treatments were: control, without irrigation (I0, irrigation at the stage of %50 blooming, irrigation at the stage of %50 flowering, irrigation at the stage of pods filling, which were allocated to main plots and genotypes, ILC482, Filip93-93 and local variety to sub plots. Irrigation treatments had significantly effect on seed and biological yields, harvest index, pod numbers per plant, seed numbers per pod and 100 seed weight. The Filip93-93 produced highest (1140.51 kg/ha and the local variety lowest seed yields (1056.98 kg/ha.Irrigation at the stage of pod filling and blooming increased by seed yield %41.3 and %29.3 respectively as  compared to control .Irrigation at the pod filling period produced the highest seed yield. The Filip93-93 produced highest yield (1263.31 kg/ha when the field irrigated at pod filling stage and the local variety at control treatment (without irrigation the lowest seed yield (893.26 kg/ha.

  20. Effects of application timing of saline irrigation water on broccoli production and quality

    Science.gov (United States)

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  1. Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato

    DEFF Research Database (Denmark)

    Liu, Caixia; Rubæk, Gitte Holton; Liu, Fulai

    2015-01-01

    Better understanding of the effects of deficit irrigation regimes on phosphorus (P) and nitrogen (N) uptake dynamics is necessary for sustainable water, P and N management. The effects of full (FI), deficit (DI) and partial root-zone drying (PRD) irrigation on potato P and N uptake with P fertili...... was superior to DI in terms of N uptake, but not P uptake. Challenges remain how to maintain crop yield and P uptake under reduced irrigation regimes. Utilization of water and N fertilizer was low when the soil was deficient in P.......Better understanding of the effects of deficit irrigation regimes on phosphorus (P) and nitrogen (N) uptake dynamics is necessary for sustainable water, P and N management. The effects of full (FI), deficit (DI) and partial root-zone drying (PRD) irrigation on potato P and N uptake with P...... fertilization (P1) or without (P0) were investigated in two split-root pot experiments in a soil with low plant available P. Under FI, the plants were irrigated to pot water holding capacity while under DI and PRD, 70% of the water amount of FI was applied on either both or one side of the pots, respectively...

  2. Morphogenetic, structural and productive traits of buffel grass under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Maria Janiele Ferreira Coutinho

    2015-06-01

    Full Text Available The water restriction conditions in the Brazilian semiarid region are one of the most limiting factors to the establishment and yield of forage grasses. This study aimed to evaluate the effect of different irrigation regimes on morphogenetic, structural and productive traits of buffel grass. Arandomized blocks design, with five treatments and six replications, was used. Treatments consisted of five irrigation regimes, corresponding to the intervals of 2, 4, 6, 8 and 10 days. The traits analyzed were: leaf emergence rate, phyllochron, leaf and stem elongation rate, leaf senescence rate, final leaf length, number of green leaves per tiller, number of tillers, stem height, leaf/stem ratio, leaf area index, dry mass of green leaf and stem, dry mass of green, dead and total forage, root dry mass, dry mass and green dry mass/dead dry mass ratio. The final leaf length and dead forage dry mass were not affected by the irrigation regimes. The leaf/stem ratio followed a quadratic model, maintaining the value of 0.51 up to the irrigation regime of four days. The other morphological, structural and productive traits decreased linearly with increasing irrigation frequencies. The irrigation intervals promoted reductions in the morphological, structural and productive parameters of buffel grass, when grown under greenhouse conditions. The irrigation regime of 2 days stands out as the least restrictive to the development of buffel grass.

  3. Effect of Intracanal Cryotherapy and Negative Irrigation Technique on Postendodontic Pain.

    Science.gov (United States)

    Al-Nahlawi, Talal; Hatab, Talaat Abo; Alrazak, Mahmoud Abd; Al-Abdullah, Ahmad

    2016-12-01

    To evaluate the effect of intracanal cryotherapy with negative pressure irrigation (EndoVac) on postendodontic pain after vital single-visit root canal treatment (RCT). A total of 75 single-rooted teeth with single root canal were treated endodontically. After root canal preparation with Protaper Universal rotary system and irrigation, teeth were divided randomly into three groups (n = 25) according to additional irrigation protocol as follows: Group I: No additional irrigation was applied (control); group II: A 20 mL of room temperature saline was irrigated during 5 minutes using EndoVac, and group III: A 20 mL of 2 to 4°C cold saline was irrigated during 5 minutes using EndoVac. Pain levels were assessed by visual analog scale (VAS) and verbal evaluation of pain questionnaire after 6, 12, 24, 48 hours, and 7 days of canal obturation. The data were then analyzed using Statistical Package for the Social Sciences (SPSS) 13.0 using Kruskal-Wallis and Mann-Whitney U tests at p-value of 0.05. The results showed that pain levels were high in groups I and II after 6 hours that decreased with time to almost diminish after 1 week, and on the other hand, group III showed no pain among different monitoring periods. Also pain levels in groups II were lower compared with group I after only 6 hours, with significance p cryotherapy eliminated postendodontic pain clinically. Negative pressure reduced postendodontic pain after 6 hours of treatment. The outcome of this study indicates that the use of intracanal cryotherapy technique with negative pressure irrigation eliminates postendodontic pain after single-visit RCTs.

  4. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    OpenAIRE

    mohammad saeed tadaion; Gholamreza Moafpourian

    2017-01-01

    Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L.) cv. Zarde-anar) were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carri...

  5. Effect of drought/irrigation on proximate composition and ...

    African Journals Online (AJOL)

    Enset [Ensete ventricosum (Welw.) Cheesman] is an important root crop serving as a carbohydrate rich food source in Ethiopia. Perennial crops, like enset, are often exposed to recurrent dry periods which could greatly affect their growth, physiology and yield. The effect of induced drought/irrigation on the proximate ...

  6. effect of deficit irrigation on growth and yield of okro

    African Journals Online (AJOL)

    User

    reduce the demand for irrigation water (Boland et al., 1993). Deficit irrigation is another way in which water use efficiency can be maximized for higher yields per unit of irrigation water. Stegman (1982) reported that the yield of maize, sprinkler irrigated to induce a 30 - 40 percent depletion of available water between.

  7. Comparison of the effect of two endodontic irrigation protocols on the elimination of bacteria from root canal system: a prospective, randomized clinical trial.

    Science.gov (United States)

    Beus, Christopher; Safavi, Kamran; Stratton, Jeffrey; Kaufman, Blythe

    2012-11-01

    The purpose of this prospective, randomized clinical study was to compare the results of a nonactivated single-irrigation protocol (NAI) that used only 1% NaOCl with a passive ultrasonic multi-irrigation protocol (PUI) that used 1% NaOCl, 17% ethylenediaminetetraacetic acid, and 2% chlorhexidine in rendering canals bacteria free. In addition, the effect of a second-visit instrumentation after intra-appointment calcium hydroxide (CaOH(2)) was also evaluated in bacterial elimination. Fifty patients were recruited with a posterior tooth requiring primary endodontic treatment of apical periodontitis. Standard nonsurgical endodontic therapy was performed on both groups in a 2-visit approach by using calcium hydroxide intracanal medicament. Teeth were randomly treated with the NAI or PUI protocols in the first visit after complete instrumentation. Bacterial cultures were obtained at 4 periods during treatment from the canals: (1) before instrumentation, (2) after irrigation protocol, (3) after CaOH(2) medication, and (4) before obturation. Statistical analysis was performed on data by using the Fisher exact test and multivariate analysis. NAI and PUI rendered canals 80% and 84% bacteria free, respectively, at the end of the first visit. After CaOH(2) medication the total sample (NAI + PUI) had increased to 87% bacteria free, and the second-visit instrumentation resulted in a total of 91% bacteria free. These differences were not significant (P > .05). There was no statistical difference between irrigation methods. Each protocol resulted in a high frequency of negative cultures. This high frequency of negative cultures obtained in 1 visit is most likely related to an increased volume and depth of irrigation compared with previously reported protocols. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Effects of greywater irrigation on germination, growth and ...

    African Journals Online (AJOL)

    The reuse of greywater, wastewater from sources other than toilets, could enable low-income households to save potable water for drinking and cooking. Greywater irrigation of food crops is widely practised but its effects on African leafy vegetables (ALVs), which hold potential for cultivation to improve food security, are ...

  9. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  10. Clinical value of colonic irrigation in patients with continence disturbances.

    Science.gov (United States)

    Briel, J W; Schouten, W R; Vlot, E A; Smits, S; van Kessel, I

    1997-07-01

    Continence disturbances, especially fecal soiling, are difficult to treat. Irrigation of the distal part of the large bowel might be considered as a nonsurgical alternative for patients with impaired continence. This study is aimed at evaluating the clinical value of colonic irrigation. Thirty-two patients (16 females; median age, 47 (range, 23-72) years) were offered colonic irrigation on an ambulatory basis. Sixteen patients suffered from fecal soiling (Group I), whereas the other 16 patients were treated for fecal incontinence (Group II). Patients were instructed by enterostomal therapists how to use a conventional colostomy irrigation set to obtain sufficient irrigation of the distal part of their large bowel. Patients with continence disturbances during the daytime were instructed to introduce 500 to 1,000 ml of warm (38 degrees C) water within 5 to 10 minutes after they passed their first stool. In addition, they were advised to wait until the urge to defecate was felt. Patients with soiling during overnight sleep were advised to irrigate during the evening. To determine clinical outcome, a detailed questionnaire was used. Median duration of follow-up was 18 months. Ten patients discontinued irrigation within the first month of treatment. Symptoms resolved completely in two patients. They believed that there was no need to continue treatment any longer. Irrigation had no effect in two patients. Despite the fact that symptoms resolved, six patients discontinued treatment because they experienced pain (n = 2) or they considered the irrigation to be too time-consuming (n = 4). Twenty-two patients are still performing irrigations. Most patients irrigated the colon in the morning after the first stool was passed. Time needed for washout varied between 10 and 90 minutes. Frequency of irrigations varied from two times per day to two times per week. In Group I, irrigation was found to be beneficial in 92 percent of patients, whereas 60 percent of patients in Group II

  11. Revisiting colostomy irrigation: a viable option for persons with permanent descending and sigmoid colostomies.

    Science.gov (United States)

    Kent, Dea J; Arnold Long, Mary; Bauer, Carole

    2015-01-01

    Colostomy irrigation (CI) is the regular irrigation of the bowel for persons with a permanent colostomy of the descending or sigmoid colon. Although this technique was first described in the 1920s, a recent study of 985 WOC nurses found that almost half (47%) do not routinely teach CI to persons with colostomies. In a systematic review (Evidence-Based Report Card) published in this issue of the Journal, we summarized current best evidence concerning the effect of CI on bowel function and found that irrigation reduces the frequency of bowel elimination episodes and allows some patients to reduce or eliminate ongoing use of a pouching system. This article describes techniques for teaching CI and discussed additional findings associated with CI.

  12. Salinity effect of irrigation with treated wastewater in basal soil respiration in SE of Spain

    Science.gov (United States)

    Morugan, A.; Garcia-Orenes, F.; Mataix-Solera, J.

    2012-04-01

    The use of treated wastewater for the irrigation of agricultural soils is an alternative to utilizing better-quality water, especially in semiarid regions where water shortage is a very serious problem. Wastewater use in agriculture is not a new practice, all over the world this reuse has been common practice for a long time, but the concept is of greater importance currently because of the global water crisis. Replacement of freshwater by treated wastewater is seen as an important conservation strategy contributing to agricultural production, substantial benefits can derive from using this nutrient-rich waste water but there can also be a negative impact. For this reason it is necessary to know precisely the composition of water before applying it to the soil in order to guarantee minimal impact in terms of contamination and salinization. In this work we have been studying, for more than three years, different parameters in calcareous soils irrigated with treated wastewater in an agricultural Mediterranean area located at Biar (Alicante, SE Spain), with a crop of grape (Vitis labrusca). Three types of waters were used for the irrigation of the soil: fresh water (control) (TC), and treated wastewater from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type during the study period. A soil sampling was carried out every four months. We show the results of the evolution of basal soil respiration (BSR), and its relationship with other parameters. We observed a similar pattern of behavior for BSR between treatments, a decrease at the first eighteen months of irrigation and an increase at the end of study. In our study case, the variations of BSR obtained for all the treatments seem to be closely related to the dose and frequency of irrigation and the related soil wetting and drying cycles. However, the results showed a negative correlation between BSR and

  13. Irrigation effects on soil attributes and grapevine performance in a 'Godello' vineyard of NW Spain

    Science.gov (United States)

    Fandiño, María; Trigo-Córdoba, Emiliano; Martínez, Emma M.; Bouzas-Cid, Yolanda; Rey, Benjamín J.; Cancela, Javier J.; Mirás-Avalos, Jose M.

    2014-05-01

    Irrigation systems are increasingly being used in Galician vineyards. However, a lack of information about irrigation management can cause a bad use of these systems and, consequently, reductions in berry quality and loss of water resources. In this context, experiences with Galician cultivars may provide useful information. A field experiment was carried out over two seasons (2012-2013) on Vitis vinifera (L.) cv. 'Godello' in order to assess the effects of irrigation on soil attributes, grapevine performance and berry composition. The field site was a commercial vineyard located in A Rúa (Ourense-NW Spain). Rain-fed vines (R) were compared with two irrigation systems: surface drip irrigation (DI) and subsurface drip irrigation (SDI). Physical and chemical characteristics of soil were analyzed after installing irrigation systems at the beginning of each season, in order to assess the effects that irrigation might have on soil attributes. Soil water content, leaf and stem water potentials and stomatal conductance were periodically measured over the two seasons. Yield components including number of clusters, yield per plant and cluster average weight were taken. Soluble solids, pH, total acidity and amino acids contents were measured on the grapes at harvest. Pruning weight was also recorded. Soil attributes did not significantly vary due to the irrigation treatments. Stem water potentials were significantly lower for R plants on certain dates through the season, whereas stomatal conductance was similar for the three treatments in 2013, while in 2012 SDI plants showed greater stomatal conductance values. SDI plants yielded more than those R due to both a greater number of clusters per plant and to heavier clusters. Pruning weight was significantly higher in SI plants. Berry composition was similar for the three treatments except for the amino acids content, which was higher under SDI conditions. These results may be helpful for a sustainable management of irrigation

  14. Comparative effects of partial root-zone irrigation and deficit irrigation on phosphorus uptake in tomato plants

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Jensen, Christian Richardt

    2012-01-01

    The comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) plants were investigated in a split-root pot experiment. The results showed that PRI treatment improved water-use efficiency (WUE) compared...... to the DI treatment. PRI-treated plants accumulated significantly higher amounts of P in their shoots than DI plants under organic maize straw N fertilisation, whereas similar levels of shoot P accumulation were observed under mineral N fertilisation. Thus, the form of N fertiliser, and thereby...... the different plant N status, affected the accumulation of P in shoots, as reflected by a higher plant N:P ratio following mineral N fertilisation than after organic N fertilisation. Compared to the DI treatment, PRI significantly increased both the physiological and agronomic efficiencies of P-use under...

  15. Effect of different irrigation regimes on the quality attributes of mono varietal virgin olive oil from cv. Cobrancosa

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes-Silva, A. A.; Gouveia, J. B.; Vasconcelos, P.; Ferreira, T. C.; Villalobos, F. J.

    2013-05-01

    The aim of this study was to assess the effect of different irrigation strategies in virgin olive oil (VOO) composition and quality of cv. Cobrancosa, integrated in a protected denomination of origin of Azeite de Tras-os-Montes in the Northeast of Portugal. Three irrigation treatments were applied: T2-full irrigation that received a seasonal water equivalent to 100% of estimated crop evapotranspiration (ETc), T1-continuous deficit irrigation (30% ETc) and T0- rainfed treatment. Data were collected from two consecutive crop years (2005-2006). Irrigation regimes had a minor effect on standard quality indices (free fatty acids, peroxide value, K{sub 2}32 and K{sub 2}70) of VOO and in fatty acid composition. Total polyphenols decreased up to treatment T2, and were strongly related to the water stress integral, suggesting that the effect of irrigation on this variable occurs along the crop season and not just during the oil accumulation phase. A strategy of continuous deficit irrigation with only 30% of maximum ETc may have an advantageous effect, as it increased oil yield to more than double that of rainfed conditions while VOO quality was similar. (Author) 49 refs.

  16. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  17. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    To respond to agricultural water shortage impacted by climate change without affecting rice yield in the future, the application of water-saving irrigation, such as SRI methodology, is considered to be adopted in rice-cultivation in Taiwan. However, the flooded paddy fields could be considered as an important source of groundwater recharge in Central Taiwan. The water-saving benefit of this new methodology and its impact on the reducing of groundwater recharge should be integrally assessed in this area. The objective of this study was to evaluate the changes of groundwater recharge/ irrigation water use between the SRI and traditional irrigation schemes (continuous irrigation, rotational irrigation). An experimental paddy field located in the proximal area of the Choushui River alluvial fan (the largest groundwater pumping region in Taiwan) was chosen as the study area. The 3-D finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge process and amount under traditional irrigation schemes and SRI methodology. The use of effective rainfall was taken into account or not in different simulation scenarios for each irrigation scheme. The simulation results showed that there were no significant variations of infiltration rate in the use of effective rainfall or not, but the low soil moisture setting in deep soil layers resulted in higher infiltration rate. Taking the use of effective rainfall into account, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology in the first crop season of 2013 were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reducing 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly

  18. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    Science.gov (United States)

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  19. Effects of soil moisture conservation practice, irrigation and fertilization on Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Aran Phiwngam

    2016-11-01

    Full Text Available A field experiment was conducted on an Ultic Haplustalf at the Kanchanaburi Research Station, Muang district, Kanchanaburi province, western Thailand between July 2011 and June 2012. Split plots in a randomized complete block design with four replications were employed, having eight main plots (soil moisture conservation practice and irrigation, W1–W8 and 2 sub plots (fertilization, F1 and F2. Jatropha curcas (KUBP 78-9 Var., having been planted at 2 × 2 m spacing, was aged 2 yr when the experiment was commenced. The highly significantly heaviest 100-seed weight of 42 g was obtained 1 mth after water irrigation which had been applied at the rate of 16 L/plant, particularly in the treatment with crop residue mulching (W8 but there were no significant differences among the other treatments where irrigation had been applied (W5–W7. Fertilization and a combination between different fertilizers and soil moisture conservation schemes plus irrigation showed no different effect on the weight of 100 seeds throughout the year of measurement. Growing J. curcas with drip-irrigated water at the rate of 16 L/plant applied every 2 d and crop residue mulching (W8 significantly gave the highest seed yield of 1301.3 kg/ha at 15% moisture content. There were no significant differences among the seed yields from the plots applied with the same amount of irrigated water but with no mulching (W7 and half that amount of irrigated water with crop residue mulching (W6, producing yields of 1112.0 kg/ha and 1236.3 kg/ha, respectively. Three-year-old J. curcas gave inferior seed yield when grown with no irrigated water supply (W1–W4. The application of 50–150–150 kg/ha of N–P2O5–K2O significantly induced a higher amount of seed yield (933.9 kg/ha than did the addition of 93.75–93.75–93.75 kg/ha of N–P2O5–K2O (786.3 kg/ha. The interaction between soil moisture conservation plus irrigation and fertilizer was clear. Applying 50–150

  20. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  1. Effect of Irrigation Methods, Nitrogen and Phosphorus Fertilizer Rates on Sugar Beet Yield and Quality

    International Nuclear Information System (INIS)

    Janat, M.; Abudlkareem, J.

    2007-01-01

    The experiment was conducted at a research station near Adlib. Two irrigation methods, sprinkler irrigation and drip fertigation, two phosphorus rates and four nitrogen rates 0, 70, 140 and 210 kg N/ha were tested. All N fertilizers were injected for drip irrigation or broadcasted for the sprinkler-irrigated treatments in six equally split applications. Neutron probe Results revealed that the introduction of drip fertigation was not proved to be a water saving relative to sprinkler irrigation. Dry matter production was slightly increased for the drip-fertigated treatments relative to sprinkler irrigated treatments. Nitrogen use efficiency was not improved under drip fertigation relative to that of sprinkler irrigation. Application of phosphorus fertilizer improved sugar beet yield as well as N uptake. No significant differences in sugar beet yield were observed due to the application of N fertilizer under drip fertigation. On the other hand, there was a trend toward increasing sugar beet yield grown under sprinkler irrigation. Drip fertigation had no negative effects on sugar content and other related properties, furthermore some of those properties were enhanced due to the employment of drip fertigation. Field water-use efficiency followed a similar trend and was increased under sprinkler irrigation relative to drip-fertigation for sugar beet yield parameter.

  2. Uncertainties in modelling the climate impact of irrigation

    Science.gov (United States)

    de Vrese, Philipp; Hagemann, Stefan

    2017-11-01

    Irrigation-based agriculture constitutes an essential factor for food security as well as fresh water resources and has a distinct impact on regional and global climate. Many issues related to irrigation's climate impact are addressed in studies that apply a wide range of models. These involve substantial uncertainties related to differences in the model's structure and its parametrizations on the one hand and the need for simplifying assumptions for the representation of irrigation on the other hand. To address these uncertainties, we used the Max Planck Institute for Meteorology's Earth System model into which a simple irrigation scheme was implemented. In order to estimate possible uncertainties with regard to the model's more general structure, we compared the climate impact of irrigation between three simulations that use different schemes for the land-surface-atmosphere coupling. Here, it can be shown that the choice of coupling scheme does not only affect the magnitude of possible impacts but even their direction. For example, when using a scheme that does not explicitly resolve spatial subgrid scale heterogeneity at the surface, irrigation reduces the atmospheric water content, even in heavily irrigated regions. Contrarily, in simulations that use a coupling scheme that resolves heterogeneity at the surface or even within the lowest layers of the atmosphere, irrigation increases the average atmospheric specific humidity. A second experiment targeted possible uncertainties related to the representation of irrigation characteristics. Here, in four simulations the irrigation effectiveness (controlled by the target soil moisture and the non-vegetated fraction of the grid box that receives irrigation) and the timing of delivery were varied. The second experiment shows that uncertainties related to the modelled irrigation characteristics, especially the irrigation effectiveness, are also substantial. In general the impact of irrigation on the state of the land

  3. Colostomy irrigation: are we offering it enough?

    Science.gov (United States)

    Woodhouse, Fran

    This article discusses the use of irrigation for suitable colostomists and reasons why it can have a very positive effect on lifestyle. While it is evidence-based it also includes anecdotal tips from patients who irrigate. The suitability of patients to irrigate and ways to 'get started' with irrigation are discussed.

  4. Optimization of modern irrigation for biosaline agriculture

    International Nuclear Information System (INIS)

    Shahid, S.A.; Hasbini, B.

    2007-01-01

    Supplementation water is a must to offset the water requirement to produce profitable crops in most arid and semiarid zones, where fresh water resources are insufficient to meet the pressure of irrigated agriculture. This necessitates the use of poor quality water resources. These waters if not properly managed and used can cause serious soil related problems (salinity, sodicity, destruction of soil structure) in addition to decline in crop yields. Biosaline agriculture (using saline water on saline soils to grow salt-tolerant crops) becomes the only option for the farmer when both soil and water resources are saline and the water resource is scarce. In this regards key design considerations must be taken into account when irrigating with salty waters to optimize water uses and to reduce subsequent soil salinity development. Sprinkler irrigation systems are commonly used in irrigation of large-scale irrigational production systems. However they tend to concentrate salts on the leaves of plants. For this reason discharge and degree of overlap between consecutive sprinkler heads, are key design parameters when applying salty waters. Trickle irrigation is the most efficient system and is gaining importance in the GCC countries in the agriculture and landscape irrigation. The objective of this study was to optimize modern irrigation systems through development of design standards for drip (emitters spacing) and sprinkler irrigation systems (single head jet and overlapping) by applying saline water. The effect of emitter spacing (drip) and overlapping (sprinkler) were tested for the formation of salt contours in soil. The leaching ratio (LR) is the overall soil sanity within rhizosphere divided by the average irrigation water salinity. In this study LR is used to evaluate the effectiveness of irrigation systems in developing soil sanity. From the present investigations it is concluded that when using saline water for irrigation, the soil sanity development can be

  5. ANTIMICROBIAL AND STRUCTURAL EFFECTS OF DIFFERENT IRRIGATION SOLUTIONS ON GUTTA-PERCHA CONES

    Directory of Open Access Journals (Sweden)

    Sevinç Aktemur Türker

    2015-01-01

    Full Text Available Purpose: To evaluate the alterations on the surface of gutta-percha cones (GPCs on exposure to the different irrigation solutions and their possible antibacterial effect against Enterococcus faecalis. (E. faecalis Materials and Methods: Disinfection ability of different solutions (5.25% sodium hypochlorite, 2% chlorhexidine, 1% peracetic acid, and QMix were tested with 96 GPCs and the time of exposure to each solution was 5 and10 minutes, respectively. GPCs used in this study were contaminated with E.faecalis. After disinfection, GPCs were placed in tubes containing the medium and incubated at 37˚C for 7 days. All tubes were visually checked for turbidity at 24-hour intervals. About 92 new GPCs were analyzed by means of SEM/EDS to assess the topography and chemical elements present on their surface. The data generated was analyzed using Pearson chi-square test, p0.05. SEM/EDS analyses showed no alteration in the superficial features of GPCs after treating with various irrigation solutions. Conclusion: QMix was found to be an effective agent for rapid disinfection of GPCs as well-known irrigation solutions. Irrigation solutions were found to have sterilized the GPCs after both 5 and 10 minutes of exposure.

  6. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  7. Changes in soil aggregate stability under different irrigation doses of waste water

    Science.gov (United States)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  8. How Patients Experience Antral Irrigation

    Directory of Open Access Journals (Sweden)

    Karin Blomgren

    2015-01-01

    Full Text Available Background Antral irrigation earlier had an important role in the diagnosis and treatment of rhinosinusitis. Nowadays, it is often considered too unpleasant. However, the experience of patients of this procedure has been very seldom evaluated. Nor has the effect on pain in rhinosinusitis been evaluated. The aim of this study was to evaluate patients’ experience of discomfort and pain during antral irrigation. We also assessed facial pain caused by rhinosinusitis before the procedure and pain soon after the procedure. Methods Doctors and 121 patients completed their questionnaires independently after antral irrigation in a university clinic, in a private hospital, and at a communal health center. Results Patients experienced mild pain during antral irrigation (mean and median visual analog scale score: <3. Their experience of pain during antral irrigation was closely comparable to pain during dental calculus scaling. Facial pain assessed before antral irrigation decreased quickly after the procedure. Conclusions Antral irrigation was well tolerated as an outpatient procedure. The procedure seems to relieve facial pain caused by the disease quickly. The role of antral irrigation in the treatment of acute rhinosinusitis will need further investigation.

  9. Oasis Irrigation-Induced Hydro-Climatic Effects: A Case Study in the Hyper-Arid Region of Northwest China

    Directory of Open Access Journals (Sweden)

    Nan Shan

    2018-04-01

    Full Text Available The response of potential evapotranspiration (ET0 to widespread irrigation is important to fully understand future regional climate changes and to infer adaptive management of agricultural water resources. The quantitative impact of irrigation on ET0 from 1960 to 2013 was evaluated using historical time series data of daily meteorological observations in the hyper-arid region of northwest China. The decreasing trends in ET0 were accelerated for meteorological stations in regions with oasis agriculture, especially in the summer and during the growing season. Irrigation led to a cooling effect on temperature, increased relative humidity and precipitation. All of these changes contributed to a larger decrease of ET0 trend. The findings of this study advance our insight into the effects of irrigation on dynamics in ET0 and meteorological factors. Further investigations to understand how ET0 responds to climate change and agricultural irrigation could provide guidance for determining effective measures of water resources for adapting to global change.

  10. Effects of seven different irrigation techniques on debris and the ...

    African Journals Online (AJOL)

    Aim: Conventional manual irrigation with a syringe and needle remains widely accepted technique in the irrigation procedures. However, its flushing action has some limitations. Currently, several techniques and systems are available and reported to improve the insufficiency of syringe irrigation. The aim of this study was to ...

  11. Coordinated research project of the use of nuclear and related techniques in assessment of irrigation schedules of field crops to increase effective use of water in irrigation projects

    International Nuclear Information System (INIS)

    Anac, M.S.; Tuzel, I.H.; Anac, D.

    1995-01-01

    The study aimed at determining the followings; water consumptions. irrigation water requirements of new cotton variety N 84; specific growth stages of cotton which are less sensitive to stress so that the irrigation could be avoided without significant yield decrease; and interactions between deficit irrigation and nitrogen fertilizer use. The experiment was set up with 6 irrigation and three nitrogen fertilizer (0.60 , 120 kg.ha sup -1 ) treatments. The irrigation treatments employed single stress at vegetative, flowering and boll formation stages, in addition to full irrigation, continuous stress and the traditional practice. In stress conditions available soil water depleted to 75 - 80 %, whereas in normal irrigation the depletion was 40 % in 0.90 m. of root zone. In full irrigation treatment 8 irrigations were applied, whereas 3 or 4 irrigations were needed in continuous stress conditions. The number of irrigations were 6 or 7 for other stress treatments. Irrigation water applications varied form 424 to 751 mm. Seasonal ET were ranged between 659 and 899 mm. The highest monthly ET in august for all of the treatments. Daily ET were found to vary from 2.2 to 12.1 mm/day. The seed cotton yields, ky values and yield - N indices have indicated that the vegetative state was more sensitive to water stress. The stress at boll formation stage had slight effects on these parameters. Under limited water resource conditions, vegetative growth period of cotton should be given preference for irrigation, followed by flowering period. Omitting irrigation in boll formation period would result in 4.3 to 9.1 % water savings. Yield changes with respect to N rates showed that high N doses are accompanied by high yields. Nitrogen recoveries either from fertilizers or soil revealed high uptakes in full irrigation conditions. Nitrogen use efficiencies were also high in these conditions. Average of three years put forth that 19% of N in stress conditions and 29% in full irrigation were

  12. Soil water sensors for irrigation management-What works, what doesn't, and why

    Science.gov (United States)

    Irrigation scheduling can be greatly improved if accurate soil water content data are available. There are a plethora of available soil water sensing systems, but those that are practical for irrigation scheduling are divided into two major types: the frequency domain (capacitance) sensors and the t...

  13. Effects of different deficit irrigation on sugar accumulation of pineapple during development

    Science.gov (United States)

    Feng, Haiyan; Du, Liqing; Liu, Shenghui; Zhang, Xiumei

    2017-08-01

    The potted pineapple cultivar ‘Comte de paris’ was used to study the influence of deficit irrigation on fruit sugar accumulation in greenhouse during the fruit enlargement period. The study included a control (normal irrigation) and two treatment groups, moderate deficit (50% of the control irrigation) and severe deficit (25% of the control irrigation). The results indicated that the deficit irrigation significantly decreased the sucrose accumulation. The sucrose content in the fruits of moderate deficit irrigation was the lowest. During the mature period, the deficit irrigation decreased the sucrose phosophate synthase activity(SPS) an increased the sucrose synthase (SS) and neutral invertase (NI). The moderate deficit irrigation significantly improved the acid invertase activity(AI). However, it was inhibited by the severe deficit irrigation. In general, the moderate treatment reduced the SPS activity and enhanced the NI and AI activities, while the severe treatment decreased the SPS and AI activities.

  14. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  15. Evaluation Yield of Sunflower (Farrokh cultivar under Effects of Conventional Deficit Irrigation and Partial Root Zone Drying

    Directory of Open Access Journals (Sweden)

    A. Rezaei Estakhroeih

    2015-06-01

    Full Text Available Water shortage is the most important factors on crop production in the world. Several methods of deficit irrigation are solutions for reduction of irrigation water. To understand the effects of conventional deficit irrigation and partial root zone drying treatments on yield, yield components and water use efficiency of sunflower (Farrokh cultivar, one study was carried out. The research was conducted on Shahid Bahonar University of Kerman in the spring of 2011. A factorial experiment in a randomized complete block design with one control (full irrigation and 18 deficit irrigation treatments in three replications was considered. Deficit irrigation treatments were: conventional deficit irrigation (irrigation with %80, %60 and %40 ETP and partial root zone drying (irrigation with %80, %60 and %40 ETP. Every deficit irrigation treatment was conducted in three growth stage of sunflower (all periods of growth, vegetative growth stage and reproductive growth stage.The results showed that the conventional deficit irrigation treatments (irrigation with 80% ETP in vegetative growth had the highest plant height, leaf area, leaf area index and head diameter. Also, the maximum biological yield equal to49054, maximum grain yield is equal to 9934/3 and maximum oil yield is equal to 2441/2 kg per hectare in the conventional deficit irrigation treatments (irrigation with 80% ETP in vegetative growth occurred.The highest water use efficiency for grain yield is equal to 1/46,forbiological yield equal to7/21 and for dry forage yield is equal 5/7 kilograms per cubic meter of water. According to results,conventional deficit irrigation (irrigation with %80, %60 and %40 ETP is recommended on based.

  16. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  17. Evaluation some Forage Legumes in Limited Irrigation Condition

    Directory of Open Access Journals (Sweden)

    Hassan Moniri Far

    2015-11-01

    Full Text Available Forage legumes respond differently to limited irrigation regimes. Their evaluation may, thus, help to select drought tolerant types for limited irrigation conditions. In this study four type of forage legume were studied for two years in Tikma-Dash Research Station of East Azarbaijan Agricultural and Natural Research Center, Tabriz, Iran, in a randomized complete block design using split-plot experiment in 2011-2013 years. Irrigation regimes (without irrigation, one irrigation and two irrigations were assigned to main plots and four forage types (hairy vetch, grass pea, Pannonica sativa and lathyrus were assigned to subplots. The results of analysis of variance showed that the effect of irrigation on plant height, number of shoots, leaf area and plant fresh and dry weights were not significant. Howere, legume types affected these traits significantly (P≤0.01. The effect of irrigation levels and legume types on protein content of hay were significant (P

  18. Ocean-Atmosphere Interactions Modulate Irrigation's Climate Impacts

    Science.gov (United States)

    Krakauer, Nir Y.; Puma, Michael J.; Cook, Benjamin I.; Gentine, Pierre; Nazarenko, Larissa

    2016-01-01

    Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean- atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and mid-latitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.

  19. Effectiveness of Morinda citrifolia juice as an intracanal irrigant in deciduous molars: An in vivo study

    Directory of Open Access Journals (Sweden)

    Manisha Chandwani

    2017-01-01

    Conclusion: Both the irrigants, 1% NaOCl and MCJ, were significantly effective in the reduction of mean CFUs/ml postoperatively. The results of this study have confirmed the antibacterial effectiveness of MCJ in the root canals of deciduous teeth. Considering the low toxicity and antibacterial effectiveness of MCJ, it can be advocated as a root canal irrigant in endodontic treatment of primary teeth.

  20. Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    2017-05-01

    Full Text Available To improve adaptive capacity and further strengthen the role of irrigation in mitigating climate change impacts, the Chinese government has planned to expand irrigated areas by 4.4% by the 2030s. Examining the adaptive potential of irrigated area expansion under climate change is therefore critical. Here, we assess the effects of irrigated area expansion on crop yields based on county-level data during 1980–2011 in northern China and estimate climate impacts under irrigated area scenarios in the 2030s. Based on regression analysis, there is a statistically significant effect of irrigated area expansion on reducing negative climate impacts. More irrigated areas indicate less heat and drought impacts. Irrigated area expansion will alleviate yield reduction by 0.7–0.8% in the future but associated yield benefits will still not compensate for greater adverse climate impacts. Yields are estimated to decrease by 4.0–6.5% under future climate conditions when an additional 4.4% of irrigated area is established, and no fundamental yield increase with an even further 10% or 15% expansion of irrigated area is predicted. This finding suggests that expected adverse climate change risks in the 2030s cannot be mitigated by expanding irrigated areas. A combination of this and other adaptation programs is needed to guarantee grain production under more serious drought stresses in the future.

  1. Effect of final irrigation protocols on microhardness reduction and erosion of root canal dentin

    Directory of Open Access Journals (Sweden)

    Flávia Emi Razera BALDASSO

    2017-05-01

    Full Text Available Abstract This study aimed to evaluate the effect of final irrigation protocols on microhardness reduction and erosion of root canal dentin. Sixty root canals from mandibular incisors were instrumented and randomly divided into six groups (n = 10 according to the irrigant used: QMiX, 17% EDTA, 10% citric acid (CA, 1% peracetic acid (PA, 2.5% NaOCl (solution control, and distilled water (negative control. The chelating solutions were used to irrigate the canal followed by 2.5% NaOCl as a final flush. After the irrigation protocols, all specimens were rinsed with 10 mL of distilled water to remove any residue of the chemical solutions. Before and after the final irrigation protocols, dentin microhardness was measured with a Knoop indenter. Three indentations were made at 100 µm and 500 µm from the root canal lumen. Afterwards, the specimens were prepared for scanning electron microscopic analysis and the amount of dentin erosion was examined. Wilcoxon and Kruskal-Wallis tests were used to analyze the results with a significance level set at 5%. At 100 µm, all protocols significantly reduced dentin microhardness (p < .05, while at 500 µm, this effect was detected only in the EDTA and QMiX groups (p < .05. CA was the irrigant that caused more extensive erosion in dentinal tubules, followed by PA and EDTA. QMiX opened dentinal tubules, but did not cause dentin erosion. Results suggest that QMiX and 17% EDTA reduced dentin microhardness at a greater depth. Additionally, QMiX did not cause dentin erosion.

  2. Effect of Irrigation on Within-Grove Distribution of Red Palm Weevil Rhynchophorous ferrugineus

    Directory of Open Access Journals (Sweden)

    Y. Aldryhim

    2003-01-01

    Full Text Available The red palm weevil (RPW Rhynchophorous ferrugineus (Oliv. is the most important pest attacking date palm trees. The objective of this study was to determine the effect of drip and flood irrigation on the within-grove distribution of RPW. The current study was started with the first appearance of the infestation to almost disappearance of the infestation. Results showed that more infested trees were detected in plots with flood irrigation. The number of infested trees in these plots represented 89% of the total infested trees. This study suggested that irrigation management and soil moisture are key factors in the dispersion of the RPW infestation and could be used as one of the integrated pest management tools.

  3. A Review of Growth Stage Deficit Irrigation Effecting Sticky Maize Production

    Directory of Open Access Journals (Sweden)

    Ha Bui Manh

    2017-06-01

    Full Text Available The shortage of water resources influences the future sustainability of sticky Maize (Zea mays L. production. Deficit irrigation (DI - a water management strategy - has gained much attention from scientists because of enhanced water use efficiency (WUE. Nonetheless, in reality, when applying this technique, its impact on yield and economic returns should be considered. Through an analytical literature review, this study examined the effect of growth stage DI on Maize production factors, i.e. yield, WUE, and economic returns. The results revealed that Maize’s WUE could be improved with the lowest reduction in yield as water stress was imposed during the vegetative or maturation growth stages. Therefore, the profitable returns could be reached even if the yield was reduced; however, the economic return was sensitive to commodity prices. The present review addressed that the Maize flexible capacities under growth stage water stress presented an opportunity for the optimization of irrigated water and profit preservation by accurately judging the managing time of irrigation implementation.

  4. Effects of drought and irrigation on ecosystem functioning in a mature Scots pine forest

    Science.gov (United States)

    Dobbertin, Matthias; Brunner, Ivano; Egli, Simon; Eilmann, Britta; Graf Pannatier, Eisabeth; Schleppi, Patrick; Zingg, Andreas; Rigling, Andreas

    2010-05-01

    Climate change is expected to increase temperature and reduce summer precipitation in Switzerland. To study the expected effects of increased drought in mature forests two different approaches are in general possible: water can be partially or completely removed from the ecosystems via above- or below-canopy roofs or water can be added to already drought-prone ecosystems. Both methods have advantages and disadvantages. In our study water was added to a mature 90-year old Scots pine (Pinus sylvestris L.) forest with a few singe pubescent oaks (Quercus pubescens Willd.), located in the valley bottom of the driest region of Switzerland (Valais). In Valais, Scots pines are declining, usually with increased mortality rates following drought years. It was therefore of special interest to study here how water addition is changing forest ecosystem functioning. The irrigation experiment started in the summer of 2003. Out of eight 0.1 ha experimental plots, four were randomly selected for irrigation, the other four left as a control. Irrigation occurred during rainless nights between April and October, doubling the annual rainfall amount from 650 to 1300 mm. Irrigation water, taken from a near-by irrigation channel, added some nutrients to the plots, but nutrients which were deficient on the site, e.g. nitrogen and phosphorus, were not altered. Tree diameter, tree height and crown width were assessed before the start of the irrigation in winter 2002/2003 and after 7 years of the experiment in 2009/2010. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Additionally, tree mortality was annually evaluated. Mycorrhizal fruit bodies were identified and counted at weekly intervals from 2003 until 2007. Root samples were taken in 2004 and 2005. In 2004 and 2005 wood formation of thirteen trees was analysed in weekly or biweekly intervals using the pinning method. These trees were felled in 2006 for stem, shoot and needle growth analysis

  5. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chelsea Cervantes

    2010-09-01

    Full Text Available Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the timing of image acquisition and the number of images used. At the regional and global scales, on the other hand, remote sensing has not been fully operational, as methods that work in one place and time are not necessarily transferable to other locations and periods. Thus, at larger scales, more work is required to indentify the best spectral indices, best time periods, and best classification methods under different climatological and cultural environments. Existing studies at regional scales also establish the fact that both remote sensing and national statistical approaches require further refinement with a substantial investment of

  6. Effects of irrigation on streamflow in the Central Sand Plain of Wisconsin

    Science.gov (United States)

    Weeks, E.P.; Stangland, H.G.

    1971-01-01

    Development of ground water for irrigation affects streamflow and water levels in the sand-plain area of central Wisconsin. Additional irrigation development may reduce opportunities for water-based recreation by degrading the streams as trout habitat and by lowering lake levels. This study was made to inventory present development of irrigation in the sand-plain area, assess potential future development, and estimate the effects of irrigation on streamflow and ground-water levels. The suitability of land and the availability of ground water for irrigation are dependent, to a large extent, upon the geology of the area. Rocks making up the ground-water reservoir include outwash, morainal deposits, and glacial lake deposits. These deposits are underlain by crystalline rocks and by sandstone, which act as the floor of the ground-water reservoir. Outwash, the main aquifer, supplies water to about 300 irrigation wells and maintains relatively stable flow in the streams draining the area. The saturated thickness of these deposits is more than 100 feet over much of the area and is as much as 180 feet in bedrock valleys. The saturated thickness of the outwash generally is great enough to provide sufficient water for large-scale irrigation in all but two areas --one near the town of Wisconsin Rapids and one near Dorro Couche Mound. Aquifer tests indicate that the permeability of the outwash is quite high, ranging from about 1,000 gpd per square foot to about 3,800 gpd per square foot, Specific capacities of irrigation wells in the area range from 14 to 157 gpm per foot of drawdown. Water use in the sand-plain area is mainly for irrigation and waterbased recreation. Irrigation development began in the area in the late 1940's, and by 1967 about 19,500 acre-feet of water were pumped to irrigate 34,000 acres of potatoes, snap beans, corn, cucumbers, and other crops. About 70 percent of the applied water was lost to evapotranspiration, and about 30 percent was returned to the

  7. Effects of irrigation solutions and Calcium hydroxide dressing on root canal treatments of periapical lesions

    Directory of Open Access Journals (Sweden)

    Vita Nirmala

    2006-03-01

    Full Text Available The preparation of root canal in endodontic treatment plays an important role in treating non vital teeth with periapical lesion. Some factors influence the success of root canal treatment in short and long terms are the irrigation of root canal using antiseptic solution and the use of root canal medicament. The aim of this literature study is to determined the effect of irrigation solution and Calcium hydroxide dressing in root canal treatment of periapical lesions. The use of root canal medicament during the endodontic treatment could sterilized and decreased the number of pathogenic microorganism of root canal. An effective root canal irrigation solution must be able to dissolve organic and anorganic debris, lubricate endodontic instruments, disinfect microorganisms, non toxic and economical. The best irrigation solution has maximum antimicrobial effect with minimum toxicity. Division of calcium hydroxide into Calcium and hydroxyl ions is responsible for alkalinization of cavity, subsequently it makes the condition of cavity to be inappropriate for bacterial endotoxin in vitro as well as in vivo, and considered as the only clinically effective medicament in inactivating bacterial endotoxin. Calcium hydroxide is the only medication which has the ability to clinically inactive bacterial endotoxin in vitro in vivo and accepted as the best of root canal medication.

  8. Effect of irrigation and stainless steel drills on dental implant bed heat generation.

    Science.gov (United States)

    Bullon, B; Bueno, E F; Herrero, M; Fernandez-Palacin, A; Rios, J V; Bullon, P; Gil, F J

    2015-02-01

    The objective of this study is assessing the influence of the use of different drill types and external irrigation on heat generation in the bone. In-vitro study to compare two different sequences for implant-bed preparation by means of two stainless steels: precipitation-hardening stainless steel (AISI 420B) (K drills), and martensitic stainless steel (AISI 440) (S drills). Besides, the drilled sequences were realized without irrigation, and with external irrigation by means of normal saline solution at room temperature. The study was realized on bovine ribs using: K without irrigation (KSI) and with irrigation (KCI) and S without irrigation (SSI) and with irrigation (SCI) with five drills for each system. Each drill was used 100 times. Bone temperature was measured with a thermocouple immediately after drilled. Average bone temperature with irrigation was for K drills 17.58±3.32 °C and for S drills 16.66±1.30 °C. Average bone temperature without irrigation was for K drills 23.58±2.94 °C and for S drills 19.41±2.27 °C. Statistically significant differences were found between K without irrigation versus S with irrigation and K with irrigation (pstainless steel AISI 420B presents better mechanical properties and corrosion resistance than AISI440.

  9. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  10. Effect of Deficit irrigation on the Productivity of Processing Potato

    International Nuclear Information System (INIS)

    Darwish, T.M.; Atallah, T.W.

    2003-01-01

    The area under potatoes in Lebanon has extended to over 15.000 ha to form 17% of irrigated arable land. More farmers rely on processing varieties for prices and marketing reasons. Studies focused so far on irrigation and fertilization of table potatoes. The current recommendations indicate excess N fertilizer input exceeding 600 kg N/ha in the form of compound fertilizers. Potato is irrigated with macro sprinklers with a water input reaching 850 mm/season. Water mismanagement and shortage eventually influence the yield quantity and quality of processing potatoes. Therefore, deficit irrigation is an important water saving tool regarding the increasing pressure on limited water resources in the dry areas. Information on potato response to water stress imposed at different crop stages is available. The aim of this paper is to study the impact of continuous deficit irrigation imposed from the stage of maximum plant development-flowering stage until physiological maturity on the performance of processing potato (Santana) and water and fertilizer use efficiency. Fertilizer placement and irrigation were done through fertigation using drip system. A neutron probe was used to assess water consumption from the soil. The 15 N methodology was used to follow the N recovery as affected by water deficit

  11. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  12. Effect of Subsurface Irrigation with Porous Clay Capsules on Quantitative and Quality of Grape Plant

    Directory of Open Access Journals (Sweden)

    H. Ghorbani Vaghei

    2016-02-01

    Full Text Available Introduction: Maintaining soil moisture content at about field capacity and reducing water loss in near root zone plays a key role for developing soil and water management programs. Clay pot or porous pipe is a traditional sub-irrigation method and is ideal for many farms in the world’s dry land with small and medium sized farms and gardens and is still used limitedly in dry lands of India, Iran, Pakistan, the Middle East, and Latin-America. Clay capsule is one of porous pipes in sub irrigation that is able to release water in near root zone with self- regulative capacity. Watering occurs only in amounts that the plants actually need (this amount is equal to field capacity and released water in near root zone without electricity or use of an automatic dispenser. Materials and Methods: A study was carried out in 2013 on the experimental field of agriculture faculty of Tarbiat Modares University, to study the effect of two irrigation types on qualitative and quantitative characters in grape production (Vitis vinifera L.. In order to provide the water requirement of grape plant were used porous clay capsules for sub irrigation with height and diameter of 12 cm and 3.5 cm and dripper with Neta film type for drip irrigation, respectively. Porous clay capsules provided from soil science group at Tarbiat Modares University. In this research, the volume of water delivered to grape plants during entire growth period in two different irrigation methods was measured separately with water-meters installed at all laterals. The water consumption, yield production and water use efficiency were evaluated and compared in two drip and porous clay irrigation systems at veraison phonological stages. In the veraison stages, cluster weight, cluster length, solid solution and pH content were measured in grape fruits. Leaf chlorophyll content and leaf water content were also measured in two irrigation systems. Results and Discussion: The results of fruit quality

  13. STUDY ON MICROBIAL COMMUNITIES AND SOIL ORGANIC MATTER IN IRRIGATED AND NON-IRRIGATED VERTISOL FROM BOIANU

    Directory of Open Access Journals (Sweden)

    Sorina Dumitru

    2012-12-01

    Full Text Available Irrigation, when administered correctly, confers the producers the possibility to overcome drought effects and obtain higher yields, supplementing the quality of food for animals or human consumers. In the mean time, soil erosion, pathogens attack and nutrients or pesticides spreading can be prevented by an adequate management of irrigation water. As a consequence, soil microbial community structure, composition and activities, as well as the organic matter quality can be different from those in non-irrigated soil. Research have been carried out in order to assess changes in bacterial and fungal communities and activity in irrigated Vertisol from Boianu, as compared with non-irrigated. The paper presents the results concerning the taxonomical composition of bacterial and fungalmicroflora in the horizons of the two soil profiles, as well as the level of CO2 released by microorganisms. Chromatographic aspects of humus fractions were used to characterize the organic matter in irrigated and nonirrigated soil. Increased moisture and lowered temperature in Ap horizon of irrigated soil increased bacterial counts(18 x106 viable cells x g-1 dry soil and their metabolic activity expressed by carbon dioxide released (46.838mg CO2 x g-1 dry soil comparatively with non- irrigated soil. Fungal microflora was more abundant after 25-50cm under irrigation. Species diversity slightly increased under irrigation in both upper and lower part of soil profile. In irrigated soil, associations of species belonging to bacterial genera Pseudomonas and Bacillus were dominant in surface and white actinomycetes in the depth. Fungal consortia of Penicillium, Aspergillus and Fusarium dominated in both soil profiles.Irrigation induced changes in the quantity and quality of soil organic matter, as well as in the aspect of their migration pattern, as revealed on circular chromatograms.

  14. Effect of Alternative Irrigation Strategies on Yield and Quality of Fiesta Raisin Grapes Grown in California

    Directory of Open Access Journals (Sweden)

    Isabel Abrisqueta

    2018-04-01

    Full Text Available Traditionally, grapes are fully irrigated, but alternative irrigation strategies to reduce applied irrigation water may be necessary in the future as occurrences of drought increase. This study was conducted in the San Joaquin Valley (SJV of California from 2012 to 2014. Three irrigation treatments were used to study the effects on the yield and quality of Fiesta grapes. The treatments included: grower irrigation (GI weekly irrigation lasting for approximately 65 h; sustained deficit (SD equal to 80% of the GI treatment; and regulated deficit (RD equal to 50% of the GI until fruit set when it was increased to 80% of the GI through harvest and reduced to 50% of the GI after harvest. Average water use across treatments was ≈489 mm. Average yield across all treatments was 7.9 t ha−1, 9.1 t ha−1 and 11.8 t ha−1 in 2012, 2013, and 2014, respectively. Yield was sustained in SD and RD, with up to a 20% reduction in applied water use compared to GI. There were no differences in raisin quality and grade among any of the treatments in any year. The percentage of substandard grapes decreased from an average of 12.6% in 2012 to 3.6% in 2013 and 2014. Growers may use a sustained deficit approach during periods of limited water availability to minimize the effect on yield.

  15. Effect of Treated Wastewater Irrigation on Heavy Metals Distribution in a Tunisian Soil

    Directory of Open Access Journals (Sweden)

    K. Khaskhoussy

    2015-06-01

    Full Text Available Treated wastewater (TWW may contain toxic chemical constituents that pose negative environmental and health impacts. In this study, soil samples under treated wastewater irrigation were studied. For this purpose, six plots were made in an irrigated area in north of Tunisia and treated with two water qualities: fresh water (FW and treated wastewater (TWW. Five soil depths were used: 0-30, 30-60, 60-90, 90-120 and 120-150 cm. The TWW irrigation increased significantly (P≤0.05 the soils’ EC, Na, K, Ca, Mg, Cl, SAR, Cu, Cd and Ni and had no significant (P ≤0.05 effect on the soils’ pH, Zn, Co and Pb contents. EC, Na, Cl, SAR, Zn and Co increased significantly with soil depth. The results for K, Ca, Mg, Cd, Pb and Ni exhibited similar repartition in different layers of soil. It was also shown that the amount of different elements in soil irrigated with fresh water (FW were less compared with the control soil

  16. Effect of different infusion regimens on colonic motility and efficacy of colostomy irrigation.

    Science.gov (United States)

    Gattuso, J M; Kamm, M A; Myers, C; Saunders, B; Roy, A

    1996-10-01

    The colonic motility response and short-term clinical effectiveness of colonic irrigation was studied in five patients with an end-colostomy, each of whom was studied on up to six occasions, using volumes of 500 and 1500 ml water infused under gravity and over a period of 2.5 and 5 min with a pump. The median baseline colonic luminal pressure was 14 cmH2O and rose to 42 cmH2O with a 500-ml infusion, and to 74 cmH2O with a 1500-ml infusion. Irrigation induced high-pressure (over 200 cmH2O) propagated waves which caused the efflux of colonic contents. These were more numerous after a 1500- than a 500-ml infusion (median 4.5 versus 2.0 respectively). There was no difference between the two volumes infused in the incidence of colostomy break-through before subsequent irrigation. Colostomy irrigation with 500-1500 ml water appears to produce intracolonic pressure rises that are safe. These volumes can be infused rapidly under gravity alone.

  17. Fluid regimens for colostomy irrigation: a systematic review.

    Science.gov (United States)

    Lizarondo, Lucylynn; Aye Gyi, Aye; Schultz, Tim

    2008-09-01

    Background  Various techniques for managing faecal evacuation have been proposed; however, colostomy irrigation is favoured as it leads to better patient outcomes. Alternative fluid regimens for colostomy irrigation have been suggested to achieve effective evacuation. Aim  The objective of this review was to summarise the best available evidence on the most effective fluid regimen for colostomy irrigation. Search strategy  Trials were identified by electronic searches of CINAHL, PubMed, MEDLINE, Current Contents, the Cochrane Library and EMBASE. Unpublished articles and references lists from included studies were also searched. Selection criteria  Randomised controlled trials and before-and-after studies investigating any fluid regimen for colostomy irrigation were eligible for inclusion. Outcomes measured included fluid inflow time, total wash-out time, haemodynamic changes during irrigation, cramps, leakage episodes, quality of life and level of satisfaction. Data collection and analysis  Trial selection, quality appraisal and data extraction were carried out independently by two reviewers. Differences in opinion were resolved by discussion. Main results  The systematic literature search strategy identified two cross-over trials that compared water with another fluid regimen. Owing to the differences in irrigating solutions used, the results were not pooled for analysis. Both the polyethylene glycol electrolyte solution and glyceryl trinitrate performed significantly better than water. Conclusion  There is some evidence to support the effectiveness of fluid regimens other than water, such as polyethylene glycol electrolyte and glyceryl trinitrate, for colostomy irrigation. Further well-designed clinical trials are required to establish solid evidence on the effectiveness of other irrigating solutions that might enhance colonic irrigation. © 2008 The Authors. Journal Compilation © Blackwell Publishing Asia Pty Ltd.

  18. Effect of different rates of irrigation on nitrogen use efficiency and sugarbeet yield

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Sharanek, A.; Ashawwa, F.

    1994-11-01

    Field experiments were conducted separately during three seasons, autumn 1986/1987, spring 1988, and spring 1989, at ACSAD research station in Deir-Ezzor, under flood irrigation system, using two different variets of Sugarbeet, kawipoly in the first season and Kawi-Interpoly in the second and third season. All experiments recieved sililar rate of irrigation to keep the soil moisture contents at three levels offield capacity (85, 75 and 65%). Fertilizer treatment were in the first season 3 rates (0, 120, 240 Kg N/Ha) of ammonium nitrate fertilizer sup 1 sup 5 NH sub 4 sup 1 sup 5 NO sub 3 (double labeled), in the second season two single labeled sup 1 sup 5 NH sub 4 NO sub 3 and NU sub 4 sup 1 sup 5 NO sub 3 were used at two rates (0, 120 Kg N/ha), in the third season labeld urea CO(sup 1 sup 5 NH sub 2) sub 2 and ammonium sulfate (sup 1 sup 5 NH sub 4) sub 4 SO sub 4 fertilizers were used separatly at two rates (0, 120 Kg N/ha). The results showed that nitrogen use efficincy (NUE) varied with type, from, rate of N fertilizer, and rate of irrigation at different growth stages of crop and was in the range (4.5-81.83%). The yield of roots at harvest were segnificantly increased by irrigation and nitrogen fertilization in the first and second season , also I x N had significant interaction effect on yield. Yield of roots in the third season were only increased by nitrogen application with no effect irrigation. 21 refs., 18 tabs

  19. [Effects of irrigation amount on morphological characteristics and water use of Jatropha curcas].

    Science.gov (United States)

    Yang, Qi-Liang; Zhang, Jing; Liu, Xiao-Gang; Liu, Yan-Wei; Yang, Ju-Rui

    2014-05-01

    Jatropha curcas is the most promising energy tree, and soil moisture is the key factor which affects the seedling quality and water use efficiency of J. curcas. With aims to evaluate the effect of different irrigation amount on growth, morphological characteristics and water use of J. curcas, a pot experiment was conducted with four irrigation amounts, i. e., W1:472.49 mm, W2: 228.79 mm, W3:154.18 mm and W4:106.93 mm, respectively. Compared with W1 treatment, the leaf area and stem cross-section area of base significantly decreased in W2, W3 and W4 treatments, but Huber value significantly increased, which could improve the efficiency of water transfer from root to shoot, thus enhance the capability of resistance to drought stress. Compared with W, treatment, the healthy index of J. curcas seedlings decreased slightly in W2 treatment but significantly decreased in W3 and W4 treatments. Hence, the irrigation amount from 228.79 to 472.49 mm was beneficial to increase the healthy index of J. curcas seedlings. Compared with W1 treatment, irrigation water was saved by 67.4% in W3 treatment, and the total dry mass and evapotranspiration significantly decreased by 17.4% and 68.6%, and the irrigation water use efficiency and total water use efficiency increased by 153.2% and 163.2%, respectively. In the condition of this study, the irrigation amount of 154.18 mm was beneficial to increase water use efficiency.

  20. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation pot...

  1. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    NARCIS (Netherlands)

    Abalos, D.; Sanchez-Martin, L.; Garcia-Torres, L.; Groenigen, van J.W.; Vallejo, A.

    2014-01-01

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors

  2. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    Science.gov (United States)

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  3. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  4. Drip irrigation using a PLC based adaptive irrigation system

    OpenAIRE

    Shahidian, S.; Serralheiro, R. P.; Teixeira, J. L.; Santos, F. L.; Oliveira, M. R. G.; Costa, J. L.; Toureiro, C.; Haie, Naim; Machado, R. M.

    2009-01-01

    Most of the water used by man goes to irrigation. A major part of this water is used to irrigate small plots where it is not feasible to implement full-scale Evapotranspiration based irrigation controllers. During the growth season crop water needs do not remain constant and varies depending on the canopy, growth stage and climate conditions such as temperature, wind, relative humidity and solar radiation. Thus, it is necessary to find an economic irrigation controller that can adapt the dail...

  5. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  6. Alternate partial root-zone drying irrigation improves fruit quality in tomatoes

    DEFF Research Database (Denmark)

    Sun, Y.; Holm, Peter Engelund; Liu, Fulai

    2014-01-01

    Alternate partial root-zone drying (PRD) irrigation and deficit irrigation (DI) are water-saving irrigation strategies. Here, comparative effects of PRD and DI on fruit quality of tomato (Solanum lycopersicum L.) were investigated. The results showed that the irrigation treatments had no effect o...

  7. Effect of drip irrigation on yield, evapotranspiration and water use efficiency of sweet basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2017-01-01

    Full Text Available The experiments showing the effect of drip irrigation on yield, evapotranspiration and water productivity of sweet basil (Ocimum basilicum L. were conducted at the experimental field of the Alternative Crops Department, Institute of Field and Vegetable Crops, Novi Sad. Irrigation was scheduled on the basis of the water balance method. Daily evapotranspiration (ETd was computed from the reference evapotranspiration (ETo and crop coefficient (kc in May, June, July and August of 0.5, 0.6, 1.1 and 1.0, respectively. ETo was calculated using Hargreaves equation. The irrigation depth was restricted to the soil depth of 0.3 m. In other words, irrigation started when readily available water in the soil layer of 0.3 m was completely depleted by plants. The irrigation rate was 30 mm (30 l m-2 while the amount of water added by irrigation during the season was 140 mm. Basil sensitivity to water stress was determined using a yield response factor (Ky. According to the results, the yield of fresh herb of basil under irrigation (32.015 t ha-1 was higher by 9% compared to non-irrigated, control variant (29.364 t ha-1. Worthy of note, basil essential oil yield was significantly affected by irrigation (35.329/28.766 kg ha-1. The content of essential oil was significantly higher in irrigated (6.45 g kg-1 than in non-irrigated variant (5.33 g kg-1 in the first harvest, while no significant difference between irrigated and non-irrigated variants was obtained in the second harvest (6.83 and 6.62 g kg-1 , respectively. Water used on evapotranspiration in irrigation conditions (ETm was 431 mm and 270 mm in non-irrigated, control variant (ETa. The values of irrigation water use efficiency (Iwue and evapotranspiration water use efficiency (ETwue were 1.89 kg m-3 and 1.65 kg m-3 respectively. Ky value (0.22 exhibits all essential characteristics of climate conditions of 2016 rainy year. These preliminary results could be used as a good platform for basil growers in the

  8. Effect of Er:YAG laser-activated irrigation solution on Enterococcus Faecalis biofilm in an ex-vivo root canal model.

    Science.gov (United States)

    Sahar-Helft, Sharonit; Stabholtz, Adam; Moshonov, Joshua; Gutkin, Vitaly; Redenski, Idan; Steinberg, Doron

    2013-07-01

    Abstract Objective: The purpose of this study was to evaluate mineral content and surface morphology of root canals coated with Enterococcus faecalis biofilm after treatment with several endodontic irrigation solutions, with and without Er:YAG laser-activated irrigation (LAI). LAI has been introduced as a powerful method for root canal irrigation resulting in smear-layer removal from the root canal wall. Distal and palatal roots from 60 freshly extracted human molars were used in this study. The coronal of each tooth was removed. Roots were split longitudinally and placed in an ultrasonic bath to remove the smear layer, creating conditions for the formation of E. faecalis biofilm. After incubation, the two halves were reassembled in impression material to simulate clinical conditions. Specimens were divided into two main groups: roots rinsed with irrigation solutions and roots subjected to laser irradiation combined with irrigation solutions. Solutions tested were 2% chlorhexidine and 17% ethylenediaminetetraacetic acid (EDTA) and saline. Surface morphology: 17% EDTA irrigant solution combined with Er:YAG laser showed the best results for removing bacteria from the root canal walls. Chemical analysis: all samples treated with combined laser irradiation and irrigation solution had low surface levels of Ca compared with samples treated with irrigation alone. The Ca/P ratio was highest in the laser-EDTA group. Overall, mineral changes caused by laser with irrigation solutions were minimal, and statistically nonsignificant. In vitro irrigation solutions, combined with Er:YAG laser irradiation, were effective in removing E. faecalis biofilm from root canal walls. Irrigation solutions without laser irradiation were less effective, leaving a layer of biofilm on the dentin surface.

  9. Irrigation with saline-sodic water: effects on two clay soils

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2013-05-01

    Full Text Available The results of a 4-year experiment aimed at evaluating the effect of irrigation with saline-sodic water on the soil are reported. The research was carried out at the Campus of the Agricultural Faculty of Bari University (Italy on 2 clay soils (Bologna – T1 and Locorotondo – T2. The soils were cropped to borlotto bean (Phaseolus vulgaris L., capsicum (Capsicum annuum L., sunflower (Helianthus annuus L., wheat (Triticum durum Desf grown in succession; the crops were irrigated with 9 saline-sodic types of water and subjected to two different leaching fractions (10% and 20% of the watering volume. The 9 solutions were obtained dissolving in de-ionised water weighted amounts of sodium chloride (NaCl and calcium chloride (CaCl2, deriving from the combination of 3 saline concentrations and 3 sodicity levels. The crops were irrigated whenever the water lost by evapotranspiration from the soil contained in the pots was equal to 30% of the soil maximum available water. The results showed that, though the soils were leached during the watering period, they showed a high salt accumulation. Consequently, the saturated soil extract electrical conductivity increased from initial values of 0.65 and 0.68 dS m-1 to 11.24 and 13.61 dS m-1 at the end of the experiment, for the soils T1 and T2, respectively. The saline concentration increase in irrigation water caused in both soils a progressive increase in exchangeable sodium, and a decrease in exchangeable calcium and non-significant variations in exchangeable potassium (K and magnesium (Mg.

  10. Effects of Sowing Date and Limited Irrigation on Yield and Yield Components of Five Rainfed Wheat Varieties in Maragheh Region

    Directory of Open Access Journals (Sweden)

    A. R. Tavakkoli

    2013-03-01

    Full Text Available In order to investigate the effects of sowing date (SD and single irrigation (SI amounts on yield and yield components of rainfed wheat varieties, a field experiment was conducted as split-split plots arranged in a randomized complete blocks design with three replications during 2002-2004 at main station of Dryland Agricultural Research Institute in Maragheh, Iran. Treatments included three sowing dates (early, normal and late, three levels of single irrigation (rainfed, 50 mm and 100 mm only at planting time and five wheat varieties (three numbered lines, Azar2 and double-cross Shahi. Results revealed that interactions of SD, SI and wheat varieties were significant for grain yield, number of kernels per spike and water productivity (P≤0.01. Single irrigation at normal planting time increased grain yield, straw, biomass, harvest index, and water productivity. Grain yield and water productivity were increased by 131% and 84.8%, respectively. Single irrigation at late planting time was not significant on agronomic traits and produced low water productivity. Regarding the reaction of wheat to planting date and single irrigation, results showed that normal single irrigation can improve yield, yield components and water productivity index. The effectiveness of single irrigation under dryland conditions can be observed in all wheat cultivars. Although this effectiveness on yield and yield components is observable, but it is necessary to select the time of irrigation properly.

  11. Effect of irrigation and nitrogen fertilizer levels on yield and yield components of dill (Anethum graveolens L.

    Directory of Open Access Journals (Sweden)

    S. Madadi Bonab

    2016-05-01

    Full Text Available In order to investigate the effect of irrigation and nitrogen fertilizer on yield and yield components of (Anethum graveolens L., a field experiment was performed in Agricultural Research Farm of the University of Tabriz, Iran, during growing season of 2009-2010. The experiment was carried out as split plot based on randomized complete block design with three replications. Irrigation treatments (irrigation after 70, 100, 130 mm evaporation from class A pan and nitrogen levels (0, 40, 80, 120 kg.ha-1 were allocated to main and sub-plots, respectively. The results showed that nitrogen fertilizer had significant (p≤0.05 effect on minor diameter umbrella, 1000-seed weight, seed yield and harvest index. However, irrigation and effect between irrigation and nitrogen were not affected any of the traits. The greatest minor diameter umbrella was obtained with control nitrogen treatment and maximum 1000-seed weight, harvest index and seed yield were obtained from 40 kg.ha-1 nitrogen. There was no any significant difference between 40 and 80 kg.ha-1 nitrogen levels. Therefore, it seems that for producing the highest yield application of 40 kg.ha-1 nitrogen is suitable. As water deficit no significant effects on this traits, of dill, it can be concluded that dill is a tolerant plant to drought stress.

  12. Effects of bleaching wastewater irrigation on soil quality of constructed reed wetlands

    Directory of Open Access Journals (Sweden)

    Cheng Ding

    2016-10-01

    Full Text Available Constructed reed wetland microcosms (CRWs in a lab of east China have been irrigated with bleaching wastewater per month for a reed growth season. The soil physicochemical properties, enzyme activities (i.e. urease, invertase, polyphenol oxidase, alkaline phosphatase and cellulase and soil microbial diversity were assayed before and after the exposure experiment. Compared to the river water irrigated controls (CKs, bleaching wastewater application has no marked influence on soil pH, but significantly increased soil Na+, total halogen and absorbable organic halogen (AOX contents, which induced the increasing of soil electrical conductivity. Furthermore, soil enzyme activities displayed significant variation (except for polyphenol oxidase. Bleaching wastewater irrigation decreased Sorenson’s pairwise similarity coefficient (Cs, which indicated the changes of the structure of bacterial and fungal communities. However, only the diversity of bacterial community was inhibited and has no effect on the diversity of fungal community, as evidenced by the calculated Shannon–Wiener index (H.

  13. Effectivity of artrihpi irrigation for diabetic ulcer healing: A randomized controlled trial

    Science.gov (United States)

    Gayatri, Dewi; Asmorohadi, Aries; Dahlia, Debie

    2018-02-01

    The healing process of diabetic ulcer is often impeded by inflammation, infection, and decreased immune state. High pressure irrigation (10-15 psi) may be used to control the infection level. This research was designed to identify the effectiveness of artrihpi irrigation device towards diabetic ulcers in public hospitals in the Central Java. This research is a randomized control trial with cross over design. Sixty four subjects were selected using block randomization technique, and were divided into control and intervention group. The intervention was given in 6 days along with wound healing evaluation in every 3 days. The results demonstrated that there was a significant difference decrease scoring healing after treatment, even though the difference scoring healing between both groups was not statistically significant. However, it means difference was found that in the intervention artrihpi the wound healing was better than the spuit. These results illustrates the artrihpi may be solution of using high pressure irrigation to help healing process diabetic ulcers.

  14. The Effect of Irrigation and Nitrogen on Growth Attributes and Chlorophyll Content of Garlic in Line Source Sprinkler Irrigation System

    Directory of Open Access Journals (Sweden)

    rahim motalebifard

    2017-02-01

    Full Text Available Introduction: With 12 million tons production per year, garlic is the fourth important crop in world. In addition to its medical value, it has been used in food industry. The Hamedan province with 1900 ha cultivation area and 38 percent of production is one of the most important garlic area productions in Iran. Few studies on water use and management of garlic exist in the world. Garlic is very sensitive to water deficit especially in tubers initiation and ripening periods. The current research was done because of scarce research on garlic production under water deficit condition in Iran and importance of plant nutrition and nutrients especially nitrogen on garlic production under stressful conditions. Nitrogen is necessary and important element for increasing the yield and quality of garlic. Application of nitrogen increases the growth trend of garlic such as number of leaves, leaf length and plant body. Reports have shown that garlic has high nitrogen requirement, particularly in the early stages of growth. Materials and Methods: This study was conducted for evaluating the combined effects of nitrogen and irrigation on the yield and quality of garlic (Allium sativumL.. The study was performed as a split-block based on randomized complete blocks design with factors of irrigation at four levels (0-3(normal irrigation, 3-6 (slight water deficit, 6-9 (moderate water deficit and 9-12 (sever water deficit meters distance from main line source sprinkler system, nitrogen at four levels (0, 50,100 and 150 kg nitrogen per ha using three replications and line source sprinkler irrigation system. The total water of irrigation levels was measured by boxes that were fixed in meddle of each plot. The statistical analysis of results were performed using themethod described by Hanks (1980. The chlorophyll index was measured using the chlorophyll meter 502 (Minolta, Spain. The chlorophyll a and bwas measured by the method described by Arnon (1946 and Gross (1991

  15. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  16. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  17. Effects of different irrigation regimes on vegetative growth, fruit yield ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... This study was conducted during five growing seasons from 2004 to 2008 to investigate effects of different irrigation regimes on vegetative growth, fruit yield and quality of Salak apricot trees in semi- arid climatic conditions. ... is very important to know the critical stages of fruit development and the final ...

  18. Effects of different irrigation programs on yield and quality ...

    African Journals Online (AJOL)

    Evapotranspiration (ET) values varied from 93.1 to 466.3 mm for the treatments. The highest yield was obtained from the S3 and S4 treatments. A significant polynomial correlation was obtained between the yield and irrigation water, and between the yield and ET (P < 0.01). This indicated that when irrigation water and ET ...

  19. Cooling effect of agricultural irrigation over Xinjiang, Northwest China from 1959 to 2006

    International Nuclear Information System (INIS)

    Han Songjun; Yang Zhiyong

    2013-01-01

    The influences of agricultural irrigation on trends in surface air temperature from 1959 to 2006 over Xinjiang, Northwest China are evaluated using data from 90 meteorological stations. The 90 stations are located in landscapes with markedly different cultivated land uses. The increasing trends in daily average temperature (T a ), maximum temperature (T max ), and minimum temperature (T min ) for May–September (the main growing season) are negatively correlated with cultivated land proportions within 4 km of the meteorological stations, as indicated by year 2000 land use data. The correlations between the trends in T max and cultivated land proportions are the most significant. The trends in T a , T max , and T min for May–September are expected to decrease by −0.018, −0.014, and −0.016 ° C per decade, respectively, along with a 10% increase in cultivated land proportion. As irrigated cultivated land occupies over 90% of total cultivated land, the dependence of temperature trends on cultivated area is attributed to irrigation. The cooling effects on stations with cultivated land proportion larger than 50% are compared to temperature trends in a reference group with cultivated land proportion smaller than 10%. The irrigation expansion from 1959 to 2006 over Xinjiang is found to be associated with cooling of May–September T a , T max , and T min by around −0.15 ° C to −0.10 ° C/decade in the station group with extensive irrigation. Short periods of rapid irrigation expansion co-occurred with the significant cooling of the May–September temperature. (letter)

  20. ROOT CANAL IRRIGANTS AND IRRIGATION TECHNIQUES: A REVIEW

    OpenAIRE

    Aniketh; Mohamed; Geeta; Nandakishore; Gourav Kumar; Patrick Timothy; Jayson Mathew; Sahle Abdul

    2015-01-01

    Root canal irrigation is not much emphasised in endodontic therapy. Most articles discussed are on root canal shaping and obturation not much emphasis is given for irrigation. There are many irrigation solutions which are introduced into market. The primary objective of root canal therapy is the ret ention of the pulpless or pulpally involved tooth with its associated periapical tissues in a healthy state. Achievement of this objective requires that the pulpal spaces and con...

  1. The antimicrobial effectiveness of 25% propolis extract in root canal irrigation of primary teeth.

    Science.gov (United States)

    Verma, Manjesh Kumar; Pandey, Ramesh Kumar; Khanna, Richa; Agarwal, Jyotsna

    2014-01-01

    The choice of irrigating solution used in root canals of primary teeth is complicated by their complex morphology and paucity of associated literature. Propolis is a natural product that has gained interest in this context due to its antibacterial effectiveness against several endodontic pathogens. The present study was undertaken to assess the potential of water-soluble 25% propolis extract against microorganisms present in root canals of primary teeth during endodontic procedures. The child patients in the age group of 4-7 years with radiographic evidence of carious pulp exposure were included in the study. Definitive selection was done after gaining access into the pulp chamber and root canals of the selected teeth. The clinical and radiographic evidence of pathosis was ruled out for inclusion in the study. The selected teeth were divided into two groups randomly. In Group A 0.9% isotonic saline and in Group B 25% extract water-soluble propolis were used as irrigating solution, respectively. The bacterial samples were collected both pre- and post-irrigation and were transferred for microbial assay. STAISTISTICAL ANALYSIS: Wilcoxon matched signed rank test was used to compare the pre-and post-irrigation bacterial counts. Mann-Whitney test was used to compare the mean change (pre-post) in bacterial colony counts of groups in the study. Antimicrobial effectiveness of 25% water-soluble extract of propolis in the root canals of primary teeth was confirmed in the present study. The reduction in the mean bacterial colony counts of all the isolated bacteria was noticed higher in Group B than Group A. The results of the present study have confirmed that the antibacterial effectiveness of water-soluble extract of propolis in the root canals of primary teeth in vivo. Considering the low toxicity concerns and antibacterial effectiveness, water-soluble extract of 25% propolis can be advocated as a root canal irrigant in endodontic treatment of primary teeth.

  2. The antimicrobial effectiveness of 25% propolis extract in root canal irrigation of primary teeth

    Directory of Open Access Journals (Sweden)

    Manjesh Kumar Verma

    2014-01-01

    Full Text Available Context: The choice of irrigating solution used in root canals of primary teeth is complicated by their complex morphology and paucity of associated literature. Propolis is a natural product that has gained interest in this context due to its antibacterial effectiveness against several endodontic pathogens. Aim: The present study was undertaken to assess the potential of water-soluble 25% propolis extract against microorganisms present in root canals of primary teeth during endodontic procedures. Settings and Design: The child patients in the age group of 4-7 years with radiographic evidence of carious pulp exposure were included in the study. Definitive selection was done after gaining access into the pulp chamber and root canals of the selected teeth. The clinical and radiographic evidence of pathosis was ruled out for inclusion in the study. Materials and Methods: The selected teeth were divided into two groups randomly. In Group A 0.9% isotonic saline and in Group B 25% extract water-soluble propolis were used as irrigating solution, respectively. The bacterial samples were collected both pre- and post-irrigation and were transferred for microbial assay. Staististical Analysis: Wilcoxon matched signed rank test was used to compare the pre-and post-irrigation bacterial counts. Mann-Whitney test was used to compare the mean change (pre-post in bacterial colony counts of groups in the study. Results: Antimicrobial effectiveness of 25% water-soluble extract of propolis in the root canals of primary teeth was confirmed in the present study. The reduction in the mean bacterial colony counts of all the isolated bacteria was noticed higher in Group B than Group A. Conclusion: The results of the present study have confirmed that the antibacterial effectiveness of water-soluble extract of propolis in the root canals of primary teeth in vivo. Considering the low toxicity concerns and antibacterial effectiveness, water-soluble extract of 25% propolis

  3. Dynamic Predictions of Crop Yield and Irrigation in Sub-Saharan Africa Due to Climate Change Impacts

    Science.gov (United States)

    Foster-Wittig, T.

    2012-12-01

    The highest damages from climate change are predicted to be in the agricultural sector in sub-Saharan Africa. Agriculture is predicted to be especially vulnerable in this region because of its current state of high temperature and low precipitation and because it is usually rain-fed or relies on relatively basic technologies which therefore limit its ability to sustain in increased poor climatic conditions [1]. The goal of this research is to quantify the vulnerability of this ecosystem by projecting future changes in agriculture due to IPCC predicted climate change impacts on precipitation and temperature. This research will provide a better understanding of the relationship between precipitation and rain-fed agriculture in savannas. In order to quantify the effects of climate change on agriculture, the impacts of climate change are modeled through the use of a land surface vegetation dynamics model previously developed combined with a crop model [2,4]. In this project, it will be used to model yield for point cropland locations within sub-Saharan Africa between Kenya and Botswana with a range of annual rainfall. With this model, future projections are developed for what can be anticipated for the crop yield based on two precipitation climate change scenarios; (1) decreased depth and (2) decreased frequency as well as temperature change scenarios; (3) only temperature increased, (4) temperature increase dand decreased precipitation depth, and (5) temperature increased and decreased precipitation frequency. Therefore, this will allow conclusions to be drawn about how mean precipitation and a changing climate effect food security in sub-Saharan Africa. As an additional analysis, irrigation is added to the model as it is thought to be the solution to protect food security by maximizing on the potential of food production. In water-limited areas such as Sub-Saharan Africa, it is important to consider water efficient irrigation techniques such as demand-based micro-irrigation

  4. Effect of Irrigation with Wastewater on Certain Soil Physical and Chemical properties

    Directory of Open Access Journals (Sweden)

    Farzad Rohani Shahraki

    2005-03-01

    Full Text Available Depending on effluent characteristics, irrigation with wastewater plant effluent can be either beneficial or harmful. To investigate the effects of nine years of irrigation with North Isfahan Wastewater Treatment Plant effluent on physical and chemical properties of soil, a study was carried out using a randomized complete block design with three replications. Treatments included: 1 raw wastewater; 2 effluent from primary settling basin; 3 final plant effluent and 4 well water. To investigate soil physical and chemical properties, samples were taken from depths of 0-5 cm and 5-10 cm from each plot. The results showed that raw wastewater COD and SS were higher than the Iranian Standard limits for use in irrigation. So were BOD5 and turbidity of effluent from primary sedimentation tanks. From the results obtained, the raw wastewater may be considered to be of medium quality. However, regarding other parameters such as EC, SAR, Na and Pb, the quality of the raw wastewater was considerably higher than that of well water. All treatments showed medium infiltrability with respect to chloride concentration. The concentration of lead in well water was higher than in treated wastewater. It should be noted that lead concentration in all samples was less than the standard limits. The average soil bulk density and percentage of moisture in FC did not follow any specific trend. The results indicate that the soil irrigated with effluent over the nine years had a lower bulk density, a higher percentage of moisture, and a lower infiltration compared to adjacent soil not irrigated with wastewater. Analysis of variance for all results did not confirm any significant differences among treatments.

  5. An experimental study on the grape orchard: Effects comparison of two irrigation systems

    Directory of Open Access Journals (Sweden)

    Kadbhane Sharad J.

    2017-03-01

    Full Text Available Table grape (Vitis vinifera cultivars is a major cash crop in the Nashik district of India, which requires irrigation water throughout the year as per demand instantly. Canal irrigation is the adopted irrigation systems in the study area, but canal irrigation has got several serious disadvantages, such as mismatching rotation schedules and crop water demands, water allotment system and restrictions on the use of efficient irrigation methods. The storing the canal water in the farm pond instead of directly applying to the field using the free flooding method is alternate solution to overcome the disadvantages of the canal irrigation system. Once the canal water storing in the pond, it increases the possibilities to use the advance irrigation system like drip, subsurface, sprinkler etc. to enhance water use efficiency. The comparative study between the canal water directly applying for the field and canal water storing in the farm pond then use for irrigation, executed through the field experiments carried out on the grape orchard during a period April 2013 to March 2016. Results have been evaluated based on grape yield, water-productivity, berry size, and biomass. Water productivity (kg·m-3 with respect to water delivery to crop through the pond irrigation method was found 37% higher than the canal irrigation method during the study period. Based on the results, this study recommended the use of the farm pond to store the canal water and use it as per crop demand using advance irrigation systems.

  6. Analysis of Irrigation Water Quality at Kadawa Irrigation Project for Improved Productivity

    Directory of Open Access Journals (Sweden)

    AR Sanda

    2014-09-01

    Full Text Available In the face of water scarcity and the several negative consequences, such as water wastage, flooding, water logging, soil losses and production losses, conserving the finite amount of fresh water is a must. The quality of irrigation water must therefore be ascertained. The chemical quality of three sources of irrigation water from canal and drainage water, namely drainage water, fresh irrigation water from canal, and drainage/irrigation water mixture, were analyzed from Kadawa irrigation Project for year 2013 and 2014 cropping seasons, with the view to evaluating the potential risks associated with their use in irrigation and hence their suitability or otherwise for irrigation purposes. The analysis revealed that the use of drainage water alone for irrigation may result in problems associated with salinity, while a blend of drainage/irrigation water in the ratio of 1:1 is a viable means of water conservation and a good means of crop production. DOI: http://dx.doi.org/10.3126/ije.v3i3.11082 International Journal of Environment Vol.3(3 2014: 235-240

  7. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    Science.gov (United States)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.

  8. Effect of Water Quality and Drip Irrigation Management on Yield and Water Use Efficiency in Late Summer Melon

    Directory of Open Access Journals (Sweden)

    javad baghani

    2016-02-01

    Full Text Available Introduction: Production and growth of plants in many parts of the world due to degradation and water scarcity have been limited and particularly, in recent decades, agriculture is faced with stress. In the most parts of Iran, especially in the Khorasan Razavi province, drought is a fact and water is very important. Due to melon cultivation in this province, and the conditions of quality and quantity of water resources and water used to produce the melon product in this province, any research done on the use of saline and brackish waters is statistically significant. Materials and Methods: To study the effects of different water salinity and water management on some of the agronomic traits of late summer melon with drip irrigation, an experiment with 7 treatments and 3 repetitions was conducted in a randomized complete block design, in Torogh station, Mashhad. The irrigation treatments were: 1- fresh water from planting to harvesting, 2- water (3 dS/m from planting to harvesting, 3- water (6 dS/m from planting to harvesting, 4- water (6 dS/m from 20 days after plantation to harvesting, 5-water (6 dS/m from 40 days after plantation to harvesting, 6-water (3 dS/m from 20 days after plantation to harvesting, 7-water (6 dS/m from 40 days after plantation to harvesting. Row spacing and plant spacing were 3 m and 60 cm, respectively and the pipe type had 6 liters per hour per unit of meters in the drip irrigation system. Finally, the amount of salinity water, number of male and female flowers, number of seed germination, dry leaves' weight, leaf area, chlorophyll (with SPAD etc. were measured and all data were analyzed by using MSTAT-C software and all averages of data, were compared by using the Duncan test. Results and Discussion The results of analysis of data showed the following: Number of seeds germination: Salinity in water irrigation had no significant effects on the number of seed germination. However, there was the most number of seed

  9. Effect of saline irrigation water on yield and yield components of rice ...

    African Journals Online (AJOL)

    vaio

    2013-05-29

    May 29, 2013 ... levels at different growth stages of rice on yield and its components. Treatments included ... Therefore, irrigation with saline water at the early growth stages has more negative effect on ...... diversification. Land Degrad. Dev.

  10. Effects of limited irrigation on root yield and quality of sugar beet ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Irrigation treatments had a significant effect on sugar yield and its quality. Potassium ... beet plants respond to water stress by an increase in tap- ..... nitrogen fertilization on soluble carbohydrate concentration in sugar beet.

  11. Effect of Different Irrigation and Planting Methods on Water Productivity and Health of Commercial Varieties of Potato

    Directory of Open Access Journals (Sweden)

    H. R Salemi

    2016-07-01

    Full Text Available Introduction Water crisis as a main factor of agronomy limitation exists in all over the arid and semiarid regions such as Isfahan, province which is located in the central part of the Zayandehrud River Basin (ZRB. Due to the increase in the cultivated area of potato in Fareidan Region located in the west of Isfahan province, it will be necessary to use pressurized irrigation systems to achieve the highest irrigation application efficiency and water productivity. Materials and Methods The ZRB (41,500 km2 is a closed basin with no outlet to the sea. The research was conducted in the Fareidan region of Isfahan, which is located in the west part of the ZRB. The Rozveh Agricultural Research Station (32°, 58' N, 50°, 25' E is located at the altitude of 2390 m above the sea level. This study was conducted as a randomized complete blocks design as a split strip plot layout with three replications and during two years (2007-2008. Three irrigation systems (Drip tape, Sprinkler and furrow were considered as main plots, two planting methods (one - row planting and two-row planting as split subplots and two potato cultivars (Marfuna and Agria as split-split subplots. Production (Tuber-yield, the consumption water and cultivars reactions to common diseases were evaluated in different treatments. The soil of the experimental area, according to USDA Soil Taxonomy 1994 is of silty loamy. At the soil depth of 1m, soil salinity (1.1-2.0 dS m-1, water salinity (1.24 dS m-1, soil moisture at field capacity (23 Vol. %, and bulk density (BD = 1.44 g/cm3 at the field site were measured or experimentally obtained in the Isfahan Soil and Water Laboratory. The results were subjected to an ANOVA to analyze the effects of the treatments and their interactions. The data obtained were analyzed using the compound variance analysis and the averages of different treatments were separated using the Duncan multiple range test using the statistical software (SAS Institute, Inc

  12. Regulated deficit irrigation effects on yield, fruit quality and vegetative growth of Navelina citrus trees

    Energy Technology Data Exchange (ETDEWEB)

    Gasque, M.; Granero, B.; Turegano, J. V.; Gonzalez-Altozano, P.

    2010-07-01

    An experiment on regulated deficit irrigation (Redi) was performed during two growing seasons (2007 and 2008) in a drip-irrigated orchard of Navelina/Cleopatra in Senyera (Valencia, Spain). Two RDI treatments, where water application was reduced to 40% and 60% of the irrigation dose (ID), were carried out during the initial fruit enlargement phase (Stage II, 17th July to 2nd September). The rest of the year they were irrigated at 110% ID. These treatments were compared with a control, where irrigation was applied without restriction during the whole year at 110% ID. The ID was obtained from the evapotranspiration data, as well as from the characteristic variables of drip irrigation for the specific experimental orchard. The effects of the treatments on yield, fruit quality, and vegetative growth are discussed in relation to tree water status (midday stem water potential, ?st). Minimal ?st values reached in the treatment with the highest stress intensity were -1.71 and - 1.60 MPa in 2007 and 2008 respectively. These ?st values reached as a consequence of the water reduction in the RDI summer treatments applied in this study did not affect yield or fruit quality, allowing water savings between 16% and 23%. In conclusion, water restriction during summer, and once June drop has finished, favours the better use of water resources by Navelina citrus trees, achieving an increase of water use efficiency (between 14% and 27% in this case), provided that an appropriate irrigation in autumn allows for tree recovery. (Author) 39 refs.

  13. Agronomical effects of deficit irrigation in apricot, peach and plum trees

    NARCIS (Netherlands)

    Torrecillas, Arturo; Corell, M.; Galindo Egea, Alejandro; Pérez-López, David; Memmi, Houssem; Rodriguez, Pedro; Cruz, Zulma N.; Centeno, Ana; Intrigliolo, Diego S.; Moriana, A.; Garcia Tejero, Ivan Francisco; Duran Zuazo, Victor Hugo

    2017-01-01

    Stone fruits are some of the most important irrigated crops around the world. Their ability to grow in different environments implies great variations in water needs. This chapter discusses the effect of water restriction on yield and quality of the fruits obtained. The information will provide

  14. Long-term Effects of Different Irrigation Methods with Treated Wastewater on Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    P. Najafi

    2016-02-01

    Full Text Available Introduction: Reuse of wastewater for agricultural irrigation is increasing due to an increased demand for water resources in different parts of the world. Almost 70% of deviated water from rivers and pumped groundwater is used for agriculture. If wastewater is used for irrigation in agriculture, then the amount of discharged water from natural sources will be decreased and the flow of wastewater to the environment and its ensuing pollution will be prevented. Using wastewater in applications such as irrigation of agricultural lands has caused an increase of some exchangeable ions, salts and suspended solids (organic and mineral in the soil and has significantly affected physical, chemical and biological features. Therefore, paying attention to the soil health is important during use of wastewater when it is the source of irrigation water. In such cases, there will be some worries about pollution of harvested products, contact of farm workers with pathogenes and environmental issues in the farm. In these conditions, attention to irrigation methods along with consideration of environmental protection standards is important. Materials and Methods: In this study, the effects of treated wastewater (TW irrigation were tested on some chemical properties of soil for three years under five different irrigation treatments. The treatments were as follows: surface furrow irrigation (FI, surface drip irrigation (SDI, subsurface drip irrigation in 30 cm depth (SDI30, subsurface drip irrigation in 60 cm depth (SDI60 and bubbler irrigation (BI. At the end of the experiment, soil samples were collected from a depth of 0-30, 30-60 and 60-90 cm in order to measure the electrical conductivity (EC, pH, sodium adsorption ratio (SAR, organic matter (OM and calcium carbonate equivalent (CaCO3. Results and Discussion: According to the results of soil analysis, the soil became more saline than the beginning by applying the treatments. Generally, in two plots of urban and

  15. Wireless sensor network effectively controls center pivot irrigation of sorghum

    Science.gov (United States)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  16. Effect of pasture irrigation on the technical and management indicators of dairy farms

    Directory of Open Access Journals (Sweden)

    Flávio de Moraes

    2015-07-01

    Full Text Available The objective of this study was to evaluate the effect of pasture irrigation on the technical and management indicators of 20 demonstrative units participating in the “Balde Cheio” Program in the state of Rio de Janeiro from January to December 2011. The following variables were obtained: dam/labor ratio, herd size/labor ratio, milk yield/labor ratio, animals/production area, percentage of lactating cows, and milk yield. Return was analyzed considering gross margin, net margin, outcome (profit or loss, and profitability. The data were analyzed using the PASW 18.0 software. Pasture irrigation did not significantly alter the indicators studied. The greater profitability and return of farms using pasture irrigation were the consequence of better animal production rates/day and per ha/year. When gross margin, net margin and outcome using total revenue are considered, there is decapitalization of the farms. 

  17. Sodium Hypochlorite Irrigation and Its Effect on Bond Strength to Dentin

    Directory of Open Access Journals (Sweden)

    Tariq S. Abuhaimed

    2017-01-01

    Full Text Available Effective shaping and cleaning of root canals are essential for the success of endodontic treatment. Due to the complex anatomy of root canal spaces, the use of various instrumentation techniques alone is not effective in producing bacteria-free root canal spaces. Irrigation, disinfectants, rinses, and intervisit medications are used in conjunction with the mechanical instrumentation to ensure the success of endodontic treatment. Sodium hypochlorite (NaOCl, a halogenated compound, is routinely used to irrigate the root canal during endodontic treatments. NaOCl has been known for its antibacterial action, proteolytic and dissolution capacity, and debridement properties. NaOCl, however, can alter the composition of dentin and hence its interaction with the adhesive resins used to bond the restorative materials to treated dentin. This review therefore covers in depth the action of NaOCl on dentin-adhesive resin bond strength including both enhancement and reduction, then mechanisms proposed for such action, and finally how the adverse action of NaOCl on dentin can be reversed.

  18. Sodium Hypochlorite Irrigation and Its Effect on Bond Strength to Dentin.

    Science.gov (United States)

    Abuhaimed, Tariq S; Abou Neel, Ensanya A

    2017-01-01

    Effective shaping and cleaning of root canals are essential for the success of endodontic treatment. Due to the complex anatomy of root canal spaces, the use of various instrumentation techniques alone is not effective in producing bacteria-free root canal spaces. Irrigation, disinfectants, rinses, and intervisit medications are used in conjunction with the mechanical instrumentation to ensure the success of endodontic treatment. Sodium hypochlorite (NaOCl), a halogenated compound, is routinely used to irrigate the root canal during endodontic treatments. NaOCl has been known for its antibacterial action, proteolytic and dissolution capacity, and debridement properties. NaOCl, however, can alter the composition of dentin and hence its interaction with the adhesive resins used to bond the restorative materials to treated dentin. This review therefore covers in depth the action of NaOCl on dentin-adhesive resin bond strength including both enhancement and reduction, then mechanisms proposed for such action, and finally how the adverse action of NaOCl on dentin can be reversed.

  19. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  20. Comparative effects of partial rootzone drying and deficit irrigation on growth and physiology of tomato plants

    Directory of Open Access Journals (Sweden)

    Savić Slađana

    2009-01-01

    Full Text Available The effects of partial rootzone drying (PRD, deficit irrigation (DI, and full irrigation (FI on tomato physiology were investigated. In PRD and DI plants, leaf water potential values and stomatal conductance were significantly lower, while xylem ABA concentration was greater compared to FI plants. Photosynthesis was similar for all treatments. Water use efficiency was improved by PRD and DI, which reduced fruit dry weight, but had no effect on dry weight of leaves and stems.

  1. Atmospheric effects of irrigation in monsoon climate: the Indian subcontinent

    NARCIS (Netherlands)

    Tuinenburg, O.A.

    2013-01-01

    During the 20th century, an increasing population increased the demand for food. As a consequence, agricultural activity has expanded and become more intense. A part of this intensification is the use of irrigation systems to water crops. Due to this irrigation, dams and channeling systems,

  2. Root canal irrigants

    OpenAIRE

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  3. Irrigation with isoproterenol diminishes increases in pelvic pressure without side-effects during ureterorenoscopy

    DEFF Research Database (Denmark)

    Jung, H U; Jakobsen, J S; Mortensen, J

    2007-01-01

    Objective. Recently, we showed that endoluminally administered isoproterenol (ISO) inhibits muscle function of the pyeloureter in swine. This may be of value in managing increases in pelvic pressure during upper urinary tract endoscopy. The purpose of this study was to examine the effect...... groups: p=0.425 and p=0.166, respectively. Conclusions. ISO (0.1 microg/ml) added to irrigation fluid significantly reduces the increase in pelvic pressure during ureterorenoscopy in pigs, without concomitant side-effects....... of endoluminally administered ISO on increases in pelvic pressure and cardiovascular function during flexible ureterorenoscopy. Material and methods. The study was performed in anaesthetized female pigs. In terms of endoscopic procedures, the pigs were randomized as follows: Group 1, irrigation with 0.1 microg...

  4. Distribution Of 15N Fertilizer Added To Sandy Soil Under Drip Irrigation System As Affected By Irrigation Frequencies

    International Nuclear Information System (INIS)

    GADALLA, A.M.; GALAL, Y.G.M.; EL-GENDY, R.W.; ISMAIL, M.M.; EL-DEGWY, S.M.; KASSAB, M.F.

    2009-01-01

    Neutron moisture meter and stable nitrogen isotope ( 15 N) were used to follow horizontal and vertical water movement and N-fertilizer added to soil before and after irrigation. The data indicated that soil moisture distribution and values of total hydraulic potential depend on soil moisture content. Characterization of nitrogen in soil for all sites around the emitter indicated spatial variability with different soil depths due to leaching and volatilization processes. Moreover, water movement and flow direction greatly were characterized by active evaporation depth which was 30 cm.

  5. The Impact of Regular and Periodic Irrigation on the Fertility and Productivity of an Ordinary Chernozem of the Azov Irrigation System

    Science.gov (United States)

    Shchedrin, V. N.

    2016-02-01

    The effect of regular and periodic irrigation on the fertility and productivity of an ordinary chernozem cultivated under different conditions within the same cereal-fodder crop rotation is discussed. The investigation object is located in the area of the Azov irrigation system on the second terrace of the Don River in Rostov oblast. Irrigation water for the system is taken from the Veselovsk water reservoir. Its salinity is 1.7-2.1 g/dm3, and the salt composition is sulfate-sodium. The field experiments were performed in 2006-2013 on three experimental plots. Two of them were regularly irrigated; the third plot was periodically irrigated with alternation of 2-year-long periods with and without irrigation. Our study proved that periodic irrigation could be applied in the chernozemic zone. This new irrigation mode contributes to the preservation of the natural soil-forming process and stops the development of unfavorable processes typical of the lands irrigated with water of inadequate quality. In eight years of cultivation of the ordinary chernozem with periodic irrigation, the soil humus content increased by 10% (from 3.80 to 4.15%), and the yield reached 66.0 t/ha of fodder units. This was 9% higher than the yield obtained upon regular irrigation without agroameliorative measures and 12% lower than the yield upon regular irrigation in combination with soil-protective measures. Our data suggest that periodic irrigation is promising for the chernozemic zone, because it ensures lower water loads and preservation of the irrigated chernozems.

  6. Irrigated Agriculture in Morocco: An Agent-Based Model of Adaptation and Decision Making Amid Increasingly Frequent Drought Events

    Science.gov (United States)

    Norton, M.

    2015-12-01

    In the past 100 years, Morocco has undertaken a heavy investment in developing water infrastructure that has led to a dramatic expansion of irrigated agriculture. Irrigated agriculture is the primary user of water in many arid countries, often accounting for 80-90% of total water usage. Irrigation is adopted by farmers not only because it leads to increased production, but also because it improves resilience to an uncertain climate. However, the Mediterranean region as a whole has also seen an increase in the frequency and severity of drought events. These droughts have had a dramatic impact on farmer livelihoods and have led to a number of coping strategies, including the adoption or disadoption of irrigation. In this study, we use a record of the annual extent of irrigated agriculture in Morocco to model the effect of drought on the extent of irrigated agriculture. Using an agent-based socioeconomic model, we seek to answer the following questions: 1) Do farmers expand irrigated agriculture in response to droughts? 2) Do drought events entail the removal of perennial crops like orchards? 3) Can we detect the retreat of irrigated agriculture in the more fragile watersheds of Morocco? Understanding the determinants of irrigated crop expansion and contractions will help us understand how agro-ecological systems transition from 20th century paradigms of expansion of water supply to a 21st century paradigm of water use efficiency. The answers will become important as countries learn how to manage water in new climate regimes characterized by less reliable and available precipitation.

  7. An improved delivery system for bladder irrigation.

    Science.gov (United States)

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-10-05

    effects such as bladder perforation due to our high-pressure, high-flow system. A pressurized irrigant system has better visualization during endourologic procedures, and prevents clot formation after open prostatectomy, TURP, and TURB without any adverse effects.

  8. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  9. Effect of Different Methods of Chemical Weed Control Irrigation Regimes on Weed Biomass and Safflower Yield

    Directory of Open Access Journals (Sweden)

    M. Matinfar

    2011-06-01

    Full Text Available In order to investigate the effects of different weed control methods and moisture regimes on safflower (Carthamus tinctorius, a field split plot experiment based on randomized complete block design with 4 replications was conducted in Takestan Iran, during growing seasons of 2007-8. Three irrigations regimes (normal irrigation, restricted irrigation at stem elongation and restricted irrigation at  flowering stage were assigned to the main plots and nine chemical weed control method (complete hand weeding, treflan with 2 L/ha as pre plant herbicide, sonalan with 3 L/ha ad pre plant herbicide, estomp with 3 L/ha as pre plant herbicide, gallant super with 0/75 L/ha as post emergence herbicide, treflan with 2 L/ha as pre plant herbicide+ gallant super with 0/75 L/ha as post emergence herbicide, sonalan with 3 L/ha as pre plant herbicide + gallant super with 0/75 L/ha as post emergence herbicide estomp with 3 L/ha as pre plant herbicide + gallant super with 0/75 L/ha as post emergence herbicide and without hand weeding to sub- plots. At the end of growing period traits like number of head   per plant, number of seed per head, 1000 grain weight, percent of seed oil, yield of seed oil and grain yield were measured. Results indicated that treflan + gallant super treatment in restricted irrigation at stem elongation stage had the lowest dry weight of weeds. In this study maximum grain yield (2927 Kg/ha was achieved from hand weeding + usual irrigation treatments. In general treflan + gallant super treatment was the most effective treatment on safflower yield and weed control.

  10. Effect of Irrigation Regimes on Yield of Two Commercial Varieties of Pomegranate in the Climatic Condition in Yazd

    Directory of Open Access Journals (Sweden)

    ali bafkar

    2017-02-01

    Full Text Available Introduction: The maximum water efficiency and water productivity of the agricultural sector is one of the most important and effective ways to deal with the water crisis and mitigate the effects of drought. Therefore, scientific and practical agricultural water productivity in terms of planning and development must be followed. Local or drip irrigation systems supply some of the moist around the roots and the plant uses the moisture in the soil. Irrigation systems and irrigation scheduling affect water uptake by plants. Matrials and Methods: In order to evaluate the effect of irrigation on the yield of 4-year-old pomegranate trees with local irrigation system (Bubbler in sandy loam soil with bulk density 1.15 grams per cubic centimeter a research was performed in Agriculture and Natural Resources Research Center of Yazd province with an altitude of 1230 meters . The region has an arid climate with 51 mm average annual rainfall and average annual temperature of 20 ° C, which is located 10 kilometers from the center of the city of Yazd. This project was designed in a factorial experiment with a randomized complete block with three irrigation regimes I1, I2, I3, including irrigation (FC100%, 25% of deficit irrigation (FC75% and 50 percent deficit irrigation (FC50% on two commercial cultivars of pomegranates, which have been growing at 3 × 4 with three replications. To prevent penetration of water per tree, plots adjacent to each block strip (three meters between rows and between plants within one and a half meters without irrigation tape were used as a guard. Trees around the pool shaped a rectangular building with a flow rate of 96 liters per hour for each tree using Bubbler system. The use of such a system with high flow rate, suitability and cost of such a system in orchards and vineyards, water supply reduces energy consumption in a tree in a short time. To prevent clogging of the filter, disc dropper was used at the beginning of the project

  11. Long-term effects of irrigation with waste water on soil AM fungi diversity and microbial activities: the implications for agro-ecosystem resilience.

    Directory of Open Access Journals (Sweden)

    Maria del Mar Alguacil

    Full Text Available The effects of irrigation with treated urban wastewater (WW on the arbuscular mycorrhizal fungi (AMF diversity and soil microbial activities were assayed on a long-term basis in a semiarid orange-tree orchard. After 43 years, the soil irrigated with fresh water (FW had higher AMF diversity than soils irrigated with WW. Microbial activities were significantly higher in the soils irrigated with WW than in those irrigated with FW. Therefore, as no negative effects were observed on crop vitality and productivity, it seems that the ecosystem resilience gave rise to the selection of AMF species better able to thrive in soils with higher microbial activity and, thus, to higher soil fertility.

  12. Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China

    Directory of Open Access Journals (Sweden)

    Haorui Chen

    2017-12-01

    Full Text Available This research analyzed the scale effect of water saving in Bielahonghe (BLH Basin, a rice-cultivating district on the Sanjiang Plain, Northeast China. Water budgets with different surface irrigation water supply ratios and water-saving measures were simulated with a semi-distributed water balance model. PFnws, representing the ratio of rice evapotranspiration to net water supply (the total amount of irrigation and precipitation minus the amount of water reused, was employed to assess the water use efficiency. Seven spatial scales (noted from S1 to S7, ranging from a single field (317.87 ha to the whole basin (about 100,800 ha were determined. PFnws values were quantified across scales and several water-saving measures, including water-saving irrigation regimes, canal lining, and a reduction of the surface water supply ratio (SWSR. The results indicated that PFnws increased with scale and could be calculated by a fitted power function (PFnws = 0.736Area0.033, R2 = 0.58. Furthermore, PFnws increased most prominently when the scale increased from S1 to S2. The water-saving irrigation regime (WSIR had the most substantial water-saving effect (WSE at S1. Specifically, PFnws improved by 21.2% at S1 when high-intensity WSIR was applied. Additionally, the WSE values of S3 and S5 were slightly higher than at other scales when the branch canal water delivery coefficient increased from 0.65 to 0.80 through canal lining. Furthermore, the PFnws at each scale varied with SWSR. Specifically, PFnws from S3 to S7 improved as SWSR decreased from 0.4 to 0.3 but remained approximately constant when SWSR decreased from 0.3 to 0.

  13. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Plauborg, Finn

    2010-01-01

    Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after...

  14. The Effect of Irrigation Intervals and Arbuscular Mycorrhizal Fungi on Chlorophyll Index, Yield and Yield Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    J. Hamzei

    2014-08-01

    Full Text Available This experiment was carried out to study the effect of irrigation intervals and arbuscular mycorrhizal fungi on chlorophyll index, yield and yield components of grain sorghum. A factorial experiment was done based on randomized complete block design (RCBD with three replications at the Agriculture Research Station faculty of Agriculture, Bu- Ali Sina University in growing season of 2011. Irrigation intervals (7, 14 and 21 days with three levels of seed inoculation (control without inoculation, inoculation with Glomus mossea and inoculation with G. intraradices were the experimental treatments. Results indicated that the effect of irrigation intervals and mycorrhizal fungi were significant for traits of chlorophyll index, percentage of root symbiosis (PRS, number of grain per panicle, 1000 seed weight, grain yield and harvest index (HI. Maximum value for each trait was observed at G. mossea treatment. G. mossea treatment in comparison with G. intraradices and control treatment can increase the grain yield of sorghum up to 6.80 and 23.10%, respectively. Also, with increasing irrigation interval from 7 to 21 days, PRS increased up to 27.9%. Maximum value for grain yield (755 g m-2 was achieved at irrigation every 14 days and application of G. mossea treatment. But, there was no significant difference between irrigation sorghum plants every 14 days and application of G. mossea and irrigation every 7 days and application of either G. mossea or G. intraradices. In general, irrigation of sorghum plants every 14 days and supplying of G. mossea can produce the highest grain yield, while decreasing water consumption for sorghum production.

  15. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; van der Sluis, L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  16. Effects of compost on soil fertility in irrigated rice growing at Kou ...

    African Journals Online (AJOL)

    Effects of compost on soil fertility in irrigated rice growing at Kou Valley (Burkina Faso) : Amélioration de la fertilité du sol par utilisation du compost en riziculture irriguée dans la Vallée du Kou au Burkina Faso.

  17. The effects of irrigation and fertilization on specific gravity of loblolly pine

    Science.gov (United States)

    K. R. Love-Myers; Alexander Clark; L. R. Schimleck; P. M. Dougherty; R. F. Daniels

    2010-01-01

    The effects of two treatments, irrigation and fertilization, were examined on specific gravity (SG)-related wood properties of loblolly pine trees (Pinus taeda L.) grown in Scotland County, North Carolina. The effects on the core as a whole, on the juvenile core, on the mature core, and from year to year were all analyzed. The results indicate that fertilization...

  18. The Effect of Rain-Fed and Supplementary Irrigation on the Yield ...

    African Journals Online (AJOL)

    The effect of rain-fed with rain-fed supplementary irrigation on yield and yield components of Maize (Zea mays L.) was carried out at Mekelle University main campus under Tigray region in Ethiopia. The experiment was laid out in a Randomized Complete Block Design (RCBD), and investigated in the early cropping season ...

  19. Effect of complementary irrigation on yield components and alternate bearing of a traditional olive orchard in semi-arid conditions

    Directory of Open Access Journals (Sweden)

    Enrico M. Lodolini

    2016-06-01

    Full Text Available Traditional olive orchards are usually not irrigated in the Mediterranean basin, but at those latitudes, the yearly rainfall is frequently insufficient to support equilibrated vegetative growth and high fruit and oil production. This three-year field study investigated the effect of complementary irrigation on olive tree vegetative growth, fruit and oil yield during a biennial alternate bearing cycle in a traditional grove under semi-arid conditions. Adult olive trees (Olea europaea L. cv. Nabali Baladi were subjected to complementary irrigation in 2011 and 2012 ('on' and 'off' years, respectively with 6, 10, 15 or 20 m3 of water per tree per season, which corresponded to 14.2%, 23.8%, 35.7% and 47.6% of the whole seasonal evapotranspiration (42 m3 of water per year, respectively. Rain-fed trees were used as control. In 2013, no complementary irrigation was supplied, and any residual effects on the yield components were determined. Results showed that none of the irrigation regimes affected vegetative growth, or olive fruit size (mesocarp and endocarp, as fresh and dry weights. The fruit and oil yield per tree increased compared to the rain-fed conditions only when the threshold of 15 m3 was exceeded, thus inducing a higher crop load compared to the rain-fed control during the 'off' and even further during the 'on' year. No residual effects were registered in 2013. The study showed that complementary irrigation of at least 35% of the seasonal water requirement can produce remarkable positive effects on fruit yield especially during 'on' bearing years.

  20. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  1. Limiting nutrient emission from a cut rose closed system by high-flux irrigation and low nutrient concentrations?

    NARCIS (Netherlands)

    Baas, R.; Berg, van der D.

    2004-01-01

    A two-year project was aimed at decreasing nutrient emission from closed nutrient systems by using high irrigation rates in order to allow lower EC levels in the presence of accumulated Na and Cl. Experimental variables were growing media, irrigation frequencies, EC and NaCl concentrations for cut

  2. Effect of different levels of nitrogen fertilizer on yield and quality of sugar beet Beta vulgaris irrigated with saline groundwater (fertigation and surface irrigation) and grown under saline conditions

    International Nuclear Information System (INIS)

    Janat, M.

    2009-07-01

    In a field experiment Sugar beet Beta vulgaris was grown as a spring crop during the growing seasons of 2004 and 2006, in salt affected soil, previously planted with sesbania and barley (2005 and 2003) to evaluate the response of sugar beet to two irrigation methods, (drip fertigation and surface irrigation), different levels of nitrogen fertilizer and its effect on yield and quality. Different rates of nitrogen fertilizers (0, 50, 100, 150 and 200 kg N/ ha) as urea (46% N) were injected for drip irrigation or broadcasted for the surface-irrigated treatments in four equally split applications. The 15 N labelled urea was applied to sub-plots of 1.0 m 2 in each experimental unit in a manner similar to that of unlabeled urea. Irrigation scheduling was carried out using the direct method of neutron scattering technique. Sugar beet was irrigated when soil moisture in the upper 25 cm was 80% of the field capacity (FC) and such practice continued until the six leaf stage. From the latter stage until harvest, sugar beet was irrigated when soil moisture in the upper 50 cm reached 80% of the FC. The amount of irrigation water applied, electrical conductivity of the soil paste, dry matter and fresh roots yield, total nitrogen uptake and N derived from fertilizer were also determined. Furthermore, Nitrogen use as well as water use-efficiencies for dry matter and roots yield were also calculated. Results revealed that sugar beets and dry matter yield increased with increasing N input up to 100-150 kg N/ha which was indicated by the higher dry matter yield, and sugar beet yield. Sugar percentage was also increased relative to the average percentage recorded in Syria. Crop water use efficiencies, for both the drip-fertigated and surface-irrigated treatments were increased in most cases with increasing rate of nitrogen fertilizer. During the course of this study, small increases in soil salinity under both irrigation methods were observed. Higher increases in soil salinity was

  3. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    Science.gov (United States)

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  4. Effect of Irrigation with Wastewater and Foliar Application of Complete Fertilizer on Forage Yield and Yield Components of Foxtail Millet (Setaria italica

    Directory of Open Access Journals (Sweden)

    A Ahmadi Aghtape

    2013-08-01

    Full Text Available In order to study effect of irrigation with wastewater and foliar application of complete fertilizer on forage yield and seed yield and yield components of foxtail millet (Setaria italica. A split plot experiment based on randomized complete block design with three replications was conducted at the Agriculture Institute of Zabol University in year 2009. Treatments included three levels of irrigation: Irrigation with well water at all stages of grows (control, Irrigation with wastewater and tap water alternately, Irrigation with wastewater for all growing stages, as the main plot and sprayed with three levels of complete fertilizer (NATBA-LIB: Non spraying (control, sprayed with 600 and 1200 gram of complete fertilizer in each hectare, as were the subplots. Results showed that irrigation with wastewater and complete fertilizer sprayed had significant effect on all traits except leaf to stem ratio. Furthermore, among the irrigation treatments, irrigation with wastewater in total growing period, and wastewater and tap water alternately lead to significant increase in grain yield, forage yield and yield components. Among the sprayed treatments, sprayed with 1200 gram of complete fertilizer had highest forage yield and grain.

  5. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  6. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    Science.gov (United States)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support

  7. Effects of irrigation levels on interactions among Lygus hesperus (Hemiptera: Miridae), insecticides, and predators in cotton.

    Science.gov (United States)

    Asiimwe, Peter; Naranjo, Steven E; Ellsworth, Peter C

    2014-04-01

    Variation in plant quality and natural enemy abundance plays an important role in insect population dynamics. In manipulative field studies, we evaluated the impact of varying irrigation levels and insecticide type on densities of Lygus hesperus Knight and the arthropod predator community in cotton. Three watering levels were established via irrigations timed according to three levels of percent soil water depletion (SWD): 20, 40, or 60, where 40% SWD is considered standard grower practice, 60% represents a deficit condition likely to impose plant productivity losses, and 20% represents surplus conditions with likely consequences on excessive vegetative plant production. The two key L. hesperus insecticides used were the broad-spectrum insecticide acephate and the selective insecticide flonicamid, along with an untreated check. We hypothesized that densities of L. hesperus and its associated predators would be elevated at higher irrigation levels and that insecticides would differentially impact L. hesperus and predator dynamics depending on their selectivity. L. hesperus were more abundant at the higher irrigation level (20% SWD) but the predator densities were unaffected by irrigation levels. Both L. hesperus and its predators were affected by the selectivity of the insecticide with highest L. hesperus densities and lowest predator abundance where the broad spectrum insecticide (acephate) was used. There were no direct interactions between irrigation level and insecticides, indicating that insecticide effects on L. hesperus and its predators were not influenced by the irrigation levels used here. The implications of these findings on the overall ecology of insect-plant dynamics and yield in cotton are discussed.

  8. Ring Irrigation System (RIS) design through customer preference representation

    OpenAIRE

    Ridwan Infandra I.Z.; Rianmora Suchada; Werawatganon Siwat

    2018-01-01

    In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent ...

  9. Review of root canal irrigant delivery techniques and devices

    Directory of Open Access Journals (Sweden)

    Yeon-Jee Yoo

    2011-05-01

    Full Text Available Introduction Eliminating the residual debris and bacteria in the root canal system is one of the main purposes of the endodontic treatment. However, the complexity on the anatomy of the root canal system makes it difficult to eliminate the bacterial biofilm existing along the root canal surface and necrotic pulp tissue by mechanical instrumentation and chemical irrigation. Recently, more effective irrigant delivery systems for root canal irrigation have been developed. The purpose of this review was to present an overview of root canal irrigant delivery techniques and devices available in endodontics. Review The contents of this paper include as follows; - syringe-needle irrigation, manual dynamic irrigation, brushes - sonic and ultrasonic irrigation, passive ultrasonic irrigation, rotary brush, RinsEndo, EndoVac, Laser Conclusion Though technological advances during the last decade have brought to fruition new agitation devices that rely on various mechanisms, there are few evidence based study to correlate the clinical efficacy of these devices with improved outcomes except syringe irrigation with needle and ultrasonic irrigation. The clinicians should try their best efforts to deliver antimicrobial and tissue solvent solutions in predictable volumes safely to working length.

  10. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wilcox, Edmund [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goli, Sasank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as

  11. Comparative effects of partial root-zone drying and deficit irrigation on nitrogen uptake in potatoes (Solanum tuberosum L.)

    DEFF Research Database (Denmark)

    Wang, Huiqun; Liu, Fulai; Andersen, Mathias Neumann

    2009-01-01

    The effects of partial root-zone drying (PRD) as compared with deficit irrigation (DI) and full irrigation (FI) on nitrogen (N) uptake and partitioning in potato (Solanum tuberosum L.) were investigated. Potato plants were grown in split-root pots and were exposed to FI, PRD, and DI treatments...

  12. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  13. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel

    Directory of Open Access Journals (Sweden)

    Schacht Karsten

    2015-03-01

    Full Text Available The use of treated wastewater (TWW for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC and soil aggregate stability (SAS. To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm were collected for analyzing SAS and determination of selected soil chemical and physical characteristics.

  14. Influencing Factors and Simplified Model of Film Hole Irrigation

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2017-07-01

    Full Text Available Film hole irrigation is an advanced low-cost and high-efficiency irrigation method, which can improve water conservation and water use efficiency. Given its various advantages and potential applications, we conducted a laboratory study to investigate the effects of soil texture, bulk density, initial soil moisture, irrigation depth, opening ratio (ρ, film hole diameter (D, and spacing on cumulative infiltration using SWMS-2D. We then proposed a simplified model based on the Kostiakov model for infiltration estimation. Error analyses indicated SWMS-2D to be suitable for infiltration simulation of film hole irrigation. Additional SWMS-2D-based investigations indicated that, for a certain soil, initial soil moisture and irrigation depth had the weakest effects on cumulative infiltration, whereas ρ and D had the strongest effects on cumulative infiltration. A simplified model with ρ and D was further established, and its use was then expanded to different soils. Verification based on seven soil types indicated that the established simplified double-factor model effectively estimates cumulative infiltration for film hole irrigation, with a small mean average error of 0.141–2.299 mm, a root mean square error of 0.177–2.722 mm, a percent bias of −2.131–1.479%, and a large Nash–Sutcliffe coefficient that is close to 1.0.

  15. Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.

    Science.gov (United States)

    Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun

    2013-09-01

    To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Effect of complementary irrigation on yield components and alternate bearing of a traditional olive orchard in semi-arid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lodolini, E.M.; Polverigiani, S.; Ali, S.; Mutawea, M.; Qutub, M.; Pierini, F.; Neri, D.

    2016-11-01

    Traditional olive orchards are usually not irrigated in the Mediterranean basin, but at those latitudes, the yearly rainfall is frequently insufficient to support equilibrated vegetative growth and high fruit and oil production. This three-year field study investigated the effect of complementary irrigation on olive tree vegetative growth, fruit and oil yield during a biennial alternate bearing cycle in a traditional grove under semi-arid conditions. Adult olive trees (Olea europaea L. cv. Nabali Baladi) were subjected to complementary irrigation in 2011 and 2012 ('on' and 'off' years, respectively) with 6, 10, 15 or 20 m3 of water per tree per season, which corresponded to 14.2%, 23.8%, 35.7% and 47.6% of the whole seasonal evapotranspiration (42 m3 of water per year), respectively. Rain-fed trees were used as control. In 2013, no complementary irrigation was supplied, and any residual effects on the yield components were determined. Results showed that none of the irrigation regimes affected vegetative growth, or olive fruit size (mesocarp and endocarp), as fresh and dry weights. The fruit and oil yield per tree increased compared to the rain-fed conditions only when the threshold of 15 m3 was exceeded, thus inducing a higher crop load compared to the rain-fed control during the 'off' and even further during the 'on' year. No residual effects were registered in 2013. The study showed that complementary irrigation of at least 35% of the seasonal water requirement can produce remarkable positive effects on fruit yield especially during 'on' bearing years. (Author)

  17. Effects of irrigation solutions and Calcium hydroxide dressing on root canal treatments of periapical lesions

    OpenAIRE

    Nirmala, Vita

    2006-01-01

    The preparation of root canal in endodontic treatment plays an important role in treating non vital teeth with periapical lesion. Some factors influence the success of root canal treatment in short and long terms are the irrigation of root canal using antiseptic solution and the use of root canal medicament. The aim of this literature study is to determined the effect of irrigation solution and Calcium hydroxide dressing in root canal treatment of periapical lesions. The use of root canal med...

  18. Reducing microbial contamination on wastewater-irrigated lettuce by cessation of irrigation before harvesting

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay

    2007-01-01

    OBJECTIVE: To assess the effectiveness of cessation of irrigation before harvesting in reducing microbial contamination of lettuce irrigated with wastewater in urban vegetable farming in Ghana. METHODS: Assessment was done under actual field conditions with urban vegetable farmers in Ghana. Trials...... were arranged in completely randomized block design and done both in the dry and wet seasons. Seven hundred and twenty-six lettuce samples and 36 water samples were analysed for thermotolerant coliforms and helminth eggs. RESULTS: On average, 0.65 log units for indicator thermotolerant coliforms and 0.......4 helminth eggs per 100 g of lettuce were removed on each non-irrigated day from lettuce in the dry season. This corresponded to a daily loss of 1.4 tonnes/ha of fresh weight of lettuce. As an input for exposure analysis to make risk estimates, the decay coefficient, k, for thermotolerant coliforms was 0...

  19. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  20. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    dominating contribution to resulting concentrations of radionuclides in vegetation due to irrigation. Finally a proposal is given how to model irrigation in future assessments by using an expression taking into account the leaf area index (LAI) and a specific storage capacity. In addition differentiation of retention on vegetation surfaces for various elements is proposed due to information in the literature. It has been stated that cations are retained more effectively than anions. Most radioecological models describe migration of radionuclides in soils by an expression including advection and bioturbation as main processes. A sensitivity and uncertainty analysis was performed for the expression used in SR 97 and SAFE to describe this. The results show, as expected, that for immobile radionuclides bioturbation causes a higher transport than advection, while for mobile radionuclides bioturbation is negligible. Irrigation is important from an exposure point of view. The importance varies due to element and consumption rates. Interception on vegetation surfaces and subsequent retention give the highest contamination for elements with low bioavailability.

  1. Irrigation in dose assessments models

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Barkefors, Catarina

    2004-05-01

    dominating contribution to resulting concentrations of radionuclides in vegetation due to irrigation. Finally a proposal is given how to model irrigation in future assessments by using an expression taking into account the leaf area index (LAI) and a specific storage capacity. In addition differentiation of retention on vegetation surfaces for various elements is proposed due to information in the literature. It has been stated that cations are retained more effectively than anions. Most radioecological models describe migration of radionuclides in soils by an expression including advection and bioturbation as main processes. A sensitivity and uncertainty analysis was performed for the expression used in SR 97 and SAFE to describe this. The results show, as expected, that for immobile radionuclides bioturbation causes a higher transport than advection, while for mobile radionuclides bioturbation is negligible. Irrigation is important from an exposure point of view. The importance varies due to element and consumption rates. Interception on vegetation surfaces and subsequent retention give the highest contamination for elements with low bioavailability

  2. Studying Geographical Distribution Map of Weeds of Irrigated Wheat Fields of Ardabil Province

    OpenAIRE

    B Soheili

    2013-01-01

    In order to identify the density and abundance of weeds in irrigated wheat fields of Ardabil Province, 76 samples of irrigated wheat fields based on cultivation area from all counties of Ardabil province for six years (2001-2006) were selected. The genus and species of weeds from each sampling fields and their population indices density, frequency and uniformity of each species were calculated by using Thomas method. Geographic coordinates of field (Latitude, Altitude and Elevation) were the ...

  3. Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils

    Directory of Open Access Journals (Sweden)

    Le Qi

    2018-05-01

    Full Text Available In this study, we investigated the greenhouse gas emission under different application of biochar in the conditions of continuous flooding and water-saving irrigation in paddy fields, whereas, plant and soil carbon sequestration were considered in the calculation of net greenhouse gas emissions. The emission rates of methane (CH4, carbon dioxide (CO2, and nitrous oxide (N2O gases were simultaneously monitored once every 7–10 days using the closed-chamber method. As a whole, the net greenhouse gas emission in the water-saving irrigation was more than that of the continuous flooding irrigation conditions. Compared with the water-saving irrigation, the continuous flooding irrigation significantly increased the CH4 in the control (CK and chemical fertilizer treatments (NPK. The CO2 emissions increased in each treatment of the water-saving irrigation condition, especially in the chemical fertilizer treatments (NPKFW. Similarly, the soil N2O emission was very sensitive to the water-saving irrigation condition. An interesting finding is that the biochar application in soils cut down the soil N2O emission more significantly than NPKFW in the water-saving irrigation condition while the effect of biochar increased under the continuous flooding irrigation condition.

  4. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  5. The use of treated wastewater for chemlali olive tree irrigation: effects on soil properties, growth and oil quality

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rouina, B.; Bedbabis, S.; Ben Ahmed, C.; Boukhris, M.

    2009-07-01

    Olive tree (Olea european L.) cultivation, the major tree crops in Mediterranean countries is being extended to irrigated lands. However, the limited water availability, the severe climatic conditions and the increased need for good water quality for urban and industrial sector uses are leading to the urgent use of less water qualities (brackish water and recycled wastewater) for olive tree irrigation. The aim of this work was to asses the effects of long term irrigation with treated waste water (TWW) on the soil chemical properties, on olive tree growth and on oil quality characteristics. (Author)

  6. The use of treated wastewater for chemlali olive tree irrigation: effects on soil properties, growth and oil quality

    International Nuclear Information System (INIS)

    Ben Rouina, B.; Bedbabis, S.; Ben Ahmed, C.; Boukhris, M.

    2009-01-01

    Olive tree (Olea european L.) cultivation, the major tree crops in Mediterranean countries is being extended to irrigated lands. However, the limited water availability, the severe climatic conditions and the increased need for good water quality for urban and industrial sector uses are leading to the urgent use of less water qualities (brackish water and recycled wastewater) for olive tree irrigation. The aim of this work was to asses the effects of long term irrigation with treated waste water (TWW) on the soil chemical properties, on olive tree growth and on oil quality characteristics. (Author)

  7. Water type and irrigation time effects on microbial metabolism of a soil cultivated with Bermuda-grass Tifton 85

    Directory of Open Access Journals (Sweden)

    Sandra Furlan Nogueira

    2011-06-01

    Full Text Available This study investigated the microbial metabolism in Bermuda-grass Tifton 85 areas after potable-water and effluent irrigation treatments. The experiment was carried out in Lins/SP with samples taken in the rainy and dry seasons (2006 after one year and three years of irrigation management, and set up on an entirely randomized block design with four treatments: C (control, without irrigation or fertilization, PW (potable water + 520 kg of N ha-1 year-1; TE3 and TE0 (treated effluent + 520 kg of N ha-1 year-1 for three years and one year, respectively. The parameters determined were: microbial biomass carbon, microbial activity, and metabolic quotient. Irrigation with wastewater after three years indicated no alteration in soil quality for C and ET3; for PW, a negative impact on soil quality (microbial biomass decrease suggested that water-potable irrigation in Lins is not an adequate option. Microbial activity alterations observed in TE0 characterize a priming effect.

  8. Effect of Gibberellic Acid under Deficit Irrigation on Physicochemical and Shelf Life Attributes of Pomegranate Fruit (cv. Shahvar

    Directory of Open Access Journals (Sweden)

    yahya selahvarzi

    2017-02-01

    C and RH= 65-70% to evaluate physiochemical traits at 2 different storage periods (9 and 18 weeks. Weight loss and chilling index were determined during 3 weeks intervals of storage. Weight loss was evaluated by a gravimetric method and results were expressed as percent of initial fresh weight. Chilling index was quantified by 5 point scale of fruit husk injury: (1: without disorder, 2: slight disorder signs 3: moderate signs 4: severe signs and 5: unmarketable. Results and Discussion: In present research the effects of deficit irrigation treatments on all the measured attributes was significant at harvest time (p≤ 0.01. But Gibberellic acid spray had significant effect only on Fruit weight, juice percent and fruit cracking disorder. Likewise, deficit irrigation and Gibberellic acid interaction showed significant difference for fruit weight and cracking disorder. The results indicated that fruit weight, total yield and fruit juice in regulated deficit irrigation increased by 39.6, 17.1 and 16.6 percent in compare with control, respectively. Fruit numbers in control trees (108.3 was more than sustained (93.6 and regulated (87 deficit irrigation. It is possible that sustained (SDI and regulated (RDI deficit irrigation have decreased sprouting growth and consequently second or third waves of pomegranate flowers that forming on these shoots was lower by water restricting. Pomegranate peel percent in studied deficit irrigation strategies were less than control and naturally aril percent was more in these treatments. In other hand, the highest fruit cracking (9.1% and lowest fruit weight (205.8 g occurred in sustained deficit irrigation. However Gibberellic acid application could increase fruit weight and alleviate cracking disorder. The results of cold storage experiment showed that maturity index, antioxidant activity, total anthocyanin and chilling index improved by Sustained deficit irrigation. Variations of ripening index during cold storage occurred because of sugar

  9. Utilização do inversos de freqüência em sistemas de irrigação para controle de vazão Utilization of a variable frequency drive in irrigation systems to control discharge

    Directory of Open Access Journals (Sweden)

    Jacinto de Assunção Carvalho

    2000-04-01

    Full Text Available Objetivou-se, com este trabalho, avaliar o uso de um inversor de freqüência de 25 cv na irrigação, considerando-se diferentes demandas de água como manejo. A avaliação consistiu de uma análise de custos e benefícios, ambos anuais. O custo foi calculado com base no fator de recuperação do capital, para taxas de juros de 6 e 12% e períodos de amortização de 5 e 15 anos. O benefício consistiu da economia de energia proporcionada pelo inversor de freqüência em relação aos procedimentos usuais de controle da vazão. Relacionaram-se os parâmetros econômicos e de manejo da irrigação, com o objetivo de se avaliar o equipamento para qualquer situação de projeto. Como exemplo de aplicação, analisaram-se duas situações de controle de vazão comparadas ao inversor de freqüência em um projeto de irrigação. Foram determinadas, com auxílio do inversor de freqüência, as características hidráulicas, em função da vazão de uma motobomba de 25 cv sob várias rotações. Observou-se que o inversor de freqüência pode ser viável, devendo-se avaliar a redução de potência advinda do seu uso e o tempo de funcionamento da irrigação, analisando-se a melhor forma de amortização.This work aimed to evaluate the use of a variable frequency drive of 25 HP in irrigation systems to manage different water demands. The evaluation was done analyzing annual costs and benefits. The cost was calculated using interest rates of 6 and 12% and capital return periods of 5 and 15 years. The benefit was the energy saving by use of the variable frequency drive in relation to usual procedures to control discharge. The economic and irrigation management parameters were compared in order to evaluate several design situations. As an example, two situations of discharge control were compared with the use of a variable frequency drive in an irrigation project, suggesting forms for evaluation of the equipment under irrigated conditions. With the help

  10. Effectiveness of different irrigation systems on filling of simulated lateral canals

    Directory of Open Access Journals (Sweden)

    sehnaz Yilmaz

    2016-09-01

    Conclusions: Sonically or ultrasonically irrigation showed significant differences on the filling of the simulated lateral canals at the middle third of the root canals. Ultrasonic activation of the irrigants represented better results in radiographic and cleared specimen evaluation. [Cukurova Med J 2016; 41(3.000: 515-520

  11. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-07-01

    Full Text Available In the semi-arid Texas High Plains, the underlying Ogallala Aquifer is experiencing continuing decline due to long-term pumping for irrigation with limited recharge. Accurate simulation of irrigation and other associated water balance components are critical for meaningful evaluation of the effects of irrigation management strategies. Modelers often employ auto-irrigation functions within models such as the Soil and Water Assessment Tool (SWAT. However, some studies have raised concerns as to whether the function is able to adequately simulate representative irrigation practices. In this study, observations of climate, irrigation, evapotranspiration (ET, leaf area index (LAI, and crop yield derived from an irrigated lysimeter field at the USDA-ARS Conservation and Production Research Laboratory at Bushland, Texas were used to evaluate the efficacy of the SWAT auto-irrigation functions. Results indicated good agreement between simulated and observed daily ET during both model calibration (2001–2005 and validation (2006–2010 periods for the baseline scenario (Nash-Sutcliffe efficiency; NSE ≥ 0.80. The auto-irrigation scenarios resulted in reasonable ET simulations under all the thresholds of soil water deficit (SWD triggers as indicated by NSE values > 0.5. However, the auto-irrigation function did not adequately represent field practices, due to the continuation of irrigation after crop maturity and excessive irrigation when SWD triggers were less than the static irrigation amount.

  12. Studying Geographical Distribution Map of Weeds of Irrigated Wheat Fields of Ardabil Province

    Directory of Open Access Journals (Sweden)

    B Soheili

    2013-12-01

    Full Text Available In order to identify the density and abundance of weeds in irrigated wheat fields of Ardabil Province, 76 samples of irrigated wheat fields based on cultivation area from all counties of Ardabil province for six years (2001-2006 were selected. The genus and species of weeds from each sampling fields and their population indices density, frequency and uniformity of each species were calculated by using Thomas method. Geographic coordinates of field (Latitude, Altitude and Elevation were the main coverage and were determined by using GPS. These data were used for producing weed maps using GIS in irrigated wheat fields of Ardabil province. Results showed that bedstraw (Galium tricurnatum, Fumitory(Fumaria vaillantiand wildradish (Raphanus raphanistrum were dominant broad leaf weed species and wild oats (Avena fatua, rye (Secale cereal and mouse foxtail(Alopecurus myosuroides dominant grassy weeds species in irrigated wheat fields of Ardabil province. Bindweed (Convolvulus arvensis, Canada thistle(Cirsium arvenseand Acroptilon repens were the most important disturbing plants prior to harvesting in irrigated wheat fields of Ardabil province.

  13. Effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame (Sesamum indicum

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame, an experiment was conducted at experimental station, college of agriculture, Ferdowsi University of Mashhad. Four different irrigation intervals (one, two, three and four weeks with four plant densities (20, 30, 40 and 50 plants/m2 were compared in a spilt plot arrangement based on randomized complete block design with four replications. Irrigation intervals and plant densities allocated in main plots and subplots, respectively. Different characteristics such as plant height, distance of first capsule from soil surface, number of branches per plant, number of grains per capsule, number of capsules per plant, grain yield, 1000-seed weight, harvest index and oil yield were recorded. The results showed that there were no significant difference between different irrigation intervals in terms of distance of first capsule from soil surface, number of grains per capsule, 1000-seed weight and harvest index. Different irrigation intervals had significant effects on plant height, number of branches per plant, number of capsules per plant, grain yield and oil yield. There were significant differences between different plant densities in terms of distance of first capsule from soil surface, number of branches per plant, number of graines per capsule, number of capsules per plant, grain yield, harvest index and oil yield. The highest grain yield (798/7 kg/ha and oil yield (412/8 kg/ha were obtained at one week and four weeks irrigation intervals, respectively. Between all treatments, 50 plants/m2 and one week irrigation interval produced the highest grain yield (914/7 kg/ha and oil yield (478/6 kg/ha. Because of shortage of water in Mashhad condition, the results recommended that, 50 plants/m2 and two weeks irrigation interval produced rather acceptable grain yield, with less water consumption.

  14. Effect of Zeolite Rates and Irrigation Management on Some Properties of Saffron Corms

    Directory of Open Access Journals (Sweden)

    Abbas Khashei Siuki

    2016-11-01

    Full Text Available Saffron (Crocus sativus L. is a subtropical and valuable crop which is reproduced by corms. Due to the importance of corm weight in saffron yield, it is important to study the different factors that affect yield such as drought stress. For this purpose, this research was conducted as a factorial design based on completely randomized design (CRD in the Agricultural Research Station of the University of Birjand during the period 2013-2015. The treatments consisted of Zeolite at four rates (0: Z0, 0.5: Z1, 1: Z2 and 2: Z3 as weight percentage and irrigation management at three levels (traditional: I1, deficit irrigation as 70% moisture depletion: I2 and full irrigation: I3 with three replications. The results showed that zeolite rates has a significant effect on corm weight, number of corms less than 2gr, number of 6-8gr corms and number of replacement corms (P≤0.01. Irrigation management also has a significant effect on corm weight (P≤0.01, number of corms 6-8gr and number of replacement corms (P≤0.05. The treatments with no zeolite amended (Z0I1, Z0I2 and Z0I3 showed a reduction in corm weight compared to Z3I3 (P≤0.05. Z3I3, Z3I2 and Z3I3 showed an increase in the number of replacement corms while Z0I1 and Z0I2 had the least number of replacement corms. In conclusion, Z2I1 is recommended as the best treatment by considering the reduction in zeolite and water used, which increased corm weight by 26.64%, 23.88% and 17.81% compared to Z0I1, Z0I2 and Z0I3, respectively.

  15. Irrigation-water quality during 1976 irrigation season in the Sulphur Creek basin, Yakima and Benton counties, Washington

    Science.gov (United States)

    Boucher, P.R.; Fretwell, M.O.

    1982-01-01

    A water-quality-sampling network was designed for the Sulphur Creek basin to observe the effects of farming practices on irrigation. Sediment and nutrient yield, discharge, and water temperature data were collected during the 1976 irrigation season and the following fall and winter. The suspended-sediment yield of the basin during this period was 2.0 tons per acre of irrigated cropland. Only about 3% of the net outflow of sediment occurred during the nonirrigation season. The yield computed by subbasin ranged from 0.7 to 7 tons per acre, depending mainly on land slope, but a high percentage of orchard land in the subbasins was probably also significant in reducing loads. Nutrient outflows during the study period were 1,180,000 pounds of nitrogen and 120,000 pounds of phosphorous. Nitrate-plus-nitrite represent 70% of the nitrogen outflow in the irrigation season and 84% in the nonirrigation season. The monitoring network was discontinued at the end of the study period, due largely to insufficient farmer participation. Network sensitivity in the control subbasins was inadequate to detect the effects of a planned demonstration program of best management practices. (USGS)

  16. EFFECTS OF IRRIGATION WATER QUALITY (DIFFERENT SALINITY LEVELS AND BORON CONCENTRATIONS ON MORPHOLOGICAL CHARACTERISTICS OF GRAFTED AND NON-GRAFTED EGGPLANTS

    Directory of Open Access Journals (Sweden)

    İsmail Taş

    2016-07-01

    Full Text Available High yield cultivars with quite high resistance against pests and diseases, irrigation water salinity and deficit irrigation conditions are significant in plant production activities. Researches have been conducted also to improve the resistance of available cultivars. Since 1990s, researchers have tried to use low quality irrigation waters just because of deficit water resources and current trends in global warming and climate change. The basic target in all these researches is to reduce production costs and to improve quality and yields. Availability of low quality irrigation waters is a basic component of sustainable agricultural production. The present study was conducted in 40 liter pots under greenhouse conditions. Grafted and non-grafted eggplant seedlings were planted into these pots. Then, plants were irrigated with irrigations waters with different salinity levels (0.25, 1, 1.5, 2, 4, 6, 10 and 15 dS/m and boron concentrations (0, 1, 2, 4, 8, 16, 32 and 64 ppm. In this way, effects of different irrigation water qualities on plant morphological characteristics were investigated.

  17. The effects of bud load and regulated deficit irrigation on sugar, organic acid, phenolic compounds and antioxidant activity of Razakı table grape berries

    Directory of Open Access Journals (Sweden)

    Tangolar Semih

    2015-01-01

    Full Text Available This study aims at assessing the effects of increased bud load and irrigation applications on berry quality of the Razakı table grape. Two Regulated Deficit Irrigation (RDI having different irrigation levels (RDI-I and RDI-II based on the growth stages, in addition to a non-irrigated control treatment together with two different bud load practices (K-normal and 2K-two-fold buds of the normal were examined for their effects on quality attributes such as sugar and organic acids contents, phenolic compounds as well as antioxidant capacity of the berries. The non-irrigated vines had highest sugar level (198.86 g/kg in the first year (2013 of the experiment whilst the sugar content of the berries was increased with irrigation (RDI-II in 2014. However the highest organic acid (7.10 g/kg was recorded from the RDI-II treatment in 2013 whereas those of from non-irrigated vines were highest (7.81 g/kg in 2014. Considering the sugar and organic acid content of the berries, bud load effects were not significant. The total phenolic acids were higher under non-irrigated and 2K bud load conditions. Antioxidant activity of berries was increased with RDI-I irrigation and 2K practices in the first year (2013 although no significant effect was recorded in the second year of the experiment. In all applications, glucose among the sugars, tartaric acid among the organic acids, catechin and epicatechin among the phenolic compounds were detected to be higher compared to other components in berries.

  18. Effect of Irrigation Intervalsand Plantingdate on Agronomic Characteristics of Degen and Drfi (Securiger securidaca L. in Birjand Region

    Directory of Open Access Journals (Sweden)

    h Tabiei

    2014-07-01

    Full Text Available Degen & Drfiis a plant that has medicinal and nutritional importance. Degen&Drfi and countless of plants in this genus had application for medicinal uses such as weight loss and diabetes control. Its seeds also contain protein and lipids as well as some starchy foods are consumed. In order to investigate the effect of irrigation regime and planting date on agronomic characteristics of Degen&Drfi a field experiment carried out in region of kahi, Birjand, south khorasan, Iran, 2010. The experiment was conducted in split plot design in a randomized complete block with four replications. Irrigation regime, including: six, twelve and eighteen days' intervals as main factors and planting Date at four levels (20, 25, 30 April, and5 May were devoted to sub-plots. Analysis of variance showed that irrigation regime for all treatment, had more significant influence on trait including plant height, number of pods per plant, seeds per pod, biomass, grain yield and harvest index, and had significant influence the yield of flowers per plant and weight seed. The highest amounts of each trait were gained from 12 days interval irrigation. The effect of planting date was significant all treatment for all traits except 1000-seed weight. Planting in 20 April had highest values of characteristics. Interaction between irrigation and planting date were significant for number of stems, flowers and pods per plant, biomass, harvest index and grain yield at 1% and plant height at 5% level. The highest seed yield was obtained from irrigation in 12 days interval and planting in the 20 April. Results showed that irrigation in 12 days interval and planting especially in late April are the best treatment forDegen&Drfi production.

  19. Design of a pot experiment to study the effect of irrigation with ...

    African Journals Online (AJOL)

    Due to the intensification of environmental legislation, the wine industry is expected to find solutions for the treatment or re-use of winery wastewater. The objective of the study was to design and evaluate a pot experiment for determining the effects of irrigation with diluted winery wastewater on different soils.

  20. Effects of limited irrigation on yield and water use efficiency of two ...

    African Journals Online (AJOL)

    The effects of irrigation on grain yield and water use efficiency was studied on two sequence replaced dryland winter wheat (Triticum aestivum L.) cultivars, Changwu 135 (CW, a new cultivar) and Pingliang 40 (PL, an old cultivar). Field experiments were carried out on Changwu country on Loess Plateau, China. Whereas ...

  1. Are existing irrigation salinity leaching requirement guidelines overly conservative or obsolete?

    Science.gov (United States)

    Water scarcity and increased frequency of drought, resulting from erratic weather attributable to climatic change or alterations in historical weather patterns, have caused greater scrutiny of irrigated agriculture’s demand on water resources. The traditional guidelines for the calculation of the c...

  2. [Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China].

    Science.gov (United States)

    Huang, Zhi-gang; Wang, Xiao-li; Xiao, Ye; Yang, Fei; Wang, Chen-xi

    2015-01-01

    Based on meteorological data from China national weather stations and climate scenario grid data through regional climate model provided by National Climate Center, rice water requirement was calculated by using McCloud model and Penman-Monteith model combined with crop coefficient approach. Then the rice irrigation water requirement was estimated by water balance model, and the changes of rice water requirement were analyzed. The results indicated that either in historical period or in climate scenario, rice irrigation water requirement contour lines during the whole growth period and Lmid period decreased along southwest to northeast, and the same irrigation water requirement contour line moved north with decade alternation. Rice irrigation water requirement during the whole growth period increased fluctuantly with decade alternation at 44.2 mm . 10 a-1 in historical period and 19.9 mm . 10 a-1 in climate scenario. The increase in rice irrigation water requirement during the Lmid period with decade alternation was significant in historical period, but not significant in climate scenario. Contribution rate of climate change to rice irrigation water requirement would be fluctuantly increased with decade alternation in climate scenario. Compared with 1970s, contribution rates of climate change to rice irrigation water requirement were 23.6% in 2000s and 34.4% in 2040s, which increased 14.8 x 10(8) m3 irrigation water in 2000s and would increase 21.2 x 10(8) m3 irrigation water in 2040s.

  3. Short communication. Effect of deficit irrigation on curly lettuce grown under semiarid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kuslu, Y.; Dursun, A.; Sahin, U.; Kiziloglu, F. M.; Turan, M.

    2008-07-01

    Field experiments were conducted to characterize the effects of deficit irrigation on curly lettuce (Lactuca sativa var. Crispa cv. Bohemia) evapotranspiration, water use efficiency, marketable yield, yield components and mineral contents. The experiments were performed under semiarid climatic conditions in Erzurum province (east of Turkey) in the summer periods of 2005 and 2006. Irrigation water levels were selected to be 100% of usable soil water in full irrigation treatment (control) (T-100) and 80%, 60%, 40% and 20% of usable soil water in deficit irrigation treatments (T-80, T-60, T-40 and T- 20, respectively). Average seasonal evapotranspiration was 232 mm in T-100 and 121 mm in T-20. Average marketable yield was 39.49 Mg ha{sup -}1 in T-100 and 14.57 Mg ha{sup -}1 in T-20. A linear relationship (y=0.23x-13.97; R{sup 2}0.94) was found between seasonal evapotranspiration (x) and marketable plant yield (y). According to the regression equation, the yield response factor (k{sub y}) was found to be 1.39, and the coefficient of determination 0.91. Average water use efficiency was 168.88 kg ha{sup -}1 mm{sup -}1 in T-100 and 117.39 kg ha{sup -}1 mm{sup -}1 in T-20. The lowest plant length, width, steam diameter, leaf number, macro and micro element content values were obtained for T-20 in both years. (Author) 21 refs.

  4. Grey mould development in greenhouse tomatoes under drip and furrow irrigation

    OpenAIRE

    Aissat , Kamel; Nicot , Philippe ,; Guechi , Abdelhadi; Bardin , Marc; Chibane , Mohamed

    2008-01-01

    Several methods can be used to provide water to plants in cropping systems where irrigation is necessary. For instance, drip irrigation has recently received much attention due to its advantages for water conservation. The type of irrigation can also impact the development of several pathogens responsible for soilborne diseases. Here, we studied the effect of drip irrigation and furrow irrigation on the development of grey mould, caused by the airborne fungus Botrytis cinerea, on tomato plant...

  5. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    decomposition rate in the plastic film mulched soil was significantly higher than that in the no plastic film mulched soil. 125 days after incubation, the recovery rates of cotton straw and alfalfa straw were 39.7% and 46.5% with saline water irrigation, 36.3% and 36.5% with brackish water irrigation, and 30.5% and 35.4% with CK, respectively. In conclusion, brackish water drip irrigation had a significant adverse effect on soil enzyme activities, which decreased soil microbial biomass, soil CO2 flux and soil organic matter decomposition, and subsequently deteriorated the soil biological characteristics in oasis farmland.

  6. ARS irrigation research priorities and projects-An update

    Science.gov (United States)

    The USDA Agricultural Research Service focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) Irrigation Scheduling Technologies for Water Productivity; 2) Water Productivity (WP) at Multiple Scales; 3) Irrigation Applicatio...

  7. Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone.

    Directory of Open Access Journals (Sweden)

    Chang Liu

    Full Text Available Continuous application of P fertilizers under different irrigation patterns can change soil phosphorus (P chemical behavior and increase soil P levels that are of environmental concern. To assess the effect of long-term different irrigation patterns on soil P fractions and availability, this study examined sequential changes in soil organic P and inorganic P from furrow irrigation (FI, surface drip irrigation (SUR, and subsurface drip irrigation (SDI in the brown soil zone (0-60 cm during 1998 to 2011. Analyses of soil P behavior showed that the levels of total P are frequently high on top soil layers. The total P (TP contents of the entire soil profiles under three irrigation treatments were 830.2-3180.1 mg/kg. The contents of available P (AP were 72.6-319.3 mg P/kg soil through soil profiles. The greatest TP and AP contents were obtained within the upper soil layers in FI. Results of Hedley's P fractionation indicate that HCl-P is a dominant form and the proportion to TP ranges from 29% to 43% in all three methods. The contents of various fractions of P were positively correlated with the levels of total carbon (TC, total inorganic carbon (TIC, and calcium (Ca, whereas the P fractions had negative correlation with pH in all soil samples. Regression models proved that NaHCO3-Po was an important factor in determining the amount of AP in FI. H2O-Po, NaHCO3-Po, and NaOH-Pi were related to available P values in SUR. NaHCO3-Po and NaOH-Po played important roles in SDI. The tomato yield under SUR was higher than SDI and FI. The difference of P availability was also controlled by the physicochemical soil properties under different irrigation schedule. SUR was a reasonable irrigation pattern to improve the utilization efficiency of water and fertilizer.

  8. The Temporal Variation of Leaf Water Potential in Pistachio under Irrigated and Non-Irrigated Conditions

    Directory of Open Access Journals (Sweden)

    Yusuf AYDIN

    2014-09-01

    Full Text Available The present study was carried out in the experimental field of Pistachio Research Institute on pistachio trees which has uzun variety that was 30 years old. The aim of this research was to determine the Leaf Water Potential (LWP of Pistacia vera L. under irrigated and non-irrigated conditions. In the study, the leaf water potential of pistachio was investigated under fully irrigated and non irrigated conditions. The leaf water potential values were measured one day before and after irrigation by using pressure chamber technique at the beginning, mid and end of irrigation season. According to the results obtained from measurements, the LWP value at the beginning of the irrigation season was -3.7 MPa at noon time due to relatively high temperature for both treatments. At the time of pre-dawn and sunset, this value increased and reached to - 1.6 MPa due to relatively low temperature. In general, the LWP values during the mid of irrigation season, in the irrigated treatments, reached to almost -2.5 MPa in the non-irrigated treatment and the value was measured as -3.68 MPa.

  9. The Immediate and Delayed Post-Debridement Effects on Tissue Bacterial Wound Counts of Hypochlorous Acid Versus Saline Irrigation in Chronic Wounds.

    Science.gov (United States)

    Hiebert, John M; Robson, Martin C

    2016-01-01

    Introduction: Wound debridement is considered essential in chronic wound management. Hypochlorous acid has been shown to be an effective agent in reducing wound bacterial counts in open wounds. Ultrasound-enabled wound debridement is an effective and efficient method of debridement. This study compared ultrasound irrigation with hypochlorous acid versus saline irrigation for wound debridement on pre- and postoperative wounds and determined regrowth of bacteria over 1 week period of time. Finally, the outcome of definitive wound closure of the clinically clean-appearing wounds was recorded. Methods: Seventeen consenting adult patients with chronic open wounds were randomly selected for study. The patients were randomly divided into the hypochlorous acid irrigation or saline irrigation group. All patients provided pre- and postoperative tissue samples for qualitative and quantitative bacteriology. For the time (7 days) between the debridement procedure and the definitive closure procedure, the wounds were dressed with a silver-impregnated dressing and a hydroconductive dressing. Results : Both types of irrigation in the ultrasonic system initially lowered the bacterial counts by 4 to 6 logs. However, by the time of definitive closure, the saline-irrigated wounds had bacterial counts back up to 10 5 whereas the hypochlorous acid-irrigated wounds remained at 10 2 or fewer. More than 80% of patients in the saline group had postoperative closure failure compared with 25% of patients in the hypochlorous acid group. Conclusions: Hypochlorous acid irrigation with ultrasound debridement reduced bacterial growth in chronic open wounds more efficiently than saline alone. Postoperative wound closure outcomes suggest a remarkable reduction in wound complications after wound debridement using hypochlorous acid irrigation with ultrasound versus saline alone.

  10. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  11. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  12. The effects of drip line depths and irrigation levels on yield, quality ...

    African Journals Online (AJOL)

    sefer bozkurt

    2011-04-25

    Apr 25, 2011 ... yield, quality and water use characteristics of lettuce ... agriculture in greenhouse has increased in recent years. (Kadayifci et al., 2004). ... Well-managed subsurface drip irrigation (SDI) systems save water ... water was 1.486 dS m-1 and had no serious harmful effect on plant growth. .... Leaf areas (LA) were.

  13. Effect of regulated deficit irrigation on growth, flowering and physiological responses of potted Syringa meyeri ‘Palibin’

    Directory of Open Access Journals (Sweden)

    Michał Koniarski

    2014-01-01

    Full Text Available The aim of this study was to analyze the physiological and morphological response of Syringa meyeri ‘Palibin’ to different levels of irrigation and to evaluate regulated deficit irrigation (RDI as a possible technique for saving water in nursery production and promoting of flowering. Plants were grown in 3 liter containers in an unheated greenhouse and were subjected to six irrigation treatments for 18 weeks from the be- ginning of June to mid-October 2011. A drip irrigation system was used. Irrigation treatments were established on the basis of evapotranspiration (ETp. Three constant irrigation treatments were used: 1 1 ETp; 2 0.75 ETp; 3 0.5 ETp, while the other three with irrigation varying between phases were as follows: 4 1–0.5–1; 5 1–0.25–1; and 6 0.5–1–0.5 ETp. The 0.75 ETp and 0.5 ETp irrigation regimes adversely affected the growth and visual quality index of plants as well as they resulted in reduced leaf conductance, transpiration, maximum quantum efficiency of photosystem II (Fv/Fm and CCI (chlorophyll content index. Plants grown under the 1–0.5–1 ETp regime had the same morphological parameters as plants grown under the 0.5 ETp treatment. A further reduction of water quantity supplied to plants in the 1–0.25–1 ETp regime resulted in further deterioration of the visual quality index of plants. In this study, the quality index of plants exposed to 0.5–1–0.5 ETp was similar to control plants (1 ETp. These plants were lower, more compact, and had smaller leaves than control plants. The irrigation regimes imposed in this study had no significant effect on the number of floral buds formed in relation to the control regime, except for 1–0.25–1 ETp where this number decreased.

  14. Irrigation and Rural Welfare: Implications of Schistosomiasis among ...

    African Journals Online (AJOL)

    This paper examines the effects of the prevalence of urinary schistosomiasis infection on the socio-economic health of irrigation farmers in the rural districts of Kazaure Area, Northern Nigeria. It first reviews some general consideration of irrigation environment and schistosomiasis, its major associated health problem.

  15. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  16. Effect of Limited Drip Irrigation Regime on Yield and Yield Components of Sesame under Mediterranean Conditions

    Directory of Open Access Journals (Sweden)

    Panayiota PAPASTYLIANOU

    2017-05-01

    Full Text Available Sesame is one of the most important oilseed crops in the world. Irrigation is of great importance to sesame production due to its positive effect on growth parameters. Although sesame has good drought tolerance compared with many other crops, it is particularly susceptible to drought damage during the seedling, flowering and seed filling stages and this can lead to yield loss. The aim of this study was to determine the response of sesame landraces to different irrigation applications during the 2015 growing season. The experiment was set up as a split plot design with three replicates, four main plots (irrigation treatments, designated as 100%, 75% 50% and 0 of the daily crop evapotranspiration and two sub-plots (sesame landraces, Limnos and Evros. Different characteristics such as plant height, number of seeds per capsule, and number of capsules per plant, seed yield, 1000-seed weight and % capsules without seeds, were recorded. The results indicated that all traits except 1000-seed weight were significantly affected by irrigation regimes. Plant height, shattering losses and number of capsules per plant decreased with increasing water shortage. Seed yield and number of seeds per capsule were less affected by irrigation level and showed higher values in the 50% of the daily crop evapotranspiration treatment. Limnos produced higher seed yield and number of seeds per capsule under all irrigation regimes. Evros showed higher plant height and shattering losses than Limnos. The results of this study suggest that sesame landraces can use water efficiently, are locally adapted and associated with traditional farming systems.

  17. Effect of irrigation techniques and strategies on water footprint of growing crops

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.

    2014-12-01

    Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation

  18. Effect of regulated deficit irrigation and crop load on the antioxidant compounds of peaches.

    Science.gov (United States)

    Buendía, Begoña; Allende, Ana; Nicolás, Emilio; Alarcón, Juan J; Gil, Maria I

    2008-05-28

    The use of regulated deficit irrigation (RDI) strategies is becoming a common practice in areas with low water availability. Little information is available about the effects of RDI on the antioxidant content of fruits. In this study, the influence of RDI on the content of vitamin C, phenolic compounds and carotenoids was investigated. Two irrigation strategies, fully irrigated (FI) and RDI, were compared at two levels of thinning, commercial and half of the commercial crop load. RDI strategies affected the content of vitamin C, phenolics and carotenoids of Flordastar peaches. RDI caused fruit peel stress lowering the content of vitamin C and carotenoids, while increasing the phenolic content, mainly anthocyanins and procyanidins. Fruit weight was the only quality index influenced by the crop load as it increased in FI fruits at low crop load. In general, fruits from commercial crop load had slightly higher content of antioxidants to fruits from low crop load, although these influences were only observed in the peel. Additionally, the influence of irrigation controlled by two sensors related to plant water level, maximum daily trunk shrinkage (MDS) and sap flow (SF) on the antioxidant constituents of peaches was evaluated. The response of the fruits to SF sensor was similar to that observed for RDI strategy. According to the tested water sensors, SF did not act as a good plant-based water indicator for use in irrigation scheduling, as it caused an increase in the content of phenolics, similar to that observed for fruits subjected to RDI. Therefore, selection of RDI strategies and plant water indicators should be taken into account as they affect the content of antioxidants of peaches.

  19. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  20. Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils

    NARCIS (Netherlands)

    Jalali, M.; Merikhpour, H.; Kaledhonkar, M.J.; Zee, van der S.E.A.T.M.

    2008-01-01

    Soil column studies were conducted with two soils to assess the effects of irrigation with wastewater on soil and groundwater quality. Upon the application of wastewater, exchange occurred between solution sodium (Na+) and exchangeable cations (Ca2+, Mg2+, K+), whereby these cations were released

  1. Effect of irrigation, intercrop and cultivar on agronomic and nutritional characteristics of quinoa

    Science.gov (United States)

    A field experiment was conducted to determine the effect of three irrigation regimes and three intercrop treatments on emergence, plant height, seed yield, protein and mineral concentration of two quinoa (Chenopodium quinoa) varieties. The experiment was carried out using a strip plot, randomized co...

  2. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    International Nuclear Information System (INIS)

    Condon, Laura E; Maxwell, Reed M

    2014-01-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater–surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity. (paper)

  3. Ghana - Agriculture - Irrigation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  4. The Reticulation Irrigation Scheme at Sankana, Upper West Region ...

    African Journals Online (AJOL)

    farmers utilizing the irrigation project are food secure. ... The effects of ... Often, lack of maintenance, bad management and financial difficulties decrease the ...... and Mushunje A. (2010), 'Analysis of Irrigation Development Post Fast Track Land ...

  5. Modeling Precipitating Tub (Settling Basin) For Reduction Sedimentation Effect in Irrigation Channel at Micro Hydro Power (Case Study At Gorontalo Province Irrigation Channel)

    OpenAIRE

    Arifin Matoka; Nadjamuddin H; Salama M; M. Arsyad T

    2016-01-01

    Potential irrigation channels widely in Indonesia and suitable for turbine type Plopeler Open Flume. From observation this sedimentation processes was effect on turbin and quality electric power generated. This study was determine the relationship effect of sedimentation on parameter MHP and modeling sedimentation basin to reduce its influence. The settling basin modeling into 3 design models and 2 codition,. MHP conditions in the rain without modeling with the data voltage dev...

  6. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    Science.gov (United States)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  7. Effects of Planting Dates, Irrigation Management and Cover Crops on Growth and Yield of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-08-01

    Full Text Available Introduction Saffron as a winter active plant with low water requirement is the most strategic medicinal plant in arid and semi-arid parts of Iran. This slow-growing plant has narrow leaves and no aerial stem, hence weeds can be overcome it. Moreover, because of its root and canopy structure an important part of different resources is not used by this low input crop. Therefore, the use of associated crops could be an effective way for increasing resources use efficiencies (Koocheki et al., 2016. Appropriate corm planting date is another important factor that affects saffron growth and yield. Results of some studies show that late spring is the best time for corm planting (Ghasemi-Rooshnavand, 2009; Koocheki et al., 2016. In addition, irrigation management has been evaluated in some studies, but irrigation immediately after corm planting has not been investigated previously. Therefore, the aim of this study was to investigate the effect of irrigation management, planting date and the use of some companion crops on flowering of saffron during two growth cycles. Materials and methods This experiment was carried out as a split-split plot experiment based on a Randomized Complete Block Design with three replications at Research Station, Ferdowsi University of Mashhad, Iran in 2009-2011. Experimental factors included: planting date of saffron as main factor (first of June, first of August and first of October, 2009, the irrigation management as sub factor (irrigation and no irrigation after each planting date and the companion crops as sub-sub factor [Persian clover (Trifolium resupinatum, Bitter vetch (Lathyrus sativus and control. Corm planting was done in 10×25 cm distances with 12 cm depth. In the second year irrigation was done again in the plots which were irrigated after planting in the first year at the same previous dates. Companion crops were sown after first flower picking (November, 2009, then their residue were returned to the soil in

  8. The effects of use self-propelled rain guns (typhone) in irrigation of corn (Zea mays L.)

    OpenAIRE

    Kresović, Branka; Dragičević, Vesna; Gajić, Boško; Tapanrova, Angelina; Pejić, Borivoje

    2012-01-01

    The aim of this study was to use results of experimental work to analyse effects of maize irrigation and to quantify basic parameters that are included into exploitation costs of a long-ranged self-propelled sprayer, so called typhoon sprinkler. The four-replicate trial was carried out according to a randomised block design in the experimental fields of the Maize Research Institute, Zemun Polje, during the 2002-2008 period. The irrigation was applied in all years but 2004 in which the precipi...

  9. Research progress of antagonistic interactions among root canal irrigations disease

    Directory of Open Access Journals (Sweden)

    Chen QU

    2013-07-01

    Full Text Available Root canal therapy is the most effective way to treat various pulposis and periapical disease. Simple mechanical apparatus can not clean root canal thoroughly, but may affect tight filling instead. It can achieve a satisfactory cleansing effect only when it is combined with a chemical solution. Irrigation fluid for root canal should possess the properties of tissue dissolution, antimicrobial, lubrication, and removal of smear layer. So far, no solution is able to fulfill all these functions. Therefore, a combined use of multiple irrigation solutions is suggested. It can not only achieve good effect in cleaning and disinfection, also it can lower the concentration of different solutions, thus reducing the side effects. Nevertheless, some experiments proved that antagonism existed among the chemicals used for irrigations. The purpose of present article is to review the antagonistic effect among the chemicals used for irrigation when they are used together for root canal treatment.

  10. Distribution of the root system of peach palm under drip irrigation

    Directory of Open Access Journals (Sweden)

    Adriano da Silva Lopes

    2014-07-01

    Full Text Available The incorporation of technologies has resulted in increased productivity and the more rational management of peach palm, with irrigation being an important tool for certain regions. Thus, studies leading to proper crop management are extremely important, such as the estimate of the effective depth of the root system, which is indispensable for proper irrigation management. The objective of this study was to evaluate the effects of different irrigation depths, as applied by drip irrigation, on the distribution of the root system of peach palm. This experiment was conducted in Ilha Solteira, São Paulo State, Brazil, with drip irrigation, with the two systems (flow of 0.0023 m3 h-1 consisting of four irrigation treatments corresponding to 0, 50, 100 and 150% of Class ‘A’ pan evaporation. After five years, an analysis of the Bactris gasipaes root system was performed at a distance of 0.0, 0.5 and 1.0 meters from the trunk, collecting sampling at two depths (0.0 to 0.3 m and 0.3 to 0.6 m via the auger method (volumetric analysis. We concluded that the effective depth of the root system used for irrigation management should be a maximum of 0.3 meters.

  11. Effect of strategic irrigation on infection of apple scab (Venturia inaequalis)

    DEFF Research Database (Denmark)

    Korsgaard, Maren

    2016-01-01

    Strategic irrigation is a method to prevent Apple scab (Venturia inaequalis). It is performed by irrigating the orchard floor in dry periods during spring, 24 hours before rain forecast. Irrigating the old leaves on the orchard floor will elicit the release of ascospores, but due to the dry trees...... and the dry weather, the ascospores dry out without causing infections. The method relies on the occurrence of dry periods during the period of primary infection from April to mid-June. Experiments were carried out at the University of Copenhagen and in an unsprayed Danish organic orchard in 2014 and 2015....... Apple scab on fruit and leaves was reduced by strategic irrigation in ‘Elshof’ at the University field in both years. In the organic orchard the strategic irrigation reduced the infection of leaves by apple scab and Elsinoe leaf and fruit spot in some cultivars and some years. Studies of the ejection...

  12. Evaluation of the Effect of Irrigation and Fertilization by Drip Fertigation on Tomato Yield and Water Use Efficiency in Greenhouse

    Directory of Open Access Journals (Sweden)

    Wang Xiukang

    2016-01-01

    Full Text Available The water shortage in China, particularly in Northwest China, is very serious. There is, therefore, great potential for improving the water use efficiency (WUE in agriculture, particularly in areas where the need for water is greatest. A two-season (2012 and 2013 study evaluated the effects of irrigation and fertilizer rate on tomato (Lycopersicum esculentum Mill., cv. “Jinpeng 10” growth, yield, and WUE. The fertilizer treatment significantly influenced plant height and stem diameter at 23 and 20 days after transplanting in 2012 and 2013, respectively. As individual factors, irrigation and fertilizer significantly affected the leaf expansion rate, but irrigation × fertilizer had no statistically significant effect on the leaf growth rate at 23 days after transplanting in 2012. Dry biomass accumulation was significantly influenced by fertilizer in both years, but there was no significant difference in irrigation treatment in 2012. Our study showed that an increased irrigation level increased the fruit yield of tomatoes and decreased the WUE. The fruit yield and WUE increased with the increased fertilizer rate. WUE was more sensitive to irrigation than to fertilization. An irrigation amount of 151 to 208 mm and a fertilizer amount of 454 to 461 kg·ha−1 (nitrogen fertilizer, 213.5–217 kg·ha−1; phosphate fertilizer, 106.7–108 kg·ha−1; and potassium fertilizer, 133.4–135.6 kg·ha−1 were recommended for the drip fertigation of tomatoes in greenhouse.

  13. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  14. Effects of Irrigation Levels on Growth Characteristics and Yield of Four Ecotypes of Sesame (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2015-09-01

    Full Text Available In order to study the effects of irrigation levels on growth criteria, yield components and seed yield of four ecotypes of sesame (Sesamum indicum L., a field experiment was conducted as factorial based on a randomized complete block design with three replications at the Agricultural Research Station, Ferdowsi University of Mashhad, during growing season 2010-2011. Three irrigation levels (2000, 3000 and 4000 m3 ha-1 and four ecotypes (Darab, Sabzevar, Kashmar and Kalat were allocated as treatments. Criteria such as leaf are index (LAI, dry matter (DM accumulation, yield components (branch number, capsule number, seed number and 1000-seed weight, biological yield and seed yield of sesame were measured, accordingly. Results indicated that the simple effects of irrigation levels and ecotypes were significant (p≤0.05 on yield and yield components of sesame. Interaction between irrigation levels and ecotypes for yield components, biological yield and seed yield were significant (p≤0.01. By increasing water level from 2000 to 4000 m3 ha-1 enhanced branch number, capsule number, seed number and 1000-seed weight up to 57, 55 and 36%, respectively. Seed yield of Kalat was higher than Darab, Sabzevar and Kashmar with 1, 7 and 11%, respectively. By enhancing irrigation from 2000 to 4000 m3.ha-1 seed yield of Darab, Sabzevar and Kashmar and Kalat increased with 15, 67T 62 and 34%, respectively. There was a positive and significant relationship between yield and yield components. The highest correlation coefficient was observed for 1000-seed weight (r=0.87**.

  15. Biochar enhances yield and quality of tomato under reduced irrigation

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Li, Guitong; Andersen, Mathias Neumann

    2014-01-01

    tBiochar is an amendment that can be used for enhancing soil water storage which may increase cropproductivity. The objective of this study was to investigate the effects of biochar on physiology, yield andquality of tomato under different irrigation regimes. From early flowering to fruit maturity...... stages, theplants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation(PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot waterholding capacity while in DI and PRD, 70% of FI was irrigated on either...... the whole or one side of the pots,respectively. In PRD, irrigation was switched between sides when the soil water content of the dry sidedecreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DIand PRD, which consequently improved physiology, yield, and quality...

  16. Evolution of Corn Transpiration and Leaf Water Potential During Sprinkler Irrigation

    OpenAIRE

    Martínez-Cob, Antonio; Fernández-Navajas, Julián; Durán, Víctor; Cavero Campo, José

    2009-01-01

    Corn (Zea mays L.) transpiration during daytime solid-set sprinkler irrigation was analyzed on two neighbouring subplots to determine the effect of the transpiration reduction on water application efficiency. During each irrigation event, one subplot was irrigated (moist treatment) while the other was not (dry treatment). Transpiration rates were determined at each subplot by the heat balance method (Dynamax Flow4 System) before, during and after the irrigations. During irri...

  17. Effects of limited irrigation on yield and water use efficiency of two ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... Although water deficit is unavoidable in the dry environment, studies have shown that judicious irrigation can to some extent counter the adverse effects on the deficit (Musick and. Dusek, 1980; Misra and ... soil organic carbon, 0.8 g•kg-1 total nitrogen, 37 mg•kg-1 alkaline hydrolysis and 4.58 mg•kg-1 ...

  18. Colostomy irrigation: results of 25 cases with particular reference to quality of life.

    Science.gov (United States)

    Karadağ, Ayişe; Menteş, B Bülent; Ayaz, Sultan

    2005-04-01

    The aim of this study was to document our results with colostomy irrigation with particular emphasis on the possible contribution of irrigation on quality of life. Colostomy irrigation is a useful method of achieving faecal continence in selected conditions, and may improve quality of life. When successful, irrigation offers a regular, predictable elimination pattern and only a small covering is needed for security between irrigations. The digestive disease quality of life questionnaire-15 (DDQ-15) and Short Form-36 were used to analyse quality of life before and 12 months after stomatherapy in a series of 25 irrigating patients with permanent end colostomies. During the same time period, 10 similar patients with left-end colostomies who also received counselling but did not consent to colostomy irrigation were also analysed for comparison. Colostomy irrigation was found to be effective for achieving faecal continence in selected patients with end colostomies with no complications or significant side-effects, The digestive disease quality of life questionnaire-15 score improved significantly in both groups after stomatherapy (P colostomy irrigation can be a useful method of achieving faecal continence in selected conditions, it is safe, and it may help improve many aspects of quality of life. Colostomy irrigation is free from complications and significant side-effects, and it may serve as a useful adjunct to conventional stomatherapy. Therefore, the enterostomal therapy nurse should assess the appropriateness of routine irrigation as a method of stoma management for patients with left-end colostomy.

  19. Effects of rootstocks and irrigation levels on grape quality of Vitis ...

    African Journals Online (AJOL)

    Moreover, T1 or T2 treatments caused an increase in TA, TP, AA, TSS, total sugar content, ash, and CIRG index values of grape samples in comparison to that of vines irrigated with T3, T4 and T5 levels. Grape quality response to irrigation levels was altered by rootstocks and quality of grapes harvested from vines grafted on ...

  20. Effect of polyethylene and organic mulches in different intervals of irrigation on morphological characteristics and grain yield of sunflower (Helianthus annus L.

    Directory of Open Access Journals (Sweden)

    R. Mahdipour Afra

    2016-05-01

    Full Text Available In order to investigate the effects of polyethylene and organic mulches in different Irrigation intervals on morphological characteristics and seed grain of sunflower (Helianthus annus L. hybrid Azrgol, an experiment was conducted in split-plot design based on randomized complete blocks with three replications at research farm of college of Aboureihan, University of Tehran during year of 2009. Main factor was three irrigation interval including of 7, 12 and 17 days and sub-factors were treatments without mulch as control and different types of mulch (polyethylene, cow manure including of 8.5 t.ha-1,17 t.ha-1, 25 t.ha-1, wheat stubble mulch in three levels of 2.5, 5.5 and 7.5 t.ha-1. Plant height, head diameter, seed number in each head, 1000-seed weight, seed yield, oil yield, harvest index were investigated. The results indicated that the effect of irrigation period and the effect of mulches for all measured traits were significant. Highest seed yield with average of 2.965 t.ha-1 was obtained from 7 days irrigation and also polyethylene mulch and stubble mulch level three in different irrigation periods, had the highest yield. The overall results showed that, using mulches by reducing irrigation water use can increases the quality and quantity seed yield. Regarding the results of the study and non-toxic effects of stubble mulches in agriculture, we suggest their usage.

  1. Effect of irrigation fluid temperature on body temperature during arthroscopic elbow surgery in dogs.

    Science.gov (United States)

    Thompson, K R; MacFarlane, P D

    2013-01-01

    This prospective randomised clinical trial evaluated the effect of warmed irrigation fluid on body temperature in anaesthetised dogs undergoing arthroscopic elbow surgery. Nineteen dogs undergoing elbow arthroscopy were included in the study and were randomly allocated to one of two groups. Group RT received irrigation fluid at room temperature (RT) while dogs in group W received warmed (W) irrigation fluid (36°C). A standardised patient management and anaesthetic protocol was used and body temperature was measured at four time points; (T1) pre-anaesthetic examination, (T2) arrival into theatre, (T3) end of surgery and (T4) arrival into recovery. There was no significant difference in body temperature at any time point between the groups. The mean overall decrease in body temperature between pre-anaesthetic examination (T1) and return to the recovery suite (T4) was significant in both groups, with a fall of 1.06±0.58°C (pdogs were hypothermic (temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses.

  2. Response of Silybum marianum plant to irrigation intervals combined with fertilization

    Directory of Open Access Journals (Sweden)

    SABER F. HENDAWY

    2013-05-01

    Full Text Available Hendawy SF, Hussein MS, Youssef AA, El-Mergawi RA. 2013. Response of Silybum marianum plant to irrigation intervals combined with fertilization. Nusantara Bioscience 5: 21-28. This study was investigated to evaluate the influence of different kinds of organic and bio fertilization under different irrigation intervals on the growth, production and chemical constituents of Sylibium marianum plant. Data indicated that all studied growth and yield characters were significantly affected by the duration of irrigation intervals. Fertilizer treatments had a primitive effect on growth and yield characters. The interaction between irrigation intervals and fertilizer treatments has a clear considerable effect on growth and yield characters. The obtained results indicated the favorable effect of organic and bio fertilizers which reduce the harmful effect of water stress. Different treatments had a pronounced effect on silymarin content.

  3. Irrigation Requirement Estimation using MODIS Vegetation Indices and Inverse Biophysical Modeling; A Case Study for Oran, Algeria

    Science.gov (United States)

    Bounoua, L.; Imhoff, M.L.; Franks, S.

    2008-01-01

    Human demand for food influences the water cycle through diversion and extraction of fresh water needed to support agriculture. Future population growth and economic development alone will substantially increase water demand and much of it for agricultural uses. For many semi-arid lands, socio-economic shifts are likely to exacerbate changes in climate as a driver of future water supply and demand. For these areas in particular, where the balance between water supply and demand is fragile, variations in regional climate can have potentially predictable effect on agricultural production. Satellite data and biophysically-based models provide a powerful method to quantify the interactions between local climate, plant growth and water resource requirements. In irrigated agricultural lands, satellite observations indicate high vegetation density while the precipitation amount indicates otherwise. This inconsistency between the observed precipitation and the observed canopy leaf density triggers the possibility that the observed high leaf density is due to an alternate source of water, irrigation. We explore an inverse process approach using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), climatological data, and the NASA's Simple Biosphere model, SiB2, to quantitatively assess water demand in a semi-arid agricultural land by constraining the carbon and water cycles modeled under both equilibrium (balance between vegetation and prevailing local climate) and nonequilibrium (water added through irrigation) conditions. We postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. We added water using two distribution methods: The first method adds water on top of the canopy and is a proxy for the traditional spray irrigation. The second method allows water to be applied directly into the soil layer and serves as proxy for drip irrigation. Our approach indicates that over

  4. Field trials show the fertilizer value of nitrogen in irrigation water

    Directory of Open Access Journals (Sweden)

    Mike Cahn

    2017-04-01

    Full Text Available Increased regulatory activity designed to protect groundwater from degradation by nitrate-nitrogen (NO3-N is focusing attention on the efficiency of agricultural use of nitrogen (N. One area drawing scrutiny is the way in which growers consider the NO3-N concentration of irrigation water when determining N fertilizer rates. Four drip-irrigated field studies were conducted in the Salinas Valley evaluating the impact of irrigation water NO3-N concentration and irrigation efficiency on the N uptake efficiency of lettuce and broccoli crops. Irrigation with water NO3-N concentrations from 2 to 45 milligrams per liter were compared with periodic fertigation of N fertilizer. The effect of irrigation efficiency was determined by comparing an efficient (110% to 120% of crop evapotranspiration, ETc and an inefficient (160% to 200% of ETc irrigation treatment. Across these trials, NO3-N from irrigation water was at least as efficiently used as fertilizer N; the uptake efficiency of irrigation water NO3-N averaged approximately 80%, and it was not affected by NO3-N concentration or irrigation efficiency.

  5. Effectiveness of four different final irrigation activation techniques on smear layer removal in curved root canals : a scanning electron microscopy study.

    Directory of Open Access Journals (Sweden)

    Puneet Ahuja

    2014-02-01

    Full Text Available The aim of this study was to assess the efficacy of apical negative pressure (ANP, manual dynamic agitation (MDA, passive ultrasonic irrigation (PUI and needle irrigation (NI as final irrigation activation techniques for smear layer removal in curved root canals.Mesiobuccal root canals of 80 freshly extracted maxillary first molars with curvatures ranging between 25° and 35° were used. A glide path with #08-15 K files was established before cleaning and shaping with Mtwo rotary instruments (VDW, Munich, Germany up to size 35/0.04 taper. During instrumentation, 1 ml of 2.5% NaOCl was used at each change of file. Samples were divided into 4 equal groups (n=20 according to the final irrigation activation technique: group 1, apical negative pressure (ANP (EndoVac; group 2, manual dynamic agitation (MDA; group 3, passive ultrasonic irrigation (PUI; and group 4, needle irrigation (NI. Root canals were split longitudinally and subjected to scanning electron microscopy. The presence of smear layer at coronal, middle and apical levels was evaluated by superimposing 300-μm square grid over the obtained photomicrographs using a four-score scale with X1,000 magnification.Amongst all the groups tested, ANP showed the overall best smear layer removal efficacy (p < 0.05. Removal of smear layer was least effective with the NI technique.ANP (EndoVac system can be used as the final irrigation activation technique for effective smear layer removal in curved root canals.

  6. Traditional Irrigation Management in Betmera-Hiwane, Ethiopia: The Main Peculiarities for the Persistence of Irrigation Practices

    Institute of Scientific and Technical Information of China (English)

    Solomon Habtu; Kitamura Yoshinobu

    2006-01-01

    Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C.,while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: the presence of communally constructed local rules, locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.

  7. Closed chamber globe stabilization and needle capsulorhexis using irrigation hand piece of bimanual irrigation and aspiration system

    Directory of Open Access Journals (Sweden)

    Rai Harminder K

    2005-08-01

    Full Text Available Abstract Background The prerequisites for a good capsulorhexis include a deep, well maintained anterior chamber, globe stabilization and globe manipulation. This helps to achieve a capsulorhexis of optimal size, shape and obtain the best possible position for a red glow under retroillumination. We report the use of irrigation handpiece of bimanual irrigation aspiration system to stabilize the globe, maintain a deep anterior chamber and manipulate the globe to a position of optimal red reflex during needle capsulorhexis in phacoemulsification. Methods Two side ports are made with 20 G MVR 'V' lance knife (Alcon, USA. The irrigation handpiece with irrigation on is introduced into the anterior chamber through one side port and the 26-G cystitome (made from 26-G needle is introduced through the other. The capsolurhexis is completed with the needle. Results Needle capsulorhexis with this technique was used in 30 cases of uncomplicated immature senile cataracts. 10 cases were done under peribulbar anaesthesia and 20 under topical anaesthesia. A complete capsulorhexis was achieved in all cases. Conclusion The irrigating handpiece maintains deep anterior chamber, stabilizes the globe, facilitates pupillary dilatation, and helps in maintaining the eye in the position with optimal red reflex during needle capsulorhexis. This technique is a safe and effective way to perform needle capsulorhexis.

  8. Water quality, pesticide occurrence, and effects of irrigation with reclaimed water at golf courses in Florida

    Science.gov (United States)

    Swancar, Amy

    1996-01-01

    Reuse of treated wastewater for golf course irrigation is an increasingly popular water management option in Florida, where growth has put stress on potable water supplies. Surface water, ground water, and irrigation water were sampled at three pairs of golf courses quarterly for one year to determine if pesticides were present, and the effect of irrigation with treated effluent on ground-water quality, with an emphasis on interactions of effluent with pesticides. In addition to the six paired golf courses, which were in central Florida, ground water was sampled for pesticides and other constituents at three more golf courses in other parts of the State. This study was the first to analyze water samples from Florida golf courses for a broad range of pesticides. Statistical methods based on the percentage of data above detection limits were used to determine the effects of irrigation with reclaimed water on ground-water quality. Shallow ground water at golf courses irrigated with treated effluent has higher concentrations of chloride, lower concentrations of bicarbonate, and lower pH than ground water at golf courses irrigated with water from carbonate aquifers. There were no statistically significant differences in nutrient concentrations in ground water between paired golf courses grouped by irrigation water type at a 95 percent confidence level. The number of wells where pesticides occurred was significantly higher at the paired golf courses using ground water for irrigation than at ones using reclaimed water. However, the limited occurrences of individual pesticides in ground water make it difficult to correlate differences in irrigation- water quality with pesticide migration to the water table. At some of the golf courses, increased pesticide occurrences may be associated with higher irrigation rates, the presence of well-drained soils, and shallow depths to the surficial aquifer. Pesticides used by golf courses for turf grass maintenance were detected in

  9. Gain-P: A new strategy to increase furrow irrigation efficiency

    International Nuclear Information System (INIS)

    Schmitz, G.H.; Wohling, T.; Paly, M. D.; Schutze, N.

    2007-01-01

    The new methodology GAIN-P combines Genetic Algorithms, Artificial Intelligence techniques and rigorous Process modeling for substantially improving irrigation efficiency. The new strategy simultaneously identifies optimal values of both scheduling and irrigation parameters for an entire growing season and can be applied to irrigation systems with adequate or deficit water supply. In this contribution, GAIN-P is applied to furrow irrigation tackling the more difficult subject of the more effective deficit irrigation. A physically -based hydrodynamic irrigation model is iteratively coupled with a 2D subsurface flow model for generating a database containing all realistically feasible scenarios of water application in furrow irrigation. It is used for training a problem-adapted artificial neural network based on self-organized maps, which in turn portrays the inverse solution of the hydrodynamic furrow irrigation model and thus enormously speeds up the overall performance of the complete optimization tool. Global optimization with genetic algorithm finds the schedule with maximum crop yield for the given water volume. The impact of different irrigation schedules on crop yield is calculated by the coupled furrow irrigation model which also simulates soil evaporation, precipitation and root water uptake by the plants over the whole growing seasons, as well as crop growth and yield. First results with the new optimization strategy show that GAIN-P has a high potential to increase irrigation efficiency. (author)

  10. Transitional Effects of Double-Lateral Drip Irrigation and Straw Mulch on Irrigation Water Consumption, Mineral Nutrition, Yield, and Storability of Sweet Cherry

    Science.gov (United States)

    A field trial was conducted on a Cherryhill silt loam soil at The Dalles, OR from 2006 through 2008. The impacts of switching from the traditional micro sprinkler irrigation (MS) to double-lateral drip irrigation (DD) and from no ground cover with herbicide control of weeds (NC) to in-row wheat (Tri...

  11. Effects of Different Irrigation Programs on Fruit, Trunk Growth Rates, Quality and Yield of Grapefruit Trees

    OpenAIRE

    KANBER, Rıza; KÖKSAL, Harun; YAZAR, Attila; ÖZEKİCİ, Bülent; ÖNDER, Sermet

    1999-01-01

    Long-term field experiments were carried out between 1985 and 1988 to determine the effect of different irrigation intervals and pan coefficients on the fruit and trunk growth rates and yield of mature grapefruit trees grown in the Eastern Mediterranean Region of Turkey in a medium-light textured soil. Two different irrigation intervals (I 1 =15 and I 2 =25 days), and pan coefficients (k 1 =0.60 and k 2 =1.00) were used. Higher evapotranspiration values were obtained from the treatments with ...

  12. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  13. Irrigation in endodontic treatment.

    Science.gov (United States)

    Basrani, Bettina

    2011-01-01

    The primary endodontic treatment goal is to optimize root canal disinfection and to prevent reinfection. Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal system. In this review of the literature, various irrigants and the interactions between irrigants are discussed and new delivery systems are introduced.

  14. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  15. Quixotic coupling between irrigation system and maize-cowpea ...

    African Journals Online (AJOL)

    A study was conducted at the Research and Experimental Station, Faculty of Agriculture, Ain Shams University at Shalakan, Kalubia Governorate, Egypt, to evaluate the effect of two irrigation systems (trickle and modified furrow irrigation) and five maize (M)-cowpea (C) intercropping patterns (sole M-30, sole M-15, ridge ...

  16. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured

  17. Effect of Timing of Potassium Application on Millet (Setaria italica Yield and Grain Protein Content in Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    A. Hayati

    2011-05-01

    Full Text Available The research on reducing the water consumption in conventional cropping system is one of the important strategies to improve the water use efficiency in agriculture. In order to investigate the effect of time of potassium application under different irrigation regimes on millet grain yield and protein percent, a field experiment was carried out in Agricultural Research Center of Yasuj, Iran, in 2009. The experiment was conducted as split plot design in a randomized complete blocks design with 3 replications. Irrigation regime included 7, 14 and 21-day intervals as main factor and sub-plots included time of potassium fertilizer application in four stages: planting, tillering, stem development and flowering. The results showed that the effect of irrigation interval was significant on 1000-seed weight, grain and biological yield, number of grains per spike, harvest index, protein content, and chlorophyll a, b and total of leaves. By increasing the irrigation interval, all the above-mentioned traits decreased, except the protein percent that increased. The 1000-seed weight, grain and biological yield, harvest index and protein content were affected significantly by the time of potassium application. Maximum grain yield was obtained by interaction of 7- day irrigation interval and potassium application at the stem development stage. Maximum grain protein content was measured in potassium application at flowering stage. In general, increasing the irrigation interval, and subsequent water stress, reduced plant growth and yield components. Application of potassium fertilizer at early growth stages increased yield and yield components, while in reproductive stages increased seed quality.

  18. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    Science.gov (United States)

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  19. Development of High Resolution Data for Irrigated Area and Cropping Patterns in India

    Science.gov (United States)

    K a, A.; Mishra, V.

    2015-12-01

    Information of crop phenology and its individual effect on irrigation is essential to improve the simulation of land surface states and fluxes. We use moderate resolution imaging spectroradiometer (MODIS) - Normalized difference vegetation index (NDVI) at 250 m resolution for monitoring temporal changes in irrigation and cropping patterns in India. We used the obtained dataset of cropping pattern for quantifying the effect of irrigation on land surface states and fluxes by using an uncoupled land surface model. The cropping patterns are derived by using the planting, heading, harvesting, and growing dates for each agro-ecological zone separately. Moreover, we developed a high resolution irrigated area maps for the period of 1999-2014 for India. The high resolution irrigated area was compared with relatively coarse resolution (~ 10km) irrigated area from the Food and Agricultural Organization. To identify the seasonal effects we analyzed the spatial and temporal change of irrigation and cropping pattern for different temporal seasons. The new irrigation area information along with cropping pattern was used to study the water budget in India using the Noah Land surface Model (Noah LSM) for the period of 1999-2014.

  20. Global effect of irrigation and its impact on the onset of the Indian summer monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Guimberteau, Matthieu [Universite de Paris 6, Laboratoire de Meteorologie Dynamique, Paris Cedex 05 (France); Laval, Katia [Laboratoire de Meteorologie Dynamique, Paris (France); Perrier, Alain [UFR Physique de l' Environnement, AgroParisTech, Paris (France); Polcher, Jan [CNRS, Laboratoire de Meteorologie Dynamique, Paris (France)

    2012-09-15

    In a context of increased demand for food and of climate change, the water consumptions associated with the agricultural practice of irrigation focuses attention. In order to analyze the global influence of irrigation on the water cycle, the land surface model ORCHIDEE is coupled to the GCM LMDZ to simulate the impact of irrigation on climate. A 30-year simulation which takes into account irrigation is compared with a simulation which does not. Differences are usually not significant on average over all land surfaces but hydrological variables are significantly affected by irrigation over some of the main irrigated river basins. Significant impacts over the Mississippi river basin are shown to be contrasted between eastern and western regions. An increase in summer precipitation is simulated over the arid western region in association with enhanced evapotranspiration whereas a decrease in precipitation occurs over the wet eastern part of the basin. Over the Indian peninsula where irrigation is high during winter and spring, a delay of 6 days is found for the mean monsoon onset date when irrigation is activated, leading to a significant decrease in precipitation during May to July. Moreover, the higher decrease occurs in June when the water requirements by crops are maximum, exacerbating water scarcity in this region. A significant cooling of the land surfaces occurs during the period of high irrigation leading to a decrease of the land-sea heat contrast in June, which delays the monsoon onset. (orig.)

  1. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  2. The Effects of Different Irrigation Regimes on the Morphological and Physiological Characteristics of Three Soybean Cultivars (Glycine max

    Directory of Open Access Journals (Sweden)

    N. Razmi

    2013-11-01

    Full Text Available To study the effect of different irrigation regimes on morphological and physiological characteristics of soybean cultivars, this experiment was conducted at Moghan Agricultural Research Center during 2009-2010 in Iran. The experiment was split plot based on randomized complete block design, with 3 replications. The main plots consisted of four irrigation regimes: I1, I2, I3 and I4 indicating irrigation after 60, 100, 140 and 180 mm evaporation from class A pan respectively and 3 soybean cultivars named Linford, L17 and Williams assigned in the sub plots. Results of combined analysis showed that with increasing irrigation intervals from I1 to I4 reduced growth period, plant height and leaf area index (LAI, number of nodes, branches and internodes significantly. Physiologic characteristics such as chlorophyll contain of leaves and relative water content (RWC were also affected by irrigation regimes. LAI in I1 was 4.94 reduced inI4to 3.70.Plant height of soybean cultivars were declined by 21% in I4 (irrigation after 180 mm evaporation as compared to I1 (irrigation after 60 mm evaporation. Soluble proline content of the leaves and electric conduction (EC on the other hand increases significantly. There was significant differences among cultivars concerning the vegetative and physiological characteristics. Willams and L17 cultivars produced the highest numbers of nodes (15.5 and internode length (4.95cm receptivity. The maximum proline content (65.6 µmol/F.W and relative water content (67.65% belonged to Linford cultivar. Interaction of irrigation regimes and cultivars was significant on plant hieght, LAI and proline content. Linford cultivar had more soluble proline under water limited condition and maintained higher LAI and plant height in I4 treatment as compared other treatments.

  3. Effect of Instrumentation Techniques, Irrigant Solutions and Artificial accelerated Aging on Fiberglass Post Bond Strength to Intraradicular Dentin.

    Science.gov (United States)

    Santana, Fernanda Ribeiro; Soares, Carlos José; Silva, Júlio Almeida; Alencar, Ana Helena Gonçalves; Renovato, Sara Rodrigues; Lopes, Lawrence Gonzaga; Estrela, Carlos

    2015-07-01

    To evaluate the effect of instrumentation techniques, irrigant solutions and specimen aging on fiberglass posts bond strength to intraradicular dentine. A total of 120 bovine teeth were prepared and randomized into control and experimental groups resulting from three study factors (instrumentation techniques, irrigant solutions, specimen aging). Posts were cemented with RelyX U100. Samples were submitted to push-out test and failure mode was evaluated under a confocal microscope. In specimens submitted to water artificial aging, nickel-titanium rotary instruments group presented higher bond strength values in apical third irrigated with NaOCl or chlorhexi-dine. Irrigation with NaOCl resulted in higher bond strength than ozonated water. Artificial aging resulted in significant bond strength increase. Adhesive cement-dentin failure was prevalent in all the groups. Root canal preparation with NiTi instruments associated with NaOCl irrigation and ethylenediaminetetra acetic acid (EDTA) increased bond strength of fiberglass posts cemented with self-adhesive resin cement to intraradicular dentine. Water artificial aging significantly increased post-Clinical significance: The understanding of factors that may influence the optimal bond between post-cement and cement-dentin are essential to the success of endodontically treated tooth restoration.

  4. Effects of different irrigation regimes on fruit production, oil quality, water use efficiency and agronomic nitrogen use efficiency of pumpkin

    Directory of Open Access Journals (Sweden)

    Javad Hamzei

    2016-05-01

    Full Text Available Effect of different irrigation regimes and nitrogen fertilizer on percentage of grain fatty acids, yield, water and nitrogen use efficiency of pumpkin was studies as split plot based on complete randomized block design with three replications in growing season of 2013. Irrigation treatments (320, 420, 600 and 900 mm ha-1 were se as main plots and nitrogen fertilizer (0, 130, 260, 390 and 520 kg urea ha-1 were allocated in subplots. The effect of irrigation and nitrogen on all traits was significant. Also, interaction of irrigation × nitrogen had significant effect on all traits except WUE and NUE. The Highest values of linoleic fatty acid (33.99%, fruit yield (4.40 kg m-2, grain yield (1.53 kg m-2 and agronomic nitrogen use efficiency (32.27 kg fruit/kg urea were achieved at consumption of 600 mm water ha-1 and application of 390 kg urea ha-1. The highest water use efficiency for fruit and grain yield; 56.61 and 1.10 kg mm-1, were revealed at 600 mm irrigation water ha-1. Between nitrogen levels, maximum and minimum WUE for fruit and grain yield were achieved at 390 kg urea and non application of urea treatments, respectively. Also, maximum agronomic nitrogen efficiency belonged to 390 kg urea and minimum this trait with 33 reductions was revealed at 520 kg urea. Based on the results of this research and with considering of water and nitrogen use efficiency, irrigation of pumpkin plants with 600 mm water ha-1 and consumption of 390 kg urea ha-1 was identified as a suitable treatment.

  5. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  6. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  7. Survey of Endodontic Irrigants Used by Dentists With Varying Years of Professional Experience

    Directory of Open Access Journals (Sweden)

    Sharkov Nikolai

    2018-03-01

    Full Text Available Background/Aim: The aim of the present study was to describe the use of irrigants by dentists in Bulgaria in relation to their years of professional experience. Material and Methods: The data were collected with the help of a questionnaire. The survey included questions concerning frequency of irrigants applied, their respective concentrations, as well as spectrum of disinfectants used in endodontics. In addition, information about respondents’ age, years of professional experience, gender, and main areas of continuing education was collected. The statistical analysis was performed with the help of IBM SPSS Statistics 22.0. Results: 219 replies were analysed (response rate 27,3%. The majority of the respondents (31.1% had 21 to 30 years of professional experience. 18.7% had over 30 years. Most of the practitioners reported their continuing education to be in the area of general dentistry - 52%, while about 1.2 % had specialised in endodontics. Dentists with long-standing professional experience use predominantly H2O2 - 78%. Dentists with least experience use 17% EDTA - 53.6%. No significant differences were established for the use of sodium hypochlorite and 2% chlorhexidine. 82% of the respondents use conventional needle 27G for intracanal irrigation; 60% never use ultrasonic irrigation. Conclusions: The analysis of the usage of irrigants shows that many general dental practitioners do not follow the quality recommended protocols for endodontic irrigation protocols.

  8. The fluid mechanics of root canal irrigation.

    Science.gov (United States)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-12-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  9. The fluid mechanics of root canal irrigation

    International Nuclear Information System (INIS)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-01-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  10. Design of a pot experiment to study the effect of irrigation with ...

    African Journals Online (AJOL)

    Municipal water was used to irrigate the control treatment of each soil. .... experiment. RESULTS AND DISCUSSION. Since only ... deeper horizons were considered to be irrelevant. With the ... irrigation water uniformly over the soil surface, the four micro- .... of selected vineyard soils and a critical assessment of methods to.

  11. The Effect of Initial Irrigation Conditions on Heap Leaching Efficiency

    Science.gov (United States)

    Briseño Arellano, A. D.; Milczarek, M.; Yao, M.; Brusseau, M. L. L.

    2017-12-01

    Heap leaching is an unsaturated flow metal recovery process, in which mined ore is irrigated with a lixiviant to dissolve metal contained in the ore. The metal is then extracted from solution. Large scale operations involve stacking ore to depths of 6 to 18 meters on pads that may be hundreds of hectares in area. Heterogeneities within the stacked ore can lead to uneven wetting and the formation of preferential flow pathways, which reduces solution contact and lowers metal recovery. Furthermore, mineral dissolution can cause alteration of the porous media structure and loss of ore permeability. Many mine operators believe that slow initial irrigation rates help minimize permeability loss and increase metal recovery rates. However, this phenomenon has not been studied in detail. Experiments were conducted to investigate the effect of varying initial irrigation rates on leach ore stability. These were conducted with large columns (1.5 m high, 0.5 m in diameter) packed with crushed ore samples that are known to have permeability constraints. The columns were highly instrumented to assess potential changes in material properties both spatially and temporally. Water content was measured with three different methods: capacitance soil moisture sensors placed at 20-cm intervals; a neutron probe to periodically log every 30 cm from four different directions; and electrical resistivity sensors to create a 2-dimensional tomography profile of water content over time. Tensiometers were paired with the soil moisture sensors to measure matric suction and characterize moisture retention characteristics. A non-reactive tracer was used to characterize advective-dispersive transport under unsaturated conditions. A dye solution was introduced at the end of each experiment to map preferential pathways. Continuous monitoring of settling at the surface assisted in measuring consolidation and loss in permeability.

  12. Year-Round Irrigation Schedule for a Tomato–Maize Rotation System in Reservoir-Based Irrigation Schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Ephraim Sekyi-Annan

    2018-05-01

    Full Text Available Improving irrigation management in semi-arid regions of Sub-Saharan Africa is crucial to respond to increasing variability in rainfall and overcome deficits in current irrigation schemes. In small-scale and medium-scale reservoir-based irrigation schemes in the Upper East region of Ghana, we explored options for improving the traditional, dry season irrigation practices and assessed the potential for supplemental irrigation in the rainy season. The AquaCrop model was used to (i assess current water management in the typical tomato-maize rotational system; (ii develop an improved irrigation schedule for dry season cultivation of tomato; and (iii determine the requirement for supplemental irrigation of maize in the rainy season under different climate scenarios. The improved irrigation schedule for dry season tomato cultivation would result in a water saving of 130–1325 mm compared to traditional irrigation practices, accompanied by approximately a 4–14% increase in tomato yield. The supplemental irrigation of maize would require 107–126 mm of water in periods of low rainfall and frequent dry spells, and 88–105 mm in periods of high rainfall and rare dry spells. Therefore, year-round irrigated crop production may be feasible, using water saved during dry season tomato cultivation for supplemental irrigation of maize in the rainy season.

  13. Yield and water use efficiency of irrigated soybean in Vojvodina, Serbia

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2012-01-01

    Full Text Available Research was carried out at Rimski Šančevi experiment field of Institute of Field and Vegetable Crops in Novi Sad in the period 1993-2004. The experiment included an irrigated and non-irrigated control treatment. Irrigation water use efficiency (Iwue and evapotranspiration water use efficiency (ETwue were determined in order to assess the effectiveness of irrigation on soybean yield. The average yield increases of soybean due to irrigation practice was 0.82 t ha-1, ranging from 2.465 t ha-1 in years with limited precipitation and higher than average seasonal temperatures (2000 to 0 t ha-1 in rainy years (1996, 1997, 1999. Evapotranspiration water use efficiency (ETwue of soybean ranged from 0.11 kg m-3 to 1.36 kg m-3 with an average value of 0.66 kg m-3, while irrigation water use efficiency (Iwue varied from 0.11 kg m-3 to 1.04 kg m-3 with an average value of 0.56 kg m-3. Effect of irrigation on yield of soybean and results of both ETwue and Iwue which were similar to those obtained from the literature indicate that irrigation schedule of soybean in the study period was properly adapted to plant water requirements and water-physical soil properties. Determined values of ETwue and Iwue could be used for the planning, design and operation of irrigation systems, as well as for improving the production technology of soybean in the region.

  14. Experimental study of faecal continence and colostomy irrigation.

    Science.gov (United States)

    O'Bichere, A; Sibbons, P; Doré, C; Green, C; Phillips, R K

    2000-07-01

    Colostomy irrigation is a useful method of achieving faecal continence in selected conditions, but remains largely underutilized because it is time consuming. This study investigated the effect of modifying irrigation technique (route, infusion regimen and pharmacological manipulation) on colonic emptying time in a porcine model. An end-colostomy and caecostomy were fashioned in six pigs. Twenty markers were introduced into the caecum immediately before colonic irrigation. Irrigation route (antegrade or retrograde), infusion regimen (tap water, polyethylene glycol (PEG), 1.5 per cent glycine) and pharmacological agent (glyceryl trinitrate (GTN) 0.25 mg/kg, diltiazem 3.9 mg/kg, bisacodyl 0.25 mg/kg) were assigned to each animal at random. Colonic transit was assessed by quantifying cumulative expelled markers (CEM) and stool every hour for 12 h. Mean CEM at 6 h for bisacodyl, GTN and diltiazem were 18.17, 12.17 and zero respectively; all pairwise differences in means were significant (P irrigation. PEG and glycine enhance emptying similar to bisacodyl and GTN solution. These findings show promise for improved faecal continence by colostomy irrigation and may justify construction of a Malone conduit at the time of colostomy in selected patients who wish to irrigate. Presented in part to the British Society of Gastroenterology in Glasgow, UK, March 1999, and published in abstract form as Gut 1999; 44(Suppl 1): A135

  15. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  16. Fluctuation of blood pressure and pulse rate during colostomy irrigation.

    Science.gov (United States)

    Sadahiro, S; Noto, T; Tajima, T; Mitomi, T; Miyazaki, T; Numata, M

    1995-06-01

    The aim of this study was to determine the effects of colostomy irrigation on the vital signs of patients with left colostomy. Twenty-two consecutive patients who underwent abdominoperineal resection for cancer of the lower rectum and had left lower quadrant end colostomy were included in this study. Subjective symptoms, blood pressure, and pulse rate during the first irrigation were investigated. Fluctuation of blood pressure during instillation was 8.0/8.5 mmHg (average) and 25.0/17.9 mmHg during evacuation. Fluctuation of pulse rate was 5.5 per minute (average) during instillation and 11.5 per minute during evacuation. The number of subjects who showed more than 20% fluctuation of systolic pressure was 12 (54.5 percent) and that of diastolic pressure was 14 (63.6 percent). One of 22 patients complained of illness during irrigation. Although colostomy irrigation showed no significant effects on vital signs in the majority of patients, it caused a significant reduction in both blood pressure and pulse rate in a small number of patients. Careful attention should be paid to vital signs considering the possibility of such effects, especially on the initial irrigation.

  17. Effect of Regulated Deficit Irrigation (RDI and Partial Root zone Drying (PRD on Quantitative and Qualitative Traits of Strawberry

    Directory of Open Access Journals (Sweden)

    A. Shahnazari

    2016-02-01

    Full Text Available Introduction: Deficit irrigation (DI is a suitable solution to gain acceptable and economic performance by using minimum amount of water. The partial root zone drying (PRD method introduced in Australia for the first time and its goal was controlling the vine’s excessive growth. This goal gained by alternative drying the rootzone. Basically the theory of PRD method, is expanding the plant’s roots by applying alternative stress on different sides of the roots. So the plants with PRD irrigation method can have different root system in comparison with other irrigation methods. At this method the plant’s condition would be OK by uptaking water from wet side, and the roots at the dry side can release abscisic acid hormone which decrease the stomatal conductance and consequently the water use efficiency would be increase.There had been studies on the effect of water tension on strawberry. The previous studies on strawberry indicated that the water stress can increase the plant’s brix concentration and some of plant acids.The awareness of the impact of water deficit stress on strawberry plant quantity and quality is essential for irrigation and product management, and at the current study, effect of different deficit irrigation methods on quantitative and qualitative traits of strawberry have been evaluated. The focus at the current study was on the qualitative traits. Materials and Methods: The present study was conducted in one of strawberry farms of Babolsar city in 2012 to evaluate the effects of deficit irrigation and partial root zone drying on quantitative and qualitative traits of strawberry plants. Three Irrigation treatments were studied: Full Irrigation (FI, Regulated Deficit Irrigation (RDI75% at 75% level of plants water requirementand Partial Root zone Drying (PRD75% at 75% level of plants water requirement. The study was conducted in a randomized complete block design with three replications. Irrigation was continued until the

  18. A Fuzzy analytical hierarchy process approach in irrigation networks maintenance

    Science.gov (United States)

    Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi'i

    2017-11-01

    Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.

  19. Small private irrigation: Enhancing benefits and managing trade-offs

    NARCIS (Netherlands)

    Giordano, M.; Fraiture, de C.M.S.

    2014-01-01

    Millions of smallholder farmers in sub-Saharan Africa and South Asia benefit from readily available and affordable irrigation technologies. The rapid uptake of small private irrigation in South Asia had a proven positive effect on poverty alleviation. In sub-Saharan Africa similar trends are

  20. Wireless sensor networks for irrigation management

    Science.gov (United States)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  1. Climate, water use, and land surface transformation in an irrigation intensive watershed - streamflow responses from 1950 through 2010

    Science.gov (United States)

    Dale, Joseph; Zou, Chris B.; Andrews, William J.; Long, James M.; Liang, Ye; Qiao, Lei

    2015-01-01

    Climatic variability and land surface change have a wide range of effects on streamflow and are often difficult to separate. We analyzed long-term records of climate, land use and land cover, and re-constructed the water budget based on precipitation, groundwater levels, and water use from 1950 through 2010 in the Cimarron–Skeleton watershed and a portion of the Cimarron–Eagle Chief watershed in Oklahoma, an irrigation-intensive agricultural watershed in the Southern Great Plains, USA. Our results show that intensive irrigation through alluvial aquifer withdrawal modifies climatic feedback and alters streamflow response to precipitation. Increase in consumptive water use was associated with decreases in annual streamflow, while returning croplands to non-irrigated grasslands was associated with increases in streamflow. Along with groundwater withdrawal, anthropogenic-induced factors and activities contributed nearly half to the observed variability of annual streamflow. Streamflow was more responsive to precipitation during the period of intensive irrigation between 1965 and 1984 than the period of relatively lower water use between 1985 and 2010. The Cimarron River is transitioning from a historically flashy river to one that is more stable with a lower frequency of both high and low flow pulses, a higher baseflow, and an increased median flow due in part to the return of cropland to grassland. These results demonstrated the interrelationship among climate, land use, groundwater withdrawal and streamflow regime and the potential to design agricultural production systems and adjust irrigation to mitigate impact of increasing climate variability on streamflow in irrigation intensive agricultural watershed.

  2. Scintigraphic assessment of colostomy irrigation.

    Science.gov (United States)

    Christensen, P.; Olsen, N.; Krogh, K.; Laurberg, S.

    2002-09-01

    OBJECTIVE: This study aims to evaluate colonic transport following colostomy irrigation with a new scintigraphic technique. MATERIALS AND METHODS: To label the bowel contents 19 patients (11 uncomplicated colostomy irrigation, 8 complicated colostomy irrigation) took 111In-labelled polystyrene pellets one and two days before investigation. 99mTc-DTPA was mixed with the irrigation fluid to assess its extent within the bowel. Scintigraphy was performed before and after a standardized washout procedure. The colon was divided into three segments 1: the caecum andascending colon; 2: the transverse colon; 3: the descending and sigmoid colon. Assuming ordered evacuation of the colon, the contribution of each colonic segment to the total evacuation was expressed as a percentage of the original segmental counts. These were added to reach a total defaecation score (range: 0-300). RESULTS: In uncomplicated colostomy irrigation, the median defaecation score was 235 (range: 145-289) corresponding to complete evacuation of the descending and transverse colon and 35% evacuation of the caecum/ascending colon. In complicated colostomy irrigation it was possible to distinguish specific emptying patterns. The retained irrigation fluid reached the caecum in all but one patient. CONCLUSION: Scintigraphy can be used to evaluate colonic emptying following colostomy irrigation.

  3. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  4. Effects of irrigation regime and salinity on soil characteristics and yield of tomato

    Directory of Open Access Journals (Sweden)

    Rita Leogrande

    2012-03-01

    Full Text Available A field experiment was conducted in Mediterranean conditions to evaluate the effects of different irrigation volumes and water quality on yield performance of tomato crop. The tomato crop was irrigated re-establishing 50 (I1, 75 (I2 and 100% (I3 of the crop evapotranspiration (ETc with two water quality: fresh water with EC 0.9 dS m-1 (FW and saline water with EC 6 dSm-1 (SW. At harvest, total and marketable yield, weight, number, , total soluble solids (TSS and dry matter of fruit were calculated, The results showed no statistical differences among the three different irrigation volumes on tomato yield and quality. The salinity treatment did not affect yield, probably because the soil salinity in the root zone on average remained below the threshold of tomato salt tolerance. Instead, salinity improved fruit quality parameters as dry matter and TSS by 13 and 8 %, respectively. After the first field application of saline water, soil saturated extract cations (SSEC, electrical conductivity of soil paste extract (ECe, sodium absorption ratio (SAR and exchangeable sodium percentage (ESP cations increased; the largest increase of cations, in particular of Na, occurred in the top layer. At the end of the experiment, the absolute value of SSEC, ECe and SAR, for all the effects studied, were lower than those recorded in 2007. This behavior was suitable to the reduced volumes of treatments administered in 2009 in respect to the 2007. Furthermore, the higher total rainfall recorded in 2009 increased the leaching and downward movement of salts out of the sampling depth.

  5. Assessment of Irrigation Water Quality and Suitability for Irrigation in ...

    African Journals Online (AJOL)

    A number of factors like geology, soil, effluents, sewage disposal and other environmental conditions in which the water stays or moves and interacts are among the factors that affect the quality of irrigation water. This study was conducted to determine the quality and suitability of different water sources for irrigation purpose ...

  6. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    Science.gov (United States)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in

  7. A Reevaluation of Price Elasticities for Irrigation Water

    Science.gov (United States)

    Howitt, Richard E.; Watson, William D.; Adams, Richard M.

    1980-08-01

    The effectiveness of pricing systems in the allocation of irrigation water is linked with the price elasticity of demand of farmers for water. Using microeconomic theory, it is shown that omission of the elasticity of demand for the crop produced leads to an inelastic bias in the demand for irrigated water. Linear programing approaches omit the product elasticity of demand and are consequently biased, whereas quadratic programing approaches to estimating derived demands for irrigation water include product demand functions. The difference between the resulting estimates are empirically demonstrated for regional derived demand functions estimated from a model of California's agricultural industry.

  8. An assessment of colostomy irrigation.

    Science.gov (United States)

    Laucks, S S; Mazier, W P; Milsom, J W; Buffin, S E; Anderson, J M; Warwick, M K; Surrell, J A

    1988-04-01

    One hundred patients with permanent sigmoid colostomies were surveyed to determine their satisfaction and success with the "irrigation" technique of colostomy management. Most patients who irrigate their colostomies achieve continence. Odors and skin irritation are minimized. The irrigation method is economical, time efficient, and allows a reasonably liberal diet. It avoids bulky appliances and is safe. In appropriately selected patients, the irrigation technique is the method of choice for management of an end-sigmoid colostomy.

  9. The Effect Different Irrigation Regimes and Animal Manure on Nutrient, Essential Oil and Chemical Composition on Cumin (Cuminum cyminum L.

    Directory of Open Access Journals (Sweden)

    A. Ahmadian

    2011-01-01

    Full Text Available To study the effects of water stress and animal manure on nutrients concentration, essential oil percentage and its chemical components in Cuminum cyminum, an experiment was conducted at the Agricultural Research Station of Zahak, Zabol, during 2003–2004 in a randomized complete block design arranged in factorial with four replicates. Treatments were there irrigation (I1: two times irrigation, I2: three times irrigation and I3: four times irrigation and two animal manure levels (F1: no manure and F2: 20 ton/ha manure. The chemical composition of the essential oil was examined by gas- chromatography (GC and GC-MS. The effect of water stress on Na, Ca, Mg, Fe, P and K percentages was significant but its effect on Mn, Zn and Cu was not significant. I1F1 had maximum of Na, Ca, Mg and minimum of micro nutrients. Using of animal manure was not effected on nutrients. The effect of water stress and animal manure were significant on essential oil and its chemical compositions. I2F2 had the highest of cuminaldehyde and ρ-cymene and the lowest of β-pinene, γ-terpinene and α-pinene. Result showed that there is a correlation among the main components of cumin essential oil under water and mineral stress.

  10. Desenvolvimento vegetativo do pepino enxertado irrigado com água salina Vegetative development on grafted cucumber plants irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Marcos Vinícius Folegatti

    2000-09-01

    Full Text Available A salinização dos solos em ambiente protegido devido ao excesso de fertilizantes e falta de lixiviação tem resultado na redução da produtividade das culturas. Este trabalho teve o objetivo de avaliar os efeitos da irrigação com água salina no desenvolvimento vegetativo do pepino enxertado cultivado em ambiente protegido. Foram utilizadas águas de diferentes salinidades (S1=1,58; S2=3,08 e S3=5,13 dS m-1, lâminas de água de irrigação (L0=1,00 x ETc e L1=1,25 x ETc e freqüências de aplicação da lâmina L1 (F1=em todas as irrigações e F2=quando a lâmina de água de irrigação acumulada em L0 atingia 100 mm. Os resultados demonstraram que a altura das plantas, área foliar unitária e índice de área foliar foram afetados linearmente pela salinidade da água, não apresentando diferença para as diferentes lâminas e frequências de aplicação de L1.Greenhouse soil salinization by excessive fertilization and lack of leaching has been a common cause of cucumber yield reduction in Brazil. The aim of this work was to evaluate the effects of irrigation with saline water on the vegetative development of grafted cucumber plants in a greenhouse. Three water salinities (S1=1.58; S2=3.08 e S3=5.13 dS m-1, two irrigation water depths (L0=1.00 x ETc e L1=1.25 x ETc and two application frequencies of L1 (F1=in all irrigations and F2=when the irrigation water depth of L0 reached 100 mm were used. Irrigation water depths and frequencies of L1 were grouped and, therefore, the experimental design was in a factorial scheme 3x3, with randomized blocks. Results showed that plant height, unit leaf area and leaf area index were linearly affected by water salinity. No differences were observed for the various irrigation water depths and frequencies of L1 application.

  11. Effect of irrigation on soil salinity profiles along the Lower Vaal River ...

    African Journals Online (AJOL)

    The impact of long-term irrigation on semi-arid soils along the Lower Vaal River in central South Africa was assessed. Irrigated sandy and clayey soils representative of relatively homogeneous agro-ecosystems were sampled at 200 mm intervals to a depth of 2 m wherever possible. To serve as a reference, adjacent virgin ...

  12. Irrigation scheduling of spring wheat using infrared thermometry

    International Nuclear Information System (INIS)

    Stegman, E.C.; Soderlund, M.G.

    1989-01-01

    Irrigation scheduling for spring wheat requires information on different irrigation timing methods. Irrigation timing based on allowable root zone available water depletion and selected crop water stress index (CWSI) thresholds were evaluated in terms of their effect on spring wheat yield. A field study was conducted at Oakes, North Dakota in 1987 and 1988 on a Maddock sandy loam soil with two varieties of spring wheat (Marshall and Wheaton) using a split plot randomized block design. Irrigation was metered to each plot using trickle irrigation tubing. Neutron soil water measurements along with a water balance model were used to time irrigations that were based on different allowed root zone depletions. Infrared thermometer sensors (IRT) were used to measure in situ canopy temperatures and along with measured climatic information were used to time irrigations using the CWSI approach. Additionally, crop phenological stages and final grain yield were measured. The non-water-stressed baselines necessary for the CWSI differed between the two seasons but were similar to those from previous studies. The CWSI methods were feasible from the Feekes scale S4 (beginning pseudo-stem) to S11.2 (mealy ripe). Minimal yield reductions were observed using the CWSI method for thresholds less than 0.4-0.5 during this period. Minimal yield reductions were observed by maintaining the root zone allowable depletion below 50%. The grain yield-evapotranspiration (ET) relationship was linear in both years but with different slopes and intercepts. When analyzed on a relative basis to maximum ET (ETm), a single relationship fit both years’ data with a yield sensitivity factor of 1.58. Irrigations timed at CWSI = 0.5 reduced seasonal water application by 18% relative to treatments irrigated at CWSI = 0.2. (author)

  13. Improving efficiencies of irrigation and nitrogen uptake in wheat

    International Nuclear Information System (INIS)

    Bazza, M.

    2000-01-01

    Three years of field studies and lysimeter experiments on irrigated wheat had the objective of finding ways of managing irrigation and N fertilization to minimize losses and reduce contamination of groundwater. Applied N had significant positive effects on crop-water consumptive use. The highest N losses occurred during early growth. Irrigation had little effect on N loss when it was practiced efficiently. Under the prevailing conditions, it is recommended that no N be applied to wheat at planting, in order to limit N losses by leaching caused by the high precipitation that usually occurs during early development when crop-N requirements are small. No more than 120 kg N ha -1 should be applied in total to minimize groundwater pollution and maximize N-uptake efficiency and economic returns. Also, for economic and environmental reasons, irrigation should be limited to 80% of the total requirement and to depths of 40 to 60 mm. (author)

  14. Irrigation water policy analysis using a business simulation game

    Science.gov (United States)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  15. Chemical colostomy irrigation with glyceryl trinitrate solution.

    Science.gov (United States)

    O'Bichere, A; Bossom, C; Gangoli, S; Green, C; Phillips, R K

    2001-09-01

    Colostomy irrigation may improve patient quality of life, but is time consuming. This study tests the hypothesis that irrigation with glyceryl trinitrate solution, by inducing gastrointestinal smooth muscle relaxation, may accelerate expulsion of stool by passive emptying, thereby reducing irrigation time. Fifteen colostomy irrigators(with more than 3 years' experience) performed washout with tap water compared with water containing 0.025 mg/kg glyceryl trinitrate. Fluid inflow time, total washout time, and hemodynamic changes occurring during glyceryl trinitrate irrigation were documented by an independent observer. Subjects recorded episodes of fecal leakage and overall satisfaction on a visual analog scale. Cramps, headaches, and whether or not a stoma bag was used were expressed as a percentage of number of irrigations. Comparison of fluid inflow time, total washout time, leakage, and satisfaction was by Wilcoxon's signed-rank test and headaches, cramps, and stoma bag use was by McNemar's test. Pulse rate (paired t-test), systolic and diastolic blood pressures (Wilcoxon's test) at 20 and 240 minutes after washout with glyceryl trinitrate solution were compared with baseline. Fifteen patients (9 female), with a mean age of 53 (31-73) years, provided 30 sessions (15 with water and 15 with glyceryl trinitrate). Medians (interquartile ranges) for water vs. glyceryl trinitrate were fluid inflow time 7 (4-10) vs. 4, (3-5; P = 0.001); total washout time 40 (30-55) vs. 21, (15-24; P colostomy irrigation time compared with the generally recommended tap water. Patients suffer fewer leakages and are highly satisfied, but side effects are potential drawbacks. Other colonoplegic agent solutions should now be evaluated.

  16. 16. PRE-OPERATIVE BLADDER IRRIGATION

    African Journals Online (AJOL)

    Esem

    effectiveness of using preoperative bladder irrigation with 1% povidone iodine in reducing ... consenting patient who presented to the department of surgery for open ..... infections in a tertiary care center in south-western. Nigeria. International ...

  17. Development of a cost-effectiveness analysis of leafy green marketing agreement irrigation water provisions.

    Science.gov (United States)

    Jensen, Helen H; Pouliot, Sébastien; Wang, Tong; Jay-Russell, Michele T

    2014-06-01

    An analysis of the effectiveness of meeting the irrigation water provisions of the Leafy Green Marketing Agreement (LGMA) relative to its costs provides an approach to evaluating the cost-effectiveness of good agricultural practices that uses available data. A case example for lettuce is used to evaluate data requirements and provide a methodological example to determine the cost-effectiveness of the LGMA water quality provision. Both cost and field data on pathogen or indicator bacterial levels are difficult and expensive to obtain prospectively. Therefore, methods to use existing field and experimental data are required. Based on data from current literature and experimental studies, we calculate a cost-efficiency ratio that expresses the reduction in E. coli concentration per dollar expenditure on testing of irrigation water. With appropriate data, the same type of analysis can be extended to soil amendments and other practices and to evaluation of public benefits of practices used in production. Careful use of existing and experimental data can lead to evaluation of an expanded set of practices.

  18. Study of the effect of vintage, maturity degree, and irrigation on the amino acid and biogenic amine content of a white wine from the Verdejo variety.

    Science.gov (United States)

    Ortega-Heras, Miriam; Pérez-Magariño, Silvia; Del-Villar-Garrachón, Vanesa; González-Huerta, Carlos; Moro Gonzalez, Luis Carlos; Guadarrama Rodríguez, Alberto; Villanueva Sanchez, Sonia; Gallo González, Rubén; Martín de la Helguera, Sara

    2014-08-01

    The aim of this study was to determine the effect of three factors directly related to the amino acid content of grapes and their interaction. These three factors were vintage, maturity degree and irrigation. The evolution of amino acid was also assessed during the winemaking along with the effect of maturity and irrigation on the biogenic amine formation. The grapes used for this study were of the Verdejo variety. The results indicated that there was a strong vintage effect on amino acid content in grapes, which seemed to be clearly related to climatic conditions. The effect of maturity on amino acid content depended on vintage, irrigation and the amino acid itself although it was observed that irrigation caused the increase of most amino acids present in the berry. Irrigation did not affect the evolution of nitrogen compounds during the alcoholic fermentation process but the maturity degree in some of the amino acids tested did so. No direct relationship could be established between irrigation or maturity degree and biogenic amines. However, it should be noted that the biogenic amine content was very low. Vintage has a strong effect on the amino acid content in grapes which appears to be related to weather conditions. No direct relationship has been found between irrigation or maturity degree and biogenic amines content. Furthermore, it is noted that biogenic amine content found in final wines was very low. © 2013 Society of Chemical Industry.

  19. Streamflow Prediction in Ungauged, Irrigated Basins

    Science.gov (United States)

    Zhang, M.; Thompson, S. E.

    2016-12-01

    The international "predictions in ungauged basins" or "PUB" effort has broadened and improved the tools available to support water resources management in sparsely observed regions. These tools have, however, been primarily focused on regions with limited diversion of surface or shallow groundwater resources. Incorporating anthropogenic activity into PUB methods is essential given the high level of development of many basins. We extended an existing stochastic framework used to predict the flow duration curve to explore the effects of irrigation on streamflow dynamics. Four canonical scenarios were considered in which irrigation water was (i) primarily sourced from water imports, (ii) primarily sourced from direct in-channel diversions, (iii) sourced from shallow groundwater with direct connectivity to stream channels, or (iv) sourced from deep groundwater that is indirectly connected to surface flow via a shallow aquifer. By comparing the predicted flow duration curves to those predicted by accounting for climate and geomorphic factors in isolation, specific "fingerprints" of human water withdrawals could be identified for the different irrigation scenarios, and shown to be sensitive to irrigation volumes and scheduling. The results provide a first insight into PUB methodologies that could be employed in heavily managed basins.

  20. Effect of tranexamic acid irrigation on perioperative blood loss during orthognathic surgery: a double-blind, randomized controlled clinical trial.

    Science.gov (United States)

    Eftekharian, Hamidreza; Vahedi, Ruhollah; Karagah, Tuba; Tabrizi, Reza

    2015-01-01

    Perioperative hemorrhage is an important concern during orthognathic surgery. The purpose of this study was to assess the effect of tranexamic acid (TXA) irrigation on perioperative hemorrhage during orthognathic surgery. In this double-blind, randomized controlled clinical trial, 56 participants who underwent orthognathic surgery were divided into 2 groups. The patients in the first group received TXA irrigation with normal saline (1 mg/mL), and the patients in the second group had normal saline for irrigation during orthognathic surgery. Age, gender, operation duration, the amount of irrigation solution used, and preoperative hemoglobin, hematocrit, and weight were the variables that were studied. The use of TXA solution for irrigation was the predictive factor of the study. Each group consisted of 28 patients. Group 1 consisted of 15 male patients (53.6%) and 13 female patients (46.4%) and group 2 consisted of 14 male patients (50%) and 14 female patients (50%). There was no difference in the distributions of the variables between the 2 groups, except for the duration of the operation. The mean duration of the operation was 3.94 ± 0.61 hours in group 1 and 4.17 ± 0.98 hours in group 2, and the difference in this respect between the 2 groups was statistically significant (P .05). TXA is effective in reducing intraoperative blood loss in patients for whom substantial blood loss is anticipated. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Effect of Limited Irrigation on Yield and Yield Component of Several Sweet Corn (Zea mays L.var Saccharata Varieties

    Directory of Open Access Journals (Sweden)

    Sh Ghazian Tafrishi

    2013-08-01

    Full Text Available A randomized complete block design with four replications and a split plot arrangement was conducted in 2010, in order to study the effect of limited irrigation on yield and yield component of sweet corn. Water levels were (100%, 80%, and 60% replacement of plant water requirement which served as main plots. Subplot was a factorial arrangement of three different sweet corn varieties (Merit, Obsession and KSC403 with two planting methods (raised bed and furrow planting. The evaluated traits were ear length, ear diameter, kernels number per row, seed rows per ear, kernel depth, seed thousands weight, kernel yield, shoot biomass, harvest index and Anthesis- silking interval. Results show that limited irrigation significantly decreased all measured characteristics but harvest index. Effect of varieties was significant on evaluated traits too. Kernel weight and seed depth were significantly affected by interaction between variety and planting method. The highest yield was found for 100% replacement of water requirement irrigation level whit 15.2 tones per hectare kernel weight and the lowest belongs to 60% replacement of water requirement by 8.6 tones per hectare kernel weight. Merit and KSC 403 produces the highest (15.9 ton/ha and lowest (8.8 ton/ha seed yield, respectively. Harvest index of different varieties were not affected by irrigation regime. Results show that, in whole, limited irrigation, decreased seed yield in all varieties by affecting diverse yield component.

  2. Are There Infinite Irrigation Trees?

    Science.gov (United States)

    Bernot, M.; Caselles, V.; Morel, J. M.

    2006-08-01

    In many natural or artificial flow systems, a fluid flow network succeeds in irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree and many irrigation and draining systems. Such systems have raised recently a lot of interest and some attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws [25], [26]. In contrast, several mathematical models [5], [22], [10], propose an idealization of these irrigation trees, where a countable set of tubes irrigates any point of a volume with positive Lebesgue measure. There is no geometric obstruction to this infinitesimal model and general existence and structure theorems have been proved. As we show, there may instead be an energetic obstruction. Under Poiseuille law R(s) = s -2 for the resistance of tubes with section s, the dissipated power of a volume irrigating tree cannot be finite. In other terms, infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies that the usual principle analysis performed for the biological models needs not to impose a minimal size for the tubes of an irrigating tree; the existence of the minimal size can be proven from the only two obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.

  3. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA

    Science.gov (United States)

    Lauffenburger, Zachary H.; Gurdak, Jason J.; Hobza, Christopher M.; Woodward, Duane; Wolf, Cassandra

    2018-01-01

    Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains

  4. Effects of seedbed preparation, irrigation, and water harvesting of seedling emergence at the Nevada Test Site

    International Nuclear Information System (INIS)

    Winkel, V.K.; Ostler, W.K.; Gabbert, W.D.; Lyon, G.E.

    1994-02-01

    Approximately 800 hectares on the US Department of Energy Nevada Test Site and vicinity are contaminated with plutonium. As part of a cleanup effort, both the indigenous vegetation and the top 5--10 cm of soil may be removed, and the soil may or may not be replaced. Technologies must be developed to stabilize and revegetate these lands. A study was developed to determine adaptable plant species, methods to prepare seedbeds for direct seeding and water harvesting, and proper irrigation rates. Plots were cleared of indigenous vegetation, and then prepared with various seedbed/water harvesting treatments including, pitting, land imprinting, and mulching. Other plots were treated with large water harvesting structures. Three irrigation treatments were superimposed over the seedbed/water harvesting treatments. Seedling emergence data was collected, and the treatment combinations compared. Supporting meteorological and soil data were collected with an automatic data-logger. Specific data included precipitation, and air temperature. In a year of above-average precipitation, irrigation did not generally aid germination and emergence of seeded species, and only slightly increased densities of species from the native seedbank. With the exception of increased shrub seedling densities in desert strips, there were no strong seedbed preparation/water harvesting treatment effects. In years of above-average rainfall, mulching and water harvesting treatments, irrigation may not be necessary to insure adequate germination and emergence of adapted perennial grasses, forbs, and shrubs in the Mojave/Great Basin Transition Desert. Future collection of survival data will determine whether a maintenance irrigation program is necessary to ensure establishmnent of native plants

  5. An Investigation of the Basic Physics of Irrigation in Urology and the Role of Automated Pump Irrigation in Cystoscopy

    Directory of Open Access Journals (Sweden)

    Dwayne Chang

    2012-01-01

    Full Text Available Objective. To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS. Materials. Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders. Methods. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured. Results. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates. Conclusions. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.

  6. Irrigation efficiency and water-policy implications for river basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2014-04-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  7. Irrigation efficiency and water-policy implications for river-basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2013-07-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  8. Water-Yield Relations of Drip Irrigated Watermelon in Temperate Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2016-08-01

    Full Text Available The objective of the study, conducted in Vojvodina a northern part of the Serbia Republic, was to analyse the effect of drip irrigation on yield, evapotranspiration and water productivity of watermelon (Cirullus lanatus Thunb. grown with plasticulture. Irrigation was scheduled on the basis of water balance method. Daily evapotranspiration was computed using the reference evapotranspiration and crop coefficient. The yield of watermelon in irrigation conditions (37,28 t/ha was significantly higher compared to non irrigated (9,98 t/ha. Water used on evapotranspiration in irrigation conditions was 398 mm and 117 mm on non irrigated variant. The crop yield response factor of 1,04 for the whole growing season reveals that relative yield decrease was nearly equal to the rate of evapotranspiration deficit. The values of irrigation water use efficiency and evapotranspiration water use efficiency were 9,93 kg/m3 and 10,29 kg/m3 respectively. The determined results could be used as a good platform for watermelon growers in the region, in terms of improvement of the optimum utilization of irrigation water.

  9. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.

    Science.gov (United States)

    Fiebig, Antje; Dodd, Ian C

    2016-01-01

    Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. © 2015 Scandinavian Plant Physiology Society.

  10. The Immediate and Delayed Post-Debridement Effects on Tissue Bacterial Wound Counts of Hypochlorous Acid Versus Saline Irrigation in Chronic Wounds

    OpenAIRE

    Hiebert, John?M.; Robson, Martin?C.

    2016-01-01

    Introduction: Wound debridement is considered essential in chronic wound management. Hypochlorous acid has been shown to be an effective agent in reducing wound bacterial counts in open wounds. Ultrasound-enabled wound debridement is an effective and efficient method of debridement. This study compared ultrasound irrigation with hypochlorous acid versus saline irrigation for wound debridement on pre- and postoperative wounds and determined regrowth of bacteria over 1 week period of time. Fina...

  11. Local land-atmosphere feedbacks limit irrigation demand

    Science.gov (United States)

    Decker, Mark; Ma, Shaoxiu; Pitman, Andy

    2017-05-01

    Irrigation is known to influence regional climate but most studies forecast and simulate irrigation with offline (i.e. land only) models. Using south eastern Australia as a test bed, we demonstrate that irrigation demand is fundamentally different between land only and land-atmosphere simulations. While irrigation only has a small impact on maximum temperature, the semi-arid environment experiences near surface moistening in coupled simulations over the irrigated regions, a feedback that is prevented in offline simulations. In land only simulations that neglect the local feedbacks, the simulated irrigation demand is 25% higher and the standard deviation of the mean irrigation rate is 60% smaller. These local-scale irrigation-driven feedbacks are not resolved in coarse-resolution climate models implying that use of these tools will overestimate irrigation demand. Future studies of irrigation demand must therefore account for the local land-atmosphere interactions by using coupled frameworks, at a spatial resolution that captures the key feedbacks.

  12. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  13. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-08-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  14. Analysis of grey-water used for irrigating vegetables and possible ...

    African Journals Online (AJOL)

    Analysis of grey-water used for irrigating vegetables and possible effects on soils in the ... The concentrations of nutrients and heavy metals found in the grey-water ... in order to lower the salt content and to improve the irrigation water quality.

  15. Effect of irrigation and winery waste compost rates in nitrate leaching in vulnerable zones

    Science.gov (United States)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    The winery industry is widespread in Spain (3,610,000 tonnes of wine in 2010 (FAO, 2010)), and generates wastes characterized by a high content of organic matter, a notable content in macronutrients and low heavy-metals. These organic wastes could be used for agricultural purposes after a correct stabilization process (e.g. composting).The addition of these organic wastes requires a correct management, especially on semiarid cropped areas of central Spain where environmental degradation of water supplies with high N loads is observed. An integrated optimization of both applied compost dose and amount of irrigation is important to ensure optimum yields and minimum nitrate leaching losses. The purpose of this work was to study the effect of the application of winery waste compost as fertilizer in a melon crop cultivated with different drip irrigation rates. The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. Beside the control treatment (D0), three doses of compost were applied: 6.7 (D1), 13.3 (D2) and 20 T/ha(D3).Irrigation treatments consisted of applying a 100% ETc and an excess irrigation of 120% ETc. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 m depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Drainage and nitrate concentration on the soil solution were measured weekly to determine N leached during the crop period. Crop yield was also followed by harvesting plots when a significant number of fruits were fully matured. A comparison between nitrate leached and crop production among different treatments and irrigation rates are presented. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  16. Optodynamic Phenomena During Laser-Activated Irrigation Within Root Canals

    Science.gov (United States)

    Lukač, Nejc; Gregorčič, Peter; Jezeršek, Matija

    2016-07-01

    Laser-activated irrigation is a powerful endodontic treatment for smear layer, bacteria, and debris removal from the root canal. In this study, we use shadow photography and the laser-beam-transmission probe to examine the dynamics of laser-induced vapor bubbles inside a root canal model and compare ultrasonic needle irrigation to the laser method. Results confirm important phenomenological differences in the two endodontic methods with the laser method resulting in much deeper irrigation. Observations of simulated debris particles show liquid vorticity effects which in our opinion represents the major cleaning mechanism.

  17. Response of potato to drip and gun irrigation systems

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Andersen, Mathias Neumann; Plauborg, Finn

    2015-01-01

    The objective of this study was to evaluate effects of different irrigation and N fertilization regimes by gun irrigation and drip-fertigation on potato production, and subsequently optimize the supply of water and N fertilizer to the growth condition of the specific season and minimize nitrate......-fertigation system (DFdsNds) and two gun irrigation systems (GIdsN120 and GIaN120) to display the differences on growth, yield and water use efficiency of potato. All treatments were irrigated according to model simulated soil water content. For fertilization all treatments received a basic dressing at planting of P......, K, Mg and micronutrients, and in addition 120 kg N/ha in the gun irrigated treatments and 36 kg N/ha in the drip-fertigated. For the latter, portion of 20 kg N/ha was applied whenever plant N concentration approached a critical value as simulated by the Daisy model. As a result differences in soil...

  18. Irrigating The Environment

    Science.gov (United States)

    Adamson, D.

    2017-12-01

    Water insecurity and water inequality are international issues that reduce economic growth. Countries are adopting alternative approaches to rebalance the share of water between all users to mitigate economic loss for this and future generations. However, recent reforms have struggled to provide the necessary arguments to obtain political protection of the process. In the absence of proof, rent-seeking arguments have challenged the benefit of restoring environmental flows by arguing that policy design fails to maximise the environmental benefits. This is a problem in Australia's Murray-Darling Basin (MDB), where despite establishing 3,200GL of environmental water, the policy is still under threat. Applied water economic policy advice fails, when it does not deal with uncertainty. The state-contingent analysis approach can map how individual decision makers can adapt to alternative states of water supply (i.e. drought, normal and wet) by reallocating inputs to obtain state-described outputs. By modelling changes to the states, or the frequency of the states occurring, climate change can modelled, and decision management responses explored. By treating the environment as another set of production systems, lessons learnt from managing perennial and annual agricultural production systems during the Millennium Drought in the MDB can be applied to explore the limits of irrigating the environment. The demand for water by a production system is a combination of state-general (must be irrigated every year e.g. perennial crop or permanent wetland) and state specific inputs (irrigate in response to the realise state). In simple terms, the greater the component of state-general water requirements a production system has, the less resilience it has when water supply is highly variable and if water is not available then production systems are irreversibly lost. While production systems that only need state-allocable water can adapt to alternative levels of scarcity without

  19. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    Science.gov (United States)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  20. Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.

    Science.gov (United States)

    Yates, S R; Knuteson, J; Ernst, F F; Zheng, W; Wang, Q

    2008-12-01

    A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.

  1. Irrigation of steppe soils in the south of Russia: Problems and solutions (Analysis of Irrigation Practices in 1950-1990)

    Science.gov (United States)

    Minashina, N. G.

    2009-07-01

    Experience in irrigation of chernozems in the steppe zone of Russia for a period from 1950 to 1990 is analyzed. By the end of this period and in the subsequent years, the areas under irrigation reduced considerably, and the soil productivity worsened. This was caused by the improper design of irrigation systems, on the one hand, and by the low tolerance of chernozems toward increased moistening upon irrigation, on the other hand. The analysis of the factors and regimes of soil formation under irrigation conditions shows that irrigation-induced changes in the soil hydrology also lead to changes in the soil physicochemical, biochemical, and other properties. In particular, changes in the composition of exchangeable cations lead to the development of solonetzic process. In many areas, irrigation of chernozems was accompanied by the appearance of solonetzic, vertic, saline, and eroded soils. The development of soil degradation processes is described. In general, the deterioration of irrigated chernozems was related to the absence of adequate experience in irrigation of steppe soils, unskilled personnel, improper regime of irrigation, and excessively high rates of watering. In some cases, the poor quality of irrigation water resulted in the development of soil salinization and alkalization. To improve the situation, the training of personnel is necessary; the strategy of continuous irrigation should be replaced by the strategy of supplementary irrigation in the critical periods of crop development.

  2. Effects of regulated deficit irrigation on physiology, yield and fruit quality in apricot trees under Mediterranean conditions

    Directory of Open Access Journals (Sweden)

    Francisco Pérez-Sarmiento

    2016-12-01

    Full Text Available Scarce water resources mainly in arid and semi-arid areas have caused an increasing interest for applying irrigation protocols aiming to reduce water spends. The effects of regulated deficit irrigation (RDI on the performance of apricot trees (Prunus armeniaca L. cv. “Búlida” were assessed in Murcia (SE Spain, during three consecutive growing seasons (2008-2010. The hypothesis was that RDI would not restrict yield but increase fruit quality while saving water. Two irrigation treatments were established: i control, irrigated to fully satisfy crop water requirements (100% ETc and ii RDI, that reduced the amount of applied water to: a 40% of ETc at flowering and stage I of fruit growth; b 60% of ETc during the stage II of fruit growth and c 50% and 25% of ETc during the late postharvest period (from 60 days after harvest. Stem water potential, gas exchanges, trunk cross-sectional area (TCSA, fruit diameter, yield and fruit quality traits were determined. Vegetative growth was decreased by the use of RDI (12% less TCSA on average for the three years, whereas yield was unaffected. In addition, some qualitative characteristics of the fruits, such as the level of soluble solids, sweetness/acidity relation and fruit colour, were improved by the use of RDI. These results and average water savings of approximately 30%, lead us to conclude that RDI strategies are a possible solution for irrigation management in areas with water shortages, such as arid and semi-arid environments.

  3. Effects of regulated deficit irrigation on physiology, yield and fruit quality in apricot trees under Mediterranean conditions

    International Nuclear Information System (INIS)

    Pérez-Sarmiento, F.; Mirás-Avalos, J.M.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolas, E.

    2016-01-01

    Scarce water resources mainly in arid and semi-arid areas have caused an increasing interest for applying irrigation protocols aiming to reduce water spends. The effects of regulated deficit irrigation (RDI) on the performance of apricot trees (Prunus armeniaca L. cv. “Búlida”) were assessed in Murcia (SE Spain), during three consecutive growing seasons (2008-2010). The hypothesis was that RDI would not restrict yield but increase fruit quality while saving water. Two irrigation treatments were established: i) control, irrigated to fully satisfy crop water requirements (100% ETc) and ii) RDI, that reduced the amount of applied water to: a) 40% of ETc at flowering and stage I of fruit growth; b) 60% of ETc during the stage II of fruit growth and c) 50% and 25% of ETc during the late postharvest period (from 60 days after harvest). Stem water potential, gas exchanges, trunk cross-sectional area (TCSA), fruit diameter, yield and fruit quality traits were determined. Vegetative growth was decreased by the use of RDI (12% less TCSA on average for the three years), whereas yield was unaffected. In addition, some qualitative characteristics of the fruits, such as the level of soluble solids, sweetness/acidity relation and fruit colour, were improved by the use of RDI. These results and average water savings of approximately 30%, lead us to conclude that RDI strategies are a possible solution for irrigation management in areas with water shortages, such as arid and semi-arid environments.

  4. Effects of regulated deficit irrigation on physiology, yield and fruit quality in apricot trees under Mediterranean conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Sarmiento, F.; Mirás-Avalos, J.M.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolas, E.

    2016-07-01

    Scarce water resources mainly in arid and semi-arid areas have caused an increasing interest for applying irrigation protocols aiming to reduce water spends. The effects of regulated deficit irrigation (RDI) on the performance of apricot trees (Prunus armeniaca L. cv. “Búlida”) were assessed in Murcia (SE Spain), during three consecutive growing seasons (2008-2010). The hypothesis was that RDI would not restrict yield but increase fruit quality while saving water. Two irrigation treatments were established: i) control, irrigated to fully satisfy crop water requirements (100% ETc) and ii) RDI, that reduced the amount of applied water to: a) 40% of ETc at flowering and stage I of fruit growth; b) 60% of ETc during the stage II of fruit growth and c) 50% and 25% of ETc during the late postharvest period (from 60 days after harvest). Stem water potential, gas exchanges, trunk cross-sectional area (TCSA), fruit diameter, yield and fruit quality traits were determined. Vegetative growth was decreased by the use of RDI (12% less TCSA on average for the three years), whereas yield was unaffected. In addition, some qualitative characteristics of the fruits, such as the level of soluble solids, sweetness/acidity relation and fruit colour, were improved by the use of RDI. These results and average water savings of approximately 30%, lead us to conclude that RDI strategies are a possible solution for irrigation management in areas with water shortages, such as arid and semi-arid environments.

  5. Irrigation management of sigmoid colostomy.

    Science.gov (United States)

    Jao, S W; Beart, R W; Wendorf, L J; Ilstrup, D M

    1985-08-01

    Questionnaires were sent to 270 patients who had undergone abdominoperineal resection and sigmoid colostomy at the Mayo Clinic, Rochester, Minn, during the ten years from 1972 to 1982; 223 patients returned their questionnaires with evaluable data. Sixty percent of the patients were continent with irrigation, and 22% were incontinent with irrigation. Eighteen percent had discontinued irrigation for various reasons. The proportion continent was higher in women, younger patients, and previously constipated patients. A poorly constructed colostomy may cause acute angle, parastoma hernia, stomal prolapse, or stenosis and thus be the cause of failure of irrigation.

  6. Effects of biofertilizers and different water volume per irrigation on vegetative characteristics and seed yield of sesame (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    S. Khorramdel

    2016-05-01

    Full Text Available In order to study the effects of biofertilizers and different water volume per irrigation on vegetative characteristics and seed yield of sesame (Sesamum indicum L., an experiment was conducted at the Research Greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, during 2009. This experiment was conducted as factorial based on randomized complete block design with three replications. The first and the second factors were biofertilizers (Nitragin, Nitroxin, bio-phosphorus and control and water volume per irrigation (100, 200 and 300 ml, respectively. The results showed that the simple effects of biofertilizer and irrigation volume were significant (p≥0.05 on plant height, the first internode length, number and dry weight of leaves, dry weight of stem, chlorophyll content and relative water content (RWC of sesame. Also, interaction between biofertilizer and water volume per irrigation was significant (p≥0.05 plant height and RWC. The maximum and the minimum sesame seed yield were observed in Nitragin and control with 204.4 and 100.0 kg.m-2, respectively. The highest seed yield was observed in 100 ml (202.1 kg.m-2 and the lowest was achieved with 300 ml (170.1 kg.m-2 per irrigation water. Application of biofertilizers enhanced root development and hence availability of moisture and nutrients, particularly nitrogen and phosphorus. On the other hand, since these fertilizers are promote of growth regulator and hence in basement of growth and photosynthesis of sesame. With increasing irrigation volume from 100 to 300 ml, growth of sesame was decreased. Therefore, sesame application of biofertilizers could improve its vegetative characteristics in dry and semi-dry regions.

  7. A Wireless Low Power Valve Controller for Drip Irrigation Control Systems

    Directory of Open Access Journals (Sweden)

    Haijiang Tai

    2014-03-01

    Full Text Available Drip irrigation control systems in fields generally include a large number of sensors and valves; controlling these devices efficiently can be achieved by using distributed irrigation control (DIC, which has the advantages of reduced wiring and piping costs and easier installation and maintenance. In this study, a wireless low power valve controller for drip irrigation control systems was developed and tested. The specific tasks included the controller design (hardware and software, energy consumption tests, and field tests. The controller uses the highly integrated JN5139 module, which is based on IEEE802.15.4, for hardware design; low power consumption sleep algorithms for software design; and two alkaline batteries for supply of power to the valve controller. Results of laboratory and field tests show continuous working days of the valve controller powered by two alkaline batteries are at least 3 months under different sleep periods and frequencies of valve control. The controller described here is characterized as reliable, low cost, easy to install, and having low power consumption.

  8. Effect of different irrigation systems on root growth of maize and cowpea plants in sandy soil

    Directory of Open Access Journals (Sweden)

    Noha A. Mahgoub

    2017-10-01

    Full Text Available A field experiment was conducted at the Experimental Farm, Faculty of Agriculture, Suez Canal University to study the influence of different irrigation systems on root length density and specific root length of maize and cowpea plants cultivated in sandy soil. Three irrigation systems (Surface, drip and sprinkler irrigation were used in this study. The NPK fertilizers were applied as recommended doses for maize and cowpea. Root samples were collected from the soil profile below one plant (maize and cowpea which was irrigated by the three irrigation systems by using an iron box (30 cm× 20 cm which is divided into 24 small boxes each box is (5× 5 × 5 cm. At surface irrigation, root length density of cowpea reached to soil depth 30-40cm with lateral distances 5-10 cm and 15-20 cm. Vertical distribution of root length density of maize was increased with soil depth till 20-25 cm, and then it decreased till soil depth 35-40cm. Under drip irrigation, root length density of cowpea increased horizontally from 0-5cm to 10-15cm then it decreased till soil depth 25-30 cm and below this depth root length density disappeared. For the root length density and specific root length of maize under drip irrigation, the data showed that root length density and specific root length decreased with increasing in soil depth. The root length density of cowpea under sprinkler irrigation at 0-5cm disappeared from horizontal distance at 25-30 cm. The data showed that root length density of maize under sprinkler irrigation was higher at the soil top layers 0-5 cm and 5-10 cm than other layers from 10-40 cm.

  9. Irrigation water management: Basic principles and applications

    OpenAIRE

    Ella, Victor B.

    2007-01-01

    This presentation defines the term, irrigation, as well as explains the common methods of irrigation in attempt to define the fundamental principles needed to wisely design an irrigation system. It outlines a typical drip irrigation set-up, and discusses management of an irrigation system, including water volume application suggestions. LTRA-5 (Agroforestry and Sustainable Vegetable Production)

  10. Irrigation-based livelihood challenges and opportunities : a gendered technology of irrigation development intervention in the Lower Moshi irrigation scheme Tanzania

    NARCIS (Netherlands)

    Kissawike, K.

    2008-01-01

    This thesis is a study of a modernised irrigation scheme in Tanzania. It aims to
    understand how irrigation and agricultural technologies have interacted with local
    society to transform production, paying particular attention to gender relations and
    changes for women farmers. The

  11. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  12. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  13. Potato yield and yield structure depending on irrigation

    Directory of Open Access Journals (Sweden)

    Milić Stanko

    2010-01-01

    Full Text Available In the agroclimatic conditions of the Vojvodina Province, the application of an economic water regime and modern technology is necessary for stable and intensive potato production. A two-year experiment on calcareous chernozem was carried out to determine how irrigation and different pre-irrigation soil moisture affect potato yield and distribution of tuber fraction in the potato yield. The block-design trial had four replicates and was adapted for sprinkler irrigation conditions. It included four treatments: irrigation with pre-irrigation moisture levels of 60 % of field water capacity (FC, irrigation with pre-irrigation moisture levels of 70 % (FC, irrigation with pre-irrigation moisture levels of 80% (FC, and a non-irrigated control treatment. Irrigation significantly increased the yield of potato, which increased from 37.27 % to 75.86 %. Under irrigation, the percentage of small fractions decreased in favour of the 55 mm one, or fractions above the 45-55 mm range. On average, irrigated treatments produced significantly more tubers than the conditions of natural water supply. .

  14. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  15. Long Term Effects of Acid Irrigation at the Hoeglwald on Seepage Water Chemistry and Nutrient Cycling

    International Nuclear Information System (INIS)

    Weis, Wendelin; Baier, Roland; Huber, Christian; Goettlein, Axel

    2007-01-01

    In order to test the hypothesis of aluminium toxicity induced by acid deposition, an experimental acid irrigation was carried out in a mature Norway spruce stand in Southern Germany (Hoeglwald). The experiment comprised three plots: no irrigation, irrigation (170 mm a -1 ), and acid irrigation with diluted sulphuric acid (pH of 2.6-2.8). During the seven years of acid irrigation (1984-1990) water containing 0.43 mol c m -2 a -1 of protons and sulphate was added with a mean pH of 3.2 (throughfall + acid irrigation water) compared to 4.9 (throughfall) on both control plots. Most of the additional proton input was consumed in the organic layer and the upper mineral soil. Acid irrigation resulted in a long lasting elevation of sulphate concentrations in the seepage water. Together with sulphate both aluminium and appreciable amounts of base cations were leached from the main rooting zone. The ratio between base cations (Ca + Mg + K) and aluminium was 0.79 during acid irrigation and 0.92 on the control. Neither tree growth and nutrition nor the pool of exchangeable cations were affected significantly. We conclude that at this site protection mechanisms against aluminium toxicity exist and that additional base cation runoff can still be compensated without further reduction of the supply of exchangeable base cations in the upper mineral soil

  16. 77 FR 16828 - Turlock Irrigation District, & Modesto Irrigation District; Notice of Dispute Resolution Process...

    Science.gov (United States)

    2012-03-22

    ... 8--Salmon and Steelhead Full Life-Cycle Population Models; and Request 9--Effects of the Project and... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Don Pedro Hydroelectric Project Project... relicensing proceeding for the Don Pedro Hydroelectric Project No. 2299-075.\\1\\ Turlock Irrigation District...

  17. Impact of Irrigation Method on Water Use Efficiency and Productivity of Fodder Crops in Nepal

    Directory of Open Access Journals (Sweden)

    Ajay K Jha

    2016-01-01

    Full Text Available Improved irrigation use efficiency is an important tool for intensifying and diversifying agriculture in Nepal, resulting in higher economic yield from irrigated farmlands with a minimum input of water. Research was conducted to evaluate the effect of irrigation method (furrow vs. drip on the productivity of nutritious fodder species during off-monsoon dry periods in different elevation zones of central Nepal. A split-block factorial design was used. The factors considered were treatment location, fodder crop, and irrigation method. Commonly used local agronomical practices were followed in all respects except irrigation method. Results revealed that location effect was significant (p < 0.01 with highest fodder productivity seen for the middle elevation site, Syangja. Species effects were also significant, with teosinte (Euchlaena mexicana having higher yield than cowpea (Vigna unguiculata. Irrigation method impacted green biomass yield (higher with furrow irrigation but both methods yielded similar dry biomass, while water use was 73% less under drip irrigation. Our findings indicated that the controlled application of water through drip irrigation is able to produce acceptable yields of nutritionally dense fodder species during dry seasons, leading to more effective utilization and resource conservation of available land, fertilizer and water. Higher productivity of these nutritional fodders resulted in higher milk productivity for livestock smallholders. The ability to grow fodder crops year-round in lowland and hill regions of Nepal with limited water storages using low-cost, water-efficient drip irrigation may greatly increase livestock productivity and, hence, the economic security of smallholder farmers.

  18. Apical negative pressure irrigation versus syringe irrigation: a systematic review of cleaning and disinfection of the root canal system.

    Science.gov (United States)

    Konstantinidi, E; Psimma, Z; Chávez de Paz, L E; Boutsioukis, C

    2017-11-01

    The aim of this study was to systematically review and critically analyse the published data on the treatment outcome (primary outcome) and on the cleaning and disinfection of root canals (secondary outcomes) achieved by negative pressure irrigation as compared to syringe irrigation. An electronic search was conducted in EMBASE, LILACS, PubMed, SciELO, Scopus and Web of Knowledge using both free-text keywords and controlled vocabulary. Additional studies were sought through hand searching of endodontic journals and of the relevant chapters of endodontic textbooks. No language restriction was imposed. The retrieved studies were screened by two reviewers according to predefined criteria. Included studies were critically appraised and the extracted data were arranged in tables. The electronic search and hand search retrieved 489 titles. One clinical study and 14 in vitro studies were finally included in the review; none of these studies assessed treatment outcome, four studies assessed the antimicrobial effect, seven studies evaluated the removal of pulp tissue remnants, and four studies investigated the removal of hard tissue debris or both hard tissue debris and pulp tissue remnants. Poor standardization and description of the protocols was evident. Inconclusive results were reported about the cleaning and disinfection accomplished by the two irrigation methods. Negative pressure irrigation was more effective under certain conditions when compared to suboptimal syringe irrigation; however, the variability of the protocols hindered quantitative synthesis. There is insufficient evidence to claim general superiority of any one of these methods. The level of the available evidence is low, and the conclusions should be interpreted with caution. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis).

    Science.gov (United States)

    Zhu, Ying; Taylor, Cathy; Sommer, Karl; Wilkinson, Kerry; Wirthensohn, Michelle

    2015-04-15

    The effects of deficit irrigation on almond fatty acid and tocopherol levels were studied in a field trial. Mature almond trees were subjected to three levels of deficit irrigation (85%, 70% and 55% of potential crop evapotranspiration (ETo), as well as control (100% ETo) and over-irrigation (120% ETo) treatments. Two deficit irrigation strategies were employed: regulated deficit irrigation (RDI) and sustained deficit irrigation (SDI). Moderate deficit irrigation (85% RDI and 85% SDI) had no detrimental impact on almond kernel lipid content, but severe and extreme deficiencies (70% and 55%) influenced lipid content. Unsaturated fatty acid (USFA) and saturated fatty acid (SFA) contents fluctuated under these treatments, the oleic/linoleic ratio increased under moderate water deficiency, but decreased under severe and extreme water deficiency. Almond tocopherols concentration was relatively stable under deficit irrigation. The variation between years indicated climate has an effect on almond fruit development. In conclusion it is feasible to irrigate almond trees using less water than the normal requirement, without significant loss of kernel quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Phosphorus absorption in drip irrigation

    International Nuclear Information System (INIS)

    Guennelon, R.; Habib, R.

    1979-01-01

    Introducing the use of solute phosphate with drip irrigation may be an unsatisfying practice on account of the very weak mobility of PO 4 anion. Nevertheless P can move down to 30-40 cm depth by following the saturated flux along earth-worms holes or crakes, or by displacement in very narrow structural porosity, even in heavy soils. In this case roots cannot easily absorb PO 4 from soil solution, as soon as the soil is quite saturated. On the other hand, it seems that P absorption occurs very quickly and easily when the implantation of 32 P tagged solution is carried out at the border of zone which is concerned by the irrigation effects [fr

  1. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMIS). Thinking along

  2. Irrigation and cultivar effect on flax fiber and seed yield in the southeast USA

    Science.gov (United States)

    Flax (Linum usitatissimum L.) is a potential winter crop for the Southeast USA that can be grown for both seed and fiber. The objective of this research was to evaluate the effect of irrigation on flax straw, fiber, and seed yield of fiber-type and seed-type cultivars at different flax growth stage...

  3. [Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan Desert hinterland].

    Science.gov (United States)

    Xie, Ting-ting; Zhang, Xi-ming; Liang, Shao-min; Shan, Li-shan; Yang, Xiao-lin; Hua, Yong-hui

    2008-04-01

    By using heat-balance stem flow gauge and press chamber, the water physiological characteristics of Haloxylon ammodendron under different irrigations in Taklimakan Desert hinterland were measured and analyzed. The results indicated that the diurnal variation curve of H. ammodendron stem sap flow varied with irrigations. When irrigated 35 and 24.5 kg x plant(-1) once time, the diurnal variation of stem sap flow changed in single peak curve and the variation extent was higher; while irrigated 14 kg x plant(-1) once time, the diurnal variation changed in two-peak curve and the variation extent was small. With the decrease of irrigations, the average daily sap flow rate and the daily water consumption of H. ammodendron decreased gradually, the dawn and postmeridian water potential also had a gradual decrease, and the correlations of stem sap flow with total radiation, air temperature, relative humidity, and wind speed enhanced. Under different irrigations, the correlation between stem sap flow rate and total radiation was always the best.

  4. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability

  5. Scheduling of Irrigation and Leaching Requirements

    Directory of Open Access Journals (Sweden)

    Amer Hassan Al-haddad

    2015-03-01

    Full Text Available Iraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigation program as a solution for the scarcity of irrigation water, the increase of irrigation efficiency, lessening the salinity in the projects and preparing an integral irrigation calendar through field measurements of soil physical properties and chemical for project selected and compared to the results of the irrigation scheduling and leaching with what is proposed by the designers. The process is accomplished by using a computer program which was designed by Water Resources Department at the University of Baghdad, with some modification to generalize it and made it applicable to various climatic zone and different soil types. Study area represented by large project located at the Tigris River, and this project was (Al-Amara irrigation project. Sufficient samples of project's soil were collected so as to identify soil physical and chemical properties and the salinity of soil and water as well as identifying the agrarian cycles virtually applied to this project. Finally, a comparison was conducted between the calculated water quantities and the suggested ones by the designers. The research results showed that using this kind of scheduling (previously prepared irrigation and leaching scheduling with its properties

  6. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  7. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    Science.gov (United States)

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a dry climate. However, the reclaimed water can also change biosolids properties, which will influence the effectiveness of willows to extract different metals. Copyright © 2015 Elsevier Ltd. All rights

  8. Evaluation of hydraulic performance of downstream-controlled Maira-PHLC irrigation canals under crop-based irrigation operations

    NARCIS (Netherlands)

    Munir, S.; Schultz, B.; Suryadi, F.X.; Bharati, L.

    2012-01-01

    Demand-based irrigation systems are operated according to crop water requirements. As crop water requirements remain variable throughout the growing season, the discharges in the canal also vary to meet demands. The irrigation system under study is a demand-based semi-automatic irrigation system,

  9. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since

  10. Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in Northeast China.

    Directory of Open Access Journals (Sweden)

    Fanchao Meng

    Full Text Available Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2] and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol(-1, and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5-9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (Pn and intercellular CO2 concentration (Ci of maize. Similarly, the stomatal conductance (Gs and transpiration rate (Tr decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (Pnmax and light saturation points (LSP were increased under elevated [CO2] and irrigation, and dark respiration (Rd was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China.

  11. Threats to rainfed and canal irrigated agro-ecosystems of the Punjab, Pakistan by weed infestation

    International Nuclear Information System (INIS)

    Hussain, M.; Ahmed, M.S.A.; Hameed, M.; Aqeel, M.

    2012-01-01

    To record the weed flora infesting the rainfed and canal irrigated arable fields in the Punjab province, three districts viz. Chakwal, Jhelum and Rawalpindi in rainfed agro-ecosystem, while three districts in canal irrigated wheat fields i.e., Sahiwal, Qasoor and Gujrat were surveyed comprehensively to examine weed spectra. Weeds occurring in various localities largely varied with the variation in the mode of irrigation i.e., Barani areas and Canal irrigated area. In Rainfed (Barani) areas Fumeria parviflora and Asphodelus tenuifolius were noted frequently while their representation was very rare or even absent in canal irrigated areas. Carthamus oxayacantha was also observed at some sites there. The only weeds growing infrequently were hardy grasses like Cynodon dactylon and Cyperus rotundus. None of the weed could cross the limits of occasional frequency level. Nevertheless, in canal irrigated areas Convolvulus arvensis, Anagalus arvensis, Chenopodium sp., Melilotus alba, Lepidium sativum, Lathyrus aphaca, Medicago denticulata, Rumex dentatus and Cynodon dactylon were frequently observed. Phalaris minor and Avena fatua formed very dense stands in many areas. Carthamus oxayacantha, Poa annua, Sonchus asper and Vicia sativa were recorded infrequently. The farmers of Sahiwal and Qasoor districts seem well informed about the importance and use of weedicides as a result the spectrum of weeds growing there was quite low and none of them could establish dense stands. (author)

  12. Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model

    Science.gov (United States)

    Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit

    2017-01-01

    Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in

  13. Hydrological drought index insurance for irrigation districts in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, T.; Bielza, M.; Garrido, A.

    2016-11-01

    Hydrological droughts are a major risk for irrigated agriculture in many regions of the world. The aim of this article is to propose an insurance tool to help irrigators manage the risk of water scarcity in the framework of the Spanish Crop Insurance System (SCIS). Only the United States Insurance System provides this type of coverage, but has very restrictive conditions. To determine the type of insurance scheme that better fits with the SCIS and to the Spanish irrigated agriculture, an expert panel was held with the participation of all stakeholders involved in crop insurance. Following the expert panel conclusions, an hydrological drought index insurance (HDII) addressed to irrigation districts (ID) is proposed. It would compensate water deficits suffered in the whole ID. We detail the conditions that the ID should fulfill to be eligible for HDII. HDII is applied to the Bardenas Irrigation District V (ID-V) in Spain, and the hedging effectiveness of the instrument is analyzed comparing ID-V’s gross margins with and without the insurance contract. Results suggest that the proposed insurance scheme could provide an effective means of reducing farmers’ vulnerability to water shortages and there is no major impediment for it to be included as a new line in the SCIS. This type of insurance can be generalized to any ID fulfilling the conditions mentioned in this paper. (Author)

  14. Newer Root Canal Irrigants in Horizon: A Review

    Directory of Open Access Journals (Sweden)

    Sushma Jaju

    2011-01-01

    Full Text Available Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation.

  15. Nitrate leaching beneath a containerized nursery crop receiving trickle or overhead irrigation.

    Science.gov (United States)

    Colangelo, D J; Brand, M H

    2001-01-01

    Container production of nursery crops is intensive and a potential source of nitrogen release to the environment. This study was conducted to determine if trickle irrigation could be used by container nursery producers as an alternative to standard overhead irrigation to reduce nitrogen release into the environment. The effect of overhead irrigation and trickle irrigation on leachate nitrate N concentration, flow-weighted nitrate N concentration, leachate volume, and plant growth was investigated using containerized rhododendron (Rhododendron catawbiense Michx. 'Album') supplied with a controlled-release fertilizer and grown outdoors on top of soil-monolith lysimeters. Leachate was collected over two growing seasons and overwinter periods, and natural precipitation was allowed as a component of the system. Precipitation accounted for 69% of the water entering the overhead-irrigated system and 80% of the water entering the trickle-irrigated system. Leachate from fertilized plants exceeded the USEPA limit of 10 mg L(-1) at several times and reached a maximum of 26 mg L(-1) with trickle irrigation. Average annual loss of nitrate N in leachate for fertilized treatments was 51.8 and 60.5 kg ha(-1) for the overhead and trickle treatments, respectively. Average annual flow-weighted concentration of nitrate N in leachate of fertilized plants was 7.2 mg L(-1) for overhead irrigation and 12.7 mg L(-1) for trickle irrigation. Trickle irrigation did not reduce the amount of nitrate N leached from nursery containers when compared with overhead irrigation because precipitation nullified the potential benefits of reduced leaching fractions and irrigation inputs provided under trickle irrigation.

  16. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  17. A review of sustainable solar irrigation systems for Sub-Saharan Africa

    OpenAIRE

    Mohammed Wazed, S.; Hughes, B.R.; O’Connor, D.; Kaiser Calautit, J.

    2018-01-01

    This investigation focused on the research undertaken on solar photovoltaic (PV) and solar thermal technologies for pumping water generally for irrigation of remote rural farms specifically considering the Sub-Saharan African region. Solar PV systems have been researched extensively for irrigation purposes due to the rise in Oil prices and the upscaling in commercialisation of PV technology. Based on the literature the most effective PV system is presented for the irrigation of a small scare ...

  18. [Irrigants and intracanal medicaments in endodontics].

    Science.gov (United States)

    Zehnder, Matthias; Lehnert, Birgit; Schönenberger, Kathrin; Waltimo, Tuomas

    2003-01-01

    Modern, biologic root canal therapy should be performed with suitable irrigating solutions and intracanal medicaments. The goal of endodontic treatment is to free the treated tooth from infection and prevent reinfection as thoroughly as possible by means which do not put the organism at risk. In this review of the literature, an evidence-based concept for irrigation and medication of root canal systems is presented. Irrigants and medicaments are discussed with respect to their antimicrobial, tissue-dissolving and endotoxin-decontaminating capacity in relation to their systemic toxicity. Recent findings pertaining to interactions of root canal medicaments and irrigating solutions and their impact on a sound irrigating and medicating concept are discussed.

  19. Village-level supply reliability of surface water irrigation in rural China: effects of climate change

    Science.gov (United States)

    Li, Yanrong; Wang, Jinxia

    2018-06-01

    Surface water, as the largest part of water resources, plays an important role on China's agricultural production and food security. And surface water is vulnerable to climate change. This paper aims to examine the status of the supply reliability of surface water irrigation, and discusses how it is affected by climate change in rural China. The field data we used in this study was collected from a nine-province field survey during 2012 and 2013. Climate data are offered by China's National Meteorological Information Center which contains temperature and precipitation in the past 30 years. A Tobit model (or censored regression model) was used to estimate the influence of climate change on supply reliability of surface water irrigation. Descriptive results showed that, surface water supply reliability was 74 % in the past 3 years. Econometric results revealed that climate variables significantly influenced the supply reliability of surface water irrigation. Specifically, temperature is negatively related with the supply reliability of surface water irrigation; but precipitation positively influences the supply reliability of surface water irrigation. Besides, climate influence differs by seasons. In a word, this paper improves our understanding of the impact of climate change on agriculture irrigation and water supply reliability in the micro scale, and provides a scientific basis for relevant policy making.

  20. Effectiveness of various irrigation activation protocols and the self-adjusting file system on smear layer and debris removal.

    Science.gov (United States)

    Çapar, İsmail Davut; Aydinbelge, Hale Ari

    2014-01-01

    The purpose of the present study is to evaluate smear layer generation and residual debris after using self-adjusting file (SAF) or rotary instrumentation and to compare the debris and smear layer removal efficacy of the SAF cleaning/shaping irrigation system against final agitation techniques. One hundred and eight maxillary lateral incisor teeth were randomly divided into nine experimental groups (n = 12), and root canals were prepared using ProTaper Universal rotary files, with the exception of the SAF instrumentation group. During instrumentation, root canals were irrigated with a total of 16 mL of 5% NaOCl. For final irrigation, rotary-instrumented groups were irrigated with 10 mL of 17% EDTA and 10 mL of 5% NaOCl using different irrigation agitation regimens (syringe irrigation with needles, NaviTip FX, manual dynamic irrigation, CanalBrush, EndoActivator, EndoVac, passive ultrasonic irrigation (PUI), and SAF irrigation). In the SAF instrumentation group, root canals were instrumented for 4 min at a rate of 4 mL/min with 5% NaOCl and received a final flush with same as syringe irrigation with needles. The surface of the root dentin was observed using a scanning electron microscope. The SAF instrumentation group generated less smear layer and yielded cleaner canals compared to rotary instrumentation. The EndoActivator, EndoVac, PUI, and SAF irrigation groups increased the efficacy of irrigating solutions on the smear layer and debris removal. The SAF instrumentation yielded cleaner canal walls when compared to rotary instrumentation. None of the techniques completely removed the smear layer from the root canal walls. © 2014 Wiley Periodicals, Inc.

  1. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    Science.gov (United States)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-09-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  2. Participatory management reforms in irrigation sector of sindh

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2009-01-01

    Pakistan has been making efforts to restructuring the century old irrigation system by involving beneficiaries (water users) at various units of the irrigation system management. The main purposes of reforms are to improve O and M (Operation and Maintenance) of irrigation system, to make balance in expenditure and revenue, to improve crop production through efficient use of water, to maintain affordable drainage system and to adopt PWRM (Participatory Water Resource Management) approach. In these reforms, the Sindh provincial irrigation department was transferred to an autonomous body as SmA (Sindh Irrigation and Drainage Authority). Under SmA, CAWB (Canal Area Water Board) at each canal command area, water users association at watercourse level and Farmer Organizations at each secondary canal (Distributary/ Minor) command area were being formed. So far 335 FOs (Farmers Organizations) have been formed in Sindh. To evaluate the performance of FOs in their day to day activities such as water distribution, O and M of irrigation channels, conflict management and revenue (Abiana) collection, IMI (Institutional Maturity Index) of FOs is conducted. The objective IMI analysis was to assess the maturity of FOs in terms of organizational aspects, conflict resolution, financial aspects, water distribution, operation and maintenance, environmental aspects and capacity building of FOs. The IMI analyses identified the weaker aspects of the FOs and need of focus these aspects for improved performance of FOs through effective social mobilization and capacity building activities. (author)

  3. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    Science.gov (United States)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  4. Evaluation model development for sprinkler irrigation uniformity ...

    African Journals Online (AJOL)

    use

    Sprinkle and trickle irrigation. The. Blackburn Press, New Jersey, USA. Li JS, Rao MJ (1999). Evaluation method of sprinkler irrigation nonuniformity. Trans. CSAE. 15(4): 78-82. Lin Z, Merkley GP (2011). Relationships between common irrigation application uniformity indicators. Irrig Sci. Online First™, 27 January. 2011.

  5. Irrigation and nitrogen level affect lettuce yield in greenhouse ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effect of different irrigation and nitrogen levels on lettuce yield characteristics in greenhouse condition from December 2006 to March 2007. Irrigation levels of 100% of total class A pan (S1), 80% of total class A pan (S2), 60% of total class A pan (S3) and nitrogen levels of 0 kg ...

  6. Effects of Furrow Irrigation on the Growth, Production, and Water Use Efficiency of Direct Sowing Rice

    Directory of Open Access Journals (Sweden)

    Chunlin He

    2010-01-01

    Full Text Available Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI system to improve water use efficiency (WUE and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI system (continuous flooding irrigation, for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1 a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2 a significant reduction in the reduced materials, such as ferrous ion (Fe2+, and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3 increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  7. Effects of furrow irrigation on the growth, production, and water use efficiency of direct sowing rice.

    Science.gov (United States)

    He, Chunlin

    2010-08-03

    Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI) system to improve water use efficiency (WUE) and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI) system (continuous flooding irrigation), for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1) a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2) a significant reduction in the reduced materials, such as ferrous ion (Fe2+), and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3) increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  8. Study of Irrigation Interval and Mulch Effects on Pomological Characteristics and Yield of Sevillana Cultivar in Field Condition

    Directory of Open Access Journals (Sweden)

    rahmatollah gholami

    2018-03-01

    Full Text Available Introduction: Olive (Olea europaea L. is one of the drought tolerant ever green fruit trees. Olive is an economically important species of the Mediterranean area, so understanding the mechanisms by which olive plants face drought stress under environmental conditions is essential for the improvement of olive yield and oil quality. Olive is one of the fruit trees which become important in the Iranian fruit industry at the near future. Mulch is an optimizing strategy under which crops are allowed to sustain some degree of water deficit and yield reduction. Increasing crop water-use efficiency (WUE through water conservation in the soil is an important component of dry land farming. Mulching is among the water management practices for increasing WUE. Mulch is referred to as any material that is spread onto the surface of the soil for protection against solar radiation or evaporation. Different materials, such as wheat straw, rice straw, plastic film, grass, wood, and sand, are used as mulches. Materials and Methods: This experiment was conducted to study the effect of irrigation interval and mulch on Pomological characteristics and yield of 11-years old Sevillana olive cultivar. A factorial experiment was carried out in Dallaho Olive Research Station at Sarepole located in Kermanshah province. Field experiment based on randomized complete block design with three replications and two factors (irrigation interval and mulch were conducted in 2015. Each experiment unit consists of 4 trees and 108 trees were used. Irrigation treatments period for experiment were 3, 6 and 10 days interval and mulch treatments for experiment were polyethylene, organic materials and non-mulch (control. Geographical characters was longitude of 45˚, 51΄ E and latitude of 34˚, 30΄ N and the height of sea level 581m. The measured tree characteristics were: Fruit Weight, Pulp Fresh Weight, Pulp Dry Weight, Dry matter, Pulp/Pit ratio, Pit Length, Pit Diameter, Fruit Yield

  9. The effect of low-speed drilling without irrigation on heat generation: an experimental study.

    Science.gov (United States)

    Oh, Ji-Hyeon; Fang, Yiqin; Jeong, Seung-Mi; Choi, Byung-Ho

    2016-02-01

    In this study we evaluated heat generation during the low-speed drilling procedure without irrigation. Ten artificial bone blocks that were similar to human D1 bone were used in this study. The baseline temperature was 37.0℃. We drilled into 5 artificial bone blocks 60 times at the speed of 50 rpm without irrigation. As a control group, we drilled into an additional 5 artificial bone blocks 60 times at the speed of 1,500 rpm with irrigation. The temperature changes during diameter 2 mm drilling were measured using thermocouples. The mean maximum temperatures during drilling were 40.9℃ in the test group and 39.7℃ in the control group. Even though a statistically significant difference existed between the two groups, the low-speed drilling did not produce overheating. These findings suggest that low-speed drilling without irrigation may not lead to overheating during drilling.

  10. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern

  11. Evaluation of dripper clogging using magnetic water in drip irrigation

    Science.gov (United States)

    Khoshravesh, Mojtaba; Mirzaei, Sayyed Mohammad Javad; Shirazi, Pooya; Valashedi, Reza Norooz

    2018-06-01

    This study was performed to investigate the uniformity of distribution of water and discharge variations in drip irrigation using magnetic water. Magnetic water was achieved by transition of water using a robust permanent magnet connected to a feed pipeline. Two main factors including magnetic and non-magnetic water and three sub-factor of salt concentration including well water, addition of 150 and 300 mg L-1 calcium carbonate to irrigation water with three replications were applied. The result of magnetic water on average dripper discharge was significant at ( P ≤ 0.05). At the final irrigation, the average dripper discharge and distribution uniformity were higher for the magnetic water compared to the non-magnetic water. The magnetic water showed a significant effect ( P ≤ 0.01) on distribution uniformity of drippers. At the first irrigation, the water distribution uniformity was almost the same for both the magnetic water and the non-magnetic water. The use of magnetic water for drip irrigation is recommended to achieve higher uniformity.

  12. The synergistic effect of ultrasonic activation and irrigation on Enterococcus faecalis biofilm

    Directory of Open Access Journals (Sweden)

    Abeer A Al-Mahdi

    2016-01-01

    Full Text Available Aim: The aim of this investigation was to compare the efficacy of passive ultrasonic irrigation (PUI with either 2.5% sodium hypochlorite (NaOCl or saline, with that of conventional syringe irrigation on intraradicular Enterococcus faecalis biofilm. Materials and Methods: Biofilms of E. faecalis were established over 21 days in 80 single roots that had undergone biomechanical preparation followed by gamma radiation. Biofilms were treated for 1 min with 2.5% NaOCl/PUI (Group 1, 2.5% NaOCl (Group 2, sterile saline/PUI (Group 3, and sterile saline (Group 4. The positive control (n = 4 was used to confirm the presence of biofilm before various treatments. Additional four samples that served as a negative control were used to confirm the sterility of the samples. Biofilm eradication was evaluated by Colony Forming Unit (CFU quantification and scanning electron microscopy (SEM. Results: The median of CFUs of S1 was significantly higher than that of S2 in all experimental groups. SEM examination showed a significant difference between the positive control and the experimental groups (P < 0.001, with the highest score of biofilm in the positive control group followed by Group 4 and both groups were not statistically significant from each other (P = 0.067. Following various treatments, the highest scores of biofilm were observed in the coronal third and the least were in the apical third. Conclusions: PUI did not increase the effectiveness of NaOCl irrigation on biofilm removal, however, PUI enhanced biofilm disturbance when used with saline. The least mean score of remaining biofilm was in the apical third of all treatment groups compared to other thirds.

  13. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.

  14. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    Science.gov (United States)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the

  15. A scintigraphic study of colostomy irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige (Nara Medical Univ., Kashihara (Japan))

    1991-09-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with {sup 99m}Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author).

  16. A scintigraphic study of colostomy irrigation

    International Nuclear Information System (INIS)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige

    1991-01-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with 99m Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author)

  17. Interactive Effects of Elevated CO2 and N Fertilization on Yield and Quality of Tomato Grown Under Reduced Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Zhenhua Wei

    2018-03-01

    Full Text Available The interactive effects of CO2 elevation, N fertilization, and reduced irrigation regimes on fruit yield (FY and quality in tomato (Solanum lycopersicum L. were investigated in a split-root pot experiment. The plants were grown in two separate climate-controlled greenhouse cells at atmospheric [CO2] of 400 and 800 ppm, respectively. In each cell, the plants were fertilized at either 100 or 200 mg N kg-1 soil and were either irrigated to full water holding capacity [i.e., a volumetric soil water content of 18%; full irrigation (FI], or using 70% water of FI to the whole pot [deficit irrigation (DI] or alternately to only half of the pot [partial root-zone irrigation (PRI]. The yield and fruit quality attributes mainly from sugars (sucrose, fructose, and glucose and organic acids (OAs; citric acid and malic acid to various ionic (NH4+, K+, Mg2+, Ca2+, NO3-, SO42-, and PO43- concentrations in fruit juice were determined. The results indicated that lower N supply reduced fruit number and yield, whereas it enhanced some of the quality attributes of fruit as indicated by greater firmness and higher concentrations of sugars and OAs. Elevated [CO2] (e[CO2] attenuated the negative influence of reduced irrigation (DI and PRI on FY. Principal component analysis revealed that the reduced irrigation regimes, especially PRI, in combination with e[CO2] could synergistically improve the comprehensive quality of tomato fruits at high N supply. These findings provide useful knowledge for sustaining tomato FY and quality in a future drier and CO2-enriched environment.

  18. Effect of the season on the free phytoprostane content in Cornicabra extra virgin olive oil from deficit-irrigated olive trees.

    Science.gov (United States)

    Collado-González, Jacinta; Pérez-López, David; Memmi, Houssem; Gijón, M Carmen; Medina, Sonia; Durand, Thierry; Guy, Alexandre; Galano, Jean-Marie; Fernández, Diego José; Carro, Fernando; Ferreres, Federico; Torrecillas, Arturo; Gil-Izquierdo, Angel

    2016-03-30

    The effect of regulated deficit irrigation (RDI) on the phytoprostane (PhytoP) content in extra virgin olive (Olea europaea L., cv. Cornicabra) oil (EVOO) was studied. During the 2012 and 2013 seasons, T0 plants were irrigated at 100% ETc, while T1 and T2 plants were irrigated avoiding water deficit during phases I and III of fruit growth and saving water during the non-critical phenological period of pit hardening (phase II), developing a more severe water deficit in T2 plants. In 2013, a fourth treatment (T3) was also performed, which was similar to T2 except that water saving was from the beginning of phase II to 15 days after the end of phase II. 9-F1t -PhytoP, 9-epi-9-F1t -PhytoP, 9-epi-9-D1t -PhytoP, 9-D1t -PhytoP, 16-B1 -PhytoP and 9-L1 -PhytoP were present in Cornicabra EVOO, and their contents increased in the EVOO from RDI plants. Deficit irrigation during pit hardening or for a further period of 2 weeks thereafter to increase irrigation water saving is clearly critical for EVOO composition because of the enhancement of free PhytoPs, which have potential beneficial effects on human health. The response of individual free PhytoPs to changes in plant water status was not as perceptible as expected, preventing their use as biomarkers of water stress. © 2015 Society of Chemical Industry.

  19. Moderate irrigation intervals facilitate establishment of two desert shrubs in the Taklimakan Desert Highway Shelterbelt in China.

    Science.gov (United States)

    Li, Congjuan; Shi, Xiang; Mohamad, Osama Abdalla; Gao, Jie; Xu, Xinwen; Xie, Yijun

    2017-01-01

    Water influences various physiological and ecological processes of plants in different ecosystems, especially in desert ecosystems. The purpose of this study is to investigate the response of physiological and morphological acclimation of two shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in irrigation intervals. The irrigation frequency was set as 1-, 2-, 4-, 8- and 12-week intervals respectively from March to October during 2012-2014 to investigate the response of physiological and morphological acclimation of two desert shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in the irrigation system. The irrigation interval significantly affected the individual-scale carbon acquisition and biomass allocation pattern of both species. Under good water conditions (1- and 2-week intervals), carbon assimilation was significantly higher than other treatments; while, under water shortage conditions (8- and 12-week intervals), there was much defoliation; and under moderate irrigation intervals (4 weeks), the assimilative organs grew gently with almost no defoliation occurring. Both studied species maintained similar ecophysiologically adaptive strategies, while C. mongolicunl was more sensitive to drought stress because of its shallow root system and preferential belowground allocation of resources. A moderate irrigation interval of 4 weeks was a suitable pattern for both plants since it not only saved water but also met the water demands of the plants.

  20. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  1. Efficacy of passive ultrasonic irrigation with natural irrigants (Morinda citrifolia juice, Aloe Vera and Propolis) in comparison with 1% sodium hypochlorite for removal of E. faecalis biofilm: an in vitro study.

    Science.gov (United States)

    Bhardwaj, Anuj; Velmurugan, Natanasabapathy; Ballal, Suma

    2013-01-01

    Present study evaluated the efficacy of natural derivative irrigants, Morinda citrifolia juice (MCJ), Aloe Vera and Propolis in comparison to 1% sodium hypochlorite with passive ultrasonic irrigation for removal of the intraradicular E. faecalis biofilms in extracted single rooted human permanent teeth. Biofilms of E. faecalis were grown on the prepared root canal walls of 60 standardized root halves which were longitudinally sectioned. These root halves were re-approximated and the samples were divided into five groups of twelve each. The groups were, Group A (1% NaOCl), Group B (MCJ), Group C (Aloe vera), Group D (Propolis) and Group E (Saline). These groups were treated with passive ultrasonic irrigation (PUI) along with the respective irrigants. The root halves were processed for scanning electron microscopy. Three images (X2.5), coronal, middle and apical, were taken for the twelve root halves in each of the five groups. The images were randomized and biofilm coverage assessed independently by three calibrated examiners, using a four-point scoring system. 1% NaOCl with passive ultrasonic irrigation (PUI) was effective in completely removing E. faecalis biofilm and was superior to the natural irrigants like MCJ, Aloe vera and Propolis tested in this study. 1% NaOCl used along with passive ultrasonic irrigation was effective in completely removing E. faecalis biofilm when compared to natural irrigants (MCJ, Aloe Vera and Propolis).

  2. Regulated deficit irrigation as a water management strategy in Vitis vinifera production

    International Nuclear Information System (INIS)

    Wample, R.L.; Smithyman, R.

    2002-01-01

    An initial six-year study in a commercial vineyard located in the Columbia River Valley of Washington State, United States of America, examined the management practices and potential benefits of regulated deficit irrigation (RDI) on Vitis vinifera cv. Sauvignon blanc. The objective of the treatments was to evaluate the effect of deficit irrigation prior to, compared with after, veraison. Each of four irrigation treatments was applied to 1.6 ha and replicated four times for a total 27.0 ha. Irrigation treatments were based on desired soil moisture levels in the top metre of the profile where most of the root system is found. Soil moisture was monitored using a neutron probe and the information was combined with calculations of evaporative demand to determine the irrigation required on a weekly basis. Vine growth, yield, fruit quality and cold hardiness were monitored throughout the study. The results indicated that RDI prior to veraison was effective in controlling shoot growth, as determined by shoot length and elongation rate, as well as pruning weights. Sixteen wine lots, each of approximately 12,000 litres, were prepared each season. Although there was some effect on berry weight, yield was not always significantly reduced. Full irrigation prior to veraison resulted in excessive shoot growth. RDI applied after veraison to vines with large canopies resulted in greater water deficit stress. Fruit quality was increased by pre-veraison RDI compared to postveraison RDI based on wines made. Regulated deficit irrigation applied at anytime resulted in better early-season lignification of canes and cold hardening of buds. There was a slight improvement in mid-winter cold hardiness of vines subjected to RDI. However, this effect was inconsistent. Studies on Cabernet Sauvignon and White Riesling are underway to confirm these results and to investigate the impact of RDI on fruit quality and winemaking practices. (author)

  3. Effectiveness of Various Irrigation Protocols in Removing Calcium Hydroxide from Root Canals

    Directory of Open Access Journals (Sweden)

    Hakan Göktürk

    2018-04-01

    Full Text Available Objective: The purpose of this study was to investigate the removal efficiency of calcium hydroxide (CH by CanalBrush, Vibringe, laser-activated irrigation (LAI, conventional syringe irrigation (CSI, XP-endo Finisher, and passive ultrasonic irrigation (PUI in the root canal walls. Materials and Methods: Ninety-eight human mandibular premolar teeth were prepared. Root canals were filled with CH. The roots were divided into six experimental groups (n=15/group according to the irrigation protocol used: group 1 (CSI, group 2 (Vibringe, group 3 (CanalBrush, group 4 (XP-endo Finisher, group 5 (PUI, and group 6 (LAI. The amount of residual CH in the canal walls for each canal third was scored. Data were analysed by using Kruskal-Wallis and Bonferroni-correction Mann-Whitney U tests. Results: None of the investigated protocols renders the root canal walls free of CH remnants. Significant differences were found between tooth regions in terms of CH removal (p<0.05, and all groups except group 6 (LAI showed more residual CH in the apical region. PUI and LAI eliminated significantly more CH than CSI from the middle and apical thirds of the root canal, respectively. Conclusion: The activation of sodium hypochlorite with various devices increased CH removal at the apical and middle part of the canal. LAI and PUI produce better results in the apical and middle thirds, respectively.

  4. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  5. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  6. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  7. Effects on Brassica napus L. Yield and Yield Components of Super Absorbent Polymer under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Alireza PIRZAD

    2014-09-01

    Full Text Available For evaluation of the effects of super absorbent polymer under different irrigation regimes on the yield and yield components of Brassica napus L., a factorial experiment was carried out, based on randomized complete block design with four replicas. Treatments included super absorbent polymer (0, 1, 2, 3, 4 and 5 g/kg soil and induced drought stress (irrigation at 25, 50 and 75 mm evaporation from class A pan. The experiment was conducted in pots with 5 kg of soil. Data analysis of variance showed the significant interaction effect between polymer and irrigation on the stem length, width and weight, the number of seeds per sheath, number of seeds per plant, the number of sterile and fertile sheath per plant, fertile sheath percentage (fertile sheath/ total sheath ×100, 1000 seeds weight, seed weight per plant, sheath weight per plant and the number of total sheath. The present study revealed that indifferent from the applied amounts of the super absorbent polymer, in all cases the measured characters have been more affected by induced drought stress.

  8. Effect of sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (Cicer arietinum L. (cultivar 3279 ILC

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effect of different sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (cultivar 3279 ILC (Cicer arietinum L., an experiment was conducted at Agricultural Research-Education Station of Shahid Rejaee, Neyshaboor during 2001-2002. Four irrigation regimes (without irrigation, one time irrigation (at early flowering, two times irrigation (at early flowering and 50% flowering and control (irrigation every 10 days and Four sowing dates early planting (autumn, Entezari, and late planting (spring and delayed were compared in a spilt plot layout based on randomized complete block design with four replications per treatment. The results showed that all chickpea plants with delayed sowing date on combination of without irrigation, one time irrigation (at early flowering and two times irrigation (at early flowering and 50% flowering were dead. By delaying sowing date, duration between the time of starting flowering and maturity became shorter. Plant height, distance of the first pod from earth surface, distance between nods, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one, two and with no seed per plant, number of seeds per plant, seed weight per plant, 100 seed weight and grain yield were increased when the number of irrigation increased. By increasing the growing season, plant height, distance of the first pod from earth surface, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with two and without seeds per plant, number of seeds per plant and seed weight per plant were increased. The autumn sowing date had the highest and the spring date had the lowest grain yield. The highest plant height, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one and with no seed per plant, number of seeds per plant and grain yield were obtained at

  9. Effect of Different Levels of Irrigation Water on Quantitative and Qualitative Characteristics of Potato and Determination of Its Optimum Consumptive Use of Water in Shahrekord

    Directory of Open Access Journals (Sweden)

    masoud Naderi

    2017-01-01

    Full Text Available Introduction: Owing to drought, increasing demand for fresh water resources and low water use efficiency, the optimum use of water is essential in the agricultural sector. Therefore, this study was conducted to investigate the effect of different levels of irrigation water on quantitative and qualitative Characteristics of potato (Burren cultivar and determination of its optimum consumptive use of water under Shahr-e kord environment. Materials and Methods: This study was conducted at the Agricultural Research Center and Natural Resources in Shahr-e kord with longitude and latitude of 32˚18΄ and 50˚51΄ , respectively, in 2013. This experiment was performed in randomized complete block design with 7 treatments consisted of different levels of irrigation water and 3 replications. Different levels of irrigation water were: 40, 55, 70, 85, 100, 115 and 130 % of the soil moisture deficit. Potato seeds (burren cultivar were planted with distance of 20 cm from each other and furrow width of 75 cm. Irrigation program were performed based on the measurement of soil moisture deficit. The irrigation intervals were considered as a fixed 7 day. Irrigation levels were applied to 105 days after planting and the total growth period was 130 days from planting to harvesting. The samples were taken from the two middle furrows. The evaluated parameters were included weight of tubers per plant, tuber diameter, weight of tuber in seed size, weight of tuber production in a plant in marketable size, tuber dry weight, the starch percent, percent of soluble sugars, nitrogen percent. The starch content was determined by Polarimetry method. The soluble sugars content was measured by Colorimetric method, the nitrogen content was measured by wet digestion method and using the Kjeldahl set. Then, the optimal depth of water consumption in conditions of limited water resources were determined by English method Statistical analysis of data and drawing graphs were done with

  10. Irrigation et paludisme : un couple infernal?

    Directory of Open Access Journals (Sweden)

    Mergeai, G.

    2016-01-01

    water basins, as natural transmission of the disease was low in these places. There are many possible ways of attenuating the negative effects of irrigation, while maintaining agricultural productivity, such as: alternate wetting and drying of rice paddies, rotation of rice cultivation with non-irrigated crops, proper maintenance of irrigation canals, in order to prevent the formation of ponds caused by leaks, using farm animals to attract mosquitos and keeping mosquito breeding sites away from alternative food sources, such as maize pollen, on which they feed. When irrigation projects are first planned, it is vital that measures are devised, in order to limit the spread of malaria, together with systems aimed at monitoring their impact on health. As well as the above-mentioned production techniques, this also applies to initiatives in the field of education, access to mosquito nets, cautious use of pesticides, diagnosis and early treatment of disease. It is important that all stakeholders in agricultural development are made more aware of these problems. The creation of affordable health insurance systems for farmers is also a solution that will rapidly get malaria victims back on their feet. Hoping to have sensitized to this important problematic all those of you who are concerned, I wish you an excellent reading of this issue.

  11. Effect of addition of organic materials and irrigation conditions on soil quality in olive groves in the region of Messinia, Greece.

    Science.gov (United States)

    Kavvadias, Victor; Papadopoulou, Maria; Vavoulidou, Evangelia; Theocharopoulos, Sideris; Repas, Spiros; Koubouris, Georgos; Psaras, Georgios

    2017-04-01

    Intensive cultivation practices are associated to soil degradation mainly due to low soil organic matter content. The application of organic materials to land is a common practice in sustainable agriculture in the last years. However, its implementation in olive groves under different irrigation regimes has not been systematically tested under the prevailing Mediterranean conditions. The aim of this work was to study the effect of alternative carbon input techniques (i.e. wood shredded, pruning residues, returning of olive mill wastes the field with compost) and irrigation conditions (irrigated and rainfed olive orchards) on spatial distribution of soil chemical (pH, EC, total organic carbon, total nitrogen, inorganic nitrogen, humic and fulvic acids, available P, and exchangeable K) and microbial properties (soil basal microbial respiration and microbial biomass carbon) in two soil depths (0-10 cm and 10-40 cm). The study took place in the region of Messinia, South western Peloponnese, Greece during three year soil campaigns. Forty soil plots of olive groves were selected (20 rainfed and 20 irrigated) and carbon input practices were applied on the half of the irrigated and rainfed soil parcels (10 rainfed and 10 irrigated), while the remaining ones were used as controls. The results showed significant changes of chemical and biological properties of soil in olive orchards due to carbon treatments. However, these changes were depended on irrigation conditions. Microbial parameters appeared to be reliable indicators of changes in soil management. Proper management of alternative soil carbon inputs in olive orchards can positively affect soil fertility.

  12. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  13. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass

  14. Effectiveness of different irrigation protocols on calcium hydroxide removal from simulated immature teeth after apexification

    Directory of Open Access Journals (Sweden)

    Evren Ok

    2015-01-01

    Full Text Available Aim: To evaluate the effectiveness of different irrigation solutions and ultrasonic activation of the irrigation solutions on the removal of calcium hydroxide (Ca(OH2 from the simulated immature root canals after apexification. Materials and methods: One-hundred and one single-rooted teeth were used. The root canals were shaped with ProTaper rotary files up to F5. Simulation of roots with immature apices was carried out using size 4 Unicore drills. An injectable Ca(OH2 was injected into each root canal, and packed to the working length. Then, cotton pellets were placed over canal orifices, and apical and coronal parts of the roots were sealed with resin-modified glass ionomer cement, and light cured. Specimens were stored in distilled water for 3 months at 37°C. After 3 months, the temporary coronal seal was removed and the samples were randomly divided into: (a saline (n = 20, (b ultrasonic activation of saline (n = 20, (c sodium hypochlorite (NaOCl (n = 20, (d ultrasonic activation of NaOCl (n = 15, (e chlorhexidine digluconate (CHX (n = 20 and one positive control group (n = 3 and one negative control group (n = 3. The amount of remaining Ca(OH2 on the canal walls was measured under stereomicroscope with 30× magnification. Comparisons between groups were made by the non-parametric Kruskal-Wallis test and Dunn post-test at a significance level of p  0.05 groups. Conclusions: Irrigation solutions and ultrasonic activation of the irrigation solutions could not completely remove Ca(OH2 from the simulated immature root canals.

  15. Effect of Irrigation and Preplant Nitrogen Fertilizer Source on Maize in the Southern Great Plains

    Directory of Open Access Journals (Sweden)

    Jacob T. Bushong

    2014-01-01

    Full Text Available With the demand for maize increasing, production has spread into more water limited, semiarid regions. Couple this with the increasing nitrogen (N fertilizer costs and environmental concerns and the need for proper management practices has increased. A trial was established to evaluate the effects of different preplant N fertilizer sources on maize cultivated under deficit irrigation or rain-fed conditions on grain yield, N use efficiency (NUE, and water use efficiency (WUE. Two fertilizer sources, ammonium sulfate (AS and urea ammonium nitrate (UAN, applied at two rates, 90 and 180 kg N ha−1, were evaluated across four site-years. Deficit irrigation improved grain yield, WUE, and NUE compared to rain-fed conditions. The preplant application of a pure ammoniacal source of N fertilizer, such as AS, had a tendency to increase grain yields and NUE for rain-fed treatments. Under irrigated conditions, the use of UAN as a preplant N fertilizer source performed just as well or better at improving grain yield compared to AS, as long as the potential N loss mechanisms were minimized. Producers applying N preplant as a single application should adjust rates based on a reasonable yield goal and production practice.

  16. 21 CFR 876.5895 - Ostomy irrigator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food... DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator. (a) Identification. An ostomy irrigator is a device that consists of a container for fluid, tubing with a cone-shaped...

  17. Effects of elevated ozone on leaf δ13C and leaf conductance of plant species grown in semi-natural grassland with or without irrigation

    International Nuclear Information System (INIS)

    Jaeggi, M.; Saurer, M.; Volk, M.; Fuhrer, J.

    2005-01-01

    Stable carbon isotope ratios (δ 13 C) and leaf conductance (g s ) were measured (2002, 2003) in Holcus lanatus L., Plantago lanceolata L. Ranunculus friesianus (Jord.), and Trifolium pratense L. at two levels of ozone (O 3 ) with or without irrigation. In non-irrigated control plots, R. friesianus showed the least negative δ 13 C, and the smallest response to the treatments. Irrigation caused more negative δ 13 C, especially in H. lanatus. Irrespective of irrigation, O 3 increased δ 13 C in relationship to a decrease in g s in P. lanceolata and T. pratense. The strongest effect of O 3 on δ 13 C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the top soil does not always lead to protection from O 3 uptake. It is concluded that in species such as T. pratense plants can maintain stomatal O 3 uptake during dry periods when roots can reach deeper soil layers where water is not limiting. - Under natural field conditions, lack of precipitation may not protect semi-natural vegetation from O 3 effects on leaf gas exchange

  18. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    Science.gov (United States)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters

  19. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-12-01

    Full Text Available A two-year study was carried out in order to assess the effects of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated ETc at levels of 100% (FI, full irrigation, 80% (DI-80, 60% (DI-60, when the readily available water in the control treatment (FI is depleted, deficit irrigation during ripening stage (FI-MDI60 and farmer method corresponding to irrigation practices implemented by the local farmers (FM. Results on pepper yield and soil salinity are globally consistent between the two-year experiments and shows significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments resulted also in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha although we didn’t find significant differences with the regulated deficit irrigation treatment (FI-DI60. However, the DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m² and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments, respectively, in 2008 and 2009. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provides

  20. Organic cultivation of onion under castor cake fertilization and irrigation depths

    Directory of Open Access Journals (Sweden)

    Gabriel Alves Botelho de Mello

    2017-11-01

    Full Text Available Two experiments were carried out to evaluate the effects that different doses of castor bean (0, 200, and 300 g m-2 and irrigation levels (204, 224, 278, and 321 mm in 2014, and 278, 302, 397, and 444 mm in 2015 have on both the productivity and quality of onion bulbs. In the experiments, the experimental design was randomized blocks (4 x 3 factorial scheme, with five replicates. Irrigation management was performed using a Simplified Irrigation Device (SID in response to soil water tension in the treatment of highest irrigation depth. The following variables were evaluated: plant dry biomass (PDB, bulb dry biomass (BDB, total yield (TY, mean bulb fresh weight (MBFW, mean bulb dry weight (MBDW, mean bulb diameter (MBD and water use efficiency (WUE. The highest irrigation depths positively influenced the mean production of onion bulbs, regardless of the applied dose of castor cake. The doses of castor cake positively influenced the production of onion bulbs when higher irrigation depths were applied.

  1. Ethnic Forces in Collective Action: Diversity, Dominance, and Irrigation in Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Timothy M. Waring

    2011-12-01

    Full Text Available Mounting evidence suggests that ethnic interactions damage cooperation in the provision of public goods, yet very few studies of collective action in common pool resource management have found strong evidence for the effects of ethnic diversity. Research on both public goods and common pool resource management that does find negative ethnic effects on cooperation tend to ignore the importance of interethnic relationships, particularly ethnic inequality, stratification, or dominance. This study presents data from agricultural villages in Tamil Nadu's Palani Hills to test the importance of a range of ethnic effects using caste interactions in a traditional irrigation system. I provide corroborating evidence of a negative cooperative effect of ethnic diversity, but also demonstrate that factors of ethnic dominance such as hierarchical stratification and demographic dominance strongly determine outcomes in collective irrigation management. I argue that the most important measure of equity, irrigation access, is socially, technologically, and institutionally embedded, and demonstrate that the distribution of irrigation channels is explained by measures of inequality, such as wealth inequality, Dalit status, and demographic dominance.

  2. Integrating irrigation and drainage management to sustain agriculture in northern Iran

    NARCIS (Netherlands)

    Darzi-Naftchali, Abdullah; Ritzema, Henk

    2018-01-01

    In Iran, as in the rest of the world, land and water for agricultural production is under pressure. Integrating irrigation and drainage management may help sustain intensified agriculture in irrigated paddy fields. This study was aimed to investigate the long-term effects of such management

  3. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Fathia El Mokh

    2014-12-01

    Full Text Available Field experiments were conducted on a sandy soil during spring of 2009 and autumn of 2010 in southern Tunisia for evaluating the effects of two drip irrigation methods and three irrigation regimes on soil moisture and salinity, yield and water use efficiency of potato (Solanum tuberosum L.. The surface drip (SDI and subsurface drip (SSDI irrigation methods were used. Irrigation regimes consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI100, 60% (DI60 and 30% (DI30. FI100 was considered as full irrigation while DI60 and DI30 were considered as deficit irrigation regimes. Well water with an ECi of 7.0 dS/m was used for irrigation. Findings are globally consistent between the two experiments. Results show that soil moisture content and salinity were significantly affected by irrigation treatments and methods. Higher soil moisture content and lower soil salinity were maintained with SSDI than SDI for all irrigation treatments. For both irrigation methods, higher salinity and lower moisture content in the root zone are observed under DI60 and DI30 treatments compared to FI100. Potato yields were highest over two cropping periods for the SSDI method although no significant differences were observed with the SDI. Irrigation regimes resulted in significant difference in both irrigation methods on yield and its components. Yields were highest under FI100. Compared to FI100, considerable reductions in potato yields were observed under DI60 and DI30 deficit treatments resulting from a reduction in tubers number/m² and average tuber weight and size. Water use efficiency (WUE was found to vary significantly among irrigation methods and treatments and varied between 5.9 and 20.5 kg/m3. WUE of SSDI method had generally higher values than SDI. The lowest WUE values were observed for the FI100 treatment, while the highest values were obtained under DI30 treatment for both methods. SSDI method provides

  4. Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA

    Science.gov (United States)

    The use of irrigation scheduling tools to produce cotton under-surface irrigation in the arid southwesternUSA is minimal. In the State of Arizona, where traditional irrigation scheduling is the norm, producersuse an average of 1460 mm annually to grow a cotton crop. The purpose of this paper was to ...

  5. Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L).

    Science.gov (United States)

    Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan

    2017-01-01

    Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65-70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency.

  6. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    Science.gov (United States)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  7. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Science.gov (United States)

    2010-07-27

    ... to the Turlock Irrigation District's Tuolumne Substation; (2) 23-mile-long, 69-kV Don Pedro-Hawkins Line extending from the Don Pedro switchyard to the Turlock Irrigation District's Hawkins Substation...

  8. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  9. Effects of Fertilizer Types and Irrigation Intervals of on Quantity Criteria of Lavender (Lavandula angustifolia, Rosemary (Rosemarinus officinalis and Hyssop (Hyssopus officinalis

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2012-02-01

    Full Text Available In order to investigate the effects of fertilizer types and irrigation regimes on quantitative criteria of three medicinal plants: lavander, rosemary and hyssop, an experiment was conducted at Research Field of Faculty of Agriculture, Ferdowsi University of Mashhad, during two growing years of 2007-2010. A split-split plot design with three replications was used. Treatments were three irrigation intervals (10, 20, 30 days as main plots and three types of fertilizers in six levels: control, Nitroxin containing Azotobacter sp. and Azospirilum sp. (5lit/ha, nitrogen fertilizer (50 and 100 kg/ha, cow manure (10 and 20 ton/ha as subplots. Animal manure and chemical fertilizer were applied at the time of transferring seedlings to the field and Nitroxin was used with the first irrigation. Shoot harvesting was performed twice during the plant growth at the time of full flowering. Increasing irrigation intervals reduced dry matter yield of three species and the highest yield of lavender (3990 kg/ha, rosemary (2380 kg/ha and hyssop (7380 kg/ha were obtained with 10 days interval. Also the effect of fertilizer was not significant but the highest yield for lavender (3930kg/ha, rosemary (2535kg/ha was obtained with 50 kg/ha chemical fertilizer and the highest yield of hyssop (6117kg/ha resulted in application of 20 ton/ha animal manure. The ratio of leaf dry weight to stem dry weight for both years was gained with 30 days irrigation interval at 20 ton/ha animal manure. In general, the best treatment was 30 days interval irrigation and 20 ton/ha animal manure for the best yield and respective in local conditions

  10. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Directory of Open Access Journals (Sweden)

    A. D. Chukalla

    2017-07-01

    Full Text Available Reducing the water footprint (WF of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha−1 per season or to a certain WF benchmark (expressed in m3  t−1 of crop. This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip; irrigation strategy (full or deficit irrigation; and mulching practice (no, organic or synthetic mulching. The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour. Different cases are considered, including three crops (maize, tomato and potato; four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel; three hydrologic years (wet, normal and dry years and three soil types (loam, silty clay loam and sandy loam. For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF

  11. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Science.gov (United States)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-07-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha-1 per season) or to a certain WF benchmark (expressed in m3  t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water

  12. Yield and quality responses of drip-irrigated spinach to different irrigation quantities in a semi-arid region with a high altitude

    Directory of Open Access Journals (Sweden)

    Yasemin KUSLU

    2016-09-01

    Full Text Available The effect of different irrigation quantities on the growth, marketable yield, crop quality (antioxidant activity, mineral and total phenolic content and irrigation water use efficiency (IWUE of spinach grown in a semi-arid region of high altitude (1795 m a.s.l. was determined. Plants were irrigated with three different irrigation quantities which determined considering 100 (I1, 85 (I2 and 70% (I3 of the evaporation obtained from a Class A pan. Irrigation quantities in the I1, I2 and I3 treatments as two years average were 290, 264.3 and 238.6 mm, respectively. The I1 treatment provided the highest growth, marketable yield (28.06 t*ha-1 and IWUE (9.7 kg*m-3. However, mineral and total phenolic content and antioxidant activity in the leaves of spinach were significantly higher under lower water application conditions. The I2 treatment resulted with the highest antioxidant activity and content of N, K, Mg, Na, Fe, Cu and total phenolics. As a result of the study, I1 treatment in spinach production could be suitable for water sufficient regions due to higher yield and IWUE. However, I2 treatment may be more appropriate for water scarce semi-arid regions of high altitude for obtaining higher minerals and antioxidant activity.

  13. Crop yield response to deficit irrigation imposed at different plant growth stages

    International Nuclear Information System (INIS)

    Kovaks, T.; Kovaks, G.; Szito, J.

    1995-01-01

    A series of field experiments were conducted between 1991 - 1994 using 7 irrigation treatments at two fertilizer levels. Nitrogen fertilizers used were labelled with 15 N stable isotope to examine the effect of irrigation on the fertilizer N use efficiency by isotope technique. The irrigation were maintained at four different growth stages of maize, soybean and potato( vegetative, flowering, yield formation and ripening ) in 4 replicates. The aim of study was to compare deficit irrigation( i.e. the water stress imposed, during one growth stage ) with normal irrigation practice included the traditional one. Two watering regimes were established : (1) normal watering when available water was within the range of 60 - 90 %, and (2) deficit irrigation, when the AW was at 30 to 60 %. Neutron probe was used for measuring the soil water status and evaporation data were recorded to determine the amount of irrigation water demand. Reference evapotranspiration ( ETo) was calculated according to Penman - Monteith. Crop water requirement ( ETm) were determined in every year. Actual evapotranspiration ( ETa) was computed using CROPWAT: FAO computer program for irrigation planning and management (1992). Every irrigation treatment was equipped with neutron access tubes in two replicates at a depth from 10 to 130 cm. tensiometers were installed at depths of 30, 50, 60 and 80 cm in one replicate of treatments and were measured on a daily basis while neutron probe measurements were used to monitor the soil water table fluctuations. The irrigation method used was a special type of low pressure drop irrigation. There were measured the amount of rainfall with irrigation water supplied and the moisture distribution profiles were drown for the different treatments. Relationships between relative yield decrease and evapotranspiration and also between the crop yield and water use were determined. 9 tabs, 9 refs, ( Author )

  14. Effects of ten years treated wastewater drip irrigation on soil ...

    African Journals Online (AJOL)

    SWEET

    soil contamination and the cumulative impact of wastewater, we compared two plots, all under orange- ... A slight increase in the concentration of soil enteric bacteria and soil fungal densities was ..... could be used for fruit tree irrigation.

  15. Comparison of corn, grain sorghum, soybean, and sunflower under limited irrigation.

    Science.gov (United States)

    Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] constitute a large share of the annual total irrigated planted area in the central Great Plains. This study aimed to determine the effect of limited irrigation on grain yield, water use, and profitability of corn and soybean in comparison with ...

  16. A new concept of irrigation response units for effective management of surface and groundwater resources: a case study from the multi-country Fergana Valley, Central Asia

    KAUST Repository

    Awan, Usman Khalid

    2016-09-09

    When estimating canal water supplies for large-scale irrigation schemes and especially in arid regions worldwide, the impact of all factors affecting the gross irrigation requirements (GIR) are not properly accounted for, which results in inefficient use of precious freshwater resources. This research shows that the concept of irrigation response units (IRU)—areas having unique combinations of factors effecting the GIR—allows for more precise estimates of GIR. An overlay analysis of soil texture and salinity, depth and salinity of groundwater, cropping patterns and irrigation methods was performed in a GIS environment, which yielded a total of 17 IRUs combinations of the Oktepa Zilol Chashmasi water consumers’ association in multi-country Fergana Valley, Central Asia. Groundwater contribution, leaching requirements, losses in the irrigation system through field application and conveyance and effective rainfall were included in GIR estimates. The GIR varied significantly among IRUs [average of 851 mm (±143 mm)] with a maximum (1051 mm) in IRU-12 and a minimum (629 mm) in IRUs-15, 16. Owing to varying groundwater levels in each IRU, the groundwater contribution played a key role in the estimation of the GIR. The maximum groundwater contribution occurred in IRUs dominated by cotton–fallow rotations as evidenced by an average value of 159 mm but a maximum of 254 mm and a minimum of 97 mm. Percolation losses depended on irrigation methods for different crops in their respective IRUs. The novel approach can guide water managers in this and similar regions to increase the accuracy of irrigation demands based on all the factor effecting the GIR. © 2016 Springer-Verlag Berlin Heidelberg

  17. Economic risk assessment of drought impacts on irrigated agriculture

    Science.gov (United States)

    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.

    2017-07-01

    In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.

  18. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    Science.gov (United States)

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil

  19. The effects of different irrigation protocols on removing calcium ...

    African Journals Online (AJOL)

    2015-11-02

    Nov 2, 2015 ... acid (PAA) is suitable for final irrigation of root canals.[10] PAA ... others to remix, tweak, and build upon the work non-commercially, as long as the author is ..... particles could not find a reservoir opening such as an opened .... calcium hydroxide/chlorhexidine medicaments from the root canal. Int Endod.

  20. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  1. Effects of different irrigation practices using treated wastewater on tomato yields, quality, water productivity, and soil and fruit mineral contents.

    Science.gov (United States)

    Demir, Azize Dogan; Sahin, Ustun

    2017-11-01

    Wastewater use in agricultural irrigation is becoming a common practice in order to meet the rising water demands in arid and semi-arid regions. The study was conducted to determine the effects of the full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation practices using treated municipal wastewater (TWW) and freshwater (FW) on tomato yield, water use, fruit quality, and soil and fruit heavy metal concentrations. The TWW significantly increased marketable yield compared to the FW, as well as decreased water consumption. Therefore, water use efficiency (WUE) in the TWW was significantly higher than in the FW. Although the DI and the PRD practices caused less yields, these practices significantly increased WUE values due to less irrigation water applied. The water-yield linear relationships were statistically significant. TWW significantly increased titratable acidity and vitamin C contents. Reduced irrigation provided significantly lower titratable acidity, vitamin C, and lycopene contents. TWW increased the surface soil and fruit mineral contents in response to FW. Greater increases were observed under FI, and mineral contents declined with reduction in irrigation water. Heavy metal accumulation in soils was within safe limits. However, Cd and Pb contents in fruits exceeded standard limits given by FAO/WHO. Higher metal pollution index values determined for fruits also indicated that TWW application, especially under FI, might cause health risks in long term.

  2. A comprehensive guide for designing more efficient irrigation systems with respect to application control

    Science.gov (United States)

    Khaddam, Issam; Schuetze, Niels

    2017-04-01

    The worldwide water scarcity problems are expected to aggravate due to the increasing population and the need to produce more food. Irrigated agriculture is considered the highest consumer of fresh water resources with a rate exceeds 70% of global consumption. Consequently, an improvement in the efficiency of all irrigation methods, such as furrow or drip irrigation, becomes more necessary and urgent. Therefore, a more precise knowledge about soil water distribution in the root zone and the water balance components is required. For this purpose and as a part of the SAPHIR project (Saxonian Platform for high Performance Irrigation), a 2D simulation- based study was performed with virtual field conditions. The study investigates the most important design parameters of many irrigation systems, such as irrigation intensity and duration, and shows there influence on the water distribution efficiency. Furthermore, three main soil textures are used to test the impact of the soil hydraulic properties on irrigation effectiveness. A numerous number of irrigation scenarios of each irrigation system was simulated using HYDRUS 2D. Thereafter, the results were digitally calculated, compiled and made available online in the so called "Irrigation Atlases". The irrigation atlases provide graphical results of the soil moisture and pressure head distributions in the root zone. Moreover, they contain detailed information of the water balance for all simulated scenarios. The most studies evaluate the irrigation water demands on local, regional or global scales and for that an efficient water distribution is required. In this context, the irrigation atlases can serve as a valuable tool for the implementation of planned irrigation measures.

  3. Study of self-pollination and capitula characteristics in globe artichoke (Cynara cardunculus var. scolymus Hayek L. under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Nouraei, Sina

    2016-07-01

    Full Text Available In order to estimate the drought effects on capitula characteristics and self-pollination of globe artichoke (Cynara cardunculus var. scolymus Hayek L., the randomized complete block design was carried out with three irrigation regimes (20 %, 50 % and 80 % depletion of soil available water and six replicates. The artichoke is mostly open-pollinated, however, after covering the buds and isolation of flowers to prevent cross pollination, 1.79 % self-pollination was observed and this amount was not affected by different irrigation regimes. In stress conditions (50 % and 80 % water depletion as well as non-stress condition (20 % water depletion, plants with respectively one and two medium capitula and without small capitula had most relative frequencies in the population and drought stress increased these relative frequencies by reducing the number of medium and small capitula in plants. In addition, Capitula size and dry weight were significantly affected by water stress. Water shortage induced severe decrease in length and dry weight of all capitula including large, medium and small, although capitula width was less affected by water deficit and only slight decline in medium (12.5 % and small capitula (23.7 % was observed under severe stress condition.

  4. Nematode Community Composition under Various Irrigation Schemes in a Citrus Soil Ecosystem.

    Science.gov (United States)

    Porazinska, D L; McSorley, R; Duncan, L W; Graham, J H; Wheaton, T A; Parsons, L R

    1998-06-01

    Interest in the sustainability of farming practices has increased in response to environmental problems associated with conventional agricultural management often adopted for the production of herbaceous crops, ornamentals, and fruit crops. Availability of measures of the status of the soil ecosystem is of immediate importance, particularly for environmental assessment and monitoring programs. This study investigated the effects of various irrigation regimes (an example of an agricultural management practice) on the structure of the nematode fauna in a citrus orchard in the sandy ridge area of Central Florida. Ecological measures such as community structure indices, diversity indices, and maturity indices were assessed and related to irrigation intensity. Maturity index was an effective measure in distinguishing differences between irrigation regimes, whereas other indices of community structure were not. Of various nematode genera and trophic groups, only omnivores and the omnivore genera. Aporcelaimellus and Eudorylaimus responded to irrigation treatments.

  5. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  6. Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals.

    Science.gov (United States)

    Boutsioukis, C; Verhaagen, B; Walmsley, A D; Versluis, M; van der Sluis, L W M

    2013-11-01

    (i) To quantify in a simulated root canal model the file-to-wall contact during ultrasonic activation of an irrigant and to evaluate the effect of root canal size, file insertion depth, ultrasonic power, root canal level and previous training, (ii) To investigate the effect of file-to-wall contact on file oscillation. File-to-wall contact was measured during ultrasonic activation of the irrigant performed by 15 trained and 15 untrained participants in two metal root canal models. Results were analyzed by two 5-way mixed-design anovas. The level of significance was set at P root canal (P root canal (P irrigant activation. Therefore, the term 'Passive Ultrasonic Irrigation' should be amended to 'Ultrasonically Activated Irrigation'. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Ring Irrigation System (RIS design through customer preference representation

    Directory of Open Access Journals (Sweden)

    Ridwan Infandra I.Z.

    2018-01-01

    Full Text Available In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent days, analyzing water used or water permeation automatically through the soil moisture has been raised as the interesting topic. Proposed in this research is the ring irrigation system (RIS which is introduced as an alternative channel for emitters that drip water directly onto the soil at the plant’s root zone where the soil conditions before and after watering can be quickly detected by the sensors. This RIS can be used for the potted plant, green house, or other small farm fields. Product design and development (PDD is applied in this research for assisting the designer to understand and create the RIS prototype properly according to the customer’s requirements where the suggested functions obtained will be added and tested.

  8. Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest.

    Science.gov (United States)

    Dobbertin, Matthias; Eilmann, Britta; Bleuler, Peter; Giuggiola, Arnaud; Graf Pannatier, Elisabeth; Landolt, Werner; Schleppi, Patrick; Rigling, Andreas

    2010-03-01

    In Valais, Switzerland, Scots pines (Pinus sylvestris L.) are declining, mainly following drought. To assess the impact of drought on tree growth and survival, an irrigation experiment was initiated in 2003 in a mature pine forest, approximately doubling the annual precipitation. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Seven irrigated and six control trees were felled in 2006, and needles, stem discs and branches were taken for growth analysis. Irrigation in 2004 and 2005, both with below-average precipitation, increased needle size, area and mass, stem growth and, with a 1-year delay, shoot length. This led to a relative decrease in tree crown transparency (-14%) and to an increase in stand LAI (+20%). Irrigation increased needle length by 70%, shoot length by 100% and ring width by 120%, regardless of crown transparency. Crown transparency correlated positively with mean needle size, shoot length and ring width and negatively with specific leaf area. Trees with high crown transparency (low growth, short needles) experienced similar increases in needle mass and growth with irrigation than trees with low transparency (high growth, long needles), indicating that seemingly declining trees were able to 'recover' when water supply became sufficient. A simple drought index before and during the irrigation explained most of the variation found in the parameters for both irrigated and control trees.

  9. Nitrogen uptake efficiency of irrigated wheat in Egypt

    International Nuclear Information System (INIS)

    Abdel Monem, M.A.S.

    2000-01-01

    Egypt's current wheat production would be impossible without N fertilizers, the consumption of which has increased more than 75% in the last 20 years. The efficiency of uptake of applied N is low, and better management of both fertilizer and irrigation is needed to improve N recovery by crops and reduce losses from the plant/soil system. Field trials were conducted over a 3-year period, on Egypt's three main soil types: old irrigated land of the Nile valley, newly reclaimed sandy and calcareous soils, and salt-affected soil of the north delta. The responses of wheat cultivars to N, and patterns of N uptake and N loss, as affected by irrigation regime, were examined using 15 N. Cultivar Sakha 69 was more responsive to applied N and assimilated N more efficiently than other varieties under different soil types. Nitrogen loss from the sandy soil was as high as 57% whereas average loss in the clay soil was 17%. A higher water table in the salt-affected soil negatively affected N uptake. Irrigation with 75% of the required water for wheat had no effect on yield or N-uptake. (author)

  10. Radiation use efficiency and yield of winter wheat under deficit irrigation in North China

    International Nuclear Information System (INIS)

    Han, H.; Li, Z.; Ning, T.; Bai, M.; Zhang, X.; Shan, Y.

    2008-01-01

    An experiment was conducted in North China to investigate the effects of deficit irrigation and winter wheat varieties on the photosynthetic active radiation (PAR) capture ration, PAR utilization and grain yield. Field experiments involved Jimai 20 (J; high yield variety) and Lainong 0153 (L; dryland variety) with non-irrigation and irrigated at the jointing stage. The results showed that whether irrigated at jointing stage or not, there was no significant difference between J and L with respect to the amount of PAR intercepted by the winter wheat canopies. However, significant differences were observed between the varieties with respect to the amount of PAR intercepted by plants that were 60-80 cm above the ground surface. This result was mainly caused by the changes in the vertical distributions of leaf area index. As a result, the effects of the varieties and deficit irrigation on the radiation use efficiency (RUE) and grain yield of winter wheat were due to the vertical distribution of PAR in the winter wheat canopies. During the late growing season of winter wheat, irrespective of the irrigation regime, the RUE and grain yield of J were significantly higher than those of L. These results suggest that a combination of deficit irrigation and a suitable winter wheat variety should be applied in North China

  11. Effect of water irrigation volume on Capsicum frutescens growth and plankton abundance in aquaponics system

    Science.gov (United States)

    Andriani, Y.; Dhahiyat, Y.; Zahidah; Subhan, U.; Iskandar; Zidni, I.; Mawardiani, T.

    2018-03-01

    This study aimed to understand Capsicum frutescens growth and plankton abundance in aquaponics culture. A Completely Randomized Design (CRD) with six treatments in triplicates comprising of treatment A (positive control using organic liquid fertilizer), B (negative control without fertilizer), C (drip irrigation aquaponics with a water debit of 100 ml/day/plant), D (drip irrigation aquaponics with a water debit of 150 ml/day/plant), E (drip irrigation with a water debit of 200 ml/day/plant), and F (drip irrigation aquaponics with a water debit of 250 ml/day/plant) was applied. The water used in treatments C, D, E, and F contained comet fish feces as fertilizer. C. frutescens growth and plankton abundance were observed. Analysis was conducted using analysis of variance for plant productivity and descriptive analysis for plankton abundance and water quality. The results of this study showed that the highest plant growth was seen in plants receiving F treatment with 50 ml/day drip irrigation. However, no significant difference was found when compared to the positive control with organic artificial fertilizer. Eleven types of phytoplankton and six types of zooplankton were found, with Stanieria sp. as the most abundant phytoplankton and Brachionus sp. and Epistylis sp. as the most abundant zooplanktons.

  12. The effects of different irrigation protocols on removing calcium ...

    African Journals Online (AJOL)

    Objective: The aim of this study was to evaluate the efficiencies of different irrigation protocols and solutions in the removal of calcium hydroxide (Ca[OH]2). Materials and Methods: Sixty-eight maxillary incisors were used. Root canals were prepared and filled with Ca(OH)2. Two control (n = 4) and six experimental groups (n ...

  13. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Science.gov (United States)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  14. The effects of different irrigation levels on flowering and flower ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... important export production in cut flower is carnation and it consists of 89% of cut flower export. ... irrigation management in arid and semi-arid regions will shift from emphasizing ..... Handbook of Plant and Crop. Stress (Ed: M.

  15. Ancestral irrigation method by kanis in Bolivia

    Science.gov (United States)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  16. Simulate the Effect of Climate Change on Development, Irrigation Requirements and Soybean Yield in Gorgan

    Directory of Open Access Journals (Sweden)

    A.R. Nehbandani

    2016-10-01

    Full Text Available Introduction: Atmospheric CO2 concentration has continuously been increasing during the past century and it is expected to increase from current 384 ppm to 550 ppm in 2050. This increase is expected to increase global temperature by 1.4 to 5.8 oC which can have major effects on crop plants. Since both CO2 and temperature are among the most important environmental variables that regulate physiological and phenological processes in plants, it is critical to evaluate the effects of CO2 and air temperature on the growth and yield of key crop plants. Warming of Earth's atmosphere can increase dark respiration and photorespiration in C3 plants. Rate of photosynthesis is affected by temperature, Therefore, rate of biochemical reactions, morphological reactions, CO2 and energy exchange with the atmosphere could be affected by temperature. Increase in CO2 concentration causes further yield improvement in C3 plants (Such as wheat, rice and soybeans in comparison with C4 plants (Such as corn, sorghum and sugarcane. In general, increasing CO2 concentration affects plant processes in two ways:direct effect on physiological processes in plant and indirect effect by changes in temperature and rainfall. Studying climate change effects including increase in temperature and CO2 concentration can help understanding adaptation strategies to reach higher and sustainable crop yields. Therefore, the objective of this research was to examine the effects of temperature and CO2 changes on days to maturity, irrigation water requirement, and yield in soybean under irrigation conditions of Gorganusing SSM-iLegume-Soybean model. Materials and methods: The model SSM-iLegume-Soybean simulates phenological development, leaf development and senescence, crop mass production and partitioning, plant nitrogen balance, yield formation and soil water and nitrogen balances. The model includes responses of crop processes to environmental factors of solar radiation, temperature and

  17. Side-effects of pesticides used in irrigated rice areas on Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    Pazini, Juliano de Bastos; Pasini, Rafael Antonio; Seidel, Enio Júnior; Rakes, Matheus; Martins, José Francisco da Silva; Grützmacher, Anderson Dionei

    2017-08-01

    Telenomus podisi Ashmead (Hymenoptera: Platygastridae) is an important agent for the biological control of stink bug eggs in irrigated rice areas and the best strategy for its preservation is the use of selective pesticides. The aim of this study was to know the side-effects of pesticides used in Brazilian irrigated rice areas on egg parasitoid T. podisi. We evaluated, under laboratory conditions, 13 insecticides, 11 fungicides, 11 herbicides, and a control (distilled water) in choice and no-choice tests. In the no-choice tests, the pesticides were sprayed at pre and post-parasitism stages (egg and larval stages of T. podisi). In the choice tests, sprays were conducted only at pre-parasitism stages. For all tests, we prepared cards with 25 eggs of the alternative host Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) non-parasitized (pre-parasitism) and parasitized (post-parasitism), which were subjected to pesticide sprays. The parasitism and emergence rates of T. podisi were determined classifying the pesticides in terms of the reduction of parasitism or emergence rates compared to the control. The neurotoxic insecticide cypermethrin, lambda-cyhalothrin, zeta-cypermethrin, etofenprox, thiamethoxam, thiamethoxam + lambda-cyhalothrin, acetamiprid + alpha-cypermethrin, and bifenthrin + alpha-cypermethrin + carbosulfan were more harmful to T. podisi and, therefore, are less suitable for the integrated management of insect pests in irrigated rice areas.

  18. Converting Surface Irrigation to Pressurized Irrigation Systems and its Effecton Yield of OrangeTrees (Case Study:North of Khouzestan

    Directory of Open Access Journals (Sweden)

    M. Khorramian

    2017-01-01

    Full Text Available Introduction: North of the Khouzestan is one of the most important citrus production center. Usually border irrigation is used to irrigate citrus in this area. This system has generally low application efficiency. Several investigations in other arid region have demonstrated in addition to improved irrigation efficiency with low-volume pressurized irrigation systems, citrus trees have adapted with these new irrigation systems. However limited information exists on the performance of mature orchards converted from border surface irrigation to pressurized irrigation systems. Therefore, the current research was conducted to evaluate the feasibility of converting surface irrigation to pressurized irrigation systems on mature citrus trees in climate conditions of North Khouzestan. Materials and Methods: This study was conducted during three years at Safiabad Agricultural Research Center to evaluate the yield of citrus trees and the quality of fruits for two Marss and Valencia varieties which grow 7 years previously with surface irrigation and converted to pressurized irrigation systems. The treatments consisted of six irrigation methods including Overhead sprinkle irrigation (OHSI, Under tree sprinkle irrigation(UTSI, Trickle irrigation(TI(six 8 L/h Netafim emitters, Microjet irrigation (MI(two 180 microjet were located under canopy near of the trunk at opposite sides of trunk,Bubbler irrigation(BI(a single located under the canopy of each treeandSurface irrigation(SI method.Soil texture was clay loam well drained without salinity(ECe=0.69ds m-1, with 1.25 percent organic carbon. The experimental design was completely randomized design. The trees were irrigated during spring and summer seasons. For calculating irrigation water depth in TI, MI and BI systems, daily evaporation from a class A evaporation pan of the Safiabad weather station (nearby the experimental field was collected, and evapotranspiration of the citrus trees was calculated applying a

  19. Does tree species richness attenuate the effect of experimental irrigation and drought on decomposition rate in young plantation forests?

    Science.gov (United States)

    Masudur Rahman, Md; Verheyen, Kris; Castagneyrol, Bastien; Jactel, Hervé; Carnol, Monique

    2017-04-01

    Expected changes in precipitation in Europe due to climate change are likely to affect soil organic matter (OM) transformation. In forests, increasing tree species diversity might modulate the effect of changed precipitation. We evaluated the effect of tree species richness on the decomposition and stabilization rate in combination with reduced precipitation (FORBIO, Belgium) and irrigation treatment (ORPHEE, southern France) in young (6-8 yr.) experimental plantations. The species richness were one to four in FORBIO and one to five in ORPHEE. Twenty four rainout shelters of 3 m × 3 m were built around oak and beech trees in FORBIO plantation to impose a reduced precipitation treatment, whereas four of the eight blocks (175 m×100 m) in ORPHEE plantation was subjected to irrigation treatment. These treatments resulted in about 4% less soil moisture in FORBIO and about 7% higher soil moisture in ORPHEE compared to control. Commercially available green and rooibos tea bags were buried in the soil at 5-7 cm depth to measure two decomposition indices, known as 'tea bag index' (TBI). These TBI are (i) decomposition rate (k) and (ii) stabilization rate (S). The results showed no species richness effect on TBI indices in both reduced precipitation and irrigation treatment. In FORBIO, reduced precipitation resulted in decreased k and increased S compared to control around the beech trees only. In ORPHEE, both k and S were higher in the irrigation treatment compared to control. Overall, TBI indices were higher in FORBIO than ORPHEE and this might be explained by the sandy soils and poor nutrient content at the ORPHEE site. These results suggest that OM decomposition rate may be slower in drier condition and OM stabilization rate may be slower or faster in drier condition, depending on the site quality. The absence of tree species effects on OM transformation indicates that tree species richness would not be able to modulate the effects of changed precipitation patterns in

  20. Comparative efficiency of trickle and furrow irrigation

    International Nuclear Information System (INIS)

    Hanif, M.; Qureshi, R.H.; Sandhu, G.R.

    1976-01-01

    Comparison of furrow and trickle methods of irrigation to know their relative efficiency with respect to water applied and fertilizer used on tomatoes, cauliflower and lettuce as test crops using canal water, showed a significant saving of about 44 and 41 per cent respectively for irrigation water and fertilizer applied with trickle as compared to furrow irrigation. Trickle irrigated crops also showed a better response as regards the rate of survival, crop growth and time of maturity

  1. Use of Irrigation to Extend the Seeding Window for Final Reclamation at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    TRW Environmental Safety

    2000-01-01

    The U.S. Department of Energy has implemented a program to investigate the feasibility of various techniques for reclaiming lands disturbed during site characterization at Yucca Mountain. As part of this program, two studies were conducted in 1997 to assess the effects of combinations of seeding date (date that seeds are planted) and supplemental irrigation on densities of native plant species at Yucca Mountain. Study objectives were to (1) determine whether the traditional seeding window (October-December) could be extended through combinations of seeding date and irrigation date, (2) determine which combination of seeding date and irrigation was most successful, and (3) assess the effects of irrigation versus natural precipitation on seedling establishment. In the first study, a multi-species seed mix of 16 native species was sown into plots on four dates (12/96, 2/97, 3/97, and 4/97). Irrigation treatments were control (no irrigation) or addition of 80 mm of supplemental water applied over a one month period. Plant densities were sampled in August and again in October, 1997. In the second study, Larrea tridentata and Lycium andersonii, two species that are common at Yucca Mountain, but difficult to establish from seed, were sown together into plots in January and August, 1997. Half the plots were irrigated with approximately 250 mm of water between August 18 and September 11, while the remaining plots received no irrigation (control). Plant densities were sampled in October, 1997. The August census for the multi-species mix study showed irrigated plots that were sown in February, March and April had higher plant densities and more species than plots that were not irrigated. Irrigation had no effect on plant densities on plots that were seeded in December. Plots were used again in October following 18 mm of precipitation in September. Densities of three species, Ambrosia dumosa, Hymenoclea salsola, and L. tridentata, (warm-season species) were lower on irrigated

  2. Preferential flow, nitrogen transformations and 15N balance under urine-affected areas of irrigated and non-irrigated clover-based pastures

    Science.gov (United States)

    Pakro, Naser; Dillon, Peter

    1995-12-01

    or season effect. No denitrification was evident in summer nor in the non-irrigated paddock in winter but 12% of the applied 15N was lost due denitrification following winter application to the irrigated paddock. Estimated 15N loss due to denitrification from urine applied in spring was ˜13% of that applied and no difference was found between paddocks. The combination of mini-lysimeters, micro-plots and 15N measurements enabled the nitrogen budget to be determined during four periods throughout the year.

  3. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  4. Differential Impact of Passive versus Active Irrigation on Urban Forests in Semiarid Regions

    Science.gov (United States)

    Luketich, A. M.; Papuga, S. A.; Crimmins, M.

    2017-12-01

    The network of trees within a city provides a variety of ecosystem services such as flood mitigation and reduced heat island effects. To maintain these `urban forests' in semiarid cities, the use of scarce water resources for irrigation is often necessary. Rainwater harvesting has been widely adopted in Tucson, AZ as a sustainable water source for trees, but the effects of passive water harvesting versus active irrigation on tree canopy productivity and microclimate is largely unquantified. We hypothesize that regardless of whether trees are passively or actively irrigated, deep soil moisture will be elevated compared to natural conditions; however, we expect that increased deep soil moisture conditions will be more frequent using active irrigation. Additionally, we hypothesize that similar to natural settings, urban trees will need access deep soil moisture for transpiration. Therefore, we expect that actively irrigated trees will have more periods of transpiration than passively irrigated trees and that this will result in elevated and sustained phenological activity. We also expect that this difference will translate to more ecosystem services for a longer portion of the year in actively irrigated urban forests. Here, we compare key ecohydrological indicators of passive and active irrigation systems at two sites in Tucson, AZ. Our measurements include soil moisture, transpiration, air temperature, soil temperature, below- and within- canopy temperatures, and canopy phenology. Our first year of results suggest there are differences in transpiration, canopy greening and microclimate between the two irrigation techniques and that the magnitude of these differences are highly seasonal. This research can help to improve understanding of the practices and function of green infrastructure in semiarid cities and inform models that attempt to aggregate the influence of these urban forests for understanding watershed management strategies.

  5. Improved irrigation for hyphema in the treatment of severe contusion hyphema in 106 cases

    Directory of Open Access Journals (Sweden)

    Qian-Wei Zhu

    2013-09-01

    Full Text Available AIM: To investigate the effect of improved irrigation for hyphema in the treatment of severe contusion hyphema.METHODS: Totally 106 patients with severe contusion hyphema underwent viscoelastican and irrigation for hyphema through tunnel incision with urokinas. RESULTS: The hyphema was clear in all patients but 2 cases were rebleeding. The surgery method was superior to the conventional operation in the aspects of vision, intra-ocular pressure and complication.CONCLUSION:Improved irrigation for hyphema could be extended, the operating methods is simple, safe and effective.

  6. Irrigation offsets wheat yield reductions from warming temperatures

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Hendricks, Nathan

    2017-11-01

    Temperature increases due to climate change are expected to cause substantial reductions in global wheat yields. However, uncertainty remains regarding the potential role for irrigation as an adaptation strategy to offset heat impacts. Here we utilize over 7000 observations spanning eleven Kansas field-trial locations, 180 varieties, and 29 years to show that irrigation significantly reduces the negative impact of warming temperatures on winter wheat yields. Dryland wheat yields are estimated to decrease about eight percent for every one-degree Celsius increase in temperature, yet irrigation completely offsets this negative impact in our sample. As in previous studies, we find that important interactions exist between heat stress and precipitation for dryland production. Here, uniquely, we observe both dryland and irrigated trials side-by-side at the same locations and find that precipitation does not provide the same reduction in heat stress as irrigation. This is likely to be because the timing, intensity, and volume of water applications influence wheat yields, so the ability to irrigate—rather than relying on rainfall alone—has a stronger influence on heat stress. We find evidence of extensive differences of water-deficit stress impacts across varieties. This provides some evidence of the potential for adapting to hotter and drier climate conditions using optimal variety selection. Overall, our results highlight the critical role of water management for future global food security. Water scarcity not only reduces crop yields through water-deficit stress, but also amplifies the negative effects of warming temperatures.

  7. Kalanchoe crop development under different levels of irrigation

    Directory of Open Access Journals (Sweden)

    Fátima Cibele Soares

    Full Text Available ABSTRACT Despite its importance in the floriculture sector, irrigation management of kalanchoe is characterized by empiricism, being necessary further studies on the use of water by this crop. Thus, the objective of this study is to analyze the several effects of irrigation levels on the growth of kalanchoe crop conducted in greenhouse in the municipality of Alegrete, state of Rio Grande do Sul. The experiment was conducted in a 7 x 15 m protected environment. The experimental design was completely randomized, with four treatments (irrigation levels corresponding to 40, 60, 80 and 100% of the pot water retention capacity - PC and four repetitions, totaling sixteen plots. The crop cycle was 224 days after transplanting and the applied average depths were: 451.82; 367.38; 282.94; 198.51 mm for treatments: 100; 80; 60 and 40% of PC, respectively. Canopy area and number of leaves per plant were evaluated over the crop cycle. In the end of the cycle, the canopy diameter, number of inflorescences per plant and the number of flowers per plant were evaluated. No significant differences were found only to the canopy area, by the F test. Irrigation water depths between 40 and 70% of the pot capacity were more appropriate for the crop growth in the study region. The cultivar presented the best development at irrigation levels below the maximum vessel water retention capacity, that is, it is resistant to drought.

  8. Effect of Irrigation Method on Yield and Quality of Soybean%灌溉方式对大豆产量及品质的影响

    Institute of Scientific and Technical Information of China (English)

    张丽华; 谭国波; 赵洪祥; 闫伟平; 孟祥盟; 方向前; 边少锋

    2011-01-01

    Soybean are sensitive to soil moisture,in order to study the effect of irrigation methods on yield,quality of soybean and water use efficiency( WUE) ,a field experiment was carried out in 2009 and 2010. Three irrigation methods including conventional furrow irrigation,fixed furrow irrigation and alternative furrow irrigation,and three irrigation amount including 15, 22.5 and 30 mm were used in the test. The results showed that appropriate irrigation could obviously improve WUE and yield of soybean. The soybean yield increased obviously with increase of irrigation amount in 2009 which the rainfall was infrequent. The yield,pods per plant,seeds weights and WUE of alternative furrow irrigation 22. 5 mm were higher than other irrigation combinations. Rainfall mainly focused in July and August in 2010,so irrigation was carried out in September. The yield of irrigation 22.5 and 15 mm was higher than 30 mm and control obviously. The yield of irrigation 22.5 mm was higher than 15 mm obviously. The difference of yield wasn't significant between irrigation 30 mm and control. The difference of yield of different irrigation methods wasn't significant with the same irrigation amount. Pods and seeds per plant and WUE of irrigation 22. 5 mm was extremely significant higher than other irrigation amount. The number of pods and seeds and WUE of alternative furrow irrigation 22. 5 mm was extremely significant higher than other irrigation methods. Irrigation could increase soybean protein content to a certain extent. However,oil content was reduced,but the difference of quality wasn' t significant between irrigation and control. The results of two years experiments showed that alternative furrow irrigation with irrigation amount of 22. 5 mm was the best irrigation combination.%于2009和2010年采取常规灌溉、固定隔沟灌溉和交替隔沟灌溉3种灌溉方式,设置15、22.5和30 mm3

  9. Proanthocyanidin Accumulation and Biosynthesis Are Modulated by the Irrigation Regime in Tempranillo Seeds

    Directory of Open Access Journals (Sweden)

    Tania Genebra

    2014-07-01

    Full Text Available The main effects of three different irrigation regimes, i.e., sustained deficit irrigation (SDI, regulated deficit irrigation (RDI and non-irrigated (NI, on seed traits namely proanthocyanidins (PAs were evaluated in the wine grape cultivar Aragonez (syn. Tempranillo grown in Alentejo (Portugal over two growing seasons. Results showed that while the number of seeds per berry was not affected by water availability, seed fresh weight differed among treatments, the NI treatment exhibiting the lowest values. The biosynthetic pathway of flavanols appeared to be modified by the irrigation treatment, and several genes responsible for PA synthesis were up-regulated in the most stressed seeds (RDI and NI. However, this effect had no impact on PA content, suggesting the influence of other factors such as oxidation and/or degradation of PAs at late stages of maturation in grape seeds. The seeds’ non-enzymatic antioxidant capacities (oxygen radical absorbance capacity (ORAC and hydroxyl radical adverting capacity (HORAC were modulated by water deficit and correlated well with PA content. The impact of irrigation strategy on PA biosynthesis, content, and anti-radical activity during seed ripening is discussed in the context of increasing interest in the role of PAs in the color and taste of wine, and the potential health benefits relating to their antioxidant capacity.

  10. Estimation of Maize photosynthesis Efficiency Under Deficit Irrigation and Mulch

    International Nuclear Information System (INIS)

    Al-Hadithi, S.

    2004-01-01

    This research aims at estimating maize photosynthesis efficiency under deficit irrigation and soil mulching. A split-split plot design experiment was conducted with three replicates during the fall season 2000 and spring season 2001 at the experimental Station of Soil Dept./ Iraq Atomic Energy Commission. The main plots were assigned to full and deficit irrigation treatments: (C) control. The deficit irrigation treatment included the omission of one irrigation at establishment (S1, 15 days), vegetation (S2, 35 days), flowering (S3, 40 days) and yield formation (S4, 30 days) stages. The sub-plots were allocated for the two varieties, Synthetic 5012 (V1) and Haybrid 2052 (V2). The sub-sub-plots were assigned to mulch (M1) with wheat straw and no mulch (M0). Results showed that the deficit irrigation did not affect photosynthesis efficiency in both seasons, which ranged between 1.90 to 2.15% in fall season and between 1.18 and 1.45% in spring season. The hybrid variety was superior 9.39 and 9.15% over synthetic variety in fall and spring seasons, respectively. Deficit irrigation, varieties and mulch had no significant effects on harvest index in both seasons. This indicates that the two varieties were stable in their partitioning efficiency of nutrient matter between plant organ and grains under the condition of this experiment. (Author) 21 refs., 3 figs., 6 tabs

  11. EFFICACY OF DIFFERENT ENDODONTIC IRRIGATION PROTOCOLS IN CALCIUM HYDROXIDE REMOVAL

    Directory of Open Access Journals (Sweden)

    Elka N. Radeva

    2016-10-01

    Full Text Available Introduction: Calcium hydroxide is widely used in the field of endodontics as a temporary root canal filling. This medicament significantly increases pH and optimizes the treatment outcome. Its total removal before final obturation is very important. Otherwise it could affect the hermetic filling and respectively the endodontic success. Aim: To evaluate the most effective irrigation protocol of calcium hydroxide removal from root canals. Materials and methods: In this study 36 single root canal teeth were observed. They were randomly divided into three groups (n=10 each group according to the technique applied for calcium hydroxide removal - manual irrigation, irrigation and Revo-S rotary instrumentation; and passive ultrasonic irrigation, and a control group (n=6 – irrigation with distilled water only. After calcium hydroxide removals following the procedures above, teeth were separated longitudinally in a buccal-lingual direction and remnants of medicaments were observed in the apical, middle and coronal part of each tooth. Then all of the specimens were observed using scanning electron microscopy and evaluated by a specified scale. The results have undergone statistical analysis. Results: In the case of calcium hydroxide in the apex and in the middle with highest average is Revo-S, followed by Ultrasonic and irrigation. In the coronal part the highest average belongs to Revo-S, irrigation and Ultrasonic. In all groups the highest average is represented by control group. Conclusion: There is not a universal technique for removal of intracanal medicaments and applying more than one protocol is required.

  12. Effect of irrigation and timing and type of nitrogen application on the biochemical composition of Vitis vinifera L. cv. Chardonnay and Syrah grapeberries.

    Science.gov (United States)

    Canoura, Carolina; Kelly, Mary T; Ojeda, Hernan

    2018-02-15

    This study reports the effect of different doses of nitrogen applied to soil and/or leaves of Syrah and Chardonnay grapevines in the Languedoc-Roussillon (France) over two years. In 2011, nitrogen treatment involved both foliar urea sprayings and soil application at two different levels, with two controls - irrigated without nitrogen and no irrigation nor nitrogen. In 2012, the same grapevines received either soil or foliar nitrogen using the same controls. Results showed that foliar application increased the amino acid content to a greater extent than soil application, but that a combination of both was the most effective. For the first time, significantly elevated proline levels in response to drought were demonstrated for the grapevine. Increased contents of aromatic compounds and glycosylated precursors closely mirrored the applied nitrogen dose. Wines produced from N-fertilized Syrah grapes in 2011 showed a statistically significant effect of irrigation and fertilization on positive sensorial perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Energy performance of sprinkler irrigated maize, wheat and sunflower in Vigia irrigation district

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Sandra; Rodrigues, Goncalo Caleia; Paredes, Paula; Pereira, Luis S. [Centro de Engenharia dos Biossistemas (CEER/ISA), Lisboa (Portugal)], E-mail: lspereira@isa.utl.pt

    2008-07-01

    The energy potential of a crop may be evaluated through life cycle assessment methodologies. These refer to the computation of the crop's energy balance and other related indicators, such as the energy ratio and the energetic efficiency, that may be used as to assess how a given irrigated crop may be used for production of biofuel. This study concerns sprinkler irrigated sunflower, wheat and maize crops using data relative to the campaign of 2007 in the Vigia Irrigation District, Alentejo. A model was developed and various scenarios were considered. The modelling results lead to the conclusion that the maize crop is the most efficient in producing energy and sunflower is the least one for all the alternative scenarios considered. (author)

  14. Thermal performance of different planting substrates and irrigation frequencies in extensive tropical rooftop greeneries

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Jiung [Department of Environmental Engineering and Science, Foo-Yin University, Kaohsiung (China); No. 16, Lane 29, Chen-Sing 7th Street, Niao-Song, Kaohsiung 833 (China); Lin, Hsien-Te [Department of Architecture, National Cheng Kung University, Tainan (China); No. 1, Ta-Hsueh Road, Tainan 701 (China)

    2011-02-15

    The need for the better use of scarce planetary resources has never been more evident than it is today. However, this need is poorly reflected in human housing. In recent years, there has been a growing realization of the importance of constructing human shelters that better conserve energy and water through appropriate insulation and architectural designs. Among the important advancements in these areas is the use of rooftop greeneries for both energy and water conservation. This paper performs an investigation into this topic within the specific climatic context of tropical regions. Long-term experimental results are provided from a four-floor building in Kaohsiung in the southern part of Taiwan. The study involves a fully monitored extensive rooftop greenery and examines four different plant substrates, three different irrigation regimes, and different types of drought-enduring plants to find the most efficient combination of all three in providing maximum heat insulation and water usage efficiency. The attenuation of solar radiation through the vegetation layer is evaluated, as well as the thermal insulation performance of the rooftop greenery structure. Among the substrates, burned sludge has the best thermal reduction percentage of heat amplitude under the roof slab surface (up to 84.4%). Irrigation twice a week has the best thermal reduction percentage of heat amplitude (91.6%). Among the plant types, Sansevieria trifasciata cv. Laurentii Compacta and Rhoeo spathaceo cv. Compacta are found to be suitable for extensive rooftop greeneries because they have the best coverage ratio and are most drought enduring. (author)

  15. Estimating irrigated areas from satellite and model soil moisture data over the contiguous US

    Science.gov (United States)

    Zaussinger, Felix; Dorigo, Wouter; Gruber, Alexander

    2017-04-01

    Information about irrigation is crucial for a number of applications such as drought- and yield management and contributes to a better understanding of the water-cycle, land-atmosphere interactions as well as climate projections. Currently, irrigation is mainly quantified by national agricultural statistics, which do not include spatial information. The digital Global Map of Irrigated Areas (GMIA) has been the first effort to quantify irrigation at the global scale by merging these statistics with remote sensing data. Also, the MODIS-Irrigated Agriculture Dataset (MirAD-US) was created by merging annual peak MODIS-NDVI with US county level irrigation statistics. In this study we aim to map irrigated areas by confronting time series of various satellite soil moisture products with soil moisture from the ERA-Interim/Land reanalysis product. We follow the assumption that irrigation signals are not modelled in the reanalysis product, nor contributing to its forcing data, but affecting the spatially continuous remote sensing observations. Based on this assumption, spatial patterns of irrigation are derived from differences between the temporal slopes of the modelled and remotely sensed time series during the irrigation season. Results show that a combination of ASCAT and ERA-Interim/Land show spatial patterns which are in good agreement with the MIrAD-US, particularly within the Mississippi Delta, Texas and eastern Nebraska. In contrast, AMSRE shows weak agreements, plausibly due to a higher vegetation dependency of the soil moisture signal. There is no significant agreement to the MIrAD-US in California, which is possibly related to higher crop-diversity and lower field sizes. Also, a strong signal in the region of the Great Corn Belt is observed, which is generally not outlined as an irrigated area. It is not yet clear to what extent the signal obtained in the Mississippi Delta is related to re-reflection effects caused by standing water due to flood or furrow

  16. Automated Irrigation System using Weather Prediction for Efficient Usage of Water Resources

    Science.gov (United States)

    Susmitha, A.; Alakananda, T.; Apoorva, M. L.; Ramesh, T. K.

    2017-08-01

    In agriculture the major problem which farmers face is the water scarcity, so to improve the usage of water one of the irrigation system using drip irrigation which is implemented is “Automated irrigation system with partition facility for effective irrigation of small scale farms” (AISPF). But this method has some drawbacks which can be improved and here we are with a method called “Automated irrigation system using weather prediction for efficient usage of water resources’ (AISWP), it solves the shortcomings of AISPF process. AISWP method helps us to use the available water resources more efficiently by sensing the moisture present in the soil and apart from that it is actually predicting the weather by sensing two parameters temperature and humidity thereby processing the measured values through an algorithm and releasing the water accordingly which is an added feature of AISWP so that water can be efficiently used.

  17. Irrigation management in organic greenhouse

    NARCIS (Netherlands)

    Voogt, W.; Balendonck, J.; Berkelmans, R.; Enthoven, N.

    2017-01-01

    Irrigation in protected cultivation is essential due to the absence of natural precipitation. High evapotranspiration, due to higher temperature and prolonged cropping period, requires ample an adequate supply of water. The water supply in a greenhouse is solely carried out by irrigation and thus

  18. Trash-polluted irrigation: characteristics and impact on agriculture

    Science.gov (United States)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  19. performance evaluation of sprinkler irrigation system at mambilla

    African Journals Online (AJOL)

    HOD

    ratio (DPR), irrigation productivity (IP), labour requirements and water quality. Standard procedure was ... The exchangeable cations analysis of Kakara irrigation ... Keywords: Tea, irrigation System, Performance Evaluation. 1. INTRODUCTION.

  20. Expanding the Annual Irrigation Maps (AIM) Product to the entire High Plains Aquifer (HPA): Addressing the Challenges of Cotton and Deficit-Irrigated Fields

    Science.gov (United States)

    Rapp, J. R.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    The High Plains Aquifer (HPA) is the most extensively irrigated aquifer in the continental United States and is the largest major aquifer in North America with an area of 500,000 km2. Increased demand for agricultural products has led to expanded irrigation extent, but brought with it declining groundwater levels that have made irrigation unsustainable in some locations. Understanding these irrigation dynamics and mapping irrigated areas through time are essential for future sustainable agricultural practices and hydrological modeling. Map products using remote sensing have only recently been able to track annual dynamics at relatively high spatial resolution (30 m) for a large portion of the northern HPA. However follow-on efforts to expand these maps to the entire HPA have met with difficulty due to the challenge of distinguishing irrigation in crop types that are commonly deficit- or partially-irrigated. Expanding these maps to the full HPA requires addressing unique features of partially irrigated fields and irrigated cotton, a major water user in the southern HPA. Working in Google Earth Engine, we used all available Landsat imagery to generate annual time series of vegetation indices. We combined this information with climate covariables, planting dates, and crop specific training data to algorithmically separate fully irrigated, partially irrigated, and non-irrigated field locations. The classification scheme was then applied to produce annual maps of irrigation across the entire HPA. The extensive use of ancillary data and the "greenness" time series for the algorithmic classification generally increased accuracy relative to previous efforts. High-accuracy, representative map products of irrigation extent capable of detecting crop type and irrigation intensity within aquifers will be an essential tool to monitor the sustainability of global aquifers and to provide a scientific bases for political and economic decisions affecting those aquifers.