WorldWideScience

Sample records for irrigation development began

  1. Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2005-01-01

    NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).

  2. How nuclear power began

    International Nuclear Information System (INIS)

    Gowing, M.

    1987-01-01

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  3. Evaluation model development for sprinkler irrigation uniformity ...

    African Journals Online (AJOL)

    use

    Sprinkle and trickle irrigation. The. Blackburn Press, New Jersey, USA. Li JS, Rao MJ (1999). Evaluation method of sprinkler irrigation nonuniformity. Trans. CSAE. 15(4): 78-82. Lin Z, Merkley GP (2011). Relationships between common irrigation application uniformity indicators. Irrig Sci. Online First™, 27 January. 2011.

  4. Tomorrow Began Yesterday

    Directory of Open Access Journals (Sweden)

    Konstantin Lidin

    2014-01-01

    Full Text Available The phenomenon of the sixtiers was prepared by the previous historical period. The period after the World War II comprises a fundamental change of the world order – from a multipolar world to a confrontation of two superpowers and two ideological systems, and, at the same time, formation of a complex of international organizations on a global scale. In this context, the Soviet architecture made a sharp turn from Stalin’s Empire style to an extreme ascetism – the continuation of constructivism of the early XXth century. The Irkutsk architectural school, unlike the main flow of the 1960s, developed the style of Neo-Brutalism. The article draws parallels between Neo-Brutalism of the Irkutsk school and “a severe style” of the Soviet pictorial art of the same period.

  5. How nonimaging optics began

    Science.gov (United States)

    Winston, Roland

    2016-09-01

    Classical optics was traditionally the mapping of point sources by lenses, mirrors and occasionally holograms , i.e. making an image. The subject has had many famous scientists associated with it; Fermat, Huygens, Descartes, Hamilton just to name a few. By the mid 20th Century it was a well-developed field as exemplified by such luminaries as Walter T. Welford, Emil Wolf and many others. The theory of aberrations which addresses the imperfections of the mapping codified the state of the art. Then arose the need to collect energy, not just images. To the author's knowledge it can be traced back to WWII Germany with collection of infra-red radiation (the work by D. E. Williamson, was not published until 1952). The radiation collector, a simple right-circular cone, was a harbinger of things to come.

  6. Irrigation development and management in Ghana: Prospects and ...

    African Journals Online (AJOL)

    ... existing schemes. It is envisaged that irrigation will be seen in its right perspective as a multidisciplinary activity to ensure the success of schemes. There is the need for running a postgraduate programme in irrigation at the KNUST to enhance the nations efforts at developing and managing irrigation projects successfully.

  7. Sustainable Irrigation Development in the White Volta Sub-Basin

    NARCIS (Netherlands)

    Ofosu, E.A.

    2011-01-01

    This study on sustainable irrigation development identified growing markets for irrigated products as an important driving force behind the expansion of irrigation which has given rise to new technologies. The new technologies have spread because they gave farmers direct control over water sources.

  8. Input and output constraints affecting irrigation development

    Science.gov (United States)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  9. Reform of irrigation management and investment policy in African development

    Directory of Open Access Journals (Sweden)

    KW Easter

    2004-11-01

    Full Text Available This paper examines the reform of water and irrigation management in Africa and compares it with similar reforms in Asia.  Several things are evident from the review.  First, Sub-Saharan Africa (SSA is at an earlier stage of irrigation development and reform than Asia.  Second, the articulated need for reform is much stronger in Asia than it is in SSA.  Third, the productivity of small-scale irrigated farms is significantly lower in SSA compared to Asia.  Thus any irrigation investment strategy in SSA should be different from Asia and focus on increasing small-farm productivity as well as small-scale irrigation projects.  Finally, all direct government irrigation investments should be done jointly with decisions regarding the type of project management.

  10. Development of Solar Powered Irrigation System

    International Nuclear Information System (INIS)

    Abdelkerim, A I; Eusuf, M M R Sami; Salami, M J E; Aibinu, A; Eusuf, M A

    2013-01-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors

  11. Irrigation water quality as indicator of sustainable rural development

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2004-01-01

    Full Text Available The sustainable rural development more and more depends on the efficient usage of water resources. Most often, at least in one part of the year, the rain is not sufficient for plant growth and rain plant production significantly depends on the yearly precipitation variation. The increase and stability of the agricultural production is possible in the irrigation conditions. The most part (around 70% of the global water resources is used for food production. Irrigation water quality indicator is used to show if the available water resources have the required quality for application in agriculture. Irrigation is characterised by the complex water-plant-soil relationship, and in that eco-system the man as the end user of the irrigated fields occupies a very important place. That explains the difficulties in producing one universal classification of irrigation water quality. The paper analyses numerous water quality classifications from the aspect of the applicability on the quantifying of this indicator. The adopted classification should possess understandable, qualified and internationally comparable indicator. Thus, local classifications (Neigebauer, Miljkovic cannot be used for this indicator. United Nation Food and Agricultural Organization (FAO and US Salinity Laboratory (USSL classifications are used for the evaluation of the irrigation water quality throughout the world. FAO classification gives the complex picture of the usability of the irrigation water from the point of its influence on the soil and the plants. However, the scope of the analyses is not often suited to the needs of that classification, which makes it difficult to apply. The conclusion is that the USSL (US Salinity Laboratory classification is best suited to this range of chemical water analyses. The evaluation of the irrigation water quality indicator in the Juzna Morava river basin, upstream from the Toplica river estuary is given in this paper. Based on the obtained

  12. Irrigating lives : development intervention and dynamics of social relationships in an irrigation project

    NARCIS (Netherlands)

    Magadlela, D.

    2000-01-01

    This study is about rural agricultural development and social processes of change in rural Zimbabwe. It is aimed at understanding how irrigation intervention in a remote rural context changed the cultural, social, political and farming lives of people. It is a study of people coping with

  13. Grey mould development in greenhouse tomatoes under drip and furrow irrigation

    OpenAIRE

    Aissat , Kamel; Nicot , Philippe ,; Guechi , Abdelhadi; Bardin , Marc; Chibane , Mohamed

    2008-01-01

    Several methods can be used to provide water to plants in cropping systems where irrigation is necessary. For instance, drip irrigation has recently received much attention due to its advantages for water conservation. The type of irrigation can also impact the development of several pathogens responsible for soilborne diseases. Here, we studied the effect of drip irrigation and furrow irrigation on the development of grey mould, caused by the airborne fungus Botrytis cinerea, on tomato plant...

  14. Kalanchoe crop development under different levels of irrigation

    Directory of Open Access Journals (Sweden)

    Fátima Cibele Soares

    Full Text Available ABSTRACT Despite its importance in the floriculture sector, irrigation management of kalanchoe is characterized by empiricism, being necessary further studies on the use of water by this crop. Thus, the objective of this study is to analyze the several effects of irrigation levels on the growth of kalanchoe crop conducted in greenhouse in the municipality of Alegrete, state of Rio Grande do Sul. The experiment was conducted in a 7 x 15 m protected environment. The experimental design was completely randomized, with four treatments (irrigation levels corresponding to 40, 60, 80 and 100% of the pot water retention capacity - PC and four repetitions, totaling sixteen plots. The crop cycle was 224 days after transplanting and the applied average depths were: 451.82; 367.38; 282.94; 198.51 mm for treatments: 100; 80; 60 and 40% of PC, respectively. Canopy area and number of leaves per plant were evaluated over the crop cycle. In the end of the cycle, the canopy diameter, number of inflorescences per plant and the number of flowers per plant were evaluated. No significant differences were found only to the canopy area, by the F test. Irrigation water depths between 40 and 70% of the pot capacity were more appropriate for the crop growth in the study region. The cultivar presented the best development at irrigation levels below the maximum vessel water retention capacity, that is, it is resistant to drought.

  15. Aspects of irrigation development in the Netherlands East Indies

    Directory of Open Access Journals (Sweden)

    Maurits W. Ertsen

    2006-04-01

    Full Text Available The ‘Romijn’ discharge measurement structure was developed in the Netherlands East Indies. By the end of the colonial period in the 1930s, it had become the standard structure in irrigation. The Romijn design is not only still the main discharge measurement structure in Indonesia, it is also used in Dutch water management practice and education. The question of continuity is at the heart of concepts such as ‘technological tradition’ or ‘technological regime’, and this continuity links the information embodied in a community of practitioners with the hardware and software the members master. Such communities define accepted modes of technical operation. Engineering education is an important mechanism in preference-guided selection of design solutions, and obtaining an engineering degree is much like passing the preparatory requirements for community membership. When, in 1967, a civil engineering student from Delft Polytechnic presented his final paper for an irrigation design to his supervisors, the first question they asked was why he had not used a Romijn weir as an off-take structure. The Dutch irrigation regime, which consists of the explicit and implicit rules of Dutch irrigation design, is the central subject of this paper. In this paper I shall discuss two related issues: (1 how the Netherlands East Indies irrigation regime developed, and (2 how the (discontinuities in irrigation education and practice following Indonesian independence can be understood. Naturally, while discussion of these issues, to a certain extent at least, depends on the data available, it also depends on the researcher’s perspective.

  16. Development of guidance for sustainable irrigation use of greywater ...

    African Journals Online (AJOL)

    Risk-management scenarios were developed on the basis of the extent of ...... of E0 in place of point estimates, or using the SAPWAT model for irrigation ..... SIGUA GC, HUBBARD RK and COLEMAN SW (2010) Quantifying phosphorus levels ...

  17. How newspapers began to blog

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    2012-01-01

    of technologists (project managers, computer programers, information architects, etc.) that are increasingly integral to how legacy media organizations operate in a new and ever more convergent media environment under circumstances of great economic uncertainty, and discuss the wider implications for how we......In this article, I examine how ‘old’ media organizations develop ‘new’ media technologies by analyzing processes of technological innovation in two Danish newspaper companies that integrated blogs into their websites in very different ways in 2007. Drawing on concepts from science and technology...... studies and sociology and building on previous research on blogging by news media organizations, I analyze how the three different communities involved in the development process – journalists and managers, but also the often-overlooked community of technologists – articulated different versions of what...

  18. Evaluation model development for sprinkler irrigation uniformity ...

    African Journals Online (AJOL)

    A new evaluation method with accompanying software was developed to precisely calculate uniformity from catch-can test data, assuming sprinkler distribution data to be a continuous variable. Two interpolation steps are required to compute unknown water application depths at grid distribution points from radial ...

  19. Smallholder Led Irrigation Development in the Humid Ethiopian highlands

    Science.gov (United States)

    Tilahun, S. A.; Schmitter, P.; Alemie, T. C.; Yilak, D. L.; Yimer, A.; Mamo, A.; Langan, S.; Baronn, J.; Steenhuis, T. S.

    2017-12-01

    More than 70% of the population of in sub-Saharan Africa are living in rural areas that depend on the rainfed agriculture for their livelihood on the rainfed agriculture. With the rapidly increasing population, competition for land and water is growing is intensifying. This, together with future landscape and climate change, the rainfed agriculture is unlikely to meet the future food demands. Many donors see irrigation a rational way to solve the future food crises. In Ethiopia, less than 10% of the irrigatable area has been developed. The main limitation of increasing the irrigatable areas is a severe lack of surface water during an extended dry phase of almost seven months. Flow in most rivers currently have dried up before the rain phase begins middle of the dry periods. In response, the Ethiopian government is installing large reservoirs at great cost to store water from the wet monsoon phase. At the same time, small scale household have started using irrigation using wells on sloping lands that have sprung up with minimal governmental intervention. It could be one of the strategies to increase the irrigated acreage without large investments. Donors and governmental planners are eager to follow the farmer's initiatives and intensify irrigation on these hillside areas. However, it is not yet known to the extent that it is sustainable. For this reason, shallow ground water levels and river discharge were measured over a three-year period in the Robit Bata and Dangishta watersheds in Northern Ethiopian highlands for assessing recharge and use of shallow groundwater irrigation during dry period. The theoretical results show that the ground water availability depends on the slope of the land and the depth of the soil. In sloping Robit Bata watershed the groundwater runs out under gravity to the stream channel in 3-4 months after the rainfall stops. The only wells that remain productive are those associated with fractures in the bedrock. For the less sloping

  20. Developing a Water Quality Index (WQI) for an Irrigation Dam.

    Science.gov (United States)

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-04-29

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl - , NO₃, SO₄, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.

  1. Analysis to develop a program for energy conservation in irrigated agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Cone, B.W.; Brix, V.L.; Eakin, D.E.; Laughlin, B.M.

    1978-09-01

    It is estimated by the FEA that 0.26 quadrillion Btus of energy is annually required to irrigate crops in the USA. The development of a DOE program for energy conservation in irrigation is described. Information is included on: studies of how this energy consumption can be reduced and by how much; engineering and economic studies of irrigation equipment and methods; proposals for improving the efficiency of pumps and prime movers; projects selected for demonstrating irrigation energy conservation; and recommendations for further research. (LCL)

  2. African farmer-led irrigation development: reframing agricultural policy and investment?

    NARCIS (Netherlands)

    Woodhouse, Philip; Veldwisch, G.J.A.; Venot, J.P.J.N.; Brockington, Dan; Komakech, Hans Charles; Manjichi, Angela

    2017-01-01

    The past decade has witnessed an intensifying focus on the development of irrigation in sub-Saharan Africa. It follows a 20-year hiatus in the wake of disappointing irrigation performance during the 1970s and 1980s. Persistent low productivity in African agriculture and vulnerability of African food

  3. Development of High Resolution Data for Irrigated Area and Cropping Patterns in India

    Science.gov (United States)

    K a, A.; Mishra, V.

    2015-12-01

    Information of crop phenology and its individual effect on irrigation is essential to improve the simulation of land surface states and fluxes. We use moderate resolution imaging spectroradiometer (MODIS) - Normalized difference vegetation index (NDVI) at 250 m resolution for monitoring temporal changes in irrigation and cropping patterns in India. We used the obtained dataset of cropping pattern for quantifying the effect of irrigation on land surface states and fluxes by using an uncoupled land surface model. The cropping patterns are derived by using the planting, heading, harvesting, and growing dates for each agro-ecological zone separately. Moreover, we developed a high resolution irrigated area maps for the period of 1999-2014 for India. The high resolution irrigated area was compared with relatively coarse resolution (~ 10km) irrigated area from the Food and Agricultural Organization. To identify the seasonal effects we analyzed the spatial and temporal change of irrigation and cropping pattern for different temporal seasons. The new irrigation area information along with cropping pattern was used to study the water budget in India using the Noah Land surface Model (Noah LSM) for the period of 1999-2014.

  4. Development of guidance for sustainable irrigation use of greywater ...

    African Journals Online (AJOL)

    Greywater use is practised on an informal basis to supplement irrigation water, either in urban gardens in middle- to upper-income suburbs or in food gardens in lower-income informal, periurban and rural areas. It holds the potential to contribute significantly to food security in poor settlements by providing a source of both ...

  5. Irrigation Development and Public-Private Partnerships in Morocco ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Involving the private sector in managing irrigation water is a first in the country, ... The Government of Morocco is currently considering similar public-private ... a 10,000-hectare site that provides a unique opportunity to compare the two models.

  6. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    Science.gov (United States)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  7. African Farmer-led Irrigation Development: re-framing agricultural policy and investment?

    OpenAIRE

    Woodhouse, Philip; Veldwisch, Gert Jan; Venot , Jean-Philippe; Brockington, Daniel; Komakech, Hans; Manjichi , Ângela

    2017-01-01

    The past decade has witnessed an intensifying focus on the development of irrigation in sub-Saharan Africa. It follows a 20-year hiatus in the wake of disappointing irrigation performance during the 1970s and 1980s. Persistent low productivity in African agriculture and vulnerability of African food supplies to increasing instability in international commodity markets are driving pan-African agricultural investment initiatives, such as the Comprehensive Africa Agricultural Development Program...

  8. The Politics, Development and Problems of Small Irrigation Dams in Malawi: Experiences from Mzuzu ADD

    Directory of Open Access Journals (Sweden)

    Bryson Gwiyani Nkhoma

    2011-10-01

    Full Text Available The paper examines the progress made regarding the development of small irrigation dams in Malawi with the view of establishing their significance in improving rural livelihoods in the country. The paper adopts a political economy theory and a qualitative research approach. Evidence from Mzuzu Agricultural Development Division (ADD, where small reservoirs acquire specific relevance, shows that despite the efforts made, the development of small dams is making little progress. The paper highlights that problems of top-down planning, high investment costs, negligence of national and local interests, over-dependency on donors, and conflicts over the use of dams – which made large-scale dams unpopular in the 1990s – continue to affect the development of small irrigation dams in Malawi. The paper argues that small irrigation dams should not be simplistically seen as a panacea to the problems of large-scale irrigation dams. Like any other projects, small dams are historically and socially constructed through interests of different actors in the local settings, and can only succeed if actors, especially those from formal institutions, develop adaptive learning towards apparent conflicting relations that develop among them in the process of implementation. In the case of Mzuzu ADD, it was the failure of the government to develop this adaptive learning to the contestations and conflicts among these actors that undermined successful implementation of small irrigation dams. The paper recommends the need to consider local circumstances, politics, interests, rights and institutions when investing in small irrigation dams.

  9. Irrigation-based livelihood challenges and opportunities : a gendered technology of irrigation development intervention in the Lower Moshi irrigation scheme Tanzania

    NARCIS (Netherlands)

    Kissawike, K.

    2008-01-01

    This thesis is a study of a modernised irrigation scheme in Tanzania. It aims to
    understand how irrigation and agricultural technologies have interacted with local
    society to transform production, paying particular attention to gender relations and
    changes for women farmers. The

  10. The case for distributed irrigation as a development priority in sub-Saharan Africa.

    Science.gov (United States)

    Burney, Jennifer A; Naylor, Rosamond L; Postel, Sandra L

    2013-07-30

    Distributed irrigation systems are those in which the water access (via pump or human power), distribution (via furrow, watering can, sprinkler, drip lines, etc.), and use all occur at or near the same location. Distributed systems are typically privately owned and managed by individuals or groups, in contrast to centralized irrigation systems, which tend to be publicly operated and involve large water extractions and distribution over significant distances for use by scores of farmers. Here we draw on a growing body of evidence on smallholder farmers, distributed irrigation systems, and land and water resource availability across sub-Saharan Africa (SSA) to show how investments in distributed smallholder irrigation technologies might be used to (i) use the water sources of SSA more productively, (ii) improve nutritional outcomes and rural development throughout SSA, and (iii) narrow the income disparities that permit widespread hunger to persist despite aggregate economic advancement.

  11. The key role of supply chain actors in groundwater irrigation development in North Africa

    Science.gov (United States)

    Lejars, Caroline; Daoudi, Ali; Amichi, Hichem

    2017-09-01

    The role played by supply chain actors in the rapid development of groundwater-based irrigated agriculture is analyzed. Agricultural groundwater use has increased tremendously in the past 50 years, leading to the decline of water tables. Groundwater use has enabled intensification of existing farming systems and ensured economic growth. This "groundwater economy" has been growing rapidly due to the initiative of farmers and the involvement of a wide range of supply chain actors, including suppliers of equipment, inputs retailers, and distributors of irrigated agricultural products. In North Africa, the actors in irrigated production chains often operate at the margin of public policies and are usually described as "informal", "unstructured", and as participating in "groundwater anarchy". This paper underlines the crucial role of supply chain actors in the development of groundwater irrigation, a role largely ignored by public policies and rarely studied. The analysis is based on three case studies in Morocco, Tunisia and Algeria, and focuses on the horticultural sub-sector, in particular on onions and tomatoes, which are irrigated high value crops. The study demonstrates that although supply chain actors are catalyzers of the expansion of groundwater irrigation, they could also become actors in adaptation to the declining water tables. Through their informal activities, they help reduce market risks, facilitate credit and access to subsidies, and disseminate innovation. The interest associated with making these actors visible to agricultural institutions is discussed, along with methods of getting them involved in the management of the resource on which they depend.

  12. A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development

    Science.gov (United States)

    Wang, Q. J.; Robertson, D. E.; Haines, C. L.

    2009-02-01

    Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.

  13. Economic performance of irrigation capacity development to adapt to climate in the American Southwest

    Science.gov (United States)

    Ward, Frank A.; Crawford, Terry L.

    2016-09-01

    Growing demands for food security to feed increasing populations worldwide have intensified the search for improved performance of irrigation, the world's largest water user. These challenges are raised in the face of climate variability and from growing environmental demands. Adaptation measures in irrigated agriculture include fallowing land, shifting cropping patterns, increased groundwater pumping, reservoir storage capacity expansion, and increased production of risk-averse crops. Water users in the Gila Basin headwaters of the U.S. Lower Colorado Basin have faced a long history of high water supply fluctuations producing low-valued defensive cropping patterns. To date, little research grade analysis has investigated economically viable measures for irrigation development to adjust to variable climate. This gap has made it hard to inform water resource policy decisions on workable measures to adapt to climate in the world's dry rural areas. This paper's contribution is to illustrate, formulate, develop, and apply a new methodology to examine the economic performance from irrigation capacity improvements in the Gila Basin of the American Southwest. An integrated empirical optimization model using mathematical programming is developed to forecast cropping patterns and farm income under two scenarios (1) status quo without added storage capacity and (2) with added storage capacity in which existing barriers to development of higher valued crops are dissolved. We find that storage capacity development can lead to a higher valued portfolio of irrigation production systems as well as more sustained and higher valued farm livelihoods. Results show that compared to scenario (1), scenario (2) increases regional farm income by 30%, in which some sub regions secure income gains exceeding 900% compared to base levels. Additional storage is most economically productive when institutional and technical constraints facing irrigated agriculture are dissolved. Along with

  14. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique?

    NARCIS (Netherlands)

    Zaag, van der P.; Juizo, D.; Vilanculos, A.; Bolding, J.A.; Post Uiterweer, N.C.

    2010-01-01

    This paper verifies whether the water resources of the transboundary Limpopo River Basin are sufficient for the planned massive irrigation developments in the Mozambique part of this basin, namely 73,000 ha, in addition to existing irrigation (estimated at 9400 ha), and natural growth of common use

  15. Development of fine and coarse roots of Thuja occidentalis 'Brabant' in non-irrigated and drip irrigated field plots

    NARCIS (Netherlands)

    Pronk, A.A.; Willigen, de P.; Heuvelink, E.; Challa, H.

    2002-01-01

    Aboveground dry mass, total root dry mass and root length density of the fine roots of Thuja occidentalis `Brabant' were determined under non- and drip-irrigated field conditions. Two-dimensional diffusion parameters for dynamic root growth were estimated based on dry mass production of the fine

  16. Representing Farmer Irrigation Decisions in Northern India: Model Development from the Bottom Up.

    Science.gov (United States)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2017-12-01

    The plains of northern India are among the most intensely populated and irrigated regions of the world. Sustaining water demand has been made possible by exploiting the vast and hugely productive aquifers underlying the Indo-Gangetic basin. However, an increasing demand from a growing population and highly variable socio-economic and environmental variables mean present resources may not be sustainable, resulting in water security becoming one of India's biggest challenges. Unless solutions which take into consideration the regions evolving anthropogenic and environmental conditions are found, the sustainability of India's water resources looks bleak. Understanding water user decisions and their potential outcome is important for development of suitable water resource management options. Computational models are commonly used to assist water use decision making, typically representing natural processes well. The inclusion of human decision making however, one of the dominant drivers of change, has lagged behind. Improved representation of irrigation water user behaviour within models provides more accurate, relevant information for irrigation management. This research conceptualizes and proceduralizes observed farmer irrigation practices, highlighting feedbacks between the environment and livelihood. It is developed using a bottom up approach, informed through field experience and stakeholder interaction in Uttar Pradesh, northern India. Real world insights are incorporated through collected information creating a realistic representation of field conditions, providing a useful tool for policy analysis and water management. The modelling framework is applied to four districts. Results suggest predicted future climate will have little direct impact on water resources, crop yields or farmer income. In addition, increased abstraction may be sustainable in some areas under carefully managed conditions. By simulating dynamic decision making, feedbacks and interactions

  17. Ghana - Agriculture - Irrigation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  18. Root Development of Transplanted Cotton and Simulation of Soil Water Movement under Different Irrigation Methods

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-07-01

    Full Text Available Winter wheat and cotton are the main crops grown on the North China Plain (NCP. Cotton is often transplanted after the winter wheat harvest to solve the competition for cultivated land between winter wheat and cotton, and to ensure that both crops can be harvested on the NCP. However, the root system of transplanted cotton is distorted due to the restrictions of the seedling aperture disk before transplanting. Therefore, the investigation of the deformed root distribution and water uptake in transplanted cotton is essential for simulating soil water movement under different irrigation methods. Thus, a field experiment and a simulation study were conducted during 2013–2015 to explore the deformed roots of transplanted cotton and soil water movement using border irrigation (BI and surface drip irrigation (SDI. The results showed that SDI was conducive to root growth in the shallow root zone (0–30 cm, and that BI was conducive to root growth in the deeper root zone (below 30 cm. SDI is well suited for producing the optimal soil water distribution pattern for the deformed root system of transplanted cotton, and the root system was more developed under SDI than under BI. Comparisons between experimental data and model simulations showed that the HYDRUS-2D model described the soil water content (SWC under different irrigation methods well, with root mean square errors (RMSEs of 0.023 and 0.029 cm3 cm−3 and model efficiencies (EFs of 0.68 and 0.59 for BI and SDI, respectively. Our findings will be very useful for designing an optimal irrigation plan for BI and SDI in transplanted cotton fields, and for promoting the wider use of this planting pattern for cotton transplantation.

  19. The conundrum of low-cost drip irrigation in Burkina Faso : Why development interventions that have little to show continue

    NARCIS (Netherlands)

    Wanvoeke, J.; Venot, J.-P.; Zwarteveen, M.; de Fraiture, C.; Venot, J.-P.; Kuper, M.; Zwarteveen, M.

    2017-01-01

    Research and development efforts concerning drip irrigation have traditionally been oriented toward intensive commercial farming in developed economies, focusing on ways to improve efficiencies and productivities. From the mid-1990s onward, an increasing number of research institutes and

  20. Development of seedlings of watermelon cv. Crimson Sweet irrigated with biosaline water

    Directory of Open Access Journals (Sweden)

    José E. S. B. da Silva

    2015-09-01

    Full Text Available ABSTRACTThe limited access and the scarcity of good quality water for agriculture are some of the major problems faced in agricultural areas, particularly in arid and semiarid regions. The aim of this study was to evaluate the quality of watermelon seedlings (cv. Crimson Sweet, irrigated with different concentrations of biosaline water of fish culture. The experimental design was completely randomized with five treatments, corresponding to biosaline water at different concentrations (0, 33, 50, 67 and 100%, and four replicates of 108 seedlings. Watermelon seeds were sown in plastic trays filled with commercial substrate and irrigated with different solutions of biosaline water. Seedlings were harvested for biometric analysis at 14, 21 and 28 days after sowing. The use of biosaline water did not affect emergence and establishment of seedlings until 14 days after sowing, the period recommended for transplantation. However, the use of biosaline water affected the development of seedlings with longer exposure time.

  1. Development, yield and quality attributes of sugarcane cultivars fertigated by subsurface drip irrigation

    Directory of Open Access Journals (Sweden)

    André L. B. de O. Silva

    2016-06-01

    Full Text Available ABSTRACT The present study aimed to evaluate the development, yield and quality of four sugarcane cultivars fertigated by subsurface drip system. The experiment was carried out in Campinas-SP, Brazil, from January 2012 to November 2013, with the cultivars SP79-1011, IACSP94-2101, IACSP94-2094 and IACSP95-5000 subjected to daily irrigations. The irrigations depths were applied to bring soil moisture to field capacity. Soil moisture was monitored using soil moisture probes. Samples were collected along the crop cycle in order to evaluate crop development and yield, at the end of the first and second ratoons. Stalk height showed good correlation for the estimation of crop yield, with R2 equal to or higher than 0.96. The cultivar IACSP95-5000 showed the highest yield in the first ratoon. In the second ratoon the highest yield was observed in IACSP94-2101, followed by IACSP95-5000 and SP79-1011. Considering the yield results associated with the technological analysis, such as soluble solids content and apparent sucrose, the cultivar IACSP95-5000 excelled the others in the cultivation under subsurface drip irrigation.

  2. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured

  3. Evaluation of Populus and Salix continuously irrigated with landfill leachate II. soils and early tree development.

    Science.gov (United States)

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    Soil contaminant levels and early tree growth data are helpful for assessing phytoremediation systems. Populus (DN17, DN182, DN34, NM2, and NM6) and Salix (94003, 94012, S287, S566, and SX61) genotypes were irrigated with landfill leachate or municipal water and tested for differences in (1) element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, and Na) of a topsoil layer and a layer of sand in tanks with a cover crop of trees or no trees and (2) height, diameter, volume, and dry mass of leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Differences in most soil element concentrations were negligible (P > 0.05) for irrigation treatments and cover main effects. Phosphorous, K, Mg, S, Zn, Mn, Fe, and Al concentrations were greater in topsoil than sand (P = 0.0011 for Mg; P tree yield. From a practical standpoint, these results may be used as a baseline for the development of future remediation systems.

  4. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation.

    Science.gov (United States)

    Jägermeyr, Jonas; Pastor, Amandine; Biemans, Hester; Gerten, Dieter

    2017-07-19

    Safeguarding river ecosystems is a precondition for attaining the UN Sustainable Development Goals (SDGs) related to water and the environment, while rigid implementation of such policies may hamper achievement of food security. River ecosystems provide life-supporting functions that depend on maintaining environmental flow requirements (EFRs). Here we establish gridded process-based estimates of EFRs and their violation through human water withdrawals. Results indicate that 41% of current global irrigation water use (997 km 3 per year) occurs at the expense of EFRs. If these volumes were to be reallocated to the ecosystems, half of globally irrigated cropland would face production losses of ≥10%, with losses of ∼20-30% of total country production especially in Central and South Asia. However, we explicitly show that improvement of irrigation practices can widely compensate for such losses on a sustainable basis. Integration with rainwater management can even achieve a 10% global net gain. Such management interventions are highlighted to act as a pivotal target in supporting the implementation of the ambitious and seemingly conflicting SDG agenda.

  5. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation

    Science.gov (United States)

    Jägermeyr, Jonas; Pastor, Amandine; Biemans, Hester; Gerten, Dieter

    2017-07-01

    Safeguarding river ecosystems is a precondition for attaining the UN Sustainable Development Goals (SDGs) related to water and the environment, while rigid implementation of such policies may hamper achievement of food security. River ecosystems provide life-supporting functions that depend on maintaining environmental flow requirements (EFRs). Here we establish gridded process-based estimates of EFRs and their violation through human water withdrawals. Results indicate that 41% of current global irrigation water use (997 km3 per year) occurs at the expense of EFRs. If these volumes were to be reallocated to the ecosystems, half of globally irrigated cropland would face production losses of >=10%, with losses of ~20-30% of total country production especially in Central and South Asia. However, we explicitly show that improvement of irrigation practices can widely compensate for such losses on a sustainable basis. Integration with rainwater management can even achieve a 10% global net gain. Such management interventions are highlighted to act as a pivotal target in supporting the implementation of the ambitious and seemingly conflicting SDG agenda.

  6. Effects of different deficit irrigation on sugar accumulation of pineapple during development

    Science.gov (United States)

    Feng, Haiyan; Du, Liqing; Liu, Shenghui; Zhang, Xiumei

    2017-08-01

    The potted pineapple cultivar ‘Comte de paris’ was used to study the influence of deficit irrigation on fruit sugar accumulation in greenhouse during the fruit enlargement period. The study included a control (normal irrigation) and two treatment groups, moderate deficit (50% of the control irrigation) and severe deficit (25% of the control irrigation). The results indicated that the deficit irrigation significantly decreased the sucrose accumulation. The sucrose content in the fruits of moderate deficit irrigation was the lowest. During the mature period, the deficit irrigation decreased the sucrose phosophate synthase activity(SPS) an increased the sucrose synthase (SS) and neutral invertase (NI). The moderate deficit irrigation significantly improved the acid invertase activity(AI). However, it was inhibited by the severe deficit irrigation. In general, the moderate treatment reduced the SPS activity and enhanced the NI and AI activities, while the severe treatment decreased the SPS and AI activities.

  7. Variation in energy sorghum hybrid TX08001 biomass composition and lignin chemistry during development under irrigated and non-irrigated field conditions

    Science.gov (United States)

    Olson, Sara N.; Ritter, Kimberley B.; Herb, Dustin W.; Karlen, Steven D.; Lu, Fachuang; Ralph, John; Rooney, William L.; Mullet, John E.

    2018-01-01

    This study was conducted to document the extent and basis of compositional variation of shoot biomass of the energy Sorghum bicolor hybrid TX08001 during development under field conditions. TX08001 is capable of accumulating ~40 Mg/ha of dry biomass under good growing conditions and this genotype allocates ~80% of its shoot biomass to stems. After 150 days of growth TX08001 stems had a fresh/dry weight ratio of ~3:1 and soluble biomass accounted for ~30% of stem biomass. A panel of diverse energy sorghum genotypes varied ~6-fold in the ratio of stem structural to soluble biomass after 150 days of growth. Near-infrared spectroscopic analysis (NIRS) showed that TX08001 leaves accumulated higher levels of protein, water extractives and ash compared to stems, which have higher sugar, cellulose, and lignin contents. TX08001 stem sucrose content varied during development, whereas the composition of TX08001 stem cell walls, which consisted of ~45–49% cellulose, ~27–30% xylan, and ~15–18% lignin, remained constant after 90 days post emergence until the end of the growing season (180 days). TX08001 and Della stem syringyl (S)/guaiacyl (G) (0.53–0.58) and ferulic acid (FA)/para-coumaric acid (pCA) ratios were similar whereas ratios of pCA/(S+G) differed between these genotypes. Additionally, an analysis of irrigated versus non-irrigated TX08001 revealed that non-irrigated hybrids exhibited a 50% reduction in total cell wall biomass, an ~2-fold increase in stem sugars, and an ~25% increase in water extractives relative to irrigated hybrids. This study provides a baseline of information to help guide further optimization of energy sorghum composition for various end-uses. PMID:29684037

  8. Effect of Salt Stress and Irrigation Water on Growth and Development of Sweet Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Caliskan Omer

    2017-11-01

    Full Text Available This study was conducted to assess the influence of different salinity and irrigation water treatments on the growth and development of sweet basil (Ocimum basilicum L.. Five salinity levels (0.4, 1.00, 2.50, 4.00 and 8.00 dSm-1 and three different irrigation water regimes (80, 100, 120% of full irrigation were applied in a factorial design with three replications. Dry root weight, aerial part dry weight and aerial part/root ratio were determined and evaluated as experimental parameters at the end of growing period. Results revealed significant decreases in yields with increasing salinity levels. However, basil managed to survive high salt stress. With increasing salinity levels, decreases in growth were higher in roots than in leaves. Changes in the amount of irrigation water also significantly affected the evaluated parameters.

  9. Using a Water Balance Model to Bound Potential Irrigation Development in the Upper Blue Nile Basin

    Science.gov (United States)

    Jain Figueroa, A.; McLaughlin, D.

    2016-12-01

    The Grand Ethiopian Renaissance Dam (GERD), on the Blue Nile is an example of water resource management underpinning food, water and energy security. Downstream countries have long expressed concern about water projects in Ethiopia because of possible diversions to agricultural uses that could reduce flow in the Nile. Such diversions are attractive to Ethiopia as a partial solution to its food security problems but they could also conflict with hydropower revenue from GERD. This research estimates an upper bound on diversions above the GERD project by considering the potential for irrigated agriculture expansion and, in particular, the availability of water and land resources for crop production. Although many studies have aimed to simulate downstream flows for various Nile basin management plans, few have taken the perspective of bounding the likely impacts of upstream agricultural development. The approach is to construct an optimization model to establish a bound on Upper Blue Nile (UBN) agricultural development, paying particular attention to soil suitability and seasonal variability in climate. The results show that land and climate constraints impose significant limitations on crop production. Only 25% of the land area is suitable for irrigation due to the soil, slope and temperature constraints. When precipitation is also considered only 11% of current land area could be used in a way that increases water consumption. The results suggest that Ethiopia could consume an additional 3.75 billion cubic meters (bcm) of water per year, through changes in land use and storage capacity. By exploiting this irrigation potential, Ethiopia could potentially decrease the annual flow downstream of the UBN by 8 percent from the current 46 bcm/y to the modeled 42 bcm/y.

  10. The financing of hydropower, irrigation and water supply infrastructure in developing countries

    International Nuclear Information System (INIS)

    Briscoe, J.

    1999-01-01

    A companion paper in the previous issue of this journal (Briscoe, 1999) describes the changing face of infrastructure financing in developing countries. This paper deals with the financing of major infrastructure in the water-related sectors - hydropower, water supply, and sanitation, irrigation, and overall water resources management (including the environment). The overall level of investment in water-related infrastructure in developing countries is estimated to be of the order of $65 billion annually, with the respective shares about $15 billion for hydro, $25 billion for water and sanitation and $25 billion for irrigation and drainage. About 90% of this investment comes from domestic sources, primarily from the public sector. Water-related infrastructure accounts for a large chunk - about 15% - of all government spending. This heavy dependence on the public sector means that the 'winds of change' in the respective roles of government and the private sector have major implications for the financing and structure of the water economy. The paper describes how each of the 'subsectors' is adapting to these winds of change. First, in recent years, competition and private sector provision have emerged as the characteristics of the new electricity industry. This change poses a fundamental challenge to hydro which, to a much greater degree than thermal, has risks (hydrological, geological, social and environmental) which are better assumed by the public than the private sector. The future of private hydro, and thus of hydo itself, depends heavily on the ability of the public sector to both share risks with the private sector, and to provide predictable social and environmental rules of the game. Second, the urban water supply sector is in the early stages of equally profound change. In recent years, there has been a dramatic shift towards the private sector, in developed and developing countries alike. An outline of the future shape of the a competitive urban water

  11. Optimized solar-wind-powered drip irrigation for farming in developing countries

    Science.gov (United States)

    Barreto, Carolina M.

    The two billion people produce 80% of all food consumed in the developing world and 1.3 billion lack access to electricity. Agricultural production will have to increase by about 70% worldwide by 2050 and to achieve this about 50% more primary energy has to be made available by 2035. Energy-smart agri-food systems can improve productivity in the food sector, reduce energy poverty in rural areas and contribute to achieving food security and sustainable development. Agriculture can help reduce poverty for 75% of the world's poor, who live in rural areas and work mainly in farming. The costs associated with irrigation pumping are directly affected by energy prices and have a strong impact on farmer income. Solar-wind (SW) drip irrigation (DI) is a sustainable method to meet these challenges. This dissertation shows with onsite data the low cost of SW pumping technologies correlating the water consumption (evapotranspiration) and the water production (SW pumping). The author designed, installed, and collected operating data from the six SWDI systems in Peru and in the Tohono O'odham Nation in AZ. The author developed, tested, and a simplified model for solar engineers to size SWDI systems. The author developed a business concept to scale up the SWDI technology. The outcome was a simplified design approach for a DI system powered by low cost SW pumping systems optimized based on the logged on site data. The optimization showed that the SWDI system is an income generating technology and that by increasing the crop production per unit area, it allowed small farmers to pay for the system. The efficient system resulted in increased yields, sometimes three to four fold. The system is a model for smallholder agriculture in developing countries and can increase nutrition and greater incomes for the world's poor.

  12. The Impact of a Local Development Project on Social Capital: Evidence from the Bohol Irrigation Scheme in the Philippines

    Directory of Open Access Journals (Sweden)

    Hogeun Park

    2017-03-01

    Full Text Available The purpose of this paper is to investigate the connection between local development projects and the residents’ social capital in Bohol, The Philippines. From this perspective, we hypothesized that social behaviors of local farmers are influenced by the availability of canal irrigation due to the collective water management required in irrigated societies. By combining the results of the ultimatum game (UG with a household survey on 245 villagers in Bohol, this paper (1 measures the degree of social capital at the individual level and (2 quantifies the effects of irrigation on social capital by controlling household as well as individual characteristics. Moreover, we employed a Spatial Autoregressive model to explore the spatial effects and social contexts of farmers’ behavioral patterns. The empirical results show that the level of measured social behavior is strongly associated with access to community irrigation water and asset holdings. Additionally, increased physical distance between residents leads to a decrease in social capital, or interdependency, among them. The results suggest that community engagement (e.g., irrigation management committee and turnout service association with local development projects would not only improve agricultural productivity but also enhance social relationships among farmers, highlighting its importance.

  13. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique?

    Science.gov (United States)

    van der Zaag, Pieter; Juizo, Dinis; Vilanculos, Agostinho; Bolding, Alex; Uiterweer, Nynke Post

    This paper verifies whether the water resources of the transboundary Limpopo River Basin are sufficient for the planned massive irrigation developments in the Mozambique part of this basin, namely 73,000 ha, in addition to existing irrigation (estimated at 9400 ha), and natural growth of common use irrigation (4000 ha). This development includes the expansion of sugar cane production for the production of ethanol as a biofuel. Total additional water requirements may amount to 1.3 × 10 9 m 3/a or more. A simple river basin simulation model was constructed in order to assess different irrigation development scenarios, and at two storage capacities of the existing Massingir dam. Many uncertainties surround current and future water availability in the Lower Limpopo River Basin. Discharge measurements are incomplete and sometimes inconsistent, while upstream developments during the last 25 years have been dramatic and future trends are unknown. In Mozambique it is not precisely known how much water is currently consumed, especially by the many small-scale users of surface and shallow alluvial groundwater. Future impacts of climate change increase existing uncertainties. Model simulations indicate that the Limpopo River does not carry sufficient water for all planned irrigation. A maximum of approx. 58,000 ha of irrigated agriculture can be sustained in the Mozambican part of the basin. This figure assumes that Massingir will be operated at increased reservoir capacity, and implies that only about 44,000 ha of new irrigation can be developed, which is 60% of the envisaged developments. Any additional water use would certainly impact downstream users and thus create tensions. Some time will elapse before 44,000 ha of new irrigated land will have been developed. This time could be used to improve monitoring networks to decrease current uncertainties. Meanwhile the four riparian Limpopo States are preparing a joint river basin study. In this study a methodology could be

  14. Development of services for irrigation management: the experience with the users

    Science.gov (United States)

    Vuolo, Francesco; Neugebauer, Nikolaus; D'Urso, Guido; De Michele, Carlo

    2014-05-01

    Irrigated agriculture is the main user of freshwater resources (30% in Central Europe, 60% in the South). Efficient water management is therefore of essential importance, especially where water scarcity and water quality are becoming severe challenges. To achieve a successful and effective use of resources, farmers and water managers require easy-to-use decision support tools and reliable information. Our approach is based on Earth observation (EO) techniques and decision support tools. Generally, the service concept is based on two main components: i) the processing of time-series of high spatial resolution (10-30-m pixel size) images from satellite, currently available from public and commercial data providers, to timely monitor the crop growth and to estimate the crop water requirements throughout the growing season; ii) the adaptation and integration in local management practices & tools of easy to use geo-spatial technologies to make the information available to users and to support the decision-making process in near-real-time. The participation and feedback we receive from the users is fundamental to develop and provide easy-to-use technologies that can be embedded in standard approaches. In this paper, we briefly describe some examples of pre- and fully operational applications at field and irrigation scheme level and report some success stories of cooperation between decision makers and scientists. The paper includes the outcomes of ongoing activities such as Irrisat (www.irrisat.it), a regional operational service supported by rural development funds in Southern Italy and EO4Water (www.eo4water.com), a case study of knowledge and technology transfer in Eastern Austria funded by the Austrian Space Application Programme. The new capacities we develop to assist farmers in monitoring their crops are a step towards a better integration of tools and production. More technical advice and recommendation regarding sustainable land and resource use could then be

  15. The trail to Leduc began in the North

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie-Brown, P.

    2000-06-01

    A milestone event in the history of the petroleum industry in Canada occurred in 1914 with the expedition down the Mackenzie River by Dr. T. O. Bosworth, a British geologist, which rivals in importance two better known events, namely the Dingman No. 1 discovery which began disgorging wet gas at Turner Valley in 1914, and the beginning of the modern era with the discovery of oil at Leduc, Alberta in 1947. The Bosworth expedition was commissioned by two Calgary businessmen to investigate the petroleum potential of northern Alberta and beyond, and to stake the most promising claims. That Dr. Bosworth did not disappoint his sponsors is evident from his 70-page long report which he produced upon his return, indicating excellent exploration prospects in three general regions, namely the Mackenzie River between Old Fort Good Hope and Fort Norman, the Tar Springs District on the Great Slave Lake, and the Tar Sand District on the Athabasca River. Exploration was postponed by the exigencies of World War I, but Imperial Oil drilled on one of Bosworth's claims after the war ended and oil was found in 1920. Because of lack of infrastructure to get the oil to major markets, development was lagging until after the Japanese attack on Pearl Harbor in 1941, when Norman Wells was developed with American help, primarily to supply oil to the Pacific Fleet. Imperial drilled, while construction crews built a 1,000-km oil pipeline over the Mackenzie Mountains to a newly constructed refiner in Whitehorse. Despite a total cost to the U.S. taxpayers of $134 million, the Canol project (as it was known) contributed little to the war effort. Total production was 1.98 million barrels of oil, of which 46,000 barrels were spilled along the poorly constructed pipeline. Refined petroleum product output was just 866,670 barrels. The appalling disposal and clean up practices eventually led to having the Whitehorse site declared an environmentally contaminated site in 1998. The Maxwell Tar Pit is

  16. Biomass Development in SRI Field Under Unmaintained Alternate Wetting-Drying Irrigation

    Science.gov (United States)

    Ardiansyah; Chusnul, A.; Krissandi, W.; Asna, M.

    2018-05-01

    The aim of this research is to observe biomass development of SRI on farmers practice in three plots with different level. This research observes the farmer practice of SRI and Non-SRI during the uncertainty of irrigation water supply and its effects on paddy biomass development during growth stages and final stage of crop. A farmer group that already understand the principle of SRI, applied this method into several plots of their rented paddy field. Researcher interventions were eliminated from their action, so it is purely on farmers decision on managing their SRI plots. Three plots from both SRI and Non-SRI were chosen based on the position of the plot related their access to water. First plots had direct access to water from tertiary irrigation channel (on farm). Second plots were received water from previous upper plots and drainage water into other plots. Third plots were in the bottom position, where they received water from upper plot, and drainage water into farm drainage channel. Result shows there are similar patterns of root, straw, and leaves of biomass during crop growth. On the other hand, during generative phase, grain development shows different pattern and resulting different biomass in harvest time. Second plot, (of SRI) that has water from first plot has the average of biomass grain per plant of 54.4, higher than first plot and third plot, which are 33.8 g and 38.4. Average biomass in second plot is 74.6 g, higher than first and third plot, which are 49.9 g and 52.3 g.

  17. An Integrated Modeling System for Water Resource Management Under Climate Change, Socio-Economic Development and Irrigation Management

    Science.gov (United States)

    SU, Q.; Karthikeyan, R.; Lin, Y.

    2017-12-01

    Water resources across the world have been increasingly stressed in the past few decades due to the population and economic growth and climate change. Consequently, the competing use of water among agricultural, domestic and industrial sectors is expected to be increasing. In this study, the water stresses under various climate change, socio-economic development and irrigation management scenarios are predicted over the period of 2015-2050 using an integrated model, in which the changes in water supply and demand induced by climate change, socio-economic development and irrigation management are dynamically parameterized. Simulations on the case of Texas, Southwest U.S. were performed using the newly developed integrated model, showing that the water stress is projected to be elevated in 2050 over most areas of Texas, particularly at Northern and Southern Plain and metropolitan areas. Climate change represents the most pronounce factor affecting the water supply and irrigation water demand in Texas. The water supply over East Texas is largely reduced in future because of the less precipitation and higher temperature under the climate change scenario, resulting in an elevated irrigation water demand and thus a higher water stress in this region. In contrast, the severity of water shortage in West Texas would be alleviated in future because of climate change. The water shortage index over metropolitan areas would increase by 50-90% under 1.0% migration scenario, suggesting that the population growth in future could also greatly stress the water supply, especially megacities like Dallas, Houston, Austin and San Antonio. The projected increase in manufacturing water demand shows little effects on the water stress. Increasing irrigation rate exacerbates the water stress over irrigated agricultural areas of Texas.

  18. Development of an irrigation scheduling software based on model predicted crop water stress

    Science.gov (United States)

    Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...

  19. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  20. Simulate the Effect of Climate Change on Development, Irrigation Requirements and Soybean Yield in Gorgan

    Directory of Open Access Journals (Sweden)

    A.R. Nehbandani

    2016-10-01

    Full Text Available Introduction: Atmospheric CO2 concentration has continuously been increasing during the past century and it is expected to increase from current 384 ppm to 550 ppm in 2050. This increase is expected to increase global temperature by 1.4 to 5.8 oC which can have major effects on crop plants. Since both CO2 and temperature are among the most important environmental variables that regulate physiological and phenological processes in plants, it is critical to evaluate the effects of CO2 and air temperature on the growth and yield of key crop plants. Warming of Earth's atmosphere can increase dark respiration and photorespiration in C3 plants. Rate of photosynthesis is affected by temperature, Therefore, rate of biochemical reactions, morphological reactions, CO2 and energy exchange with the atmosphere could be affected by temperature. Increase in CO2 concentration causes further yield improvement in C3 plants (Such as wheat, rice and soybeans in comparison with C4 plants (Such as corn, sorghum and sugarcane. In general, increasing CO2 concentration affects plant processes in two ways:direct effect on physiological processes in plant and indirect effect by changes in temperature and rainfall. Studying climate change effects including increase in temperature and CO2 concentration can help understanding adaptation strategies to reach higher and sustainable crop yields. Therefore, the objective of this research was to examine the effects of temperature and CO2 changes on days to maturity, irrigation water requirement, and yield in soybean under irrigation conditions of Gorganusing SSM-iLegume-Soybean model. Materials and methods: The model SSM-iLegume-Soybean simulates phenological development, leaf development and senescence, crop mass production and partitioning, plant nitrogen balance, yield formation and soil water and nitrogen balances. The model includes responses of crop processes to environmental factors of solar radiation, temperature and

  1. Application of Canal Automation at the Central Arizona Irrigation and Drainage District

    Science.gov (United States)

    The Central Arizona Irrigation and Drainage District (CAIDD) began delivering water to users in 1987. Although designed for automatic control, the system was run manually until a homemade SCADA (Supervisory Control and Data Acquisition) system was developed by a district employee. In 2002, problem...

  2. The development of the irrigation requirement in the dry regions of the Czech Republic with reference to possible climatic change

    Directory of Open Access Journals (Sweden)

    Pavel Spitz

    2006-01-01

    Full Text Available The supposed climatic change in the Czech republic has be expressed with an increased occurence of unfavourable extreme phenomenons – floods and drought. This paper is dedicated to the agricultural drought. Irrigation is the most effective protection of crops against drought. The paper presents results of the calculations of the irrigation water requirements (for sprinkler irrigation with the method of retrospective moisture balance (RVB for representatives of main sorts of crops, i.e. cereals, technical crops, root-crops, fodder crops, vegetables (concretely perennial wheat, sugar-beet, new petatoes, alfaalfa, cucumbers in the semiarid regions of the Czech republic (Southern Moravia, South-East Moravia, Middle Moravia, Žatecko and Lounsko, Litoměřicko, Middle Bohemia and Easter Bohemia represented with 10 technical series (see tab. II for recent years 1961 – 2000 and to the time horizons of years 2025, 2050 and 2075 with respect to a possible climatic change. The input meteorological data changes (average daily temperatures, daily precipitations and average daily air humidity for calculations of irrigation water requirements to the introduced time horizons were realized by the help of the outputs of the scenarios for Bohemia and Moravia ascertained with the model of a climatic change HadCM3 (Hadley Centre Coupled Model, version 3. The results of the calculations for an average and a drought year (in tab. III were the base for the determination of development trends of an irrigation water requirement for choosen crops to the year time horizons 2000, 2025, 2050, 2075. These trends were generally analysed for the all monitored semiarid regions of Bohemia and Moravia by means of regression straight lines (an example is shown in fig. 2. The results gained by means of the regress analysis are in tab. IV. They reflect the fact that the irrigation water requirement has an advancing development trend at all of chosen crops for an average and a

  3. Development of an irrigation control device based on solar radiation and its adaptability for cultivation of high soluble solid tomato fruit in root zone restriction culture

    International Nuclear Information System (INIS)

    Nitta, M.; Shibuya, K.; Kubai, K.; Komatsu, H.; Hosokawa, T.; Nakamura, K.

    2009-01-01

    An irrigation control device based on solar radiation was developed to allow automatic irrigation management for high soluble solid tomato fruit production in root zone restriction culture. Its adaptability for long-term cultivation (planting carried out in early September and harvesting ending in late June) of high soluble solid tomato fruit in root zone restriction culture was examined. The following results were obtained: 1. The control device was composed of generally available electronic parts. A change of setting was possible for the irrigation starting point, the irrigation time period, and the once amount of irrigation. For the first irrigation of the day, one of two irrigation control modes can be chosen; the first determines irrigation dependent on the solar radiation after the irrigated time of the previous day. The second mode irrigates at a set time. 2. The correlation between the total integrated solar radiation and the evapotranspiration rate of tomato plants were investigated. Positive correlations were observed for each month from October to June. Moreover, total integrated solar radiation per unit evapotranspiration was different for each month. 3. In long-term cultivation of tomato fruit using this device, the marketable yield of high soluble solid tomato fruit (more than Brix 8%) was 9.7t/10a. 4. This device exhibited the necessary adaptability for use in long-term cultivation of high soluble solid tomato fruit in root zone restriction culture, by changing the set value of the irrigation starting point and the irrigation time period in accordance with the growth period

  4. Development of SCAR markers and PCR assays for single or simultaneous species-specific detection of Phytophthora nicotianae and Pythium helicoides in ebb-and-flow irrigated kalanchoe.

    Science.gov (United States)

    Ahonsi, Monday O; Ling, Yin; Kageyama, Koji

    2010-11-01

    Phytophthora nicotianae and Pythium helicoides are important water-borne oomycete pathogens of irrigated ornamentals particularly ebb-and-flow irrigated kalanchoe in Japan. We developed novel PCR-based sequence characterized amplified region markers and assays for rapid identification and species-specific detection of both pathogens in separate PCR reactions or simultaneously in a duplex PCR.

  5. Computer-Aided Design System Development of Fixed Water Distribution of Pipe Irrigation System

    OpenAIRE

    Zhou , Mingyao; Wang , Susheng; Zhang , Zhen; Chen , Lidong

    2010-01-01

    International audience; It is necessary to research a cheap and simple fixed water distribution device according to the current situation of the technology of low-pressure pipe irrigation. This article proposed a fixed water distribution device with round table based on the analysis of the hydraulic characteristics of low-pressure pipe irrigation systems. The simulation of FLUENT and GAMBIT software conducted that the flow of this structure was steady with a low head loss comparing to other t...

  6. Before time began the Big Bang and the emerging universe

    CERN Document Server

    Satz, Helmut

    2017-01-01

    What is the origin of the universe? What was there before the universe appeared? We are currently witnessing a second Copernican revolution: neither our Earth and Sun, nor our galaxy, nor even our universe, are the end of all things. Beyond our world, in an endless multiverse, are innumerable other universes, coming and going, like ours or different. Fourteen billion years ago, one of the many bubbles constantly appearing and vanishing in the multiverse exploded to form our universe. The energy liberated in the explosion provided the basis for all the matter our universe now contains. But how could this hot, primordial plasma eventually produce the complex structure of our present world? Does not order eventually always lead to disorder, to an increase of entropy? Modern cosmology is beginning to find out how it all came about and where it all might lead. Before Time Began tells that story.

  7. Reconstructing the Spatio-Temporal Development of Irrigation Systems in Uzbekistan Using Landsat Time Series

    Directory of Open Access Journals (Sweden)

    Thomas Koellner

    2012-12-01

    Full Text Available The expansion of irrigated agriculture during the Soviet Union (SU era made Central Asia a leading cotton production region in the world. However, the successor states of the SU in Central Asia face on-going environmental damages and soil degradation that are endangering the sustainability of agricultural production. With Landsat MSS and TM data from 1972/73, 1977, 1987, 1998, and 2000 the expansion and densification of the irrigated cropland could be reconstructed in the Kashkadarya Province of Uzbekistan, Central Asia. Classification trees were generated by interpreting multitemporal normalized difference vegetation index data and crop phenological knowledge. Assessments based on image-derived validation samples showed good accuracy. Official statistics were found to be of limited use for analyzing the plausibility of the results, because they hardly represent the area that is cropped in the very dry study region. The cropping area increased from 134,800 ha in 1972/73 to 470,000 ha in 2009. Overlaying a historical soil map illustrated that initially sierozems were preferred for irrigated agriculture, but later the less favorable solonchaks and solonetzs were also explored, illustrating the strategy of agricultural expansion in the Aral Sea Basin. Winter wheat cultivation doubled between 1987 and 1998 to approximately 211,000 ha demonstrating its growing relevance for modern Uzbekistan. The spatial-temporal approach used enhances the understanding of natural conditions before irrigation is employed and supports decision-making for investments in irrigation infrastructure and land cultivation throughout the Landsat era.

  8. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    Science.gov (United States)

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  9. Living with less water: development of viable adaptation options for Riverina irrigators

    NARCIS (Netherlands)

    Gaydon, D.S.

    2012-01-01

    In Australia, the best use of limited national water resources continues to be a major political and scientific issue. Average water allocations for rice-cereal irrigation farmers in the Riverina region have been drastically reduced since 1998 as a consequence of high rainfall variability and

  10. Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan

    OpenAIRE

    Muhammad Afzal

    1996-01-01

    Pakistan’s agriculture is almost wholly dependent on irrigation and irrigated land supplies more than 90 percent of agricultural production. Irrigation is central to Pakistan’s economy. Massive investments in irrigation contributed to the development of one of the largest Indus Basin Irrigation System. Despite heavy budgetary inputs in irrigation system, it is facing shortage of resources and suffering from operational problems. The sustainability of irrigated agriculture is threatened due to...

  11. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  12. Some Key Issues in Policy, Pricing, Regulation, and Financing of Irrigation Development in India Today

    OpenAIRE

    Morris, Sebastian

    2005-01-01

    In this paper we discuss the stylised problems relating to water and irrigation in India and argue that most of the inefficiencies, misuse and environmental damage have their roots in the mispricing of water and electricity. Since the only kind of subsidies thus far used are price based input subsidies they end up distorting the allocative prices, from which the other distortions follow. The problems of the sector can be overcome by changing the method of subsidisation. Converting price based...

  13. Development of a tube-type solar still equipped with heat accumulation for irrigation

    International Nuclear Information System (INIS)

    Murase, Kazuo; Yamagishi, Yusuke; Iwashita, Yusuke; Sugino, Keita

    2008-01-01

    A tube-type solar still is found to be suitable for use in desert irrigation. The effectiveness of a heat accumulator with regard to distillate productivity is experimentally and numerically verified. The heat accumulator consists of tube bundles immersed in wax in order to utilize the latent heat of wax. The dynamic response to stepwise variation of irradiative intensity verified the contribution of wax to an increase of productivity only when the phase change of wax occurred. The effective distillate productivity was found to be 294.3 g/m 2 during the cyclic stepwise change of irradiative intensity, from 200 to 600 W/m 2 and back. Velocity vectors driven by natural convection and temperature contours estimated by numerical simulation verified the effectiveness of the heat accumulator especially after peak solar intensity. The latent heat of wax effectively contributed to a 15% increase in total distillate productivity per day. The still can feasibly meet irrigation water supply demands above an irrigative threshold of 17 MJ/m 2 d

  14. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  15. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  16. Development of a cost-effectiveness analysis of leafy green marketing agreement irrigation water provisions.

    Science.gov (United States)

    Jensen, Helen H; Pouliot, Sébastien; Wang, Tong; Jay-Russell, Michele T

    2014-06-01

    An analysis of the effectiveness of meeting the irrigation water provisions of the Leafy Green Marketing Agreement (LGMA) relative to its costs provides an approach to evaluating the cost-effectiveness of good agricultural practices that uses available data. A case example for lettuce is used to evaluate data requirements and provide a methodological example to determine the cost-effectiveness of the LGMA water quality provision. Both cost and field data on pathogen or indicator bacterial levels are difficult and expensive to obtain prospectively. Therefore, methods to use existing field and experimental data are required. Based on data from current literature and experimental studies, we calculate a cost-efficiency ratio that expresses the reduction in E. coli concentration per dollar expenditure on testing of irrigation water. With appropriate data, the same type of analysis can be extended to soil amendments and other practices and to evaluation of public benefits of practices used in production. Careful use of existing and experimental data can lead to evaluation of an expanded set of practices.

  17. Development of a decision support system for precision management of conjunctive use of treated wastewater for irrigation in Oman

    Directory of Open Access Journals (Sweden)

    Hemanatha P. W. Jayasuriya

    2018-01-01

    Full Text Available This research aimed at finding alternative options for conjunctive use of treated wastewater (TW with groundwater (GW minimizing the irrigation water from aquifers in the Al-Batinah region with the assistance of a Decision Support System (DSS. Oman is facing a three-facet problem of lowering of GW table, wastewater over-production and excess TW. Approved guidelines for use of TW with tertiary treatments are of two classes: class-A (for vegetables consumed raw, class-B (after cooking. The developed DSS is comprised of four management subsystems: (1 data management in Excel, (2 model and knowledge management by macro programming in Excel, (3 with linear programming (LP optimization models including transportation algorithms, and (4 user interface with Excel or Visual Basic (VB. The results are based on two extreme scenarios: zero TW excess, and zero GW used for irrigation. The DSS could predict water balance for number of crop rotations, and based on adjustable cost variables farmer profit margins could be created. Crop selections and rotation could be done using LP optimizations while transportation algorithm could organize best locations and capacities for treatment plants and the wastewater collection and transportation to farming areas via treatment plants. The developed DSS will be very useful as a water management, optimization and planning tool.

  18. Development of an ex vivo retention model simulating bioadhesion in the oral cavity using human saliva and physiologically relevant irrigation media.

    Science.gov (United States)

    Madsen, Katrine D; Sander, Camilla; Baldursdottir, Stefania; Pedersen, Anne Marie L; Jacobsen, Jette

    2013-05-20

    In recent years, there has been a particular interest in bioadhesive formulations for oromucosal drug delivery as this may promote prolonged local therapy and enhanced systemic effect. Saliva plays a vital role in oromucosal drug absorption by dissolving the drug and presenting it to the mucosal surface. However, the rheological, chemical, and interfacial properties of this complex biological fluid may strongly affect the adhesion of bioadhesive formulations. There is a need for well characterized in vitro models to assess the bioadhesive properties of oral dosage forms for administration in the oral cavity. Thus we aimed at developing an advanced ex vivo buccal retention model, with focus on choosing a physiologically relevant irrigation media closely resembling human saliva. Spray dried chitosan microparticles containing metformin hydrochloride as an example of a small hydrophilic drug, were employed as bioadhesive formulations. Chewing-stimulated human whole saliva was collected and characterized for use in retention studies in comparison with four artificial irrigation media; phosphate buffer, Saliva Orthana(®), porcine gastric mucin base media (PGM3), and xanthan gum based media (XG2). Retention of metformin, applied as spray dried microparticles on porcine buccal mucosa, greatly depended on the characteristics of the irrigation media. When rheology of the irrigation media was examined, changes in retention profiles could be interpreted, as irrigation media containing mucin and xanthan gum possessed a higher viscosity than phosphate buffer, which led to longer retention of the drug due to better hydration of the mucosa and the spray dried microparticles. Metformin retention profiles were comparable when human saliva, Saliva Orthana(®), or PGM3 were used as irrigation media. Moreover, PGM3 displayed physico-chemical properties closest to those of human saliva with regard to pH, protein content and surface tension. Saliva Orthana(®) and PGM3 are therefore

  19. Climate change, water security and the need for integrated policy development: the case of on-farm infrastructure investment in the Australian irrigation sector

    International Nuclear Information System (INIS)

    Maraseni, T N; Mushtaq, S; Reardon-Smith, K

    2012-01-01

    The Australian Government is currently addressing the challenge of increasing water scarcity through significant on-farm infrastructure investment to facilitate the adoption of new water-efficient pressurized irrigation systems. However, it is highly likely that conversion to these systems will increase on-farm energy consumption and greenhouse gas (GHG) emissions, suggesting potential conflicts in terms of mitigation and adaptation policies. This study explored the trade-offs associated with the adoption of more water efficient but energy-intensive irrigation technologies by developing an integrated assessment framework. Integrated analysis of five case studies revealed trade-offs between water security and environmental security when conversion to pressurized irrigation systems was evaluated in terms of fuel and energy-related emissions, except in cases where older hand-shift sprinkler irrigation systems were replaced. These results suggest that priority should be given, in implementing on-farm infrastructure investment policy, to replacing inefficient and energy-intensive sprinkler irrigation systems such as hand-shift and roll-line. The results indicated that associated changes in the use of agricultural machinery and agrochemicals may also be important. The findings of this study support the use of an integrated approach to avoid possible conflicts in designing national climate change mitigation and adaptation policies, both of which are being developed in Australia. (letter)

  20. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  1. And so it all began: A personal tribute to the man behind the scientist

    Science.gov (United States)

    Aliotta, Marialuisa

    2018-01-01

    At the time I began my scientific career as a PhD student under the supervision of Claudio Spitaleri, the Trojan Horse Method was still in its infancy. Like with any new-born idea, it took time and passion and effort to plant the early seeds that would eventually develop into a now well-established method in nuclear astrophysics research. Here, I offer my own recollection of those early years as a personal homage to Claudio's unique mix of human traits that shaped our professional relationship for many years since.

  2. [Irrigated perimeters as a geopolitical strategy for the development of the semi-arid region and its implications for health, labor and the environment].

    Science.gov (United States)

    Pontes, Andrezza Graziella Veríssimo; Gadelha, Diego; Freitas, Bernadete Maria Coêlho; Rigotto, Raquel Maria; Ferreira, Marcelo José Monteiro

    2013-11-01

    An analysis was made of irrigated perimeters as a geopolitical strategy for expanding Brazilian agricultural frontiers and the "development" of the northeastern semi-arid region with respect to social determinants in health in rural communities. Research was conducted in the Chapada do Apodi in the states of Ceará and Rio Grande do Norte between 2007 and 2011. Various research techniques and tools were adopted, such as research-action, ethnographic studies, questionnaires and laboratory exams, water contamination analyses, social cartography and focal groups. In the context of agribusiness expansion, it was revealed that public policies of irrigation have had consequences for health, labor and the environment with the implementation of the Jaguaribe-Apodi Irrigated Perimeter in Ceará. The social and environmental conflict and resistance in the phase prior to the installation of the Santa Cruz do Apodi Irrigated Perimeter in Rio Grande do Norte was significant as it had consequences for the health-disease process on rural communities. It is important for the evaluation of public irrigation policies to consider the impacts of the perimeters on the lifestyle, labor, health and the environment of the affected territories.

  3. EFFECT OF NITROGEN-FIXING BACTERIA ON GRAIN YIELD AND DEVELOPMENT OF FLOODED IRRIGATED RICE

    Directory of Open Access Journals (Sweden)

    AMAURI NELSON BEUTLER

    2016-01-01

    Full Text Available This study aimed at evaluating the effect of Azospirillum brasilense , a nitrogen - fixing bacterium, on flooded irrigated rice yield. Evaluations were carried out in a shaded nursery, with seedlings grown on an Alfisol. Were performed two sets of experiments. In the first, were carried out four experiments using the flooded rice cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424; these trials were set up as completely randomized design in a 5x4 factorial scheme, with four replications. Treatments consisted of five nitrogen rates (0, 40, 80, 120 and 160 kg ha - 1 and four levels of liquid inoculant Ab - V5 and Ab - V6 - A. brasilense (0, 1, 2 and 4 times the manufacturer's recommendation without seed treatment. In second set, were performed two experiments using the cultivars Puitá Inta - CL and Br Irga 409, arranged in the same design, but using a 4x2 factorial. In this set, treatments were composed of four levels of Ab - V5 and Ab - V6 - A. brasilense liquid inoculant (0, 1, 2 and 4 times the recommendation of 100 mL ha - 1 , using rice seeds with and without insecticide and fungicide treatment. Shoot dry matter, number of panicles, and rice grain yield per pot were the assessed variables. The results showed that rice seed inoculation with A. brasilense had no effects on rice grain yield of the cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424.

  4. Response of Biomass Development, Essential Oil, and Composition of Plectranthus amboinicus (Lour.) Spreng. to Irrigation Frequency and Harvest Time.

    Science.gov (United States)

    Sabra, Ali S; Astatkie, Tessema; Alataway, Abed; Mahmoud, Abeer A; Gendy, Ahmed S H; Said-Al Ahl, Hussein A H; Tkachenko, Kirill G

    2018-03-01

    A greenhouse experiment was conducted to study the effects of four irrigation intervals (4, 8, 12, and 16 days) and six harvests (2, 4, 6, 8, 10, and 12 months after transplanting) on biomass, essential oil content, and composition of Plectranthus amboinicus (Lour.) Spreng. Fresh weight and essential oil yield decreased with increasing irrigation interval; whereas, essential oil content was stimulated by water stress and increased as the irrigation interval increased. Fresh weight of Plectranthus amboinicus irrigated every 4 days peaked when harvested at 6 months, but essential oil content peaked when irrigated every 16 days and harvested at 2 months after transplantation. On the other hand, essential oil yield peaked when irrigated every 8 days and harvested at 6 months. Thymol, p-cymene, γ-terpinene, and β-caryophyllene were the major compounds, and they peaked at different irrigation intervals and harvest times. This study showed biomass, essential oil content, and yield as well as the major and minor constituents of Plectranthus amboinicus are influenced by irrigation interval and the timing of harvest. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  5. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  6. Portable photovoltaic irrigation pumps

    Energy Technology Data Exchange (ETDEWEB)

    Furber, J. D.

    1980-07-01

    Experiences in developing a solar-powered irrigation pump to meet the needs of poor farmers in developing nations are summarized. The design which evolved is small and portable, employing a high-efficiency electric pump, powered by photovoltaic panels. Particular emphasis is placed on how the system works, and on early field problems experienced with the first prototypes. The resolution of these problems and the performance of actual systems in various countries is presented and user responses are noted.

  7. Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    JI Xi-bin; KANG Er-si; CHEN Ren-sheng; ZHAO Wen-zhi; XIAO Sheng-chun; JIN Bo-wen

    2006-01-01

    Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.

  8. Dingxi Prefecture of Gansu Province's Development of Rainwater Collection and Water-Saving Irrigation to Combat the Arid Environment

    National Research Council Canada - National Science Library

    Zhang, Xiaojun; Dong, Suocheng; Wang, Haiying; Liu, Guihuan; Li, Shuang

    2005-01-01

    .... At the same time, in the long-time practice, Dingxi has taken the rainwater collection and water-saving irrigation as the link for improving eco-environment and increasing field's productivity...

  9. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since

  10. Effects of Aquifer Development and Changes in Irrigation Practices on Ground-Water Availability in the Santa Isabel Area, Puerto Rico

    Science.gov (United States)

    Kuniansky, Eve L.; Gómez-Gómez, Fernando; Torres-Gonzalez, Sigfredo

    2003-01-01

    The alluvial aquifer in the area of Santa Isabel is located within the South Coastal Plain aquifer of Puerto Rico. Variations in precipitation, changes in irrigation practices, and increasing public-supply water demand have been the primary factors controlling water-level fluctuations within the aquifer. Until the late 1970s, much of the land in the study area was irrigated using inefficient furrow flooding methods that required large volumes of both surface and ground water. A gradual shift in irrigation practices from furrow systems to more efficient micro-drip irrigation systems occurred between the late 1970s and the late 1980s. Irrigation return flow from the furrow-irrigation systems was a major component of recharge to the aquifer. By the early 1990s, furrow-type systems had been replaced by the micro-drip irrigation systems. Water levels declined about 20 feet in the aquifer from 1985 until present (February 2003). The main effect of the changes in agricultural practices is the reduction in recharge to the aquifer and total irrigation withdrawals. Increases in ground-water withdrawals for public supply offset the reduction in ground-water withdrawals for irrigation such that the total estimated pumping rate in 2003 was only 8 percent less than in 1987. Micro-drip irrigation resulted in the loss of irrigation return flow to the aquifer. These changes resulted in lowering the water table below sea level over most of the Santa Isabel area. By 2002, lowering of the water table reversed the natural discharge along the coast and resulted in the inland movement of seawater, which may result in increased salinity of the aquifer, as had occurred in other parts of the South Coastal Plain. Management alternatives for the South Coastal Plain aquifer in the vicinity of Santa Isabel include limiting groundwater withdrawals or implementing artificial recharge measures. Another alternative for the prevention of saltwater intrusion is to inject freshwater or treated sewage

  11. Examining professionals' and parents' views of using transanal irrigation with children: Understanding their experiences to develop a shared health resource for education and practise.

    Science.gov (United States)

    Sanders, Caroline; Bray, Lucy

    2014-06-01

    Irrigation as a bowel management approach has been reportedly used with children for more than 20 years. Parents managing their child's chronic bowel problem have previously been shown to have increased emotional stress. The aim of this study was to explore professionals' (n = 24) understanding and parents' (n = 18) experiences of using transanal irrigation with children at home as a mid to longer term bowel management approach. This study was underpinned by action research methodology and used mixed methods determined by an action research group of parents, professionals, researchers, a voluntary sector worker, commercial representative and independent observer. Data informed the study outcome which was the development and evaluation of a shared health resource to support professionals in their holistic approach when prescribing transanal irrigation and guide parents in the areas of education, management, problem solving, support and goal setting. The resource includes constructed case studies from parents of their experiences to inform choice and decision-making between parents and professionals. The shared health resource provides an approach to initiating and evaluating transanal irrigation and is available in a paper format from key Internet sites across hospital, community and voluntary services. © The Author(s) 2013.

  12. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  13. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation pot...

  14. Effects of Changes in Irrigation Practices and Aquifer Development on Groundwater Discharge to the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico

    Science.gov (United States)

    Kuniansky, Eve L.; Rodriguez, Jose M.

    2010-01-01

    Since 1990, about 75 acres of black mangroves have died in the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico. Although many factors can contribute to the mortality of mangroves, changes in irrigation practices, rainfall, and water use resulted in as much as 25 feet of drawdown in the potentiometric surface of the aquifer in the vicinity of the reserve between 1986 and 2002. To clarify the issue, the U.S. Geological Survey, in cooperation with the Puerto Rico Department of Natural and Environmental Resources, conducted a study to ascertain how aquifer development and changes in irrigation practices have affected groundwater levels and groundwater flow to the Mar Negro area of the reserve. Changes in groundwater flow to the mangrove swamp and bay from 1986 to 2004 were estimated in this study by developing and calibrating a numerical groundwater flow model. The transient simulations indicate that prior to 1994, high irrigation return flows more than offset the effect of reduced groundwater withdrawals. In this case, the simulated discharge to the coast in the modeled area was 19 million gallons per day. From 1994 through 2004, furrow irrigation was completely replaced by micro-drip irrigation, thus eliminating return flows and the simulated average coastal discharge was 7 million gallons per day, a reduction of 63 percent. The simulated average groundwater discharge to the coastal mangrove swamps in the reserve from 1986 to 1993 was 2 million gallons per day, compared to an average simulated discharge of 0.2 million gallons per day from 1994 to 2004. The average annual rainfall for each of these periods was 38 inches. The groundwater discharge to the coastal mangrove swamps in the Jobos Bay National Estuarine Research Reserve was estimated at about 0.5 million gallons per day for 2003-2004 because of higher than average annual rainfall during these 2 years. The groundwater flow model was used to test five alternatives for increasing

  15. Bud development, flowering and fruit set of Moringa oleifera Lam. (Horseradish Tree as affected by various irrigation levels

    Directory of Open Access Journals (Sweden)

    Quintin Ernst Muhl

    2013-12-01

    Full Text Available Moringa oleifera is becoming increasingly popular as an industrial crop due to its multitude of useful attributes as water purifier, nutritional supplement and biofuel feedstock. Given its tolerance to sub-optimal growing conditions, most of the current and anticipated cultivation areas are in medium to low rainfall areas. This study aimed to assess the effect of various irrigation levels on floral initiation, flowering and fruit set. Three treatments namely, a 900 mm (900IT, 600 mm (600IT and 300 mm (300IT per annum irrigation treatment were administered through drip irrigation, simulating three total annual rainfall amounts. Individual inflorescences from each treatment were tagged during floral initiation and monitored throughout until fruit set. Flower bud initiation was highest at the 300IT and lowest at the 900IT for two consecutive growing seasons. Fruit set on the other hand, decreased with the decrease in irrigation treatment. Floral abortion, reduced pollen viability as well as moisture stress in the style were contributing factors to the reduction in fruiting/yield observed at the 300IT. Moderate water stress prior to floral initiation could stimulate flower initiation, however, this should be followed by sufficient irrigation to ensure good pollination, fruit set and yield.

  16. Development and Application of an Integrated Model for Representing Hydrologic Processes and Irrigation at Residential Scale in Semiarid and Mediterranean Regions

    Science.gov (United States)

    Herrera, J. B.; Gironas, J. A.; Bonilla, C. A.; Vera, S.; Reyes, F. R.

    2015-12-01

    Urbanization alters physical and biological processes that take place in natural environments. New impervious areas change the hydrological processes, reducing infiltration and evapotranspiration and increasing direct runoff volumes and flow discharges. To reduce these effects at local scale, sustainable urban drainage systems, low impact development and best management practices have been developed and implemented. These technologies, which typically consider some type of green infrastructure (GI), simulate natural processes of capture, retention and infiltration to control flow discharges from frequent events and preserve the hydrological cycle. Applying these techniques in semiarid regions requires accounting for aspects related to the maintenance of green areas, such as the irrigation needs and the selection of the vegetation. This study develops the Integrated Hydrological Model at Residential Scale, IHMORS, which is a continuous model that simulates the most relevant hydrological processes together with irrigation processes of green areas. In the model contributing areas and drainage control practices are modeled by combining and connecting differents subareas subjected to surface processes (i.e. interception, evapotranspiration, infiltration and surface runoff) and sub-surface processes (percolation, redistribution and subsurface runoff). The model simulates these processes and accounts for the dynamics of the water content in different soil layers. The different components of the model were first tested using laboratory and numerical experiments, and then an application to a case study was carried out. In this application we assess the long-term performance in terms of runoff control and irrigation needs of green gardens with different vegetation, under different climate and irrigation practices. The model identifies significant differences in the performance of the alternatives and provides a good insight for the maintenance needs of GI for runoff control.

  17. Development of an ex vivo retention model simulating bioadhesion in the oral cavity using human saliva and physiologically relevant irrigation media

    DEFF Research Database (Denmark)

    Madsen, Katrine D.; Sander, Camilla; Baldursdottir, Stefania

    2013-01-01

    In recent years, there has been a particular interest in bioadhesive formulations for oromucosal drug delivery as this may promote prolonged local therapy and enhanced systemic effect. Saliva plays a vital role in oromucosal drug absorption by dissolving the drug and presenting it to the mucosal...... in the oral cavity. Thus we aimed at developing an advanced ex vivo buccal retention model, with focus on choosing a physiologically relevant irrigation media closely resembling human saliva. Spray dried chitosan microparticles containing metformin hydrochloride as an example of a small hydrophilic drug, were...... employed as bioadhesive formulations. Chewing-stimulated human whole saliva was collected and characterized for use in retention studies in comparison with four artificial irrigation media; phosphate buffer, Saliva Orthana(®), porcine gastric mucin base media (PGM3), and xanthan gum based media (XG2...

  18. Desenvolvimento vegetativo do pepino enxertado irrigado com água salina Vegetative development on grafted cucumber plants irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Marcos Vinícius Folegatti

    2000-09-01

    Full Text Available A salinização dos solos em ambiente protegido devido ao excesso de fertilizantes e falta de lixiviação tem resultado na redução da produtividade das culturas. Este trabalho teve o objetivo de avaliar os efeitos da irrigação com água salina no desenvolvimento vegetativo do pepino enxertado cultivado em ambiente protegido. Foram utilizadas águas de diferentes salinidades (S1=1,58; S2=3,08 e S3=5,13 dS m-1, lâminas de água de irrigação (L0=1,00 x ETc e L1=1,25 x ETc e freqüências de aplicação da lâmina L1 (F1=em todas as irrigações e F2=quando a lâmina de água de irrigação acumulada em L0 atingia 100 mm. Os resultados demonstraram que a altura das plantas, área foliar unitária e índice de área foliar foram afetados linearmente pela salinidade da água, não apresentando diferença para as diferentes lâminas e frequências de aplicação de L1.Greenhouse soil salinization by excessive fertilization and lack of leaching has been a common cause of cucumber yield reduction in Brazil. The aim of this work was to evaluate the effects of irrigation with saline water on the vegetative development of grafted cucumber plants in a greenhouse. Three water salinities (S1=1.58; S2=3.08 e S3=5.13 dS m-1, two irrigation water depths (L0=1.00 x ETc e L1=1.25 x ETc and two application frequencies of L1 (F1=in all irrigations and F2=when the irrigation water depth of L0 reached 100 mm were used. Irrigation water depths and frequencies of L1 were grouped and, therefore, the experimental design was in a factorial scheme 3x3, with randomized blocks. Results showed that plant height, unit leaf area and leaf area index were linearly affected by water salinity. No differences were observed for the various irrigation water depths and frequencies of L1 application.

  19. Impacts of long-term waste-water irrigation on the development of sandy Luvisols: consequences for metal pollutant distributions

    NARCIS (Netherlands)

    Oort, van F.; Jongmans, A.G.; Lamy, I.; Baize, D.; Chevallier, P.

    2008-01-01

    Studies relating macro- and microscopic aspects of impacts of long-term contaminative practices on soils are scarce. We performed such an approach by assessing the fate of metal pollutants in an area close to Paris, where sandy Luvisols were irrigated for 100 years with urban waste water. As a

  20. Biomass Accumulation, Photosynthetic Traits and Root Development of Cotton as Affected by Irrigation and Nitrogen-Fertilization

    Directory of Open Access Journals (Sweden)

    Zongkui Chen

    2018-02-01

    Full Text Available Limitations of soil water and nitrogen (N are factors which cause a substantial reduction in cotton (Gossypium hirsutum L. yield, especially in an arid environment. Suitable management decisions like irrigation method and nitrogen fertilization are the key yield improvement technologies in cotton production systems. Therefore, we hypothesized that optimal water-N supply can increase cotton plant biomass accumulation by maintaining leaf photosynthetic capacity and improving root growth. An outdoor polyvinyl chloride (PVC tube study was conducted to investigate the effects of two water-N application depths, i.e., 20 cm (H20 or 40 cm (H40 from soil surface and four water-N combinations [deficit irrigation (W55 and no N (N0 (W55N0, W55 and moderate N (N1 (W55N1, moderate irrigation (W75 and N0 (W75N0, W75N1] on the roots growth, leaf photosynthetic traits and dry mass accumulation of cotton crops. H20W55N1 combination increased total dry mass production by 29–82% and reproductive organs biomass by 47–101% compared with other counterparts. Root protective enzyme and nitrate reductase (NR activity, potential quantum yield of photosystem (PS II (Fv/Fm, PSII quantum yield in the light [Y(II] and electron transport rate of PSII were significantly higher in H20W55N1 prior to 82 days after emergence. Root NR activity and protective enzyme were significantly correlated with chlorophyll, Fv/Fm, Y(II and stomatal conductance. Hence, shallow irrigation (20 cm with moderate irrigation and N-fertilization application could increase cotton root NR activity and protective enzyme leading to enhance light capture and photochemical energy conversion of PSII before the full flowering stage. This enhanced photoassimilate to reproductive organs.

  1. Root canal irrigants

    OpenAIRE

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  2. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  3. The Reticulation Irrigation Scheme at Sankana, Upper West Region ...

    African Journals Online (AJOL)

    farmers utilizing the irrigation project are food secure. ... The effects of ... Often, lack of maintenance, bad management and financial difficulties decrease the ...... and Mushunje A. (2010), 'Analysis of Irrigation Development Post Fast Track Land ...

  4. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... Many methods have been described and sensors developed to manage irrigation ... time, and automated irrigation systems based on crop water needs can .... output components, and a software program for decision support.

  5. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  6. Irrigation in endodontic treatment.

    Science.gov (United States)

    Basrani, Bettina

    2011-01-01

    The primary endodontic treatment goal is to optimize root canal disinfection and to prevent reinfection. Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal system. In this review of the literature, various irrigants and the interactions between irrigants are discussed and new delivery systems are introduced.

  7. Irrigation of steppe soils in the south of Russia: Problems and solutions (Analysis of Irrigation Practices in 1950-1990)

    Science.gov (United States)

    Minashina, N. G.

    2009-07-01

    Experience in irrigation of chernozems in the steppe zone of Russia for a period from 1950 to 1990 is analyzed. By the end of this period and in the subsequent years, the areas under irrigation reduced considerably, and the soil productivity worsened. This was caused by the improper design of irrigation systems, on the one hand, and by the low tolerance of chernozems toward increased moistening upon irrigation, on the other hand. The analysis of the factors and regimes of soil formation under irrigation conditions shows that irrigation-induced changes in the soil hydrology also lead to changes in the soil physicochemical, biochemical, and other properties. In particular, changes in the composition of exchangeable cations lead to the development of solonetzic process. In many areas, irrigation of chernozems was accompanied by the appearance of solonetzic, vertic, saline, and eroded soils. The development of soil degradation processes is described. In general, the deterioration of irrigated chernozems was related to the absence of adequate experience in irrigation of steppe soils, unskilled personnel, improper regime of irrigation, and excessively high rates of watering. In some cases, the poor quality of irrigation water resulted in the development of soil salinization and alkalization. To improve the situation, the training of personnel is necessary; the strategy of continuous irrigation should be replaced by the strategy of supplementary irrigation in the critical periods of crop development.

  8. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  9. Ever Since the World Began: A Reading & Interview with Masha Tupitsyn

    Directory of Open Access Journals (Sweden)

    Masha Tupitsyn

    2013-07-01

    Full Text Available Writer and cultural critic Masha Tupitsyn is interviewed on her audio recording of her reading Ever Since This World Began, produced specially for this issue of continent. and adapted from her recently published Love Dog (Success and Failure out from Penny-Ante Editions.

  10. Ever Since the World Began: A Reading & Interview with Masha Tupitsyn

    OpenAIRE

    Masha Tupitsyn

    2013-01-01

    Writer and cultural critic Masha Tupitsyn is interviewed on her audio recording of her reading Ever Since This World Began, produced specially for this issue of continent. and adapted from her recently published Love Dog (Success and Failure) out from Penny-Ante Editions.

  11. Critical parameters for maize yield under irrigation farming in the ...

    African Journals Online (AJOL)

    This study examines the critical variables that determine maize yield under irrigation farming in the savanna ecological zone of Kwara State. Seventy-five soil samples were randomly collected from irrigation farm of Oke-Oyi irrigation project of the Lower Niger River Basin Development Authority Ilorin and bulked into 15 ...

  12. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  13. Modelling the economic trade-offs of irrigation pipeline investments ...

    African Journals Online (AJOL)

    The Soil Water Irrigation Planning and Energy Management (SWIP-E) mathematical programming model was developed and applied in this paper to provide decision support regarding the optimal mainline pipe diameter, irrigation system delivery capacity and size of the irrigation system. SWIP-E unifies the interrelated ...

  14. Ring Irrigation System (RIS) design through customer preference representation

    OpenAIRE

    Ridwan Infandra I.Z.; Rianmora Suchada; Werawatganon Siwat

    2018-01-01

    In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent ...

  15. The management perspective on the performance of the irrigation subsector

    OpenAIRE

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the performance of irrigation investments was far below its potential. The size of this underperformance is well represented by Seckler's alarming conclusion that the average irrigation investment costs twi...

  16. Optimization of modern irrigation for biosaline agriculture

    International Nuclear Information System (INIS)

    Shahid, S.A.; Hasbini, B.

    2007-01-01

    Supplementation water is a must to offset the water requirement to produce profitable crops in most arid and semiarid zones, where fresh water resources are insufficient to meet the pressure of irrigated agriculture. This necessitates the use of poor quality water resources. These waters if not properly managed and used can cause serious soil related problems (salinity, sodicity, destruction of soil structure) in addition to decline in crop yields. Biosaline agriculture (using saline water on saline soils to grow salt-tolerant crops) becomes the only option for the farmer when both soil and water resources are saline and the water resource is scarce. In this regards key design considerations must be taken into account when irrigating with salty waters to optimize water uses and to reduce subsequent soil salinity development. Sprinkler irrigation systems are commonly used in irrigation of large-scale irrigational production systems. However they tend to concentrate salts on the leaves of plants. For this reason discharge and degree of overlap between consecutive sprinkler heads, are key design parameters when applying salty waters. Trickle irrigation is the most efficient system and is gaining importance in the GCC countries in the agriculture and landscape irrigation. The objective of this study was to optimize modern irrigation systems through development of design standards for drip (emitters spacing) and sprinkler irrigation systems (single head jet and overlapping) by applying saline water. The effect of emitter spacing (drip) and overlapping (sprinkler) were tested for the formation of salt contours in soil. The leaching ratio (LR) is the overall soil sanity within rhizosphere divided by the average irrigation water salinity. In this study LR is used to evaluate the effectiveness of irrigation systems in developing soil sanity. From the present investigations it is concluded that when using saline water for irrigation, the soil sanity development can be

  17. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  18. Mapping Irrigation Potential in the Upper East Region of Ghana

    Science.gov (United States)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  19. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMIS). Thinking along

  20. Year-Round Irrigation Schedule for a Tomato–Maize Rotation System in Reservoir-Based Irrigation Schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Ephraim Sekyi-Annan

    2018-05-01

    Full Text Available Improving irrigation management in semi-arid regions of Sub-Saharan Africa is crucial to respond to increasing variability in rainfall and overcome deficits in current irrigation schemes. In small-scale and medium-scale reservoir-based irrigation schemes in the Upper East region of Ghana, we explored options for improving the traditional, dry season irrigation practices and assessed the potential for supplemental irrigation in the rainy season. The AquaCrop model was used to (i assess current water management in the typical tomato-maize rotational system; (ii develop an improved irrigation schedule for dry season cultivation of tomato; and (iii determine the requirement for supplemental irrigation of maize in the rainy season under different climate scenarios. The improved irrigation schedule for dry season tomato cultivation would result in a water saving of 130–1325 mm compared to traditional irrigation practices, accompanied by approximately a 4–14% increase in tomato yield. The supplemental irrigation of maize would require 107–126 mm of water in periods of low rainfall and frequent dry spells, and 88–105 mm in periods of high rainfall and rare dry spells. Therefore, year-round irrigated crop production may be feasible, using water saved during dry season tomato cultivation for supplemental irrigation of maize in the rainy season.

  1. The phenology of malaria mosquitos in irrigated rice fields in Mali

    NARCIS (Netherlands)

    Klinkenberg, E.; Takken, W.; Huibers, F.P.; Touré, Y.T.

    2003-01-01

    A field study was carried out in the large-scale rice irrigation scheme of the Office du Niger in Mali to investigate the relation between anopheline mosquito larval development and small-scale differences in irrigation practices, such as water level, irrigation application and irrigation frequency.

  2. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    2017-01-01

    . We argue that the effect has historical origins: irrigation allowed landed elites in arid areas to monopolize water and arable land. This made elites more powerful and better able to oppose democratization. Consistent with this conjecture, we show that irrigation dependence predicts land inequality...

  3. Effective colostomy irrigation.

    Science.gov (United States)

    Mazier, W P; Dignan, R D; Capehart, R J; Smith, B G

    1976-06-01

    The ultimate goal of the cone method of colostomy irrigation is to return patients with colostomies to their former role in society with confidence in themselves to the extent that having a colostomy is not considered a handicap. The results have generally been excellent. We believe all patients with stomas should be afforded the opportunity to attempt colostomy irrigation.

  4. Scheduling of Irrigation and Leaching Requirements

    Directory of Open Access Journals (Sweden)

    Amer Hassan Al-haddad

    2015-03-01

    Full Text Available Iraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigation program as a solution for the scarcity of irrigation water, the increase of irrigation efficiency, lessening the salinity in the projects and preparing an integral irrigation calendar through field measurements of soil physical properties and chemical for project selected and compared to the results of the irrigation scheduling and leaching with what is proposed by the designers. The process is accomplished by using a computer program which was designed by Water Resources Department at the University of Baghdad, with some modification to generalize it and made it applicable to various climatic zone and different soil types. Study area represented by large project located at the Tigris River, and this project was (Al-Amara irrigation project. Sufficient samples of project's soil were collected so as to identify soil physical and chemical properties and the salinity of soil and water as well as identifying the agrarian cycles virtually applied to this project. Finally, a comparison was conducted between the calculated water quantities and the suggested ones by the designers. The research results showed that using this kind of scheduling (previously prepared irrigation and leaching scheduling with its properties

  5. Modeling Acequia Irrigation Systems Using System Dynamics: Model Development, Evaluation, and Sensitivity Analyses to Investigate Effects of Socio-Economic and Biophysical Feedbacks

    Directory of Open Access Journals (Sweden)

    Benjamin L. Turner

    2016-10-01

    Full Text Available Agriculture-based irrigation communities of northern New Mexico have survived for centuries despite the arid environment in which they reside. These irrigation communities are threatened by regional population growth, urbanization, a changing demographic profile, economic development, climate change, and other factors. Within this context, we investigated the extent to which community resource management practices centering on shared resources (e.g., water for agricultural in the floodplains and grazing resources in the uplands and mutualism (i.e., shared responsibility of local residents to maintaining traditional irrigation policies and upholding cultural and spiritual observances embedded within the community structure influence acequia function. We used a system dynamics modeling approach as an interdisciplinary platform to integrate these systems, specifically the relationship between community structure and resource management. In this paper we describe the background and context of acequia communities in northern New Mexico and the challenges they face. We formulate a Dynamic Hypothesis capturing the endogenous feedbacks driving acequia community vitality. Development of the model centered on major stock-and-flow components, including linkages for hydrology, ecology, community, and economics. Calibration metrics were used for model evaluation, including statistical correlation of observed and predicted values and Theil inequality statistics. Results indicated that the model reproduced trends exhibited by the observed system. Sensitivity analyses of socio-cultural processes identified absentee decisions, cumulative income effect on time in agriculture, and land use preference due to time allocation, community demographic effect, effect of employment on participation, and farm size effect as key determinants of system behavior and response. Sensitivity analyses of biophysical parameters revealed that several key parameters (e.g., acres per

  6. Ancestral irrigation method by kanis in Bolivia

    Science.gov (United States)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  7. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    Science.gov (United States)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  8. Analyzing alternative policy instruments for the irrigation sector : an assessment of the potential for water market development in the Chishtian Sub-division, Pakistan

    NARCIS (Netherlands)

    Strosser, P.

    1997-01-01


    The increasing scarcity of water and financial resources has made the economic dimension of water an important element of irrigation sector policies. Water pricing is the means traditionally used to incorporate economic issues into irrigation sector policies. More recently, water markets

  9. Decision support system for surface irrigation design

    OpenAIRE

    Gonçalves, José M.; Pereira, L.S.

    2009-01-01

    The SADREG decision support system was developed to help decision makers in the process of design and selection of farm surface irrigation systems to respond to requirements of modernization of surface irrigation—furrow, basin, and border irrigation. It includes a database, simulation models, user-friendly interfaces, and multicriteria analysis models. SADREG is comprised of two components: design and selection. The first component applies database information, and through several si...

  10. Design Development of Sprinkler Irrigation System To Protect The Failed Harvest of Citrus “Keprok 55” In Dry Season at Selorejo, Dau, Malang

    Directory of Open Access Journals (Sweden)

    Bambang Suharto

    2016-07-01

    Full Text Available This study is a part of ongoing research to mainstay citrus productivity in Malang region. Therefore, the specific aim of this study is developing the design of sprinkle irrigation in field. Selorejois central location of citrus production called “KEPROK 55” in Dau-Malang. The cultivation requires maintenance of soil and plants, in addition the lower of citrus production especially in dry season thus indispensable an effort to increase the production. Application of technology using sprinkle irrigation is expected to create the increasing of Citrus production. Result on research study show that the coefficient of uniformity tends to have same value on all the treatment that is above 98%, where the average value of the coefficient of uniformity was 98.8%. The highest value of the coefficient of uniformity achieved at combination of treatment P1T1 (pressure of 1 bar with a riser pipe 50 cm height that is equal to 99.78%. While the coefficient of uniformity was lowest at the combination of treatment P2T3 (pressure of 1.5 bar with a riser pipe 150 cm height by 96.6%. The pressure effected to the coefficient of uniformity indicates that the greater pressure exerted, then the coefficient of uniformity will be higher. It indicated at the treatment of pressure P1, P2, and P3 (1 bar, 1.5 bar and 2 bar that have the average coefficient of uniformity of 98.53%, 98.27%, and 99.64%.

  11. LOW COST SMART SOLAR POWERED AUTOMATIC IRRIGATION SYSTEM

    OpenAIRE

    Hinsermu Alemayehu*, Kena Likassa

    2016-01-01

    In developing countries Photovoltaic energy can find many applications in agriculture, providing electrical energy in various cases, particularly OFF grid and desert area. Today Modern irrigation methods in developing country are needed to fulfill the food demands. Although in these countries Ethiopia, there are many diesel engine operated and rare solar operated water pumps for irrigation; but due to the running cost of diesel and capital cost of photovoltaic irrigation system. So Photovolta...

  12. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China

    Science.gov (United States)

    Cong, Jinxin; Gao, Chuanyu; Zhang, Yan; Zhang, Shaoqing; He, Jiabao; Wang, Guoping

    2016-02-01

    Dating the start of intensive anthropogenic influence on ecosystems is important for identifying the conditions necessary for ecosystem recovery. However, few studies have focused on determining when anthropogenic influences on wetland began through sedimentary archives. To fill this critical gap in our knowledge, combustion sources and emission intensities, reconstructed via black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in two wetlands in the Sanjiang Plain in Northeast China. 14C provided age control for the sedimentary records. By combining previous sedimentary and archaeological studies, we attempt to date the beginning of intensive anthropogenic influences on the Sanjiang Plain. Our results showed that BC deposition fluxes increased from 0.02 to 0.7 g C/m2.yr during the last 10,000 years. An upward trend was apparent during the last 500 years. Before 1200 cal yr BP, human activities were minor, such that the wetland ecosystem in the Sanjiang Plain before this period may represent the reference conditions that for the recovery of these wetlands. As the human population increased after 1200 cal yr BP, combustion sources changed and residential areas became a major source of BC and PAHs. In this way, the wetland ecosystem gradually became more heavily influenced by human activities.

  13. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China

    Science.gov (United States)

    Cong, Jinxin; Gao, Chuanyu; Zhang, Yan; Zhang, Shaoqing; He, Jiabao; Wang, Guoping

    2016-01-01

    Dating the start of intensive anthropogenic influence on ecosystems is important for identifying the conditions necessary for ecosystem recovery. However, few studies have focused on determining when anthropogenic influences on wetland began through sedimentary archives. To fill this critical gap in our knowledge, combustion sources and emission intensities, reconstructed via black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in two wetlands in the Sanjiang Plain in Northeast China. 14C provided age control for the sedimentary records. By combining previous sedimentary and archaeological studies, we attempt to date the beginning of intensive anthropogenic influences on the Sanjiang Plain. Our results showed that BC deposition fluxes increased from 0.02 to 0.7 g C/m2.yr during the last 10,000 years. An upward trend was apparent during the last 500 years. Before 1200 cal yr BP, human activities were minor, such that the wetland ecosystem in the Sanjiang Plain before this period may represent the reference conditions that for the recovery of these wetlands. As the human population increased after 1200 cal yr BP, combustion sources changed and residential areas became a major source of BC and PAHs. In this way, the wetland ecosystem gradually became more heavily influenced by human activities. PMID:26907560

  14. Operation and monitoring guidelines and the development of a screening tool for irrigating with coal mine water in Mpumalanga Province, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, D.; Usher, B. [University of Free State, Bloemfontein (South Africa). Institute of Groundwater Studies

    2009-07-15

    It is predicted that vast volumes of impacted mine water will be produced by mining activities in the Mpumalanga coalfields of South Africa. The potential environmental impact of this excess water is of great concern in a water-scarce country like South Africa. Detailed research has been undertaken over the past number of years onl both undisturbed soils and in coal-mining spoils. These sites range from sandy soils to very clayey soils. The results indicate that many of the soils have considerable attenuation capacities and that over the period of irrigation, a large proportion of the salts are contained in the upper portions of the unsaturated zones below each irrigation pivot. The volumes and quality of water leaching through to the aquifers have been quantified at each site. From these data mixing ratios were calculated in order to determine the effect of the irrigation water on the underlying aquifers. One of the outcomes from this study was to define the conditions under which mine-water irrigation can be implemented and the associated operational and monitoring guidelines that should be followed. These have been based on the findings from this study, the fundamental considerations of mine-water irrigation, the regulatory environment and, as far as possible, the practical implementation of mine-water irrigation as part of optimal mine-water management. In an attempt to standardise decision-making regarding mine-water irrigation, the criteria, data, rules and fundamentals discussed have been combined in a user-friendly tool, called GIMI (Groundwater Impacts from Minewater Irrigation). This tool should assist in the practical implementation of mine-water irrigation as part of optimal mine-water management.

  15. Towards the Development and Validation of a Global Field Size and Irrigation Map using Crowdsourcing, Mobile Apps and Google Earth Engine in support of GEOGLAM

    Science.gov (United States)

    Fritz, S.; Nordling, J.; See, L. M.; McCallum, I.; Perger, C.; Becker-Reshef, I.; Mucher, S.; Bydekerke, L.; Havlik, P.; Kraxner, F.; Obersteiner, M.

    2014-12-01

    The International Institute for Applied Systems Analysis (IIASA) has developed a global cropland extent map, which supports the monitoring and assessment activities of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring Initiative). Through the European-funded SIGMA (Stimulating Innovation for Global Monitoring of Agriculture and its Impact on the Environment in support of GEOGLAM) project, IIASA is continuing to support GEOGLAM by providing cropland projections in the future and modelling environmental impacts on agriculture under various scenarios. In addition, IIASA is focusing on two specific elements within SIGMA: the development of a global field size and irrigation map; and mobile app development for in-situ data collection and validation of remotely-sensed products. Cropland field size is a very useful indicator for agricultural monitoring yet the information we have at a global scale is currently very limited. IIASA has already created a global map of field size at a 1 km resolution using crowdsourced data from Geo-Wiki as a first approximation. Using automatic classification of Landsat imagery and algorithms contained within Google Earth Engine, initial experimentation has shown that circular fields and landscape structures can easily be extracted. Not only will this contribute to improving the global map of field size, it can also be used to create a global map that contains a large proportion of the world's irrigated areas, which will be another useful contribution to GEOGLAM. The field size map will also be used to stratify and develop a global crop map in SIGMA. Mobile app development in support of in-situ data collection is another area where IIASA is currently working. An Android app has been built using the Open Data Toolkit (ODK) and extended further with spatial mapping capabilities called GeoODK. The app allows users to collect data on different crop types and delineate fields on the ground, which can be used to validate the

  16. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  17. Desenvolvimento e produtividade do tomateiro sob diferentes freqüências de irrigação em estufa Tomato development and yield under different irrigation frequencies in greenhouse

    Directory of Open Access Journals (Sweden)

    Regina CM Pires

    2009-06-01

    Full Text Available O crescimento de plantas em substrato em cultivo protegido requer conhecimento técnico apropriado para uso racional e eficientede água e de nutrientes. O objetivo deste trabalho foi avaliar o efeito de seis freqüências de irrigação no desenvolvimento e na produção do tomateiro cultivado em ambiente protegido. O experimento foi conduzido em Campinas, de novembro de 2003 a abril de 2004. O delineamento experimental foi de blocos ao acaso com seis tratamentos e quatro repetições. Os tratamentos consistiram em seis freqüências de irrigação: cinco, quatro, três, duas, uma vez por dia e irrigação em dias alternados. A irrigação foi aplicada por gotejamento. O substrato utilizado foi o composto de fibra de coco. As freqüências de irrigação de uma, três, quatro e cinco vezes por dia resultaram nas maiores produções de frutos comerciáveis de tomateiro. O maior número e peso médio dos frutos foram obtidos nos tratamentos com freqüência de irrigação de uma, duas, três, quatro e cinco vezes por dia. As freqüências de irrigação de uma vez por dia e em dias alternados proporcionaram maior número de frutos não comerciáveis (fundo preto.Plant cultivation in substrate under greenhouse conditions needs technical knowledge to promote water and nutrient use efficiency. In this work were evaluated the tomato development and yield under different irrigation frequencies cultivated in greenhouse. The experiment was carried out in Campinas, São Paulo State, Brazil, from November, 2003 to April, 2004. The experimental design consisted of six treatments in randomized blocks with four replications. The treatments consisted of the irrigation frequencies: five, four, three, two and one times a day and irrigation on alternating days. The irrigation was applied by drip irrigation system. The substrate consisted of coconut fiber. The one, three, four and five times a day irrigation frequency provided better total marketable tomato yield

  18. Irrigation Capability Evaluation of Illushi Floodplain, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    A.S. Umweni

    2014-06-01

    Full Text Available Many irrigation projects, especially in the developing tropical regions, are embarked upon without any land capability assessment, resulting in avoidable and undesirable ecological consequences. The aim of this study is to assess the irrigation capability potentials of the soils of a rice growing Illushi/Ega community in Edo State of Nigeria. Soils of Illushi/Ega (200 ha were studied to establish their irrigation capabilities. Water samples were collected from the rivers within and near the sites at the proposed points of intake structures and analyzed for salinity (ECw, permeability (SAR and ion toxicity [Chlorine (Cl and Boron (B]. Gravity irrigation suitability assessment was carried out following the guidelines of the United States Bureau for Land Reclamation (USBR, 1953 and FAO (1979. Results showed that about 5.5 % of the land was non-irrigable, 11.5 % was marginally irrigable, 30.5% was moderately irrigable and 52.5 % highly irrigable.Thus about 83 % of the total land area was found to be irrigable. The results of analyses of irrigation water [ECw, SAR and Cl and B (ion toxicity problems in water sources were 0.1 – 0.7 dS m-1, 1.2 – 1.7, 0.6 – 1.8 cmol kg-1 and 0.5 – 0.7 mg kg-1] also show that there is no indication of salinity or ion toxicity problem.

  19. Review of root canal irrigant delivery techniques and devices

    Directory of Open Access Journals (Sweden)

    Yeon-Jee Yoo

    2011-05-01

    Full Text Available Introduction Eliminating the residual debris and bacteria in the root canal system is one of the main purposes of the endodontic treatment. However, the complexity on the anatomy of the root canal system makes it difficult to eliminate the bacterial biofilm existing along the root canal surface and necrotic pulp tissue by mechanical instrumentation and chemical irrigation. Recently, more effective irrigant delivery systems for root canal irrigation have been developed. The purpose of this review was to present an overview of root canal irrigant delivery techniques and devices available in endodontics. Review The contents of this paper include as follows; - syringe-needle irrigation, manual dynamic irrigation, brushes - sonic and ultrasonic irrigation, passive ultrasonic irrigation, rotary brush, RinsEndo, EndoVac, Laser Conclusion Though technological advances during the last decade have brought to fruition new agitation devices that rely on various mechanisms, there are few evidence based study to correlate the clinical efficacy of these devices with improved outcomes except syringe irrigation with needle and ultrasonic irrigation. The clinicians should try their best efforts to deliver antimicrobial and tissue solvent solutions in predictable volumes safely to working length.

  20. Predicting deep percolation with eddy covariance under mulch drip irrigation

    Science.gov (United States)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  1. Desenvolvimento vegetativo da pupunheira irrigada por gotejamento em função de níveis de depleção de água no solo Effects of soil water depletion levels on the vegetative development of drip irrigated peach palm plants

    Directory of Open Access Journals (Sweden)

    Adriana Ramos

    2002-03-01

    characteristics: stem diameter at soil level, plant height, foliar raquis length, offshoot and functional leaf number, as well as emission of new leaves. The evaluations began four days before treatment imposition and were repeated at 34; 68; 83; 98; 133 and 168 days. There were differences between treatments for the number of emitted leaves, plant diameter and height. Treatment 1 (25% was superior to the others for emitted leaves rate, while for the characteristics height and diameter, the same treatment only differed significantly from the control. There were no differences between treatments for raquis length, offshoot and functional leaf number. Significant differences among the evaluation periods were found for all the measured characteristics, with the largest increments being obtained after 68 days from the beginning of the evaluations. When comparing the irrigated treatment, especially during the periods of water deficiency, it was observed that the best development in relation to diameter and number of new leaves was obtained when irrigation was done at two day intervals.

  2. Implications of rural irrigation schemes on household economy. A ...

    African Journals Online (AJOL)

    ... and quality of life as measured through the use of standardised HDI. In light of the above, there is a need to fund and develop more rural irrigation schemes so as to ensure livelihood security and rural development in Zimbabwe. Keywords: Rural livelihood, Poverty, Climate change, Irrigation, Lower Gweru, Extension.

  3. Drip irrigation using a PLC based adaptive irrigation system

    OpenAIRE

    Shahidian, S.; Serralheiro, R. P.; Teixeira, J. L.; Santos, F. L.; Oliveira, M. R. G.; Costa, J. L.; Toureiro, C.; Haie, Naim; Machado, R. M.

    2009-01-01

    Most of the water used by man goes to irrigation. A major part of this water is used to irrigate small plots where it is not feasible to implement full-scale Evapotranspiration based irrigation controllers. During the growth season crop water needs do not remain constant and varies depending on the canopy, growth stage and climate conditions such as temperature, wind, relative humidity and solar radiation. Thus, it is necessary to find an economic irrigation controller that can adapt the dail...

  4. Development of a decision support system for individual dairy farms in mixed irrigated farming systems in the Nile Delta

    NARCIS (Netherlands)

    Tabana, A.

    2000-01-01

    The principal animal production system in Egypt is the mixed crop-livestock production system with a semi-intensive/semi-commercial orientation. The development strategies emphasized in this study contribute to the development and implementation of improved

  5. Irrigation port hydration in phacoemulsification surgery

    Directory of Open Access Journals (Sweden)

    Suzuki H

    2018-01-01

    Full Text Available Hisaharu Suzuki,1 Yoichiro Masuda,2 Yuki Hamajima,1 Hiroshi Takahashi3 1Department of Ophthalmology, Nippon Medical School Musashikosugi Hospital, Kawasaki City, Kanagawa, 2Department of Ophthalmology, The Jikei University, Katsushika Medical Center, Tokyo, 3Department of Ophthalmology, Nippon Medical School, Tokyo, Japan Background: In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome.Purpose: We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port.Patients and methods: The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group and 30 eyes underwent surgeries without the HYUIP technique (control. The three points evaluated during each surgery included 1 the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2 the need for conventional hydration, and 3 watertight completion at the end stage of surgery.Results: The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups.Conclusion: The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse. Keywords: cataract surgery, hydration, irrigation and aspiration, phacoemulsification, wound, self-sealing 

  6. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  7. Intervention processes and irrigation institutions : sustainability of farmer managed irrigation systems in Nepal

    OpenAIRE

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation management practices in irrigation systems in Nepal. In this respect, this study aimed to understand the social, administrative and political processes involved in the social and institutional chang...

  8. Procedure for rapid determination of δ15N and δ18O values of nitrate: development and application to an irrigated rice paddy watershed.

    Science.gov (United States)

    Yada, Saeko; Nakajima, Yasuhiro; Itahashi, Sunao; Asada, Kei; Yoshikawa, Seiko; Eguchi, Sadao

    2016-01-01

    The dual isotope approach using the stable isotope ratios of nitrate nitrogen (δ(15)N(NO3)) and oxygen (δ(18)O(NO3)) is a strong tool for identifying the history of nitrate in various environments. Basically, a rapid procedure for determining δ(15)N(NO3) and δ(18)O(NO3) values is required to analyze many more samples quickly and thus save on the operational costs of isotope-ratio mass spectrometry (IRMS). We developed a new rapid procedure to save time by pre-treating consecutive samples of nitrous oxide microbially converted from nitrate before IRMS determination. By controlling two six-port valves of the pre-treatment system separately, IRMS determination of the current sample and backflush during the next sample pre-treatment period could be conducted simultaneously. A set of 89 samples was analyzed precisely during a 25-h continuous run (17 min per sample), giving the fastest reported processing time, and simultaneously reducing liquid nitrogen and carrier helium gas consumption by 35%. Application of the procedure to an irrigated rice paddy watershed suggested that nitrate concentrations in river waters decreased in a downstream direction, mainly because of the mixing of nitrate from different sources, without distinct evidence of denitrification. Our procedure should help with more detailed studies of nitrate formation processes in watersheds.

  9. An assessment of colostomy irrigation.

    Science.gov (United States)

    Laucks, S S; Mazier, W P; Milsom, J W; Buffin, S E; Anderson, J M; Warwick, M K; Surrell, J A

    1988-04-01

    One hundred patients with permanent sigmoid colostomies were surveyed to determine their satisfaction and success with the "irrigation" technique of colostomy management. Most patients who irrigate their colostomies achieve continence. Odors and skin irritation are minimized. The irrigation method is economical, time efficient, and allows a reasonably liberal diet. It avoids bulky appliances and is safe. In appropriately selected patients, the irrigation technique is the method of choice for management of an end-sigmoid colostomy.

  10. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  11. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  12. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  13. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  14. Environmental Kuznets Curve Analysis of the Economic Development and Nonpoint Source Pollution in the Ningxia Yellow River Irrigation Districts in China

    Directory of Open Access Journals (Sweden)

    Chunlan Mao

    2013-01-01

    Full Text Available This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  15. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China.

    Science.gov (United States)

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  16. Method Development and Application to Determine Potential Plant Uptake of Antibiotics and Other Drugs in Irrigated Crop Production Systems

    Science.gov (United States)

    Recent studies have shown the detection of pharmaceuticals in surface waters across the United States. The objective of this study was to develop methods, and apply them, to evaluate the potential for food chain transfer when pharmaceutical containing wastewaters are used for cr...

  17. Effects of irrigation on streamflow in the Central Sand Plain of Wisconsin

    Science.gov (United States)

    Weeks, E.P.; Stangland, H.G.

    1971-01-01

    Development of ground water for irrigation affects streamflow and water levels in the sand-plain area of central Wisconsin. Additional irrigation development may reduce opportunities for water-based recreation by degrading the streams as trout habitat and by lowering lake levels. This study was made to inventory present development of irrigation in the sand-plain area, assess potential future development, and estimate the effects of irrigation on streamflow and ground-water levels. The suitability of land and the availability of ground water for irrigation are dependent, to a large extent, upon the geology of the area. Rocks making up the ground-water reservoir include outwash, morainal deposits, and glacial lake deposits. These deposits are underlain by crystalline rocks and by sandstone, which act as the floor of the ground-water reservoir. Outwash, the main aquifer, supplies water to about 300 irrigation wells and maintains relatively stable flow in the streams draining the area. The saturated thickness of these deposits is more than 100 feet over much of the area and is as much as 180 feet in bedrock valleys. The saturated thickness of the outwash generally is great enough to provide sufficient water for large-scale irrigation in all but two areas --one near the town of Wisconsin Rapids and one near Dorro Couche Mound. Aquifer tests indicate that the permeability of the outwash is quite high, ranging from about 1,000 gpd per square foot to about 3,800 gpd per square foot, Specific capacities of irrigation wells in the area range from 14 to 157 gpm per foot of drawdown. Water use in the sand-plain area is mainly for irrigation and waterbased recreation. Irrigation development began in the area in the late 1940's, and by 1967 about 19,500 acre-feet of water were pumped to irrigate 34,000 acres of potatoes, snap beans, corn, cucumbers, and other crops. About 70 percent of the applied water was lost to evapotranspiration, and about 30 percent was returned to the

  18. The management perspective on the performance of the irrigation subsector

    NARCIS (Netherlands)

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the

  19. Bureaucratic designs : the paradox of irrigation management transfer in Indonesia

    NARCIS (Netherlands)

    Suhardiman, D.

    2008-01-01

    Irrigation Management Transfer (IMT) policy has been formulated and implemented worldwide, relying on three basic assumptions: that the irrigation agency are motivated to adapt their role in the sector's development; that farmers are willing to take over the system management; and that the process

  20. Irrigated cotton grown on sierozem soils in South Kazakhstan

    Science.gov (United States)

    The Gloldnaya steppe has large areas of fertile sierozem soils that are important for crop production and its accompanying economic development. The soils are fertile loams but because of the steppe’s dry environment, they need to be irrigated. Our objective was to study irrigation management of cot...

  1. Thermal injury of the colon due to colostomy irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, F.R.; Ott, D.J.; Gelfand, D.W.

    1981-07-15

    A case of thermal burn and stricture of the colon following colostomy irrigation with hot water is described. The initial radiographic features on barium enema simulated nonspecific segmental colitis. Colonic stricture and enterolith formation developed subsequently. This case emphasizes that care should be taken in preparing irrigating and barium enema solutions.

  2. Thermal injury of the colon due to colostomy irrigation

    International Nuclear Information System (INIS)

    Jackson, F.R.; Ott, D.J.; Gelfand, D.W.

    1981-01-01

    A case of thermal burn and stricture of the colon following colostomy irrigation with hot water is described. The initial radiographic features on barium enema simulated nonspecific segmental colitis. Colonic stricture and enterolith formation developed subsequently. This case emphasizes that care should be taken in preparing irrigating and barium enema solutions. (orig.)

  3. A review of mechanical move sprinkler irrigation control and automation technologies

    Science.gov (United States)

    Electronic sensors, equipment controls, and communication protocols have been developed to meet the growing interest in site-specific irrigation using center pivot and lateral move irrigation systems. Onboard and field-distributed sensors can collect data necessary for real-time irrigation manageme...

  4. Agronomic and physiological impacts of irrigation frequency on green basil (Ocimum basilicum L.)

    OpenAIRE

    Gao, Peng; Dodd, Ian

    2015-01-01

    Water scarcity is a major factor restricting agricultural production and irrigation globally, with sustainable agricultural development calling for less irrigation water use and more production per unit of water applied. Improved understanding of plant physiological responses to water stress, and the effect of irrigation frequency on plant biomass production and quality, may help to optimize irrigation scheduling. Glasshouse-grown basil (Ocimum basilicum L.) received three different irrigatio...

  5. Crowding-in: how Indian civil society organizations began mobilizing around climate change.

    Science.gov (United States)

    Ylä-Anttila, Tuomas; Swarnakar, Pradip

    2017-06-01

    This paper argues that periodic waves of crowding-in to 'hot' issue fields are a recurring feature of how globally networked civil society organizations operate, especially in countries of the Global South. We elaborate on this argument through a study of Indian civil society mobilization around climate change. Five key mechanisms contribute to crowding-in processes: (1) the expansion of discursive opportunities; (2) the event effects of global climate change conferences; (3) the network effects created by expanding global civil society networks; (4) the adoption and innovation of action repertoires; and (5) global pressure effects creating new opportunities for civil society. Our findings contribute to the world society literature, with an account of the social mechanisms through which global institutions and political events affect national civil societies, and to the social movements literature by showing that developments in world society are essential contributors to national mobilization processes. © London School of Economics and Political Science 2017.

  6. [Context of pregnancy in adolescence. We starting going out and everything began then].

    Science.gov (United States)

    de la Cuesta Benjumea, C

    2001-09-01

    The authors reveal the findings of an qualitative investigation on teenage pregnancy. Their data came from 21 semi-structured interviews with pregnant teenagers. The analysis of this data followed the procedures set forth in tested theories. This study reveals that the nature of the interplay a teenager who gets pregnant is that of a serious love affair in which the ideas of romantic love and the rules of that genre guide their behavior. This is the social milieu in which youths live and where they construct their identifies. Sexual relations are part of the natural course of a love affair since they link sex with love. This is not an easy love affair; it develops under unstable conditions. The aspects revealed by this study show the difficulties which surround conventional anti-conceptive practices. The authors hope this study serves as a guide, as orientation, in order that promotional and preventative compaigns become relevant, meaningful and acceptable to youths.

  7. [Irrigation in colostomies].

    Science.gov (United States)

    Campo, Juana; Lecona, Ana; Caparrós, M Rosario; Barbero, M Antonia; Javier Cerdán, F

    2002-01-01

    The degree of acceptation of irrigation from a colostomy varies ostensibly from some cases to others, therefore, we study what occurs in our medium, separating those patients which have previously undergone other procedures (Group A) from those patients who have been informed and trained about the immediate postoperative period (Group B). 48 patients, 22 or 46% of these patients were considered not apt for irrigation. Of the 26 to whom this procedure was proposed, 14 or 54% accepted. Of these, 5 or 36% abandoned its use while 9 continued its use; this is 64% of those who accepted this procedure, 35% of those to whom it was proposed and 19% of the total study group. 189 patients. This procedure was not recommended to 95 patients, 50%. Of the 94 patients to whom this procedure was proposed, 65 or 69% accepted. Of these, 22 or 34% abandoned its use while 43 continued its use; this is 66% of those; who accepted this procedure, 46% of those to whom it was proposed and 23% of the total study group. In our medium, the practice of irrigation oscillates between 19 and 23% of patients who have undergone a colostomy, without any significant difference referring to the moment when a patient started this procedure. A first report on this study was submitted in the III National Congress for Nursing in Colostomies.

  8. Desenvolvimento e produção de duas cultivares de cebola irrigadas por gotejamento Development and production of two onion cultivars irrigated by drip system

    Directory of Open Access Journals (Sweden)

    Renato C. Vilas Boas

    2012-07-01

    Full Text Available Objetivou-se, com este trabalho, avaliar o efeito de diferentes tensões da água no solo sobre o desenvolvimento e produção de duas cultivares de cebola irrigadas por gotejamento. O experimento foi conduzido na área experimental do DAG/UFLA, no período de junho a outubro de 2008; o delineamento experimental utilizado foi em blocos casualizados, em esquema fatorial 2 x 6, com quatro repetições. Os tratamentos se constituíram de duas cultivares de cebola, cultivar híbrida Optima F1 e cultivar não híbrida Alfa Tropical, além de seis tensões da água no solo, 15, 25, 35, 45, 60 e 75 kPa. Concluiu-se que o híbrido Optima F1 apresentou melhores respostas com relação às seguintes características analisadas: produtividade total de bulbos, produtividade de bulbos comerciais e massa média de bulbos comerciais. A altura da planta e o diâmetro do colo apresentaram respostas lineares decrescentes, sempre que se aumentaram as tensões da água no solo, para ambas as cultivares. Referidas cultivares devem ser irrigadas no momento em que a tensão da água no solo estiver em torno de 15 kPa, na profundidade de 0,15 m, para obtenção de plantas mais altas, maiores produtividades de bulbos (total e comercial e maior massa média de bulbos comerciais.This work aimed to assess the effect of different water tensions in soil over the development and production of two onion cultivars irrigated by drip system. The experiment was carried in the experimental area of the DAG/UFLA, from June to October 2008. The experimental was conducted in randomized block design in 2 x 6 factorial scheme, with four repetitions. The treatments were two onion cultivars, the hybrid Optima F1 and the non hybrid Alfa Tropical and six soil water tensions, i.e., 15, 25, 35, 45, 60 and 75 kPa. It was verified that the hybrid Optima F1 presented the best responses regarding the following analyzed characteristics: total bulb yield, commercial bulb yield and average mass of

  9. Water quality and irrigation [Chapter 10

    Science.gov (United States)

    Thomas D. Landis; Kim M. Wilkinson

    2009-01-01

    Water is the single most important biological factor affecting plant growth and health. Water is essential for almost every plant process: photosynthesis, nutrient transport, and cell expansion and development. In fact, 80 to 90 percent of a seedling's weight is made up of water. Therefore, irrigation management is the most critical aspect of nursery operations....

  10. FAO study on irrigation potential for Africa

    OpenAIRE

    Food and Agriculture Organization of the United Nations.‏ United Nations Development Programme

    2002-01-01

    Metadata only record To improve the conjunctive use of sub-surface and surface water in order to increase water resources availability for sustainable small-scale irrigation development in support of food security in West Africa, south of the Sahara.

  11. ROOT CANAL IRRIGANTS AND IRRIGATION TECHNIQUES: A REVIEW

    OpenAIRE

    Aniketh; Mohamed; Geeta; Nandakishore; Gourav Kumar; Patrick Timothy; Jayson Mathew; Sahle Abdul

    2015-01-01

    Root canal irrigation is not much emphasised in endodontic therapy. Most articles discussed are on root canal shaping and obturation not much emphasis is given for irrigation. There are many irrigation solutions which are introduced into market. The primary objective of root canal therapy is the ret ention of the pulpless or pulpally involved tooth with its associated periapical tissues in a healthy state. Achievement of this objective requires that the pulpal spaces and con...

  12. Estimating irrigation water use in the humid eastern United States

    Science.gov (United States)

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  13. Major Population Expansion of East Asians Began before Neolithic Time: Evidence of mtDNA Genomes

    Science.gov (United States)

    Qin, Zhen-Dong; Wang, Yi; Tan, Jing-Ze; Li, Hui; Jin, Li

    2011-01-01

    It is a major question in archaeology and anthropology whether human populations started to grow primarily after the advent of agriculture, i.e., the Neolithic time, especially in East Asia, which was one of the centers of ancient agricultural civilization. To answer this question requires an accurate estimation of the time of lineage expansion as well as that of population expansion in a population sample without ascertainment bias. In this study, we analyzed all available mtDNA genomes of East Asians ascertained by random sampling, a total of 367 complete mtDNA sequences generated by the 1000 Genome Project, including 249 Chinese (CHB, CHD, and CHS) and 118 Japanese (JPT). We found that major mtDNA lineages underwent expansions, all of which, except for two JPT-specific lineages, including D4, D4b2b, D4a, D4j, D5a2a, A, N9a, F1a1'4, F2, B4, B4a, G2a1 and M7b1'2'4, occurred before 10 kya, i.e., before the Neolithic time (symbolized by Dadiwan Culture at 7.9 kya) in East Asia. Consistent to this observation, the further analysis showed that the population expansion in East Asia started at 13 kya and lasted until 4 kya. The results suggest that the population growth in East Asia constituted a need for the introduction of agriculture and might be one of the driving forces that led to the further development of agriculture. PMID:21998705

  14. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  15. The current revolution in column technology: how it began, where is it going?

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2012-03-09

    This work revisits the exceptionally rapid evolution of the technology of chromatographic columns and the important progress in speed of analysis and resolution power that was achieved over the last ten years. Whereas columns packed with 10 and 5 μm fully porous particles dominated the field for nearly thirty years (1975-2000), it took barely six years to see the commercialization of monolithic silica rods (2000), their raise to fame and decay to oblivion, the development of finer fully porous particles with size down to 1.7 μm (2006), and of sub-3 μm superficially porous particles (2006). Analysis times and plate heights delivered by columns packed with these recent packing materials have then been improved by more than one order of magnitude in this short period of time. This progress has rendered practically obsolete the age-old design of LC instruments. For low molecular weight compounds, analysts can now achieve peak capacities of 40 peaks in about 15s with a hold-up time of the order of 1.5s , in gradient elution, by operating columns packed with sub-3 μm shell particles at elevated temperatures, provided that they use optimized high pressure liquid chromatographs. This is the ultimate limit allowed by modern instruments, which have an extra-column band broadening contribution of 7 μL² at 4.0 mL/min and data acquisition rate of 160 Hz. The best 2.1 mm × 50 mm narrow-bore columns packed with 1.7 μm silica core-shell particles provide peaks that have a variance of 2.1 μL² for k=1. Finally, this work discusses possible ways to accelerate separations and, in the same time perform these separations at the same level of efficiency as they have today. It seems possible to pack columns with smaller particles, probably down to 1 μm and operate them with current vHPLC equipments for separations of biochemicals. Analyses of low molecular weight compounds will require new micro-HPLC systems able to operate 1mm I.D. columns at pressures up to 5 kbar, which

  16. New Approaches to Irrigation Scheduling of Vegetables

    Directory of Open Access Journals (Sweden)

    Michael D. Cahn

    2017-04-01

    Full Text Available Using evapotranspiration (ET data for scheduling irrigations on vegetable farms is challenging due to imprecise crop coefficients, time consuming computations, and the need to simultaneously manage many fields. Meanwhile, the adoption of soil moisture monitoring in vegetables has historically been limited by sensor accuracy and cost, as well as labor required for installation, removal, and collection of readings. With recent improvements in sensor technology, public weather-station networks, satellite and aerial imaging, wireless communications, and cloud computing, many of the difficulties in using ET data and soil moisture sensors for irrigation scheduling of vegetables can now be addressed. Web and smartphone applications have been developed that automate many of the calculations involved in ET-based irrigation scheduling. Soil moisture sensor data can be collected through wireless networks and accessed using web browser or smartphone apps. Energy balance methods of crop ET estimation, such as eddy covariance and Bowen ratio, provide research options for further developing and evaluating crop coefficient guidelines of vegetables, while recent advancements in surface renewal instrumentation have led to a relatively low-cost tool for monitoring crop water requirement in commercial farms. Remote sensing of crops using satellite, manned aircraft, and UAV platforms may also provide useful tools for vegetable growers to evaluate crop development, plant stress, water consumption, and irrigation system performance.

  17. Irrigation water management: Basic principles and applications

    OpenAIRE

    Ella, Victor B.

    2007-01-01

    This presentation defines the term, irrigation, as well as explains the common methods of irrigation in attempt to define the fundamental principles needed to wisely design an irrigation system. It outlines a typical drip irrigation set-up, and discusses management of an irrigation system, including water volume application suggestions. LTRA-5 (Agroforestry and Sustainable Vegetable Production)

  18. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  19. Scenario Studies on Effects of Soil Infiltration Rates, Land Slope, and Furrow Irrigation Characteristics on Furrow Irrigation-Induced Erosion.

    Science.gov (United States)

    Dibal, Jibrin M; Ramalan, A A; Mudiare, O J; Igbadun, H E

    2014-01-01

    Furrow irrigation proceeds under several soil-water-furrow hydraulics interaction dynamics. The soil erosion consequences from such interactions in furrow irrigation in Samaru had remained uncertain. A furrow irrigation-induced erosion (FIIE) model was used to simulate the potential severity of soil erosion in irrigated furrows due to interactive effects of infiltration rates, land slope, and some furrow irrigation characteristics under different scenarios. The furrow irrigation characteristics considered were furrow lengths, widths, and stream sizes. The model itself was developed using the dimensional analysis approach. The scenarios studied were the interactive effects of furrow lengths, furrow widths, and slopes steepness; infiltration rates and furrow lengths; and stream sizes, furrow lengths, and slopes steepness on potential furrow irrigation-induced erosion, respectively. The severity of FIIE was found to relate somewhat linearly with slope and stream size, and inversely with furrow lengths and furrow width. The worst soil erosion (378.05 t/ha/yr) was found as a result of the interactive effects of 0.65 m furrow width, 50 m furrow length, and 0.25% slope steepness; and the least soil erosion (0.013 t/ha/yr) was induced by the combined effects of 0.5 l/s, 200 m furrow length, and 0.05% slope steepness. Evidently considering longer furrows in furrow irrigation designs would be a better alternative of averting excessive FIIE.

  20. How life began.

    Science.gov (United States)

    Cloud, P

    1986-11-01

    Study of the origin of life has become a legitimate scientific inquiry, with an international, multidisciplinary membership and a cogent body of data. Experiments involving plausible early Earth conditions and biogeochemical analyses of carbonaceous meteorites imply a variety of available starting molecules. Biogeological evidence indicates microbial beginnings about 3800 million years (3.8 aeons) ago. By then the known universe had been in existence for perhaps 15 aeons and galaxies abundant for ten. Conditions suitable for the origin of life may require a long prior cosmic evolution. The natural origin of life on the early Earth is now widely agreed upon but not the pathways. The beginnings of catalysis, replication and a functional cell remain moot. Much discussion has centered on the templating role that crystals such as clays and zeolites might have played in prebiotic evolution. Recent discovery of the catalytic and replicative functions of RNA recommend it as the key molecule in the transition from chemical to biological evolution. Copyright © 1986. Published by Elsevier Ltd.

  1. Irrigation management of sigmoid colostomy.

    Science.gov (United States)

    Jao, S W; Beart, R W; Wendorf, L J; Ilstrup, D M

    1985-08-01

    Questionnaires were sent to 270 patients who had undergone abdominoperineal resection and sigmoid colostomy at the Mayo Clinic, Rochester, Minn, during the ten years from 1972 to 1982; 223 patients returned their questionnaires with evaluable data. Sixty percent of the patients were continent with irrigation, and 22% were incontinent with irrigation. Eighteen percent had discontinued irrigation for various reasons. The proportion continent was higher in women, younger patients, and previously constipated patients. A poorly constructed colostomy may cause acute angle, parastoma hernia, stomal prolapse, or stenosis and thus be the cause of failure of irrigation.

  2. Buried aquifers in the Brooten-Belgrade and Lake Emily areas, west-central Minnesota--Factors related to developing water for irrigation

    Science.gov (United States)

    Wolf, R.J.

    1976-01-01

    Irrigation has given a substantial boost to the economy in the Brooten-Belgrade and Lake Emily areas of Minnesota. The surficial outwash aquifer is capable of yielding sufficient quantities of water for irrigation over half of its area; the remaining part may be supplied by deep aquifers. Buried glacial outwash and Cretaceous sand aquifers, as thick as 50 feet occur to depths of 300 feet. In places, the buried aquifers are sufficiently thick and permeable to yield large quantities of water to wells. The buried aquifers are probably narrow, elongate, truncated bodies enclosed by clay till. The Precambrian surface, ranging from 190 to 350 feet below the land surface, is the lower limit of the buried aquifers.

  3. Assessment of Irrigation Water Quality and Suitability for Irrigation in ...

    African Journals Online (AJOL)

    A number of factors like geology, soil, effluents, sewage disposal and other environmental conditions in which the water stays or moves and interacts are among the factors that affect the quality of irrigation water. This study was conducted to determine the quality and suitability of different water sources for irrigation purpose ...

  4. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  5. Streamflow Prediction in Ungauged, Irrigated Basins

    Science.gov (United States)

    Zhang, M.; Thompson, S. E.

    2016-12-01

    The international "predictions in ungauged basins" or "PUB" effort has broadened and improved the tools available to support water resources management in sparsely observed regions. These tools have, however, been primarily focused on regions with limited diversion of surface or shallow groundwater resources. Incorporating anthropogenic activity into PUB methods is essential given the high level of development of many basins. We extended an existing stochastic framework used to predict the flow duration curve to explore the effects of irrigation on streamflow dynamics. Four canonical scenarios were considered in which irrigation water was (i) primarily sourced from water imports, (ii) primarily sourced from direct in-channel diversions, (iii) sourced from shallow groundwater with direct connectivity to stream channels, or (iv) sourced from deep groundwater that is indirectly connected to surface flow via a shallow aquifer. By comparing the predicted flow duration curves to those predicted by accounting for climate and geomorphic factors in isolation, specific "fingerprints" of human water withdrawals could be identified for the different irrigation scenarios, and shown to be sensitive to irrigation volumes and scheduling. The results provide a first insight into PUB methodologies that could be employed in heavily managed basins.

  6. The Impact of Regular and Periodic Irrigation on the Fertility and Productivity of an Ordinary Chernozem of the Azov Irrigation System

    Science.gov (United States)

    Shchedrin, V. N.

    2016-02-01

    The effect of regular and periodic irrigation on the fertility and productivity of an ordinary chernozem cultivated under different conditions within the same cereal-fodder crop rotation is discussed. The investigation object is located in the area of the Azov irrigation system on the second terrace of the Don River in Rostov oblast. Irrigation water for the system is taken from the Veselovsk water reservoir. Its salinity is 1.7-2.1 g/dm3, and the salt composition is sulfate-sodium. The field experiments were performed in 2006-2013 on three experimental plots. Two of them were regularly irrigated; the third plot was periodically irrigated with alternation of 2-year-long periods with and without irrigation. Our study proved that periodic irrigation could be applied in the chernozemic zone. This new irrigation mode contributes to the preservation of the natural soil-forming process and stops the development of unfavorable processes typical of the lands irrigated with water of inadequate quality. In eight years of cultivation of the ordinary chernozem with periodic irrigation, the soil humus content increased by 10% (from 3.80 to 4.15%), and the yield reached 66.0 t/ha of fodder units. This was 9% higher than the yield obtained upon regular irrigation without agroameliorative measures and 12% lower than the yield upon regular irrigation in combination with soil-protective measures. Our data suggest that periodic irrigation is promising for the chernozemic zone, because it ensures lower water loads and preservation of the irrigated chernozems.

  7. Irrigation et paludisme : un couple infernal?

    Directory of Open Access Journals (Sweden)

    Mergeai, G.

    2016-01-01

    Full Text Available Irrigation and Malaria - a Terrible Combination?. Increasing agricultural productivity is a priority in most of the developing countries and using irrigation is one of the most efficient ways of achieving this goal. Almost half a billion people in the world contract malaria every year and approximately one million die as a result. The majority of these victims are farmers or members of their families. In infected areas, malaria continues to have major negative impacts on agricultural productivity. For example, in the Equateur province of the DRC, after access to production means, fevers are considered the second biggest obstacle to the development of agricultural activities. In the Ivory Coast, a study has shown that growers suffering from malaria were about half as productive as their healthy colleagues. The disease often strikes at the start of the rainy season when work begins again in the fields. It reduces the amount of land cultivated and affects the amount of care taken with crops. Agricultural practices influence the risk of contracting malaria. Irrigation, in particular, can encourage the proliferation of vectors of the disease and make it more likely to spread. This tendency can be observed in many locations where irrigated rice production is on the increase. Paradoxically, however, an increased number of mosquitoes does not systematically result in more malaria. In Ethiopia, malaria is more prevalent close to the micro-dams sponsored by the government, whereas, in Tanzania, there is less malaria in irrigated areas. Various theories can be put forward in order to explain this paradox. In particular, increased income due to higher rice yields enables farmers to purchase insecticide-treated mosquito nets. It also allows them to eat better, which strengthens their immune systems. It also appears that the negative impact of irrigation systems is greater in areas, in which immunity levels were low in the population prior to the creation of

  8. How Patients Experience Antral Irrigation

    Directory of Open Access Journals (Sweden)

    Karin Blomgren

    2015-01-01

    Full Text Available Background Antral irrigation earlier had an important role in the diagnosis and treatment of rhinosinusitis. Nowadays, it is often considered too unpleasant. However, the experience of patients of this procedure has been very seldom evaluated. Nor has the effect on pain in rhinosinusitis been evaluated. The aim of this study was to evaluate patients’ experience of discomfort and pain during antral irrigation. We also assessed facial pain caused by rhinosinusitis before the procedure and pain soon after the procedure. Methods Doctors and 121 patients completed their questionnaires independently after antral irrigation in a university clinic, in a private hospital, and at a communal health center. Results Patients experienced mild pain during antral irrigation (mean and median visual analog scale score: <3. Their experience of pain during antral irrigation was closely comparable to pain during dental calculus scaling. Facial pain assessed before antral irrigation decreased quickly after the procedure. Conclusions Antral irrigation was well tolerated as an outpatient procedure. The procedure seems to relieve facial pain caused by the disease quickly. The role of antral irrigation in the treatment of acute rhinosinusitis will need further investigation.

  9. Irrigation management in organic greenhouse

    NARCIS (Netherlands)

    Voogt, W.; Balendonck, J.; Berkelmans, R.; Enthoven, N.

    2017-01-01

    Irrigation in protected cultivation is essential due to the absence of natural precipitation. High evapotranspiration, due to higher temperature and prolonged cropping period, requires ample an adequate supply of water. The water supply in a greenhouse is solely carried out by irrigation and thus

  10. Scintigraphic assessment of colostomy irrigation.

    Science.gov (United States)

    Christensen, P.; Olsen, N.; Krogh, K.; Laurberg, S.

    2002-09-01

    OBJECTIVE: This study aims to evaluate colonic transport following colostomy irrigation with a new scintigraphic technique. MATERIALS AND METHODS: To label the bowel contents 19 patients (11 uncomplicated colostomy irrigation, 8 complicated colostomy irrigation) took 111In-labelled polystyrene pellets one and two days before investigation. 99mTc-DTPA was mixed with the irrigation fluid to assess its extent within the bowel. Scintigraphy was performed before and after a standardized washout procedure. The colon was divided into three segments 1: the caecum andascending colon; 2: the transverse colon; 3: the descending and sigmoid colon. Assuming ordered evacuation of the colon, the contribution of each colonic segment to the total evacuation was expressed as a percentage of the original segmental counts. These were added to reach a total defaecation score (range: 0-300). RESULTS: In uncomplicated colostomy irrigation, the median defaecation score was 235 (range: 145-289) corresponding to complete evacuation of the descending and transverse colon and 35% evacuation of the caecum/ascending colon. In complicated colostomy irrigation it was possible to distinguish specific emptying patterns. The retained irrigation fluid reached the caecum in all but one patient. CONCLUSION: Scintigraphy can be used to evaluate colonic emptying following colostomy irrigation.

  11. Are There Infinite Irrigation Trees?

    Science.gov (United States)

    Bernot, M.; Caselles, V.; Morel, J. M.

    2006-08-01

    In many natural or artificial flow systems, a fluid flow network succeeds in irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree and many irrigation and draining systems. Such systems have raised recently a lot of interest and some attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws [25], [26]. In contrast, several mathematical models [5], [22], [10], propose an idealization of these irrigation trees, where a countable set of tubes irrigates any point of a volume with positive Lebesgue measure. There is no geometric obstruction to this infinitesimal model and general existence and structure theorems have been proved. As we show, there may instead be an energetic obstruction. Under Poiseuille law R(s) = s -2 for the resistance of tubes with section s, the dissipated power of a volume irrigating tree cannot be finite. In other terms, infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies that the usual principle analysis performed for the biological models needs not to impose a minimal size for the tubes of an irrigating tree; the existence of the minimal size can be proven from the only two obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.

  12. Development and experiences of photovoltaic water pumping for a drip irrigation in agriculture; Desarrollo y experiencias de sistemas de bombeo fotovoltaico para aplicaciones de riego tecnificado en la agricultura

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Reinhold; Sapiain, Raul; Torres, Ariel; Loose, Dirk [Centro de Energias Renovables, Arica (Chile); Hahn, Andreas [Eschborn (Germany)

    2000-07-01

    The following paper shows results and experiences from a pilot project of photovoltaic water pumping for drip irrigation in agriculture of rural areas. The project participants are local farmers in direct co-operation with the Renewable Energy Centre of the University of Tarapaca and the German Agency for Technical Co-operation, GTZ. Activities focus on the planification, design, implementation and evaluation of four different pilot installations for the small and medium scale agriculture in different locations of the desert area of northern Chile. In the first phase, photovoltaic pumping systems were installed with water storage tanks and a drip irrigation systems were installed with water storage tanks and a drip irrigation system working only by gravity at very low operating pressures. In the second phase, a new system configuration was developed with a direct driven photovoltaic pumping system without water storage tank, the drip irrigation system here is directly connected to the pump with variable water flow and system pressure conditions. Part of the pilot project is a monitoring system, which allows a complete short term and long term evaluation under technical, agricultural and economical aspects. The measured data and obtained experiences shown so far interesting result as for example the high system's reliability, a good performance of the low pressure irrigation, an adequate matching between the solar pump and the drip irrigation in the direct driven system and a simple irrigation management and operation, compared with conventional pumping systems. The project's results could offer a new alternative for photovoltaic pumping systems in the productive agricultural sector of desert rural areas. [Spanish] El presente trabajo muestra los resultados y experiencias obtenidas en un programa piloto de bombeo fotovoltaico para nuevas aplicaciones de riego tecnificado en la agricultura de zonas rurales. En este programa el Centro de Energias Renovables

  13. Effects of shallow groundwater management on the spatial and temporal variability of boron and salinity in an irrigated field

    NARCIS (Netherlands)

    Shouse, P.J.; Goldberg, S.; Skaggs, T.H.; Soppe, R.W.O.; Ayars, J.E.

    2006-01-01

    In some irrigated regions, the disposal of agricultural drainage waters poses significant environmental challenges. Efforts are underway to develop irrigation water management practices that reduce the volume of drainage generated. One such management strategy involves restricting flow in subsurface

  14. Energy performance of sprinkler irrigated maize, wheat and sunflower in Vigia irrigation district

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Sandra; Rodrigues, Goncalo Caleia; Paredes, Paula; Pereira, Luis S. [Centro de Engenharia dos Biossistemas (CEER/ISA), Lisboa (Portugal)], E-mail: lspereira@isa.utl.pt

    2008-07-01

    The energy potential of a crop may be evaluated through life cycle assessment methodologies. These refer to the computation of the crop's energy balance and other related indicators, such as the energy ratio and the energetic efficiency, that may be used as to assess how a given irrigated crop may be used for production of biofuel. This study concerns sprinkler irrigated sunflower, wheat and maize crops using data relative to the campaign of 2007 in the Vigia Irrigation District, Alentejo. A model was developed and various scenarios were considered. The modelling results lead to the conclusion that the maize crop is the most efficient in producing energy and sunflower is the least one for all the alternative scenarios considered. (author)

  15. Irrigating The Environment

    Science.gov (United States)

    Adamson, D.

    2017-12-01

    Water insecurity and water inequality are international issues that reduce economic growth. Countries are adopting alternative approaches to rebalance the share of water between all users to mitigate economic loss for this and future generations. However, recent reforms have struggled to provide the necessary arguments to obtain political protection of the process. In the absence of proof, rent-seeking arguments have challenged the benefit of restoring environmental flows by arguing that policy design fails to maximise the environmental benefits. This is a problem in Australia's Murray-Darling Basin (MDB), where despite establishing 3,200GL of environmental water, the policy is still under threat. Applied water economic policy advice fails, when it does not deal with uncertainty. The state-contingent analysis approach can map how individual decision makers can adapt to alternative states of water supply (i.e. drought, normal and wet) by reallocating inputs to obtain state-described outputs. By modelling changes to the states, or the frequency of the states occurring, climate change can modelled, and decision management responses explored. By treating the environment as another set of production systems, lessons learnt from managing perennial and annual agricultural production systems during the Millennium Drought in the MDB can be applied to explore the limits of irrigating the environment. The demand for water by a production system is a combination of state-general (must be irrigated every year e.g. perennial crop or permanent wetland) and state specific inputs (irrigate in response to the realise state). In simple terms, the greater the component of state-general water requirements a production system has, the less resilience it has when water supply is highly variable and if water is not available then production systems are irreversibly lost. While production systems that only need state-allocable water can adapt to alternative levels of scarcity without

  16. Evaluation of reservoir operation strategies for irrigation in the Macul Basin, Ecuador

    Directory of Open Access Journals (Sweden)

    Vicente Tinoco

    2016-03-01

    Full Text Available Study focus: An irrigation project is planned in the study basin for developing the agriculture as the main income in the region. The proposed water system comprises three large reservoirs damming the rivers Macul and Maculillo. The river basin planning and operation were investigated by modelling alternative reservoir operation strategies aiming at a sustainable balance between irrigation and river ecology by integrated reservoir/river management. New hydrological insights for the region: After simulation of long-term meteorological series in a model of the integrated water system, covering several historical extreme events, results indicate that the planned irrigation volumes are higher than the available water for a sustainable irrigation strategy. Two lines of action are suggested for reaching the target irrigation demands: design of a deficit irrigation system, and modifications to the reservoir's spillway height. Keywords: Reservoir operation, Conceptual model, Irrigation

  17. Intervention processes and irrigation institutions : sustainability of farmer managed irrigation systems in Nepal

    NARCIS (Netherlands)

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation

  18. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong

    2017-08-01

    In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.

  19. Yield response of cotton, maize, soybean, sugar beet, sunflower and wheat to deficit irrigation

    International Nuclear Information System (INIS)

    Kirda, C.; Kanber, R.; Tulucu, K.

    1995-01-01

    Results of several field experiments on deficit irrigation programmes in Turkey are discussed. Deficit irrigation of sugar beet with water stress imposed (i e.,irrigation omitted)during ripening,stage saved nearly 22 % water, yet with no significant yield decrease. An experiment, conducted in Turkey Region, the European part of Turkey,and aimed at studying water production functions of sunflower(i e,yield vs water consumption), revealed that water stress imposed at either head forming or seed filling stags influence yield the least , and 40 % savings of irrigation water supply , compared with traditional practices in the region, can be achieved without significant yield reduction. Water stress imposed at vegetative and flowering stages of maize hindered the yield most significantly. The results showed that deficit irrigation can be a feasible option under limited supply of irrigation if stress occurs during yield formation stage. A four year field experiments aiming at developing deficit irrigation strategies for soybean showed that soybean was at the most sensitive to water stress during flowering and pod filling stages, and irrigation during these stages would ensure high yields. Results of experiments on cotton showed that irrigations omitted during yield formation stage did not significantly hinder the yield. Similarly wheat give good yield response if irrigated at booting,heading and milking stages, depending on w heather conditions. In areas where rainfall at planting is limited, supplementary irrigation during this period can ensure good establishment of wheat crop. 1 tab; 9 figs; 59 refs (Author)

  20. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    Science.gov (United States)

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  1. Irrigation and avifaunal change in coastal Northwest Mexico: has irrigated habit attracted threatened migratory species?

    Science.gov (United States)

    Grason, Emily; Navarro-Sigüenza, Adolfo G.

    2015-01-01

    Irrigation in desert ecosystems can either reduce or increase species diversity. Groundwater pumping often lowers water tables and reduces natural wetlands, whereas canal irrigation often creates mesic habitat, resulting in great increases in avian diversity from irrigation. Here we compare a dataset of potential natural vegetation to recent datasets from areal and satellite imagery to show that 60% of the land in the coastal plain of southern Sonora and northern Sinaloa lying below 200 m elevation has been converted by irrigation to more mesic habitats. We then use the record of bird specimens in the world’s museums from this same region of Mexico to examine the avian community before and after the development of extensive irrigation. In general these museum records show an increase in the abundance and diversity of breeding birds associated with mesic habitats. Although thorn forest birds have likely decreased in total numbers, most are common enough in the remaining thorn forest that collection records did not indicate their probable decline. Four migrants having most of their breeding ranges in the US or Canada, Yellow-billed Cuckoo, Cliff Swallow, Bell’s Vireo, and Orchard Oriole, apparently have increased dramatically as breeders in irrigated habitats of NW Mexico. Because these species have decreased or even largely disappeared as breeding birds in parts of the US or Canada, further research should assess whether their increases in new mesic habitats of NW Mexico are linked to their declines as breeding birds in Canada and the US For Bell’s Vireo recent specimens from Sinaloa suggest its new breeding population in NW Mexico may be composed partly of the endangered Least Bell’s Vireo. PMID:26312181

  2. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  3. Colostomy irrigation: are we offering it enough?

    Science.gov (United States)

    Woodhouse, Fran

    This article discusses the use of irrigation for suitable colostomists and reasons why it can have a very positive effect on lifestyle. While it is evidence-based it also includes anecdotal tips from patients who irrigate. The suitability of patients to irrigate and ways to 'get started' with irrigation are discussed.

  4. Wireless sensor networks for irrigation management

    Science.gov (United States)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  5. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  6. Conserving energy through new irrigation technologies. Technical briefing report

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    The benefits and applications of five irrigation technologies are explored: mobile drop-tube irrigation, computerized scheduling, reduced-pressure center pivots, well design and development, and automated gated-pipe systems. Perhaps the most promising of the new irrigation technologies is the low-energy, precision-application (LEPA) system. This mobile system used one-half the energy of conventional sprinkler systems and distributes water with greater efficiency through a series of low-pressure drop tubes suspended above the crop. Computerized methods of irrigation scheduling have been developed to help farmers conserve water and energy. Special computer programs determine when a crop needs water and how much to apply for optimal plant growth, thus preventing the unnecessary costs of pumping more water than the crop needs. Field test results show that replacing traditional scheduling methods of irrigation with computerized scheduling can reduce energy and water use by as much as 35%. The irrigation industry is actively promoting reduced-pressure water application methods, particularly for center-pivot systems. Reduced-pressure systems expend less energy but produce the same crop yields as conventional high-pressure systems, as long as excessive water runoff does not occur. If well design and development techniques are applied when a well is drilled into an unconsolidated acquifer, the well's life expectancy, as well as its operating efficiency, can increase, the later by as much as 40%.

  7. Improving efficiencies of irrigation and nitrogen uptake in wheat

    International Nuclear Information System (INIS)

    Bazza, M.

    2000-01-01

    Three years of field studies and lysimeter experiments on irrigated wheat had the objective of finding ways of managing irrigation and N fertilization to minimize losses and reduce contamination of groundwater. Applied N had significant positive effects on crop-water consumptive use. The highest N losses occurred during early growth. Irrigation had little effect on N loss when it was practiced efficiently. Under the prevailing conditions, it is recommended that no N be applied to wheat at planting, in order to limit N losses by leaching caused by the high precipitation that usually occurs during early development when crop-N requirements are small. No more than 120 kg N ha -1 should be applied in total to minimize groundwater pollution and maximize N-uptake efficiency and economic returns. Also, for economic and environmental reasons, irrigation should be limited to 80% of the total requirement and to depths of 40 to 60 mm. (author)

  8. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  9. Novel approach to evaluate the dynamic variation of wind drift and evaporation losses under moving irrigation systems

    Science.gov (United States)

    Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher

    2015-01-01

    The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...

  10. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  11. Water requirement and irrigation schedule for tomato in northern guinea savanna zone, Nigeria

    Directory of Open Access Journals (Sweden)

    Ibraheem Alhassan

    2015-06-01

    Full Text Available Assessment of water requirement and irrigation schedule for tomato with the support of FAO-CROPWAT simulation model was carried out for Yola, Nigeria with the aim of planning irrigation schedules for tomato and develop recommendations for improve irrigation practices. The climatic data for 2012/2013 and soil properties of the study area were input into the program. Tomato crop properties were updated by the FAO data and three irrigation intervals were tested (7 and 10 days irrigation intervals and irrigation schedule of 10 days interval during initial and development stage and 6 days interval at mid and late season stages of tomato crop. The simulated results analysis for tomato according to the irrigation schedule showed that highest yield reduction of 16.2% was recorded with 10 days irrigation interval treatment and the least of 0.4% with irrigation interval of 10 days at first two growth stages and 6 days at last two stages. FAO-CROPWAT 8.0 can be used in planning proper irrigation schedule for tomato in Yola, Nigeria.

  12. Is small-scale irrigation an efficient pro-poor strategy in the upper Limpopo Basin in Mozambique?

    Science.gov (United States)

    Ducrot, Raphaelle

    2017-08-01

    In Sub-Saharan Africa, there is evidence that households with access to small-scale irrigation are significantly less poor than households that do not have access to irrigation. However, private motopumps tend to be distributed inequitably. This paper investigates the success of explicit pro-poor interventions with emphasis on small-scale irrigation in the semi-arid Limpopo Basin in Mozambique. It reveals that high irrigation costs are progressively excluding the poor, who are unable to generate a cash income from other activities they need to fund irrigation. In addition, the operation of collective schemes involving the poor is being jeopardized by the development of private irrigation schemes, which benefit from hidden subsidies appropriated by local elites. This results in unequal access to irrigation, which can cause resentment at community level. This weakens community cohesiveness, as well as communities' capacities for collective action and coordination, which are crucial for collective irrigation.

  13. Development of a methodology for the evaluation of energy efficiency of central irrigation pivots; Desenvolvimento de uma metodologia para a avaliacao da eficiencia energetica de pivos centrais de irrigacao

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Aureo Cezar de [Centro Federal de Educacao Tecnologica de Petrolina (CEFET-Pet), PE (Brazil); Guimaraes Junior, Sebastiao Camargo; Camacho, Jose Roberto; Salerno, Carlos Henrique [Universidade Federal de Uberlandia (NERFAE/UFU), MG (Brazil). Fac. de Engenharia Eletrica. Nucleo de Eletricidade Rural e Fontes Alternativas de Energia

    2006-07-01

    It will be presented in this work a methodology for the evaluation of the energy efficiency of irrigation center systems by central pivot. Integrating water efficiency application with the energy associated to the sprinklers, adduction pipeline, pivot arm and pump systems, the proposed indexes make possible to evaluate the energy income of each component of the irrigation system, contributing for the increase of the global efficiency of the irrigated agriculture. (author)

  14. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  15. performance evaluation of sprinkler irrigation system at mambilla

    African Journals Online (AJOL)

    HOD

    ratio (DPR), irrigation productivity (IP), labour requirements and water quality. Standard procedure was ... The exchangeable cations analysis of Kakara irrigation ... Keywords: Tea, irrigation System, Performance Evaluation. 1. INTRODUCTION.

  16. Effect of Deficit irrigation on the Productivity of Processing Potato

    International Nuclear Information System (INIS)

    Darwish, T.M.; Atallah, T.W.

    2003-01-01

    The area under potatoes in Lebanon has extended to over 15.000 ha to form 17% of irrigated arable land. More farmers rely on processing varieties for prices and marketing reasons. Studies focused so far on irrigation and fertilization of table potatoes. The current recommendations indicate excess N fertilizer input exceeding 600 kg N/ha in the form of compound fertilizers. Potato is irrigated with macro sprinklers with a water input reaching 850 mm/season. Water mismanagement and shortage eventually influence the yield quantity and quality of processing potatoes. Therefore, deficit irrigation is an important water saving tool regarding the increasing pressure on limited water resources in the dry areas. Information on potato response to water stress imposed at different crop stages is available. The aim of this paper is to study the impact of continuous deficit irrigation imposed from the stage of maximum plant development-flowering stage until physiological maturity on the performance of processing potato (Santana) and water and fertilizer use efficiency. Fertilizer placement and irrigation were done through fertigation using drip system. A neutron probe was used to assess water consumption from the soil. The 15 N methodology was used to follow the N recovery as affected by water deficit

  17. The Power to Resist: Irrigation Management Transfer in Indonesia

    Directory of Open Access Journals (Sweden)

    Diana Suhardiman

    2013-02-01

    Full Text Available In the last two decades, international donors have promoted Irrigation Management Transfer (IMT as an international remedy to management problems in government irrigation systems in many developing countries. This article analyses the political processes that shape IMT policy formulation and implementation in Indonesia. It links IMT with the issue of bureaucratic reform and argues that its potential to address current problems in government irrigation systems cannot be achieved if the irrigation agency is not convinced about the need for management transfer. IMT’s significance cannot be measured only through IMT outcomes and impacts, without linking these with how the irrigation agency perceives the idea of management transfer in the first place, how this perception (redefines the agency’s position in IMT, and how it shapes the agency’s action and strategy in the policy formulation and implementation. I illustrate how the irrigation agency contested the idea of management transfer by referring to IMT policy adoption in 1987 and its renewal in 1999. The article concludes that for management transfer to be meaningful it is pertinent that the issue of bureaucratic reform is incorporated into current policy discussions.

  18. Desarrollo vegetativo de patrones cítricos cultivados en condiciones de invernadero bajo dos sistemas de riego Vegetative development of citrus seedlings cultivated at greenhouse conditions and submitted to two irrigations systems

    Directory of Open Access Journals (Sweden)

    Gilmar Schäfer

    2006-08-01

    Full Text Available En el presente estudio se evaluó el desarrollo vegetativo de patrones cítricos cultivados en invernadero bajo dos sistemas de riego. El experimento se realizó en la Estação Experimental Agronômica de la Universidade Federal do Rio Grande do Sul, ubicada en Eldorado do Sul, Rio Grande do Sul, Brasil, entre los meses de septiembre de 2003 y abril de 2004, totalizando 225 días de experimentación. El diseño experimental fue de parcelas subdivididas, en factorial 2 x 3, con 4 repeticiones de 22 contenedores cada. En las parcelas principales se evaluaron los sistemas de riego (microaspersión y capilaridad y en las subparcelas los patrones cítricos Poncirus trifoliata (L. Raf., citrangero 'C37' [P. trifoliata x Citrus sinensis (L. Osb. cv. Pêra] y lima 'Rangpur' (C. limonia Osb.. En condiciones de invernadero los patrones cítricos presentan un desarrollo vegetativo más rápido bajo riego por capilaridad respecto a la microaspersión. Los patrones cítricos evaluados presentan desarrollos vegetativos distintos, donde el citrangero 'C37' supera a los demás.The aim of the present work was to evaluate the vegetative development of citrus rootstock seedlings cultivated under greenhouse conditions with two irrigation systems. The experiment was conducted at the Estação Experimental Agronômica , Universidade Federal do Rio Grande do Sul, located in Eldorado do Sul, Rio Grande do Sul, Brazil, from September 2003 to April 2004, totalizing 225 days of experimentation. The experimental design was a split-plot, in a 2x3 factorial, with 4 replications of 22 pots each. In the main plot the irrigation systems was evaluated (micro sprinkler and capillarity and in the split-plot the citrus rootstocks [Trifoliate orange - Poncirus trifoliata (L. Raf., 'C37' citrange - P. trifoliata x Citrus sinensis (L. Osb. cv. Pêra and 'Rangpur' lime - C. limonia Osb.] were evaluated. The main result showed in conditions of greenhouse citrus rootstock seedlings

  19. Identification of criteria and subcriteria for assessment of land suitability for irrigation

    OpenAIRE

    Blagojević, Boško; Srđević, Zorica; Srđević, Bojan

    2014-01-01

    Serbia is a country with a predominantly agriculture-based economy; however, out of the total area only 3% is irrigated. One of the strategic national development goals is to increase irrigated land especially in lowlands and alluviums of major rivers in the country. There are many criteria and subcriteria which are important for a decision on where to build new, sustainable irrigation systems. After the literature review regarding this topic, we propose a set of criteria and subcriteria for ...

  20. THE CURRENT SITUATION OF WATER RESOURCES IN IRRIGATED AGRICULTURE OF UZBEKISTAN

    OpenAIRE

    Djalalov, Sandjar

    1998-01-01

    Irrigation in Uzbekistan is of great importance since the country is an arid zone. The use of water in agriculture is described and its relationship as a constraint to economic development discussed. The current technical and organizational characteristics of irrigation systems need study and analysis to identify opportunities for improvements. The characteristics of demand for water at the farm level are described and irrigation and land improvement activities are outlined. Reform of water u...

  1. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Science.gov (United States)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  2. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  3. Irrigation in dose assessments models

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Barkefors, Catarina

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  4. Development of a project on North Unit Irrigation District’s Main Canal at the Monroe Drop, using a novel low-head hydropower technology called the SLH100

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abraham [Natel Energy, Inc., Alameda, CA (United States); Schneider, Gia [Natel Energy, Inc., Alameda, CA (United States); McKinstry, Katherine [Natel Energy, Inc., Alameda, CA (United States); Harwood, Meghan [Natel Energy, Inc., Alameda, CA (United States)

    2017-03-14

    Natel Energy is a low­-head, distributed hydropower company based out of Alameda, CA. Natel manufactures and sells proprietary hydroelectric turbines called hydroEngines® that are suitable for low-­head, high-­flow settings, and range from 30kW to 1 MW of capacity per unit. Natel’s hydroEngine is a state­-of­the-­art two stage impulse turbine, using blades mounted symmetrically on two belts perpendicular to the axis of travel, and using linearly­-moving foils, rather than a rotor, to enable efficient conversion of kinetic energy of large volumes of water at low head with no risk of cavitation. In addition, the hydroEngine can be installed at or above tailwater level, reducing the excavation necessary to build the powerhouse and thus reducing total installed cost and project footprint. Thus, the hydroEngine technology enables a new generation of small hydro installations with low cost of project development, fish-­friendly operations, and small project footprint. In September of 2015, Natel Energy formally commissioned its first project installation in Madras, Oregon, installing 1 SLH100 turbine at an existing drop structure on the North Unit Irrigation District (NUID) Main Canal. The water falls between 13.5 feet to 16.5 feet at this structure, depending on flow. The plant has an installed capacity of 250 kW and an expected annual generation of approximately 873 MWh. The plant operates at an annual capacity factor of 40%, and a capacity factor over the irrigation season, or period of available flow, of 80%. Annual capacity factor is calculated as a percentage of plant operating hours relative to a total of 8,760 hours in a year; because the irrigation canal in which the Project is located only runs water from April to October, the available flow capacity factor is higher. Net greenhouse gas reductions from the Monroe Project are estimated to be 602 tCO2/year. The purpose of this report is to provide an overview of the specifications for Natel’s first

  5. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  6. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    Science.gov (United States)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  7. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  8. Local Irrigation Management Institutions Mediate Changes Driven by External Policy and Market Pressures in Nepal and Thailand

    Science.gov (United States)

    Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  9. Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model

    Science.gov (United States)

    Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit

    2017-01-01

    Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in

  10. Farmers’ Logics in Engaging With Projects Promoting Drip Irrigation Kits in Burkina Faso

    NARCIS (Netherlands)

    Wanvoeke, J.; Venot, J.-P.; Zwarteveen, M.; de Fraiture, C.

    2016-01-01

    Development agencies enthusiastically promote micro-drip irrigation as an affordable water and labor-saving device, yet most farmers stop using it as soon as development projects end. This article analyzes why farmers engage in projects promoting drip irrigation kits, even though they appear not to

  11. Farmers’ Logics in Engaging With Projects Promoting Drip Irrigation Kits in Burkina Faso

    NARCIS (Netherlands)

    Wanvoeke, Jonas; Venot, Jean Philippe; Zwarteveen, Margreet; Fraiture, de Charlotte

    2016-01-01

    Development agencies enthusiastically promote micro-drip irrigation as an affordable water and labor-saving device, yet most farmers stop using it as soon as development projects end. This article analyzes why farmers engage in projects promoting drip irrigation kits, even though they appear not

  12. More jobs per drop : targeting irrigation to poor women and men

    NARCIS (Netherlands)

    Koppen, van B.

    1998-01-01

    Research theme
    The central theme of this thesis is the relation between irrigation development and gendered poverty alleviation in rural areas in developing countries. The focus is on the role of the irrigation sector. The sector comprises national and

  13. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    2010-09-01

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  14. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  15. [Continent colostomy and colon irrigation].

    Science.gov (United States)

    Kostov, D; Temelkov, T; Kiriazov, E; Ivanov, K; Ignatov, V; Kobakov, G

    2000-01-01

    The authors have studied a functional activity of a continent colostomy at 20 patients, undergone an abdomeno-perineal extirpation of rectum and carried out periodic colonirrigations, during a period of 6 months. A conus type, closed irrigating system has been used. The degree of an incontinency at patients has been compared before and after the beginning of the colonirrigations. The irrigating procedures have reduced spontaneous defications at patients during a week 28 times and have improved the quality of life significantly. The application of colostomy bags has been restricted in 8 (40%) patients. An intraluminal ultrasonographic investigation has been done at 12 (60%) patients at the end of 6 month irrigating period. No changes of the ultrasonographic image of the precolostomic segment of colon has been observed.

  16. Evaluation of the Effect of Different Irrigation Levels of Drip Irrigation (Tape on Yield and Yield Components of Corn

    Directory of Open Access Journals (Sweden)

    mohammad karimi

    2016-02-01

    Full Text Available Introduction: One of the serious problems in the further development of maize cultivation is increasing irrigation efficiency. Using conventional irrigation causes a shortage of water resources to increase the acreage of the crop. With regard to the development of maize cultivation, agronomic and executable methods must be studied to reduce water consumption. Using drip irrigation system is most suitable for row crops. Hamedi et al. (2005 compared drip (tape and surface irrigation systems on yield of maize in different levels of water requirement and indicated that drip irrigation increases the amount of yield to 2015 kg/ha and water use efficiency to 3 time. Kohi et al. (2005 investigated the effects of deficit irrigation use of drip (tape irrigation on water use efficiency on maize in planting of one and two rows. The results showed that maximum water use efficiency related to crop density, water requirement and planting pattern 85000, 125% and two rows, respectively with 1.46 kg/m3. Jafari and Ashrafi (2011 studied the effects of irrigation levels, plant density and planting pattern in drip irrigation (tape on corn. The results showed that the amount of irrigation water and crop density on the level of 1% and their interactions and method of planting were significant at the 5 and 10% on water use efficiency, respectively. The yield was measured under different levels of irrigation, crop density and method of planting and the difference was significant on the level of 1%. Lamm et al. (1995 studied water requirement of maize in field with silt loam texture under sub drip irrigation and reported that water use reduced to 75%; but yield of maize remained at maximum amount of 12.5 t/ha. The objective of this study was to evaluate the drip (tape irrigation method for corn production practices in the Qazvin province in Iran. Materials and Methods: In this study, yield and yield components of corn (SC 704 were investigated under different levels of

  17. Modelo computacional para suporte à decisão em áreas irrigadas. Parte I: Desenvolvimento e análise de sensibilidade Computer model for decision support on irrigated areas Part I: Development and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    João C. F. Borges Júnior

    2008-02-01

    Full Text Available Este trabalho se refere ao desenvolvimento de um modelo computacional para suporte à tomada de decisão, quanto ao planejamento e manejo de projetos de irrigação e/ou drenagem. O modelo computacional, denominado MCID, é aplicável em nível de unidade de produção, gerando informações sobre como diferentes práticas de manejo da irrigação e configurações do sistema de drenagem afetam a produtividade e o retorno financeiro. Essas informações podem ser empregadas em estudos de otimização de padrão de cultivo em nível de propriedade agrícola, em relação ao retorno financeiro e ao uso da água, associados à análise de risco com base em simulações. O balanço hídrico e de sais na zona radicular e as estimativas da profundidade do lençol freático e vazão nos drenos, são conduzidos em base diária. A análise de sensibilidade indicou que os parâmetros de entrada que mais influenciaram o requerimento de irrigação totalizado para o ciclo, foram espaçamento entre drenos, porosidade drenável, número da curva, condutividade hidráulica horizontal do solo saturado, profundidade da camada impermeável e os parâmetros n e alfa do modelo de van Genuchten-Mualem.This paper refers to the development of a decision support model for planning and managing irrigation and/or drainage schemes. The computer model, called MCID, is applicable to a production unit level, generating information on how different irrigation management practices and drainage designs affect crop yield and financial return. This information may be applied in studies of crop patterns at farm level, taking into consideration financial return and water use, associated to risk analysis based on simulations. The water and salt balance in the root zone, as well as the water table depth and drain discharge predictions, are carried out on a daily basis. The sensitivity analysis pointed out that the most influential parameters on the seasonal irrigation requirement

  18. Water economy in the irrigation of family farmland in arid zones

    International Nuclear Information System (INIS)

    Mhiri, A.; Elloumi, M.J.; Laouini, M.

    1983-01-01

    A simple irrigation technique based on the use of polyethylene bags was developed and tested so as to achieve maximum water economy in family-scale farming in arid zones. It simulates localized irrigation and eliminates water losses due to evaporation and drainage. The method was tried out in the cultivation of tomatoes in glasshouses. In comparison with the control experiment in the field with furrow irrigation, the saving of water was 60%, with a 30% drop in production. There was thus a net improvement in efficiency in the utilization of the irrigation water. (author)

  19. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  20. AGROCLIMATIC DETERMINANTS OF IRRIGATION NEEDS

    Directory of Open Access Journals (Sweden)

    Leszek Łabędzki

    2016-05-01

    Full Text Available The paper is a review of the so far used in Poland methods and criteria for assessing the needs of irrigation for planning purposes, the assessment because of the agroclimatic conditions and taking into account the soil water retention. Irrigation needs of the most are determined taking into account crop water deficits. This is the factor that is characterized by a shortage of precipitation in relation to the water requirements of crops. Some methods use only the meteorological parameters that determine the state of the atmosphere-soil-plant system, and some also take into account soil water retention and its availability for plants.

  1. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  2. Soil Suitability Classification of Tomas Irrigation Scheme for Irrigated ...

    African Journals Online (AJOL)

    The need for sustainable rice production in Nigeria cannot be over-emphasized. Since rice can be grown both under rain-fed and irrigated conditions, the need for soil suitability evaluation becomes very necessary in order for supply to meet up with demand. Six land qualities viz; climate, soil physical properties, drainage, ...

  3. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  4. Comparative efficiency of trickle and furrow irrigation

    International Nuclear Information System (INIS)

    Hanif, M.; Qureshi, R.H.; Sandhu, G.R.

    1976-01-01

    Comparison of furrow and trickle methods of irrigation to know their relative efficiency with respect to water applied and fertilizer used on tomatoes, cauliflower and lettuce as test crops using canal water, showed a significant saving of about 44 and 41 per cent respectively for irrigation water and fertilizer applied with trickle as compared to furrow irrigation. Trickle irrigated crops also showed a better response as regards the rate of survival, crop growth and time of maturity

  5. Newer Root Canal Irrigants in Horizon: A Review

    Directory of Open Access Journals (Sweden)

    Sushma Jaju

    2011-01-01

    Full Text Available Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation.

  6. 21 CFR 876.5895 - Ostomy irrigator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food... DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator. (a) Identification. An ostomy irrigator is a device that consists of a container for fluid, tubing with a cone-shaped...

  7. Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L).

    Science.gov (United States)

    Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan

    2017-01-01

    Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65-70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency.

  8. Ring Irrigation System (RIS design through customer preference representation

    Directory of Open Access Journals (Sweden)

    Ridwan Infandra I.Z.

    2018-01-01

    Full Text Available In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent days, analyzing water used or water permeation automatically through the soil moisture has been raised as the interesting topic. Proposed in this research is the ring irrigation system (RIS which is introduced as an alternative channel for emitters that drip water directly onto the soil at the plant’s root zone where the soil conditions before and after watering can be quickly detected by the sensors. This RIS can be used for the potted plant, green house, or other small farm fields. Product design and development (PDD is applied in this research for assisting the designer to understand and create the RIS prototype properly according to the customer’s requirements where the suggested functions obtained will be added and tested.

  9. Impact of climate change on irrigation management for olive orchards at southern Spain

    Science.gov (United States)

    Lorite, Ignacio; Gabaldón-Leal, Clara; Santos, Cristina; Belaj, Angjelina; de la Rosa, Raul; Leon, Lorenzo; Ruiz-Ramos, Margarita

    2017-04-01

    The irrigation management for olive orchards under future weather conditions requires the development of advanced tools for considering specific physiological and phenological components affected by the foreseen changes in climate and atmospheric [CO2]. In this study a new simulation model named AdaptaOlive has been considered to develop controlled deficit irrigation and full irrigation scheduling for the traditional olive orchards located in Andalusia region (southern Spain) under the projected climate generated by an ensemble of 11 climate models from the ENSEMBLES European project corresponding to the SRES A1B scenario. Irrigation requirements, irrigation water productivity (IWP) and net margin (NM) were evaluated for three periods (baseline, near future and far future) and three irrigation strategies (rainfed, RF, controlled deficit irrigation, CDI, and full irrigation, FI). For irrigation requirements, a very limited average increase for far future compared with baseline period was found (2.6 and 1.3%, for CDI and FI, respectively). Equally, when IWP was analyzed, significant increases were identified for both irrigation strategies (77.4 and 72.2%, for CDI and FI, respectively) due to the high simulated increase in yield. Finally, when net margin was analyzed, the irrigation water cost had a key significance. For low water costs FI provided higher net margin values than for CDI. However, for high water costs (expected in the future due to the foreseen reduction in rainfall and the increase of the competence for the available water resources), net margin is reduced significantly, generating a very elevated number of years with negative net margin. All the described results are affected by a high level of uncertainty as the projections from the ensemble of 11 climate models show large spread. Thus, for a representative location within Andalusia region as Baeza, a reduction of irrigation requirements under full irrigation strategy was found for the ensemble mean

  10. Speed control variable rate irrigation

    Science.gov (United States)

    Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...

  11. Position paper : Whole bowel irrigation

    NARCIS (Netherlands)

    2004-01-01

    Whole bowel irrigation (WBI) should not be used routinely in the management of the poisoned patient. Although some volunteer studies have shown substantial decreases in the bioavailability of ingested drugs, no controlled clinical trials have been performed and there is no conclusive evidence that

  12. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  13. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis).

    Science.gov (United States)

    Zhu, Ying; Taylor, Cathy; Sommer, Karl; Wilkinson, Kerry; Wirthensohn, Michelle

    2015-04-15

    The effects of deficit irrigation on almond fatty acid and tocopherol levels were studied in a field trial. Mature almond trees were subjected to three levels of deficit irrigation (85%, 70% and 55% of potential crop evapotranspiration (ETo), as well as control (100% ETo) and over-irrigation (120% ETo) treatments. Two deficit irrigation strategies were employed: regulated deficit irrigation (RDI) and sustained deficit irrigation (SDI). Moderate deficit irrigation (85% RDI and 85% SDI) had no detrimental impact on almond kernel lipid content, but severe and extreme deficiencies (70% and 55%) influenced lipid content. Unsaturated fatty acid (USFA) and saturated fatty acid (SFA) contents fluctuated under these treatments, the oleic/linoleic ratio increased under moderate water deficiency, but decreased under severe and extreme water deficiency. Almond tocopherols concentration was relatively stable under deficit irrigation. The variation between years indicated climate has an effect on almond fruit development. In conclusion it is feasible to irrigate almond trees using less water than the normal requirement, without significant loss of kernel quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  15. Conjunctive irrigation through groundwater for crop production in Eastern India

    International Nuclear Information System (INIS)

    Singh, S.S.; Singh, J.P.; Singh, S.R.; Khan, A.R.

    2002-05-01

    Ground water is the most reliable source for irrigation, quantum of which varies from place to place, rainfall, infiltration, geographical strata and surface ecology. The development of ground water in conjunction with surface within canal commands not only assures a reliable source of irrigation, it also helps in alleviation of water logging in the command due to excess seepage and unscientific water use by facilitating vertical drainage mechanism. The ground water resource needs to be developed in order to enhance area and timeliness of irrigation supply and overall agricultural productivity of land. In the high potential - low productivity areas in Assam, Bihar and West Bengal, A.P. and NE states, there is an immense potential to improve agricultural productivity through systematic groundwater exploitation. (author)

  16. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Science.gov (United States)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  17. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    Science.gov (United States)

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  18. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  19. Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2009-01-01

    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  20. Nursery cultural practices to achieve targets: A case study in western larch irrigation

    Science.gov (United States)

    Anthony S. Davis; Robert F. Keefe

    2011-01-01

    Nursery cultural practices are used to help growers achieve pre-determined size and physiological targets for seedlings. In that regard, irrigation is used to accelerate or slow growth and as a trigger for changing growth phase. In a case study highlighting the effects of irrigation on seedling development, western larch (Larix occidentalis Nutt.) seedlings were grown...

  1. Improved irrigation scheduling for pear-jujube trees based on trunk ...

    African Journals Online (AJOL)

    A suitable indicator for scheduling pear-jujube (Ziziphus jujuba Mill.) irrigation in China was developed based on trunk diameter fluctuations (TDF). Parameters derived from TDF responses to variations in soil matrix potential (Ψsoil) were compared under deficit and well irrigation. Maximum daily shrinkage (MDS) increased ...

  2. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI

    Science.gov (United States)

    Pervez, Md Shahriar; Budde, Michael; Rowland, James

    2014-01-01

    the severe drought conditions in those years, whereas 2009, 2012 and 2013 registered the largest irrigated area (~ 2.5 million hectares) due to record snowpack and snowmelt in the region. The model holds promise the ability to provide near-real-time (by the end of the growing seasons) estimates of irrigated area, which are beneficial for food security monitoring as well as subsequent decision making for the country. While the model is developed for Afghanistan, it can be adopted with appropriate adjustments in the derived threshold values to map irrigated areas elsewhere.

  3. Detection and assessment of flood susceptible irrigation networks in Licab, Nueva Ecija, Philippines using LiDAR DTM

    Science.gov (United States)

    Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.

    2017-09-01

    Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.

  4. Analytical Solution for Optimum Design of Furrow Irrigation Systems

    Science.gov (United States)

    Kiwan, M. E.

    1996-05-01

    An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.

  5. Testing an Irrigation Decision Support Tool for California Specialty Crops

    Science.gov (United States)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  6. Performances du goutte à goutte enterré pour l’irrigation de jeunes palmiers dattiers

    Directory of Open Access Journals (Sweden)

    R. BOURZIZA

    2017-03-01

    for each type of irrigation to monitor certain agronomic parameters (cumulative numbers of palms and root development. Experimentation referred to a distribution uniformity of about 88%; considered satisfactory for subsurface drip irrigation while it is around 80% for the surface drip irrigation. The results also showed an increase in root development and in the number of leaves, as well as a substantial water savings due to lower evaporation losses compared to the classic drip irrigation. The results of this study showed that subsurface drip irrigation is an efficient technique, which allows sustainable irrigation in arid areas.

  7. Review. Deficit irrigation in fruit trees and vines in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Sanchez, M. C.; Domingo, R.; Castel, J. R.

    2010-07-01

    Water has become the most precious of natural resources in many areas of Spain and, since agriculture is the major consumer of water, improvements in water use efficiency are increasingly sought. Regulated deficit irrigation (RDI) is an irrigation strategy based on applying only a fraction of the plant water requirements during certain periods of plant development. The paper reviews the available information on RDI strategies, in woody tree crops and vines based on studies by Spanish research groups. Both the promising results obtained and the drawbacks are covered. (Author) 130 refs.

  8. Phosphorus absorption in drip irrigation

    International Nuclear Information System (INIS)

    Guennelon, R.; Habib, R.

    1979-01-01

    Introducing the use of solute phosphate with drip irrigation may be an unsatisfying practice on account of the very weak mobility of PO 4 anion. Nevertheless P can move down to 30-40 cm depth by following the saturated flux along earth-worms holes or crakes, or by displacement in very narrow structural porosity, even in heavy soils. In this case roots cannot easily absorb PO 4 from soil solution, as soon as the soil is quite saturated. On the other hand, it seems that P absorption occurs very quickly and easily when the implantation of 32 P tagged solution is carried out at the border of zone which is concerned by the irrigation effects [fr

  9. Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience

    Science.gov (United States)

    Garrido, Alberto; Martínez-Santos, Pedro; Llamas, M. Ramón

    2006-03-01

    Over the last decades, groundwater irrigation has become commonplace in many arid and semiarid regions worldwide, including Spain. This is largely a consequence of the advances in drilling and pumping technologies, and of the development of Hydrogeology. Compared with traditional surface water irrigation systems, groundwater irrigation offers more reliable supplies, lesser vulnerability to droughts, and ready accessibility for individual users. Economic forces influence the groundwater irrigation sector and its development. In Spain's Mediterranean regions, abstraction costs often amount to a very small fraction of the value of crops. In the inner areas, groundwater irrigation supports a more stable flow of farm income than rainfed agriculture. The social (jobs/m3) and economic (€/m3) value of groundwater irrigation generally exceeds that of surface water irrigation systems. However, poor groundwater management and legal controversies are currently at the base of Spain's social disputes over water. A thorough and transparent assessment of the relative socio-economic value of groundwater in relation to surface water irrigation might contribute to mitigate or avoid potential future conflicts. Enforcement of the European Union's Water Framework Directive may deliver better groundwater governance and a more sustainable use.

  10. Assessing the groundwater recharge under various irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Lin, Zih-Ciao; Tsai, Cheng-Bin

    2014-05-01

    The flooded paddy fields can be considered as a major source of groundwater recharge in Central Taiwan. The risk of rice production has increased notably due to climate change in this area. To respond to agricultural water shortage caused by climate change without affecting rice yield in the future, the application of water-saving irrigation is the substantial resolution. The System of Rice Intensification (SRI) was developed as a set of insights and practices used in growing irrigated rice. Based on the water-saving irrigation practice of SRI, impacts of the new methodology on the reducing of groundwater recharge were assessed in central Taiwan. The three-dimensional finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge under different irrigation schemes. According to local climatic and environmental characteristics associated with SRI methodology, the change of infiltration rate was evaluated and compared with the traditional irrigation schemes, including continuous irrigation and rotational irrigation scheme. The simulation results showed that the average infiltration rate in the rice growing season decreased when applying the SRI methodology, and the total groundwater recharge amount of SRI with a 5-day irrigation interval reduced 12% and 9% compared with continuous irrigation (6cm constant ponding water depth) and rotational scheme (5-day irrigation interval with 6 cm initial ponding water depth), respectively. The results could be used as basis for planning long-term adaptive water resource management strategies to climate change in Central Taiwan. Keywords: SRI, Irrigation schemes, Groundwater recharge, Infiltration

  11. Costs and benefits of satellite-based tools for irrigation management

    Directory of Open Access Journals (Sweden)

    Francesco eVuolo

    2015-07-01

    Full Text Available This paper presents the results of a collaborative work with farmers and a cost-benefit analysis of geospatial technologies applied to irrigation water management in the semi-arid agricultural area in Lower Austria. We use Earth observation (EO data to estimate crop evapotranspiration (ET and webGIS technologies to deliver maps and irrigation advice to farmers. The study reports the technical and qualitative evaluation performed during a demonstration phase in 2013 and provides an outlook to future developments. The calculation of the benefits is based on a comparison of the irrigation volumes estimated from satellite vs. the irrigation supplied by the farmers. In most cases, the amount of water supplied was equal to the maximum amount of water required by crops. At the same time high variability was observed for the different irrigation units and crop types. Our data clearly indicates that economic benefits could be achieved by reducing irrigation volumes, especially for water-intensive crops. Regarding the qualitative evaluation, most of the farmers expressed a very positive interest in the provided information. In particular, information related to crop ET was appreciated as this helps to make better informed decisions on irrigation. The majority of farmers (54% also expressed a general willingness to pay, either directly or via cost sharing, for such a service. Based on different cost scenarios, we calculated the cost of the service. Considering 20,000 ha regularly irrigated land, the advisory service would cost between 2.5 and 4.3 €/ha per year depending on the type of satellite data used. For comparison, irrigation costs range between 400 and 1000 €/ha per year for a typical irrigation volume of 2,000 cubic meters per ha. With a correct irrigation application, more than 10% of the water and energy could be saved in water-intensive crops, which is equivalent to an economic benefit of 40-100 €/ha per year.

  12. IRRIGATION OF ORNAMENTAL PLANT NURSERY

    Directory of Open Access Journals (Sweden)

    Eduardo de Aguiar do Couto

    2013-01-01

    Full Text Available Airports consume significant amounts of water which can be compared to the volume consumed by mid-size cities, thus practices aimed at reducing water consumption are important and necessar y. The objective of this study was to assess the reuse potential of sewage effluent produced at a mid-size international airport for nursery irri gation. The sewage treatment system consisted of a facultative pond followed by a constructed wetland, which were monitored during one hydrological year a nd the parameters COD, pH, solids, nitrogen, phosphorus and Escherichia coli we re analyzed. Removal efficiencies of 85% and 91% were achieved for C OD and solids, respectively. Removal efficiencies for ammonia nitrogen a nd total phosphorus were 77% and 59%, respectively. In terms of E. coli concen tration, the treated effluent met the recommendations by the World Health Organization for reuse in irrigation with the advantage of providing high levels of residual nutrient. The ornamental species Impatiens walleriana was irrigated with treated sewage effluent and plant growth characteristics were evalua ted. The experiment showed that reuse can enhance plant growth without signi ficantly affecting leaf tissue and soil characteristics. This study highlighted th e importance of simple technologies for sewage treatment especially in count ries which still do not present great investment in sanitation and proved that effluent reuse for landscape irrigation can provide great savings of water and financial resources for airport environments.

  13. Professor George Rochester: Physicist whose discovery of a new sub-atomic particle began a period of feverish research

    CERN Multimedia

    2002-01-01

    Professor Rochester has died aged 93. He discovered a new sub-atomic particle known as the Kaon, an acheivement that resulted in a period of rapid development in the scientific understanding of the composition of matter.

  14. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    Science.gov (United States)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also

  15. Effects of different irrigation regimes on vegetative growth, fruit yield ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... This study was conducted during five growing seasons from 2004 to 2008 to investigate effects of different irrigation regimes on vegetative growth, fruit yield and quality of Salak apricot trees in semi- arid climatic conditions. ... is very important to know the critical stages of fruit development and the final ...

  16. Factors affecting farmers' participation in irrigation schemes of the ...

    African Journals Online (AJOL)

    ... those factors affecting farmers' participation in irrigated agriculture at the Lower Niger River Basin Development Authority (LNRBDA) in Kwara State, Nigeria. One hundred and sixty (160) respondents were selected from communities around LNRBDA site at Oke Oyi for this study through a two-stage sampling procedures.

  17. Masculinities among irrigation engineers and water professionals in Nepal

    NARCIS (Netherlands)

    Liebrand, J.

    2014-01-01

    Summary

    This thesis documents my attempt to study masculinities among irrigation engineers and water professionals in Nepal. It is based on the recognition that more than two decades of mainstreaming gender in development research and policy have failed to come to grips

  18. Mechanisms for enlarging lesion size during irrigated tip radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, Helen Høgh; Roman-Gonzalez, Javier; Johnson, Susan B

    2004-01-01

    INTRODUCTION: Irrigated tip radiofrequency ablation of cardiac arrhythmias was developed to increase the size of the radiofrequency-induced lesion, since cooling of the electrode tip allows use of higher power settings. The purpose of this study was to determine if the increased lesion size during...

  19. Towards sustainable irrigation and drainage through capacity building

    NARCIS (Netherlands)

    Kay, M.; Terwisscha Van Scheltinga, C.T.H.M.

    2003-01-01

    Capacity building is not something new, it has been a leading issue in development for many years. But despite all the commotion, capacity building remains a concept of enormous generality and vagueness. The calls for capacity building in irrigated agriculture suffer from these same vague

  20. Assessing drought risk and irrigation need in northern Ethiopia

    NARCIS (Netherlands)

    Araya, A.; Stroosnijder, L.

    2011-01-01

    Long-term climate data of four stations in the northern Ethiopia were analyzed in combination with information from local farmers and documented materials. From this analysis, a suitable drought-assessing technique was developed and site-specific needs for supplementary irrigation were explored.

  1. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  2. Irrigation-induced contamination of water, sediment, and biota in the western United States-synthesis of data from the National Irrigation Water Quality Program

    Science.gov (United States)

    Seiler, Ralph L.; Skorupa, Joseph P.; Naftz, David L.; Nolan, B. Thomas

    2003-01-01

    In October 1985 the U.S. Department of the Interior (DOI), through the National Irrigation Water Quality Program (NIWQP), began a series of field investigations at 26 areas in the Western United States to determine whether irrigation drainage has had harmful effects on fish, wildlife, and humans or has reduced beneficial uses of water. In 1992 NIWQP initiated the Data Synthesis Project to evaluate data collected during the field investigations. Geologic, climatologic, and hydrologic data were evaluated and water, sediment, and biota from the 26 areas were analyzed to identify commonalities and dominant factors that result in irrigation-induced contamination of water and biota. Data collected for the 26 area investigations have been compiled and merged into a common data base. The structure of the data base is designed to enable assessment of relations between contaminant concentrations in water, sediment, and biota. The data base is available to the scientific community through the World Wide Web at URL http://www.usbr.gov/niwqp. Analysis of the data base for the Data Synthesis included use of summary statistics, factor analysis, and logistic regression. A Geographic Information System was used to store and analyze spatially oriented digital data such as land use, geology and evaporation rates. In the U.S. Department of the Interior (DOI) study areas, samples of water, bottom sediment, and biota were collected for trace-element and pesticide analysis. Contaminants most commonly associated with irrigation drainage were identified by comparing concentrations in water with established criteria. For surface water, the criteria used were typically chronic criteria for the protection of freshwater aquatic life. Because ground water can discharge to the surface where wildlife can be exposed to it, the criteria used for ground water were both the maximum contaminant levels (MCL's) for drinking water and the chronic criteria for the protection of freshwater aquatic life

  3. Estimates of Savings Achievable from Irrigation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison; Fuchs, Heidi; Whitehead, Camilla Dunham

    2014-03-28

    This paper performs a literature review and meta-analysis of water savings from several types of advanced irrigation controllers: rain sensors (RS), weather-based irrigation controllers (WBIC), and soil moisture sensors (SMS).The purpose of this work is to derive average water savings per controller type, based to the extent possible on all available data. After a preliminary data scrubbing, we utilized a series of analytical filters to develop our best estimate of average savings. We applied filters to remove data that might bias the sample such as data self-reported by manufacturers, data resulting from studies focusing on high-water users, or data presented in a non-comparable format such as based on total household water use instead of outdoor water use. Because the resulting number of studies was too small to be statistically significant when broken down by controller type, this paper represents a survey and synthesis of available data rather than a definitive statement regarding whether the estimated water savings are representative.

  4. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability

  5. Phosphorus distribution in sandy soil profile under drip irrigation system

    International Nuclear Information System (INIS)

    El-Gendy, R.W.; Rizk, M.A.; Abd El Moniem, M.; Abdel-Aziz, H.A.; Fahmi, A.E.

    2009-01-01

    This work aims at to studying the impact of irrigation water applied using drip irrigation system in sandy soil with snap bean on phosphorus distribution. This experiment was carried out in soils and water research department farm, nuclear research center, atomic energy authority, cairo, Egypt. Snap bean was cultivated in sandy soil and irrigated with 50,37.5 and 25 cm water in three water treatments represented 100, 75 and 50% ETc. Phosphorus distribution and direction of soil water movement had been detected in three sites on the dripper line (S1,S2 and S3 at 0,12.5 and 25 cm distance from dripper). Phosphorus fertilizer (super phosphate, 15.5% P 2 O 5 in rate 300 kg/fed)was added before cultivation. Neutron probe was used to detect the water distribution and movement at the three site along soil profile. Soil samples were collected before p-addition, at end developing, mid, and late growth stages to determine residual available phosphorus. The obtained data showed that using 50 cm water for irrigation caused an increase in P-concentration till 75 cm depth in the three sites of 100% etc treatment, and covered P-requirements of snap bean for all growth stages. As for 37.5 and 25 cm irrigation water cannot cover all growth stages for P-requirements of snap bean. It could be concluded that applied irrigation water could drive the residual P-levels till 75 cm depth in the three sites. Yield of the crop had been taken as an indicator as an indicator profile. Yield showed good response according to water quantities and P-transportation within the soil profile

  6. Farmers' logics in engaging with projects promoting drip irrigation kits in Burkina Faso

    OpenAIRE

    Wanvoeke, J.; Venot, Jean-Philippe; Zwarteveen, M.; de Fraiture, C.

    2016-01-01

    Development agencies enthusiastically promote micro-drip irrigation as an affordable water and labor-saving device, yet most farmers stop using it as soon as development projects end. This article analyzes why farmers engage in projects promoting drip irrigation kits, even though they appear not to be interested in their water and labor-saving attributes. We combine practice-based theories of innovation with insights from the anthropology of development to explain that in development project ...

  7. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    Science.gov (United States)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  8. Determination of optimal irrigation rates of agricultural crops under consideration of soil properties and climatic conditions

    Directory of Open Access Journals (Sweden)

    Irakli Kruashvili

    2016-09-01

    Full Text Available In conditions of increasing water shortage, further development of irrigated agriculture production is impossible without improving the methods of cultivation of agricultural crops, primarily irrigation technology. In 2015 the experiment have been conducted on the territory of irrigation farming area of village Tamarisi (Marneuli Municipality, according to which comprehensive study of local climatic and soil conditions were conducted. Received data were used for computation crop water requirements for tomato and melon under the different irrigation treatments. Obtained results have shown the possibility of water use efficiency and obtaining sufficiently high yields of crops that participated in the experiment that became possible in a case of usage of drip irrigation technology in combination with plastic mulch.

  9. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Science.gov (United States)

    2010-07-27

    ... to the Turlock Irrigation District's Tuolumne Substation; (2) 23-mile-long, 69-kV Don Pedro-Hawkins Line extending from the Don Pedro switchyard to the Turlock Irrigation District's Hawkins Substation...

  10. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.

    2007-01-01

    OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... cans were conducted with urban vegetable farmers. Trials were arranged in a completely randomised block design with each plot having all three irrigation methods tested. This was conducted in both dry and wet seasons. Three hundred and ninety-six lettuce, 72 soil, 15 poultry manure and 32 water samples...... were analysed for thermotolerant coliforms and helminth eggs. RESULTS: Lettuce irrigated with drip kits had the lowest levels of contamination, with, on average, 4 log units per 100 g, fewer thermotolerant coliforms than that irrigated with watering cans. However, drip kits often got clogged, required...

  11. Agricultural irrigated land-use inventory for Polk County, Florida, 2016

    Science.gov (United States)

    Marella, Richard L.; Berry, Darbi; Dixon, Joann F.

    2017-08-16

    An accurate inventory of irrigated crop acreage is not available at the level of resolution needed to better estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage was developed for Polk County, Florida, during the 2016 growing season. This cooperative project between the U.S. Geological Survey and the Office of Agricultural Water Policy of the Florida Department of Agriculture and Consumer Services is part of an effort to improve estimates of water use and projections of future demands across all counties in the State. The irrigated areas were delineated by using land-use data provided by the Florida Department of Agriculture and Consumer Services, along with information obtained from the South and Southwest Florida Water Management Districts consumptive water-use permits. Delineations were field verified between April and December 2016. Attribute data such as crop type, primary water source, and type of irrigation system were assigned to the irrigated areas.The results of this inventory and field verification indicate that during the 2016 growing seasons (spring, summer, fall, and winter), an estimated 88,652 acres were irrigated within Polk County. Of the total field-verified crops, 83,995 acres were in citrus; 2,893 acres were in other non-citrus fruit crops (blueberries, grapes, peaches, and strawberries); 621 acres were in row crops (primarily beans and watermelons); 1,117 acres were in nursery (container and tree farms) and sod production; and 26 acres were in field crops including hay and pasture. Of the total inventoried irrigated acreage within Polk County, 98 percent (86,566 acres) was in the Southwest Florida Water Management District, and the remaining 2 percent (2,086 acres) was in the South Florida Water Management District.About 85,788 acres (96.8 percent of the acreage inventoried) were irrigated by a microirrigation system, including drip, bubblers, and

  12. Introduction: Panda or Hydra? The untold stories of drip irrigation

    NARCIS (Netherlands)

    Kuper, M.; Venot, J.P.; Zwarteveen, M.; Venot, J.P.; Kuper, M.; Zwarteveen, M.

    2017-01-01

    Irrigated areas in the world are witnessing a transformation from open canal systems to more ‘modern’ irrigation methods such as drip irrigation that convey water through closed pipe systems. Initially associated with hi-tech irrigated agriculture, drip irrigation is now being used by a wide range

  13. Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data

    Science.gov (United States)

    Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A.

    2011-01-01

    Maps of irrigated areas are essential for Ghana's agricultural development. The goal of this research was to map irrigated agricultural areas and explain methods and protocols using remote sensing. Landsat Enhanced Thematic Mapper (ETM+) data and time-series Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to map irrigated agricultural areas as well as other land use/land cover (LULC) classes, for Ghana. Temporal variations in the normalized difference vegetation index (NDVI) pattern obtained in the LULC class were used to identify irrigated and non-irrigated areas. First, the temporal variations in NDVI pattern were found to be more consistent in long-duration irrigated crops than with short-duration rainfed crops due to more assured water supply for irrigated areas. Second, surface water availability for irrigated areas is dependent on shallow dug-wells (on river banks) and dug-outs (in river bottoms) that affect the timing of crop sowing and growth stages, which was in turn reflected in the seasonal NDVI pattern. A decision tree approach using Landsat 30 m one time data fusion with MODIS 250 m time-series data was adopted to classify, group, and label classes. Finally, classes were tested and verified using ground truth data and national statistics. Fuzzy classification accuracy assessment for the irrigated classes varied between 67 and 93%. An irrigated area derived from remote sensing (32,421 ha) was 20-57% higher than irrigated areas reported by Ghana's Irrigation Development Authority (GIDA). This was because of the uncertainties involved in factors such as: (a) absence of shallow irrigated area statistics in GIDA statistics, (b) non-clarity in the irrigated areas in its use, under-development, and potential for development in GIDA statistics, (c) errors of omissions and commissions in the remote sensing approach, and (d) comparison involving widely varying data types, methods, and approaches used in determining irrigated area statistics

  14. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  15. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  16. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  17. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chelsea Cervantes

    2010-09-01

    Full Text Available Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the timing of image acquisition and the number of images used. At the regional and global scales, on the other hand, remote sensing has not been fully operational, as methods that work in one place and time are not necessarily transferable to other locations and periods. Thus, at larger scales, more work is required to indentify the best spectral indices, best time periods, and best classification methods under different climatological and cultural environments. Existing studies at regional scales also establish the fact that both remote sensing and national statistical approaches require further refinement with a substantial investment of

  18. Climate forcing and desert malaria: the effect of irrigation.

    Science.gov (United States)

    Baeza, Andres; Bouma, Menno J; Dobson, Andy P; Dhiman, Ramesh; Srivastava, Harish C; Pascual, Mercedes

    2011-07-14

    Rainfall variability and associated remote sensing indices for vegetation are central to the development of early warning systems for epidemic malaria in arid regions. The considerable change in land-use practices resulting from increasing irrigation in recent decades raises important questions on concomitant change in malaria dynamics and its coupling to climate forcing. Here, the consequences of irrigation level for malaria epidemics are addressed with extensive time series data for confirmed Plasmodium falciparum monthly cases, spanning over two decades for five districts in north-west India. The work specifically focuses on the response of malaria epidemics to rainfall forcing and how this response is affected by increasing irrigation. Remote sensing data for the Normalized Difference Vegetation Index (NDVI) are used as an integrated measure of rainfall to examine correlation maps within the districts and at regional scales. The analyses specifically address whether irrigation has decreased the coupling between malaria incidence and climate variability, and whether this reflects (1) a breakdown of NDVI as a useful indicator of risk, (2) a weakening of rainfall forcing and a concomitant decrease in epidemic risk, or (3) an increase in the control of malaria transmission. The predictive power of NDVI is compared against that of rainfall, using simple linear models and wavelet analysis to study the association of NDVI and malaria variability in the time and in the frequency domain respectively. The results show that irrigation dampens the influence of climate forcing on the magnitude and frequency of malaria epidemics and, therefore, reduces their predictability. At low irrigation levels, this decoupling reflects a breakdown of local but not regional NDVI as an indicator of rainfall forcing. At higher levels of irrigation, the weakened role of climate variability may be compounded by increased levels of control; nevertheless this leads to no significant decrease

  19. Desenvolvimento de software e hardware para irrigação de precisão usando pivô central Development of software and hardware for precision irrigation using the center pivot

    Directory of Open Access Journals (Sweden)

    Tadeu M. de Queiroz

    2008-03-01

    Full Text Available O presente trabalho teve por objetivo desenvolver softwares e hardwares para aplicação ao monitoramento e controle automático para a irrigação de precisão usando sistemas do tipo pivô central. O trabalho foi desenvolvido no Departamento de Engenharia Rural - LER, da Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ, da Universidade de São Paulo - USP, em Piracicaba - SP. Foram utilizados componentes eletrônicos discretos, circuitos integrados diversos, módulos de radiofreqüência, microcontroladores da família Basic Step e um microcomputador. Foram utilizadas as linguagens Delphi e TBasic. O hardware é constituído de dois circuitos eletrônicos, sendo um deles para "interface" com o computador e o outro para monitoramento e transmissão da leitura de tensiômetros para o computador via radiofreqüência. Foram feitas avaliações do alcance e da eficiência na transmissão de dados dos módulos de radiofreqüência e do desempenho do software e do hardware. Os resultados mostraram que tanto os circuitos quanto os aplicativos desenvolvidos apresentaram funcionamento satisfatório. Os testes de comunicação dos rádios indicaram que esses possuem alcance máximo de 50 m. Concluiu-se que o sistema desenvolvido tem grande potencial para utilização em sistemas de irrigação de precisão usando pivô central, bastando para isso que o alcance dos rádios seja aumentado.The objective of this work was to develop softwares and hardwares applied to the management and automatic control for precision irrigation using center pivot systems. They were developed in the Rural Engineering Department - LER, at the "Luiz de Queiroz" College of Agriculture - ESALQ, of São Paulo University - USP, in Piracicaba, SP-Brazil. It was used discrete electronic components, several integrated circuits, radio frequency modules, microcontrollers from the Basic Step family and a microcomputer. The computer software was developed in Delphi language, and

  20. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  1. [Implementation and evaluation of a teaching plan for the auto-irrigation of colostomy: a case study].

    Science.gov (United States)

    Costa, Idevânia Geraldina; Maruyama, Sônia Ayako Tao

    2004-01-01

    With a view to describing and evaluating the implementation of a teaching plan for the auto-irrigation of colostomy and reporting on the perceptions of colostomized patients related to auto-irrigation, this case study was developed at the colostomy out-patient clinic of the Júlio Müller University Hospital, Cuiabá, Brazil, from February to March 1997. The teaching plan helped the patients to learn about the irrigation technique and social rehabilitation.

  2. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  3. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  4. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; van der Sluis, L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  5. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern

  6. Technical Evaluation of Sprinkler Irrigation Systems which were Implemented in Tea Fields of the Guilan Province

    Directory of Open Access Journals (Sweden)

    kourosh majdsalimi

    2016-02-01

    Full Text Available Introduction: Designing and management of sprinkler irrigation systems depend on the situation and location of its implementation and often rely on professional and long-term tests (9. Having a good irrigation system depends on knowledge of the relationship between soil, water, plants, irrigation scheduling, the required amount of irrigation water to the water-holding capacity of soil, climate and plant growth (6.The less use of sprinkler irrigation systems and less performed research projects in the Guilan province, lack of correct design parameters due to shortage of the required parameters for local and regional planning, has led to reliance on charts and tables. Therefore, planning water resources cannot be performed well and with accurate details. According to many researchers (8, the technical evaluation should be a regular and short-term process to review the problems and possible performance of irrigation systems. Merriam and Keller (10 defined the assessment of an irrigation system analysis, based on field measurements in real terms during the normal work of the system. Therefore, to develop these systems over the next few years, it is essential to evaluate the use of irrigation systems and review the performance of existing problems and utilizing the results to improve it. The aim of this study was to assess the current status of implemented irrigation systems in the tea plantations of Guilan and evaluate their performance. Materials and Methods: In this study, six classic sprinkler irrigation systems in tea fields of Guilan province were evaluated during two years. Sprinkler irrigation systems of semi-portable, solid-set and solid-set (hand-move sprinkler were selected randomly. To evaluate this irrigation systems, Christiansen’s uniformity coefficient (CU, distribution uniformity (DU, potential application efficiency of low-quarter (PELQ and application efficiency of low-quarter (AELQ in the form of trial blocks were estimated by

  7. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  8. improving of irrigation management: a learning based approach

    African Journals Online (AJOL)

    p2333147

    Irrigation farms are small businesses and like any other business, the managers or ... human factors and constraints that impact on the adoption of irrigation ... Informal interaction with other irrigation farmers and social networks played a ...

  9. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  10. Yield and water use efficiency of deficit-irrigated maize in a semi ...

    African Journals Online (AJOL)

    Yield and water use efficiency of deficit-irrigated maize in a semi-arid region of Ethiopia. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE ... African Journal of Food, Agriculture, Nutrition and Development.

  11. Gender and power contestations over water use in irrigation schemes: Lessons from the lake Chilwa basin

    Science.gov (United States)

    Nkhoma, Bryson; Kayira, Gift

    2016-04-01

    Over the past two decades, Malawi has been adversely hit by climatic variability and changes, and irrigation schemes which rely mostly on water from rivers have been negatively affected. In the face of dwindling quantities of water, distribution and sharing of water for irrigation has been a source of contestations and conflicts. Women who constitute a significant section of irrigation farmers in schemes have been major culprits. The study seeks to analyze gender contestations and conflicts over the use of water in the schemes developed in the Lake Chilwa basin, in southern Malawi. Using oral and written sources as well as drawing evidence from participatory and field observations conducted at Likangala and Domasi irrigation schemes, the largest schemes in the basin, the study observes that women are not passive victims of male domination over the use of dwindling waters for irrigation farming. They have often used existing political and traditional structures developed in the management of water in the schemes to competitively gain monopoly over water. They have sometimes expressed their agency by engaging in irrigation activities that fall beyond the control of formal rules and regulations of irrigation agriculture. Other than being losers, women are winning the battle for water and land resources in the basin.

  12. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  13. Modelling human agency in ancient irrigation

    NARCIS (Netherlands)

    Ertsen, M.W.

    2011-01-01

    Human activity is key in understanding ancient irrigation systems. Results of short term actions build up over time, affecting civilizations on larger temporal and spatial scales. Irrigation systems, with their many entities, social and physical, their many interactions within a changing environment

  14. Technical efficiency of irrigated vegetable production among ...

    African Journals Online (AJOL)

    This study was carried out to analyse the technical efficiency of irrigated vegetable production among smallholder farmers in the guinea savannah, Nigeria, and determine the cost and returns on irrigated vegetable production. Two-stage sampling technique was used, purposive selection of two states and three Local ...

  15. Prospects and Constraints of Household Irrigation Practices ...

    African Journals Online (AJOL)

    Constraints and prospects of hand dug wells related to household irrigation were assessed in Hayelom watershed (~1045 ha), by evaluating groundwater suitability for irrigation, soil quality and impact of intervention. 181 hand dug wells have come into existence in the watershed due to intervention and benefiting about ...

  16. Using Automation to Improve Surface Irrigation Management

    Science.gov (United States)

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  17. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  18. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, Christos; van der Sluis, Lucas; Basrani, Bettina

    2015-01-01

    This book reviews the available information on bacterial disinfection in endodontics, with emphasis on the chemical treatment of root canals based on current understanding of the process of irrigation. It describes recent advances in knowledge of the chemistry associated with irrigants and delivery

  19. A scintigraphic study of colostomy irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige (Nara Medical Univ., Kashihara (Japan))

    1991-09-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with {sup 99m}Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author).

  20. A scintigraphic study of colostomy irrigation

    International Nuclear Information System (INIS)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige

    1991-01-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with 99m Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author)

  1. Irrigation scheduling with the neutron probe

    International Nuclear Information System (INIS)

    Travers, P.

    1987-01-01

    The operational theory of the neutron probe is briefly outlined and its application and uses discussed in relation to determination of soil compaction and irrigation scheduling. Graphic examples are given of alluvial soil moisture profiles and how this information can be used to improve trickle irrigation in vineyards. 3 refs., 7 figs

  2. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  3. When the atomic age began

    International Nuclear Information System (INIS)

    1967-01-01

    2 December 1942, just twenty-five years ago, is the date most often proclaimed as marking the beginning of the atomic age. On that day Enrico Fermi's atomic 'pile' went critical - man had achieved the first self-sustained nuclear chain reaction and controlled it. This achievement is an outstanding example of how modern science can work. It had been predicted in theory, calculated in advance and finally realised through the work of large teams of scientists, headed by some of the most imaginative personalities of our century. The military aspects of man-made nuclear chain reaction still dominate our world today. However, within this quarter of a century, nuclear energy has also become significant as a source of power for peaceful purposes. By the end of another quarter of a century it will, according to the best forecasts we can make today, produce a major part of the electricity in the world. The control of nuclear fission was initiated by Fermi and his collaborators. It had a tremendous impact on politics, on concepts of warfare and finally on scientific progress for man's welfare. Fifteen years afterwards the International Atomic Energy Agency was created to promote the peaceful uses of the new technology and to assist in winning the advantages it offered for improving health and prosperity. Another of its great objects is to ensure, as far as possible, that nuclear materials intended for peaceful purposes shall not be diverted to military ends. The hope of the world must be that this, one day, will include all nuclear materials

  4. [Irrigants and intracanal medicaments in endodontics].

    Science.gov (United States)

    Zehnder, Matthias; Lehnert, Birgit; Schönenberger, Kathrin; Waltimo, Tuomas

    2003-01-01

    Modern, biologic root canal therapy should be performed with suitable irrigating solutions and intracanal medicaments. The goal of endodontic treatment is to free the treated tooth from infection and prevent reinfection as thoroughly as possible by means which do not put the organism at risk. In this review of the literature, an evidence-based concept for irrigation and medication of root canal systems is presented. Irrigants and medicaments are discussed with respect to their antimicrobial, tissue-dissolving and endotoxin-decontaminating capacity in relation to their systemic toxicity. Recent findings pertaining to interactions of root canal medicaments and irrigating solutions and their impact on a sound irrigating and medicating concept are discussed.

  5. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    (Ci, and stomatal conductance (gs between (09.30 – 11.30 h on a fully expanded current season leaves situated at mid canopy height. Statistical assessments of differences between mean values were performed by the LSD test at P = 0.05. Results and Discussion The results revealed that reclaimed water enhanced fruit yield, weight (15%, volume (23% and leaf photosynthesis (22% in plants compared with clear water. Recycled water was found to supply more nutrients than clear water. High nutrient concentrations in RW, compared to those in clear water, result in nutrient accumulation in the soil, making them available to plant roots to promote overall plant growth and fruit production. Improved N, P, K nutrition of wastewater-irrigated plants has been reported (Farooq et al, 2006. Olive leaves and stems represent storage organs for N and release it in response to the metabolic demands of developing reproductive and vegetative organs (Fernandez-Escobar et al., 2004. However, Al-Abasi et al. (2009 found no statistical differences. Irrigation with SLI systems increased the photosynthesis (33%, and stomatal conductance (57% when compared with surface irrigation systems. The results showed that reclaimed water had a significant effect on photosynthesis and stomatal conductance. However, fruit length and firmness had no significant difference. Substomatal CO2 decreased when the SI systems were used for irrigation. Also SLI system could enhance fruit yield (65%, weight (17%, photosynthesis (32% and chlorophyll Fluorescence (Fv/Fm (18%. The SLI systems with recycled water induced greater shoot growth, total leaf surface area, and transpiration during the entire growing period. This led to an overall positive effect on mean fruit weight and total fruit production per tree. The SLI system applying RW led to more photosynthesis by 34% as compared to the SI system. In the present study, the SLI system delivered water directly in the root zone and improved water availability, which

  6. A COMPARATIVE STOCHASTIC FRONTIER ANALYSIS OF IRRIGATED AND RAIN-FED POTATO FARMS IN EASTERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Kumilachew Alamerie Melesse

    2015-12-01

    Full Text Available Irrigation development has been considered as one of the viable strategies for achieving food security. Accordingly, the government of Ethiopia has been increasing water resource development and utilization. However, to what extent the irrigation users are better off than rainfall dependent counterparts on their technical effi ciency (TE and variability in productivity among the farmers is not well known. Therefore, this study compared the technical effi ciency of farmers who are producing potato under irrigation and through rainfall in Eastern Ethiopia. Propensity Score Matching was applied to select irrigated farms with comparable attributes to rain-fed farms to see the true effi ciency diff erences between the two groups. Cobb-Douglas production function was fi tted using the stochastic production frontier for both irrigated and rain fed farming. The result indicated that irrigated farms have high ineffi ciencies compared with the rain-fed farms. This indicates the existence of considerable potential for increasing output by improving the effi ciency of irrigated farms than rain-fed farms. Among the factors hypothesized to determine the level of TE, landholding, family size and extension contact were found to have a signifi cant eff ect on irrigated farms whereas, landholding, non/off income, farm income, livestock size and extension contact were the determinants in rain-fed farms. This indicates that factors that aff ect technical effi - ciency in irrigated farms are not necessarily the same as rain fed farms. Therefore, it is important to consider both farms groups in evaluating strategies aimed at improving technical effi ciency of smallholder farmers

  7. Utilizing on-farm best management practices: Managing Nitrate Leaching Using Evapotranspiration Based Irrigation Methods

    Science.gov (United States)

    Zaragosa, I.; Melton, F. S.; Dexter, J.; Post, K.; Haffa, A.; Kortman, S.; Spellenberg, R.; Cahn, M.

    2017-12-01

    In efforts to provide tools to allow farmers to optimize and quantify water usage and fertilizer applications, University of California Cooperative Extension (UCCE) developed the CropManage irrigation and nitrogen scheduling tool that provides real time evapotranspiration (ETc) based irrigation recommendations and fertilizer recommendations on a per field basis. CropManage incorporates satellite based estimates of fractional cover from web data services from the Satellite Irrigation Management Information Support (SIMS) system developed by NASA Ames Research Center in collaboration with California State University Monterey Bay (CSUMB). In this study, we conducted field trials to quantify the benefits of using these tools to support best management practices (BMPs) for irrigation and nutrient management in strawberries and lettuce in the Salinas Valley, California. We applied two different irrigation treatments based on full replacement (100%) of crop evapotranspiration (ETc), and irrigation at 130% of ETc replacement to approximate irrigation under business as usual irrigation management. Both field studies used a randomized block design with four replicates each. We used CropManage to calculate the 100% and 130% ETc replacement requirements prior to each irrigation event. We collected drainage volume and samples and analyzed them for 8500 to nitrate as (NO3-) concentrations. Experimental results for both strawberries and lettuce showed a significant decrease in the percentage of applied nitrogen leached for the 100% ETc replacement treatment against the 130% ETc replacement treatment. For strawberries, we observed that 24% of applied nitrogen was leached under the 100% ETc replacement treatment, versus 51% of applied nitrogen that was leached under the 130% ETc replacement treatment. For lettuce, we observe that 2% of the applied nitrogen leached bellow the soil profile, versus 6% of the applied nitrogen for the 130%ETc replacement treatment. In both experiments

  8. Point irrigation for locality Buchel in the north desert Gobi in Mongolia

    Directory of Open Access Journals (Sweden)

    Pavel Spitz

    2009-01-01

    Full Text Available The design of point irrigation, created by Filip et al. (2007, was worked up as the bilateral projekt in the frame of abroad developing cooperation between the Czech Republic and Mongolia „Rehabilitation of plant production in semiarid territories of northern Gobi”. The period of project realization are years 2006–2009. The responsible institution for the project is Ministery of Agriculture of the Czech Republic and with the realization of the project was encharged Mendel University of Agriculture and Forestry in Brno. The task was work irrigation design for experimental plants and vegetables on the choosen land in Gobi desert in Mongolia. To disposition was underground water source – bore with capacity about 2 l / s and temperature about 10 °C, electric power and land about area cca 1 ha. The condition was use simple irrigation equipment. The fundamental limitation was im­pos­si­bi­li­ty using technically more complex and more sophisticated equipment e.g. drip irrigation. The map was not to the disposition, only a judgment of slope 0,2 % in flat terrain. The technical design of surface and subsurface point irrigation are introduced, shortly described are hydrotechnical basis used to created and described the original PC program HYBOZAM (hydraulics of point irrigation for Mongolia developed in table editor of Microsoft Excel for pipe dimensions of point irrigation design. Part of the program is also evaluation of the irrigation uniformity from outflows on irrigation line.

  9. Modified Streamflows 1990 Level of Irrigation : Columbia River and Coastal Basins, 1928-1989.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; A.G. Crook Company

    1993-04-01

    The annual operation plans described in the following sections require detailed system regulation computer model studies. These system regulation studies are necessary to evaluate potential new projects and to develop operational rule curves for the existing system of projects. The objective is to provide a basis for evaluating alternative system regulation scenarios. This provides essential input for optimizing the management of existing projects and planning future projects for the most beneficial use of the water supply and resources in the entire region. Historical streamflows per se are inadequate for system regulation studies because the pattern of observed flow has continually changed with each successive stage of irrigation and e development. The problem, therefore, is to adjust for past operation of storage projects and to determine the necessary adjustments that should be made to recorded flows to reflect current stages of irrigation development. Historical flows which have been adjusted to a common level of irrigation development by correcting for the effects of diversion demand, return flow, and change-of-contents and evaporation in upstream reservoirs and lakes are referred to as modified flows. This report describes the development of irrigation depletion adjustments and modified flows for the 1990 level of development for the 61-year period 1928--1989. incremental depletion adjustments were computed in this report for each month of the 61-year period to adjust the effects of actual irrigation in each year up to that which would have been experienced with the irrigation as practiced in 1990.

  10. A comparative study on drip and furrow irrigation methods

    International Nuclear Information System (INIS)

    Babar, M.M.; Shaikh, A.

    2008-01-01

    This study was conducted at Field Laboratory of the IIDE-MUET (Institute of lrrigation and Drainage Engineering, Mehran University of Engineering and Technology), Jamshoro in April 2007 and completed in October 2007. The soil was out-wash of the surrounding hilly tracts. Thus, the texture of the soil was sandy loam mixed with various sizes of gravels. Consequently, its water holding capacity was low and drainability high. The field capacity, wilting point and available moisture of the soil were found to be 10.35, 5.56 and 4.79%, respectively. The soil was moderate (ECe 8-16 dS/m) to strongly saline (ECe> 16 dS/m) and slightly sodic in nature in drip and furrow irrigated plots under study before start of vegetable crops. Three summer vegetables, i.e. okra, long gourd and ridge gourd were cultivated under drip and furrow systems of irrigation. Tap water was used for irrigation, which was class-I quality water i.e. nonsaline and non-sodic. Yields of the three respective vegetables were 25, 16.5 and 7.9% higher than the yields obtained from furrow method. Likewise, WUE (Water Use Efficiency) was higher in drip at 1.27, 3.19 and 2.28 Kg/m/sup 3/ against 0.59, 1.46 and 1.16 Kg/m/sup 3/ in furrow for the respective vegetables. The water saving in drip over furrow method for okra, long gourd and ridge gourd was estimated at 42.2, 46.9 and 45.0%, respectively. The soil salinity and sodicity decreased and did not develop within wetted zone under drip irrigation method and at furrow beds. However the same increased at the wetted periphery and at tops of the ridges under drip and furrow methods of irrigation respectively. (author)

  11. Therapeutic effect of intraductal irrigation of the salivary gland: A technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chena [Dept. of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul (Korea, Republic of); Kim, Jo Eun; Huh, Kyoung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2017-06-15

    Obstructive and inflammatory disease often occurs in the major salivary glands, and no predictive treatment has yet been developed for this condition. The aim of this report was to introduce an intraductal irrigation procedure and to illustrate its application to practical patient cases. Two patients complaining of pain and swelling in the parotid gland during meals who underwent sialography were diagnosed as having sialodochitis with sialadenitis. Intraductal irrigation was then performed on the parotid gland on the side of the complaint. The irrigation procedure was conducted in the same manner as the sialography procedure, except that saline was used as the filling solution. Symptom severity was evaluated with a numerical rating scale (NRS) at the initial visit and a month after the irrigation. The initial NRS value of patient 1 was 10. The value decreased to 6 and then to 0 after 2 irrigation procedures. The NRS value of patient 2 regarding the symptoms involving the left parotid gland decreased from 4-5 to 1 after 4 irrigation procedures performed at 1-month intervals. Intraductal irrigation of the salivary gland may be a simple, safe, and effective treatment option for patients with obstructive and inflammatory disease of the salivary gland that is capable of resolving their symptoms.

  12. Achieving sustainable irrigation water withdrawals: global impacts on food security and land use

    Science.gov (United States)

    Liu, Jing; Hertel, Thomas W.; Lammers, Richard B.; Prusevich, Alexander; Baldos, Uris Lantz C.; Grogan, Danielle S.; Frolking, Steve

    2017-10-01

    Unsustainable water use challenges the capacity of water resources to ensure food security and continued growth of the economy. Adaptation policies targeting future water security can easily overlook its interaction with other sustainability metrics and unanticipated local responses to the larger-scale policy interventions. Using a global partial equilibrium grid-resolving model SIMPLE-G, and coupling it with the global Water Balance Model, we simulate the consequences of reducing unsustainable irrigation for food security, land use change, and terrestrial carbon. A variety of future (2050) scenarios are considered that interact irrigation productivity with two policy interventions— inter-basin water transfers and international commodity market integration. We find that pursuing sustainable irrigation may erode other development and environmental goals due to higher food prices and cropland expansion. This results in over 800 000 more undernourished people and 0.87 GtC additional emissions. Faster total factor productivity growth in irrigated sectors will encourage more aggressive irrigation water use in the basins where irrigation vulnerability is expected to be reduced by inter-basin water transfer. By allowing for a systematic comparison of these alternative adaptations to future irrigation vulnerability, the global gridded modeling approach offers unique insights into the multiscale nature of the water scarcity challenge.

  13. Morphogenetic, structural and productive traits of buffel grass under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Maria Janiele Ferreira Coutinho

    2015-06-01

    Full Text Available The water restriction conditions in the Brazilian semiarid region are one of the most limiting factors to the establishment and yield of forage grasses. This study aimed to evaluate the effect of different irrigation regimes on morphogenetic, structural and productive traits of buffel grass. Arandomized blocks design, with five treatments and six replications, was used. Treatments consisted of five irrigation regimes, corresponding to the intervals of 2, 4, 6, 8 and 10 days. The traits analyzed were: leaf emergence rate, phyllochron, leaf and stem elongation rate, leaf senescence rate, final leaf length, number of green leaves per tiller, number of tillers, stem height, leaf/stem ratio, leaf area index, dry mass of green leaf and stem, dry mass of green, dead and total forage, root dry mass, dry mass and green dry mass/dead dry mass ratio. The final leaf length and dead forage dry mass were not affected by the irrigation regimes. The leaf/stem ratio followed a quadratic model, maintaining the value of 0.51 up to the irrigation regime of four days. The other morphological, structural and productive traits decreased linearly with increasing irrigation frequencies. The irrigation intervals promoted reductions in the morphological, structural and productive parameters of buffel grass, when grown under greenhouse conditions. The irrigation regime of 2 days stands out as the least restrictive to the development of buffel grass.

  14. Uptake and Accumulation of Pharmaceuticals in Lettuce Under Surface and Overhead Irrigations

    Science.gov (United States)

    Bhalsod, G.; Chuang, Y. H.; Jeon, S.; Gui, W.; Li, H.; Guber, A.; Zhang, W.

    2015-12-01

    Pharmaceuticals and personal care products are being widely detected in wastewater and surface waters. As fresh water becomes scarcer, interests in using reclaimed water for crop irrigation is intensified. Since reclaimed waters often carry trace levels of pharmaceuticals, accumulation of pharmaceuticals in food crops could increase the risk of human exposure. This study aims to investigate uptake and accumulations of pharmaceuticals in greenhouse-grown lettuce under contrasting irrigation practices (i.e., overhead and surface irrigations). Lettuce was irrigated with water spiked with 11 commonly used pharmaceuticals (acetaminophen, caffeine, carbamazepine, sulfadiazine, sulfamethoxazole, carbadox, trimethoprim, lincomycin hydrochloride, oxytetracycline hydrochloride, monensin sodium, and tylosin). Weekly sampling of lettuce roots, shoots, and soils were continued for 5 weeks, and the samples were freeze dried, extracted for pharmaceuticals and analyzed by LC-MS/MS. Preliminary results indicate that higher concentrations of pharmaceuticals were found in overhead irrigated lettuce compared to surface irrigated lettuce. For carbamezapine, sulfadiazine, trimethoprim, oxytetracycline, and monensin sodium, their concentrations generally increased in lettuce shoots in the overhead treatment over time. However, acetaminophen was found at higher concentrations in both shoots and roots, indicating that acetaminophen can be easily transported in the plant system. This study provides insight on developing better strategies for using reclaimed water for crop irrigations, while minimizing the potential risks of pharmaceutical contamination of vegetables.

  15. Nematode suppression and growth stimulation in corn plants (Zea mays L.) irrigated with domestic effluent.

    Science.gov (United States)

    Barros, Kenia Kelly; do Nascimento, Clístenes Williams Araújo; Florencio, Lourdinha

    2012-01-01

    Treated wastewater has great potential for agricultural use due to its concentrations of nutrients and organic matter, which are capable of improving soil characteristics. Additionally, effluents can induce suppression of plant diseases caused by soil pathogens. This study evaluates the effect of irrigation with effluent in a UASB reactor on maize (Zea mays L.) development and on suppression of the diseases caused by nematodes of the genus Meloidogyne. Twelve lysimeters of 1 m(3) each were arranged in a completely randomized design, with four treatments and three replicates. The following treatments were used: T1 (W+I), irrigation with water and infestation with nematodes; T2 (W+I+NPK), irrigation with water, infestation with nematodes and fertilization with nitrogen (N), phosphorus (P) and potassium (K); T3 (E+I), irrigation with effluent and infestation with nematodes; and T4 (E+I+P), irrigation with effluent, infestation with nematodes and fertilization with phosphorus. The plants irrigated with the effluent plus the phosphorus fertilizer had better growth and productivity and were more resistant to the disease symptoms caused by the nematodes. The suppression levels may have been due to the higher levels of Zn and NO(3)(-) found in the leaf tissue of the plants irrigated with the effluent and phosphorus fertilizer.

  16. Therapeutic effect of intraductal irrigation of the salivary gland: A technical report.

    Science.gov (United States)

    Lee, Chena; Kim, Jo-Eun; Huh, Kyoung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul

    2017-06-01

    Obstructive and inflammatory disease often occurs in the major salivary glands, and no predictive treatment has yet been developed for this condition. The aim of this report was to introduce an intraductal irrigation procedure and to illustrate its application to practical patient cases. Two patients complaining of pain and swelling in the parotid gland during meals who underwent sialography were diagnosed as having sialodochitis with sialadenitis. Intraductal irrigation was then performed on the parotid gland on the side of the complaint. The irrigation procedure was conducted in the same manner as the sialography procedure, except that saline was used as the filling solution. Symptom severity was evaluated with a numerical rating scale (NRS) at the initial visit and a month after the irrigation. The initial NRS value of patient 1 was 10. The value decreased to 6 and then to 0 after 2 irrigation procedures. The NRS value of patient 2 regarding the symptoms involving the left parotid gland decreased from 4-5 to 1 after 4 irrigation procedures performed at 1-month intervals. Intraductal irrigation of the salivary gland may be a simple, safe, and effective treatment option for patients with obstructive and inflammatory disease of the salivary gland that is capable of resolving their symptoms.

  17. Ruling by canal: Governance and system-level design characteristics of large scale irrigation infrastructure in India and Uzbekistan

    Directory of Open Access Journals (Sweden)

    Peter Mollinga

    2016-06-01

    Full Text Available This paper explores the relationship between governance regime and large-scale irrigation system design by investigating three cases: 1 protective irrigation design in post-independent South India; 2 canal irrigation system design in Khorezm Province, Uzbekistan, as implemented in the USSR period, and 3 canal design by the Madras Irrigation and Canal Company, as part of an experiment to do canal irrigation development in colonial India on commercial terms in the 1850s-1860s. The mutual shaping of irrigation infrastructure design characteristics on the one hand and management requirements and conditions on the other has been documented primarily at lower, within-system levels of the irrigation systems, notably at the level of division structures. Taking a 'social construction of technology' perspective, the paper analyses the relationship between technological structures and management and governance arrangements at irrigation system level. The paper finds qualitative differences in the infrastructural configuration of the three irrigation systems expressing and facilitating particular forms of governance and rule, differences that matter for management and use, and their effects and impacts.

  18. A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions

    Directory of Open Access Journals (Sweden)

    Lucia Bortolini

    2018-02-01

    Full Text Available In the Mediterranean arid and semi-arid regions, large amounts of low quality waters could be used for crop irrigation, but the adoption of articulated classifications with too rigid quality limits can often reduce the recoverable quantities of water and make the monitoring of water quality too much expensive. Therefore, an evaluation of irrigation water quality based on only a few crucial parameters, which consider the crop species to be irrigated and the type of irrigation system and management adopted, can be an easy and flexible method for maximizing the reuse of wastewater and low-quality water for agricultural purposes. In this view, an irrigation water quality tool (IWQT was developed to support farmers of arid and semi-arid regions on evaluating the use of low quality water for crop irrigation. The most significant and cheapest parameters of irrigation water quality were identified and clustered in three quality classes according to their effects on crop yield and soil fertility (agronomic quality indicators, human health (hygiene and health quality indicators, and irrigation systems (management quality indicators. According to IWQT parameters, a tool reporting a series of recommendations, including water treatment types, was implemented to guide farmers on the use of low quality irrigation water.

  19. Economic assessment at farm level of the implementation of deficit irrigation for quinoa production in the Southern Bolivian Altiplano

    Directory of Open Access Journals (Sweden)

    J. Cusicanqui

    2013-10-01

    Full Text Available In the Southern Bolivian Altiplano recent research has suggested to introduce deficit irrigation as a strategy to boost quinoa yields and to stabilize it at 2.0 ton ha-1. In this study we carried out an economic assessment of the implementation of deficit irrigation at farm level using a hydro-economic model for simulating profit for quinoa production. As input of the model we worked with previously developed farms typology (livestock, quinoa and subsistence farms, simulated quinoa production with and without irrigation using AquaCrop model, and calculated yield response functions for four different climate scenarios (wet, normal, dry and very dry years. Results from the hydro-economic model demonstrate that maximum profit is achieved with less applied irrigated water than for maximum yield, and irrigated quinoa earned more profit than rainfed production for all farms types and climate scenarios. As expected, the benefits of irrigation under dry and very dry climate conditions were higher than those under normal and wet years, and benefits among farms types were higher for quinoa farms. In fact, profit of irrigated quinoa might be stabilized at around BOB 6500 ha-1 (about USD 920 compared with the huge differences found for rainfed conditions for all climate scenarios. Interestingly, the economic water productivity, expressed in terms of economic return for amount of applied irrigated water (BOB mm-1, reached the highest values with intermediate and low level of water availability schemes of deficit irrigation for all climate scenarios.

  20. Temporal and spatial water use on irrigated and nonirrigated pasture-based dairy farms.

    Science.gov (United States)

    Higham, C D; Horne, D; Singh, R; Kuhn-Sherlock, B; Scarsbrook, M R

    2017-08-01

    Robust information for water use on pasture-based dairy farms is critical to farmers' attempts to use water more efficiently and the improved allocation of freshwater resources to dairy farmers. To quantify the water requirements of dairy farms across regions in a practicable manner, it will be necessary to develop predictive models. The objectives of this study were to compare water use on a group of irrigated and nonirrigated farms, validate existing water use models using the data measured on the group of nonirrigated farms, and modify the model so that it can be used to predict water use on irrigated dairy farms. Water use data were collected on a group of irrigated dairy farms located in the Canterbury, New Zealand, region with the largest area under irrigation. The nonirrigated farms were located in the Manawatu region. The amount of water used for irrigation was almost 52-fold greater than the amount of all other forms of water use combined. There were large differences in measured milking parlor water use, stock drinking water, and leakage rates between the irrigated and nonirrigated farms. As expected, stock drinking water was lower on irrigated dairy farms. Irrigation lowers the dry matter percentage of pasture, ensuring that the amount of water ingested from pasture remains high throughout the year, thereby reducing the demand for drinking water. Leakage rates were different between the 2 groups of farms; 47% of stock drinking water was lost as leakage on nonirrigated farms, whereas leakage on the irrigated farms equated to only 13% of stock drinking water. These differences in leakage were thought to be related to regional differences rather than differences in irrigated versus nonirrigated farms. Existing models developed to predict milking parlor, corrected stock drinking water, and total water use on nonirrigated pasture-based dairy farms in a previous related study were tested on the data measured in the present research. As expected, these models

  1. Nucleus management with irrigating vectis

    Directory of Open Access Journals (Sweden)

    Srinivasan Aravind

    2009-01-01

    Full Text Available The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS, incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost.

  2. The Temporal Variation of Leaf Water Potential in Pistachio under Irrigated and Non-Irrigated Conditions

    Directory of Open Access Journals (Sweden)

    Yusuf AYDIN

    2014-09-01

    Full Text Available The present study was carried out in the experimental field of Pistachio Research Institute on pistachio trees which has uzun variety that was 30 years old. The aim of this research was to determine the Leaf Water Potential (LWP of Pistacia vera L. under irrigated and non-irrigated conditions. In the study, the leaf water potential of pistachio was investigated under fully irrigated and non irrigated conditions. The leaf water potential values were measured one day before and after irrigation by using pressure chamber technique at the beginning, mid and end of irrigation season. According to the results obtained from measurements, the LWP value at the beginning of the irrigation season was -3.7 MPa at noon time due to relatively high temperature for both treatments. At the time of pre-dawn and sunset, this value increased and reached to - 1.6 MPa due to relatively low temperature. In general, the LWP values during the mid of irrigation season, in the irrigated treatments, reached to almost -2.5 MPa in the non-irrigated treatment and the value was measured as -3.68 MPa.

  3. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  4. Farm-based measures for reducing microbiological health risks for consumers from informal wastewater-irrigated agriculture

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay

    2010-01-01

    in developing countries as part of a multiple-barrier approach for health-risk reduction along the farm to fork pathway. Measures discussed include treatment of irrigation water using ponds, filters and wetland systems; water application techniques; irrigation scheduling; and crop selection. In addition...

  5. Irrigation for Sustainable Agricultural Development in Ethiopia

    African Journals Online (AJOL)

    BiL

    With the wind of change in the country farmers are drawn into to the market economy given the attractive .... In the absence of conservation- based sound management .... being accelerated for the restoration of soil fertility. Since organic matter.

  6. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  7. Participatory Rural Appraisal for Diagnostic Analysis of spate irrigation systems in Raya Valley, Ethiopia

    Directory of Open Access Journals (Sweden)

    Giulio Castelli

    2017-05-01

    Full Text Available Spate irrigation is a complex and unique form of water management, which represent the main source of irrigation water in semi-arid river catchments. Water is diverted from seasonal rivers by using diversion structures made by stones, earth and brushwood, located within the river bed. The modernisation of spate irrigation realised in Raya Valley (northern Ethiopia resulted in disappointing performances. One of the main reasons for this failure was the poor consideration of the characteristics of seasonal catchments and local communities’ needs and preferences. Local farmers, who showed a deep knowledge of the river system, were involved only at the level of consultation. The aim of this research was to develop a participatory Diagnostic Analysis (DA for a traditional non-modernised spate irrigation system in Raya Valley, in order to involve local farmers within the development process, and to build a solid knowledge basis for effective improvements. A Participatory Rural Appraisal (PRA of the Harosha spate irrigation system was undertaken. PRA techniques focusing on spatial, temporal, socio-economical and spatiotemporal aspects of the system were performed with local farmers in order to identify and rank main problems and constraints to development. Farmers recognised the need of more resistant diversion structures and gabion walls for the stabilisation of the river bank. The involvement of farmers also helped to highlight that not only irrigation-related problems, but also flood-related problems threaten agricultural production and rural livelihoods. Rather than an irrigation system approach, an approach integrating irrigation development and flood risk mitigation is suggested for framing future development strategies.

  8. Socio-economic impacts of irrigated agriculture in Mbarali District of south west Tanzania

    Science.gov (United States)

    Mwakalila, Shadrack

    Irrigation has been found to be central in curbing food scarcity not only in Tanzania but also in many other developing countries. It has been proved that continued reliability on rainfall in agriculture cannot sustain the increase in population. This study examines the impacts of smallholder irrigated agriculture in improving social and economic benefits in Igurusi Ward of Mbarali District which is located in the southern-western part of Tanzania. The study applies the Participatory Rural Appraisal Framework for data collection. The study was confined to five villages in Igurusi ward which are Majenje, Igurusi, Chamoto, Uhambule and Mahango. The study examined critically paddy production for smallholder farmers that practice irrigation and those who cultivates rain-fed paddy. The study examined both existing traditional and modern irrigation systems. It was found that, most of the respondents (79%) practice irrigated agriculture in paddy production while the remaining 21% practice rain-fed agriculture. Forty percent of households that practice irrigated agriculture harvest paddy two seasons per year. The return to labour in paddy production for smallholder farmers who irrigate their paddy fields is about US 2.5/manday which is above the poverty line of US 1.0/day. The smallest return to labour (US $ 0.85/manday) is obtained by an average smallholder farmer who cultivates rain-fed paddy using hand hoe and family labour. The potential implication of the current irrigation systems is that if irrigation is managed properly it may lead to sustainable increases in small farmer’s productivity and income, thus alleviating rural poverty.

  9. A compact to revitalise large-scale irrigation systems: A ‘theory of change’ approach

    Directory of Open Access Journals (Sweden)

    Bruce A. Lankford

    2016-02-01

    Full Text Available In countries with transitional economies such as those found in South Asia, large-scale irrigation systems (LSIS with a history of public ownership account for about 115 million ha (Mha or approximately 45% of their total area under irrigation. In terms of the global area of irrigation (320 Mha for all countries, LSIS are estimated at 130 Mha or 40% of irrigated land. These systems can potentially deliver significant local, regional and global benefits in terms of food, water and energy security, employment, economic growth and ecosystem services. For example, primary crop production is conservatively valued at about US$355 billion. However, efforts to enhance these benefits and reform the sector have been costly and outcomes have been underwhelming and short-lived. We propose the application of a 'theory of change' (ToC as a foundation for promoting transformational change in large-scale irrigation centred upon a 'global irrigation compact' that promotes new forms of leadership, partnership and ownership (LPO. The compact argues that LSIS can change by switching away from the current channelling of aid finances controlled by government irrigation agencies. Instead it is for irrigators, closely partnered by private, public and NGO advisory and regulatory services, to develop strong leadership models and to find new compensatory partnerships with cities and other river basin neighbours. The paper summarises key assumptions for change in the LSIS sector including the need to initially test this change via a handful of volunteer systems. Our other key purpose is to demonstrate a ToC template by which large-scale irrigation policy can be better elaborated and discussed.

  10. Irrigation Requirement Estimation using MODIS Vegetation Indices and Inverse Biophysical Modeling; A Case Study for Oran, Algeria

    Science.gov (United States)

    Bounoua, L.; Imhoff, M.L.; Franks, S.

    2008-01-01

    Human demand for food influences the water cycle through diversion and extraction of fresh water needed to support agriculture. Future population growth and economic development alone will substantially increase water demand and much of it for agricultural uses. For many semi-arid lands, socio-economic shifts are likely to exacerbate changes in climate as a driver of future water supply and demand. For these areas in particular, where the balance between water supply and demand is fragile, variations in regional climate can have potentially predictable effect on agricultural production. Satellite data and biophysically-based models provide a powerful method to quantify the interactions between local climate, plant growth and water resource requirements. In irrigated agricultural lands, satellite observations indicate high vegetation density while the precipitation amount indicates otherwise. This inconsistency between the observed precipitation and the observed canopy leaf density triggers the possibility that the observed high leaf density is due to an alternate source of water, irrigation. We explore an inverse process approach using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), climatological data, and the NASA's Simple Biosphere model, SiB2, to quantitatively assess water demand in a semi-arid agricultural land by constraining the carbon and water cycles modeled under both equilibrium (balance between vegetation and prevailing local climate) and nonequilibrium (water added through irrigation) conditions. We postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. We added water using two distribution methods: The first method adds water on top of the canopy and is a proxy for the traditional spray irrigation. The second method allows water to be applied directly into the soil layer and serves as proxy for drip irrigation. Our approach indicates that over

  11. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat and carbon fluxes in semi-arid basin

    Science.gov (United States)

    Xie, Zhenghui; Zeng, Yujin

    2017-04-01

    Irrigation, which constitutes 70% of the total amount of fresh water consumed by the human population, is significantly impacting the land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM 4.5) with an active crop model, two high resolution ( 1 km) simulations investigating the effects of irrigation on Latent Heat (LH), Sensible Heat (SH) and Carbon Fluxes (or net ecosystem exchange, NEE) from land to atmosphere on the Heihe River Basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity and viability of the developed models to reproduce ecological and hydrological processes. The results revealed the effects of irrigation on LH and SH are strongest during summer with a LH increase of 100 W/m2 and a SH decrease of 60 W/m2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate below 5 mm/day, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm/day, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC/m2/day, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by 0.8 gC/m2/day. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH and NEE. The study indicates that how a land surface model with high spatial resolution can represent crop growing and its effects over basin scale.

  12. IRRIGATION SCHEDULING CALCULATOR (ISC TO IMPROVE WATER MANAGEMENT ON FIELD LEVEL IN EGYPT

    Directory of Open Access Journals (Sweden)

    Samiha Abou El-Fetouh Hamed Ouda

    2017-10-01

    Full Text Available The developed model is MS excel sheet called “Irrigation Scheduling Calculator, ISC”. The model requires to input daily weather data to calculate daily evapotranspiration using Penman-Monteith equation. The model calculates water depletion from the root zone to determine when to irrigate and how much water should be applied. The charge from irrigation pump is used to calculate how many hours should the farmer run the pump to deliver the needed amount of water. ISC model was used to developed irrigation schedule for wheat and maize planted in El-Gharbia governorate. The developed schedules were compared to the actual schedules for both crops. Furthermore, CropSyst model was calibrated for both crops and run using the developed schedules by ISC model. The simulation results indicated that the calculated irrigation amount by ISC model for wheat was lower than actual schedule by 6.0 mm. Furthermore, the simulated wheat productivity by CropSyst was higher than measured grain and biological by 2%. Similarly, the calculated applied irrigation amount by ISC model for maize was lower than actual schedule by 79.0 mm and the productivity was not changed.

  13. [Stricture of the colon induced by hyperthermia--in connection with irrigation via sigmoidostomy].

    Science.gov (United States)

    Søholm, L M; Bonde, C T; Balleby, L; Meisner, S

    1999-08-23

    A case of thermal injury following the introduction of excessively hot tap water into the colon during irrigation of a sigmoid colostomy is described. The radiological proof of a subsequently developed colon stricture made it necessary to remove the injured part and reconstruct the colostomy. Only two other cases of this kind have been reported in English literature. The case emphasizes that care must be taken in selecting the right temperature of the water for irrigation.

  14. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  15. effect of deficit irrigation on growth and yield of okro

    African Journals Online (AJOL)

    User

    reduce the demand for irrigation water (Boland et al., 1993). Deficit irrigation is another way in which water use efficiency can be maximized for higher yields per unit of irrigation water. Stegman (1982) reported that the yield of maize, sprinkler irrigated to induce a 30 - 40 percent depletion of available water between.

  16. Using container weights to determine irrigation needs: A simple method

    Science.gov (United States)

    R. Kasten Dumroese; Mark E. Montville; Jeremiah R. Pinto

    2015-01-01

    Proper irrigation can reduce water use, water waste, and incidence of disease. Knowing when to irrigate plants in container nurseries can be determined by weighing containers. This simple method is quantifiable, which is a benefit when more than one worker is responsible for irrigation. Irrigation is necessary when the container weighs some target as a proportion of...

  17. Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California

    Science.gov (United States)

    Fulton, A.; Snyder, R.; Hillyer, C.; English, M.; Sanden, B.; Munk, D.

    2012-04-01

    Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California Allan Fulton, Richard Snyder, Charles Hillyer, Marshall English, Blake Sanden, and Dan Munk Adoption of scientific methods to decide when to irrigate and how much water to apply to a crop has increased over the last three decades in California. In 1988, less than 4.3 percent of US farmers employed some type of science-based technique to assist in making irrigation scheduling decisions (USDA, 1995). An ongoing survey in California, representing an industry irrigating nearly 0.4 million planted almond hectares, indicates adoption rates ranging from 38 to 55 percent of either crop evapotranspiration (ETc), soil moisture monitoring, plant water status, or some combination of these irrigation scheduling techniques to assist with making irrigation management decisions (California Almond Board, 2011). High capital investment to establish fruit and nut crops, sensitivity to over and under-irrigation on crop performance and longevity, and increasing costs and competition for water have all contributed to increased adoption of scientific irrigation scheduling methods. These trends in adoption are encouraging and more opportunities exist to develop improved irrigation scheduling tools, especially computer decision-making models. In 2009 and 2010, an "On-line Irrigation Scheduling Advisory Service" (OISO, 2012), also referred to as Online Irrigation Management (IMO), was used and evaluated in commercial walnut, almond, and French prune orchards in the northern Sacramento Valley of California. This specific model has many features described as the "Next Generation of Irrigation Schedulers" (Hillyer, 2010). While conventional irrigation management involves simply irrigating as needed to avoid crop stress, this IMO is designed to control crop stress, which requires: (i) precise control of crop water availability (rather than controlling applied water); (ii) quantifying crop

  18. Local land-atmosphere feedbacks limit irrigation demand

    Science.gov (United States)

    Decker, Mark; Ma, Shaoxiu; Pitman, Andy

    2017-05-01

    Irrigation is known to influence regional climate but most studies forecast and simulate irrigation with offline (i.e. land only) models. Using south eastern Australia as a test bed, we demonstrate that irrigation demand is fundamentally different between land only and land-atmosphere simulations. While irrigation only has a small impact on maximum temperature, the semi-arid environment experiences near surface moistening in coupled simulations over the irrigated regions, a feedback that is prevented in offline simulations. In land only simulations that neglect the local feedbacks, the simulated irrigation demand is 25% higher and the standard deviation of the mean irrigation rate is 60% smaller. These local-scale irrigation-driven feedbacks are not resolved in coarse-resolution climate models implying that use of these tools will overestimate irrigation demand. Future studies of irrigation demand must therefore account for the local land-atmosphere interactions by using coupled frameworks, at a spatial resolution that captures the key feedbacks.

  19. Analysis of Irrigation Water Quality at Kadawa Irrigation Project for Improved Productivity

    Directory of Open Access Journals (Sweden)

    AR Sanda

    2014-09-01

    Full Text Available In the face of water scarcity and the several negative consequences, such as water wastage, flooding, water logging, soil losses and production losses, conserving the finite amount of fresh water is a must. The quality of irrigation water must therefore be ascertained. The chemical quality of three sources of irrigation water from canal and drainage water, namely drainage water, fresh irrigation water from canal, and drainage/irrigation water mixture, were analyzed from Kadawa irrigation Project for year 2013 and 2014 cropping seasons, with the view to evaluating the potential risks associated with their use in irrigation and hence their suitability or otherwise for irrigation purposes. The analysis revealed that the use of drainage water alone for irrigation may result in problems associated with salinity, while a blend of drainage/irrigation water in the ratio of 1:1 is a viable means of water conservation and a good means of crop production. DOI: http://dx.doi.org/10.3126/ije.v3i3.11082 International Journal of Environment Vol.3(3 2014: 235-240

  20. 16. PRE-OPERATIVE BLADDER IRRIGATION

    African Journals Online (AJOL)

    Esem

    effectiveness of using preoperative bladder irrigation with 1% povidone iodine in reducing ... consenting patient who presented to the department of surgery for open ..... infections in a tertiary care center in south-western. Nigeria. International ...

  1. Deciphering groundwater quality for irrigation and domestic

    Indian Academy of Sciences (India)

    Groundwater quality; irrigation and domestic suitability; ionic balance, Suri I and II ... is important for groundwater planning and management in the study area. ... total hardness (TH), Piper's trilinear diagram and water quality index study.

  2. Parasitological Contamination of Wastewater Irrigated and Raw ...

    African Journals Online (AJOL)

    Tadesse

    Occurrence of infective stages of intestinal parasites on wastewater- irrigated vegetables ..... reported the health hazards of agricultural reuse of untreated wastewater through detection of .... State of knowledge in land treatment of wastewater.

  3. The Regularity of Optimal Irrigation Patterns

    Science.gov (United States)

    Morel, Jean-Michel; Santambrogio, Filippo

    2010-02-01

    A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.

  4. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, Mathias Neumann; Lærke, Poul Erik

    2011-01-01

    Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  5. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  6. An improved delivery system for bladder irrigation.

    Science.gov (United States)

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-10-05

    Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse

  7. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  8. System contemplations for precision irrigation in agriculture

    Science.gov (United States)

    Schubert, Martin J. W.

    2017-04-01

    This communication contemplates political, biological and technical aspects for efficient and profitable irrigation in sustainable agriculture. A standard for irrigation components is proposed. The need for many, and three-dimensionally distributed, soil measurement points is explained, thus enabling the control of humidity in selected layers of earth. Combined wireless and wired data transmission is proposed. Energy harvesting and storage together with mechanical sensor construction are discussed.

  9. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  10. Virological failure of staggered and simultaneous treatment interruption in HIV patients who began Efavirenz-based regimens after allergic reactions to nevirapine

    Directory of Open Access Journals (Sweden)

    Siripassorn Krittaecho

    2013-01-01

    Full Text Available Abstract Objective The objective of this work was to study the virological outcomes associated with two different types of treatment interruption strategies in patients with allergic reactions to nevirapine (NVP. We compared the virological outcomes of (1 HIV-1-infected patients who discontinued an initial NVP-based regimen because of cutaneous allergic reactions to NVP; different types of interruption strategies were used, and second-line regimen was based on efavirenz (EFV; and (2 HIV-1-infected patients who began an EFV-based regimen as a first-line therapy (controls. Methods This retrospective cohort included patients who began an EFV-based regimen, between January 2002 and December 2008, as either an initial regimen or as a subsequent regimen after resolving a cutaneous allergic reaction against an initial NVP-based regimen. The study ended in March 2010. The primary outcome was virological failure, which was defined as either (a two consecutive plasma HIV-1 RNA levels >400 copies/mL or (b a plasma HIV-1 RNA level >1,000 copies/mL plus any genotypic resistance mutation. Results A total of 559 patients were stratified into three groups: (a Simultaneous Interruption, in which the subjects simultaneously discontinued all the drugs in an NVP-based regimen following an allergic reaction (n=161; (b Staggered Interruption, in which the subjects discontinued NVP treatment while continuing nucleoside reverse transcriptase inhibitor (NRTI backbone therapy for a median of 7 days (n=82; and (c Control, in which the subjects were naïve to antiretroviral therapy (n=316. The overall median follow-up time was 43 months. Incidence of virological failure in Simultaneous Interruption was 12.9 cases per 1,000 person-years, which trended toward being higher than the incidences in Staggered Interruption (5.4 and Control (6.6. However, differences were not statistically significant. Conclusions Among the patients who had an acute allergic reaction to first

  11. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    watering, with timing ranging between one and three hours in T1, and between about half-an-hour and one-hour and a-half, in T2. The validity of Hydrus-2D model was initially assessed based on the comparison between measured and estimated soil water content at different distances from the emitter (RMSE values were not higher than 0.036). Then, model simulations allowed to verify that it is possible to enhance irrigation water use efficiency by increasing the frequency of irrigation even maintaining limited water deficit conditions during the full development stage subsequent the crop tuberization. Experimental results, joined to model simulations can therefore provide useful guidelines for a more sustainable use of irrigation water in countries characterised by semi-arid environments and limited availability of water resources.

  12. A rule-based smart automated fertilization and irrigation systems

    Science.gov (United States)

    Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo

    2018-04-01

    Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.

  13. Grower demand for sensor-controlled irrigation

    Science.gov (United States)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  14. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  15. Heavy metal input to agricultural soils from irrigation with treated wastewater: Insight from Pb isotopes

    Science.gov (United States)

    Kloppmann, Wolfram; Cary, Lise; Psarras, Georgios; Surdyk, Nicolas; Chartzoulakis, Kostas; Pettenati, Marie; Maton, Laure

    2010-05-01

    A major objective of the EU FP6 project SAFIR was to overcome certain drawbacks of wastewater reuse through the development of a new irrigation technology combining small-scale modular water treatment plants on farm level and improved irrigation hardware, in the aim to lower the risks related to low quality water and to increase water use efficiency. This innovative technology was tested in several hydro-climatic contexts (Crete, Italy, Serbia, China) on experimental irrigated tomato and potato fields. Here we present the heavy metal variations in soil after medium-term (3 irrigation seasons from 2006-2008) use of treated municipal wastewater with a special focus on lead and lead isotope signatures. The experimental site is located in Chania, Crete. A matrix of plots were irrigated, combining different water qualities (secondary, primary treated wastewater, tap water, partially spiked with heavy metals, going through newly developed tertiary treatment systems) with different irrigation strategies (surface and subsurface drip irrigation combined with full irrigation and partial root drying). In order to assess small scale heavy metal distribution around a drip emitter, Pb isotope tracing was used, combined with selective extraction. The sampling for Pb isotope fingerprinting was performed after the 3rd season of ww-irrigation on a lateral profile from a drip irrigator (half distance between drip lines, i.e. 50cm) and three depth intervals (0-10, 10-20, 20-40 cm). These samples were lixiviated through a 3 step selective extraction procedure giving rise to the bio-accessible, mobile and residual fraction: CaCl2/NaNO3 (bio-accessible fraction), DPTA (mobile fraction), total acid attack (residual fraction). Those samples were analysed for trace elements (including heavy metals) and major inorganic compounds by ICP-MS. The extracted fractions were then analysed by Thermal Ionisation Mass Spectrometry (TIMS) for their lead isotope fingerprints (204Pb, 206Pb, 207Pb, 208Pb

  16. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    Science.gov (United States)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  17. Enhancing the Productivity of High Value Crops and Income Generation with Small-Scale Irrigation Technologies in Kenya. Final Report 2009-2013

    International Nuclear Information System (INIS)

    2014-02-01

    The project was implemented by the Kenya Agricultural Research Institute in collaboration with key irrigation stakeholders including Horticultural Crops Development Authority (HCDA), G North and Son limited, Kenya Irrigation and Drainage Association (KIDA), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Greenbelt Movement and Ministry of Agriculture. The objective was to develop and pilot test appropriate irrigation systems (methods and related water/nutrient management practices) for small-scale farmers for increasing yield, quality of high value crops and farmers income to improved livelihood. The project built on earlier work on low head drip irrigation in Kenya involving KARI led promotion among the peri-urban and rural communities. The Equipment used include Neutron Probe Hydroprobe, Ammonium Sulphate Fertilizers (5% a.e), drip irrigation kits, MoneyMaker irrigation pumps, Pessl imetos weather station, SDEC tensimetre and tensiometers), Venturi injectors, among others.

  18. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA

    Science.gov (United States)

    Lauffenburger, Zachary H.; Gurdak, Jason J.; Hobza, Christopher M.; Woodward, Duane; Wolf, Cassandra

    2018-01-01

    Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains

  19. An optimization model to design and manage subsurface drip irrigation system for alfalfa

    Science.gov (United States)

    Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.

    2010-12-01

    Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.

  20. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    Science.gov (United States)

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  1. A coupled agronomic-economic model to consider allocation of brackish irrigation water

    Science.gov (United States)

    Ben-Gal, Alon; Weikard, Hans-Peter; Shah, Syed Hamid Hussain; van der Zee, Sjoerd E. A. T. M.

    2013-05-01

    In arid and semiarid regions, irrigation water is scarce and often contains high concentrations of salts. To reduce negative effects on crop yields, the irrigated amounts must include water for leaching and therefore exceed evapotranspiration. The leachate (drainage) water returns to water sources such as rivers or groundwater aquifers and increases their level of salinity and the leaching requirement for irrigation water of any sequential user. We develop a conceptual sequential (upstream-downstream) model of irrigation that predicts crop yields and water consumption and tracks the water flow and level of salinity along a river dependent on irrigation management decisions. The model incorporates an agro-physical model of plant response to environmental conditions including feedbacks. For a system with limited water resources, the model examines the impacts of water scarcity, salinity and technically inefficient application on yields for specific crop, soil, and climate conditions. Moving beyond the formulation of a conceptual frame, we apply the model to the irrigation of Capsicum annum on Arava Sandy Loam soil. We show for this case how water application could be distributed between upstream and downstream plots or farms. We identify those situations where it is beneficial to trade water from upstream to downstream farms (assuming that the upstream farm holds the water rights). We find that water trade will improve efficiency except when loss levels are low. We compute the marginal value of water, i.e., the price water would command on a market, for different levels of water scarcity, salinity and levels of water loss.

  2. Fruit yield and root system distribution of 'Tommy Atkins' mango under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Marcelo R. dos Santos

    2014-04-01

    Full Text Available This study aimed to evaluate the fruit yield and the distribution of 'Tommy Atkins' mango root system under different irrigation regimes in the semiarid region of Bahia. The experimental design was completely randomized with five treatments and three replicates: 1 - Irrigation supplying 100% of ETc in phases I, II and III; 2 - Regulated deficit irrigation (RDI supplying 50% of ETc in phase I (beginning of flowering to early fruit growth; 3 - RDI supplying 50% ETc in phase II (start of expansion until the beginning of physiological maturity; 4 - RDI supplying 50% ETc in phase III (physiological mature fruits; 5 - No irrigation during all three phases. The regulated deficit irrigation supplying 50% of the ETc during phase I and II provided larger root length density of 'Tommy Atkins' mango. Regardless of management strategy, the roots were developed in all evaluated soil volume and the highest density is concentrated from 0.50 to 1.50 m distance from the trunk and in 0.20 to 0.90 m depth in the soil, that suggests this region to be the best place for fertilizer application as well for soil water sensor placement. The application of RDI during fruit set does not influence either root distribution or production. Root system and crop production is significantly reduced under no irrigation conditions.

  3. Impacts of crop insurance on water withdrawals for irrigation

    Science.gov (United States)

    Deryugina, Tatyana; Konar, Megan

    2017-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, crop insurance may have unintended consequences for water resources sustainability, as the vast majority of freshwater withdrawals go to agriculture. The causal impact of crop insurance on water use in agriculture remains poorly understood. Here, we determine the empirical relationship between crop insurance and irrigation water withdrawals in the United States. Importantly, we use an instrumental variables approach to establish causality. Our methodology exploits a major policy change in the crop insurance system - the 1994 Federal Crop Insurance Reform Act - which imposed crop insurance requirements on farmers. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, with most coming from groundwater aquifers. We identify farmers growing more groundwater-fed cotton as an important mechanism contributing to increased withdrawals. A 1% increase in insured crop acreage leads to a 0.624% increase in cotton acreage, or 95,602 acres. These results demonstrate that crop insurance causally leads to more irrigation withdrawals. More broadly, this work underscores the importance of determining causality in the water-food nexus as we endeavor to achieve global food security and water resources sustainability.

  4. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  5. Chemical colostomy irrigation with glyceryl trinitrate solution.

    Science.gov (United States)

    O'Bichere, A; Bossom, C; Gangoli, S; Green, C; Phillips, R K

    2001-09-01

    Colostomy irrigation may improve patient quality of life, but is time consuming. This study tests the hypothesis that irrigation with glyceryl trinitrate solution, by inducing gastrointestinal smooth muscle relaxation, may accelerate expulsion of stool by passive emptying, thereby reducing irrigation time. Fifteen colostomy irrigators(with more than 3 years' experience) performed washout with tap water compared with water containing 0.025 mg/kg glyceryl trinitrate. Fluid inflow time, total washout time, and hemodynamic changes occurring during glyceryl trinitrate irrigation were documented by an independent observer. Subjects recorded episodes of fecal leakage and overall satisfaction on a visual analog scale. Cramps, headaches, and whether or not a stoma bag was used were expressed as a percentage of number of irrigations. Comparison of fluid inflow time, total washout time, leakage, and satisfaction was by Wilcoxon's signed-rank test and headaches, cramps, and stoma bag use was by McNemar's test. Pulse rate (paired t-test), systolic and diastolic blood pressures (Wilcoxon's test) at 20 and 240 minutes after washout with glyceryl trinitrate solution were compared with baseline. Fifteen patients (9 female), with a mean age of 53 (31-73) years, provided 30 sessions (15 with water and 15 with glyceryl trinitrate). Medians (interquartile ranges) for water vs. glyceryl trinitrate were fluid inflow time 7 (4-10) vs. 4, (3-5; P = 0.001); total washout time 40 (30-55) vs. 21, (15-24; P colostomy irrigation time compared with the generally recommended tap water. Patients suffer fewer leakages and are highly satisfied, but side effects are potential drawbacks. Other colonoplegic agent solutions should now be evaluated.

  6. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  7. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  8. The effect of irrigation time and type of irrigation fluid on cartilage surface friction.

    Science.gov (United States)

    Stärke, F; Awiszus, F; Lohmann, C H; Stärke, C

    2018-01-01

    It is known that fluid irrigation used during arthroscopic procedures causes a wash-out of lubricating substances from the articular cartilage surface and leads to increased friction. It was the goal of this study to investigate whether this effect depends on the time of irrigation and type of fluid used. Rabbit hind legs were used for the tests. The knees were dissected and the friction coefficient of the femoral cartilage measured against glass in a boundary lubrication state. To determine the influence of irrigation time and fluid, groups of 12 knees received either no irrigation (control), 15, 60 or 120min of irrigation with lactated Ringer's solution or 60min of irrigation with normal saline or a sorbitol/mannitol solution. The time of irrigation had a significant effect on the static and kinetic coefficient of friction (CoF), as had the type of fluid. Longer irrigation time with Ringer's solution was associated with increased friction coefficients (relative increase of the kinetic CoF compared to the control after 15, 60 and 120min: 16%, 76% and 88% respectively). The sorbitol/mannitol solution affected the static and kinetic CoF significantly less than either Ringer's or normal saline. The washout of lubricating glycoproteins from the cartilage surface and the associated increase of friction can be effectively influenced by controlling the time of irrigation and type of fluid used. The time of exposure to the irrigation fluid should be as short as possible and monosaccharide solutions might offer a benefit compared to salt solutions in terms of the resultant friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  10. Regulations of irrigation on regional climate in the Heihe watershed, China, and its implications to water budget

    Science.gov (United States)

    Zhang, X.

    2015-12-01

    In the arid area, such as the Heihe watershed in Northwest China, agriculture is heavily dependent on the irrigation. Irrigation suggests human-induced hydro process, which modifies the local climate and water budget. In this study, we simulated the irrigation-induced changes in surface energy/moisture budgets and modifications on regional climate, using the WRF-NoahMP modle with an irrigation scheme. The irrigation scheme was implemented following the roles that soil moisture is assigned a saturated value once the mean soil moisture of all root layers is lower than 70% of fileld capacity. Across the growth season refering from May to September, the simulated mean irrigation amount of the 1181 cropland gridcells is ~900 mm, wihch is close to the field measurments of around 1000 mm. Such an irrigation largely modified the surface energy budget. Due to irrigation, the surface net solar radiation increased by ~76.7 MJ (~11 Wm-2) accouting for ~2.3%, surface latent and senbile heat flux increased by 97.7 Wm-2 and decreased by ~79.7 Wm-2 respectively; and local daily mean surface air temperature was thereby cooling by ~1.1°C. Corresponding to the surface energy changes, wind and circulation were also modified and regional water budget is therefore regulated. The total rainfall in the irrigation area increased due to more moisture from surface. However, the increased rainfall is only ~6.5mm (accounting for ~5% of background rainfall) which is much less than the increased evaporation of ~521.5mm from surface. The ~515mm of water accounting for 57% of total irrigation was transported outward by wind. The other ~385 mm accounting for 43% of total irrigation was transformed to be runoff and soil water. These results suggest that in the Heihe watershed irrigation largely modify local energy budget and cooling surface. This study also implicate that the existing irrigation may waste a large number of water. It is thereby valuable to develope effective irrigation scheme to

  11. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2008-06-01

    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  12. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-06-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  13. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-03-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  14. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils.

    Science.gov (United States)

    Müller, K; Duwig, C; Prado, B; Siebe, C; Hidalgo, C; Etchevers, J

    2012-01-01

    In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.

  15. Effect of Water Quality and Drip Irrigation Management on Yield and Water Use Efficiency in Late Summer Melon

    Directory of Open Access Journals (Sweden)

    javad baghani

    2016-02-01

    germinations in the fresh water treatments. However, with increased water salinity, the time of seed germination reduced. The maximum delay in germination of seeds was in the treatment that was irrigated with fresh water from the beginning of cultivation. Number of flowers: First, the male flowers appeared and after 5 to 7 days, the appearance of female flowers began. The effect of irrigation treatments on female flower appearance was significant. With increased water salinity, the number of male flowers decreased. There was the lowest male flower in the treatment that was irrigated with saline water from the beginning, but there was no significant difference among the other treatments. Root, steam and leaves: The effect of saline irrigation water on dried leaves’ weight and dry root weight was significant at 1% and 5% levels, respectively. Fresh treatment and salinity treatment have the least and the most root dries weight, respectively (irrigated from the beginning with fresh or saline water. Two treatments that were irrigated with fresh and brackish water from thebeginning of cultivation have the highest leaf growth. The same trend was true for steams. In general, in all treatments, after applying different quality water to the end of the growing season, the trend of plant growth was similar to the others. Chlorophyll: One of the most common measurements made by plant scientists is the determination of Chlorophyll concentration. The SPAD index was used for comparison of chlorophylls. With an increase of the salt in irrigation water, the SPAD index was also increased. The maximum and minimum SPAD was in the treatments that were irrigated with saline water (treatment A and fresh water (treatment C from the beginning of cultivation, respectively. Yield: With increasing the salinity of water, the total yield decreased. Salinity in irrigation water had a significant effect (at the 5% level on total yield. The mean yield of brackish and salinity irrigation water treatments were

  16. Effect of Subsurface Irrigation with Porous Clay Capsules on Quantitative and Quality of Grape Plant

    Directory of Open Access Journals (Sweden)

    H. Ghorbani Vaghei

    2016-02-01

    Full Text Available Introduction: Maintaining soil moisture content at about field capacity and reducing water loss in near root zone plays a key role for developing soil and water management programs. Clay pot or porous pipe is a traditional sub-irrigation method and is ideal for many farms in the world’s dry land with small and medium sized farms and gardens and is still used limitedly in dry lands of India, Iran, Pakistan, the Middle East, and Latin-America. Clay capsule is one of porous pipes in sub irrigation that is able to release water in near root zone with self- regulative capacity. Watering occurs only in amounts that the plants actually need (this amount is equal to field capacity and released water in near root zone without electricity or use of an automatic dispenser. Materials and Methods: A study was carried out in 2013 on the experimental field of agriculture faculty of Tarbiat Modares University, to study the effect of two irrigation types on qualitative and quantitative characters in grape production (Vitis vinifera L.. In order to provide the water requirement of grape plant were used porous clay capsules for sub irrigation with height and diameter of 12 cm and 3.5 cm and dripper with Neta film type for drip irrigation, respectively. Porous clay capsules provided from soil science group at Tarbiat Modares University. In this research, the volume of water delivered to grape plants during entire growth period in two different irrigation methods was measured separately with water-meters installed at all laterals. The water consumption, yield production and water use efficiency were evaluated and compared in two drip and porous clay irrigation systems at veraison phonological stages. In the veraison stages, cluster weight, cluster length, solid solution and pH content were measured in grape fruits. Leaf chlorophyll content and leaf water content were also measured in two irrigation systems. Results and Discussion: The results of fruit quality

  17. Potato yield and yield structure depending on irrigation

    Directory of Open Access Journals (Sweden)

    Milić Stanko

    2010-01-01

    Full Text Available In the agroclimatic conditions of the Vojvodina Province, the application of an economic water regime and modern technology is necessary for stable and intensive potato production. A two-year experiment on calcareous chernozem was carried out to determine how irrigation and different pre-irrigation soil moisture affect potato yield and distribution of tuber fraction in the potato yield. The block-design trial had four replicates and was adapted for sprinkler irrigation conditions. It included four treatments: irrigation with pre-irrigation moisture levels of 60 % of field water capacity (FC, irrigation with pre-irrigation moisture levels of 70 % (FC, irrigation with pre-irrigation moisture levels of 80% (FC, and a non-irrigated control treatment. Irrigation significantly increased the yield of potato, which increased from 37.27 % to 75.86 %. Under irrigation, the percentage of small fractions decreased in favour of the 55 mm one, or fractions above the 45-55 mm range. On average, irrigated treatments produced significantly more tubers than the conditions of natural water supply. .

  18. Coil irrigation in sugar cane (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Jesús Sánchez Gutiérrez

    2016-01-01

    Full Text Available This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the exploitation scheme. The machine´s working parameters were determined to meet the water needs, and increase crop´s overall yields. The evaluations and results achieved have contributed to new proposals for management and operation of coil irrigation, and they are important to increase its efficiency.

  19. Soil salinity under deficit drip irrigation of potato and millet in in an arid environment

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2017-06-01

    Full Text Available The influence of deficit irrigation (DI with saline water on soil salinity in a drip-irrigated potato and millet fields was investigated. We had compared proportional soil salinity developed under Full and DI under drip irrigation. For both experiments, the treatments were (1 Full, control treatment where rooting zone soil water content was increased to field capacity at each irrigation; (2 DI80; (3 DI60 and DI40; 20, 40 and 60% deficit irrigation compared to Full treatment were applied, respectively. Soil salinity was assessed using the isosalinity maps constructed with grid soil sampling of plant root zone at harvest. Results show that high spatial variability was observed in salinity along soil profiles when applying saline water with drip irrigation for potato. For the DI40 and DI60 treatments, high soil salinity was recorded in the upper soil layer close to the emitter. Increase of soil salinity within soil depths of 30 cm or below was also observed under DI60 and DI40 treatments. The lowest increase was noted under the full treatment. Surface soil salinity was somewhat higher under DI60 and DI40 compared with that of full and DI80 irrigation treatments. The distribution of salts around the dripper changes during the crop season according to applied irrigation treatments, with overall higher concentrations between the drippers and towards the margin of wetted band. Iso-salinity maps at harvest of potato showed that the surface layer of 30 cm depth had the lowest salinity which gradually increased at deeper zones irrespective of the treatment. Salt accumulation essentially occurred at wetting front between the drippers and the plant row. Although salt accumulation was relatively highest along the row under DI treatments, the area of accumulation was relatively shifted toward the center between the rows and the drip line. The results also show the importance of the potato cropping season to benefit from the leaching of soluble salts with the

  20. Evaluation of mulched drip irrigation for cotton in arid Northwest China

    NARCIS (Netherlands)

    Wang, Z.; Jin, M.; Simunek, J.; van Genuchten, M.T.

    2014-01-01

    Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control

  1. Irrigation by night’ in the Eastern Cape, South Africa

    NARCIS (Netherlands)

    Horst, van der Bram; Hebinck, P.G.M.

    2017-01-01

    This paper addresses water-related issues in the Eastern Cape, South Africa. Irrigation development and providing water for human consumption have been key factors in the country’s rural development planning, notably during the post-apartheid era when the Reconstruction and Development Programme

  2. Incentives and technologies for improving irrigation water use efficiency

    Science.gov (United States)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  3. A Dynamic Decision Support System for Farm Water Management in Surface Irrigation: Model Development and Application Un Sistema de Soporte Dinámico de Decisión para la Gestión de Agua Predial en Riego Superficial: Desarrollo y Aplicación del Modelo

    Directory of Open Access Journals (Sweden)

    Carlos I. Flores

    2010-06-01

    Full Text Available An online dynamic decision support system (DDSS was developed, to support the farm water management in surface irrigation. The online DDSS was based on the formulation and integration of three components: a dynamic-relational data base, an administrator model, and a graphical user interface. The DDSS allows routines of actualization, edition and addition of online data, providing information in real time. The online DDSS was applied in an orange orchard (Citrus sinensis L. Osbeck cv. Valencia Late under furrow irrigation. The results pointed out that the time irrigation cutoff was the main significant management factor, to decrease the hazard of leaching, superficial runoff and percolation. Applying the results obtained with the DDSS, furrow irrigation efficiencies could be improved up to values equals to 95.89% for application efficiency and 94.61% for total distribution efficiency. As a conclusion, the DDSS demonstrated to be a useful tool to assist the decision making process, providing proper information for the management of the available water resource at farm level.Se desarrolló un sistema de soporte dinámico de decisión (SSDD en línea, con el objetivo de asistir la gestión del agua predial en riego superficial. El SSDD en línea se basó en la formulación e integración de tres componentes: una base de datos relacional dinámica, un modelo administrador y una interfaz gráfica de usuario. El SSDD permite rutinas de actualización, edición y adición de información en línea, proporcionando información en tiempo real. El SSDD en línea se aplicó en un huerto de naranjos (Citrus sinensis L. Osbeck cv. Valencia Late bajo riego por surcos. Los resultados indicaron que el tiempo de corte es la variable significativa de decisión para disminuir el riesgo de lixiviación, escorrentía superficial y percolación. Aplicando los resultados obtenidos con el SSDD, las eficiencias del riego por surco podrían mejorarse, alcanzando valores

  4. Crescimento e desenvolvimento da cultura do melão sob diferentes lâminas de irrigação e salinidade da água Growth and development of the melon crop under different irrigation depths and water salinity

    Directory of Open Access Journals (Sweden)

    Carlos H. de A. Farias

    2003-12-01

    Full Text Available Avaliar o crescimento, o desenvolvimento foliar e o acúmulo de matéria seca da cultura de melão ‘Gold mine’, submetido a diferentes lâminas de irrigação, utilizando-se água com dois níveis de salinidade, foi o objetivo deste trabalho. O experimento foi conduzido em condições de campo, na Fazenda São João, município de Mossoró, RN, cujo delineamento experimental adotado foi o de blocos casualizados, em esquema fatorial 6 x 2. Os tratamentos consistiram na introdução de seis lâminas de irrigação (0,55; 0,70; 0,85; 1,00; 1,15 e 1,30 da evapotranspiração máxima da cultura e dois níveis de salinidade da água de irrigação 0,55 e 2,65 dS m-1. A falta de água no período crítico afetou significativamente o restante do ciclo da cultura, causando decréscimo, no peso da fitomassa seca, para lâminas abaixo do tratamento da lâmina padrão (266 mm. O acúmulo de fitomassa foi afetado pela água de maior salinidade (2,65 dS m-1 ao longo de todo ciclo.The aim of this study was to evaluate the growth, vegetative development and accumulation of dry matter of the "Gold mine" melon submitted to different depths of irrigation using two levels of salinity. The experiment was conducted under field conditions at Fazenda São João, Mossoró, RN, in random blocks and 6 x 2 factorial experimental design. The treatments consisted of 6 depths of irrigation (0.55; 0.70; 0.85; 1.00; 1.15; 1.3 of the maximum crop evapotranspiration and two levels of salinity of the irrigation water (0.55 and 2.65 dS m-1. The absence of water in the critical period significantly affected the rest of the cycle, causing decrease in the dry weight in the treatment of irrigation depth considered as of the most appropriate depth (266 mm. The water of higher salinity (2.65 dS m-1 affected the accumulation of dry matter in the cycle.

  5. Application of near-surface geophysics as part of a hydrologic study of a subsurface drip irrigation system along the Powder River floodplain near Arvada, Wyoming

    Science.gov (United States)

    Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.

    2014-01-01

    Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near

  6. to Irrigation Intervals and Plant Density in Zuru, Northern Guinea

    African Journals Online (AJOL)

    ISSN 0794-5698. Response of Onion (Allium cepa L.) to Irrigation Intervals and Plant Density in ... The treatments were laid out in a split plot design with three replications. Irrigation ..... System and Agronomic Practice in. Tropical Climates.

  7. Low Cost Constant – Head Drip Irrigation Emitter for Climate ...

    African Journals Online (AJOL)

    Low Cost Constant – Head Drip Irrigation Emitter for Climate Change Adaptation in Nigeria: Engineering Design and Calibration. ... The drip system comprises of abarrel, sub-main line, lateral lines, tubes and emitters, it can irrigate140 crop ...

  8. Influence of local topography on precision irrigation management

    Science.gov (United States)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  9. Modernisation strategy for National Irrigation Systems in the Philippines

    NARCIS (Netherlands)

    Delos Reyes, Mona Liza Fortunado

    2017-01-01

    The performance of publicly funded canal irrigation systems or more commonly called national irrigation systems (NIS) in the Philippines remained below expectations despite considerable system rehabilitation and improvement efforts. The continued suboptimal performances were attributed to

  10. Evaluation some Forage Legumes in Limited Irrigation Condition

    Directory of Open Access Journals (Sweden)

    Hassan Moniri Far

    2015-11-01

    Full Text Available Forage legumes respond differently to limited irrigation regimes. Their evaluation may, thus, help to select drought tolerant types for limited irrigation conditions. In this study four type of forage legume were studied for two years in Tikma-Dash Research Station of East Azarbaijan Agricultural and Natural Research Center, Tabriz, Iran, in a randomized complete block design using split-plot experiment in 2011-2013 years. Irrigation regimes (without irrigation, one irrigation and two irrigations were assigned to main plots and four forage types (hairy vetch, grass pea, Pannonica sativa and lathyrus were assigned to subplots. The results of analysis of variance showed that the effect of irrigation on plant height, number of shoots, leaf area and plant fresh and dry weights were not significant. Howere, legume types affected these traits significantly (P≤0.01. The effect of irrigation levels and legume types on protein content of hay were significant (P

  11. Heavy metals accumulation in edible part of vegetables irrigated ...

    African Journals Online (AJOL)

    Hassana Ibrahim Mustapha

    water quality and permissible levels of metals in food and water. It revealed that the heavy .... irrigation with partially treated or untreated sewage. This was reported by .... Reuse of domestic grey water for irrigation of food crops, unpublished ...

  12. Is the Revitalisation of Smallholder Irrigation Schemes (RESIS ...

    African Journals Online (AJOL)

    2013-09-30

    Sep 30, 2013 ... including rainwater harvesting, flood recession, flood water spreading, river ... Smallholder irrigation systems can comprise farmers who use shared or ...... on Irrigation and Drainage, 15-17 November 2006, Aventura. Swadini.

  13. Economic Analysis of Crop Production under Jibiya Irrigation Project ...

    African Journals Online (AJOL)

    Majority of the farmers were married and can read and write. Most of ... The performance of the farmers, though ... holder irrigation dependent on the shadoof system of lifting water as .... implies that in Jibiya Irrigation Project, women were not.

  14. Performance of arthroscopic irrigation systems assessed with automatic blood detection

    NARCIS (Netherlands)

    Tuijthof, G. J. M.; de Vaal, M. M.; Sierevelt, I. N.; Blankevoort, L.; van der List, M. P. J.

    2011-01-01

    During arthroscopies, bleeding episodes occur as a result of tissue damage. Irrigation systems assist in minimizing these disturbances. The performance of three arthroscopic irrigation systems in clearing bleeding episodes was evaluated objectively. One surgeon performed 99 shoulder arthroscopies

  15. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    Impact of upstream industrial effluents on irrigation water quality, soils and ... Knowledge of irrigation water quality is critical to predicting, managing and reducing salt ... Presence of heavy metals in concentration higher than the recommended ...

  16. Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh

    Directory of Open Access Journals (Sweden)

    Najmul Hoque

    2016-02-01

    Dec 15, 2015; Accepted February 2, 2016; Available online How to Cite This Article: Hoque, N., Roy, A., Beg, M.R.A. and Das, B.K. (2016 Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh. Int. Journal of Renewable Energy Development, 5(1, 73-78. http://dx.doi.org/10.14710/ijred.5.1.73-78 

  17. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  18. Numerical assessment of water-saving irrigation on the water cycle at the oasis of the Manas River Basin

    OpenAIRE

    he

    2018-01-01

    As the birthplace of water-saving technology under mulch drip irrigation in China, the Manas River Basin (MRB) has developed into the largest oasis farming area in Xinjiang and the fourth largest irrigated agricultural area in China. This study presents systematic evaluation the effect of water-saving technologies on precipitation, runoff, infiltration and evapotranspiration in this basin. A model of the regional water cycle was developed for quantitatively assessing groundwater balance and g...

  19. Drip Irrigation for Commercial Vegetable and Fruit Production

    OpenAIRE

    Maughn, Tiffany; Allen, Niel; Drost, Dan

    2017-01-01

    Drip irrigation is a highly efficient irrigation method well suited to many fruit and vegetable row crops. Drip tubing or tape discharges water to the soil through emitters positioned close to the plant. The drip tubing can be placed uncovered on the soil surface, under plastic mulch, buried in the soil, or suspended above the ground (e.g., on a trellis system). Water application rate is relatively low and irrigations are usually frequent. Properly designed and maintained drip-irrigation syst...

  20. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  1. Soil and water management in spate irrigation systems in Eritrea

    NARCIS (Netherlands)

    Hadera, M.T.

    2001-01-01

    Spate irrigation has been practised over 100 years in the Red Sea coastal zone of Eritrea such as the Sheeb area. Main problem of the spate irrigation system is water shortage caused by irregular rainfall in the highlands of Eritrea and breaching of the irrigation structures by destructive

  2. Potentials for Supplemental Irrigation in Some Rainfall Areas of Imo ...

    African Journals Online (AJOL)

    In addition, there were up to five months of the year during which rainwater was much in deficit of evapotranspiration. All these stress the need for irrigation. Analysis of water quality (surface, groundwater, and rainfall runoff) showed their suitability for irrigation. Quantity assessment of supplemental irrigation during the dry ...

  3. Greenhouse evaluation of deficit irrigation on the growth of tomato ...

    African Journals Online (AJOL)

    Deficit irrigation is considered to be an important approach for crop cultivation in dry regions where water resources are scarce. Deficit irrigation can be used also to decrease the level of infections by some moisturedependent plant pests and diseases such as root-knot nematode disease. Therefore, deficit irrigation at levels ...

  4. Field evaluation of deficit irrigation effects on tomato growth ...

    African Journals Online (AJOL)

    Two field experiments were conducted using a common tomato cultivar (GS12) to assess the effect of deficit irrigation (DI) regimes on tomato growth performance, and on root-knot nematode Meloidogyne javanica galling and abundance. Irrigation treatments consisted of five irrigation regimes: 20%, 40%, 60%, 80% and ...

  5. The impact of smallholder irrigation on household welfare: The case ...

    African Journals Online (AJOL)

    The potential of smallholder irrigated agriculture to enhance food security and alleviate rural poverty has led the South African Government to prioritise and invest significantly in irrigation establishment, rehabilitation and revitalisation. The question addressed in this study pertains to the extent to which smallholder irrigation ...

  6. Effects of seven different irrigation techniques on debris and the ...

    African Journals Online (AJOL)

    Aim: Conventional manual irrigation with a syringe and needle remains widely accepted technique in the irrigation procedures. However, its flushing action has some limitations. Currently, several techniques and systems are available and reported to improve the insufficiency of syringe irrigation. The aim of this study was to ...

  7. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  8. Evaluation of potential water conservation using site-specific irrigation

    Science.gov (United States)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  9. Scheduling irrigation for jujube ( Ziziphus jujuba Mill. ) | Zhang ...

    African Journals Online (AJOL)

    This study was performed to select suitable indicator for scheduling the irrigation of jujube (Ziziphus jujuba Mill.) grown in the Loess Plateau. The relationships between plant-based indicators and soil matrix potential as well as meteorological factors of jujube under deficit irrigation compared with well irrigation were ...

  10. Limited irrigation research and infrared thermometry for detecting water stress

    Science.gov (United States)

    The USDA-ARS Limited Irrigation Research Farm, located outside of Greeley Colorado, is an experiment evaluating management perspectives of limited irrigation water. An overview of the farm systems is shown, including drip irrigation systems, water budgeting, and experimental design, as well as preli...

  11. Tracking antibiotic resistance genes in soil irrigated with dairy wastewater

    Science.gov (United States)

    In southern Idaho, the application of dairy wastewater to agricultural soils is a widely used practice to irrigate crops and recycle nutrients. In this study, small-scale field plots were irrigated monthly (6 times) with dairy wastewater (100%), wastewater diluted to 50% with irrigation (canal) wate...

  12. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    Science.gov (United States)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to

  13. Optimal crop selection and water allocation under limited water supply in irrigation

    Science.gov (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  14. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  15. Irrigation scheduling using soil moisture sensors

    Science.gov (United States)

    Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...

  16. Measurement Of Technical Efficiency In Irrigated Vegetable ...

    African Journals Online (AJOL)

    This study measured technical efficiency and identified its determinants in irrigated vegetable production in Nasarawa State of Nigeria using a stochastic frontier model. A complete enumeration of 193 NADP-registered vegetable farmers was done. The predicted farm technical efficiency ranges from 25.94 to 96.24 per cent ...

  17. CORRELATION AMONG FLUORIDE AND METALS IN IRRIGATION ...

    African Journals Online (AJOL)

    Preferred Customer

    The levels of fluoride and selected metals in Ethiopian Rift Valley soils and irrigation water in the nearby sources were ... exhaust fumes, process waters and waste from various industrial processes [1]. The uses of ... into four sub-systems: Lake Rudolf, Chew Bahir, the Main Ethiopian Rift (MER) and the Afar. The seismically ...

  18. Irrigation performance assessment in Crimea, Ukraine

    NARCIS (Netherlands)

    Pavlov, S.S.; Roerink, G.J.; Hellegers, P.J.G.J.; Popovych, V.F.

    2006-01-01

    After the collapse of the Soviet Union the performance of irrigated agriculture decreased drastically in Ukraine, due to problems related to the transition from a centrally planned economy to a market economy. Before formulating recommendations on required actions to modify this problematic

  19. Irrigation management of muskmelon with tensiometry

    Directory of Open Access Journals (Sweden)

    Márcio José de Santana

    2017-11-01

    Full Text Available The production and consumption of muskmelon have been increasing (MELO et al., 2014, thus, information on techniques for higher field productions are necessary. The experiment described in the present work was conducted in the IFTM, Uberaba, State of Minas Gerais, Brazil, aiming to evaluate the muskmelon yield under different soil water tensions. A randomized block experimental design was used with five treatments (soil water tensions of 10, 20, 30, 40 and 50 kPa and four replications (plots of two rows of 14 plants. Two harvests were carried out and the fruit yield, stem diameter, number of fruits per plant and efficiency of water use were evaluated. Irrigation was performed with a drip irrigation system and managed with tensiometry. The cultivar Bonus n.2 was used with spacing of 1.0 x 0.6 m. The data of the variables were subjected to the F test and regression test. The treatments showed statistical differences in number of fruits per plant, fruit weight (fruit yield and stem diameter. The highest fruit yield found was 1.36 kg fruit-1 and the highest water use efficiency was 4.08 g mm-1 with irrigation for a soil water tension of 10 kPa. The lowest fruit yield was found with irrigation for a soil water tension of 50 kPa.

  20. New soil water sensors for irrigation management

    Science.gov (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  1. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  2. Strategies of smallholder irrigation management in Zimbabwe

    NARCIS (Netherlands)

    Manzungu, E.

    1999-01-01

    The smallholder irrigation sub-sector in Zimbabwe, according to literature sources, is under threat due to what are called management problems. Poor water management and low crop yields have been cited, as has also been poor financial and economic viability, resulting in heavy government

  3. Reuse of drainage water from irrigated areas

    NARCIS (Netherlands)

    Willardson, L.S.; Boels, D.; Smedema, L.K.

    1997-01-01

    Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the

  4. The efficiency of drip irrigation unpacked

    NARCIS (Netherlands)

    Kooij, van der S.; Zwarteveen, M.Z.; Boesveld, H.; Kuper, M.

    2013-01-01

    Drip irrigation figures prominently in water policy debates as a possible solution to water scarcity problems, based on the assertion that it will improve water use efficiencies. We use this article to carefully trace the scientific basis of this assertion. Through a systematic review of the

  5. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  6. Scheduling irrigation for jujube (Ziziphus jujuba Mill.)

    African Journals Online (AJOL)

    USER

    2010-08-30

    Aug 30, 2010 ... indicators for diagnosing plant water information, but it is troublesome to measure leaf water potential using a pressure chamber (Turner, 1981). It is also difficult to achieve automatic and continuous records with the pressure chamber. Definition of threshold values of soil moisture for irrigation management ...

  7. Prospects and Constraints of Household Irrigation Practices ...

    African Journals Online (AJOL)

    Water and soil samples were analyzed for major cations and anions, ... So, attention and investment in these areas have been very limited in Africa and ... The shape of the watershed is almost elliptical (Fig. 1). 2.1. Soil. Texturally ..... quality of the irrigation water, soil factors such as structure, degree of compaction, organic.

  8. Evaluation of sanitary quality of lettuce (Lactuca sativa, L. irrigated with reused water in comparison with commercialized lettuce

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2011-08-01

    Full Text Available Inadequate use of water resources reduces their availability and therefore, research focused on their reutilization is required. This work evaluated the sanitary quality of lettuce irrigated with reused water in comparison with samples of lettuce commercialized in Taubaté (SP market. An experiment was developed in a greenhouse with three beds of lettuce irrigated with reused water and three beds of lettuce irrigated with urban water supply. After lettuce biological cycle had been completed, lettuce samples were collected from the beds (irrigated and non-irrigated with reused water and from samples of lettuce commercialized in the city market that were analyzed in the laboratory. The analyses were done using the multiple tubes methodology. The results showed that the samples from lettuce irrigated with urban water supply were not contaminated by either total or thermotolerant coliforms while samples of irrigated lettuce with reused water were contaminated by total coliforms. Samples from commercialized lettuce were contaminated by both kinds of coliforms. Results indicated that the application of reused water for agricultural purposes should occur only after carefully treatment to allow a safe use and to contribute to the water use sustainability.

  9. Comparing Sprinkler and Surface Irrigation for Wheat Using Multi-Criteria Analysis: Water Saving vs. Economic Returns

    Directory of Open Access Journals (Sweden)

    Hanaa Darouich

    2017-01-01

    Full Text Available Coping with water scarcity using supplemental irrigation of wheat (Triticum aestivum L. in the semi-arid northeast Syria is a great challenge for sustainable water use in agriculture. Graded borders and set sprinkler systems were compared using multi-criteria analysis. Alternative solutions for surface irrigation and for sprinkler systems were developed with the SADREG and the PROASPER design models, respectively. For each alternative, two deficit irrigation strategies were considered, which were characterized using indicators relative to irrigation water use, yields and water productivity, including farm economic returns. Alternatives were ranked considering two contrasting priorities: economic returns and water saving. A first step in ranking led to a selection of graded borders with and without precise land levelling and of solid set and semi-permanent sprinkler systems. Precise-levelled borders were better for water saving, while non-precise ones ranked higher for economic returns. Semi-permanent set systems have been shown to be better in economic terms and similar to solid set systems when water saving is prioritized. Semi-permanent sprinkler systems rank first when comparing all type of systems together regardless of the considered deficit irrigation strategy. Likely, border irrigation is appropriate when wheat is in rotation with cotton if the latter is surface irrigated. When peace becomes effective, appropriate economic incentives and training for farmers are required to implement innovative approaches.

  10. Influence of a deficit irrigation regime during ripening on berry composition in grapevines (Vitis vinifera L.) grown in semi-arid areas.

    Science.gov (United States)

    López, María-Isabel; Sánchez, María-Teresa; Díaz, Antonio; Ramírez, Pilar; Morales, José

    2007-11-01

    A study was made of the effects of irrigation management strategies during ripening on the quality of Spanish field-grown grapevine (Vitis vinifera L.) cultivars (Baladi, Airén, Montepila, Muscat Blanc à Petits Grains and Pedro Ximénez) grown under the "Montilla-Moriles" Appellation of Origin in Cordoba, Spain. From 1999 to 2002, two water-availability regimes were established: irrigation and non-irrigation. The study aimed to ascertain the effect of irrigation on berry development and ripening, and hence on grape juice quality. Changes in phenological stages, vegetative growth, vineyard yield, berry weight, total soluble solids, titrable acidity, pH, tartaric acid, malic acid, and potassium content were monitored. No significant differences were noted in phenological phases between the non-irrigation and deficit irrigation regimes. The Ravaz index, pruning weight, vineyard yield and berry weight were significantly higher in all varieties and years under deficit irrigation. Deficit irrigation induced higher titrable acidity, higher malic acid and potassium contents and a lower pH, but had no significant effects on berry sugar accumulation or tartaric acid content. Deficit irrigation thus appears to be a promising technique for the production of quality young wines in semi-arid areas.

  11. Evaluation of hydraulic performance of downstream-controlled Maira-PHLC irrigation canals under crop-based irrigation operations

    NARCIS (Netherlands)

    Munir, S.; Schultz, B.; Suryadi, F.X.; Bharati, L.

    2012-01-01

    Demand-based irrigation systems are operated according to crop water requirements. As crop water requirements remain variable throughout the growing season, the discharges in the canal also vary to meet demands. The irrigation system under study is a demand-based semi-automatic irrigation system,

  12. Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA

    Science.gov (United States)

    The use of irrigation scheduling tools to produce cotton under-surface irrigation in the arid southwesternUSA is minimal. In the State of Arizona, where traditional irrigation scheduling is the norm, producersuse an average of 1460 mm annually to grow a cotton crop. The purpose of this paper was to ...

  13. Real-time drought forecasting system for irrigation managment

    Science.gov (United States)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Masseroni, Daniele; Meucci, Stefania; Pala, Francesca; Salerno, Raffaele; Meazza, Giuseppe; Chiesa, Marco; Mancini, Marco

    2013-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in in European areas traditionally rich of water such as the Po Valley. In dry periods, the problem of water shortage can be enhanced by conflictual use of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective on this issue is increasing due to climate change and global warming scenarios which come out from the last IPCC Report. The increased frequency of dry periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system Pre.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction at long range (30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin. The studied area covers 74,000 ha in the middle of the Po Valley, near the city of Lodi. The hydrological ensemble forecasts are based on 20 meteorological members of the non-hydrostatic WRF model with 30 days as lead-time, provided by Epson Meteo Centre, while the hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The hydrological model was validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station. Reliability of the forecasting system and its benefits was assessed on some cases-study occurred in the recent years.

  14. Information Technology Supports Integration of Satellite Imagery with Irrigation Management in California's Central Valley

    Science.gov (United States)

    Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...

  15. When should irrigators invest in more water-efficient technologies as an adaptation to climate change?

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.

    2015-12-01

    The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that

  16. Decision-making in irrigation networks: Selecting appropriate canal structures using multi-attribute decision analysis.

    Science.gov (United States)

    Hosseinzade, Zeinab; Pagsuyoin, Sheree A; Ponnambalam, Kumaraswamy; Monem, Mohammad J

    2017-12-01

    The stiff competition for water between agriculture and non-agricultural production sectors makes it necessary to have effective management of irrigation networks in farms. However, the process of selecting flow control structures in irrigation networks is highly complex and involves different levels of decision makers. In this paper, we apply multi-attribute decision making (MADM) methodology to develop a decision analysis (DA) framework for evaluating, ranking and selecting check and intake structures for irrigation canals. The DA framework consists of identifying relevant attributes for canal structures, developing a robust scoring system for alternatives, identifying a procedure for data quality control, and identifying a MADM model for the decision analysis. An application is illustrated through an analysis for automation purposes of the Qazvin irrigation network, one of the oldest and most complex irrigation networks in Iran. A survey questionnaire designed based on the decision framework was distributed to experts, managers, and operators of the Qazvin network and to experts from the Ministry of Power in Iran. Five check structures and four intake structures were evaluated. A decision matrix was generated from the average scores collected from the survey, and was subsequently solved using TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method. To identify the most critical structure attributes for the selection process, optimal attribute weights were calculated using Entropy method. For check structures, results show that the duckbill weir is the preferred structure while the pivot weir is the least preferred. Use of the duckbill weir can potentially address the problem with existing Amil gates where manual intervention is required to regulate water levels during periods of flow extremes. For intake structures, the Neyrpic® gate and constant head orifice are the most and least preferred alternatives, respectively. Some advantages

  17. A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Haese, D' M.F.C.; Buysse, J.; Haese, D' L.

    2008-01-01

    This paper analyses the efficiency with which water is used in small-scale irrigation schemes in North-West Province in South Africa and studies its determinants. In the study area, small-scale irrigation schemes play an important role in rural development, but the increasing pressure on water

  18. Farm-Level Optimal Water Management : assistent for irrigation under deficit, second Executive summery report for FP6-European project nr. 036958

    NARCIS (Netherlands)

    Balendonck, J.

    2008-01-01

    FLOW-AID is a 6th Framework European project which started in autumn 2006. Its objective is to contribute to sustainability of irrigated agriculture by developing, testing in relevant conditions, and then optimizing an irrigation management system that can be used at farm level. The system will be

  19. Irrigated Agriculture in Morocco: An Agent-Based Model of Adaptation and Decision Making Amid Increasingly Frequent Drought Events

    Science.gov (United States)

    Norton, M.

    2015-12-01

    In the past 100 years, Morocco has undertaken a heavy investment in developing water infrastructure that has led to a dramatic expansion of irrigated agriculture. Irrigated agriculture is the primary user of water in many arid countries, often accounting for 80-90% of total water usage. Irrigation is adopted by farmers not only because it leads to increased production, but also because it improves resilience to an uncertain climate. However, the Mediterranean region as a whole has also seen an increase in the frequency and severity of drought events. These droughts have had a dramatic impact on farmer livelihoods and have led to a number of coping strategies, including the adoption or disadoption of irrigation. In this study, we use a record of the annual extent of irrigated agriculture in Morocco to model the effect of drought on the extent of irrigated agriculture. Using an agent-based socioeconomic model, we seek to answer the following questions: 1) Do farmers expand irrigated agriculture in response to droughts? 2) Do drought events entail the removal of perennial crops like orchards? 3) Can we detect the retreat of irrigated agriculture in the more fragile watersheds of Morocco? Understanding the determinants of irrigated crop expansion and contractions will help us understand how agro-ecological systems transition from 20th century paradigms of expansion of water supply to a 21st century paradigm of water use efficiency. The answers will become important as countries learn how to manage water in new climate regimes characterized by less reliable and available precipitation.

  20. New Concept of Cultivation Using Limited Strip-Tillage with Strip Shallow Irrigation

    Directory of Open Access Journals (Sweden)

    Yazid Ismi Intara

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE Dry land is one of land resources which potentially used for food crop cultivation, especially in the areas which have light to medium technical obstacles. The development of technology to improve soil quality in marginal lands to be productive lands is still widely open for agricultural development in Indonesia. Rooting medium quality can be improved by changing soil tillage method and observing the proper crop irrigation technology. It can be the solution for crop cultivation in clay loam soil. This study aimed to obtain water movement model in a minimally-tilled clay soil with strip shallow irrigation. The concept is limited soil-tillage with strip shallow irrigation method, water supply technique, and crop water requirement. Method used in this study includes developing water movement model (software development in a minimally-tilled clay soil with subsurface irrigation. In the final stages, research also conducted water movement analysis testing apparatus in the laboratory, field validation of the subsurface irrigation performance, and cultivation technique testing to chili pepper growth (Capsicum annuumL.. The development of water movement simulation on a limited strip-tillage with subsurface irrigation uses the concept to quantify the amount of water in the soil. The analysis of movement pattern was demonstrated on contour patterns. It showed that the wetting process can reach depth zone – 5 cm to the rooting zone. It was an important discovery on the development of minimum stripe tillage soil with subsurface irrigation. Specifically, it can be concluded that: the result of fitting by eyes to diffusivity graphic and water content obtained the required parameter values for soil physical properties. It was then simulated on horizontal water movement model on a minimum strip-tillage with strip shallow irrigation /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso

  1. Influence of irrigation on the occurrence of organic and inorganic pollutants in soil, water and sediments of a Spanish agrarian basin (Lerma)

    Energy Technology Data Exchange (ETDEWEB)

    Abrahao, R.; Sarasa, J.; Causape, J.; Garcia-Garizabal, I.; Ovelleiro, J. L.

    2011-07-01

    In order to understand the several possible environmental impacts caused by irrigation, the existence of a study area under transition from unirrigated to irrigated land is a great advantage. This work investigates the presence of 44 pesticides and metabolites, 11 organo chlorinated compounds, 17 polycyclic aromatic hydrocarbons (PAHs), 13 polychlorinated biphenyls (PCBs), and several metals and metalloids such as Cd, Cr, Cu, Ni, Pb, Zn, As, Se and Hg, in the soil, water and sediments of an agrarian basin in Northeast Spain. The study area was unirrigated until 2006, when irrigation began. The objective of this work was to verify if the first irrigation years influenced the concentrations of the substances and elements analyzed. The main contaminants detected were organo chlorinated compounds, Paths and metals in the soil; atrazine, desethyl atrazine, terbuthylazine, dicofol and pp'-DDT in the water; and PAHs, 1,2,4 trichlorobenzene and metals in the sediments. Until the conclusion of this study, no serious contamination issues existed related to the analyzed substances, and for the moment, irrigation has not significantly influenced the concentrations of such substances in the basin. Nevertheless, slightly elevated punctual values were observed for endrin in the soil, pp'-DDT in the water, and Ni and Zn in the sediments. (Author) 45 refs.

  2. Physiology of ‘Paluma’ guava under irrigation with saline water and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Evandro Manoel da Silva

    2017-05-01

    Full Text Available The use of saline water in irrigation causes osmotic and toxic effects and nutritional imbalance in plants, leading to morphophysiological modifications in the leaves and compromising the production of photosynthetic pigments, which negatively reflects in the growth and development of the crops. Hence, this study aimed to evaluate the effect of irrigation water salinity on the content of photosynthetic pigments and leaf morphophysiology of guava seedlings cv. ‘Paluma’ under nitrogen (N fertilization. A randomized block design was used, testing five levels of irrigation water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1 and four N doses (541.1, 773.0, 1,004.9, and 1,236.8 mg of N dm-3 of soil in a 5 x 4 factorial scheme with three replicates and five plants per plot. The contents of photosynthetic pigments in the leaves of the guava seedlings cv. ‘Paluma’ were inhibited by the increase in irrigation water salinity at 190 days after emergence, and the salt stress was lessened with the N dose of 1,004.9 mg dm-3 up to an ECw level of 1.2 dS m-1. Leaf morphophysiology of guava seedlings was not compromised by irrigation water salinity up to 1.5 dS m-1, and the highest values were obtained in plants fertilized with 541.1 mg of N dm-3.

  3. Irrigation, risk aversion, and water right priority under water supply uncertainty

    Science.gov (United States)

    Li, Man; Xu, Wenchao; Rosegrant, Mark W.

    2017-09-01

    This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  4. Root Canal Irrigation: Chemical Agents and Plant Extracts Against Enterococcus faecalis

    Science.gov (United States)

    Borzini, Letizia; Condò, Roberta; De Dominicis, Paolo; Casaglia, Adriano; Cerroni, Loredana

    2016-01-01

    Background: There are various microorganisms related to intra and extra-radicular infections and many of these are involved in persistent infections. Bacterial elimination from the root canal is achieved by means of the mechanical action of instruments and irrigation as well as the antibacterial effects of the irrigating solutions. Enterococcus faecalis can frequently be isolated from root canals in cases of failed root canal treatments. Antimicrobial agents have often been developed and optimized for their activity against endodontic bacteria. An ideal root canal irrigant should be biocompatible, because of its close contact with the periodontal tissues during endodontic treatment. Sodium hypoclorite (NaOCl) is one of the most widely recommended and used endodontic irrigants but it is highly toxic to periapical tissues. Objectives: To analyze the literature on the chemotherapeutic agent and plant extracts studied as root canal irrigants. In particularly, the study is focused on their effect on Enterococcus faecalis. Method: Literature search was performed electronically in PubMed (PubMed Central, MEDLINE) for articles published in English from 1982 to April 2015. The searched keywords were “endodontic irrigants” and “Enterococcus faecalis” and “essential oil” and “plant extracts”. Results: Many of the studied chemotherapeutic agents and plant extracts have shown promising results in vitro. Conclusion: Some of the considered phytotherapic substances, could be a potential alternative to NaOCl for the biomechanical treatment of the endodontic space. PMID:28217184

  5. Hydrochemical assessment of groundwater used for irrigation in Rumphi and Karonga districts, Northern Malawi

    Science.gov (United States)

    Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Ambrose

    Irrigation water quality is an essential component of sustainable agriculture. Irrigation water quality concerns have often been neglected over concerns of quantity in most irrigation projects in Malawi. In this study, a hydrochemical assessment of groundwater was carried out to characterize, classify groundwater and evaluate its suitability for irrigation use in Karonga and Rumphi districts, Northern Malawi. Groundwater samples were collected during wet (January-April 2011) and dry (July-September 2011) seasons from 107 shallow wells and boreholes drilled for rural water supply using standard sampling procedures. The water samples were analysed for pH, major ions, total dissolved solids and electrical conductivity (EC), using standard methods. Multivariate chemometric (such as Kruskal Wallis test), hydrographical methods (i.e. Piper diagram) and PHREEQC geochemical modelling program were used to characterise the groundwater quality. Electrical conductivity, percentage sodium ion (% Na+), residual sodium carbonate (RSC), total dissolved solids (TDS), sodium adsorption ratio (SAR), Kelly’s ratio (KR) and permeability index (PI) were used to evaluate the suitability of water for irrigation. It was established that groundwater is neutral to alkaline and mostly freshwater (TDS management is suggested for sustainable development of the water resources for better plant growth, long-term as well as maintaining human health in the study area.

  6. Automation in irrigation process in family farm with Arduino platform

    Directory of Open Access Journals (Sweden)

    Kianne Crystie Bezerra da Cunha

    2016-03-01

    Full Text Available The small farmers tend not to use mechanical inputs in the irrigation process due to the high cost than conventional irrigation systems have and in other cases, the lack of knowledge and technical guidance makes the farmer theme using the system. Thus, all control and monitoring are made by hand without the aid of machines and this practice can lead to numerous problems from poor irrigation, and water waste, energy, and deficits in production. It is difficult to deduce when to irrigate, or how much water applied in cultivation, measure the soil temperature variables, temperature, and humidity, etc. The objective of this work is to implement an automated irrigation system aimed at family farming that is low cost and accessible to the farmer. The system will be able to monitor all parameters from irrigation. For this to occur, the key characteristics of family farming, Arduino platform, and irrigation were analyzed.

  7. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  8. Biochar enhances yield and quality of tomato under reduced irrigation

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Li, Guitong; Andersen, Mathias Neumann

    2014-01-01

    tBiochar is an amendment that can be used for enhancing soil water storage which may increase cropproductivity. The objective of this study was to investigate the effects of biochar on physiology, yield andquality of tomato under different irrigation regimes. From early flowering to fruit maturity...... stages, theplants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation(PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot waterholding capacity while in DI and PRD, 70% of FI was irrigated on either...... the whole or one side of the pots,respectively. In PRD, irrigation was switched between sides when the soil water content of the dry sidedecreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DIand PRD, which consequently improved physiology, yield, and quality...

  9. Precision overhead irrigation is suitable for several Central Valley crops

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Mitchell

    2016-04-01

    Full Text Available Overhead systems are the dominant irrigation technology in many parts of the world, but they are not widely used in California even though they have higher water application efficiency than furrow irrigation systems and lower labor requirements than drip systems. With water and labor perennial concerns in California, the suitability of overhead systems merits consideration. From 2008 through 2013, in studies near Five Points, California, we evaluated overhead irrigation for wheat, corn, cotton, tomato, onion and broccoli as an alternative to furrow and drip irrigation. With the exception of tomato, equal or increased yields were achieved with overhead irrigation. Many variables are involved in the choice of an irrigation system, but our results suggest that, with more research to support best management practices, overhead irrigation may be useful to a wider set of California farmers than currently use it.

  10. Possibilities for conservation and efficiency of irrigation systems in hydropower; Possibilidades de conservacao e eficientizacao hidroenergetica em sistemas de irrigacao

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Augusto Nelson Carvalho; Ricardo, Mateus [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Grupo de Energia], emails: augusto@unifei.edu.br, mateus@unifei.edu.br

    2008-07-01

    This paper presents a literature review on efficiency and conservation of electricity and water in irrigation systems, focusing on the pumping systems used for that purpose. It's made an introduction to the theory about pumping systems and irrigation, which provides the conceptual basis for the understanding of the technologies and best practices on conservation and rational use of water and electricity presented in the paper development. (author)

  11. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  12. Agriculture and natural resources in a changing world - the role of irrigation

    Science.gov (United States)

    Sauer, T.; Havlík, P.; Schneider, U. A.; Kindermann, G.; Obersteiner, M.

    2009-04-01

    Fertile land and fresh water constitute two of the most fundamental resources for food production. These resources are affected by environmental, political, economic, and technical developments. Regional impacts may transmit to the world through increased trade. With a global forest and agricultural sector model, we quantify the impacts of increased demand for food due to population growth and economic development on potential land and water use. In particular, we investigate producer adaptation regarding crop and irrigation choice, agricultural market adjustments, and changes in the values of land and water. Against the background of resource sustainability and food security topics, this study integrates the spatial and operational heterogeneity of irrigation management into a global land use model. It represents a first large scale assessment of agricultural water use under explicit consideration of alternative irrigation options in their particular biophysical, economic, and technical context, accounting for international trade, motivation-based farming, and quantified aggregated impacts on land scarcity, water scarcity, and food supply. The inclusion of technical and economic aspects of irrigation choice into an integrated land use modeling framework provides new insights into the interdisciplinary trade-offs between determinants of global land use change. Agricultural responses to population and economic growth include considerable increases in irrigated area and agricultural water use, but reductions in the average water intensity. Different irrigation systems are preferred under different exogenous biophysical and socioeconomic conditions. Negligence of these adaptations would bias the burden of development on land and water scarcity. Without technical progress in agriculture, predicted population and income levels for 2030 would require substantial price adjustments for land, water, and food to equilibrate supply and demand.

  13. Approaches and challenges of soil water monitoring in an irrigated vineyard

    Science.gov (United States)

    Nolz, Reinhard; Loiskandl, Willibald

    2016-04-01

    Monitoring of water content is an approved method to quantify certain components of the soil water balance, for example as basis for hydrological studies and soil water management. Temporal soil water data also allow controlling water status by means of demand-oriented irrigation. Regarding spatial variability of water content due to soil characteristics, plant water uptake and other non-uniformities, it is a great challenge to select a location that is most likely representing soil water status of a larger area (e.g. an irrigated field). Although such an approach might not satisfy the requirements of precision farming - which becomes more and more related to industrial agriculture - it can help improving water use efficiency of small-scale farming. In this regard, specific conditions can be found in typical vineyards in the eastern part of Austria, where grapes are grown for high quality wine production. Generally, the local dry-subhumid climate supports grape development. However, irrigation is temporarily essential in order to guarantee stable yields and high quality. As the local winegrowers traditionally control irrigation based on their experience, there is a potential to improve irrigation management by means of soil water data. In order to gain experience with regard to irrigation management, soil water status was determined in a small vineyard in Austria (47°48'16'' N, 17°01'57'' E, 118 m elevation). The vineyard was equipped with a subsurface drip irrigation system and access tubes for measuring water content in soil profiles. The latter was measured using a portable device as well as permanently installed multi-sensor capacitance probes. Soil samples were taken at chosen dates and gravimetrically analyzed in the laboratory. Water content data were analyzed using simple statistical procedures and the temporal stability concept. Soil water content was interpreted considering different environmental conditions, including rainfall and irrigation periods

  14. The fluid mechanics of root canal irrigation.

    Science.gov (United States)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-12-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  15. The fluid mechanics of root canal irrigation

    International Nuclear Information System (INIS)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-01-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  16. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    Science.gov (United States)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support

  17. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    Science.gov (United States)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  18. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, M.N.; Lærke, P.E.

    2011-01-01

    received 65% of FI after tuber bulking and lasted for six weeks until final harvest. Results showed that the irrigation treatments were not significantly different in terms of N uptake in the tubers, shoot, and whole crop. However, there was a statistical difference between the soil textures where plants...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  19. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  20. Adubarroz: a brazilian experience for fertilization and liming recommendation of irrigated rice via computational system

    Directory of Open Access Journals (Sweden)

    Felipe de Campos Carmona

    Full Text Available ABSTRACT: Recommendations for fertilizing irrigated rice in southern Brazil have been constantly evolving over years. In this process, the influence of factors such as the development cycle of varieties and sowing period increased. Thus, computational tools that take these and others important aspects into account can potentiate the fertilization response of rice. This study describes the computer program "ADUBARROZ". The software provides recommendations of fertilizer rates and liming requirements of irrigated rice, based on information entered by the user. The system takes various factors that regulate the crop response to fertilization into account. A final report is established with the graphical representation of input management over time.

  1. Water distribution in an orchard irrigated by perforated distributors in stony ground

    International Nuclear Information System (INIS)

    Decroix, M.; Marcesse, J.; Normand, M.

    1975-01-01

    In the context of new irrigation techniques the Compagnie Nationale d'Amenagement du Bas-Rhone et du Languedoc (B.Rh.L.) has developed a process of localized irrigation by perforated distributors. Conditions were defined for the optimum use of this process, especially the distribution of water in the ground. The study was carried out in a peach orchard in stony ground. The neutronic method was used to measure the soil moisture content. Because of the heterogeneous stone size distribution it was necessary for the specific humidity determination to take into account the dry apparent density. This parameter was measured by gammametry [fr

  2. Renewable energy technologies for irrigation water pumping in India: A preliminary attempt towards potential estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Atul [Policy Analysis Division, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003 (India); Kandpal, Tara C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2007-05-15

    Simple frameworks have been developed for estimating the utilization potential of: (a) solar photovoltaic (SPV) pumps; (b) windmill pumps; (c) producer gas based dual fuel engine pumps; and (d) biogas based dual fuel engine pumps for irrigation water pumping in India. The approach takes into account factors such as: solar radiation intensity, wind speed, availability of bovine dung and agri-residues, and their alternative uses, ground water requirements for irrigation and its availability, affordability, and propensity of the users to invest in renewable energy devices, etc. SPV pumps are estimated to have the maximum utilization potential in India, followed by windmill pumps. (author)

  3. Renewable energy technologies for irrigation water pumping in India: A preliminary attempt towards potential estimation

    International Nuclear Information System (INIS)

    Kumar, Atul; Kandpal, Tara C.

    2007-01-01

    Simple frameworks have been developed for estimating the utilization potential of: (a) solar photovoltaic (SPV) pumps; (b) windmill pumps; (c) producer gas based dual fuel engine pumps; and (d) biogas based dual fuel engine pumps for irrigation water pumping in India. The approach takes into account factors such as: solar radiation intensity, wind speed, availability of bovine dung and agri-residues, and their alternative uses, ground water requirements for irrigation and its availability, affordability, and propensity of the users to invest in renewable energy devices, etc. SPV pumps are estimated to have the maximum utilization potential in India, followed by windmill pumps

  4. Automatic aeroponic irrigation system based on Arduino’s platform

    Science.gov (United States)

    Montoya, A. P.; Obando, F. A.; Morales, J. G.; Vargas, G.

    2017-06-01

    The recirculating hydroponic culture techniques, as aeroponics, has several advantages over traditional agriculture, aimed to improve the efficiently and environmental impact of agriculture. These techniques require continuous monitoring and automation for proper operation. In this work was developed an automatic monitored aeroponic-irrigation system based on the Arduino’s free software platform. Analog and digital sensors for measuring the temperature, flow and level of a nutrient solution in a real greenhouse were implemented. In addition, the pH and electric conductivity of nutritive solutions are monitored using the Arduino’s differential configuration. The sensor network, the acquisition and automation system are managed by two Arduinos modules in master-slave configuration, which communicate one each other wireless by Wi-Fi. Further, data are stored in micro SD memories and the information is loaded on a web page in real time. The developed device brings important agronomic information when is tested with an arugula culture (Eruca sativa Mill). The system also could be employ as an early warning system to prevent irrigation malfunctions.

  5. Mismanagement of Irrigation Water and Landslips in Yourjogh, Pakistan

    Directory of Open Access Journals (Sweden)

    Jawad Ali

    2017-05-01

    Full Text Available Risks and hazards associated with climate change and geological factors, especially in the world's youngest mountains, are inevitable and may have been exacerbated in recent decades. However reports about increased landslips and landslides in some areas are being presented as examples to argue that most natural hazards in mountain areas are due to climate change. Based on a field study in the Yourjogh area of Chitral District in Pakistan, we argue that this discourse is based on generalized conclusions that do not hold in all cases and for all types of disasters. Our study challenges the climate change discourse as disregarding the political dimension of water management that also contributes to landslides and landslips in Pakistan's mountainous regions. The climate change discourse has taken the politics out of external-donor-led development interventions that replaced traditional irrigation management practices and institutions with an arrangement in which external development agencies and the state control crucial economic and social processes that shape the distribution of water. This not only depoliticizes disasters and their effects but also leads to further mismanagement of abundantly available irrigation water, contributing to the frequent occurrence of landslips in our study area. We conclude that attributing hazards only to climatic or geological factors leaves little room to promote locally appropriate solutions for locally created hazards.

  6. Online decision support based on modeling with the aim of increased irrigation efficiency

    Science.gov (United States)

    Dövényi-Nagy, Tamás; Bakó, Károly; Molnár, Krisztina; Rácz, Csaba; Vasvári, Gyula; Nagy, János; Dobos, Attila

    2015-04-01

    The significant changes in the structure of ownership and control of irrigation infrastructure in the past decades resultted in the decrease of total irrigable and irrigated area (Szilárd, 1999). In this paper, the development of a model-based online service is described whose aim is to aid reasonable irrigation practice and increase water use efficiency. In order to establish a scientific background for irrigation, an agrometeorological station network has been built up by the Agrometeorological and Agroecological Monitoring Centre. A website has been launched in order to provide direct access for local agricultural producers to both the measured weather parameters and results of model based calculations. The public site provides information for general use, registered partners get a handy model based toolkit for decision support at the plot level concerning irrigation, plant protection or frost forecast. The agrometeorological reference station network was established in the recent years by the Agrometeorological and Agroecological Monitoring Centre and is distributed to cover most of the irrigated cropland areas of Hungary. From the spatial aspect, the stations have been deployed mainly in Eastern Hungary with concentrated irrigation infrastructure. The meteorological stations' locations have been carefully chosen to represent their environment in terms of soil, climatic and topographic factors, thereby assuring relevant and up-to-date input data for the models. The measured parameters range from classic meteorological data (air temperature, relative humidity, solar irradiation, wind speed etc.) to specific data which are not available from other services in the region, such as soil temperature, soil water content in multiple depths and leaf wetness. In addition to the basic grid of reference stations, specific stations under irrigated conditions have been deployed to calibrate and validate the models. A specific modeling framework (MetAgro) has been developed

  7. Control system design for concrete irrigation channels

    OpenAIRE

    Strecker, Timm; Aamo, Ole Morten; Cantoni, Michael

    2017-01-01

    Concrete channels find use at the periphery of irrigation networks, for expansion and to replace small earthen channels given the relative ease of maintenance and elimination of seepage losses. In design, it is important to account for control system performance when dimensioning the channel infrastructure. In this paper, the design of a distributed controller is investigated in terms managing water-levels, and thereby the depth profile (i.e., amount of concrete) needed to support peak flow l...

  8. Coolidge solar powered irrigation pumping project

    Science.gov (United States)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  9. Antimicrobial Irrigants in the Endodontic Therapy

    OpenAIRE

    Iqbal, Azhar

    2012-01-01

    This paper highlights the importance of root canal disinfection. It discusses the different endodontic irrigants available and comments on how these can be used most effectively. Eliminating bacteria from the root canal system is an essential stage in endodontic therapy. An objective of endodontic treatment is removal of diseased tissue, elimination of bacteria from the canal system and prevention of recontamination. (1) Disinfection of the root canal system, as part of endodontic therapy, by...

  10. Colonic irrigation for defecation disorders after dynamic graciloplasty.

    Science.gov (United States)

    Koch, Sacha M; Uludağ, Ozenç; El Naggar, Kadri; van Gemert, Wim G; Baeten, Cor G

    2008-02-01

    Dynamic graciloplasty (DGP) improves anal continence and quality of life for most patients. However, in some patients, DGP fails and fecal incontinence is unsolved or only partially improved. Constipation is also a significant problem after DGP, occurring in 13-90%. Colonic irrigation can be considered as an additional or salvage treatment for defecation disorders after unsuccessful or partially successful DGP. In this study, the effectiveness of colonic irrigation for the treatment of persistent fecal incontinence and/or constipation after DGP is investigated. Patients with defecation disorders after DGP visiting the outpatient clinic of the University Hospital Maastricht were selected for colonic irrigation as additional therapy or salvage therapy in the period between January 1999 and June 2003. The Biotrol(R) Irrimatic pump or the irrigation bag was used for colonic irrigation. Relevant physical and medical history was collected. The patients were asked to fill out a detailed questionnaire about colonic irrigation. Forty-six patients were included in the study with a mean age of 59.3 +/- 12.4 years (80% female). On average, the patients started the irrigation 21.39 +/- 38.77 months after the DGP. Eight patients started irrigation before the DGP. Fifty-two percent of the patients used the irrigation as additional therapy for fecal incontinence, 24% for constipation, and 24% for both. Irrigation was usually performed in the morning. The mean frequency of irrigation was 0.90 +/- 0.40 times per day. The mean amount of water used for the irrigation was 2.27 +/- 1.75 l with a mean duration of 39 +/- 23 min. Four patients performed antegrade irrigation through a colostomy or appendicostomy, with good results. Overall, 81% of the patients were satisfied with the irrigation. Thirty-seven percent of the patients with fecal incontinence reached (pseudo-)continence, and in 30% of the patients, the constipation completely resolved. Side effects of the irrigation were

  11. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  12. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  13. How to analyse a Big Bang of data: the mammoth project at the Cern physics laboratory in Geneva to recreate the conditions immediately after the universe began requires computing power on an unprecedented scale

    CERN Multimedia

    Thomas, Kim

    2005-01-01

    How to analyse a Big Bang of data: the mammoth project at the Cern physics laboratory in Geneva to recreate the conditions immediately after the universe began requires computing power on an unprecedented scale

  14. Energy alternatives for irrigation pumping: an economic analysis for northern India.

    OpenAIRE

    Bhatia R

    1984-01-01

    ILO pub-WEP pub. Working paper presenting an economic analysis of alternative energy sources for irrigation pumping in Northern India - considers economic and technical aspects of photovoltaic pumping systems, solar energy systems, electric power, dual-fuel and diesel engines, Biogas and wind power; discusses economic and social development aspects. Abbreviations, bibliography, glossary and tables.

  15. Leaf temperature of maize and crop water stress index with variable irrigation and nitrogen supply

    Science.gov (United States)

    Water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Water stress indices based on crop canopy temperature can be useful for assessing plan...

  16. A Matter of Relationships : Actor-Networks of Colonial Rule in the Gezira Irrigation System, Sudan

    NARCIS (Netherlands)

    Ertsen, M.W.

    2016-01-01

    In the first half of the 20th century, colonial rulers, a British firm and Sudanese farmers changed the Gezira Plain in Sudan into a large-scale irrigated cotton scheme. Gezira continues to be in use up to date. Its story shows how the abstract concept 'development' is shaped through the agency of

  17. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes

    DEFF Research Database (Denmark)

    Jensen, Christian Richardt; Battilano, Adriano; Plauborg, Finn

    2010-01-01

    Agriculture is a big consumer of fresh water in competition with other sectors of the society. Within the EU-project SAFIR new water-saving irrigation strategies were developed based on pot, semi-field and field experiments with potatoes (Solanum tuberosum L.), fresh tomatoes (Lycopersicon escule...

  18. The Assessment of Irrigated Land Salinization in the Aral Sea Region

    Science.gov (United States)

    Karlykhanov, Orazkhan K.; Toktaganova, Gulzhaz B.

    2016-01-01

    Agriculture is one of the main industries of Kazakhstan, especially in the Kyzylorda Region. Before the reforms, agriculture in this region was better developed than the manufacturing industry; this is no longer the case. The main crop grown on the irrigated land of the region is rice. Inefficient distribution of cultivated areas, their excessive…

  19. Performing the success of an innovation: the case of smallholder drip irrigation in Burkina Faso

    NARCIS (Netherlands)

    Wanvoeke, M.J.V.; Venot, J.P.J.N.; Zwarteveen, M.Z.; Fraiture, de C.M.S.

    2015-01-01

    Over the last 15 years, smallholder drip irrigation has gained almost unanimous popularity as an effective tool to achieve the combined goals of sustainable water use, food security and poverty alleviation in the developing world. Based on a study in Sub-Saharan Africa, this article shows that this

  20. Continuous measurement of soil evaporation in a drip-irrigated wine vineyard in a desert area

    Science.gov (United States)

    Evaporation from the soil surface (E) can be a significant source of water loss in arid areas. In sparsely vegetated systems, E is expected to be a function of soil, climate, irrigation regime, precipitation patterns, and plant canopy development, and will therefore change dynamically at both daily ...