WorldWideScience

Sample records for irrigation cropping systems

  1. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Science.gov (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  2. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  3. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  4. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  5. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... Many methods have been described and sensors developed to manage irrigation ... time, and automated irrigation systems based on crop water needs can .... output components, and a software program for decision support.

  6. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  7. Evaluation of hydraulic performance of downstream-controlled Maira-PHLC irrigation canals under crop-based irrigation operations

    NARCIS (Netherlands)

    Munir, S.; Schultz, B.; Suryadi, F.X.; Bharati, L.

    2012-01-01

    Demand-based irrigation systems are operated according to crop water requirements. As crop water requirements remain variable throughout the growing season, the discharges in the canal also vary to meet demands. The irrigation system under study is a demand-based semi-automatic irrigation system,

  8. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  9. Computer-based irrigation scheduling for cotton crop

    International Nuclear Information System (INIS)

    Laghari, K.Q.; Memon, H.M.

    2008-01-01

    In this study a real time irrigation schedule for cotton crop has been tested using mehran model, a computer-based DDS (Decision Support System). The irrigation schedule was set on selected MAD (Management Allowable Depletion) and the current root depth position. The total 451 mm irrigation water applied to the crop field. The seasonal computed crop ET (Evapotranspiration) was estimated 421.32 mm and actual (ET/sub ca/) observed was 413 mm. The model over-estimated seasonal ET by only 1.94. WUE (Water Use Efficiency) for seed-cotton achieved 6.59 Kg (ha mm)/sup -1/. The statistical analysis (R/sup 2/=0.96, ARE%=2.00, T-1.17 and F=550.57) showed good performance of the model in simulated and observed ET values. The designed Mehran model is designed quite versatile for irrigation scheduling and can be successfully used as irrigation DSS tool for various crop types. (author)

  10. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    The results revealed that the water use efficiency (WUE) and irrigation water use efficiency (IWUE) were typically higher in the AIS than in the conventional irrigation control system (CIS). Under the AIS treatment, the WUE and IWUE values were 1.64 and 1.37 k·gm-3 for wheat, and 7.50 and 6.50 kg·m-3 for tomato crops; ...

  11. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  12. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  13. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  14. Reduced Nitrous Oxide Emissions in Tomato Cropping Systems under Drip Irrigation and Fertigation

    Science.gov (United States)

    Kennedy, T.; Suddick, E. C.; Six, J. W.

    2011-12-01

    In California, agriculture and forestry account for 8% of the total greenhouse gas (GHG) emissions, of which 50% is accounted for by nitrous oxide (N2O). Furrow irrigation and high temperatures in the Central Valley, together with conventional fertilization, are ideal for the production of food, but also N2O. These conditions lead to high N2O fluxes, but also mean there is great potential to reduce N2O emissions by optimizing fertilizer use and irrigation practices. Improving fertilizer use by better synchronizing nitrogen (N) availability and crop demand can reduce N losses and fertilizer costs. Smaller, more frequent fertilizer applications can increase the synchrony between available soil N and crop N uptake. Fertigation allows for more control over how much N is being added and can therefore allow for better synchrony throughout the growing season. In our study, we determined how management practices, such as fertilization, irrigation, tillage and harvest, affect direct N2O emissions in typical tomato cropping systems. We evaluated two contrasting irrigation managements and their associated fertilizer application method, i.e. furrow irrigation and knife injection versus drip irrigation and fertigation. Across two tomato-growing seasons, we found that shifts in fertilizer and irrigation water management directly affect GHG emissions. Seasonal N2O fluxes were 3.4 times lower under drip versus furrow irrigation. In 2010, estimated losses of fertilizer N as N2O were 0.60 ± 0.06 kg N2O-N ha-1 yr-1 in the drip system versus 2.06 ± 0.11 N2O-N kg ha-1 yr-1 in the furrow system, which was equivalent to 0.29% and 0.87% of the added fertilizer, respectively. Carbon dioxide (CO2) emissions were also lower in the drip system (2.21 ± 0.16 Mg CO2-C ha-1 yr-1) than the furrow system (4.65 ± 0.23 Mg CO2-C ha-1 yr-1). Soil mineral N, dissolved organic carbon and soil moisture also varied between the two systems and correlated positively with N2O and CO2 emissions, depending

  15. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  16. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  17. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    Science.gov (United States)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.

  18. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  19. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Science.gov (United States)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  20. Impacts of crop insurance on water withdrawals for irrigation

    Science.gov (United States)

    Deryugina, Tatyana; Konar, Megan

    2017-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, crop insurance may have unintended consequences for water resources sustainability, as the vast majority of freshwater withdrawals go to agriculture. The causal impact of crop insurance on water use in agriculture remains poorly understood. Here, we determine the empirical relationship between crop insurance and irrigation water withdrawals in the United States. Importantly, we use an instrumental variables approach to establish causality. Our methodology exploits a major policy change in the crop insurance system - the 1994 Federal Crop Insurance Reform Act - which imposed crop insurance requirements on farmers. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, with most coming from groundwater aquifers. We identify farmers growing more groundwater-fed cotton as an important mechanism contributing to increased withdrawals. A 1% increase in insured crop acreage leads to a 0.624% increase in cotton acreage, or 95,602 acres. These results demonstrate that crop insurance causally leads to more irrigation withdrawals. More broadly, this work underscores the importance of determining causality in the water-food nexus as we endeavor to achieve global food security and water resources sustainability.

  1. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    Science.gov (United States)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also

  2. Weed Control with Cover Crops in Irrigated Potatoes

    Directory of Open Access Journals (Sweden)

    G.H. Mehring

    2016-01-01

    Full Text Available Field experiments at Oakes, ND, USA in 2010 and Carrington, ND, USA in 2011 were conducted to evaluate the potential for cover crops grown in the Northern Great Plains, USA in order to reduce weed emergence and density in irrigated potatoes. Treatments included five cover crop treatments and three cover crop termination treatments. Termination of cover crops was done with glyphosate, disk-till, and roto-till. Cover crop biomass accumulation was greatest for rye/canola and triticale at Oakes, and hairy vetch and hairy vetch/rye at Carrington. Cover crop and termination affected weed control 14, 29, and 51 days after planting (DAP at Oakes. Weed control at Carrington was at least 90% for all cover crop and termination treatments at all three evaluation timings. Marketable yield at Oakes was greater when roto-till was used to terminate the cover crops compared with disk-till or herbicide, which is beneficial for organic systems where herbicides are not used. Marketable yield at Carrington was not affected by cover crop or termination treatments. Results suggest that cover crops can successfully be integrated into irrigated potato production for weed control with yields equal to no cover crop, and with attention to potential mechanical difficulties.

  3. Optimal crop selection and water allocation under limited water supply in irrigation

    Science.gov (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  4. Performance of a wireless sensor network for crop monitoring and irrigation control

    Science.gov (United States)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  5. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    Science.gov (United States)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  6. Kalanchoe crop development under different levels of irrigation

    Directory of Open Access Journals (Sweden)

    Fátima Cibele Soares

    Full Text Available ABSTRACT Despite its importance in the floriculture sector, irrigation management of kalanchoe is characterized by empiricism, being necessary further studies on the use of water by this crop. Thus, the objective of this study is to analyze the several effects of irrigation levels on the growth of kalanchoe crop conducted in greenhouse in the municipality of Alegrete, state of Rio Grande do Sul. The experiment was conducted in a 7 x 15 m protected environment. The experimental design was completely randomized, with four treatments (irrigation levels corresponding to 40, 60, 80 and 100% of the pot water retention capacity - PC and four repetitions, totaling sixteen plots. The crop cycle was 224 days after transplanting and the applied average depths were: 451.82; 367.38; 282.94; 198.51 mm for treatments: 100; 80; 60 and 40% of PC, respectively. Canopy area and number of leaves per plant were evaluated over the crop cycle. In the end of the cycle, the canopy diameter, number of inflorescences per plant and the number of flowers per plant were evaluated. No significant differences were found only to the canopy area, by the F test. Irrigation water depths between 40 and 70% of the pot capacity were more appropriate for the crop growth in the study region. The cultivar presented the best development at irrigation levels below the maximum vessel water retention capacity, that is, it is resistant to drought.

  7. Crop response to biochar under differing irrigation levels in the southeastern USA

    Science.gov (United States)

    Application of biochar to soils is hypothesized to increase crop yield. Crop productivity impacts of biochar application in Southeastern cropping systems consisting of peanut (Arachis hypogaea L.), corn (Zea mays L.), and cotton (Gossypium hirsutum L.) produced under varying rates of irrigation have...

  8. Methods to estimate irrigated reference crop evapotranspiration - a review.

    Science.gov (United States)

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  9. More crop per drop - Increasing input efficiency in sprinkler irrigated potatoes.

    Science.gov (United States)

    Kostka, Stan; Fang, Lisa; Ren, Haiqin; Glucksman, Robert; Gadd, Nick

    2014-05-01

    Water scarcity, climate change, and population growth are significant global challenges for producing sufficient food, fiber, and fuel in the 21st century. Feeding an increasingly hungry world necessitates innovative strategies and technologies to maximize crop production outputs while simultaneously increasing crop water productivity. In the 20th century, major advances in precision irrigation enabled producers to increase productivity while more efficiently applying water to crops. While pressurized irrigation systems can deliver water effectively to the soil surface, the efficiency of rootzone delivery may be compromised by intrinsic heterogeneities in soil wetting characteristics related to organic matter, biofilms, and hydrophobic coatings on soil particles and aggregates. Efficiently delivering applied irrigation water throughout the soil matrix is critical to increasing crop productivity. We propose that management of soil water access by surfactants is a viable management option to maintain or increase yields under deficit irrigation. Potato yield and tuber quality under sprinkler irrigation were evaluated under standard production practices or with the inclusion of an aqueous nonionic surfactant formulation (10 wt% alkoxylated polyols and 7% glucoethers) applied at 10L ha-1 between emergence and tuberization. Crop responses from multi-year evaluations conducted on irrigated potatoes in Idaho (USA) were compared to multi-year on farm grower evaluations in Australia and China. Surfactant treatment resulted in statistically significant increases in yield (+5%) and US No. 1 grades (+8%) while reducing culls (-10%) in trials conducted in Idaho, USA. Similar responses were observed in commercial grower evaluations conducted in Australia (+8% total yield, +18% mean tuber weight) and in China in 2011 (+8% total yield and +18% premium, -12% culls). Under diverse production conditions, a single application of the surfactant formulation improved crop water

  10. Soil nitrate testing supports nitrogen management in irrigated annual crops

    Directory of Open Access Journals (Sweden)

    Patricia A. Lazicki

    2016-12-01

    Full Text Available Soil nitrate (NO3− tests are an integral part of nutrient management in annual crops. They help growers make field-specific nitrogen (N fertilization decisions, use N more efficiently and, if necessary, comply with California's Irrigated Lands Regulatory Program, which requires an N management plan and an estimate of soil NO3− from most growers. As NO3− is easily leached into deeper soil layers and groundwater by rain and excess irrigation water, precipitation and irrigation schedules need to be taken into account when sampling soil and interpreting test results. We reviewed current knowledge on best practices for taking and using soil NO3− tests in California irrigated annual crops, including how sampling for soil NO3− differs from sampling for other nutrients, how tests performed at different times of the year are interpreted and some of the special challenges associated with NO3− testing in organic systems.

  11. Evaluating gridded crop model simulations of evapotranspiration and irrigation using survey and remotely sensed data

    Science.gov (United States)

    Lopez Bobeda, J. R.

    2017-12-01

    The increasing use of groundwater for irrigation of crops has exacerbated groundwater sustainability issues faced by water limited regions. Gridded, process-based crop models have the potential to help farmers and policymakers asses the effects water shortages on yield and devise new strategies for sustainable water use. Gridded crop models are typically calibrated and evaluated using county-level survey data of yield, planting dates, and maturity dates. However, little is known about the ability of these models to reproduce observed crop evapotranspiration and water use at regional scales. The aim of this work is to evaluate a gridded version of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model over the continental United States. We evaluated crop seasonal evapotranspiration over 5 arc-minute grids, and irrigation water use at the county level. Evapotranspiration was assessed only for rainfed agriculture to test the model evapotranspiration equations separate from the irrigation algorithm. Model evapotranspiration was evaluated against the Atmospheric Land Exchange Inverse (ALEXI) modeling product. Using a combination of the USDA crop land data layer (CDL) and the USGS Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset for the United States (MIrAD-US), we selected only grids with more than 60% of their area planted with the simulated crops (corn, cotton, and soybean), and less than 20% of their area irrigated. Irrigation water use was compared against the USGS county level irrigated agriculture water use survey data. Simulated gridded data were aggregated to county level using USDA CDL and USGS MIrAD-US. Only counties where 70% or more of the irrigated land was corn, cotton, or soybean were selected for the evaluation. Our results suggest that gridded crop models can reasonably reproduce crop evapotranspiration at the country scale (RRMSE = 10%).

  12. Simulating Water Allocation and Cropping Decisions in Yemen’s Abyan Delta Spate Irrigation System

    Directory of Open Access Journals (Sweden)

    Derek Jin-Uk Marchant

    2018-01-01

    Full Text Available Agriculture employs more Yemenis than any other sector and spate irrigation is the largest source of irrigation water. Spate irrigation however is growing increasingly difficult to sustain in many areas due to water scarcity and unclear sharing of water amongst users. In some areas of Yemen, there are no institutionalised water allocation rules which can lead to water related disputes. Here, we propose a proof-of-concept model to evaluate the impacts of different water allocation patterns to assist in devising allocation rules. The integrated model links simple wadi flow, diversion, and soil moisture-yield simulators to a crop decision model to evaluate impacts of different water allocation rules and their possible implications on local agriculture using preliminary literature data. The crop choice model is an agricultural production model of irrigation command areas where the timing, irrigated area and crop mix is decided each month based on current conditions and expected allocations. The model is applied to Yemen’s Abyan Delta, which has the potential to be the most agriculturally productive region in the country. The water allocation scenarios analysed include upstream priority, downstream priority, equal priority (equal sharing of water shortages, and a user-defined mixed priority that gives precedence to different locations based on the season. Once water is distributed according to one of these allocation patterns, the model determines the profit-maximising plant date and crop selection for 18 irrigated command areas. This aims to estimate the impacts different water allocation strategies could have on livelihoods. Initial results show an equal priority allocation is the most equitable and efficient, with 8% more net benefits than an upstream scenario, 10% more net benefits than a downstream scenario, and 25% more net benefits than a mixed priority.

  13. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  14. Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California

    Science.gov (United States)

    Fulton, A.; Snyder, R.; Hillyer, C.; English, M.; Sanden, B.; Munk, D.

    2012-04-01

    stress in order to manage it in heterogeneous fields; and (iii) predicting crop responses to water stress. The capacities of this IMO include: 1. Modeling of the disposition of applied water in spatially variable fields; 2. Conjunctive scheduling for multiple fields, rather than scheduling each field independently; 3. Long range forecasting of crop water requirements to better utilize limited water or limited delivery system capacity: and 4. Explicit modeling of the uncertainties of water use and crop yield. This was one of the first efforts to employ a "Next Generation" type computer irrigation scheduling advisory model or IMO in orchard crops. This paper discusses experiences with introducing this model to fruit and nut growers of various size and scale in the northern Sacramento Valley of California and the accuracy of its forecasts of irrigation needs in fruit and nut crops. Strengths and opportunities to forge ahead in the development of a "Next Generation" irrigation scheduler were identified from this on-farm evaluation.

  15. Sustainable irrigation and nitrogen management of fertigated vegetable crops

    NARCIS (Netherlands)

    Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J.

    2017-01-01

    Fertigation in combination with drip irrigation is being increasingly used in vegetable crop production. From a nutrient management perspective, this combination provides the technical capacity for precise nitrogen (N) nutrition, both spatially and temporally. With these systems, N and other

  16. A multi-attribute preference model for optimal irrigated crop planning under water scarcity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montazar, A.; Snyder, R. L.

    2012-11-01

    Water resources sustainability has a key role in the existence and durability of irrigated farming systems and strongly depends on the crop planning. The decision process is complex due to a number of constraints and the desire to secure crop diversification and the involvement of affected various parameters. The objective of the present study was to develop a comprehensive multi-criteria model for selecting adequate cropping pattern in an irrigation district under water scarcity condition. Eleven and nine attribute decisions were considered in ranking the type of crop and determination of the percentage of crop cultivation area as an optimal irrigated crop planning system, respectively. The results indicate that the proposed multi-attribute preference approach can synthesize various sets of criteria in the preference elicitation of the crop type and cultivated area. The predictive validity analysis shows that the preferences acquired by the proposed model are evidently in reasonable accordance with those of the conjunctive water use model. Consequently, the model may be used to aggregate preferences in order to obtain a group decision, improve understanding of the choice problem, accommodate multiple objectives and increase transparency and credibility in decision making by actively involving relevant criteria in the crop planning. (Author) 27 refs.

  17. Development of High Resolution Data for Irrigated Area and Cropping Patterns in India

    Science.gov (United States)

    K a, A.; Mishra, V.

    2015-12-01

    Information of crop phenology and its individual effect on irrigation is essential to improve the simulation of land surface states and fluxes. We use moderate resolution imaging spectroradiometer (MODIS) - Normalized difference vegetation index (NDVI) at 250 m resolution for monitoring temporal changes in irrigation and cropping patterns in India. We used the obtained dataset of cropping pattern for quantifying the effect of irrigation on land surface states and fluxes by using an uncoupled land surface model. The cropping patterns are derived by using the planting, heading, harvesting, and growing dates for each agro-ecological zone separately. Moreover, we developed a high resolution irrigated area maps for the period of 1999-2014 for India. The high resolution irrigated area was compared with relatively coarse resolution (~ 10km) irrigated area from the Food and Agricultural Organization. To identify the seasonal effects we analyzed the spatial and temporal change of irrigation and cropping pattern for different temporal seasons. The new irrigation area information along with cropping pattern was used to study the water budget in India using the Noah Land surface Model (Noah LSM) for the period of 1999-2014.

  18. Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops.

    Science.gov (United States)

    Beneduce, Luciano; Gatta, Giuseppe; Bevilacqua, Antonio; Libutti, Angela; Tarantino, Emanuele; Bellucci, Micol; Troiano, Eleonora; Spano, Giuseppe

    2017-11-02

    In order to evaluate if the reuse of food industry treated wastewater is compatible for irrigation of food crops, without increased health risk, in the present study a cropping system, in which ground water and treated wastewater were used for irrigation of tomato and broccoli, during consecutive crop seasons was monitored. Water, crop environment and final products were monitored for microbial indicators and pathogenic bacteria, by conventional and molecular methods. The microbial quality of the irrigation waters influenced sporadically the presence of microbial indicators in soil. No water sample was found positive for pathogenic bacteria, independently from the source. Salmonella spp. and Listeria monocytogenes were detected in soil samples, independently from the irrigation water source. No pathogen was found to contaminate tomato plants, while Listeria monocytogenes and E. coli O157:H7 were detected on broccoli plant, but when final produce were harvested, no pathogen was detected on edible part. The level of microbial indicators and detection of pathogenic bacteria in field and plant was not dependent upon wastewater used. Our results, suggest that reuse of food industry wastewater for irrigation of agricultural crop can be applied without significant increase of potential health risk related to microbial quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  20. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  1. Quantifying the link between crop production and mined groundwater irrigation in China.

    Science.gov (United States)

    Grogan, Danielle S; Zhang, Fan; Prusevich, Alexander; Lammers, Richard B; Wisser, Dominik; Glidden, Stanley; Li, Changsheng; Frolking, Steve

    2015-04-01

    In response to increasing demand for food, Chinese agriculture has both expanded and intensified over the past several decades. Irrigation has played a key role in increasing crop production, and groundwater is now an important source of irrigation water. Groundwater abstraction in excess of recharge (which we use here to estimate groundwater mining) has resulted in declining groundwater levels and could eventually restrict groundwater availability. In this study we used a hydrological model, WBMplus, in conjunction with a process based crop growth model, DNDC, to evaluate Chinese agriculture's recent dependence upon mined groundwater, and to quantify mined groundwater-dependent crop production across a domain that includes variation in climate, crop choice, and management practices. This methodology allowed for the direct attribution of crop production to irrigation water from rivers and reservoirs, shallow (renewable) groundwater, and mined groundwater. Simulating 20 years of weather variability and circa year 2000 crop areas, we found that mined groundwater fulfilled 20%-49% of gross irrigation water demand, assuming all demand was met. Mined groundwater accounted for 15%-27% of national total crop production. There was high spatial variability across China in irrigation water demand and crop production derived from mined groundwater. We find that climate variability and mined groundwater demand do not operate independently; rather, years in which irrigation water demand is high due to the relatively hot and dry climate also experience limited surface water supplies and therefore have less surface water with which to meet that high irrigation water demand. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effect of irrigation techniques and strategies on water footprint of growing crops

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.

    2014-12-01

    Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation

  3. Testing an Irrigation Decision Support Tool for California Specialty Crops

    Science.gov (United States)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  4. Water Use and Crop Coefficients in Sprinkler Irrigated Rice

    Directory of Open Access Journals (Sweden)

    Antonino Spanu

    Full Text Available Field experiments were carried out during the years 2002, 2004, 2005 and 2006 to analyze water-soil-atmosphere interactions in sprinkler irrigated rice. The research was carried out in Sardinia (39º 59’ N; 8º 40’ E, at altitude 15 m. The cultivars used in the experiments, respectively in 2002 and in 2004-2005-2006, were Irat 212 and Eurosis. In each year cultivars were subjected to the same crop management. Irrigation was applied since the emergence with the sprinkler method, taking into account the loss of water from ‘Class A’ pan evaporation. Soil water content was monitored at 0.10 m intervals until 1.00-m depth using a ‘Diviner 2000’ (Sentek. In 2002 seven irrigation scheduling treatments were compared. In 2004, 2005, 2006 irrigation treatments provided for optimal soil water conditions during the growing season. In 2002 the results highlighted: 1 0-0.20 m depth was the most important layer for crop water uptake and the best correlated layer with rice rough yield; 2 the positive relationship between yield and water supply was significant until 6500 m3 ha-1 of water applied. Further seasonal irrigation volumes did not increase significantly yield. In 2004, 2005 and 2006 the analysis of the soil water balance at different crop phenological stages allowed to estimate crop coefficients (Kc using the Penman-Monteith equation and the ‘Class A’ pan evaporation (Kcev. Kc varied over the three-year period on average from 0.90 to 1.07 and 0.97, respectively for the emergence-end of tillering, end of tillering-heading and heading-maturing periods, while crop coefficients as a ratio between maximum crop evapotranspiration (ETc and Epan, Kcev ranged from 0.78 to 0.92 and 0.81 for the same time periods.

  5. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    Directory of Open Access Journals (Sweden)

    Meghan N Pawlowski

    Full Text Available Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2, as methane was oxidized and nitrous oxide (N2O emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  6. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    Science.gov (United States)

    Pawlowski, Meghan N; Crow, Susan E; Meki, Manyowa N; Kiniry, James R; Taylor, Andrew D; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae

    2017-01-01

    Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  7. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  8. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    Science.gov (United States)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  9. Development of an irrigation scheduling software based on model predicted crop water stress

    Science.gov (United States)

    Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...

  10. Analysis of water footprints of rainfed and irrigated crops in Sudan

    Directory of Open Access Journals (Sweden)

    Shamseddin Musa Ahmed

    2011-12-01

    Full Text Available Water rather than land is the limiting factor for crop production in Sudan. This study attempts to use the water footprint (WFP and virtual water concepts to account for crops water consumption under the Sudanese rainfed and irrigated conditions. The general average of the green WFP of sorghum and millet were found to be about 7700 and 10700 m3 ton-1, respectively. According to experimental results at three different climates, in-situ rainwater harvesting techniques could reduce the WFP of rainfed sorghum by 56% on the average. The blue component (surface water shows the highest contribution to the total WFP of irrigated crops: 88% for cotton, 70% for sorghum, 68% for groundnut and 100% for wheat. However, the role of the green water (rainwater is not marginal since it largely influences the operation and maintenance (silt clearance of the gravity-fed irrigation system. Under normal conditions, the annual total virtual water demand of sorghum (the dominant food crop in Sudan is found to be 15 km3, of which 91% is green water. During a dry year, however, Sudan could experience a deficit of 2.3 km3 of water, necessitating the adoption of a wise food stocking-exporting policy.

  11. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  12. Weed Control with Cover Crops in Irrigated Potatoes

    OpenAIRE

    G.H. Mehring; J.E. Stenger; H.M. Hatterman-Valenti

    2016-01-01

    Field experiments at Oakes, ND, USA in 2010 and Carrington, ND, USA in 2011 were conducted to evaluate the potential for cover crops grown in the Northern Great Plains, USA in order to reduce weed emergence and density in irrigated potatoes. Treatments included five cover crop treatments and three cover crop termination treatments. Termination of cover crops was done with glyphosate, disk-till, and roto-till. Cover crop biomass accumulation was greatest for rye/canola and triticale at Oakes, ...

  13. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Science.gov (United States)

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  14. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    Science.gov (United States)

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently

  15. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    Energy Technology Data Exchange (ETDEWEB)

    Verbyla, M.E., E-mail: verbylam@mail.usf.edu [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States); Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M. [Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba (Bolivia, Plurinational State of); Mihelcic, J.R. [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States)

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g{sup −1} for coliphage, between 1 and 100 mL g{sup −1} for Giardia and Cryptosporidium, and between 100 and 1000 mL g{sup −1} for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in

  16. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    International Nuclear Information System (INIS)

    Verbyla, M.E.; Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M.; Mihelcic, J.R.

    2016-01-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g"−"1 for coliphage, between 1 and 100 mL g"−"1 for Giardia and Cryptosporidium, and between 100 and 1000 mL g"−"1 for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in ponds may limit

  17. Comparison and analysis of empirical equations for soil heat flux for different cropping systems and irrigation methods

    Science.gov (United States)

    Irmak, A.; Singh, Ramesh K.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

    2011-01-01

    We evaluated the performance of four models for estimating soil heat flux density (G) in maize (Zea mays L.) and soybean (Glycine max L.) fields under different irrigation methods (center-pivot irrigated fields at Mead, Nebraska, and subsurface drip irrigated field at Clay Center, Nebraska) and rainfed conditions at Mead. The model estimates were compared against measurements made during growing seasons of 2003, 2004, and 2005 at Mead and during 2005, 2006, and 2007 at Clay Center. We observed a strong relationship between the G and net radiation (Rn) ratio (G/Rn) and the normalized difference vegetation index (NDVI). When a significant portion of the ground was bare soil, G/Rn ranged from 0.15 to 0.30 and decreased with increasing NDVI. In contrast to the NDVI progression, the G/Rn ratio decreased with crop growth and development. The G/Rn ratio for subsurface drip irrigated crops was smaller than for the center-pivot irrigated crops. The seasonal average G was 13.1%, 15.2%, 10.9%, and 12.8% of Rn for irrigated maize, rainfed maize, irrigated soybean, and rainfed soybean, respectively. Statistical analyses of the performance of the four models showed a wide range of variation in G estimation. The root mean square error (RMSE) of predictions ranged from 15 to 81.3 W m-2. Based on the wide range of RMSE, it is recommended that local calibration of the models should be carried out for remote estimation of soil heat flux.

  18. Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Ellert, B.H.; Janzen, H.H. [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada)

    2008-04-15

    Irrigated crops in Alberta require higher inputs of nitrogen (N) than rainfed crops. The aim of the study was to determine emissions of nitrous oxide (N{sub 2}O) from the soils of irrigated cropping systems that used inorganic fertilizer N at a site in Alberta. The study measured carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) levels in order to determine net greenhouse gas (GHG) emissions. The exchange of gases between the atmosphere and soil in selected treatments was measured in order to compare the effects of contrasting N inputs. Fluxes were measured bi-weekly from spring 2001 to spring 2004. The time period included annual and perennial legume crops; the termination of a perennial forage crop; manure application; and 2 growing seasons of test crops. Soil surface fluxes were measured using PVC chambers equipped with thermocouples. Gas samples were measured using gas chromatography. A linear least squares method was used to calculate gas concentrations. Results showed that soil CO{sub 2} and N{sub 2}O production rates were intertwined after legume production or manure application, but decoupled during early spring bursts of N{sub 2}O production. Higher soil CO{sub 2} emissions with alfalfa and manure-amended soils suggested that soil oxygen consumption during high CO{sub 2} emission periods may promote N{sub 2}O emissions. Appreciable proportions of N{sub 2}O were emitted outside the growing season. Results suggested that N{sub 2}O leakage is an inevitable hazard of crop production. The study highlighted the importance of understanding and quantifying N{sub 2}O emissions from intensive cropping systems. 22 refs., 4 tabs., 6 figs.

  19. RAF/5/071: Enhancing Crop Nutrition and Soil and Water Management and Technology Transfer in Irrigated Systems for Increased Food Production and Income Generation (AFRA)

    International Nuclear Information System (INIS)

    Sijali, I.

    2017-01-01

    The overall objective is to enhance food security, income and the resilience of smallholder farmers through climate change adaptive, mitigation and coping strategies and specific objective to Improve water and nitrogen use efficiency under different irrigated cropping systems using quantifying nuclear technique. Technologies perfected at KALRO transferred to pastoral communities (Maasai land). Technologies included drip irrigation systems for vegetables and orchards, water harvesting ponds dam lining, Solar pump, greenhouse management techniques and introduction of new crops such as sweet potatoes, green grams and sorghums. A low-cost solar-powered irrigation pump has been developed by on-station testing and demonstration was done for a small solar pump

  20. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions.

    Directory of Open Access Journals (Sweden)

    Yunqi Wang

    Full Text Available The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE in winter wheat (Triticum aestivum L. were investigated under non-irrigation (W0, no irrigation during growth stage, one time irrigation (W1, irrigation applied at stem elongation and two times irrigation (W2, irrigation applied at stem elongation and anthesis conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%-6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%-34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%-28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition.

  1. Towards Global Simulation of Irrigation in a Land Surface Model: Multiple Cropping and Rice Paddy in Southeast Asia

    Science.gov (United States)

    Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu

    2010-01-01

    Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.

  2. Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model

    Science.gov (United States)

    Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit

    2017-01-01

    Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in

  3. Increase globe artichoke cropping sustainability using sub-surface drip-irrigation systems in a Mediterranean coastal area for reducing groundwater withdrawal

    Science.gov (United States)

    Mantino, Alberto; Marchina, Chiara; Bonari, Enrico; Fabbrizzi, Alessandro; Rossetto, Rudy

    2017-04-01

    During the last decades in coastal areas of the Mediterranean basin, human growth posed severe stresses on freshwater resources due to increasing demand by agricultural, industrial and civil activities, in particular on groundwater. This in turn led to worsening of water quality, loss/reduction of wetlands, up to soil salinization and abandonment of agricultural areas. Within the EU LIFE REWAT project a number of demonstration measures will take place in the lower Cornia valley (Livorno, Italy), both structural (pilot) and non-structural (education, dissemination and capacity building), aiming at achieving sustainable and participated water management. In particular, the five demonstration actions are related to: (1) set up of a managed aquifer recharge facility, (2) restoration of a Cornia river reach, (3) water saving in the civil water supply sector, (4) water saving in agriculture, (5) reuse of treated wastewater for irrigation purposes. Thus, the REWAT project general objective is to develop a new model of governance for sustainable development of the lower Cornia valley based on the water asset at its core. As per water use in agriculture, the lower Cornia valley is well known for the horticultural production. In this regard, globe artichoke (Cynara cardunculus L. var. scolymus L. (Fiori)) crops, a perennial cool-season vegetable, cover a surface of about 600 ha. In order to increase stability and productivity of the crop, about 2000 - 4000 m3 ha-1 yr-1 of irrigation water is required. Recent studies demonstrated that yield of different crops increases using Sub-surface Drip-Irrigation (SDI) system under high frequency irrigation management enhancing water use efficiency. In the SDI systems, the irrigation water is delivered to the plant root zone, below the soil surface by buried plastic tubes containing embedded emitters located at regular spacing. Within the LIFE REWAT, the specific objectives of the pilot on irrigation efficiency is to (i) demonstrate the

  4. Nitrate leaching beneath a containerized nursery crop receiving trickle or overhead irrigation.

    Science.gov (United States)

    Colangelo, D J; Brand, M H

    2001-01-01

    Container production of nursery crops is intensive and a potential source of nitrogen release to the environment. This study was conducted to determine if trickle irrigation could be used by container nursery producers as an alternative to standard overhead irrigation to reduce nitrogen release into the environment. The effect of overhead irrigation and trickle irrigation on leachate nitrate N concentration, flow-weighted nitrate N concentration, leachate volume, and plant growth was investigated using containerized rhododendron (Rhododendron catawbiense Michx. 'Album') supplied with a controlled-release fertilizer and grown outdoors on top of soil-monolith lysimeters. Leachate was collected over two growing seasons and overwinter periods, and natural precipitation was allowed as a component of the system. Precipitation accounted for 69% of the water entering the overhead-irrigated system and 80% of the water entering the trickle-irrigated system. Leachate from fertilized plants exceeded the USEPA limit of 10 mg L(-1) at several times and reached a maximum of 26 mg L(-1) with trickle irrigation. Average annual loss of nitrate N in leachate for fertilized treatments was 51.8 and 60.5 kg ha(-1) for the overhead and trickle treatments, respectively. Average annual flow-weighted concentration of nitrate N in leachate of fertilized plants was 7.2 mg L(-1) for overhead irrigation and 12.7 mg L(-1) for trickle irrigation. Trickle irrigation did not reduce the amount of nitrate N leached from nursery containers when compared with overhead irrigation because precipitation nullified the potential benefits of reduced leaching fractions and irrigation inputs provided under trickle irrigation.

  5. Opportunities for woody crop production using treated wastewater in Egypt. II. Irrigation strategies.

    Science.gov (United States)

    Evett, Steven R; Zalesny, Ronald S; Kandil, Nabil F; Stanturf, John A; Soriano, Chris

    2011-01-01

    An Egyptian national program targets annual reuse of 2.4 billion m3 of treated wastewater (TWW) to irrigate 84,000 ha of manmade forests in areas close to treatment plants and in the desert. To evaluate the feasibility of such afforestation efforts, we describe information about TWW irrigation strategies based on (1) water use of different tree species, (2) weather conditions in different climate zones of Egypt, (3) soil types and available irrigation systems, and (4) the requirement to avoid deep percolation losses that could lead to groundwater contamination. We conclude that drip irrigation systems are preferred, that they should in most cases use multiple emitters per tree in order to increase wetted area and decrease depth of water penetration, that deep rooting should be encouraged, and that in most situations irrigation system automation is desirable to achieve several small irrigations per day in order to avoid deep percolation losses. We describe directed research necessary to fill knowledge gaps about depth of rooting of different species in sandy Egyptian soils and environments, tree crop coefficients needed for rational irrigation scheduling, and depth of water penetration under different irrigation system designs. A companion paper addresses recommendations for afforestation strategies (see Zalesny et al. 2011, this issue).

  6. An experimental study on the grape orchard: Effects comparison of two irrigation systems

    Directory of Open Access Journals (Sweden)

    Kadbhane Sharad J.

    2017-03-01

    Full Text Available Table grape (Vitis vinifera cultivars is a major cash crop in the Nashik district of India, which requires irrigation water throughout the year as per demand instantly. Canal irrigation is the adopted irrigation systems in the study area, but canal irrigation has got several serious disadvantages, such as mismatching rotation schedules and crop water demands, water allotment system and restrictions on the use of efficient irrigation methods. The storing the canal water in the farm pond instead of directly applying to the field using the free flooding method is alternate solution to overcome the disadvantages of the canal irrigation system. Once the canal water storing in the pond, it increases the possibilities to use the advance irrigation system like drip, subsurface, sprinkler etc. to enhance water use efficiency. The comparative study between the canal water directly applying for the field and canal water storing in the farm pond then use for irrigation, executed through the field experiments carried out on the grape orchard during a period April 2013 to March 2016. Results have been evaluated based on grape yield, water-productivity, berry size, and biomass. Water productivity (kg·m-3 with respect to water delivery to crop through the pond irrigation method was found 37% higher than the canal irrigation method during the study period. Based on the results, this study recommended the use of the farm pond to store the canal water and use it as per crop demand using advance irrigation systems.

  7. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  8. Simulated optimization of crop yield through irrigation system design and operation based on the spatial variability of soil hydrodynamic properties

    International Nuclear Information System (INIS)

    Gurovich, L.; Stern, J.; Ramos, R.

    1983-01-01

    Spatial autocorrelation and kriging techniques were applied to soil infiltrability data from a 20 hectare field, to separate homogeneous irrigation units. Border irrigation systems were designed for each unit and combinations of units by using DESIGN, a computer model based on soil infiltrability and hydraulics of surface water flow, which enables optimal irrigation systems to be designed. Water depths effectively infiltrated at different points along the irrigation run were determined, and the agronomic irrigation efficiency of the unit evaluated. A modification of Hanks' evapotranspiration model, PLANTGRO, was used to evaluate plant growth, relative crop yield and soil-water economy throughout the growing season, at several points along each irrigation unit. The effect of different irrigation designs on total field yield and total water used for irrigation was evaluated by integrating yield values corresponding to each point, volume and inflow time during each irrigation. For relevant data from winter wheat grown in the central area of Chile during 1981, simulation by an interactive and sequentially recurrent use of DESIGN and PLANTGRO models, was carried out. The results obtained indicate that, when a field is separated into homogeneous irrigation units on the basis of the spatial variability of soil infiltrability and the border irrigation systems are designed according to soil characteristics, both a significant yield increase and less water use can be obtained by comparison with other criteria of field zonification for irrigation management. The use of neutrometric determinations to assess soil-water content during the growing season, as a validation of the results obtained in this work, is discussed. (author)

  9. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Science.gov (United States)

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  10. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Directory of Open Access Journals (Sweden)

    Xin Liu

    Full Text Available Modelling crop evapotranspiration (ET response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1 and summer maize (scenario 2 by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  11. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    Science.gov (United States)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  12. Determination of optimal irrigation rates of agricultural crops under consideration of soil properties and climatic conditions

    Directory of Open Access Journals (Sweden)

    Irakli Kruashvili

    2016-09-01

    Full Text Available In conditions of increasing water shortage, further development of irrigated agriculture production is impossible without improving the methods of cultivation of agricultural crops, primarily irrigation technology. In 2015 the experiment have been conducted on the territory of irrigation farming area of village Tamarisi (Marneuli Municipality, according to which comprehensive study of local climatic and soil conditions were conducted. Received data were used for computation crop water requirements for tomato and melon under the different irrigation treatments. Obtained results have shown the possibility of water use efficiency and obtaining sufficiently high yields of crops that participated in the experiment that became possible in a case of usage of drip irrigation technology in combination with plastic mulch.

  13. Sprinkler and drip irrigation in the organic tomato for single crops and when intercropped with coriander

    Directory of Open Access Journals (Sweden)

    Waldir Aparecido Marouelli

    Full Text Available The objective of this study was to evaluate the influence of both sprinkler and drip irrigation systems on the organic production of the tomato, cultivar Duradouro, when cultivated both as a single crop and intercropped with coriander. The experiment was carried out in the Distrito Federal, Brazil, using a randomized block design with six replications and a 2 x 2 factorial arrangement for the treatments. There was no significant interaction between the factors of irrigation system and cropping system. The productivity and mass of the tomato fruits were not affected by the treatments, but for the coriander, productivity was higher under the sprinkler system. Drip irrigation hindered the development of late blight (Phytophthora infestans and reduced the percentage of rotten fruit, whereas the incidence of powdery mildew (Leveillula taurica and infestation by the tomato leafminer (Tuta absoluta were higher under the sprinkler system. The volume of soil exploited by the roots of tomato plants was higher with the sprinkler system, while the water productivity index with the drip system was 47% higher than with the sprinkler system. Firmer fruits were produced under drip irrigation. The cultivation system had a significant effect on the occurrence of insect pests, with the tomato intercropped with coriander showing a lower percentage of damaged fruit due to the Tomato Leafminer and to Spodoptera eridania.

  14. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  15. Infra-red thermography for detecting drought in agricultural crops and scheduling irrigation

    Directory of Open Access Journals (Sweden)

    Petrović Ivana

    2016-01-01

    Full Text Available The use of thermal imaging is a fast growing and potentially important tool in various fields of agriculture. The technology visually identified the rise of temperature in crop canopy which occurs as a result of drought and allows the precise scheduling of crop irrigation. The aim of presenting paper was to demonstrate the application of these techniques on potato plants and to point out on the necessity of irrigation for potato sustainable and economically justified production.

  16. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops

    Science.gov (United States)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2018-06-01

    The use of canopy thermography is an innovative approach for salinity stress detection in plants. But its applicability for landscape scale studies using satellite sensors is still not well investigated. The aim of this research is to test the satellite thermography soil salinity assessment approach on a study area with different crops, grown both in irrigated and rainfed conditions, to evaluate whether the approach has general applicability. Four study areas in four different states of Australia were selected to give broad representation of different crops cultivated under irrigated and rainfed conditions. The soil salinity map was prepared by the staff of Geoscience Australia and CSIRO Land and Water and it is based on thorough soil sampling together with environmental modelling. Remote sensing data was captured by the Landsat 5 TM satellite. In the analysis we used vegetation indices and brightness temperature as an indicator for canopy temperature. Applying analysis of variance and time series we have investigated the applicability of satellite remote sensing of canopy temperature as an approach of soil salinity assessment for different crops grown under irrigated and rainfed conditions. We concluded that in all cases average canopy temperatures were significantly correlated with soil salinity of the area. This relation is valid for all investigated crops, grown both irrigated and rainfed. Nevertheless, crop type does influence the strength of the relations. In our case cotton shows only minor temperature difference compared to other vegetation classes. The strongest relations between canopy temperature and soil salinity were observed at the moment of a maximum green biomass of the crops which is thus considered to be the best time for application of the approach.

  17. Impacts of Irrigation and Climate Change on Water Security: Using Stakeholder Engagement to Inform a Process-based Crop Model

    Science.gov (United States)

    Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.

    2016-12-01

    Irrigation is an essential component for agricultural production in arid and semi-arid regions, accounting for a majority of global freshwater withdrawals used for human consumption. Since climate change affects both the spatiotemporal demand and availability of water in irrigated areas, agricultural productivity and water efficiency depend critically on how producers adapt and respond to climate change. It is necessary, therefore, to understand the coevolution and feedbacks between humans and agricultural systems. Integration of social and hydrologic processes can be achieved by active engagement with local stakeholders and applying their expertise to models of coupled human-environment systems. Here, we use a process based crop simulation model (EPIC) informed by stakeholder engagement to determine how both farm management and climate change influence regional agricultural water use and production in the Lower Boise River Basin (LBRB) of southwest Idaho. Specifically, we investigate how a shift from flood to sprinkler fed irrigation would impact a watershed's overall agricultural water use under RCP 4.5 and RCP 8.5 climate scenarios. The LBRB comprises about 3500 km2, of which 20% is dedicated to irrigated crops and another 40% to grass/pasture grazing land. Via interviews of stakeholders in the LBRB, we have determined that approximately 70% of irrigated lands in the region are flood irrigated. We model four common crops produced in the LBRB (alfalfa, corn, winter wheat, and sugarbeets) to investigate both hydrologic and agricultural impacts of irrigation and climatic drivers. Factors influencing farmers' decision to switch from flood to sprinkler irrigation include potential economic benefits, external financial incentives, and providing a buffer against future water shortages. These two irrigation practices are associated with significantly different surface water and energy budgets, and large-scale shifts in practice could substantially impact regional

  18. Drip irrigation using a PLC based adaptive irrigation system

    OpenAIRE

    Shahidian, S.; Serralheiro, R. P.; Teixeira, J. L.; Santos, F. L.; Oliveira, M. R. G.; Costa, J. L.; Toureiro, C.; Haie, Naim; Machado, R. M.

    2009-01-01

    Most of the water used by man goes to irrigation. A major part of this water is used to irrigate small plots where it is not feasible to implement full-scale Evapotranspiration based irrigation controllers. During the growth season crop water needs do not remain constant and varies depending on the canopy, growth stage and climate conditions such as temperature, wind, relative humidity and solar radiation. Thus, it is necessary to find an economic irrigation controller that can adapt the dail...

  19. Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops

    Science.gov (United States)

    Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis

    2014-05-01

    Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical

  20. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  1. Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa

    Directory of Open Access Journals (Sweden)

    Abdelaziz HIRICH

    2014-07-01

    Full Text Available Several experiments were conducted in the south of Morocco (IAV-CHA, Agadir during two seasons 2010 and 2011 in order to evaluate the effect of deficit irrigation with treated wastewater on several crops (quinoa, sweet corn, faba bean and chickpeas. During the first season (2010 three crops were tested, quinoa, chickpeas and sweet corn applying 6 deficit irrigation treatments during all crop stages alternating 100% of full irrigation as non-stress condition and 50% of full irrigation as water deficit condition applied during vegetative growth, flowering and grain filling stage. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season (2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of full irrigation during vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity.

  2. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  3. Year-Round Irrigation Schedule for a Tomato–Maize Rotation System in Reservoir-Based Irrigation Schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Ephraim Sekyi-Annan

    2018-05-01

    Full Text Available Improving irrigation management in semi-arid regions of Sub-Saharan Africa is crucial to respond to increasing variability in rainfall and overcome deficits in current irrigation schemes. In small-scale and medium-scale reservoir-based irrigation schemes in the Upper East region of Ghana, we explored options for improving the traditional, dry season irrigation practices and assessed the potential for supplemental irrigation in the rainy season. The AquaCrop model was used to (i assess current water management in the typical tomato-maize rotational system; (ii develop an improved irrigation schedule for dry season cultivation of tomato; and (iii determine the requirement for supplemental irrigation of maize in the rainy season under different climate scenarios. The improved irrigation schedule for dry season tomato cultivation would result in a water saving of 130–1325 mm compared to traditional irrigation practices, accompanied by approximately a 4–14% increase in tomato yield. The supplemental irrigation of maize would require 107–126 mm of water in periods of low rainfall and frequent dry spells, and 88–105 mm in periods of high rainfall and rare dry spells. Therefore, year-round irrigated crop production may be feasible, using water saved during dry season tomato cultivation for supplemental irrigation of maize in the rainy season.

  4. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling

    Science.gov (United States)

    Portmann, Felix T.; Siebert, Stefan; DöLl, Petra

    2010-03-01

    To support global-scale assessments that are sensitive to agricultural land use, we developed the global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000). With a spatial resolution of 5 arc min (about 9.2 km at the equator), MIRCA2000 provides both irrigated and rainfed crop areas of 26 crop classes for each month of the year. The data set covers all major food crops as well as cotton. Other crops are grouped into categories (perennial, annual, and fodder grasses). It represents multicropping systems and maximizes consistency with census-based national and subnational statistics. According to MIRCA2000, 25% of the global harvested areas are irrigated, with a cropping intensity (including fallow land) of 1.12, as compared to 0.84 for the sum of rainfed and irrigated harvested crops. For the dominant crops (rice (1.7 million km2 harvested area), wheat (2.1 million km2), and maize (1.5 million km2)), roughly 60%, 30%, and 20% of the harvested areas are irrigated, respectively, and half of the citrus, sugar cane, and cotton areas. While wheat and maize are the crops with the largest rainfed harvested areas (1.5 million km2 and 1.2 million km2, respectively), rice is clearly the crop with the largest irrigated harvested area (1.0 million km2), followed by wheat (0.7 million km2) and maize (0.3 million km2). Using MIRCA2000, 33% of global crop production and 44% of total cereal production were determined to come from irrigated agriculture.

  5. Green, blue and grey water footprint reduction in irrigated crop production

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie

    2017-01-01

    In the face of increasing water scarcity, reducing the consumptive and degradative water use of crop production is important to produce more food and/or for the environment. The thesis explores the potential for reducing the green, blue and grey water footprint (WF) of irrigated crop production by

  6. Raised bed technology for wheat crop in irrigated areas of punjab, pakistan

    International Nuclear Information System (INIS)

    Taj, S.; Ali, A.; Akmal, N.; Yaqoob, S.; Ali, M.

    2013-01-01

    The present paper analyzes the determinants of adoption of raised bed planting of wheat in irrigated areas of Punjab, Pakistan. Wheat is an important staple food of Pakistan. It contributes 13 % to the value added in agriculture and 2.6 % to the GDP. The agrarian economy of Pakistan is continuously under stress due to the low yield of almost all the crops and constrained with many problem. One of the most important issues of agriculture is water shortage which is increasing day by day and is a major challenge now a days. Therefore, water saving becomes the utmost need of the hour. The national research system is now putting their focus and efforts to manage the precious water through various modern/latest water saving models to draw some solid method of irrigation with less wastage. Raised bed planting method is also one of the modern methods of planting crop with significant water saving. The study was planned and conducted by the Social Sciences Research Institute, Faisalabad in 2011-12 to assess the determinants of the adoption of the raised bed technology for wheat crop in irrigated Punjab, Pakistan. The study was conducted at three sites of the districts Faisalabad and Toba Tek Singh where the Water Management Research Institute, University of Faisalabad promoted the raised bed technology for wheat crop. A sample of 63 farmers was interviewed in detail to understand the whole system and the factors contributing to the adoption of the technology. The study revealed that adopters typically have a more favorable resource base and tend to variously outperform non-adopters. More access to education and other social indicators increases the chances to adopt new technologies by the farming community. However, the small farmers can also be benefited with the technology with proper education regarding the technology in the area with good social mobilization for the conservation of scarce and valuable farm resources. (author)

  7. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  8. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    Science.gov (United States)

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  9. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-01-01

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764

  10. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Directory of Open Access Journals (Sweden)

    Ana Allende

    2015-07-01

    Full Text Available There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  11. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-07-03

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  12. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    Science.gov (United States)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  13. Drip and Surface Irrigation Water Use Efficiency of Tomato Crop Using Nuclear Techniques

    International Nuclear Information System (INIS)

    Mellouli, H.J.; Askri, H.; Mougou, R.

    2003-01-01

    Nations in the arid and semi-arid regions, especially the Arab countries, will have to take up an important challenge at the beginning of the 21 st century: increasing food production in order to realise food security for growing population, wile optimising the use of limited water resources. Using and adapting management techniques like the drip irrigation system could obtain the later. This would allow reduction in water losses by bare soil evaporation and deep percolation. Consequently improved water use efficiency could be realised. In this way, this work was conducted as a contribution on the Tunisian national programs on the optimisation of the water use. By mean a field study at Cherfech Experimental Station (30 km from Tunis), the effect of the irrigation system on the water use efficiency (WUE)-by a season tomato crop-was monitored by comparing three treatments receiving equivalent quantities of fertiliser: Fertigation, Drip irrigation and Furrow irrigation. Irrigation was scheduled by mean calculation of the water requirement based on the agro meteorological data, the plant physiological stage and the soil water characteristics (Clay Loam). The plant water consumption (ETR) was determined by using soil water balance method, where rainfall and amount of irrigation water readily measured

  14. Nuclear techniques to assess irrigation schedules for field crops. Results of a co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This TECDOC summarizes the results of a Co-ordinated Research Programme on The Use of Nuclear and Related Techniques in Assessment of Irrigation Schedules of Field Crops to Increase Effective Use of Water in Irrigation Projects. The programme was carried out between 1990 and 1995 through the technical co-ordination of the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture of the International Atomic Energy Agency. Fourteen Member States of the IAEA and FAO carried out a series of field experiments aimed at improving irrigation water use efficiency through a type of irrigation scheduling known as deficit irrigation. Refs, figs, tabs.

  15. Nuclear techniques to assess irrigation schedules for field crops. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1996-06-01

    This TECDOC summarizes the results of a Co-ordinated Research Programme on The Use of Nuclear and Related Techniques in Assessment of Irrigation Schedules of Field Crops to Increase Effective Use of Water in Irrigation Projects. The programme was carried out between 1990 and 1995 through the technical co-ordination of the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture of the International Atomic Energy Agency. Fourteen Member States of the IAEA and FAO carried out a series of field experiments aimed at improving irrigation water use efficiency through a type of irrigation scheduling known as deficit irrigation. Refs, figs, tabs

  16. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China

    International Nuclear Information System (INIS)

    Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G.

    2008-01-01

    Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P ≤ 0.001) than in plants grown in the reference soil, and exceeded the permissible limits set by the State Environmental Protection Administration (SEPA) in China and the World Health Organization (WHO). Furthermore, this study highlights that both adults and children consuming food crops grown in wastewater-irrigated soils ingest significant amount of the metals studied. However, health risk index values of less than 1 indicate a relative absence of health risks associated with the ingestion of contaminated vegetables. - Long-term wastewater irrigation leads to buildup of heavy metals in soils and food crops

  17. Crop yield response to deficit irrigation imposed at different plant growth stages

    International Nuclear Information System (INIS)

    Kovaks, T.; Kovaks, G.; Szito, J.

    1995-01-01

    A series of field experiments were conducted between 1991 - 1994 using 7 irrigation treatments at two fertilizer levels. Nitrogen fertilizers used were labelled with 15 N stable isotope to examine the effect of irrigation on the fertilizer N use efficiency by isotope technique. The irrigation were maintained at four different growth stages of maize, soybean and potato( vegetative, flowering, yield formation and ripening ) in 4 replicates. The aim of study was to compare deficit irrigation( i.e. the water stress imposed, during one growth stage ) with normal irrigation practice included the traditional one. Two watering regimes were established : (1) normal watering when available water was within the range of 60 - 90 %, and (2) deficit irrigation, when the AW was at 30 to 60 %. Neutron probe was used for measuring the soil water status and evaporation data were recorded to determine the amount of irrigation water demand. Reference evapotranspiration ( ETo) was calculated according to Penman - Monteith. Crop water requirement ( ETm) were determined in every year. Actual evapotranspiration ( ETa) was computed using CROPWAT: FAO computer program for irrigation planning and management (1992). Every irrigation treatment was equipped with neutron access tubes in two replicates at a depth from 10 to 130 cm. tensiometers were installed at depths of 30, 50, 60 and 80 cm in one replicate of treatments and were measured on a daily basis while neutron probe measurements were used to monitor the soil water table fluctuations. The irrigation method used was a special type of low pressure drop irrigation. There were measured the amount of rainfall with irrigation water supplied and the moisture distribution profiles were drown for the different treatments. Relationships between relative yield decrease and evapotranspiration and also between the crop yield and water use were determined. 9 tabs, 9 refs, ( Author )

  18. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  19. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  20. Enhancing the Productivity of High Value Crops and Income Generation with Small-Scale Irrigation Technologies in Kenya. Final Report 2009-2013

    International Nuclear Information System (INIS)

    2014-02-01

    The project was implemented by the Kenya Agricultural Research Institute in collaboration with key irrigation stakeholders including Horticultural Crops Development Authority (HCDA), G North and Son limited, Kenya Irrigation and Drainage Association (KIDA), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Greenbelt Movement and Ministry of Agriculture. The objective was to develop and pilot test appropriate irrigation systems (methods and related water/nutrient management practices) for small-scale farmers for increasing yield, quality of high value crops and farmers income to improved livelihood. The project built on earlier work on low head drip irrigation in Kenya involving KARI led promotion among the peri-urban and rural communities. The Equipment used include Neutron Probe Hydroprobe, Ammonium Sulphate Fertilizers (5% a.e), drip irrigation kits, MoneyMaker irrigation pumps, Pessl imetos weather station, SDEC tensimetre and tensiometers), Venturi injectors, among others.

  1. KOEFISIEN TANAMAN PADI SAWAH PADA SISTEM IRIGASI HEMAT AIR Crop Coefficient for Paddy Rice Field under Water Saving Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Joko Sujono

    2012-05-01

    Full Text Available Traditional irrigation for paddy rice is the leading of consumer of water, about 80 % of the water resource availabilityused for irrigation purpose. This phenomenon is related to the way how to estimate the crop water requirement where crop coefficient for paddy rice (k (Prosida is always greater than one starting from planting up to nearly harvesting. In this research, a number of water saving irrigations (WSI systems for paddy rice cultivation using pots such asalternate wetting and drying (AWD, shallow water depth with wetting and drying (SWD, semi-dry cultivation (SDC, system of rice intensification (SRI, and  AWD with mulch (AWD-Mul were applied. The amount of irrigated water and when it should be irrigated depend on evapotranspiration rate, soil moisture condition and the WSI system used. For this purpose, daily measurement of the pot weight was carried out. Crop coefficient (k  is then caluculated as a cratio between crop and reference evapotranspiration computed using Penman-Montheit  method. Results show that up to 45 days after transplanting, the k of WSI treatments were around half of the k (Prosida values currently used for computing the water requirement, whereas at the productive stage the k of WSI systems were relatively equal (AWD, SDC to or greater (SRI, SWD than the k (Prosida. Based on the the k values, the AWD and the SDC systems could save much water compared to the SRI or the SWD. Water saving could be increased by applying the AWD with mulch. ABSTRAK Irigasi padi sawah dengan sistem tradisional merupakan sistem irigasi  yang boros air, hampir 80 % sumber air yang ada untuk irigasi. Hal ini tidak terlepas dari perhitungan kebutuhan air tanaman dengan nilai koefisien tanaman (k menurut Standar Perencanaan Irigasi (Prosida selalu lebih besar dari satu mulai dari tanam hingga menjelang panen.Dalam penelitian ini beberapa metoda budidaya padi hemat air seperti alternate wetting and drying (AWD, shallow water depth

  2. Simulation of Crop Growth and Water-Saving Irrigation Scenarios for Lettuce: A Monsoon-Climate Case Study in Kampong Chhnang, Cambodia

    Directory of Open Access Journals (Sweden)

    Pinnara Ket

    2018-05-01

    Full Text Available Setting up water-saving irrigation strategies is a major challenge farmers face, in order to adapt to climate change and to improve water-use efficiency in crop productions. Currently, the production of vegetables, such as lettuce, poses a greater challenge in managing effective water irrigation, due to their sensitivity to water shortage. Crop growth models, such as AquaCrop, play an important role in exploring and providing effective irrigation strategies under various environmental conditions. The objectives of this study were (i to parameterise the AquaCrop model for lettuce (Lactuca sativa var. crispa L. using data from farmers’ fields in Cambodia, and (ii to assess the impact of two distinct full and deficit irrigation scenarios in silico, using AquaCrop, under two contrasting soil types in the Cambodian climate. Field observations of biomass and canopy cover during the growing season of 2017 were used to adjust the crop growth parameters of the model. The results confirmed the ability of AquaCrop to correctly simulate lettuce growth. The irrigation scenario analysis suggested that deficit irrigation is a “silver bullet” water saving strategy that can save 20–60% of water compared to full irrigation scenarios in the conditions of this study.

  3. Nitrogen management impacts nitrous oxide emissions under varying cotton irrigation systems in the American Desert Southwest

    Science.gov (United States)

    Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...

  4. Effect of regulated deficit irrigation and crop load on the antioxidant compounds of peaches.

    Science.gov (United States)

    Buendía, Begoña; Allende, Ana; Nicolás, Emilio; Alarcón, Juan J; Gil, Maria I

    2008-05-28

    The use of regulated deficit irrigation (RDI) strategies is becoming a common practice in areas with low water availability. Little information is available about the effects of RDI on the antioxidant content of fruits. In this study, the influence of RDI on the content of vitamin C, phenolic compounds and carotenoids was investigated. Two irrigation strategies, fully irrigated (FI) and RDI, were compared at two levels of thinning, commercial and half of the commercial crop load. RDI strategies affected the content of vitamin C, phenolics and carotenoids of Flordastar peaches. RDI caused fruit peel stress lowering the content of vitamin C and carotenoids, while increasing the phenolic content, mainly anthocyanins and procyanidins. Fruit weight was the only quality index influenced by the crop load as it increased in FI fruits at low crop load. In general, fruits from commercial crop load had slightly higher content of antioxidants to fruits from low crop load, although these influences were only observed in the peel. Additionally, the influence of irrigation controlled by two sensors related to plant water level, maximum daily trunk shrinkage (MDS) and sap flow (SF) on the antioxidant constituents of peaches was evaluated. The response of the fruits to SF sensor was similar to that observed for RDI strategy. According to the tested water sensors, SF did not act as a good plant-based water indicator for use in irrigation scheduling, as it caused an increase in the content of phenolics, similar to that observed for fruits subjected to RDI. Therefore, selection of RDI strategies and plant water indicators should be taken into account as they affect the content of antioxidants of peaches.

  5. The crop water stress index (CWSI) for drip irrigated cotton in a semi ...

    African Journals Online (AJOL)

    The crop water stress index (CWSI) for drip irrigated cotton in a semi-arid region of Turkey. ... Four irrigation treatments designated as full (I100) with no water stress and slight (DI70), moderate (DI50) and strong water ... from 32 Countries:.

  6. Carbon and water fluxes and footprints in tropical agricultural systems under rainfed and irrigated conditions

    Science.gov (United States)

    Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.

    2017-12-01

    In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.

  7. The potential use of treated brewery effluent as a water and nutrient source in irrigated crop production

    Directory of Open Access Journals (Sweden)

    Richard P. Taylor

    2018-06-01

    Full Text Available Brewery effluent (BE needs to be treated before it can be released into the environment, reused or used in down-stream activities. This study demonstrated that anaerobic digestion (AD followed by treatment in an integrated tertiary effluent treatment system transformed BE into a suitable solution for crop irrigation. Brewery effluent can be used to improve crop yields: Cabbage (Brassica oleracea cv. Star 3301, grew significantly larger when irrigated with post-AD, post-primary-facultative-pond (PFP effluent, compared with those irrigated with post-constructed-wetland (CW effluent or tap water only (p < 0.0001. However, cabbage yield when grown using BE was 13% lower than that irrigated with a nutrient-solution and fresh water; the electrical conductivity of BE (3019.05 ± 48.72 µs/cm2 may have been responsible for this. Post-CW and post-high-rate-algal-pond (HRAP BE was least suitable due to their higher conductivity and lower nutrient concentration. After three months, soils irrigated with post-AD and post-PFP BE had a significantly higher sodium concentration and sodium adsorption ratio (3919 ± 94.77 & 8.18 ± 0.17 mg/kg than soil irrigated with a commercial nutrient-solution (920.58 ± 27.46 & 2.20 ± 0.05 mg/kg. However, this was not accompanied by a deterioration in the soil's hydro-physical properties, nor a change in the metabolic community structure of the soil. The benefits of developing this nutrient and water resource could contribute to cost-reductions at the brewery, more efficient water, nutrient and energy management, and job creation. Future studies should investigate methods to reduce the build-up of salt in the soil when treated BE is used to irrigate crops. Keywords: Wastewater irrigation, Nutrient recovery, Agriculture, Brewery effluent

  8. Subsurface irrigation of potato crop (Solanum tuberosum ssp. Andigena) in Suka Kollus with different drainage systems

    Science.gov (United States)

    Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José

    2016-04-01

    Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1

  9. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States); Molla, S. [Texas A& M Univ., College Station, TX (United States)

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  10. Improved methods for irrigation and planting of major crops in waterlogged areas

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Raoof, A.

    2002-01-01

    The improved irrigation methods for wheat and cotton were evaluated in the fordwah Eastern Sadigia (South) Irrigation and Drainage Project area, during 1996-97 and 1997-98 cropping seasons, under three water table depths. Irrigation methods for wheat included 70, 95 and 120 cm Beds, with Flat Basin, as a check for comparative evaluation. Cotton had Ridge-planting on the top and side, Bed and Furrow, and Flat Basin as control. These irrigation methods were compared at water table depths of < 1 m, 1-2 and 2-3 m. The wheat variety inqalab-91, and cotton cultivar, CIM-109, were planted during the 3rd week of November and May every year. All the inputs and management practices, such as seed-rate, fertilizer, seeding method, weed control, plant-protection measures, etc. were kept common. The results on cotton indicated maximum water-use efficiency with the Bed and Furrow Method of irrigation Followed by ridge planting. The traditional Flat-planting had the lowest yield and the highest water-consumption, resulting in the minimum water-use efficiency. In harmony with cotton, the Flat Method of planting had maximum water-consumption. For wheat crop, the water-use efficiency was in descending order, with 120, 95 and 70 cm for Bed and Flat Methods. Bed planting of 95 cm had a fairly high water-use efficiency and yields were more were more comparable than Flat planting. This method had a high level of adaptabilities, especially when the groundwater was close to the root-zone and higher possibilities, especially when the groundwater was close to the root-zone and higher possibility of crop-submergence are existent during rainy spells. The results of the investigation strongly favoured the Bed and furrow methods to irrigate cotton and wheat. However, under well-drained soil conditions, Bed planting of wheat is not recommended. (author)

  11. Biological soil attributes in oilseed crops irrigated with oilfield produced water in the semi-arid region

    Directory of Open Access Journals (Sweden)

    Ana Clarice Melo Azevedo de Meneses

    Full Text Available ABSTRACT Wastewater from oil is the main residue of the oil industry. Studies have shown that wastewater, or produced water, can be treated and used as an alternative source for the irrigation of oilseed crops. The aim of this work was to evaluate the effect of treated produced water on the biological properties of soil cultivated with the castor bean cv. BRS Energy and the sunflower cv. BRS 321 respectively, for two and three successive cycles of grain production. The first cycle in the sunflower and castor bean corresponds to the dry season and the second cycle to the rainy season. The third crop cycle in the sunflower relates to the dry season. The research was carried out from August 2012 to October 2013, in the town of Aracati, in the State of Ceará (Brazil, where both crops were submitted to irrigation with filtered produced water (FPW, produced water treated by reverse osmosis (OPW, or groundwater water from the Açu aquifer (ACW, and to no irrigation (RFD. The treatments, with three replications, were evaluated during the periods of pre-cultivation and plant reproduction for soil respiration (Rs, total organic carbon (TOC and the population density of bacteria (Bact and filamentous fungi (Fung in the soil. In the sunflower crop, these soil attributes are sensitive to the irrigation water used. Irrigation of the castor bean affects soil respiration. Under the conditions of this study, irrigation with FPW may be a short-term alternative in the castor bean and sunflower crops.

  12. Applying CSM-CERES-Maize to define a sowing window for irrigated maize crop - The Riacho´s Farm case study

    Directory of Open Access Journals (Sweden)

    Denise Freitas Silva

    2011-08-01

    Full Text Available Irrigation use constitutes an alternative to improve maize production in Central Minas Gerais State, Brazil. However, even under adequate water supply conditions, other environmental factors may influence maize crop growth and development and may, ultimately, affect grain yield. This study aimed to establish a sowing window for irrigated maize crop, based on simulation results obtained with the decision support model CSM-CERES-Maize. Simulations were made for crop management conditions of Riacho´s Farm, located in Matozinhos, Minas Gerais State, Brazil. It was employed the model´s seasonal tool, along with a data set containing 46 years of weather data records, to simulate maize yield for weekly sowing scenarios, starting on August 1st and ending on July 24th of each year. One defined an irrigated maize sowing window, taking into account the yield break risk that a farmer would be willing to take. The model proved to be an interesting tool to assist in decision making, regarding crop and irrigation management, for an irrigated maize production system. Assuming a 10% yield break in the expected average maximum maize yield, it was defined as sowing window, the period from January 23rd to March 6th, with February 20th as the best sowing date. Other sowing windows may be established according to the risk that the farmer would be willing to take.

  13. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  14. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-07-01

    Full Text Available In the semi-arid Texas High Plains, the underlying Ogallala Aquifer is experiencing continuing decline due to long-term pumping for irrigation with limited recharge. Accurate simulation of irrigation and other associated water balance components are critical for meaningful evaluation of the effects of irrigation management strategies. Modelers often employ auto-irrigation functions within models such as the Soil and Water Assessment Tool (SWAT. However, some studies have raised concerns as to whether the function is able to adequately simulate representative irrigation practices. In this study, observations of climate, irrigation, evapotranspiration (ET, leaf area index (LAI, and crop yield derived from an irrigated lysimeter field at the USDA-ARS Conservation and Production Research Laboratory at Bushland, Texas were used to evaluate the efficacy of the SWAT auto-irrigation functions. Results indicated good agreement between simulated and observed daily ET during both model calibration (2001–2005 and validation (2006–2010 periods for the baseline scenario (Nash-Sutcliffe efficiency; NSE ≥ 0.80. The auto-irrigation scenarios resulted in reasonable ET simulations under all the thresholds of soil water deficit (SWD triggers as indicated by NSE values > 0.5. However, the auto-irrigation function did not adequately represent field practices, due to the continuation of irrigation after crop maturity and excessive irrigation when SWD triggers were less than the static irrigation amount.

  15. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done

  16. REMOTE-SENSING-BASED BIOPHYSICAL MODELS FOR ESTIMATING LAI OF IRRIGATED CROPS IN MURRY DARLING BASIN

    Directory of Open Access Journals (Sweden)

    I. Wittamperuma

    2012-07-01

    Full Text Available Remote sensing is a rapid and reliable method for estimating crop growth data from individual plant to crops in irrigated agriculture ecosystem. The LAI is one of the important biophysical parameter for determining vegetation health, biomass, photosynthesis and evapotranspiration (ET for the modelling of crop yield and water productivity. Ground measurement of this parameter is tedious and time-consuming due to heterogeneity across the landscape over time and space. This study deals with the development of remote-sensing based empirical relationships for the estimation of ground-based LAI (LAIG using NDVI, modelled with and without atmospheric correction models for three irrigated crops (corn, wheat and rice grown in irrigated farms within Coleambally Irrigation Area (CIA which is located in southern Murray Darling basin, NSW in Australia. Extensive ground truthing campaigns were carried out to measure crop growth and to collect field samples of LAI using LAI- 2000 Plant Canopy Analyser and reflectance using CROPSCAN Multi Spectral Radiometer at several farms within the CIA. A Set of 12 cloud free Landsat 5 TM satellite images for the period of 2010-11 were downloaded and regression analysis was carried out to analyse the co-relationships between satellite and ground measured reflectance and to check the reliability of data sets for the crops. Among all the developed regression relationships between LAI and NDVI, the atmospheric correction process has significantly improved the relationship between LAI and NDVI for Landsat 5 TM images. The regression analysis also shows strong correlations for corn and wheat but weak correlations for rice which is currently being investigated.

  17. Crop and Irrigation Management Systems under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Pedro García-Caparrós

    2018-01-01

    Full Text Available Plants of Ruscus aculeatus, known as “butcher’s broom”, Maytenus senegalensis, known as “confetti tree”, and Juncus acutus, known as “spiny rush” were grown in pots with a mixture of sphagnum peat-moss and Perlite in order to determine the effect and evolution over time of three water use systems on plant growth, water saving and nutrient uptake. These were an open system (irrigated with standard nutrient solution and two closed systems (blended-water (drainage water blended with water of low electrical conductivity (EC and sequential reuse of drainage (sequential-reuse water, over a period of 8 weeks. Irrigation with blended- and sequential-reuse-water increased the biomass of all three species at the end of the experiment, compared to the open system. Overall, sequential-reuse-water treatment maximised biomass production. The application of blended- and sequential-reuse-water allowed savings of 17% of water in comparison to the open system. Regarding Cl, NO3− and H2PO4− loads, there was a removal of 5%, 32% and 32%; respectively in the blended-water treatment and 15%, 17% and 17% in the sequential-reuse water treatment compared to the open system. For the cation loads (Na+, K+, Ca2+ and Mg2+ in these water treatments there was a removal of 10%, 32%, 7% and 18% respectively in the blended-water treatment, and 17%, 22%, 17% and 18% respectively in the sequential-reuse treatment, compared to the open system.

  18. Gypsiferous mine water use in irrigation on rehabilitated open-cast mine land: Crop production, soil water and salt balance

    OpenAIRE

    Annandale, J.; Jovanovic, N.; Pretorius, J.; Lorentz, S.; Rethman, N.; Tanner, P.

    2001-01-01

    The use of gypsiferous mine water for irrigation of agricultural crops is a promising technology, which could alleviate a shortage of irrigation water and address the problem of disposal of mine effluent. A field trial was established at Kleinkopje Colliery in Witbank (Mpumalanga Province, South Africa) during the 1997-1998 season. Sugar beans and wheat were irrigated with three center pivots, on both virgin and rehabilitated land. The objectives were to determine crop response to irrigation ...

  19. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  20. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  1. Influence of crop load on almond tree water status and its importance in irrigation scheduling

    Science.gov (United States)

    Puerto Conesa, Pablo; Domingo Miguel, Rafael; Torres Sánchez, Roque; Pérez Pastor, Alejandro

    2014-05-01

    In the Mediterranean area water is the main factor limiting crop production and therefore irrigation is essential to achieve economically viable yields. One of the fundamental techniques to ensure that irrigation water is managed efficiently with maximum productivity and minimum environmental impact is irrigation scheduling. The fact that the plant water status integrates atmospheric demand and soil water content conditions encourages the use of plant-based water status indicators. Some researchers have successfully scheduled irrigation in certain fruit trees by maintaining the maximum daily trunk diameter shrinkage (MDS) signal intensity at threshold values to generate (or not) water stress. However MDS not only depends on the climate and soil water content, but may be affected by tree factors such as age, size, phenological stage and fruit load. There is therefore a need to quantify the influence of these factors on MDS. The main objective of this work was to study the effects of crop load on tree water relations for scheduling purposes. We particularly focused on MDS vs VPD10-15 (mean air vapor pressure deficit during the period 10.00-15.00 h solar time) for different loads and phenological phases under non-limiting soil water conditions. The experiment was carried out in 2011 in a 1 ha plot in SE Spain with almond trees (Prunus dulcis (Mill.) D.A. Webb cv. 'Marta'). Three crop load treatments were studied according to three crop load levels, i) T100, high crop load, characteristic crop load, ii) T50, medium crop load, in which 50% of the fruits were removed and iii) T0, practically without fruits. Fruits were manually thinned. Each treatment, randomly distributed in blocks, was run in triplicate. Plant water status was assessed from midday stem water potential (Ψs), MDS, daily trunk growth rate (TGR), leaf turgor potential Ψp, fruit water potential (Ψf), stomatal conductance (gs) and photosynthesis (Pn) and transpiration rates (E). Yield, pruning weights and

  2. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-06-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  3. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-03-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  4. A low cost microcontroller-based automated irrigation system for two ...

    African Journals Online (AJOL)

    Maintaining soil water level is a necessary and pre-requisite for optimum crops production. Water is the essential elements for proper growth of crops in its optimum level; however its excessiveness should be avoided. Since irrigation is a dominant consumer of water, there must be a system which regulates the level of water ...

  5. Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops

    Directory of Open Access Journals (Sweden)

    Maria Isabel Ferreira

    2017-06-01

    Full Text Available There are several causes for the failure of empirical models to estimate soil water depletion and to calculate irrigation depths, and the problem is particularly critical in tall, uneven, deficit irrigated (DI crops in Mediterranean climates. Locally measured indicators that quantify water status are useful for addressing those causes and providing feed-back information for improving the adequacy of simple models. Because of their high aerodynamic resistance, the canopy conductance of woody crops is an important factor in determining evapotranspiration (ET, and accurate stress coefficient (Ks values are needed to quantify the impact of stomatal closure on ET. A brief overview of basic general principles for irrigation scheduling is presented with emphasis on DI applications that require Ks modelling. The limitations of existing technology related to scheduling of woody crops are discussed, including the shortcomings of plant-based approaches. In relation to soil water deficit and/or predawn leaf water potential, several woody crop Ks functions are presented in a secondary analysis. Whenever the total and readily available water data were available, a simple Ks model was tested. The ultimate aim of this discussion is to illustrate the central concept: that a combination of simple ET models and water stress indicators is required for scheduling irrigation of deep-rooted woody crops.

  6. Crop Growing Periods and Irrigation Needs in Bahia State North ...

    African Journals Online (AJOL)

    Markov chain probabilities of days with dry and wet soil were computed for each decade of the year. Soil moisture averages and probabilities were used to determine the optimum crop growing periods at the stations. The amounts of supplementary irrigation necessary to maintain the soil moisture above selected levels ...

  7. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  8. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    Science.gov (United States)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  9. Water stress indices for the sugarcane crop on different irrigated surfaces

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Brunini

    Full Text Available ABSTRACT Sugarcane (Saccharum officinarum L. is a crop of vital importance to Brazil, in the production of sugar and ethanol, power generation and raw materials for various purposes. Strategic information such as topography and canopy temperature can provide management technologies accessible to farmers. The objective of this study was to determine water stress indices for sugarcane in irrigated areas, with different exposures and slopes. The daily water stress index of the plants and the water potential in the soil were evaluated and the production system was analyzed. The experiment was carried out in an “Experimental Watershed”, using six surfaces, two horizontal and the other ones with 20 and 40% North and South exposure slopes. Water stress level was determined by measuring the temperatures of the vegetation cover and the ambient air. Watering was carried out using a drip irrigation system. The results showed that water stress index of sugarcane varies according to exposure and slope of the terrain, while areas whose water stress index was above 5.0 oC had lower yield values.

  10. A catchment-scale irrigation systems model for sugarcane Part 1 ...

    African Journals Online (AJOL)

    2008-03-28

    Mar 28, 2008 ... Keywords: ACRUCane, irrigation systems, water management, crop modelling, hydrology, water ... vide all the necessary decision support information in an inte- .... Root growth is simulated using a methodology described by.

  11. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Stella Lovelli

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  12. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    2011-02-01

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  13. Nuclear techniques to evaluate the water use of field crops irrigated in different stages of their cycles

    International Nuclear Information System (INIS)

    Libardi, P.L.; Moraes, S.O.; Saad, M.A.; Jong Van Lier, Q.; Vieira, O.; Luis Tuon, R.

    1995-01-01

    The search for soil - water management systems that rationalize the water use of field crops should always be emphasized. The present coordinated research programme of the joint division FAO/ AEA has the objective to contribute to a better understanding of this subject by improving the use efficiency of water resources in irrigated agriculture. This project is a contribution to this programme and consisted in the identification of specified development stages of bean ( phaseolus vulgaris, L ) and corn (Zea mays, L ) crops in which plants are less sensitive to water deficit. Experiments were carried out in a tropical soil of agricultural importance in a traditional irrigation field site of the state of Sao Paulo, Brazil. Neutron probe tensiometers were used to determine the soil water balance in different treatments. 3 tabs, 16 refs, (Author)

  14. Impact of Irrigation Method on Water Use Efficiency and Productivity of Fodder Crops in Nepal

    Directory of Open Access Journals (Sweden)

    Ajay K Jha

    2016-01-01

    Full Text Available Improved irrigation use efficiency is an important tool for intensifying and diversifying agriculture in Nepal, resulting in higher economic yield from irrigated farmlands with a minimum input of water. Research was conducted to evaluate the effect of irrigation method (furrow vs. drip on the productivity of nutritious fodder species during off-monsoon dry periods in different elevation zones of central Nepal. A split-block factorial design was used. The factors considered were treatment location, fodder crop, and irrigation method. Commonly used local agronomical practices were followed in all respects except irrigation method. Results revealed that location effect was significant (p < 0.01 with highest fodder productivity seen for the middle elevation site, Syangja. Species effects were also significant, with teosinte (Euchlaena mexicana having higher yield than cowpea (Vigna unguiculata. Irrigation method impacted green biomass yield (higher with furrow irrigation but both methods yielded similar dry biomass, while water use was 73% less under drip irrigation. Our findings indicated that the controlled application of water through drip irrigation is able to produce acceptable yields of nutritionally dense fodder species during dry seasons, leading to more effective utilization and resource conservation of available land, fertilizer and water. Higher productivity of these nutritional fodders resulted in higher milk productivity for livestock smallholders. The ability to grow fodder crops year-round in lowland and hill regions of Nepal with limited water storages using low-cost, water-efficient drip irrigation may greatly increase livestock productivity and, hence, the economic security of smallholder farmers.

  15. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Science.gov (United States)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  16. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential.

    Science.gov (United States)

    Krupnik, Timothy J; Schulthess, Urs; Ahmed, Zia Uddin; McDonald, Andrew J

    2017-01-01

    Changing dietary preferences and population growth in South Asia have resulted in increasing demand for wheat and maize, along side high and sustained demand for rice. In the highly productive northwestern Indo-Gangetic Plains of South Asia, farmers utilize groundwater irrigation to assure that at least two of these crops are sequenced on the same field within the same year. Such double cropping has had a significant and positive influence on regional agricultural productivity. But in the risk-prone and food insecure lower Eastern Indo-Gangetic Plains (EIGP), cropping is less intensive. During the dryer winter months, arable land is frequently fallowed or devoted to lower yielding rainfed legumes. Seeing opportunity to boost cereals production, particularly for rice, donors and land use policy makers have consequently reprioritized agricultural development investments in this impoverished region. Tapping groundwater for irrigation and intensified double cropping, however, is unlikely to be economically viable or environmentally sound in the EIGP. Constraints include saline shallow water tables and the prohibitively high installation and energetic extraction costs from deeper freshwater aquifers. The network of largely underutilized rivers and natural canals in the EIGP could conversely be tapped to provide less energetically and economically costly surface water irrigation (SWI). This approach is now championed by the Government of Bangladesh, which has requested USD 500 million from donors to implement land and water use policies to facilitate SWI and double cropping. Precise geospatial assessment of where freshwater flows are most prominent, or where viable fallow or low production intensity cropland is most common, however remains lacking. In response, we used remotely sensed data to identify agricultural land, detect the temporal availability of freshwater in rivers and canals, and assess crop production intensity over a three-year study period in a 33,750

  17. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China.

    Science.gov (United States)

    Liu, Jing; Wu, Pute; Wang, Yubao; Zhao, Xining; Sun, Shikun; Cao, Xinchun

    2014-11-01

    Analysis of cropping patterns is a prerequisite for their optimisation, and evaluation of virtual water flows could shed new light on water resources management. This study is intended to explore the effects of cropping pattern changes between 1960 and 2008 on virtual water flows related to crops transfer in the Hetao irrigation district, China. (1) The sown area of crops increased at an average rate of 3.57 × 10(3) ha year(-1) while the proportion of sown grain crops decreased from 92.83% in the 1960s to 50.22% in the 2000s. (2) Virtual water content decreased during the study period while net virtual water exports increased since the 1980s. (3) Assuming that the cropping pattern was constant and was equal to the average 1960s value, accumulated net virtual water export in 1980-2008 would have been 4.76 × 10(9) m(3) greater than that in the actual cropping pattern scenario. Cropping pattern changes in the Hetao irrigation district could not only be seen as resulting from the pursuit for higher economic returns, but also as a feedback response to limited water resources. A systematic framework is still needed for future cropping pattern planning by taking food security, continued agricultural expansion and other constraints into consideration. © 2014 Society of Chemical Industry.

  18. Impacts of Near-Term Climate Change on Irrigation Demands and Crop Yields in the Columbia River Basin

    Science.gov (United States)

    Rajagopalan, K.; Chinnayakanahalli, K. J.; Stockle, C. O.; Nelson, R. L.; Kruger, C. E.; Brady, M. P.; Malek, K.; Dinesh, S. T.; Barber, M. E.; Hamlet, A. F.; Yorgey, G. G.; Adam, J. C.

    2018-03-01

    Adaptation to a changing climate is critical to address future global food and water security challenges. While these challenges are global, successful adaptation strategies are often generated at regional scales; therefore, regional-scale studies are critical to inform adaptation decision making. While climate change affects both water supply and demand, water demand is relatively understudied, especially at regional scales. The goal of this work is to address this gap, and characterize the direct impacts of near-term (for the 2030s) climate change and elevated CO2 levels on regional-scale crop yields and irrigation demands for the Columbia River basin (CRB). This question is addressed through a coupled crop-hydrology model that accounts for site-specific and crop-specific characteristics that control regional-scale response to climate change. The overall near-term outlook for agricultural production in the CRB is largely positive, with yield increases for most crops and small overall increases in irrigation demand. However, there are crop-specific and location-specific negative impacts as well, and the aggregate regional response of irrigation demands to climate change is highly sensitive to the spatial crop mix. Low-value pasture/hay varieties of crops—typically not considered in climate change assessments—play a significant role in determining the regional response of irrigation demands to climate change, and thus cannot be overlooked. While, the overall near-term outlook for agriculture in the region is largely positive, there may be potential for a negative outlook further into the future, and it is important to consider this in long-term planning.

  19. Effects of Planting Dates, Irrigation Management and Cover Crops on Growth and Yield of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-08-01

    Full Text Available Introduction Saffron as a winter active plant with low water requirement is the most strategic medicinal plant in arid and semi-arid parts of Iran. This slow-growing plant has narrow leaves and no aerial stem, hence weeds can be overcome it. Moreover, because of its root and canopy structure an important part of different resources is not used by this low input crop. Therefore, the use of associated crops could be an effective way for increasing resources use efficiencies (Koocheki et al., 2016. Appropriate corm planting date is another important factor that affects saffron growth and yield. Results of some studies show that late spring is the best time for corm planting (Ghasemi-Rooshnavand, 2009; Koocheki et al., 2016. In addition, irrigation management has been evaluated in some studies, but irrigation immediately after corm planting has not been investigated previously. Therefore, the aim of this study was to investigate the effect of irrigation management, planting date and the use of some companion crops on flowering of saffron during two growth cycles. Materials and methods This experiment was carried out as a split-split plot experiment based on a Randomized Complete Block Design with three replications at Research Station, Ferdowsi University of Mashhad, Iran in 2009-2011. Experimental factors included: planting date of saffron as main factor (first of June, first of August and first of October, 2009, the irrigation management as sub factor (irrigation and no irrigation after each planting date and the companion crops as sub-sub factor [Persian clover (Trifolium resupinatum, Bitter vetch (Lathyrus sativus and control. Corm planting was done in 10×25 cm distances with 12 cm depth. In the second year irrigation was done again in the plots which were irrigated after planting in the first year at the same previous dates. Companion crops were sown after first flower picking (November, 2009, then their residue were returned to the soil in

  20. The Response and Repairing of Three Kinds of Crops on Xi’an’s Sewage Irrigation Area Soil

    Science.gov (United States)

    Xin, H.; Zhimei, Z.; Lei, H.; Huan, L.; Tian, Z.

    2017-10-01

    This paper focuses on the XiChaZhai village’s vegetable soil which is located in the northern suburbs of Xi’an and on its vegetables, thus analyzes the quality of sewage irrigation region soil and its influence on vegetables through the measurement of Cu, Zn, Pb, Cd’s content in samples. The results show that the research area soil contains apparently excessive heavy metals, and there exists significant differences of different elements’ integrated intensity in soil, the content declines in sequence from Cd, Zn, Pb to Cu. The four heavy metals’ contents in sewage irrigation region soil vary greatly from that in non-sewage irrigation region soil(Prepairing effects on Xi’an sewage irrigation region soil are Raphanus sativus, Ottelia acuminate and Brassica chinensis, in that order. Different crop tissues differ in the accumulation of heavy metal, the order according as roots, stem and leaves, fruits. Therefore, based on differences of various crops on heavy metals’ absorption and translocation, appropriate crops should be scientifically planted in heavy metal contaminated area soil.

  1. Using the CLM Crop Model to assess the impacts of changes in Climate, Atmospheric CO2, Irrigation, Fertilizer and Geographic Distribution on Historical and Future Crop Yields

    Science.gov (United States)

    Lawrence, P.

    2015-12-01

    Since the start of the green revolution global crop yields have increased linearly for most major cereal crops, so that present day global values are around twice those of the 1960s. The increase in crop yields have allowed for large increases in global agricultural production without correspondingly large increases in cropping area. Future projections under the Shared Socio-economic Pathways (SSP) framework and other assessments result in increases of global crop production of greater than 100% by the year 2050. In order to meet this increased agricultural demand within the available arable land, future production gains need to be understood in terms of the yield changes due to changes in climate, atmospheric CO2, and adaptive management such as irrigation and fertilizer application. In addition to the changes in crop yield, future agricultural demand will need to be met through increasing cropping areas into what are currently marginal lands at the cost of existing forests and other natural ecosystems. In this study we assess the utility of the crop model within the Community Land Model (CLM Crop) to provide both historical and future guidance on changes in crop yields under a range of global idealized crop modeling experiments. The idealized experiments follow the experimental design of the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) in which CLM Crop is a participating model. The idealized experiments consist of global crop simulations for Cotton, Maize, Rice, Soy, Sugarcane, and Wheat under various climate, atmospheric CO2 levels, irrigation prescription, and nitrogen fertilizer application. The time periods simulated for the experiments are for the Historical period (1901 - 2005), and for the two Representative Concentration Pathways of RCP 4.5 and RCP 8.5 (2006 - 2100). Each crop is simulated on all land grid cells globally for each time period with atmospheric forcing that is a combination of: 1. transient climate and CO2; 2. transient climate

  2. The Lower Sevier River Basin Crop Monitor and Forecast Decision Support System: Exploiting Landsat Imagery to Provide Continuous Information to Farmers and Water Managers

    Science.gov (United States)

    Torres-Rua, A. F.; Walker, W. R.; McKee, M.

    2013-12-01

    The last century has seen a large number of innovations in agriculture such as better policies for water control and management, upgraded water conveyance, irrigation, distribution, and monitoring systems, and better weather forecasting products. In spite of this, irrigation management and irrigation water deliveries by farmers/water managers is still based on factors like water share amounts, tradition, and past experience on irrigation. These factors are not necessarily related to the actual crop water use; they are followed because of the absence of related information provided in a timely manner at an affordable cost. Thus, it is necessary to develop means to deliver continuous and personalized information about crop water requirements to water users/managers at the field and irrigation system levels so managers at these levels can better quantify the required versus available water for irrigation during the irrigation season. This study presents a new decision support system (DSS) platform that addresses the absence of information on actual crop water requirements and crop performance by providing continuous updated farm-based crop water use along with other farm performance indicators such as crop yield and farm management to irrigators and water managers. This DSS exploits the periodicity of the Landsat Satellite Mission (8 to 16 days, depending on the period of interest) to provide remote monitoring at the individual field and irrigation system levels. The Landsat satellite images are converted into information about crop water use, yield performance and field management through application of state-of-the-art semi-physical and statistical algorithms that provide this information at a pixel basis that are ultimately aggregated to field and irrigation system levels. A version of the DSS has been implemented for the agricultural lands in the Lower Sevier River, Utah, and has been operational since the beginning of the 2013 irrigation season. The main goal of

  3. VIC–CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Directory of Open Access Journals (Sweden)

    K. Malek

    2017-08-01

    Full Text Available Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively. A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC–CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology, it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC–CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC–CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land–atmosphere interactions. The performance of VIC–CropSyst was evaluated on both regional (over the US Pacific Northwest and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois. The agreement between recorded and simulated evapotranspiration (ET, applied irrigation water, soil moisture, leaf area index (LAI, and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  4. Evaluation of JULES-crop performance against site observations of irrigated maize from Mead, Nebraska

    OpenAIRE

    Williams, Karina; Gornall, Jemma; Harper, Anna; Wiltshire, Andy; Hemming, Debbie; Quaife, Tristan; Arkebauer, Tim; Scoby, David

    2016-01-01

    The JULES-crop model (Osborne et al., 2015) is a parameterisation of crops within the Joint UK Land Environment Simulator (JULES), which aims to simulate both the impact of weather and climate on crop productivity and the impact of crop-lands on weather and climate. In this evaluation paper, observations of maize at three FLUXNET sites in Nebraska (US-Ne1, US-Ne2, US-Ne3) are used to test model assumptions and make appropriate input parameter choices. JULES runs are performed for the irrigate...

  5. Sensor-Based Model Driven Control Strategy for Precision Irrigation

    Directory of Open Access Journals (Sweden)

    Camilo Lozoya

    2016-01-01

    Full Text Available Improving the efficiency of the agricultural irrigation systems substantially contributes to sustainable water management. This improvement can be achieved through an automated irrigation system that includes a real-time control strategy based on the water, soil, and crop relationship. This paper presents a model driven control strategy applied to an irrigation system, in order to make an efficient use of water for large crop fields, that is, applying the correct amount of water in the correct place at the right moment. The proposed model uses a predictive algorithm that senses soil moisture and weather variables, to determine optimal amount of water required by the crop. This proposed approach is evaluated against a traditional irrigation system based on the empirical definition of time periods and against a basic soil moisture control system. Results indicate that the use of a model predictive control in an irrigation system achieves a higher efficiency and significantly reduce the water consumption.

  6. Comparative Study of Water and Nitrogen Fertilizer Application on Potato Crop under Fertigation and Surface Irrigating Systems by Using Labeled Nitrogen (15N)

    International Nuclear Information System (INIS)

    Abdullah Haidara, H. M.; Amin Alkirshi, A. H.; Saleh Husien, A.

    2007-01-01

    This research activity was conducted at Central Highland Research Station Farm-Dhamar, on potato Crop (Diamant cv.), during three seasons of 2000, 2001, and 2003.The objective of this activity was to study the Nitrogen Fertilizer Use Efficiency (WUE) which applied in different dosages with irrigation water (fertigation) and one dosage to the soil under surface irrigation, by using Labeled nitrogen fertilizer ( 15N ), comparing the quantity of irrigation water applied through Drip irrigation method and surface irrigation and its effect on WUE and yield of potato crop. The basic experiment was planted in randomized completely block design (RCBD) with five replications during 2000 season and six replication in 2001.and five treatments were tested (N1= 50kg N/ha, N2 =100kg N/ha, N3=150kg N/ha and N4=200kgN/ha as fertigated treatments under drip irrigation and Ns = 150kg N/ha as surface Nitrogen Application under surface irrigation. While in the 2003 season Verification trial was conducted with two replications, two treatments and RCB design. Results indicated that using Drip irrigation method in application of water saved 38% of irrigation water as compared to Surface irrigation. Fertigated treatments (N1, N2, N3 and N4) were, significantly superior to Surface Nitrogen Application treatment (NS), fertigated treatment (N3) gave the highest values of WUE which were 5.3, 6.4 and 6.1 kg/m3 for the three seasons (2000, 2001, 2003 respectively) with an average of 5.9 kg/m3 comparing to the surface Nitrogen Application treatment (NS) which gave the less yield per unit of water which was 3.8, 3.6 and 3.9 kg /m3 for the three seasons 2000, 2001 and 2003 respectively with an average of 3.7 kg/m3.The Average yield of potato tubers for (N3) treatment in the three seasons was 30 .3 t/ha comparing to the (NS) treatment, which gave an average of 29,5t/ha.The fertigatetd treatment (N1) recorded the highest efficient use of nitrogen Fertilizer followed by (N3) compare to the surface

  7. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería

    Directory of Open Access Journals (Sweden)

    Pedro Garcia-Caparros

    2017-12-01

    Full Text Available The development of intensive horticulture in Almería, with a huge increase in greenhouse surface area, is related to three essential factors: climatic characteristics, groundwater use and mulching sandy soil. The purpose of the present paper is to draw a picture of the integral management of water irrigation in the intensive horticultural systems in the region, by identifying the most significant water resource contributions and alternative water resources. Results indicate that the use of groundwater for the irrigation of horticultural crops in the greenhouses presents a high degree of overexploitation of the aquifers, but due to the continuous search for alternative water resources, such as desalinated and reclaimed water, as well as in-depth knowledge of the integral management of water irrigation through automated fertigation and localized irrigation systems, the current status of the water resources could be sustainable. Moreover, being conscious of the pollution generated by agricultural leachates, the horticultural system of Almería is implementing complementary sustainable systems such as recirculation, cascade cropping systems and phytodepuration for the reuse of the leachate. Considering all these factors, it can be concluded that the intensive horticultural system is on the right path towards respecting the environment and being sustainable in terms of water use.

  8. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    Science.gov (United States)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  9. Precision overhead irrigation is suitable for several Central Valley crops

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Mitchell

    2016-04-01

    Full Text Available Overhead systems are the dominant irrigation technology in many parts of the world, but they are not widely used in California even though they have higher water application efficiency than furrow irrigation systems and lower labor requirements than drip systems. With water and labor perennial concerns in California, the suitability of overhead systems merits consideration. From 2008 through 2013, in studies near Five Points, California, we evaluated overhead irrigation for wheat, corn, cotton, tomato, onion and broccoli as an alternative to furrow and drip irrigation. With the exception of tomato, equal or increased yields were achieved with overhead irrigation. Many variables are involved in the choice of an irrigation system, but our results suggest that, with more research to support best management practices, overhead irrigation may be useful to a wider set of California farmers than currently use it.

  10. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network.

    Science.gov (United States)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L(-1) and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (>200 ng L(-1), on average). The estimated concentration of micropollutants in crops ranged from contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Study of soil bacterial and crop quality irrigated with treated municipal wastewater

    DEFF Research Database (Denmark)

    Alinezhadian, A; Karim, A; Mohammadi, J

    2014-01-01

    Background and Objectives: In arid and semi-arid regions, wastewater reuse has become an important element in agriculture. However, irrigation with this resource can be either beneficial or harmful, depending on the wastewater characteristics. The aim of this research was to investigate the soil...... bacterial and crops quality irrigated with treated wastewater. Material and Methods: This research was conducted on a maize field near the wastewater treatment plant in Shahr-e-kord in summer,2011. Plots were arranged in a randomized complete block design in 3 replications and 2 treatments, well water (W1...

  12. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    Science.gov (United States)

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  13. Declining groundwater level caused by irrigation to row crops in the Lower Mississippi River Basin, Current Situation and Trends

    Science.gov (United States)

    Feng, G.; Gao, F.; Ouyang, Y.

    2017-12-01

    The Mississippi River is North America's largest river and the second largest watershed in the world. It flows over 3,700 km through America's heartland to the Gulf of Mexico. Over 3 million hectares in the Lower Mississippi River Basin represent irrigated cropland and 90 percent of those lands currently rely on the groundwater supply. The primary crops grown in this region are soybean, corn, cotton, and rice. Increased water withdrawals for irrigating those crops and stagnant recharging jeopardize the long-term availability of the aquifer and place irrigation agriculture in the region on an unsustainable path. The objectives of this study were to: 1) analyze the current groundwater level in the Lower Mississippi River Basin based on the water table depth observed by Yazoo Mississippi Delta Joint Water Management District from 2000 and 2016; 2) determine trends of change in groundwater level under conventional and groundwater saving irrigation management practices (ET or soil moisture based full irrigation scheduling using all groundwater or different percentages of ground and surface water). The coupled SWAT and MODFLOW model was applied to investigate the trends. Observed results showed that the groundwater level has declined from 33 to 26 m at an annual decrease rate of 0.4 m in the past 17 years. Simulated results revealed that the groundwater storage was decreased by 26 cm/month due to irrigation in crop season. It is promising that the groundwater storage was increased by 23 cm/month, sometimes even 60 cm/month in crop off-growing season because of recharge from rainfall. Our results suggest that alternative ET or soil moisture based groundwater saving irrigation scheduling with conjunctive use of surface water is a sustainable practice for irrigated agriculture in in the Lower Mississippi River Basin.

  14. Conserving energy through new irrigation technologies. Technical briefing report

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    The benefits and applications of five irrigation technologies are explored: mobile drop-tube irrigation, computerized scheduling, reduced-pressure center pivots, well design and development, and automated gated-pipe systems. Perhaps the most promising of the new irrigation technologies is the low-energy, precision-application (LEPA) system. This mobile system used one-half the energy of conventional sprinkler systems and distributes water with greater efficiency through a series of low-pressure drop tubes suspended above the crop. Computerized methods of irrigation scheduling have been developed to help farmers conserve water and energy. Special computer programs determine when a crop needs water and how much to apply for optimal plant growth, thus preventing the unnecessary costs of pumping more water than the crop needs. Field test results show that replacing traditional scheduling methods of irrigation with computerized scheduling can reduce energy and water use by as much as 35%. The irrigation industry is actively promoting reduced-pressure water application methods, particularly for center-pivot systems. Reduced-pressure systems expend less energy but produce the same crop yields as conventional high-pressure systems, as long as excessive water runoff does not occur. If well design and development techniques are applied when a well is drilled into an unconsolidated acquifer, the well's life expectancy, as well as its operating efficiency, can increase, the later by as much as 40%.

  15. Distribution of the root system of peach palm under drip irrigation

    Directory of Open Access Journals (Sweden)

    Adriano da Silva Lopes

    2014-07-01

    Full Text Available The incorporation of technologies has resulted in increased productivity and the more rational management of peach palm, with irrigation being an important tool for certain regions. Thus, studies leading to proper crop management are extremely important, such as the estimate of the effective depth of the root system, which is indispensable for proper irrigation management. The objective of this study was to evaluate the effects of different irrigation depths, as applied by drip irrigation, on the distribution of the root system of peach palm. This experiment was conducted in Ilha Solteira, São Paulo State, Brazil, with drip irrigation, with the two systems (flow of 0.0023 m3 h-1 consisting of four irrigation treatments corresponding to 0, 50, 100 and 150% of Class ‘A’ pan evaporation. After five years, an analysis of the Bactris gasipaes root system was performed at a distance of 0.0, 0.5 and 1.0 meters from the trunk, collecting sampling at two depths (0.0 to 0.3 m and 0.3 to 0.6 m via the auger method (volumetric analysis. We concluded that the effective depth of the root system used for irrigation management should be a maximum of 0.3 meters.

  16. A rule-based smart automated fertilization and irrigation systems

    Science.gov (United States)

    Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo

    2018-04-01

    Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.

  17. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon

    Science.gov (United States)

    Ren, Dongyang; Xu, Xu; Hao, Yuanyuan; Huang, Guanhua

    2016-01-01

    Water saving in irrigation is a key issue in the upper Yellow River basin. Excessive irrigation leads to water waste, water table rising and increased salinity. Land fragmentation associated with a large dispersion of crops adds to the agro-hydrological complexity of the irrigation system. The model HYDRUS-1D, coupled with the FAO-56 dual crop coefficient approach (dualKc), was applied to simulate the water and salt movement processes. Field experiments were conducted for maize, sunflower and watermelon crops in the command area of a typical irrigation canal system in Hetao Irrigation District during 2012 and 2013. The model was calibrated and validated in three crop fields using two-year experimental data. Simulations of soil moisture, salinity concentration and crop yield fitted well with the observations. The irrigation water use was then evaluated and results showed that large amounts of irrigation water percolated due to over-irrigation but their reuse through capillary rise was also quite large. That reuse was facilitated by the dispersion of crops throughout largely fragmented field, thus with fields reusing water percolated from nearby areas due to the rapid lateral migration of groundwater. Beneficial water use could be improved when taking this aspect into account, which was not considered in previous researches. The non-beneficial evaporation and salt accumulation into the root zone were found to significantly increase during non-growth periods due to the shallow water tables. It could be concluded that when applying water saving measures, close attention should be paid to cropping pattern distribution and groundwater control in association with irrigation scheduling and technique improvement.

  18. Crop water productivity for sunflower under different irrigation regimes and plant spacing in Gezira Scheme, Sudan

    Directory of Open Access Journals (Sweden)

    Eman Rahamtalla Ahmed Elsheikh

    2015-12-01

    Full Text Available Two field experiments with Sunflower on deep cracking soil with heavy clay (vertisol were conducted at Gezira Research Station Farm during two executive winter seasons, in WadMedani, Sudan. The crop was sown in the third week of November and in the first week of December for seasons 2012 and 2013 respectively. The experimental design was split plot design with three replicates. The Sunflower hybrid tested in the study was Hysun 33. The objective of this study was to determine the effect of three different irrigation intervals of 10, 15 and 20 days and two intra-row plant spacings of 30 cm and 40 cm on yield and yield components of Sunflower. The seed yields obtained from the different treatments were in the ranges of 1890-3300 kg/ha and 1590-3290 kg/ha for the first and second season respectively. The corresponding computed on average crop water productivity was in the range of 0.31-0.43 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm plant spacing and irrigated every 10 days. The highest crop water productivity was achieved from irrigation every15 days in both planting spacings

  19. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water

    Directory of Open Access Journals (Sweden)

    Antônia Leila Rocha Neves

    2015-05-01

    Full Text Available This study aimed to evaluate the effect of management strategies of irrigation with saline water on growth and yield of cowpea and sunflower in a crop rotation. The experiment was conducted in randomized blocks with thirteen treatments and five replications. The treatments consisted of: T1 (control, T2, T3 and T4 using water of 0.5 (A1, 2.2 (A2, 3.6 (A3 and 5.0 (A4 dS m-1, respectively, during the entire crop cycle; T5, T6 and T7, use of A2, A3 and A4 water, respectively, only in the flowering and fructification stage of the crop cycle; using different water in a cyclic way, six irrigations with A1 followed by six irrigations with A2 (T8, A3 (T9 and A4, (T10, respectively; T11, T12 and T13, using water A2, A3 and A4, respectively, starting at 11 days after planting (DAP and continuing until the end of the crop cycle. These treatments were employed in the first crop (cowpea, during the dry season, and the same plots were used for the cultivation of sunflower as succeeding crop during rainy season. The strategies of use of saline water in the salt tolerant growth stage (treatments T5, T6 and T7 or cyclically (treatments T8, T9 and T10 reduced the amount of good quality water used in the production of cowpea by 34 and 47%, respectively, without negative impacts on crop yield, and did not show the residual effects of salinity on sunflower as a succeeding crop. Thus, these strategies appear promising to be employed in areas with water salinity problems in the semiarid region of Brazil.

  20. Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water.

    Science.gov (United States)

    Lu, Jian; Wu, Jun; Stoffella, Peter J; Wilson, P Chris

    2015-01-01

    The potential uptake and distribution of bisphenol A (BPA) and nonylphenol (NP) (from reclaimed irrigation water) in edible crops was investigated. BPA and NP were spiked into simulated reclaimed water at environmentally relevant concentrations. Two crops (lettuce, Lactuca sativa and tomato, Lycopersicon esculentum) were grown hydroponically in a greenhouse using the spiked irrigation water under two irrigation exposure scenarios (overhead foliar exposure and subsurface root exposure). BPA concentrations in tomato fruit were 26.6 ± 5.8 (root exposure) and 18.3 ± 3.5 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 80.6 ± 23.1 (root exposure) and 128.9 ± 17.4 (foliar exposure) μg kg(-1). NP concentrations in tomato fruit were 46.1 ± 6.6 (root exposure) and 24.6 ± 6.4 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 144.1 ± 9.2 (root exposure) and 195.0 ± 16.9 (foliar exposure) μg kg(-1). BPA was relatively mobile in lettuce plants regardless of exposure route. Limited mobility was observed for NP in both crops and BPA in tomatoes. The estimated daily intake of BPA and NP through consumption of vegetables irrigated with reclaimed water ranged from 8.9-62.9 to 11.9-95.1 μg, respectively, depending on the exposure route. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    Science.gov (United States)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  2. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.

    Science.gov (United States)

    Möller, M; Alchanatis, V; Cohen, Y; Meron, M; Tsipris, J; Naor, A; Ostrovsky, V; Sprintsin, M; Cohen, S

    2007-01-01

    Achieving high quality wine grapes depends on the ability to maintain mild to moderate levels of water stress in the crop during the growing season. This study investigates the use of thermal imaging for monitoring water stress. Experiments were conducted on a wine-grape (Vitis vinifera cv. Merlot) vineyard in northern Israel. Irrigation treatments included mild, moderate, and severe stress. Thermal and visible (RGB) images of the crop were taken on four days at midday with a FLIR thermal imaging system and a digital camera, respectively, both mounted on a truck-crane 15 m above the canopy. Aluminium crosses were used to match visible and thermal images in post-processing and an artificial wet surface was used to estimate the reference wet temperature (T(wet)). Monitored crop parameters included stem water potential (Psi(stem)), leaf conductance (g(L)), and leaf area index (LAI). Meteorological parameters were measured at 2 m height. CWSI was highly correlated with g(L) and moderately correlated with Psi(stem). The CWSI-g(L) relationship was very stable throughout the season, but for that of CWSI-Psi(stem) both intercept and slope varied considerably. The latter presumably reflects the non-direct nature of the physiological relationship between CWSI and Psi(stem). The highest R(2) for the CWSI to g(L) relationship, 0.91 (n=12), was obtained when CWSI was computed using temperatures from the centre of the canopy, T(wet) from the artificial wet surface, and reference dry temperature from air temperature plus 5 degrees C. Using T(wet) calculated from the inverted Penman-Monteith equation and estimated from an artificially wetted part of the canopy also yielded crop water-stress estimates highly correlated with g(L) (R(2)=0.89 and 0.82, respectively), while a crop water-stress index using 'theoretical' reference temperatures computed from climate data showed significant deviations in the late season. Parameter variability and robustness of the different CWSI estimates

  3. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  4. Estimating yield gaps at the cropping system level.

    Science.gov (United States)

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  5. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  6. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    Science.gov (United States)

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-11-01

    SummaryThe Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamflow, total suspended sediment (TSS) losses and phosphorus load calibration and validation were performed using field survey information and water quantity and quality data recorded during 2008 and 2009 years in Del Reguero irrigated watershed in Spain. The goodness of the calibration and validation results was assessed using five statistical measures, including the Nash-Sutcliffe efficiency (NSE). Results indicated that the average annual crop yield and actual evapotranspiration estimations were quite satisfactory. On a monthly basis, the values of NSE were 0.90 (calibration) and 0.80 (validation) indicating that the modified model could reproduce accurately the observed streamflow. The TSS losses were also satisfactorily estimated (NSE = 0.72 and 0.52 for the calibration and validation steps). The monthly temporal patterns and all the statistical parameters indicated that the modified SWAT-IRRIG model adequately predicted the total phosphorus (TP) loading. Therefore, the model could be used to assess the impacts of different best management practices on nonpoint phosphorus losses in irrigated systems.

  7. Soil Compressibility under Irrigated Perennial and Annual Crops in a Semi-Arid Environment

    Directory of Open Access Journals (Sweden)

    Rafaela Watanabe

    Full Text Available ABSTRACT In irrigated soils, a continuous state of high moisture reduces resistance of the soil to applied external forces, favouring compaction. The aim of this study was to evaluate the susceptibility to compaction of developed calcareous soils in irrigated annual and perennial cropping systems of the Apodi Plateau, located in the Brazilian semi-arid region. Four areas of irrigated crops were evaluated: banana after two (B2 and 15 (B15 years cultivation, pasture (P, and a corn and beans succession (MB, as well as the reference areas for soil quality and corresponding natural vegetation (NVB2, NVB15, NVP and NVMB. Samples were collected at layers of 0.00-0.10 and 0.20-0.30 m; and for B2 and B15, samples were collected in the row and inter-row spaces. The following properties were determined: degree of compactness (DC, preconsolidation pressure (σp, compression index (Cc, maximum density (ρmax, critical water content (WCcrit, total organic carbon (TOC and carbon of light organic matter (Clom. Mean values were compared by the t-test at 5, 10, 15 and 20 % probability. An increase was seen in DC at a layer of 0.20-0.30 m in MB (p<0.15, showing the deleterious effects of preparing the soil by ploughing and chiselling, together with the cumulative traffic of heavy machinery. The TOC had a greater influence on ρmax than the stocks of Clom. Irrigation caused a reduction in Cc, and there was no effect on σp at field capacity. The planting rows showed different behaviour for Cc, ρmax, and WCcrit,, and in general the physical properties displayed better conditions than the inter-row spaces. Values for σp and Cc showed that agricultural soils display greater load-bearing capacity and are less susceptible to compaction in relation to soils under natural vegetation.

  8. Optimization of Water Allocation between Different Crops in Water Stress Conditions in Qazvin Irrigation Network

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad khani

    2017-06-01

    same amount of water allocated in the 1999 drought. This difference emphasizes the importance of water allocation with respect to growth stages rather than simply cutting allocations on an equitable basis to combat water scarcity. However, managing the system using the optimization method is more complex and requires a new framework and planning to make it operational. Materials and Methods: Qazvin irrigation network in Qazvin province is located in 150 km West of Tehran, between 36˚ 20΄ north latitude and 49˚ 40΄ east longitude and 36˚ 00΄ north latitude and 50˚ 35΄ east longitude. Net water requirement of cultivated crops in the irrigation network is 109.798 million m3. According to the total efficiency of the irrigation network, an impure water requirement of cultivated crops will be 304.994 million m3. The inlet water from Taleghan dam into irrigation network is 274.8 million m3 that compared to impure water requirement decrease 10%. The current study was conducted in 5 options, including: option 1 (current conditions and supplied water volume of 274.8 million m3, option 2 (optimized current conditions using LINGO software and supplied water volume of 274.8 million m3, option 3 (30% water deficit and supplied water volume of 192.36 million m3, option 5 (40% water deficit and supplied water volume of 274.8 million m3. Water requirement of crops is determined using meteorological data with 30 years long term statistics and CROPWAT8 software. Results Discussion: Studying different scenarios of water deficit in network shows that products such as tomatoes, potatoes and alfalfa have the least changes in real production to potential production and yield ration in barely did not show significant difference in all options. In all of the options, tomatoes with water productivity indicator of 3029 rials/m3 have the maximum productivity index and sugar beets with water productivity indicator in options 2 to 5 as 479, 310, 307 and 268rials/m3, respectively has the

  9. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    OpenAIRE

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-01-01

    The Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamfl...

  10. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    Science.gov (United States)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  11. Marginal cost curves for water footprint reduction in irrigated agriculture: a policy and decision making guide for efficient water use in crop production

    Science.gov (United States)

    Chukalla, Abebe; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Reducing water footprints (WF) in irrigated crop production is an essential element in water management, particularly in water-scarce areas. To achieve this, policy and decision making need to be supported with information on marginal cost curves that rank measures to reduce the WF according to their cost-effectiveness and enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a certain reasonable WF benchmark. This paper aims to develop marginal cost curves (MCC) for WF reduction. The AquaCrop model is used to explore the effect of different measures on evapotranspiration and crop yield and thus WF that is used as input in the MCC. Measures relate to three dimensions of management practices: irrigation techniques (furrow, sprinkler, drip and subsurface drip); irrigation strategies (full and deficit irrigation); and mulching practices (no mulching, organic and synthetic mulching). A WF benchmark per crop is calculated as resulting from the best-available production technology. The marginal cost curve is plotted using the ratios of the marginal cost to WF reduction of the measures as ordinate, ranking with marginal costs rise with the increase of the reduction effort. For each measure, the marginal cost to reduce WF is estimated by comparing the associated WF and net present value (NPV) to the reference case (furrow irrigation, full irrigation, no mulching). The NPV for each measure is based on its capital costs, operation and maintenances costs (O&M) and revenues. A range of cases is considered, including: different crops, soil types and different environments. Key words: marginal cost curve, water footprint benchmark, soil water balance, crop growth, AquaCrop

  12. Structuring properties of irrigation systems : Understanding relations between humans and hydraulics through modeling

    NARCIS (Netherlands)

    Ertsen, M.W.

    2010-01-01

    Irrigation systems were clearly important in ancient times in supplying crops with water. This requires physical distribution facilities and socio-political arrangements to coordinate between actors. Resulting systems are highly diverse, and are being studied extensively within archeology and

  13. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.

    Science.gov (United States)

    Liu, Jing; Sun, Shikun; Wu, Pute; Wang, Yubao; Zhao, Xining

    2015-02-01

    The integration of water footprints and virtual water flows allows the mapping of the links between production, trade, and consumption and could potentially help to alleviate water scarcity and improve water management. We evaluated the water footprints and virtual water flows of crop production, consumption, and trade and their influencing factors in the Hetao irrigation district in China for 1960-2010. The water footprint of crop production and the export of virtual water fluctuated but tended to increase during this period and were influenced mainly by agricultural factors such as crop yield, irrigation efficiency, and area sown. The water footprint of crop consumption and the import of virtual water increased during 1960-1979 and decreased during 1980-2010 and were influenced by socio-economic factors such as total population, the retail-price index, and the proportion of the population in urban areas. Most of the water footprint of production was exported to other areas, which added to the pressure on local water systems. The import of virtual water led to a saving of water for the Hetao irrigation district, while its share of the water footprint of consumption has decreased significantly since 1977. An increase in irrigation efficiency can alleviate water scarcity, and its application should be coupled with measures that constrain the continued expansion of agriculture. Full-cost pricing of irrigation water was an effective policy tool for its management. Re-shaping regional water-production and water-trade nexuses by changing crop structures could provide alternative opportunities for addressing the problems of local water scarcity, but the trade-offs involved should first be assessed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Drip irrigation in coffee crop under different planting densities: Growth and yield in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Gleice A. de Assis

    2014-11-01

    Full Text Available Irrigation associated to reduction on planting spaces between rows and between coffee plants has been a featured practice in coffee cultivation. The objective of the present study was to assess, over a period of five consecutive years, influence of different irrigation management regimes and planting densities on growth and bean yield of Coffea arabica L.. The treatments consisted of four irrigation regimes: climatologic water balance, irrigation when the soil water tension reached values close to 20 and 60 kPa; and a control that was not irrigated. The treatments were distributed randomly in five planting densities: 2,500, 3,333, 5,000, 10,000 and 20,000 plants ha-1. A split-plot in randomized block design was used with four replications. Irrigation promoted better growth of coffee plants and increased yield that varied in function of the plant density per area. For densities from 10,000 to 20,000 plants ha-1, regardless of the used irrigation management, mean yield increases were over 49.6% compared to the non-irrigated crop.

  15. Agricultural irrigated land-use inventory for Polk County, Florida, 2016

    Science.gov (United States)

    Marella, Richard L.; Berry, Darbi; Dixon, Joann F.

    2017-08-16

    An accurate inventory of irrigated crop acreage is not available at the level of resolution needed to better estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage was developed for Polk County, Florida, during the 2016 growing season. This cooperative project between the U.S. Geological Survey and the Office of Agricultural Water Policy of the Florida Department of Agriculture and Consumer Services is part of an effort to improve estimates of water use and projections of future demands across all counties in the State. The irrigated areas were delineated by using land-use data provided by the Florida Department of Agriculture and Consumer Services, along with information obtained from the South and Southwest Florida Water Management Districts consumptive water-use permits. Delineations were field verified between April and December 2016. Attribute data such as crop type, primary water source, and type of irrigation system were assigned to the irrigated areas.The results of this inventory and field verification indicate that during the 2016 growing seasons (spring, summer, fall, and winter), an estimated 88,652 acres were irrigated within Polk County. Of the total field-verified crops, 83,995 acres were in citrus; 2,893 acres were in other non-citrus fruit crops (blueberries, grapes, peaches, and strawberries); 621 acres were in row crops (primarily beans and watermelons); 1,117 acres were in nursery (container and tree farms) and sod production; and 26 acres were in field crops including hay and pasture. Of the total inventoried irrigated acreage within Polk County, 98 percent (86,566 acres) was in the Southwest Florida Water Management District, and the remaining 2 percent (2,086 acres) was in the South Florida Water Management District.About 85,788 acres (96.8 percent of the acreage inventoried) were irrigated by a microirrigation system, including drip, bubblers, and

  16. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  17. Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India

    Directory of Open Access Journals (Sweden)

    Sylvain Ferrant

    2017-11-01

    Full Text Available Indian agriculture relies on monsoon rainfall and irrigation from surface and groundwater. The interannual variability of monsoon rainfalls is high, which forces South Indian farmers to adapt their irrigated areas to local water availability. In this study, we have developed and tested a methodology for monitoring these spatiotemporal variations using Sentinel-1 and -2 observations over the Kudaliar catchment, Telangana State (~1000 km2. These free radar and optical data have been acquired since 2015 on a weekly basis over continental areas, at a high spatial resolution (10–20 m that is well adapted to the small areas of South Indian field crops. A machine learning algorithm, the Random Forest method, was used over three growing seasons (January to March and July to November 2016 and January to March 2017 to classify small patches of inundated rice paddy, maize, and other irrigated crops, as well as surface water stored in the small reservoirs scattered across the landscape. The crop production comprises only irrigated crops (less than 20% of the areas during the dry season (Rabi, December to March, to which rain-fed cotton is added to reach 60% of the areas during the monsoon season (Kharif, June to November. Sentinel-1 radar backscatter provides useful observations during the cloudy monsoon season. The lowest irrigated area totals were found during Rabi 2016 and Kharif 2016, accounting for 3.5 and 5% with moderate classification confusion. This confusion decreases with increasing areas of irrigated crops during Rabi 2017. During this season, 16% of rice and 6% of irrigated crops were detected after the exceptional rainfalls observed in September. Surface water in small surface reservoirs reached 3% of the total area, which corresponds to a high value. The use of both Sentinel datasets improves the method accuracy and strengthens our confidence in the resulting maps. This methodology shows the potential of automatically monitoring, in near

  18. Chemical oxifertigation through the irrigation of greenhouse hydroponic tomato crop

    International Nuclear Information System (INIS)

    Soto-Bravo, Freddy

    2015-01-01

    Evaluate the effect of hydrogen peroxide (H_2O_2) as an oxygen source in the rhizosphere, in grafted tomato (cv. Durinta/cv Maxifor) and using coconut fiber as substrate. The study was conducted form 2009 to 2010 the study. Two treatments were used: a control without (H_2O_2) (T_0) and the other with used: a control without (H_2O_2) (T_1) applied in each irrigation. The parameters evaluated were: i- fertigation: oxygen concentration ([O_2]). pH, electrical conductivity (EC), and drainage percentage; ii- growth: basal diameter and plant height; iii- yield and iv- fruit quality: firmness, Brix degrees, dry weight, and pH. The average value of [O_2] in the irrigation solution through out the crop cycle increased from 9,92 mg/l at T_0 to 12,1 mg/ at T_1 (P [es

  19. 29 CFR 780.407 - System must be nonprofit or operated on a share-crop basis.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false System must be nonprofit or operated on a share-crop basis... Requirements Under Section 13(b)(12) The Irrigation Exemption § 780.407 System must be nonprofit or operated on... on facilities of any irrigation system unless the ditches, canals, reservoirs, or waterways in...

  20. Income and irrigation water use efficiency under climate change: An application of spatial stochastic crop and water allocation model to Western Uzbekistan

    Directory of Open Access Journals (Sweden)

    Ihtiyor Bobojonov

    2016-01-01

    Results show farmers’ income could fall by as much as 25% with a 3.2 °C temperature increase and a 15% decline in irrigation. Farmers located in the tail end of the irrigation system could lose an even greater share of their revenues. A more conservative increase in temperature could increase farmer income by as much as 46% with a 2.2° temperature increase and only 8% decline in irrigation water since some crops benefit from extended vegetation periods. Under both pessimistic and optimistic scenarios, environmental challenges due to shallow groundwater tables may improve associated with enhanced water use efficiency.

  1. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    International Nuclear Information System (INIS)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M.

    2011-01-01

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L −1 and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L −1 , on average). The estimated concentration of micropollutants in crops ranged from −1 , with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 μg per person and week (Σ 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  2. The Impact of Regular and Periodic Irrigation on the Fertility and Productivity of an Ordinary Chernozem of the Azov Irrigation System

    Science.gov (United States)

    Shchedrin, V. N.

    2016-02-01

    The effect of regular and periodic irrigation on the fertility and productivity of an ordinary chernozem cultivated under different conditions within the same cereal-fodder crop rotation is discussed. The investigation object is located in the area of the Azov irrigation system on the second terrace of the Don River in Rostov oblast. Irrigation water for the system is taken from the Veselovsk water reservoir. Its salinity is 1.7-2.1 g/dm3, and the salt composition is sulfate-sodium. The field experiments were performed in 2006-2013 on three experimental plots. Two of them were regularly irrigated; the third plot was periodically irrigated with alternation of 2-year-long periods with and without irrigation. Our study proved that periodic irrigation could be applied in the chernozemic zone. This new irrigation mode contributes to the preservation of the natural soil-forming process and stops the development of unfavorable processes typical of the lands irrigated with water of inadequate quality. In eight years of cultivation of the ordinary chernozem with periodic irrigation, the soil humus content increased by 10% (from 3.80 to 4.15%), and the yield reached 66.0 t/ha of fodder units. This was 9% higher than the yield obtained upon regular irrigation without agroameliorative measures and 12% lower than the yield upon regular irrigation in combination with soil-protective measures. Our data suggest that periodic irrigation is promising for the chernozemic zone, because it ensures lower water loads and preservation of the irrigated chernozems.

  3. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL -1 ) and 13 (553±1050ngL -1 ) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Water and nutrient productivity in melon crop by fertigation under subsurface drip irrigation and mulching in contrasting soils

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2014-01-01

    Full Text Available Cropping intensification and technical, economic and environmental issues require efficient application of production factors to maintain the soil productive capacity and produce good quality fruits and vegetables. The production factors, water and NPK nutrients, are the most frequent limiting factors to higher melon yields. The objective of the present study was to identify the influence of subsurface drip irrigation and mulching in a protected environment on the water and NPK nutrients productivity in melon cropped in two soil types: sandy loam and clay. The melon crop cultivated under environmental conditions with underground drip irrigation at 0.20m depth, with mulching on sandy loam soil increased water and N, P2O5 and K use efficiency.

  5. Simulation of rice yield under different irrigation and nitrogen application managements by CropSyst model

    Directory of Open Access Journals (Sweden)

    Narjes ZARE

    2015-12-01

    Full Text Available The aim of this study was the calibration and validation of CropSyst model for rice in the city of Rasht. The necessary data were extracted from a field experiment which was carried out during 2005-2007 in a split-plot design. The main plots were irrigation regimes including continuous flooding irrigation and 5-day irrigation intervals. The subplots consisted of four nitrogen levels: zero N application, 45, 60 and 75 kg N ha-1. Normalized Root Mean Squared Error (nRMSE and Residual Mass Coefficient (Crm in calibration years were 9.3 % and 0.06, respectively. In validation year, nRMSE and Crm were 9.7 % and 0.11, respectively. According to other indices to assess irrigation regimes and fertilizer levels, the most suitable treatments regarding environmental aspect were 5-day irrigation regime and 45 kg N ha-1.

  6. Phenotypic Responses of Twenty Diverse Proso Millet (Panicum miliaceum L. Accessions to Irrigation

    Directory of Open Access Journals (Sweden)

    Cedric Habiyaremye

    2017-03-01

    Full Text Available To date, little research has been conducted on the phenotypic responses of proso millet to drought and deficit irrigation treatments in the dryland wheat-based cropping systems of the Palouse bioregion of the U.S. The objectives of this study were to evaluate critical agronomic traits of proso millet, including emergence, plant height, days to heading, days to maturity, and grain yield, with and without supplemental irrigation. Twenty diverse proso millet accessions, originating from Bulgaria, Czechoslovakia, Morocco, the former Soviet Union, Turkey, and the United States, were grown in irrigated and non-irrigated treatments under organic conditions in Pullman, WA, from 2012 to 2014. Irrigation was shown to significantly improve emergence and increase plant height at stem extension and to hasten ripening of all the varieties, whereas heading date was not affected by irrigation in two of the three years tested. Irrigation resulted in higher mean seed yield across all varieties, with ‘GR 665’ and ‘Earlybird’ performing best under irrigation. Seed yield was highest in ‘GR 658’ and ‘Minsum’ in the non-irrigated treatment, suggesting the importance of identification and utilization of varieties adapted to low rainfall conditions. The highest yielding varieties in irrigated systems are unlikely be the highest yielding in dryland systems. Our results suggest that millet has potential as a regionally novel crop for inclusion in traditional dryland cropping rotations in the Palouse ecosystem, thereby contributing to increased cropping system diversity.

  7. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    Science.gov (United States)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  8. Evaluation of the Effect of Different Irrigation Levels of Drip Irrigation (Tape on Yield and Yield Components of Corn

    Directory of Open Access Journals (Sweden)

    mohammad karimi

    2016-02-01

    Full Text Available Introduction: One of the serious problems in the further development of maize cultivation is increasing irrigation efficiency. Using conventional irrigation causes a shortage of water resources to increase the acreage of the crop. With regard to the development of maize cultivation, agronomic and executable methods must be studied to reduce water consumption. Using drip irrigation system is most suitable for row crops. Hamedi et al. (2005 compared drip (tape and surface irrigation systems on yield of maize in different levels of water requirement and indicated that drip irrigation increases the amount of yield to 2015 kg/ha and water use efficiency to 3 time. Kohi et al. (2005 investigated the effects of deficit irrigation use of drip (tape irrigation on water use efficiency on maize in planting of one and two rows. The results showed that maximum water use efficiency related to crop density, water requirement and planting pattern 85000, 125% and two rows, respectively with 1.46 kg/m3. Jafari and Ashrafi (2011 studied the effects of irrigation levels, plant density and planting pattern in drip irrigation (tape on corn. The results showed that the amount of irrigation water and crop density on the level of 1% and their interactions and method of planting were significant at the 5 and 10% on water use efficiency, respectively. The yield was measured under different levels of irrigation, crop density and method of planting and the difference was significant on the level of 1%. Lamm et al. (1995 studied water requirement of maize in field with silt loam texture under sub drip irrigation and reported that water use reduced to 75%; but yield of maize remained at maximum amount of 12.5 t/ha. The objective of this study was to evaluate the drip (tape irrigation method for corn production practices in the Qazvin province in Iran. Materials and Methods: In this study, yield and yield components of corn (SC 704 were investigated under different levels of

  9. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    Directory of Open Access Journals (Sweden)

    mohammad saeed tadaion

    2017-12-01

    Full Text Available Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L. cv. Zarde-anar were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carried out in a constant plots and randomized complete block design (RCBD with four replicationsin five years.Treatmentswere 1- full flood irrigation (100 percent crop water requirement (T1 2- flood irrigation with 100 percent crop water requirement as alternate partial root-zone irrigation(every irrigation conducted on one side of tree (T2 3- flood irrigation with 50 percent crop water requirement as regular deficit irrigation (T3 4- full two-side drip irrigation(with regard to crop water requirement (eight drippers with twolit/hour flow by two different individual networks (T4 5- alternate partial root-zone drip irrigation with 100 percent crop water requirement (T5 6- regular deficit drip irrigation with 50 percent crop water requirement (T6 in every irrigation period. Each experimental treatment includes four trees and 96 similar twelve years old trees overall. Cultivation practice was conducted similarly on all of the trees. Results and Discussion: Results showed that the highest yield and water use efficiency based on statistical analysis belong to both PRD treatments i.e. alternate partial root-zone drip irrigation with 100 percent crop water requirement and alternate partial root-zone flood irrigation with 100 percent crop water requirement, respectively, that both of them decreased water requirement for irrigation up to 35 and 50 percent in comparison tocontrol. Application of partial root drying irrigation on both traditional flood irrigation and drip

  10. Regulated deficit irrigation for crop production under drought stress. A review

    OpenAIRE

    Chai , Qiang; Gan , Yantai; Zhao , Cai; Xu , Hui-Lian; Waskom , Reagan M.; Niu , Yining; Siddique , Kadambot H. M.

    2016-01-01

    International audience; AbstractAgriculture consumes more than two thirds of the total freshwater of the planet. This issue causes substantial conflict in freshwater allocation between agriculture and other economic sectors. Regulated deficit irrigation (RDI) is key technology because it helps to improve water use efficiency. Nonetheless, there is a lack of understanding of the mechanisms with which plants respond to RDI. In particular, little is known about how RDI might increase crop produc...

  11. ASPECTS REGARDING THE ENERGETICALLY EFFICIENCY OF IRRIGATION OF SOME CROPS IN NORTH-EAST ROMANIA

    Directory of Open Access Journals (Sweden)

    D. Bucur

    2010-01-01

    Full Text Available On the basis of some registered information in three areas from Moldova, it was calculated the energy balance and the energetically efficiency of the applied irrigation on eight species of plants. The information's obtained proved that the irrigation process is efficient from the energetically point of view for all the field crops which have been seen in south droughty zone and this process is less efficient in central and moderate warm and moist zone. In the cool moist zone from northern, the irrigation process is efficient only in a few cultures. On the slope lands, where the cultures need more water, the energetically efficiency of the irrigation process is greater than on a plat field. The greatest values of the balance and energetically efficiency were obtained in sugar beet, followed by alfalfa, maize for grain or silage, potato, wheat and sunflower, on the last places coming soybean and bean. There reacted favourable to irrigation the sugar beet, followed by maize for grain or silage, sunflower, potato and wheat, in bean and soybean being registered an energy balance very reduced.

  12. Memory of irrigation effects on hydroclimate and its modeling challenge

    Science.gov (United States)

    Chen, Fei; Xu, Xiaoyu; Barlage, Michael; Rasmussen, Roy; Shen, Shuanghe; Miao, Shiguang; Zhou, Guangsheng

    2018-06-01

    Irrigation modifies land-surface water and energy budgets, and also influences weather and climate. However, current earth-system models, used for weather prediction and climate projection, are still in their infancy stage to consider irrigation effects. This study used long-term data collected from two contrasting (irrigated and rainfed) nearby maize-soybean rotation fields, to study the effects of irrigation memory on local hydroclimate. For a 12 year average, irrigation decreases summer surface-air temperature by less than 1 °C and increases surface humidity by 0.52 g kg‑1. The irrigation cooling effect is more pronounced and longer lasting for maize than for soybean. Irrigation reduces maximum, minimum, and averaged temperature over maize by more than 0.5 °C for the first six days after irrigation, but its temperature effect over soybean is mixed and negligible two or three days after irrigation. Irrigation increases near-surface humidity over maize by about 1 g kg‑1 up to ten days and increases surface humidity over soybean (~ 0.8 g kg‑1) with a similar memory. These differing effects of irrigation memory on temperature and humidity are associated with respective changes in the surface sensible and latent heat fluxes for maize and soybean. These findings highlight great need and challenges for earth-system models to realistically simulate how irrigation effects vary with crop species and with crop growth stages, and to capture complex interactions between agricultural management and water-system components (crop transpiration, precipitation, river, reservoirs, lakes, groundwater, etc.) at various spatial and temporal scales.

  13. Integrated Decision Tools for Sustainable Watershed/Ground Water and Crop Health using Predictive Weather, Remote Sensing, and Irrigation Decision Tools

    Science.gov (United States)

    Jones, A. S.; Andales, A.; McGovern, C.; Smith, G. E. B.; David, O.; Fletcher, S. J.

    2017-12-01

    US agricultural and Govt. lands have a unique co-dependent relationship, particularly in the Western US. More than 30% of all irrigated US agricultural output comes from lands sustained by the Ogallala Aquifer in the western Great Plains. Six US Forest Service National Grasslands reside within the aquifer region, consisting of over 375,000 ha (3,759 km2) of USFS managed lands. Likewise, National Forest lands are the headwaters to many intensive agricultural regions. Our Ogallala Aquifer team is enhancing crop irrigation decision tools with predictive weather and remote sensing data to better manage water for irrigated crops within these regions. An integrated multi-model software framework is used to link irrigation decision tools, resulting in positive management benefits on natural water resources. Teams and teams-of-teams can build upon these multi-disciplinary multi-faceted modeling capabilities. For example, the CSU Catalyst for Innovative Partnerships program has formed a new multidisciplinary team that will address "Rural Wealth Creation" focusing on the many integrated links between economic, agricultural production and management, natural resource availabilities, and key social aspects of govt. policy recommendations. By enhancing tools like these with predictive weather and other related data (like in situ measurements, hydrologic models, remotely sensed data sets, and (in the near future) linking to agro-economic and life cycle assessment models) this work demonstrates an integrated data-driven future vision of inter-meshed dynamic systems that can address challenging multi-system problems. We will present the present state of the work and opportunities for future involvement.

  14. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    Science.gov (United States)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  15. Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment

    Directory of Open Access Journals (Sweden)

    Geneille E. Greaves

    2016-11-01

    Full Text Available Crop simulation models have a pivotal role to play in evaluating irrigation management strategies for improving agricultural water use. The objective of this study was to test and validate the AquaCrop model for maize under deficit irrigation management. Field observations from three experiments consisting of four treatments were used to evaluate model performance in simulating canopy cover (CC, biomass (B, yield (Y, crop evapotranspiration (ETc, and water use efficiency (WUE. Statistics for root mean square error, model efficiency (E, and index of agreement for B and CC suggest that the model prediction is good under non-stressed and moderate stress environments. Prediction of final B and Y under these conditions was acceptable, as indicated by the high coefficient of determination and deviations <10%. In severely stressed conditions, low E and deviations >11% for B and 9% for Y indicate a reduction in the model reliability. Simulated ETc and WUE deviation from observed values were within the range of 9.5% to 22.2% and 6.0% to 32.2%, respectively, suggesting that AquaCrop prediction of these variables is fair, becoming unsatisfactory as plant water stress intensifies. AquaCrop can be reliably used for evaluating the effectiveness of proposed irrigation management strategies for maize; however, the limitations should be kept in mind when interpreting the results in severely stressed conditions.

  16. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Preciado, Diana [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain); Matamoros, Victor, E-mail: victor.matamoros@udg.edu [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Bayona, Josep M. [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain)

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L{sup -1} and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L{sup -1}, on average). The estimated concentration of micropollutants in crops ranged from < 1 to 7677 ng kg{sup -1}, with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 {mu}g per person and week ({Sigma} 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  17. Effect of dry land transformation and quality of water use for crop irrigation on the soil bacterial community in the Mezquital Valley, Mexico

    Science.gov (United States)

    Lüneberg, Kathia; Schneider, Dominik; Daniel, Rolf; Siebe, Christina

    2017-04-01

    Soil bacteria are important determinants of soil fertility and ecosystem services as they participate in all biogeochemical cycles. Until now the comprehension of compositional and functional response that bacterial communities have to land use change and management, specifically in dry land its limited. Dry lands cover 40% of the world's land surface and its crop production supports one third of the global population. In this regions soil moisture is limited constraining farming to the rainy season or oblige to irrigate, as fresh water resources become scarce, to maintain productivity, treated or untreated wastewater for field irrigation is used. In this study the transformation of semiarid shrubland to agriculture under different land systems regarding quantity and quality of water use for crop irrigation on bacterial communities was investigated. The land systems included maize rain-fed plantations and irrigation systems with freshwater, untreated wastewater stored in a dam and untreated wastewater during dry and rainy season. Bacterial community structure and function was heavily affected by land use system and soil properties, whereas seasonality had a slighter effect. A soil moisture, nutrient and contaminant-content increasing gradient among the land use systems, going from rain fed plantation over fresh water, dam wastewater to untreated wastewater irrigated plantations was detected, this gradient diminished the abundance of Actinobacteria and Cyanobacteria, but enhanced the one from Bacteroidetes and Proteobacteria. Discernible clustering of the dry land soil communities coincides with the moisture, nutrient and contaminant gradient, being shrubland soil communities closer to the rain-fed's system and farer to the one from untreated wastewater irrigated soil. Soil moisture together with sodium content and pH were the strongest drivers of the community structure. Seasonality promoted shifts in the composition of soil bacteria under irrigation with

  18. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Directory of Open Access Journals (Sweden)

    A. D. Chukalla

    2017-07-01

    Full Text Available Reducing the water footprint (WF of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha−1 per season or to a certain WF benchmark (expressed in m3  t−1 of crop. This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip; irrigation strategy (full or deficit irrigation; and mulching practice (no, organic or synthetic mulching. The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour. Different cases are considered, including three crops (maize, tomato and potato; four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel; three hydrologic years (wet, normal and dry years and three soil types (loam, silty clay loam and sandy loam. For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF

  19. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Science.gov (United States)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-07-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha-1 per season) or to a certain WF benchmark (expressed in m3  t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water

  20. Mapping crop based on phenological characteristics using time-series NDVI of operational land imager data in Tadla irrigated perimeter, Morocco

    Science.gov (United States)

    Ouzemou, Jamal-eddine; El Harti, Abderrazak; EL Moujahid, Ali; Bouch, Naima; El Ouazzani, Rabii; Lhissou, Rachid; Bachaoui, El Mostafa

    2015-10-01

    Morocco is a primarily arid to semi-arid country. These climatic conditions make irrigation an imperative and inevitable technique. Especially, agriculture has a paramount importance for the national economy. Retrieving of crops and their location as well as their spatial extent is useful information for agricultural planning and better management of irrigation water resource. Remote sensing technology was often used in management and agricultural research. Indeed, it's allows crops extraction and mapping based on phenological characteristics, as well as yield estimation. The study area of this work is the Tadla irrigated perimeter which is characterized by heterogeneous areas and extremely small size fields. Our principal objectives are: (1) the delimitation of the major crops for a good water management, (2) the insulation of sugar beet parcels for modeling its yields. To achieve the traced goals, we have used Landsat-8 OLI (Operational Land Imager) data pan-sharpened to 15 m. Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) classifications were applied to the Normalized Difference Vegetation Index (NDVI) time-series of 10 periods. Classifications were calculated for a site of more than 124000 ha. This site was divided into two parts: the first part for selecting, training datasets and the second one for validating the classification results. The SVM and SAM methods classified the principal crops with overall accuracies of 85.27% and 57.17% respectively, and kappa coefficient of 80% and 43% respectively. The study showed the potential of using time-series OLI NDVI data for mapping different crops in irrigated, heterogeneous and undersized parcels in arid and semi-arid environment.

  1. Chemical oxifertigation through the irrigation of greenhouse hydroponic tomato crop.

    Directory of Open Access Journals (Sweden)

    Freddy Soto-Bravo

    2015-06-01

    Full Text Available   The aim of this study was to evaluate the effect of hydrogen peroxide (H2O2 as an oxygen source in the rhizosphere, in grafted tomato (cv. Durinta/cv Maxifor and using coconut fiber as substrate The study was conducted from 2009 to 2010. Two treatments were used: a control without (H2O2 (T0 and the other with H2O2 (T1 applied in each irrigation. The parameters evaluated were i- fertigation: oxygen concentration ([O2], pH, electrical conductivity (EC, and drainage percentage; ii- growth: basal diameter and plant height; iii- yield and iv- fruit quality: firmness, Brix degrees, dry weight, and pH. The average value of [O2] in the irrigation solution through out the crop cycle increased from 9,92 mg/l at T0 to 12,1 mg/l at T1 (P<0,05, meanwhile in the drained solution the value increased from 8,75 mg/l at T0 to 9,22 mg/l at T1 (P<0,05. Although significant differences (P<0.05 were reached in the [O2] between treatments during some periods of the crop cycle, the [O2] in the T0 did not reach a critical threshold that would affect the proper oxygenation of the roots. Therefore, there was no effect of hydrogen peroxide treatment on the growth, productivity and quality of the fruit.

  2. Downwind evolution of transpiration by two irrigated crops under conditions of local advection

    Science.gov (United States)

    McAneney, K. J.; Brunet, Y.; Itier, B.

    1994-09-01

    Previous measurements of water loss from small-dish evaporimeters mounted at the height of irrigated crops grown under conditions of extreme local advection in the Sudan are reexamined. From these evaporimeter measurements, it is possible to calculate fractional changes in the saturation deficit. Relationships between canopy conductance and saturation deficit are briefly reviewed and introduced into the Penman-Monteith equation to calculate transpiration rates as a function of distance downwind of the boundary between the upwind desert and the irrigated crop. In contradiction to most theoretical predictions, these new calculations show rates of transpiration to undergo only modest changes with increasing fetch. This occurs because of the feedback interaction between saturation deficit and stomatal conductance. This result is in good accord with a recent study suggesting that a dry-moist boundary transition may be best modelled as a simple step change in surface fluxes and further that the advective enhancement of evaporation may have been overestimated by many advection models. Larger effects are expected on dry matter yields because of the direct influence of saturation deficit on the yield-transpiration ratio.

  3. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  4. Improvements in irrigation system modelling when using remotely sensed ET for calibration

    Science.gov (United States)

    van Opstal, J. D.; Neale, C. M. U.; Lecina, S.

    2014-10-01

    Irrigation system modelling is often used to aid decision-makers in the agricultural sector. It gives insight on the consequences of potential management and infrastructure changes. However, simulating an irrigation district requires a considerable amount of input data to properly represent the system, which is not easily acquired or available. During the simulation process, several assumptions have to be made and the calibration is usually performed only with flow measurements. The advancement of estimating evapotranspiration (ET) using remote sensing is a welcome asset for irrigation system modelling. Remotely-sensed ET can be used to improve the model accuracy in simulating the water balance and the crop production. This study makes use of the Ador-Simulation irrigation system model, which simulates water flows in irrigation districts in both the canal infrastructure and on-field. ET is estimated using an energy balance model, namely SEBAL, which has been proven to function well for agricultural areas. The seasonal ET by the Ador model and the ET from SEBAL are compared. These results determine sub-command areas, which perform well under current assumptions or, conversely, areas that need re-evaluation of assumptions and a re-run of the model. Using a combined approach of the Ador irrigation system model and remote sensing outputs from SEBAL, gives great insights during the modelling process and can accelerate the process. Additionally cost-savings and time-savings are apparent due to the decrease in input data required for simulating large-scale irrigation areas.

  5. Dinitrogen fixation measurements in some legume crops grown under irrigated condition without bacteria inoculation using 15N

    International Nuclear Information System (INIS)

    Kurdali, F.; Sharabi, N.D.

    1991-01-01

    N 2 -fixation in some legume crops: Faba bean Vicia faba, common bean pisum sativum, lentil lens esculenta, chick pea cicer artinum and vetch vicia arvillia grown under irrigated conditions without Rhizobium inoculation was estimated using 15 N-labelled fertilizer method. Barley was used as a reference crop. Significant differences occured in N 2 -fixation capacity among legume crops at flowering and podding stages. The highest percentage of Nitrogen fixed occured in faba bean (88% of total N), while lower values were observed in the other crops: Lentil 84%, vetch 68%, common pea 67% and chick pea 57%. Moreover, amounts of N 2 -fixed were 171, 138, 100, 90 and 13 Kg. N. ha -1 respectively for faba bean, lentil, vetch, common pea and chick pea. This clearly indicates the importance of biological dinitrogen fixation in local legume crops nodulated with indigenous Rhizobium strains regarding to N-soil enrichment. Further investigations must be focused on the selection of both plant species and Rhizobium strains in order to obtain a good symbiotic system. (author). 2 figs

  6. Optimal model-based deficit irrigation scheduling using AquaCrop: a simulation study with cotton, potato and tomato

    DEFF Research Database (Denmark)

    Linker, Raphael; Ioslovich, Ilya; Sylaios, Georgios

    2016-01-01

    -smooth behavior of the objective function and the fact that it involves multiple integer variables. We developed an optimization scheme for generating sub-optimal irrigation schedules that take implicitly into account the response of the crop to water stress, and used these as initial guesses for a full......Water shortage is the main limiting factor for agricultural productivity in many countries and improving water use efficiency in agriculture has been the focus of numerous studies. The usual approach to limit water consumption in agriculture is to apply water quotas and in such a situation farmers...... variables are the irrigation amounts for each day of the season. The objective function is the expected yield calculated with the use of a model. In the present work we solved this optimization problem for three crops modeled by the model AquaCrop. This optimization problem is non-trivial due to the non...

  7. Optimization of modern irrigation for biosaline agriculture

    International Nuclear Information System (INIS)

    Shahid, S.A.; Hasbini, B.

    2007-01-01

    Supplementation water is a must to offset the water requirement to produce profitable crops in most arid and semiarid zones, where fresh water resources are insufficient to meet the pressure of irrigated agriculture. This necessitates the use of poor quality water resources. These waters if not properly managed and used can cause serious soil related problems (salinity, sodicity, destruction of soil structure) in addition to decline in crop yields. Biosaline agriculture (using saline water on saline soils to grow salt-tolerant crops) becomes the only option for the farmer when both soil and water resources are saline and the water resource is scarce. In this regards key design considerations must be taken into account when irrigating with salty waters to optimize water uses and to reduce subsequent soil salinity development. Sprinkler irrigation systems are commonly used in irrigation of large-scale irrigational production systems. However they tend to concentrate salts on the leaves of plants. For this reason discharge and degree of overlap between consecutive sprinkler heads, are key design parameters when applying salty waters. Trickle irrigation is the most efficient system and is gaining importance in the GCC countries in the agriculture and landscape irrigation. The objective of this study was to optimize modern irrigation systems through development of design standards for drip (emitters spacing) and sprinkler irrigation systems (single head jet and overlapping) by applying saline water. The effect of emitter spacing (drip) and overlapping (sprinkler) were tested for the formation of salt contours in soil. The leaching ratio (LR) is the overall soil sanity within rhizosphere divided by the average irrigation water salinity. In this study LR is used to evaluate the effectiveness of irrigation systems in developing soil sanity. From the present investigations it is concluded that when using saline water for irrigation, the soil sanity development can be

  8. Straw decomposition of nitrogen-fertilized grasses intercropped with irrigated maize in an integrated crop-livestock system

    Directory of Open Access Journals (Sweden)

    Cristiano Magalhães Pariz

    2011-12-01

    Full Text Available The greatest limitation to the sustainability of no-till systems in Cerrado environments is the low quantity and rapid decomposition of straw left on the soil surface between fall and spring, due to water deficit and high temperatures. In the 2008/2009 growing season, in an area under center pivot irrigation in Selvíria, State of Mato Grosso do Sul, Brazil, this study evaluated the lignin/total N ratio of grass dry matter , and N, P and K deposition on the soil surface and decomposition of straw of Panicum maximum cv. Tanzânia, P. maximum cv. Mombaça, Brachiaria. brizantha cv. Marandu and B. ruziziensis, and the influence of N fertilization in winter/spring grown intercropped with maize, on a dystroferric Red Latosol (Oxisol. The experiment was arranged in a randomized block design in split-plots; the plots were represented by eight maize intercropping systems with grasses (sown together with maize or at the time of N side dressing. Subplots consisted of N rates (0, 200, 400 and 800 kg ha-1 year-1 sidedressed as urea (rates split in four applications at harvests in winter/spring, as well as evaluation of the straw decomposition time by the litter bag method (15, 30, 60, 90, 120, and 180 days after straw chopping. Nitrogen fertilization in winter/spring of P. maximum cv. Tanzânia, P. maximum cv. Mombaça, B. brizantha cv. Marandu and B. ruziziensis after intercropping with irrigated maize in an integrated crop-livestock system under no-tillage proved to be a technically feasible alternative to increase the input of straw and N, P and K left on the soil surface, required for the sustainability of the system, since the low lignin/N ratio of straw combined with high temperatures accelerated straw decomposition, reaching approximately 30 % of the initial amount, 90 days after straw chopping.

  9. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L

    2006-01-01

    The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.

  10. Energy performance of sprinkler irrigated maize, wheat and sunflower in Vigia irrigation district

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Sandra; Rodrigues, Goncalo Caleia; Paredes, Paula; Pereira, Luis S. [Centro de Engenharia dos Biossistemas (CEER/ISA), Lisboa (Portugal)], E-mail: lspereira@isa.utl.pt

    2008-07-01

    The energy potential of a crop may be evaluated through life cycle assessment methodologies. These refer to the computation of the crop's energy balance and other related indicators, such as the energy ratio and the energetic efficiency, that may be used as to assess how a given irrigated crop may be used for production of biofuel. This study concerns sprinkler irrigated sunflower, wheat and maize crops using data relative to the campaign of 2007 in the Vigia Irrigation District, Alentejo. A model was developed and various scenarios were considered. The modelling results lead to the conclusion that the maize crop is the most efficient in producing energy and sunflower is the least one for all the alternative scenarios considered. (author)

  11. Economic Analysis of Crop Production under Jibiya Irrigation Project ...

    African Journals Online (AJOL)

    Majority of the farmers were married and can read and write. Most of ... The performance of the farmers, though ... holder irrigation dependent on the shadoof system of lifting water as .... implies that in Jibiya Irrigation Project, women were not.

  12. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    Science.gov (United States)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  13. Techno-economic feasibility of the irrigation system for the grassland and farmland conservation in China: Photovoltaic vs. wind power water pumping

    International Nuclear Information System (INIS)

    Campana, Pietro Elia; Li, Hailong; Yan, Jinyue

    2015-01-01

    Highlights: • A novel design procedure for photovoltaic and wind power water pumping systems for irrigation is proposed. • The design procedure is proved conducting dynamic simulations of the water supply and water demand. • The technical and economic effectiveness of photovoltaic water pumping systems is proved simulating the crop yield response. - Abstract: Photovoltaic water pumping (PVWP) and wind power water pumping (WPWP) systems for irrigation represent innovative solutions for the restoration of degraded grassland and the conservation of farmland in remote areas of China. The present work systematically compares the technical and economic suitability of such systems, providing a general approach for the design and selection of the suitable technology for irrigation purposes. The model calculates the PVWP and WPWP systems sizes based on irrigation water requirement (IWR), solar irradiation and wind speed. Based on the lowest PVWP and WPWP systems components costs, WPWP systems can compete with PVWP systems only at high wind speed and low solar irradiation values. Nevertheless, taking into account the average specific costs both for PVWP and WPWP systems, it can be concluded that the most cost-effective solution for irrigation is site specific. According to the dynamic simulations, it has also been found that the PVWP systems present better performances in terms of matching between IWR and water supply compared to the WPWP systems. The mismatch between IWR and pumped water resulted in a reduction of crop yield. Therefore, the dynamic simulations of the crop yield are essential for economic assessment and technology selection

  14. Smallholder Irrigation and Crop Diversification under Climate Change in sub-Saharan Africa: Evidence and Potential for Simultaneous Food Security, Adaptation, and Mitigation

    Science.gov (United States)

    Naylor, R.; Burney, J. A.; Postel, S.

    2011-12-01

    The poorest populations in sub-Saharan Africa live in rural areas and depend on smallholder agricultural production for their livelihoods. Over 90% of all farmed area in Sub-Saharan Africa is rainfed, with crop production centering on 3-5 months of rainfall. Rapid population growth is reducing land per capita ratios, and low yields for staple crops make food security an increasingly challenging goal. Malnutrition, most noticeable among children, peaks during the dry season. Recent data on aggregate economic growth and investment in Africa hide these patterns of seasonal hunger and income disparity. Perhaps most perversely, smallholder farmers in the dry tropical regions of sub-Saharan Africa are (and will continue to be) some of the earliest and hardest hit by climate change. Our research focuses on the role distributed, small-scale irrigation can play in food security and climate change adaptation in sub-Saharan Africa. As Asia's agricultural success has demonstrated, irrigation, when combined with the availability of inputs (fertilizer) and improved crop varieties, can enable year-round production, growth in rural incomes, and a dramatic reduction in hunger. The situation in Africa is markedly different: agroecological conditions are far more heterogeneous than in Asia and evaporation rates are relatively high; most smallholders lack access to fertilizers; and market integration is constrained by infrastructure, information, and private sector incentives. Yet from a resource perspective, national- and regional-level estimates suggest that Internal Renewable Water Resources (IRWR) are nowhere near fully exploited in Sub-Saharan Africa -- even in the Sudano-Sahel, which is considered to be one of the driest regions of the continent. Irrigation can thus be implemented on a much larger scale sustainably. We will present (a) results from controlled, experimental field studies of solar-powered drip irrigation systems in the rural Sudano-Sahel region of West Africa. We

  15. Characteristics and influencing factors of crop coefficient for drip-irrigated cotton under plastic mulch conditions in arid environment

    DEFF Research Database (Denmark)

    Ai, Zhipin; Yang, Yonghui; Wang, Qinxue

    2017-01-01

    agronomy practice such as plastic mulching and drip irrigation in arid environments. This study calculated and analyzed Kc of a drip-irrigated and plastic-mulched cotton field in Aksu Oasis of the arid Tarim River Basin, China, and its relationships with several crop-, soil- and management variables......-mulched condition already published, the Kc of mulched cotton for the entire growth season decreased by 16 to 39%. The largest reductions in Kc due to plastic mulch were found in the initial and developmental growth stage. Kc could be calculated by a third-degree polynomial model in relation to RGD, which...... significantly increased Kc, i.e., 29% on average, partly due to arid advection. This study provided up-to-date and detailed information on cotton crop coefficient under plastic mulching and drip irrigation conditions in arid environment, and it is useful for improved management of agricultural water resources....

  16. When should irrigators invest in more water-efficient technologies as an adaptation to climate change?

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.

    2015-12-01

    The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that

  17. New Approaches to Irrigation Scheduling of Vegetables

    Directory of Open Access Journals (Sweden)

    Michael D. Cahn

    2017-04-01

    Full Text Available Using evapotranspiration (ET data for scheduling irrigations on vegetable farms is challenging due to imprecise crop coefficients, time consuming computations, and the need to simultaneously manage many fields. Meanwhile, the adoption of soil moisture monitoring in vegetables has historically been limited by sensor accuracy and cost, as well as labor required for installation, removal, and collection of readings. With recent improvements in sensor technology, public weather-station networks, satellite and aerial imaging, wireless communications, and cloud computing, many of the difficulties in using ET data and soil moisture sensors for irrigation scheduling of vegetables can now be addressed. Web and smartphone applications have been developed that automate many of the calculations involved in ET-based irrigation scheduling. Soil moisture sensor data can be collected through wireless networks and accessed using web browser or smartphone apps. Energy balance methods of crop ET estimation, such as eddy covariance and Bowen ratio, provide research options for further developing and evaluating crop coefficient guidelines of vegetables, while recent advancements in surface renewal instrumentation have led to a relatively low-cost tool for monitoring crop water requirement in commercial farms. Remote sensing of crops using satellite, manned aircraft, and UAV platforms may also provide useful tools for vegetable growers to evaluate crop development, plant stress, water consumption, and irrigation system performance.

  18. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  19. Irrigation water consumption modelling of a soilless cucumber crop under specific greenhouse conditions in a humid tropical climate

    Directory of Open Access Journals (Sweden)

    Galo Alberto Salcedo

    Full Text Available ABSTRACT: The irrigation water consumption of a soilless cucumber crop under greenhouse conditions in a humid tropical climate has been evaluated in this paper in order to improve the irrigation water and fertilizers management in these specific conditions. For this purpose, a field experiment was conducted. Two trials were carried out during the years 2011 and 2014 in an experimental farm located in Vinces (Ecuador. In each trial, the complete growing cycle of a cucumber crop grown under a greenhouse was evaluated. Crop development was monitored and a good fit to a sigmoidal Gompertz type growth function was reported. The daily water uptake of the crop was measured and related to the most relevant indoor climate variables. Two different combination methods, namely the Penman-Monteith equation and the Baille equation, were applied. However, the results obtained with these combination methods were not satisfactory due to the poor correlation between the climatic variables, especially the incoming radiation, and the crop's water uptake (WU. On contrary, a good correlation was reported between the crop's water uptake and the leaf area index (LAI, especially in the initial crop stages. However, when the crop is fully developed, the WU stabilizes and becomes independent from the LAI. A preliminary model to simulate the water uptake of the crop was adjusted using the data obtained in the first experiment and then validated with the data of the second experiment.

  20. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  1. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    Science.gov (United States)

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  2. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  3. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study

    International Nuclear Information System (INIS)

    Gao, Bing; Ju, Xiaotang; Su, Fang; Meng, Qingfeng; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo

    2014-01-01

    The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple food for hundreds of millions of people and where groundwater resources are polluted with nitrate and depleted through irrigation. Here, we report on fertilizer N and irrigation water use, grain yields, and nitrous oxide (N 2 O) and methane (CH 4 ) emissions of conventional and optimized winter wheat–summer maize double-cropping systems, and of three alternative cropping systems, namely a winter wheat–summer maize (or soybean)–spring maize system, with three harvests in two years; and a single spring maize system with one crop per year. The results of this two-year study show that the optimized double-cropping system led to a significant increase in grain yields and a significant decrease in fertilizer N use and net greenhouse gas intensity, but the net greenhouse gas N 2 O emissions plus CH 4 uptake and the use of irrigation water did not decrease relative to the conventional system. Compared to the conventional system the net greenhouse gas emissions, net greenhouse gas intensity and use of fertilizer N and irrigation water decreased in the three alternative cropping systems, but at the cost of grain yields except in the winter wheat–summer maize–spring maize system. Net uptake of CH 4 by the soil was little affected by cropping system. Average N 2 O emission factors were only 0.17% for winter wheat and 0.53% for maize. In conclusion, the winter wheat–summer maize–spring maize system has considerable potential to decrease water and N use and decrease N 2 O emissions while maintaining high grain yields and sustainable use of groundwater. - Highlights: • Yields, resource use efficiency and N 2 O + CH 4 emission differ among cropping systems. • An

  4. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bing [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Ju, Xiaotang, E-mail: juxt@cau.edu.cn [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Su, Fang; Meng, Qingfeng [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Oenema, Oene [Wageningen University and Research, Alterra, Wageningen (Netherlands); Christie, Peter [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast BT9 5PX (United Kingdom); Chen, Xinping; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China)

    2014-02-01

    The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple food for hundreds of millions of people and where groundwater resources are polluted with nitrate and depleted through irrigation. Here, we report on fertilizer N and irrigation water use, grain yields, and nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) emissions of conventional and optimized winter wheat–summer maize double-cropping systems, and of three alternative cropping systems, namely a winter wheat–summer maize (or soybean)–spring maize system, with three harvests in two years; and a single spring maize system with one crop per year. The results of this two-year study show that the optimized double-cropping system led to a significant increase in grain yields and a significant decrease in fertilizer N use and net greenhouse gas intensity, but the net greenhouse gas N{sub 2}O emissions plus CH{sub 4} uptake and the use of irrigation water did not decrease relative to the conventional system. Compared to the conventional system the net greenhouse gas emissions, net greenhouse gas intensity and use of fertilizer N and irrigation water decreased in the three alternative cropping systems, but at the cost of grain yields except in the winter wheat–summer maize–spring maize system. Net uptake of CH{sub 4} by the soil was little affected by cropping system. Average N{sub 2}O emission factors were only 0.17% for winter wheat and 0.53% for maize. In conclusion, the winter wheat–summer maize–spring maize system has considerable potential to decrease water and N use and decrease N{sub 2}O emissions while maintaining high grain yields and sustainable use of groundwater. - Highlights: • Yields, resource use efficiency and N{sub 2}O + CH{sub 4} emission

  5. Comparative efficiency of trickle and furrow irrigation

    International Nuclear Information System (INIS)

    Hanif, M.; Qureshi, R.H.; Sandhu, G.R.

    1976-01-01

    Comparison of furrow and trickle methods of irrigation to know their relative efficiency with respect to water applied and fertilizer used on tomatoes, cauliflower and lettuce as test crops using canal water, showed a significant saving of about 44 and 41 per cent respectively for irrigation water and fertilizer applied with trickle as compared to furrow irrigation. Trickle irrigated crops also showed a better response as regards the rate of survival, crop growth and time of maturity

  6. Leaf temperature of maize and crop water stress index with variable irrigation and nitrogen supply

    Science.gov (United States)

    Water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Water stress indices based on crop canopy temperature can be useful for assessing plan...

  7. Dynamic Predictions of Crop Yield and Irrigation in Sub-Saharan Africa Due to Climate Change Impacts

    Science.gov (United States)

    Foster-Wittig, T.

    2012-12-01

    The highest damages from climate change are predicted to be in the agricultural sector in sub-Saharan Africa. Agriculture is predicted to be especially vulnerable in this region because of its current state of high temperature and low precipitation and because it is usually rain-fed or relies on relatively basic technologies which therefore limit its ability to sustain in increased poor climatic conditions [1]. The goal of this research is to quantify the vulnerability of this ecosystem by projecting future changes in agriculture due to IPCC predicted climate change impacts on precipitation and temperature. This research will provide a better understanding of the relationship between precipitation and rain-fed agriculture in savannas. In order to quantify the effects of climate change on agriculture, the impacts of climate change are modeled through the use of a land surface vegetation dynamics model previously developed combined with a crop model [2,4]. In this project, it will be used to model yield for point cropland locations within sub-Saharan Africa between Kenya and Botswana with a range of annual rainfall. With this model, future projections are developed for what can be anticipated for the crop yield based on two precipitation climate change scenarios; (1) decreased depth and (2) decreased frequency as well as temperature change scenarios; (3) only temperature increased, (4) temperature increase dand decreased precipitation depth, and (5) temperature increased and decreased precipitation frequency. Therefore, this will allow conclusions to be drawn about how mean precipitation and a changing climate effect food security in sub-Saharan Africa. As an additional analysis, irrigation is added to the model as it is thought to be the solution to protect food security by maximizing on the potential of food production. In water-limited areas such as Sub-Saharan Africa, it is important to consider water efficient irrigation techniques such as demand-based micro-irrigation

  8. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  9. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    Science.gov (United States)

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  10. Mapping cropping patterns in irrigated rice fields in West Java: Towards mapping vulnerability to flooding using time-series MODIS imageries

    Science.gov (United States)

    Sianturi, Riswan; Jetten, V. G.; Sartohadi, Junun

    2018-04-01

    Information on the vulnerability to flooding is vital to understand the potential damages from flood events. A method to determine the vulnerability to flooding in irrigated rice fields using the Enhanced Vegetation Index (EVI) was proposed in this study. In doing so, the time-series EVI derived from time-series 8 day 500 m spatial resolution MODIS imageries (MOD09A1) was used to generate cropping patterns in irrigated rice fields in West Java. Cropping patterns were derived from the spatial distribution and phenology metrics so that it is possible to show the variation of vulnerability in space and time. Vulnerability curves and cropping patterns were used to determine the vulnerability to flooding in irrigated rice fields. Cropping patterns capture the shift in the vulnerability, which may lead to either an increase or decrease of the degree of damage in rice fields of origin and other rice fields. The comparison of rice field areas between MOD09A1 and ALOS PALSAR and MOD09A1 and Agricultural Statistics showed consistent results with R2 = 0.81 and R2 = 0.93, respectively. The estimated and observed DOYs showed RMSEs = 9.21, 9.29, and 9.69 days for the Start of Season (SOS), heading stage, and End of Season (EOS), respectively. Using the method, one can estimate the relative damage provided available information on the flood depth and velocity. The results of the study may support the efforts to reduce the potential damages from flooding in irrigated rice fields.

  11. Evaluation of the dose to man in relation to the behavior of tritium from irrigation water in agricultural crops

    International Nuclear Information System (INIS)

    Kirchmann, R.; Bruwaene, R. van; Koch, G.; Grauby, A.; Delmas, J.; Athalye, V.

    1977-01-01

    A research program on the transfer of tritium from the irrigation water in the soil-plant environment provides valuable ecological information on the effects of tritium releases from nuclear installations under temperate humide and mediterranean climatic conditions. Field studies are carried out on experimental plots by spraying the crops with irrigation water contaminated with tritium on a single dose, the reference level chosen is 1 nCi/litre. The following crops are investigated: prairie, rye-grass, potato, pea, barley, carrot and sugarbeet as temperate region cultures, and vineyard, olive-tree and orange-tree as mediterranean cultures. Soil and plants samples are collected for radioassay to determine the tritium incorporation in tissue water and organic matter fractions. The tritium activity in these crops after harvest is correlated to the level of radiation dose received through human diet [fr

  12. Field Comparison of Fertigation Vs. Surface Irrigation of Cotton Crop

    International Nuclear Information System (INIS)

    Janat, M.

    2004-01-01

    Based on previous results of the same nature, one nitrogen rate 180 kg N ha -1 was tested under two-irrigation methods, surface irrigation and drip fertigation of cotton (Cultivar Rakka-5) for two consecutive seasons 2000 and 2001. The study aimed to answer various questions regarding the applicability of drip fertigation at farm level and the effect of its employment on yield and growth parameters, compared to surface irrigation. Nitrogen fertilizer was either injected in eight equally split applications for the drip fertigated cotton or divided in four unequally split applications as recommend by Ministry of Agriculture (20% before planting, 40% at thinning, 20% after 60 days from planting and 20% after 75 days after planting). 15 N labeled urea was used to evaluate nitrogen fertilizer efficiency. The experimental design was randomized block design with seven replicates. Results showed that drip fertigation led to water saving exceeding 50% in some cases. Field germination percentage was highly increased under drip- fertigated cotton relative to surface-irrigated cotton. Dry matter and seed cotton yield of surface-irrigated cotton was slightly higher than that of drip-fertigated cotton in the first growing season. The reason for that was due to the hot spill that occurred in the region, which exposed the cotton crop to water stress and consequently pushed the cotton into early flowering. Lint properties were not affected by the introduction of drip-fertigation. Actually some properties were improved relative to the standard properties identified by the cotton Bureau.Nitrogen uptake was slightly increased under drip fertigation whereas nitrogen use efficiencies were not constant along the growing seasons. The reason for that could be lateral leaching and root proliferation into the labeled and unlabeled subplots. Field water use efficiency was highly increased for both growing seasons under drip fertigation practice. The rate of field water use efficiencies

  13. Yield gap determinants for wheat production in major irrigated cropping zones of punjab, pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Aujla, K.M.; Badar, N.

    2014-01-01

    Yield gap is useful measurement for crop productivity and the extent to which crop productivity falls below some potential level. The study was carried out to analyze the yield gap and determinants of wheat production in the Punjab province of Pakistan. It is based on cross sectional data from 210 farmers for the crop year 2009-10. Results suggest that farm level wheat yields are less than the potential yield level by 33.0%, 43.0% and 50.6% in the mixed-cropping, cotton-wheat and rice-wheat zones of the province, respectively. Ordinary least square regression analysis of wheat production by assuming Cobb-Douglas specification reveals that the number of irrigations, usage of farm yard manure and fertilizers contribute positively and significantly to wheat crop production. Coefficients of dummy variables for cropping zones indicate that farmers in the mixed cropping zone are obtaining better yield of the wheat crop as compared to their counterparts in other selected cropping zones. These results suggested that farmers can increase wheat productivity by increasing the use of factor inputs; however, poverty may be a constraint on realizing these gains. Thus, wheat production can be increased in the country by helping resource poor farmers through suitable support mechanisms. (author)

  14. Future Irrigation Requirement of Rice Under Irrigated Area - Uncertainty through GCMs and Crop Models : A Case Study of Indo-Gangetic Plains of India

    Science.gov (United States)

    Pillai, S. N.; Singh, H.; Ruane, A. C.; Boote, K. G.; Porter, C.; Rosenzweig, C.; Panwar, A. S.

    2017-12-01

    Indo-Gangetic Plains (IGP), the food basket of South Asia, characterised by predominantly cereal-based farming systems where livestock is an integral part of farm economy. Climate change is projected to have significant effects on agriculture production and hence on food and livelihood security because more than 90 per cent farmers fall under small and marginal category. The rising temperatures and uncertainties in rainfall associated with global warming may have serious direct and indirect impacts on crop production. A loss of 10-40% crop production is predicted in different crops in India by the end of this century by different researchers. Cereal crops (mainly rice and wheat) are crucial to ensuring the food security in the region, but sustaining their productivity has become a major challenge due to climate variability and uncertainty. Under AgMIP Project, we have analysed the climate change impact on farm level productivity of rice at Meerut District, Uttar Pradesh using 29 GCMs under RCP4.5 and RCP8.5 during mid-century period 2041-2070. Two crop simulation models DSSAT4.6 and APSIM7.7 were used for impact study. There is lot of uncertainty in yield level by different GCMs and crop models. Under RCP4.5, APSIM showed a declining yield up to 14.5 % while DSSAT showed a declining yield level of 6.5 % only compared to the baseline (1980-2010). However, out of 29 GCMs, 15 GCMs showed negative impact and 14 showed positive impact under APSIM while it showed 21 and 8 GCMs, respectively in the case of DSSAT. DSSAT and APSIM simulated irrigation water requirement in future of the order of 645±75 mm and 730±107 mm, respectively under RCP4.5. However, the same will be of the order of 626 ± 99 mm and 749 ± 147 mm, respectively under RCP8.5. Projected irrigation water productivity showed a range of 4.87-12.15 kg ha-1 mm-1 and 6.77-12.63 kg ha-1 mm-1 through APSIM and DSSAT, respectively under RCP4.5, which stands an average of 7.81 and 8.53 kg ha-1 mm-1 during the

  15. Optimization strategies for improving irrigation water management of lower jhelum canal

    International Nuclear Information System (INIS)

    Rashid, M.U.

    2015-01-01

    The paper includes computing crop water requirement, identification of problems and optimization strategies for improved irrigation water management of a canal command. Lower Jhelum Canal (LJC) System was selected as a case study. Possible strategies for optimization are enhancing irrigation water productivity by high value and high yield crops, adoption of resource conservation interventions (RCIs) at the farm level, improving irrigation system efficiency and its management. Estimation of daily reference evapotranspiration of LJC command was carried out by Penman Montieth -2000 method and metrological data of Sargodha for the period 1999 to 2010 was used. Crop water requirements were computed from reference evapotranspiration, crop coefficients and periods of crops for existing cropping pattern. The comparison of the crop water requirements and available water supplies indicated shortage of more than 51% in Kharif and 54% in Rabi seasons. The gap between requirements and supplies is fulfilled by groundwater in the command. The structural measures identified in the present study for improving canal management include rationalization of canal capacities in keeping with the current water requirements and availability, rehabilitation and remodeling of canal network and lining of distributaries and minors in saline groundwater areas. An array of measures and practices identified for improved water management at the farm level include: improvement and lining of watercourses, proper farm design and layout, adoption of resource conservation technologies involving laser land leveling, zero tillage, and bed-furrow irrigation method. Adopting proper cropping systems considering land suitability and capacity building of farming community in improved soil, crop and water management technologies would enhance the water productivity in an effective and sustainable manner. (author)

  16. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  17. AGROCLIMATIC DETERMINANTS OF IRRIGATION NEEDS

    Directory of Open Access Journals (Sweden)

    Leszek Łabędzki

    2016-05-01

    Full Text Available The paper is a review of the so far used in Poland methods and criteria for assessing the needs of irrigation for planning purposes, the assessment because of the agroclimatic conditions and taking into account the soil water retention. Irrigation needs of the most are determined taking into account crop water deficits. This is the factor that is characterized by a shortage of precipitation in relation to the water requirements of crops. Some methods use only the meteorological parameters that determine the state of the atmosphere-soil-plant system, and some also take into account soil water retention and its availability for plants.

  18. Technical- and environmental-efficiency analysis of irrigated cotton-cropping systems in Punjab, Pakistan using data envelopment analysis.

    Science.gov (United States)

    Ullah, Asmat; Perret, Sylvain R

    2014-08-01

    Cotton cropping in Pakistan uses substantial quantities of resources and adversely affects the environment with pollutants from the inputs, particularly pesticides. A question remains regarding to what extent the reduction of such environmental impact is possible without compromising the farmers' income. This paper investigates the environmental, technical, and economic performances of selected irrigated cotton-cropping systems in Punjab to quantify the sustainability of cotton farming and reveal options for improvement. Using mostly primary data, our study quantifies the technical, cost, and environmental efficiencies of different farm sizes. A set of indicators has been computed to reflect these three domains of efficiency using the data envelopment analysis technique. The results indicate that farmers are broadly environmentally inefficient; which primarily results from poor technical inefficiency. Based on an improved input mix, the average potential environmental impact reduction for small, medium, and large farms is 9, 13, and 11 %, respectively, without compromising the economic return. Moreover, the differences in technical, cost, and environmental efficiencies between small and medium and small and large farm sizes were statistically significant. The second-stage regression analysis identifies that the entire farm size significantly affects the efficiencies, whereas exposure to extension and training has positive effects, and the sowing methods significantly affect the technical and environmental efficiencies. Paradoxically, the formal education level is determined to affect the efficiencies negatively. This paper discusses policy interventions that can improve the technical efficiency to ultimately increase the environmental efficiency and reduce the farmers' operating costs.

  19. Analysis of Irrigation Water Quality at Kadawa Irrigation Project for Improved Productivity

    Directory of Open Access Journals (Sweden)

    AR Sanda

    2014-09-01

    Full Text Available In the face of water scarcity and the several negative consequences, such as water wastage, flooding, water logging, soil losses and production losses, conserving the finite amount of fresh water is a must. The quality of irrigation water must therefore be ascertained. The chemical quality of three sources of irrigation water from canal and drainage water, namely drainage water, fresh irrigation water from canal, and drainage/irrigation water mixture, were analyzed from Kadawa irrigation Project for year 2013 and 2014 cropping seasons, with the view to evaluating the potential risks associated with their use in irrigation and hence their suitability or otherwise for irrigation purposes. The analysis revealed that the use of drainage water alone for irrigation may result in problems associated with salinity, while a blend of drainage/irrigation water in the ratio of 1:1 is a viable means of water conservation and a good means of crop production. DOI: http://dx.doi.org/10.3126/ije.v3i3.11082 International Journal of Environment Vol.3(3 2014: 235-240

  20. Gain-P: A new strategy to increase furrow irrigation efficiency

    International Nuclear Information System (INIS)

    Schmitz, G.H.; Wohling, T.; Paly, M. D.; Schutze, N.

    2007-01-01

    The new methodology GAIN-P combines Genetic Algorithms, Artificial Intelligence techniques and rigorous Process modeling for substantially improving irrigation efficiency. The new strategy simultaneously identifies optimal values of both scheduling and irrigation parameters for an entire growing season and can be applied to irrigation systems with adequate or deficit water supply. In this contribution, GAIN-P is applied to furrow irrigation tackling the more difficult subject of the more effective deficit irrigation. A physically -based hydrodynamic irrigation model is iteratively coupled with a 2D subsurface flow model for generating a database containing all realistically feasible scenarios of water application in furrow irrigation. It is used for training a problem-adapted artificial neural network based on self-organized maps, which in turn portrays the inverse solution of the hydrodynamic furrow irrigation model and thus enormously speeds up the overall performance of the complete optimization tool. Global optimization with genetic algorithm finds the schedule with maximum crop yield for the given water volume. The impact of different irrigation schedules on crop yield is calculated by the coupled furrow irrigation model which also simulates soil evaporation, precipitation and root water uptake by the plants over the whole growing seasons, as well as crop growth and yield. First results with the new optimization strategy show that GAIN-P has a high potential to increase irrigation efficiency. (author)

  1. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    Science.gov (United States)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  2. Optimal Allocation of the Irrigation Water Through a Non Linear Mathematical Model

    Directory of Open Access Journals (Sweden)

    P. Rubino

    2008-09-01

    Full Text Available A study on the optimal allocation of the irrigation water among 9 crops (autumnal and spring sugar beet, spring and summer grain maize, dry and shell bean, eggplant, pepper and processing tomato has been carried out, utilizing experimental data of yield response to irrigation obtained in different years in Southern Italy (Policoro MT, 40° 12’ Northern Lat.; 16° 40’Western Long.. Fitting Mitscherlich’s equation modified by Giardini and Borin to the experimental data of each crop, the curve response parameters have been calculated: A = maximum achievable yield in the considered area (t ha-1; b = extra-irrigation water used by the crop (m3 ha-1; c = water action factor (ha m- 3; K, calculated only for tomato crop. ,decreasing factor due to the water exceeding the optimal seasonal irrigation volume (100% of the Crop Maximum Evapotranspiration less effective rainfall, ETMlr. The A values, using the prices of the agricultural produces and the irrigation water tariffs applied by the Consorzio Irriguo della Capitanata, have been converted in Value of Production (VP less the fixed and variable irrigation costs (VPlic. The equation parameters were used in a non linear mathematical model written in GAMS (General Algebraic Modelling System, in order to define the best irrigation water allocation amongst the 9 crops across the entire range of water availability and the volume of maximum economical advantage, hypothesising that each crop occupied the same surface (1 ha. This seasonal irrigation volume, that corresponded to the maximum total VPlic, was equal to 37000 m3. Moreover, the model allowed to define the best irrigation water distribution among the crops also for total available volumes lower than that of maximum economical advantage (37000 m3. Finally, it has been underlined that the vegetable crops should be irrigated with seasonal irrigation volumes equal to 100% of the ETM, whereas the summer and spring maize and the autumnal and spring

  3. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation

    Directory of Open Access Journals (Sweden)

    Gabriel Villarrubia

    2017-08-01

    Full Text Available Monitoring mechanisms that ensure efficient crop growth are essential on many farms, especially in certain areas of the planet where water is scarce. Most farmers must assume the high cost of the required equipment in order to be able to streamline natural resources on their farms. Considering that many farmers cannot afford to install this equipment, it is necessary to look for more effective solutions that would be cheaper to implement. The objective of this study is to build virtual organizations of agents that can communicate between each other while monitoring crops. A low cost sensor architecture allows farmers to monitor and optimize the growth of their crops by streamlining the amount of resources the crops need at every moment. Since the hardware has limited processing and communication capabilities, our approach uses the PANGEA architecture to overcome this limitation. Specifically, we will design a system that is capable of collecting heterogeneous information from its environment, using sensors for temperature, solar radiation, humidity, pH, moisture and wind. A major outcome of our approach is that our solution is able to merge heterogeneous data from sensors and produce a response adapted to the context. In order to validate the proposed system, we present a case study in which farmers are provided with a tool that allows us to monitor the condition of crops on a TV screen using a low cost device.

  4. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  5. Wireless sensor network effectively controls center pivot irrigation of sorghum

    Science.gov (United States)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  6. A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions

    Directory of Open Access Journals (Sweden)

    Lucia Bortolini

    2018-02-01

    Full Text Available In the Mediterranean arid and semi-arid regions, large amounts of low quality waters could be used for crop irrigation, but the adoption of articulated classifications with too rigid quality limits can often reduce the recoverable quantities of water and make the monitoring of water quality too much expensive. Therefore, an evaluation of irrigation water quality based on only a few crucial parameters, which consider the crop species to be irrigated and the type of irrigation system and management adopted, can be an easy and flexible method for maximizing the reuse of wastewater and low-quality water for agricultural purposes. In this view, an irrigation water quality tool (IWQT was developed to support farmers of arid and semi-arid regions on evaluating the use of low quality water for crop irrigation. The most significant and cheapest parameters of irrigation water quality were identified and clustered in three quality classes according to their effects on crop yield and soil fertility (agronomic quality indicators, human health (hygiene and health quality indicators, and irrigation systems (management quality indicators. According to IWQT parameters, a tool reporting a series of recommendations, including water treatment types, was implemented to guide farmers on the use of low quality irrigation water.

  7. Water Pricing and Implementation Strategies for the Sustainability of an Irrigation System: A Case Study within the Command Area of the Rakh Branch Canal

    Directory of Open Access Journals (Sweden)

    Muhammad Uzair Qamar

    2018-04-01

    Full Text Available The command area of the Rakh branch canal grows wheat, sugarcane, and rice crops in abundance. The canal water, which is trivial for irrigating these crops, is conveyed to the farms through the network of canals and distributaries. For the maintenance of this vast infrastructure; the end users are charged on a seasonal basis. The present water charges are severely criticized for not being adequate to properly manage the entire infrastructure. We use the residual value to determine the value of the irrigation water and then based on the quantity of irrigation water supplied to farm land coupled with the infrastructure maintenance cost, full cost recovery figures are executed for the study area, and policy recommendations are made for the implementation of the full cost recovery system. The approach is unique in the sense that the pricings are based on the actual quantity of water conveyed to the field for irrigating crops. The results of our analysis showed that the canal water is severely under charged in the culturable command area of selected distributaries, thus negating the plan of having a self-sustainable irrigation system.

  8. Impact of Climate Change on Irrigation Demand and Crop Growth in a Mediterranean Environment of Turkey

    Directory of Open Access Journals (Sweden)

    Tomokazu Haraguchi

    2007-10-01

    Full Text Available A simulation study was carried out to describe effects of climate change on cropgrowth and irrigation water demand for a wheat-maize cropping sequence in aMediterranean environment of Turkey. Climate change scenarios were projected using dataof the three general circulation models—GCMs (CGCM2, ECHAM4 and MRI—for theperiod of 1990 to 2100 and one regional climate model—RCM—for the period of 2070 to2079. Potential impacts of climate change based on GCMs data were estimated for the A2scenario in the Special Report on Emission Scenarios (SRES. The forcing data for theboundary condition of the RCM were given by the MRI model. Daily CGCM2 and RCMdata were used for computations of water balance and crop development. Predictionsderived from the models about changes in irrigation and crop growth in this study coveredthe period of 2070 to 2079 relative to the baseline period of 1994 to 2003. The effects ofclimate change on water demand and on wheat and maize yields were predicted using thedetailed crop growth subroutine of the SWAP (Soil-Water-Atmosphere-Plant model. Precipitation was projected to decrease by about 163, 163 and 105 mm during the periodof 1990 to 2100 under the A2 scenario of the CGCM2, ECHAM4 and MRI models,respectively. The CGCM2, ECHAM4 and MRI models projected a temperature rise of 4.3,5.3 and 3.1 oC, respectively by 2100. An increase in temperature may result in a higherevaporative demand of the atmosphere. However, actual evapotranspiration (ETa fromwheat cropland under a doubling CO2 concentration for the period of 2070 to 2079 wasSensors 2007, 7 2298 predicted to decrease by about 28 and 8% relative to the baseline period based on the CGCM2 and RCM data, respectively. According to these models, irrigation demand by wheat would be higher for the same period due to a decrease in precipitation. Both ETa and irrigation water for maize cropland were projected to decrease by 24 and 15

  9. Atmospheric effects of irrigation in monsoon climate: the Indian subcontinent

    NARCIS (Netherlands)

    Tuinenburg, O.A.

    2013-01-01

    During the 20th century, an increasing population increased the demand for food. As a consequence, agricultural activity has expanded and become more intense. A part of this intensification is the use of irrigation systems to water crops. Due to this irrigation, dams and channeling systems,

  10. The collection of a minimum dataset and the application of DSSAT (Decision Support System for Agrotechnology Transfer) for optimizing wheat yield in irrigated cropping systems

    International Nuclear Information System (INIS)

    Heng, L.K.; Baethgen, W.E.; Moutonnet, P.

    2000-01-01

    A minimum dataset for testing of the CERES-Wheat model within DSSAT was collected during the course of an IAEA Co-ordinated Research Project on 'The use of nuclear techniques for optimizing fertilizer application under irrigated wheat to increase the efficient use of nitrogen fertilizers and consequently reduce environmental pollution'. A database entitled which contained the following information was subsequently created: soil characteristics, average yield, fertilizer N recovered by crop and residual effect, grain protein content, regional average yield, relative grain yield at various fertilizer N rates, assessment of nitrate pollution, economics of irrigated wheat, water use by source, water use efficiency, atypical precipitation events, type and uniformity of irrigation, and chlorophyll meter readings. This article presents some of these overall results from the database, as well as simulated results from the CERES-Wheat model. Good agreement between observed and simulated results was obtained for most growth parameters in most of the simulations. The ability to validate the model means that it can be used to refine specific management strategies with respect to fertilizer applications, yield and other parameters. (author)

  11. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  12. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  13. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  14. Low Cost Constant – Head Drip Irrigation Emitter for Climate ...

    African Journals Online (AJOL)

    Low Cost Constant – Head Drip Irrigation Emitter for Climate Change Adaptation in Nigeria: Engineering Design and Calibration. ... The drip system comprises of abarrel, sub-main line, lateral lines, tubes and emitters, it can irrigate140 crop ...

  15. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Science.gov (United States)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  16. Drip Irrigation for Commercial Vegetable and Fruit Production

    OpenAIRE

    Maughn, Tiffany; Allen, Niel; Drost, Dan

    2017-01-01

    Drip irrigation is a highly efficient irrigation method well suited to many fruit and vegetable row crops. Drip tubing or tape discharges water to the soil through emitters positioned close to the plant. The drip tubing can be placed uncovered on the soil surface, under plastic mulch, buried in the soil, or suspended above the ground (e.g., on a trellis system). Water application rate is relatively low and irrigations are usually frequent. Properly designed and maintained drip-irrigation syst...

  17. Impact of Future Climate Change on Regional Crop Water Requirement—A Case Study of Hetao Irrigation District, China

    Directory of Open Access Journals (Sweden)

    Tianwa Zhou

    2017-06-01

    Full Text Available Water shortage is a limiting factor for agricultural production in China, and climate change will affect agricultural water use. Studying the effects of climate change on crop irrigation requirement (CIR would help to tackle climate change, from both food security and sustainable water resource use perspectives. This paper applied SDSM (Statistical DownScaling Model to simulate future meteorological parameters in the Hetao irrigation district (HID in the time periods 2041–2070 and 2071–2099, and used the Penman–Monteith equation to calculate reference crop evapotranspiration (ET0, which was further used to calculate crop evapotranspiration (ETc and crop water requirement (CWR. CWR and predicted future precipitation were used to calculate CIR. The results show that the climate in the HID will become warmer and wetter; ET0 would would increase by 4% to 7%; ETc and CWR have the same trend as ET0, but different crops have different increase rates. CIR would increase because of the coefficient of the increase of CWR and the decrease of effective precipitation. Based on the current growing area, the CIR would increase by 198 × 106 to 242 × 106 m3 by the year 2041–2070, and by 342 × 106 to 456 × 106 m3 by the years 2071–2099 respectively. Future climate change will bring greater challenges to regional agricultural water use.

  18. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  19. Performance Evaluation of Membrane-Based Septic Tank and Its Reuse Potential for Irrigating Crops.

    Science.gov (United States)

    Khalid, Mehwish; Hashmi, Imran; Khan, Sher Jamal

    2017-08-01

      Membrane technology, being the most emerging wastewater treatment option, has gained substantial importance with the massive objective of the reuse potential of wastewater. Keeping this in view, the present study was conducted with the rationale to evaluate the performance efficiency of membrane-based septic tank (MBST), and its reuse perspective for irrigating crops. The septic tank was designed by submerging a woven fiber microfiltration membrane module to treat domestic wastewater. Three crops Triticum aestivum (wheat), Coriandrum sativum (coriander), and Mentha arvensis (mint) were selected to be irrigated with treated MBST effluent, untreated wastewater, and tap water (as a control) for comparative growth analysis. Two pathogenic strains, Escherichia coli and Salmonella sp. were selected as reference microbes and their translocation rate was observed in root, shoot, and leaves. Upon maturity, the roots, shoots, and leaves of the above-mentioned plants were aseptically removed for microbiological analysis. Strains were analyzed, using analytical profile index and PCR analysis. Maximum removal efficiencies for MBST in terms of chemical oxygen demand (COD), turbidity, nutrients deduction (phosphorus), and indicator bacteria (Escherichia coli) were found to be 73, 96, 48, and 88%, respectively. Significant bacterial load reduction (p < 0.001) in terms of E. coli (3.8 log CFU/100 mL) and helminths (2 eggs/L) was observed in treated water. High plant yield was observed when irrigated with treated water as compared to tap water, as minimal nutrient removal (48%) was recorded in treated water, with the germination percentage of 88.8%.

  20. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  1. Linked hydrologic and social systems that support resilience of traditional irrigation communities

    Science.gov (United States)

    Fernald, A.; Guldan, S.; Boykin, K.; Cibils, A.; Gonzales, M.; Hurd, B.; Lopez, S.; Ochoa, C.; Ortiz, M.; Rivera, J.; Rodriguez, S.; Steele, C.

    2015-01-01

    Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity in the face of these stresses, are apparent. Human systems have interacted with hydrologic processes over the last 400 years in river-fed irrigated valleys to create linked systems. In this study, we ask if concurrent data from multiple disciplines could show that human-adapted hydrologic and socioeconomic systems have created conditions for resilience. Various types of resiliencies are evident in the communities. Traditional local knowledge about the hydrosocial cycle of community water management and ability to adopt new water management practices is a key response to disturbances such as low water supply from drought. Livestock producers have retained their irrigated land by adapting: changing from sheep to cattle and securing income from outside their livestock operations. Labor-intensive crops decreased as off-farm employment opportunities became available. Hydrologic resilience of the system can be affected by both human and natural elements. We find, for example, that there are multiple hydrologic benefits of traditional irrigation system water seepage: it recharges the groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. Human decisions to transfer water out of agriculture or change irrigation management, as well as natural changes such as long-term drought or climate change, can result in reduced seepage and the benefits it provides. We have worked with the communities to translate the multidisciplinary dimensions of these systems into a common language of causal loop diagrams, which form the basis for modeling future scenarios to

  2. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  3. New indicators for global crop monitoring in CropWatch -case study in North China Plain

    International Nuclear Information System (INIS)

    Bingfang, Wu; Miao, Zhang; Hongwei, Zeng; Guoshui, Liu; Sheng, Chang; Gommes, René

    2014-01-01

    CropWatch is a monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information. Now in its 15th year of operation, CropWatch was modified several times to be a timely, comprehensive and independent global agricultural monitoring system using advanced remote sensing technology. Currently CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite (FY-3A) and cloud classification products of FY-2. With new satellite data, CropWatch will generate new indicators such as fallow land ratio (FLR), crop condition for irrigated (CCI) and non-irrigated (CCNI) areas separately, photosynthetically active radiation (PAR), radiation use efficiency for the photosynthetically active radiation (RUE PAR ) and cropping index (CI) with crop rotation information (CRI). In this paper, the methods for monitoring the new indicators are applied to the North China Plain which is one of the major grain producing areas in China. This paper shows the preliminary results of the new indicators and methods; they still need to be thoroughly validated before being incorporated into the operational CropWatch system. In the future, the new and improved indicators will help us to better understand the global situation of food security

  4. Estimating irrigation water use in the humid eastern United States

    Science.gov (United States)

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  5. Economic optimization of photovoltaic water pumping systems for irrigation

    OpenAIRE

    Campana, Pietro Elia; Li, Hailong; Zhang, J.; Liu, J.; Yan, Jinyue

    2015-01-01

    Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availabil...

  6. Agricultural irrigated land-use inventory for Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama, 2014

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.

    2015-09-18

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate water use or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas for 2014 within Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama. The irrigated areas were delineated using land-use data and orthoimagery that were then field verified between June and November 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results of the 2014 study indicate that an estimated 31,608 acres were irrigated in Jackson County during 2014. This estimate includes 25,733 acres of field crops, 1,534 acres of ornamentals and grasses (including pasture), and 420 acres of orchards. Specific irrigated crops include cotton (11,759 acres), peanuts (9,909 acres), field corn (2,444 acres), and 3,235 acres of various vegetable (row) crops. The vegetable acreage includes 1,714 acres of which 857 acres were planted with both a spring and fall crop on the same field (double cropped). Overall, groundwater was used to irrigate 98.6 percent of the total irrigated acreage in Jackson County during 2014, whereas surface water and wastewater were used to irrigate the remaining 1.4 percent.

  7. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries.

    Science.gov (United States)

    Khalid, Sana; Shahid, Muhammad; Bibi, Irshad; Sarwar, Tania; Shah, Ali Haidar; Niazi, Nabeel Khan

    2018-05-01

    Population densities and freshwater resources are not evenly distributed worldwide. This has forced farmers to use wastewater for the irrigation of food crops. This practice presents both positive and negative effects with respect to agricultural use, as well as in the context of environmental contamination and toxicology. Although wastewater is an important source of essential nutrients for plants, many environmental, sanitary, and health risks are also associated with the use of wastewater for crop irrigation due to the presence of toxic contaminants and microbes. This review highlights the harmful and beneficial impacts of wastewater irrigation on the physical, biological, and chemical properties of soil (pH, cations and anions, organic matter, microbial activity). We delineate the potentially toxic element (PTEs) build up in the soil and, as such, their transfer into plants and humans. The possible human health risks associated with the use of untreated wastewater for crop irrigation are also predicted and discussed. We compare the current condition of wastewater reuse in agriculture and the associated environmental and health issues between developing and developed countries. In addition, some integrated sustainable solutions and future perspectives are also proposed, keeping in view the regional and global context, as well as the grounded reality of wastewater use for crop production, sanitary and planning issues, remedial techniques, awareness among civil society, and the role of the government and the relevant stakeholders.

  8. Irrigation method does not affect wild bee pollinators of hybrid sunflower

    Directory of Open Access Journals (Sweden)

    Hillary Sardiñas

    2016-09-01

    Full Text Available Irrigation method has the potential to directly or indirectly influence populations of wild bee crop pollinators nesting and foraging in irrigated crop fields. The majority of wild bee species nest in the ground, and their nests may be susceptible to flooding. In addition, their pollination of crops can be influenced by nectar quality and quantity, which are related to water availability. To determine whether different irrigation methods affect crop pollinators, we compared the number of ground-nesting bees nesting and foraging in drip- and furrow-irrigated hybrid sunflower fields in the Sacramento Valley. We found that irrigation method did not impact wild bee nesting rates or foraging bee abundance or bee species richness. These findings suggest that changing from furrow irrigation to drip irrigation to conserve water likely will not alter hybrid sunflower crop pollination.

  9. Sugar cane yield response to deficit irrigation at two growth stages

    International Nuclear Information System (INIS)

    Pene, C.B.G.

    1995-01-01

    A field study on sugar cane (Saccharum officinarum L.) yield response to deficit irrigation during both tillering and stem elongation stages, in order to increase crop water use efficiency, was carried out at Institut des Savanes (IDESSA) experimental station of Ferkessedougou, in Northern Ivory Coast. This cane crop tested was Co 449, an early - maturing genotype of indian origin. This experiment has been conducted for three consecutive years as virgin crop ( from November, 1991 to December 1992 ), first ratoon crop ( from December 1992 to January 1994 ) and as second ratoon crop ( from January 1994 to January 1995 ). The experimental design was a randomized complete block with 10 irrigation treatments in 4 replicates of 54 m sup2 sized plots. Water was applied through an improved furrow irrigation system. Crop water consumption was estimated using the water balance approach based on neutron probe and tensiometer measurements. This field water balance method required the determination of soil hydraulic conductivity as a function of water content and the neutron calibration curve. Data presented are related to the two ratoon crops for which field water balance measurements were investigated. It has been shown in the study that sugar cane growth and yield decline due to water deficit is significantly high during stem elongation as compared to tillering. As a result, the sugar cane tested was much more sensitive to water stress at stem elongation than at tillering. Therefore, deficit irrigation practice as to increase crop water use efficiency might be recommended at tillering rather than stem elongation. The water management strategy to be suggested here may consist of omitting irrigation during tillering ( assuming that the crop is successfully established ), for the benefit of stem elongation. As far as stem elongation is concerned, a moderate water deficit of about 25% with respect to the full irrigation regime appears to increase crop water use efficiency.6 figs

  10. HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain

    Directory of Open Access Journals (Sweden)

    Kangkang He

    2017-07-01

    Full Text Available Freshwater resources in the North China Plain (NCP are near depletion due to the unceasing overexploitation of deep groundwater, by far the most significant source of freshwater in the region. To deal with the deepening freshwater crisis, brackish water (rich but largely unused water in agriculture is increasingly being used in irrigation in the region. However, inappropriate irrigation with brackish water could lead to soil salinization and cropland degradation. To evaluate such negative impacts, the HYDRUS-1D model was used to simulate soil salt transport and accumulation under 15 years of irrigation with brackish water. The irrigation scenarios included brackish water irrigation during the wintering and jointing stages of winter wheat and then freshwater irrigation just before the sowing of summer maize. Freshwater irrigation was done to leach out soil salts, which is particularly vital in dry years. For the littoral region of the plain, HYDRUS-ID was used to simulate the irrigated cropping system stated above for a total period of 15 years. The results showed that it was feasible to use brackish water twice in one year, provided freshwater irrigation was performed before sowing summer maize. Freshwater irrigation, in conjunction with precipitation, leached out soil salts from the 100 cm root-zone depth. The maximum salt accumulation was in the 160–220 cm soil layer, which ensured that root-zone soil was free of restrictive salinity for crop growth. Precipitation was a critical determinant of the rate and depth leaching of soil salt. Heavy rainfall (>100 mm caused significant leaching of soluble salts in the 0–200 cm soil profile. Salt concentration under brackish water irrigation had no significant effect on the variations in the trend of soil salt transport in the soil profile. The variations of soil salinity were mainly affected by hydrological year type, for which the buried depth of soil salt was higher in wet years than in dry years

  11. Determination of Water Requirement and Crop Coefficient for ...

    African Journals Online (AJOL)

    Knowledge of crop evapotranspiration (ETc), the combined process of evaporation and plant transpiration, is important in agriculture for scheduling farm operations and designing and managing irrigation and drainage systems. Development of crop coefficient (Kc) can enhance crop evapotranspiration (ETc) estimates in ...

  12. Produção de tomateiro orgânico irrigado por aspersão e gotejamento, em cultivo solteiro e consorciado com coentro Production of organic tomatoes irrigated by sprinkler and drip systems, as single crop and intercropped with coriander

    Directory of Open Access Journals (Sweden)

    Waldir A Marouelli

    2011-09-01

    Full Text Available O uso eficiente da água e a diversificação ambiental são fundamentais para o equilíbrio e a sustentabilidade dos sistemas orgânicos de produção de tomate. O presente estudo teve por objetivo avaliar a produção de tomate de mesa em cultivo solteiro e consorciado com coentro com irrigação por aspersão e gotejamento, em sistema orgânico. O experimento foi conduzido em área de produção orgânica no Distrito Federal. O delineamento foi blocos ao acaso, com tratamentos dispostos num arranjo fatorial 2 x 2 (dois sistemas de irrigação x dois sistemas de cultivo. Não houve interação significativa entre os fatores avaliados, assim como não houve efeito do sistema de cultivo sobre as variáveis avaliadas. Embora o ciclo do tomateiro irrigado por gotejamento tenha diminuído, a produtividade de frutos não foi afetada pelos sistemas de irrigação. A maior redução de estande verificada na aspersão foi compensada por um aumento no número de frutos por planta, sem variação na massa por fruto. O menor volume de solo explorado pelas raízes do tomateiro associado à maior incidência de traça-do-tomateiro (Tuta absoluta e principalmente de oídio (Leveillula taurica pode ter limitado a produtividade do tomateiro irrigado por gotejamento. A taxa de frutos podres na aspersão foi o dobro da verificada no sistema por gotejamento.The efficient use of water and the environmental diversity are crucial to the balance and sustainability of the organic production system of tomatoes. The present study aimed to evaluate the organic production of tomato cultivated as a single crop and in consortium with coriander, under sprinkler and drip irrigation. The experiment was carried out at an organic production area on the Federal District of Brazil. The experimental design was randomized blocks with treatments arranged in a 2 x 2 factorial (two irrigation systems x two cropping schemes. No significant interaction between the both factors occurred

  13. Application of a crop model forced with remote sensing data at high spatio-temporal resolution to estimate evaporation and yields of irrigated grasslands in the South Eastern France

    Science.gov (United States)

    Couralt, D.; Hadria, R.; Ruget, F.; Duchemin, B.; Hagolle, O.

    2009-09-01

    This study focused on the feasibility of using remote sensing data acquired at high spatial and temporal resolution (FORMOSAT-2 images(http://www.spotimage.fr/web/en/977--formosat-2-images.php) for crop monitoring at regional scale. The monitoring of agricultural practices such as grassland mowing and irrigation is essential to simulate accurately all processes related to crop system. This information is needed for example in crop simulation models to estimate production, water and fertilizer consumption and can thus serve to better understand the interactions between agriculture and climate. The analysis of these interactions is especially important in Mediterranean region where the effects of climate changes and crop management modifications are increasingly marked. In this context, an experiment was conducted in 2006 in Crau region in the South-Eastern France. In this area, permanent grassland represents 67 % of the usable agricultural area, and it is often used with irrigation (47 % of the permanent grassland). A time series of 36 FORMOSAT-2 images was acquired with a three days frequency from March to October 2006. Information concerning grassland mowing and irrigation was collected through a survey over 120 fields. The high FORMOSAT-2 revisit frequency allowed replicating the dynamics of Leaf Area index (LAI), and detecting to some extents cultural practices like vegetation cut. Simple automatic algorithms were developed to obtain daily values of LAI for each grasslands field linked with the main agricultural practices performed (cut and irrigation dates). This information was then used in a crop model called STICS (http://147.100.66.194/stics/) to estimate the spatial variability of evapotranspiration and drainage associated with the aerial biomass productions. Comparisons between simulated and observed yields gave satisfactory results. The great spatial variations of evapotranspiration were strongly related to the crop and water management. Such

  14. Changes in the potential multiple cropping system in response to climate change in China from 1960-2010.

    Science.gov (United States)

    Liu, Luo; Xu, Xinliang; Zhuang, Dafang; Chen, Xi; Li, Shuang

    2013-01-01

    The multiple cropping practice is essential to agriculture because it has been shown to significantly increase the grain yield and promote agricultural economic development. In this study, potential multiple cropping systems in China are calculated based on meteorological observation data by using the Agricultural Ecology Zone (AEZ) model. Following this, the changes in the potential cropping systems in response to climate change between the 1960s and the 2010s were subsequently analyzed. The results indicate that the changes of potential multiple cropping systems show tremendous heterogeneity in respect to the spatial pattern in China. A key finding is that the magnitude of change of the potential cropping systems showed a pattern of increase both from northern China to southern China and from western China to eastern China. Furthermore, the area found to be suitable only for single cropping decreased, while the area suitable for triple cropping increased significantly from the 1960s to the 2000s. During the studied period, the potential multiple cropping index (PMCI) gap between rain-fed and irrigated scenarios increased from 18% to 24%, which indicated noticeable growth of water supply limitations under the rain-fed scenario. The most significant finding of this research was that from the 1960s to the 2000s climate change had led to a significant increase of PMCI by 13% under irrigated scenario and 7% under rain-fed scenario across the whole of China. Furthermore, the growth of the annual mean temperature is identified as the main reason underlying the increase of PMCI. It has also been noticed that across China the changes of potential multiple cropping systems under climate change were different from region to region.

  15. Resposta das culturas do girassol e do milho a diferentes cenários de rega deficitária Deficit irrigation as a criterion for irrigation water management with sunflower and maize crops

    Directory of Open Access Journals (Sweden)

    C. M. Toureiro

    2007-01-01

    the water use optimisation from an environmental point of view. This means that the decision criterion in irrigation management is “deficit irrigation”, rather than maximum ETc as the irrigation water amount. Some experiments with “deficit irrigation” of a sunflower crop (in 2004 irrigation season and maize (in 2005 were carried out in the Irrigation District of Divor (Alentejo, South Portugal. Crop growth and production parameters were evaluated relative to three experimental irrigation regimes: 1 irrigation opportunity and amount with soil available water equalling “optimum yield level”, this corresponding to a non restrictive water use by the crop, according to current procedure, irrigation amount corresponding to maximum ETc; 2 and 3 levels 1 and 2 of deficit irrigation, considering irrigation opportunity with soil available water respectively 10% and 30% under the “optimum yield level” and irrigation amounts 10% and 30% less than ETc between irrigation events. During the flowering periods normal irrigation for full ETc was practiced in all experiment plots. Crop yield data and the economic analysis show that a remarkable potential exists for saving water with “deficit irrigation”.

  16. Detecting the Spatio-temporal Distribution of Soil Salinity and Its Relationship to Crop Growth in a Large-scale Arid Irrigation District Based on Sampling Experiment and Remote Sensing

    Science.gov (United States)

    Ren, D.; Huang, G., Sr.; Xu, X.; Huang, Q., Sr.; Xiong, Y.

    2016-12-01

    Soil salinity analysis on a regional scale is of great significance for protecting agriculture production and maintaining eco-environmental health in arid and semi-arid irrigated areas. In this study, the Hetao Irrigation District (Hetao) in Inner Mongolia Autonomous Region, with suffering long-term soil salinization problems, was selected as the case study area. Field sampling experiments and investigations related to soil salt contents, crop growth and yields were carried out across the whole area, during April to August in 2015. Soil salinity characteristics in space and time were systematically analyzed for Hetao as well as the corresponding impacts on crops. Remotely sensed map of soil salinity distribution for surface soil was also derived based on the Landsat OLI data with a 30 m resolution. The results elaborated the temporal and spatial dynamics of soil salinity and the relationships with irrigation, groundwater depth and crop water consumption in Hetao. In addition, the strong spatial variability of salinization was clearly presented by the remotely sensed map of soil salinity. Further, the relationship between soil salinity and crop growth was analyzed, and then the impact degrees of soil salinization on cropping pattern, leaf area index, plant height and crop yield were preliminarily revealed. Overall, this study can provide very useful information for salinization control and guide the future agricultural production and soil-water management for the arid irrigation districts analogous to Hetao.

  17. Yields of cotton and other crops as affected by applications of sulfuric acid in irrigation water

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.D.; Lyerly, P.J.

    1954-01-01

    Effects of sulfuric acid on crop yields and on some physical and chemical properties of a calcareous soil were investigated in a field experiment from 1947 through 1952. On cotton plots, the treatments consisted of applications of irrigation water containing no acid (pH 8.3), water acidified to pH 6, and water acidified to pH 2.3. Cotton was grown five seasons followed by sesbania the sixth season. A test on alfalfa was established using irrigation water not acidified and water acidifeid to pH 4. Alfalfa was grown for 3 years. The fourth year the alfalfa was plowed under and a crop of corn was raised. Cotton yields on the acid plots relative to the checks became progressively higher (with two exceptions) from one year to the next; however, in only one year (1950) were differences in yield statistically significant. With sesbania following cotton, highly significant yield increases resulted from the high acid treatment. Alfalfa yields on the acid plots became progressively greater relative to the non-acid plots, but yield differences were not significant. In cotton leaves, the acid treatments resulted in increased uptake of magnesium, sulfur, and phosphorus, but the increases were probably not significant. Uptake of sodium, potassium, calcium, manganese, and iron were not appreciably affected. In sesbania, the acid treatments did not significantly alter the uptake of any of the plant nutrients determined. There was some indication, however, that the uptake of sodium and iron was reduced by the acidification. The results of this study support the view that soil acidification on calcareous soils may improve the soil physical conditions and result in increased yields, particularly in some crops. The application of acid in the irrigation water did not prove to be economically feasible. 12 references, 1 figure, 7 tables.

  18. A Computer Program for Drip Irrigation System Design for Small Plots

    Science.gov (United States)

    Philipova, Nina; Nicheva, Olga; Kazandjiev, Valentin; Chilikova-Lubomirova, Mila

    2012-12-01

    A computer programhas been developed for design of surface drip irrigation system. It could be applied for calculation of small scale fields with an area up to 10 ha. The program includes two main parts: crop water requirements and hydraulic calculations of the system. It has been developed in Graphical User Interface in MATLAB and gives opportunity for selecting some parameters from tables such as: agro- physical soil properties, characteristics of the corresponding crop, climatic data. It allows the user of the program to assume and set a definite value, for example the emitter discharge, plot parameters and etc. Eight cases of system layout according to the water source layout and the number of plots of the system operation are laid into hydraulic section of the program. It includes the design of lateral, manifold, main line and pump calculations. The program has been compiled to work in Windows.

  19. Bacteriological quality of crops irrigated with wastewater in the Xochimilco plots, Mexico City, Mexico.

    Science.gov (United States)

    Rosas, I; Báez, A; Coutiño, M

    1984-05-01

    Xochimilco county plots (Mexico City), one of the most fertile agricultural areas in the Valley of Mexico, produce a large portion of the fresh vegetables consumed in the city. These plots are generally irrigated with domestic wastewater, and for this reason, it was deemed important to examine and evaluate the bacteriological quality of the water, soil, and vegetables from these plots that are harvested and marketed. The soils were also examined for the classical parameters such as nitrates, ammonia, etc., and organic matter and texture. The crops selected for this study were radishes, spinach, lettuce, parsley, and celery because they are usually consumed raw. The highest bacterial counts were encountered in leafy vegetables, i.e., spinach (8,700 for total coliform and 2,400 for fecal coliform) and lettuce (37,000 for total coliform and 3,600 for fecal coliform). Statistically significant differences in bacterial counts between rinsed and unrinsed edible portions of the crops were observed even in rinsed vegetables, and high densities of fecal coliform were detected, indicating that their consumption represents a potential health hazard. The total coliform values found in irrigation water ranged from 4 X 10(4) to 29 X 10(4), and for fecal coliform the values ranged from 5 X 10(2) to 30 X 10(2).

  20. A compact to revitalise large-scale irrigation systems: A ‘theory of change’ approach

    Directory of Open Access Journals (Sweden)

    Bruce A. Lankford

    2016-02-01

    Full Text Available In countries with transitional economies such as those found in South Asia, large-scale irrigation systems (LSIS with a history of public ownership account for about 115 million ha (Mha or approximately 45% of their total area under irrigation. In terms of the global area of irrigation (320 Mha for all countries, LSIS are estimated at 130 Mha or 40% of irrigated land. These systems can potentially deliver significant local, regional and global benefits in terms of food, water and energy security, employment, economic growth and ecosystem services. For example, primary crop production is conservatively valued at about US$355 billion. However, efforts to enhance these benefits and reform the sector have been costly and outcomes have been underwhelming and short-lived. We propose the application of a 'theory of change' (ToC as a foundation for promoting transformational change in large-scale irrigation centred upon a 'global irrigation compact' that promotes new forms of leadership, partnership and ownership (LPO. The compact argues that LSIS can change by switching away from the current channelling of aid finances controlled by government irrigation agencies. Instead it is for irrigators, closely partnered by private, public and NGO advisory and regulatory services, to develop strong leadership models and to find new compensatory partnerships with cities and other river basin neighbours. The paper summarises key assumptions for change in the LSIS sector including the need to initially test this change via a handful of volunteer systems. Our other key purpose is to demonstrate a ToC template by which large-scale irrigation policy can be better elaborated and discussed.

  1. Comparison of SVAT models for simulating and optimizing deficit irrigation systems in arid and semi-arid countries under climate variability

    Science.gov (United States)

    Kloss, Sebastian; Schuetze, Niels; Schmitz, Gerd H.

    2010-05-01

    The strong competition for fresh water in order to fulfill the increased demand for food worldwide has led to a renewed interest in techniques to improve water use efficiency (WUE) such as controlled deficit irrigation. Furthermore, as the implementation of crop models into complex decision support systems becomes more and more common, it is imperative to reliably predict the WUE as ratio of water consumption and yield. The objective of this paper is the assessment of the problems the crop models - such as FAO-33, DAISY, and APSIM in this study - face when maximizing the WUE. We applied these crop models for calculating the risk in yield reduction in view of different sources of uncertainty (e.g. climate) employing a stochastic framework for decision support for the planning of water supply in irrigation. The stochastic framework consists of: (i) a weather generator for simulating regional impacts of climate change; (ii) a new tailor-made evolutionary optimization algorithm for optimal irrigation scheduling with limited water supply; and (iii) the above mentioned models for simulating water transport and crop growth in a sound manner. The results present stochastic crop water production functions (SCWPF) for different crops which can be used as basic tools for assessing the impact of climate variability on the risk for the potential yield. Case studies from India, Oman, Malawi, and France are presented to assess the differences in modeling water stress and yield response for the different crop models.

  2. Dynamics of Phenol Degrading-Iron ReducingBacteria{1mm in Intensive Rice Cropping System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Field and greenhouse experiments were conducted to investigate theeffects of cropping season, nitrogen fertilizer input and aeratedfallow on the dynamics of phenol degrading-iron reducingbacteria (PD-IRB) in tropical irrigated rice ({ Oryza sativa L.)systems. The PD-IRB population density was monitored at different stagesof rice growth in two cropping seasons (dry and early wet) in acontinuous annual triple rice cropping system under irrigated condition.In this system, the high nitrogen input (195 and 135 kg N ha-1 indry and wet seasons, respectively) plots and control plots receiving noN fertilizer were compared to investigate the effect of nitrogen rate onpopulation size. The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under cropping systems of tropical irrigatedrice. However, density of the bacterial populations varied with ricegrowth stages. Cropping seasons, rhizosphere, and aerated fallow couldaffect the dynamics of PD-IRB. In the field trial, viable counts ofPD-IRB in the topsoil layer (15 cm) ranged between 102 and 108cells per gram of dry soil. A steep increase in viable counts during thesecond half of the cropping season suggested that the population densityof PD-IRB increased at advanced crop-growth stages. Population growth ofPD-IRB was accelerated during the dry season compared to the wet season.In the greenhouse experiment, the adjacent aerated fallow revealed 1-2orders of magnitude higher in most probable number (MPN) of PD-IRB thanthe wet fallow treated plots. As a prominent group of Fe reducingbacteria, PD-IRB predominated in the rhizosphere of rice, since maximumMPN of PD-IRB (2.62108 g-1 soil) was found in rhizospheresoil. Mineral N fertilizer rates showed no significant effect on PD-IRBpopulation density.

  3. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  4. Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    2017-05-01

    Full Text Available To improve adaptive capacity and further strengthen the role of irrigation in mitigating climate change impacts, the Chinese government has planned to expand irrigated areas by 4.4% by the 2030s. Examining the adaptive potential of irrigated area expansion under climate change is therefore critical. Here, we assess the effects of irrigated area expansion on crop yields based on county-level data during 1980–2011 in northern China and estimate climate impacts under irrigated area scenarios in the 2030s. Based on regression analysis, there is a statistically significant effect of irrigated area expansion on reducing negative climate impacts. More irrigated areas indicate less heat and drought impacts. Irrigated area expansion will alleviate yield reduction by 0.7–0.8% in the future but associated yield benefits will still not compensate for greater adverse climate impacts. Yields are estimated to decrease by 4.0–6.5% under future climate conditions when an additional 4.4% of irrigated area is established, and no fundamental yield increase with an even further 10% or 15% expansion of irrigated area is predicted. This finding suggests that expected adverse climate change risks in the 2030s cannot be mitigated by expanding irrigated areas. A combination of this and other adaptation programs is needed to guarantee grain production under more serious drought stresses in the future.

  5. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    Energy Technology Data Exchange (ETDEWEB)

    Abalos, Diego, E-mail: diego.abalos@upm.es [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Sanchez-Martin, Laura; Garcia-Torres, Lourdes [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Groenigen, Jan Willem van [Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Vallejo, Antonio [ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH{sub 4}{sup +} and NO{sub 3}{sup −}) regulating the emissions of greenhouse gases (i.e. N{sub 2}O, CO{sub 2} and CH{sub 4}) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N{sub 2}O, NO, CH{sub 4} and CO{sub 2} were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N{sub 2}O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO{sub 2} emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N{sub 2}O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO{sub 3}{sup −}-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. - Highlights: • The effect of fertigation management techniques on GHG and NO emissions was studied. • Fertigation with urea instead of calcium nitrate increased N{sub 2}O by a factor of 2.4. • Daily irrigation reduced NO (42%) but increased CO

  6. Grey mould development in greenhouse tomatoes under drip and furrow irrigation

    OpenAIRE

    Aissat , Kamel; Nicot , Philippe ,; Guechi , Abdelhadi; Bardin , Marc; Chibane , Mohamed

    2008-01-01

    Several methods can be used to provide water to plants in cropping systems where irrigation is necessary. For instance, drip irrigation has recently received much attention due to its advantages for water conservation. The type of irrigation can also impact the development of several pathogens responsible for soilborne diseases. Here, we studied the effect of drip irrigation and furrow irrigation on the development of grey mould, caused by the airborne fungus Botrytis cinerea, on tomato plant...

  7. A California Statewide App to Simulate Fate of Nitrate in Irrigated Agricultural System

    Science.gov (United States)

    Diamantopoulos, E.; Walkinshaw, M.; Harter, T.; O'Geen, A. T.

    2017-12-01

    Groundwater resources are very important for California's economic development and environmental sustainability. Nitrate is by far the most widespread anthropogenic groundwater pollutant in California's mostly alluvial groundwater basins. Major sources are synthetic fertilizer and dairy manure, but also septic systems and urban wastewater effluent. Here, we evaluate agricultural soils in California according to their risk for nitrate leaching. We conducted over 1 million numerical simulations taking into account the effect of climate, crop type, irrigation and fertilization management scenarios across all 4,568 agricultural soil profiles occurring in California. The assessment was done solving 1-D Richards equation and the advection-dispersion equation numerically. This study is focused on the complex water and nitrate dynamics occurring at the shallow vadose zone (rootzone). The results of this study allow the construction of state-wide maps which can be used for the identification of high-risk regions and the design of agricultural nutrient management policy. We investigate how pollution risk can be minimized by adopting simple irrigation and fertilization methods. Furthermore, we show that these methods are more effective for the most permeable soil profiles along with high demanding crops in terms of fertilization amount and irrigation water. We also present how seasonal (winter) climate conditions contribute on nitrate leaching.

  8. The gross- and net-irrigation requirements of crops and model farms with different root zone capacities at ten locations in Denmark 1990-2015

    DEFF Research Database (Denmark)

    ten Damme, Loraine; Andersen, Mathias Neumann

    abstraction permits for irrigation. Here we present estimates of the gross and net irrigation water requirements for a range of agricultural crops and model farms in 10 locations across Denmark for the years 1990-2015. We generally found higher values for the irrigation requirement than previous studies...... conducted 40 years ago. The annual irrigation water requirement varied according to farm type (dairy, arable/pig and potatoes), location,soil type and especially year with more than 300%. Abstraction permits based on average values are deemed less suitable as they may restrict farmers’ production in one out...

  9. Evaluation of Different Phenological Information to Map Crop Rotation in Complex Irrigated Indus Basin

    Science.gov (United States)

    Ismaeel, A.; Zhou, Q.

    2018-04-01

    Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) of Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering) to supervised (area knowledge and phenology behavior) classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI) performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE) of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE) of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 %) and NDVI*LAI (10.83, 39.45 %). The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.

  10. EVALUATION OF DIFFERENT PHENOLOGICAL INFORMATION TO MAP CROP ROTATION IN COMPLEX IRRIGATED INDUS BASIN

    Directory of Open Access Journals (Sweden)

    A. Ismaeel

    2018-04-01

    Full Text Available Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI and Leaf Area Index (LAI of Moderate Resolution Imaging Spectroradiometer (MODIS sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering to supervised (area knowledge and phenology behavior classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 % and NDVI*LAI (10.83, 39.45 %. The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.

  11. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    Science.gov (United States)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  12. Calibration and validation of the STICS crop model for managing wheat irrigation in the semi-arid Marrakech/Al-Haouz Plain

    International Nuclear Information System (INIS)

    Hadria, R.; Khabba, S.; Lahrouni, A.; Duchemin, B.; Chehbouni, A.; Carriou, J.; Ouzine, L.

    2007-01-01

    In the first part of this work, we shoot growth module and grain yield of the STICS crop model were calibrated and validated by using field data which was collected from irrigated winter wheat fields in the Haouz plain near Marrakech. The calibration was performed on the thermal units between the four phonological stages that control the dynamics of leaf area index and thermal unit between emergence and beginning of grain filling. The plant phenology was calibrated for three fields monitored during the 2002/03 season. Evaluation of the green yields and the temporal evolution of leaf area index were done for six validation fields during 2003/04. The results showed the significant accuracy of the model in simulating these variables and also indicated that the plants mainly suffered from lack of nitrogen. The results in the second part show the potential of crop modeling to schedule irrigation water, on the assumption that the plants were growing under optimal conditions of fertilization. In this case, the model was used to manage the time of irrigation according to a threshold for water deficit. Various simulations displayed logical trends in the relationship between the grain yield and both the amount and timing of irrigation water. These results were finally compared with those obtained from real irrigation practices. For the particular climate pf 2003/04, the comparison showed that 70mm 40 mm of water could be saved in case of early and late showing, respectively. (author)

  13. Production of pulse in mono-cropped rice system in the coastal region of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Nanda, P.; Chandra, Dinesh; Ghorai, A.K.; Behera, M.S.

    2001-04-01

    This experiment was undertaken with an objective to increase the yield of black-gram leguminous pulse crop through optimal doses of phosphatic fertilizer with supplemental irrigation in mono-cropped rice-fallow regions of India. Irrigation and phosphorus fertilizer application were introduced for enhancing productivity of black-gram to provide better returns to available water resources

  14. Onion crop yield submitted to water and nitrogen levels by drip system

    Directory of Open Access Journals (Sweden)

    Renato Carvalho Vilas Boas

    2014-02-01

    Full Text Available The aim this work was evaluate the effects of water and nitrogen (N levels, supplied by drip system, on yield and water use efficiency of onion crop (Allium cepa L.. The experiment was carried at the experimental area of DEG/UFLA, in a randomized block statistical design was used, in a factorial scheme 4 x 4, with three replicates. Four irrigation depths based on Class A evaporation tanks (50, 100, 150 and 200% and four N doses (0, 60, 120 and 180 kg ha-1 were supplied through irrigation water (fertigation. It can be concluded that higher yields (total bulbs and of marketable bulbs and higher average marketable bulbs mass were obtained with the irrigation depth of 512.7 mm (100% Class A and 180 kg ha-1 of N. Water use efficiency decreased linearly as irrigation depths increased and N rate decreased.

  15. Evaluation of Different Irrigation Methods for an Apple Orchard Using an Aerial Imaging System

    Directory of Open Access Journals (Sweden)

    Duke M. Bulanon

    2016-06-01

    Full Text Available Regular monitoring and assessment of crops is one of the keys to optimal crop production. This research presents the development of a monitoring system called the Crop Monitoring and Assessment Platform (C-MAP. The C-MAP is composed of an image acquisition unit which is an off-the-shelf unmanned aerial vehicle (UAV equipped with a multispectral camera (near-infrared, green, blue, and an image processing and analysis component. The experimental apple orchard at the Parma Research and Extension Center of the University of Idaho was used as the target for monitoring and evaluation. Five experimental rows of the orchard were randomly treated with five different irrigation methods. An image processing algorithm to detect individual trees was developed to facilitate the analysis of the rows and it was able to detect over 90% of the trees. The image analysis of the experimental rows was based on vegetation indices and results showed that there was a significant difference in the Enhanced Normalized Difference Vegetation Index (ENDVI among the five different irrigation methods. This demonstrates that the C-MAP has very good potential as a monitoring tool for orchard management.

  16. Evaluating thermal image sharpening over irrigated crops in a desert environment

    KAUST Repository

    Rosas, Jorge

    2014-09-01

    Satellite remote sensing provides spatially and temporally distributed data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Multi-spectral platforms, including Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS), acquire imagery in the visible to shortwave infrared and thermal infrared (TIR) domain at resolutions ranging from 30 to 1000 m. Land-surface temperature (LST) derived from TIR satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. As a result, several techniques for thermal sharpening have been developed. In this study, the data mining sharpener (DMS; Gao et al., 2012) technique is applied over irrigated farming areas located in harsh desert environments in Saudi Arabia. The DMS approach sharpens TIR imagery using finer resolution shortwave spectral reflectances and functional LST and reflectance relationships established using a flexible regression tree approach. In this study, the DMS is applied to Landsat 8 data (100m TIR resolution), which is scaled up to 240m, 480m, and 960m in order to assess the accuracy of the DMS technique in arid irrigated farming environments for different sharpening ratios. Furthermore, the scaling done on Landsat 8 data is consistent with the resolution of MODIS products. Potential enhancements to DMS are investigated including the use of ancillary terrain data. Finally, the impact of using sharpened LST, as input to a two-source energy balance model, on simulated ET will be evaluated. The ability to accurately monitor field-scale changes in vegetation cover, crop conditions and surface fluxes, are of main importance towards an efficient water use in areas where fresh water resources are scarce and poorly

  17. Integrated cropping systems : an answer to environmental regulations imposed on nursery stock in the Netherlands

    NARCIS (Netherlands)

    Pronk, A.A.; Challa, H.

    2000-01-01

    Government regulations in the Netherlands are increasingly constraining and sometimes even banning conventional cultivation practices in nursery stock cropping systems. As a consequence, growers face problems concerning the use of manure, fertilisers and irrigation. In this study we analysed the

  18. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Fruit yield and root system distribution of 'Tommy Atkins' mango under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Marcelo R. dos Santos

    2014-04-01

    Full Text Available This study aimed to evaluate the fruit yield and the distribution of 'Tommy Atkins' mango root system under different irrigation regimes in the semiarid region of Bahia. The experimental design was completely randomized with five treatments and three replicates: 1 - Irrigation supplying 100% of ETc in phases I, II and III; 2 - Regulated deficit irrigation (RDI supplying 50% of ETc in phase I (beginning of flowering to early fruit growth; 3 - RDI supplying 50% ETc in phase II (start of expansion until the beginning of physiological maturity; 4 - RDI supplying 50% ETc in phase III (physiological mature fruits; 5 - No irrigation during all three phases. The regulated deficit irrigation supplying 50% of the ETc during phase I and II provided larger root length density of 'Tommy Atkins' mango. Regardless of management strategy, the roots were developed in all evaluated soil volume and the highest density is concentrated from 0.50 to 1.50 m distance from the trunk and in 0.20 to 0.90 m depth in the soil, that suggests this region to be the best place for fertilizer application as well for soil water sensor placement. The application of RDI during fruit set does not influence either root distribution or production. Root system and crop production is significantly reduced under no irrigation conditions.

  20. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  1. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    Science.gov (United States)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  2. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    Science.gov (United States)

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Translocation of aluminum to grain crops grown in different agricultural systems

    International Nuclear Information System (INIS)

    Khan, S.; Kazi, T.G.; Kolachi, N.F.; Afridi, H.I.

    2012-01-01

    The aim of this study was to evaluate the mobility and transport of Aluminum (AI) by shoot and grain crops (wheat and maize) grown on two different agricultural soil irrigated with water have high (lake water) and low levels (canal water) of AI. The total and bio available fractions (deionized water, 0.11 M CH/sub 3/COOH, 0.05 M ethylenediaminetetraacetic acid (EDT A) and 0.1 M HCl extractable) of Al in both understudied agricultural soils and correlate with respective total Al in the edible parts (grains) and non edible parts (Shoots) of wheat and maize. The All content in lake and canal water samples was found in the range of 750 - 1340 and 90 - 50 micro g/L respectively. The total and extractable Al in both agricultural soil samples, edible and non edible parts of wheat and maize were analysed by atomic absorption spectrometry after acid digestion in microwave oven. The edible and non edible part of both crops absorbed significantly high levels of Al grown on agricultural soil irrigated with lake water (SILW) as compared to those grown on soil irrigated with can water (SICW) had low level of A] (p< O.OI). The transfer factor of Al from soils to edible and non edible parts of wheat and maize were also evaluated. It was observed that the bioaccumulation of Al was found to be high in non edible parts of both crops grown in SILW. This study highlights the increased danger of growing food crops in the agricultural land continuously irrigated by A] contaminated lake water. (author)

  4. Reconstructing the Spatio-Temporal Development of Irrigation Systems in Uzbekistan Using Landsat Time Series

    Directory of Open Access Journals (Sweden)

    Thomas Koellner

    2012-12-01

    Full Text Available The expansion of irrigated agriculture during the Soviet Union (SU era made Central Asia a leading cotton production region in the world. However, the successor states of the SU in Central Asia face on-going environmental damages and soil degradation that are endangering the sustainability of agricultural production. With Landsat MSS and TM data from 1972/73, 1977, 1987, 1998, and 2000 the expansion and densification of the irrigated cropland could be reconstructed in the Kashkadarya Province of Uzbekistan, Central Asia. Classification trees were generated by interpreting multitemporal normalized difference vegetation index data and crop phenological knowledge. Assessments based on image-derived validation samples showed good accuracy. Official statistics were found to be of limited use for analyzing the plausibility of the results, because they hardly represent the area that is cropped in the very dry study region. The cropping area increased from 134,800 ha in 1972/73 to 470,000 ha in 2009. Overlaying a historical soil map illustrated that initially sierozems were preferred for irrigated agriculture, but later the less favorable solonchaks and solonetzs were also explored, illustrating the strategy of agricultural expansion in the Aral Sea Basin. Winter wheat cultivation doubled between 1987 and 1998 to approximately 211,000 ha demonstrating its growing relevance for modern Uzbekistan. The spatial-temporal approach used enhances the understanding of natural conditions before irrigation is employed and supports decision-making for investments in irrigation infrastructure and land cultivation throughout the Landsat era.

  5. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M.; Bielza, J.; Garrido, A.; Iglesias, A.

    2015-07-01

    Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk. (Author)

  6. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Directory of Open Access Journals (Sweden)

    Jorge Ruiz

    2015-12-01

    Full Text Available Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk.

  7. Geo-environmental model for the prediction of potential transmission risk of Dirofilaria in an area with dry climate and extensive irrigated crops. The case of Spain.

    Science.gov (United States)

    Simón, Luis; Afonin, Alexandr; López-Díez, Lucía Isabel; González-Miguel, Javier; Morchón, Rodrigo; Carretón, Elena; Montoya-Alonso, José Alberto; Kartashev, Vladimir; Simón, Fernando

    2014-03-01

    Zoonotic filarioses caused by Dirofilaria immitis and Dirofilaria repens are transmitted by culicid mosquitoes. Therefore Dirofilaria transmission depends on climatic factors like temperature and humidity. In spite of the dry climate of most of the Spanish territory, there are extensive irrigated crops areas providing moist habitats favourable for mosquito breeding. A GIS model to predict the risk of Dirofilaria transmission in Spain, based on temperatures and rainfall data as well as in the distribution of irrigated crops areas, is constructed. The model predicts that potential risk of Dirofilaria transmission exists in all the Spanish territory. Highest transmission risk exists in several areas of Andalucía, Extremadura, Castilla-La Mancha, Murcia, Valencia, Aragón and Cataluña, where moderate/high temperatures coincide with extensive irrigated crops. High risk in Balearic Islands and in some points of Canary Islands, is also predicted. The lowest risk is predicted in Northern cold and scarcely or non-irrigated dry Southeastern areas. The existence of irrigations locally increases transmission risk in low rainfall areas of the Spanish territory. The model can contribute to implement rational preventive therapy guidelines in accordance with the transmission characteristics of each local area. Moreover, the use of humidity-related factors could be of interest in future predictions to be performed in countries with similar environmental characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Optimal simulation based design of deficit irrigation experiments

    OpenAIRE

    Seidel, Sabine

    2012-01-01

    There is a growing societal concern about excessive water and fertilizer use in agricultural systems. High water productivity while maintaining high crop yields can be achieved with appropriate irrigation scheduling. Moreover, freshwater pollution through nitrogen (N) leaching due to the widespread use of N fertilizers demands for an efficient N fertilization management. However, sustainable crop management requires good knowledge of soil water and N dynamics as well as of crop water and N de...

  9. Local Irrigation Management Institutions Mediate Changes Driven by External Policy and Market Pressures in Nepal and Thailand

    Science.gov (United States)

    Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  10. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    Science.gov (United States)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support

  11. Phosphorus distribution in sandy soil profile under drip irrigation system

    International Nuclear Information System (INIS)

    El-Gendy, R.W.; Rizk, M.A.; Abd El Moniem, M.; Abdel-Aziz, H.A.; Fahmi, A.E.

    2009-01-01

    This work aims at to studying the impact of irrigation water applied using drip irrigation system in sandy soil with snap bean on phosphorus distribution. This experiment was carried out in soils and water research department farm, nuclear research center, atomic energy authority, cairo, Egypt. Snap bean was cultivated in sandy soil and irrigated with 50,37.5 and 25 cm water in three water treatments represented 100, 75 and 50% ETc. Phosphorus distribution and direction of soil water movement had been detected in three sites on the dripper line (S1,S2 and S3 at 0,12.5 and 25 cm distance from dripper). Phosphorus fertilizer (super phosphate, 15.5% P 2 O 5 in rate 300 kg/fed)was added before cultivation. Neutron probe was used to detect the water distribution and movement at the three site along soil profile. Soil samples were collected before p-addition, at end developing, mid, and late growth stages to determine residual available phosphorus. The obtained data showed that using 50 cm water for irrigation caused an increase in P-concentration till 75 cm depth in the three sites of 100% etc treatment, and covered P-requirements of snap bean for all growth stages. As for 37.5 and 25 cm irrigation water cannot cover all growth stages for P-requirements of snap bean. It could be concluded that applied irrigation water could drive the residual P-levels till 75 cm depth in the three sites. Yield of the crop had been taken as an indicator as an indicator profile. Yield showed good response according to water quantities and P-transportation within the soil profile

  12. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    Science.gov (United States)

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  13. A numerical study of the effect of irrigation on land-atmosphere interactions in a spring wheat cropland in India using a coupled atmosphere-crop growth dynamics model

    Science.gov (United States)

    Kumari, S.; Sharma, P.; Srivastava, A.; Rastogi, D.; Sehgal, V. K.; Dhakar, R.; Roy, S. B.

    2017-12-01

    Vegetation dynamics and surface meteorology are tightly coupled through the exchange of momentum, moisture and heat between the land surface and the atmosphere. In this study, we use a recently developed coupled atmosphere-crop growth dynamics model to study these exchanges and their effects in a spring wheat cropland in northern India. In particular, we investigate the role of irrigation in controlling crop growth rates, surface meteorology, and sensible and latent heat fluxes. The model is developed by implementing a crop growth module based on the Simple and Universal Crop growth Simulator (SUCROS) model in the Weather Research Forecasting (WRF) mesoscale atmospheric model. The crop module calculates photosynthesis rates, carbon assimilation, and biomass partitioning as a function of environmental factors and crop development stage. The leaf area index (LAI) and root depth calculated by the crop module is then fed to the Noah-MP land module of WRF to calculate land-atmosphere fluxes. The crop model is calibrated using data from an experimental spring wheat crop site in the Indian Agriculture Research Institute. The coupled model is capable of simulating the observed spring wheat phenology. Irrigation is simulated by changing the soil moisture levels from 50% - 100% of field capacity. Results show that the yield first increases with increasing soil moisture and then starts decreasing as we further increase the soil moisture. Yield attains its maximum value with soil moisture at the level of 60% water of FC. At this level, high LAI values lead to a decrease in the Bowen Ratio because more energy is transferred to the atmosphere as latent heat rather than sensible heat resulting in a cooling effect on near-surface air temperatures. Apart from improving simulation of land-atmosphere interactions, this coupled modeling approach can form the basis for the seamless crop yield and seasonal scale weather outlook prediction system.

  14. Maximizing the value of limited irrigation water: USDA researchers study how producers on limited irrigation can save water and be profitable

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  15. An improved delivery system for bladder irrigation.

    Science.gov (United States)

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-10-05

    Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse

  16. Transferability Of DEMETER. A Case Study Of The Irrigation Scheme Of Veiga De Chaves

    Science.gov (United States)

    Baptista, A.; Sousa, V.

    2006-08-01

    suitable solution in certain contexts and types of irrigation systems, in particular in those regions that have (1) a growing agricultural sector, with large scale plots under monoculture, or with only 2 or 3 clearly market-oriented main crops with high potential value-added; (2) where water is scarce and relatively expensive; (3) where consumers pay for the water they use and are organized in a dynamic, well equipped, well-staffed, financially sound and empowering water users associations.

  17. Using a water-food-energy nexus approach for optimal irrigation management during drought events in Nebraska

    Science.gov (United States)

    Campana, P. E.; Zhang, J.; Yao, T.; Melton, F. S.; Yan, J.

    2017-12-01

    Climate change and drought have severe impacts on the agricultural sector affecting crop yields, water availability, and energy consumption for irrigation. Monitoring, assessing and mitigating the effects of climate change and drought on the agricultural and energy sectors are fundamental challenges that require investigation for water, food, and energy security issues. Using an integrated water-food-energy nexus approach, this study is developing a comprehensive drought management system through integration of real-time drought monitoring with real-time irrigation management. The spatially explicit model developed, GIS-OptiCE, can be used for simulation, multi-criteria optimization and generation of forecasts to support irrigation management. To demonstrate the value of the approach, the model has been applied to one major corn region in Nebraska to study the effects of the 2012 drought on crop yield and irrigation water/energy requirements as compared to a wet year such as 2009. The water-food-energy interrelationships evaluated show that significant water volumes and energy are required to halt the negative effects of drought on the crop yield. The multi-criteria optimization problem applied in this study indicates that the optimal solutions of irrigation do not necessarily correspond to those that would produce the maximum crop yields, depending on both water and economic constraints. In particular, crop pricing forecasts are extremely important to define the optimal irrigation management strategy. The model developed shows great potential in precision agriculture by providing near real-time data products including information on evapotranspiration, irrigation volumes, energy requirements, predicted crop growth, and nutrient requirements.

  18. Size and stochasticity in irrigated social-ecological systems

    Science.gov (United States)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-03-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  19. Status and migration of irrigation in the USA

    Science.gov (United States)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  20. Charts for Guiding Adjustments of Irrigation Interval to Actual Weather Conditions

    International Nuclear Information System (INIS)

    Kipkorir, E.C.

    2002-01-01

    Major problems in irrigation management at short time-step during the season are unreliability of rainfall and absence of guidance. By considering the climate of region, crop and soil characteristics, the irrigation method and local irrigation practices, this paper presents the concept of irrigation charts. The charts are based on soil water technique. As an example irrigation chart for a typical irrigation system located in the semi-arid area in Naivasha, Kenya is presented. The chart guides the user in adjustment of irrigation interval to the actual weather conditions throughout the growing season. It is believed that the simplicity of the chart makes it a useful tool for a better utilisation of the limited irrigation water

  1. Drip Planner Chart: a simple irrigation scheduling tool for smallholder drip farmers

    NARCIS (Netherlands)

    Boesveld, H.; Zisengwe, L.S.; Yakami, S.

    2012-01-01

    Drip irrigation is widely recognized as potentially one of the most efficient irrigation methods. However, this efficiency is often not achieved because systems are not always well designed or maintained and many farmers lack the tools to assess the crop water requirements and to monitor the soil

  2. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  3. Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2009-01-01

    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  4. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  5. Uptake and Accumulation of Pharmaceuticals in Lettuce Under Surface and Overhead Irrigations

    Science.gov (United States)

    Bhalsod, G.; Chuang, Y. H.; Jeon, S.; Gui, W.; Li, H.; Guber, A.; Zhang, W.

    2015-12-01

    Pharmaceuticals and personal care products are being widely detected in wastewater and surface waters. As fresh water becomes scarcer, interests in using reclaimed water for crop irrigation is intensified. Since reclaimed waters often carry trace levels of pharmaceuticals, accumulation of pharmaceuticals in food crops could increase the risk of human exposure. This study aims to investigate uptake and accumulations of pharmaceuticals in greenhouse-grown lettuce under contrasting irrigation practices (i.e., overhead and surface irrigations). Lettuce was irrigated with water spiked with 11 commonly used pharmaceuticals (acetaminophen, caffeine, carbamazepine, sulfadiazine, sulfamethoxazole, carbadox, trimethoprim, lincomycin hydrochloride, oxytetracycline hydrochloride, monensin sodium, and tylosin). Weekly sampling of lettuce roots, shoots, and soils were continued for 5 weeks, and the samples were freeze dried, extracted for pharmaceuticals and analyzed by LC-MS/MS. Preliminary results indicate that higher concentrations of pharmaceuticals were found in overhead irrigated lettuce compared to surface irrigated lettuce. For carbamezapine, sulfadiazine, trimethoprim, oxytetracycline, and monensin sodium, their concentrations generally increased in lettuce shoots in the overhead treatment over time. However, acetaminophen was found at higher concentrations in both shoots and roots, indicating that acetaminophen can be easily transported in the plant system. This study provides insight on developing better strategies for using reclaimed water for crop irrigations, while minimizing the potential risks of pharmaceutical contamination of vegetables.

  6. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    Science.gov (United States)

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  7. Costs and benefits of satellite-based tools for irrigation management

    Directory of Open Access Journals (Sweden)

    Francesco eVuolo

    2015-07-01

    Full Text Available This paper presents the results of a collaborative work with farmers and a cost-benefit analysis of geospatial technologies applied to irrigation water management in the semi-arid agricultural area in Lower Austria. We use Earth observation (EO data to estimate crop evapotranspiration (ET and webGIS technologies to deliver maps and irrigation advice to farmers. The study reports the technical and qualitative evaluation performed during a demonstration phase in 2013 and provides an outlook to future developments. The calculation of the benefits is based on a comparison of the irrigation volumes estimated from satellite vs. the irrigation supplied by the farmers. In most cases, the amount of water supplied was equal to the maximum amount of water required by crops. At the same time high variability was observed for the different irrigation units and crop types. Our data clearly indicates that economic benefits could be achieved by reducing irrigation volumes, especially for water-intensive crops. Regarding the qualitative evaluation, most of the farmers expressed a very positive interest in the provided information. In particular, information related to crop ET was appreciated as this helps to make better informed decisions on irrigation. The majority of farmers (54% also expressed a general willingness to pay, either directly or via cost sharing, for such a service. Based on different cost scenarios, we calculated the cost of the service. Considering 20,000 ha regularly irrigated land, the advisory service would cost between 2.5 and 4.3 €/ha per year depending on the type of satellite data used. For comparison, irrigation costs range between 400 and 1000 €/ha per year for a typical irrigation volume of 2,000 cubic meters per ha. With a correct irrigation application, more than 10% of the water and energy could be saved in water-intensive crops, which is equivalent to an economic benefit of 40-100 €/ha per year.

  8. Adubarroz: a brazilian experience for fertilization and liming recommendation of irrigated rice via computational system

    Directory of Open Access Journals (Sweden)

    Felipe de Campos Carmona

    Full Text Available ABSTRACT: Recommendations for fertilizing irrigated rice in southern Brazil have been constantly evolving over years. In this process, the influence of factors such as the development cycle of varieties and sowing period increased. Thus, computational tools that take these and others important aspects into account can potentiate the fertilization response of rice. This study describes the computer program "ADUBARROZ". The software provides recommendations of fertilizer rates and liming requirements of irrigated rice, based on information entered by the user. The system takes various factors that regulate the crop response to fertilization into account. A final report is established with the graphical representation of input management over time.

  9. Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops

    Directory of Open Access Journals (Sweden)

    Xiao-Lin Yang

    2017-06-01

    Full Text Available In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle; peanuts → winter wheat-summer maize (PWS, 2-year cycle; ryegrass–cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle; and winter wheat-summer maize (WS, each year. We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm. They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain.

  10. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  11. A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India.

    Science.gov (United States)

    Murthy, C S; Yadav, Manoj; Mohammed Ahamed, J; Laxman, B; Prawasi, R; Sesha Sai, M V R; Hooda, R S

    2015-03-01

    Drought is an important global hazard, challenging the sustainable agriculture and food security of nations. Measuring agricultural drought vulnerability is a prerequisite for targeting interventions to improve and sustain the agricultural performance of both irrigated and rain-fed agriculture. In this study, crop-generic agricultural drought vulnerability status is empirically measured through a composite index approach. The study area is Haryana state, India, a prime agriculture state of the country, characterised with low rainfall, high irrigation support and stable cropping pattern. By analysing the multiyear rainfall and crop condition data of kharif crop season (June-October) derived from satellite data and soil water holding capacity and groundwater quality, nine contributing indicators were generated for 120 blocks (sub-district administrative units). Composite indices for exposure, sensitivity and adaptive capacity components were generated after assigning variance-based weightages to the respective input indicators. Agricultural Drought Vulnerability Index (ADVI) was developed through a linear combination of the three component indices. ADVI-based vulnerability categorisation revealed that 51 blocks are with vulnerable to very highly vulnerable status. These blocks are located in the southern and western parts of the state, where groundwater quality is saline and water holding capacity of soils is less. The ADVI map has effectively captured the spatial pattern of agricultural drought vulnerability in the state. Districts with large number of vulnerable blocks showed considerably larger variability of de-trended crop yields. Correlation analysis reveals that crop condition variability, groundwater quality and soil factors are closely associated with ADVI. The vulnerability index is useful to prioritise the blocks for implementation of long-term drought management plans. There is scope for improving the methodology by adding/fine-tuning the indicators and

  12. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    Science.gov (United States)

    Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.

    2016-12-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  13. Smart Irrigation From Soil Moisture Forecast Using Satellite And Hydro -Meteorological Modelling

    Science.gov (United States)

    Corbari, Chiara; Mancini, Marco; Ravazzani, Giovanni; Ceppi, Alessandro; Salerno, Raffaele; Sobrino, Josè

    2017-04-01

    Increased water demand and climate change impacts have recently enhanced the need to improve water resources management, even in those areas which traditionally have an abundant supply of water. The highest consumption of water is devoted to irrigation for agricultural production, and so it is in this area that efforts have to be focused to study possible interventions. The SIM project funded by EU in the framework of the WaterWorks2014 - Water Joint Programming Initiative aims at developing an operational tool for real-time forecast of crops irrigation water requirements to support parsimonious water management and to optimize irrigation scheduling providing real-time and forecasted soil moisture behavior at high spatial and temporal resolutions with forecast horizons from few up to thirty days. This study discusses advances in coupling satellite driven soil water balance model and meteorological forecast as support for precision irrigation use comparing different case studies in Italy, in the Netherlands, in China and Spain, characterized by different climatic conditions, water availability, crop types and irrigation techniques and water distribution rules. Herein, the applications in two operative farms in vegetables production in the South of Italy where semi-arid climatic conditions holds, two maize fields in Northern Italy in a more water reach environment with flood irrigation will be presented. This system combines state of the art mathematical models and new technologies for environmental monitoring, merging ground observed data with Earth observations. Discussion on the methodology approach is presented, comparing for a reanalysis periods the forecast system outputs with observed soil moisture and crop water needs proving the reliability of the forecasting system and its benefits. The real-time visualization of the implemented system is also presented through web-dashboards.

  14. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern

  15. Economic risk assessment of drought impacts on irrigated agriculture

    Science.gov (United States)

    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.

    2017-07-01

    In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.

  16. Influence of deficit irrigation and crop load on the yield and fruit quality in Wonderful and Mollar de Elche pomegranates

    NARCIS (Netherlands)

    Cano-Lamadrid, Marina; Galindo Egea, Alejandro; Collado-González, Jacinta; Rodríguez, Pedro; Cruz, Zulma N; Legua, Pilar; Burló, Francisco; Morales, Donaldo; Carbonell-barrachina, Ángel A; Hernández, Francisca

    2017-01-01

    BACKGROUND The working hypothesis of the present study was that, by proper simultaneous control of irrigation (hydroSOStainable products) and crop load (thinning), it is possible to promote the accumulation of bioactive compounds and improve fruit appearance (size and weight). The effects of (i)

  17. Evaluation of Aqua crop Model to Predict Crop Water Productivity

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Faiz Ahmad; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Khairuddin Abdul Rahim

    2015-01-01

    Water and nutrient are critical inputs for crop production, especially in meeting challenges from increasing fertilizer cost and irregular water availability associated with climate change. The Land and Water Division of Food and Agriculture Organization of the United Nations (FAO) has developed Aqua Crop, an integrated application software to simulate the interactions between plant, water and soil. Field management and irrigation management are the factors that need to be considered since it affects the interactions. Four critical components are needed in the Aqua Crop model, viz. climate, crop, field management and soil conditions. In our case study, climate data from rice field in Utan Aji, Kangar, Perlis was applied to run a simulation by using AquaCrop model. The rice crop was also assessed against deficit irrigation schedules and we found that use of water at optimum level increased rice yield. Results derived from the use of the model corresponded conventional assessment. This model can be adopted to help farmers in Malaysia in planning crop and field management to increase the crop productivity, especially in areas where the water is limited. (author)

  18. CHANGE DETECTION OF CROPPING PATTERN IN PADDY FIELD USING MULTI SPECTRAL SATELLITE DATA FOR ESTIMATING IRRIGATION WATER NEEDS

    Directory of Open Access Journals (Sweden)

    Rizatus Shofiyati1

    2012-10-01

    Full Text Available This paper investigates the use of multi spectral satellite data for cropping pattern monitoring in paddy field. The southern coastal of Citarum watershed, West Java Province was selected as study sites. The analysis used in this study is identifying crop pattern based on growth stages of wetland paddy and other crops by investi-gating the characteristic of Normalized Differen-ce Vegetation Indices (NDVI and Wetness of Tasseled Cap Transformation (TCT derived from 14 scenes of Landsat TM date 1988 to 2001. In general, the phenological of growth stages of wetland paddy can be used to distinguish with other seasonal crops. The research results indicate that multi spectral satellite data has a great potential for identi-fication and monitoring cropping pattern in paddy field. Specific character of NDVI and Wetness can also produce a map of cropping pattern in paddy field that is useful to monitor agricultural land condition. The cropping pattern can also be used to estimate irrigation water needed of paddy field in the area. Expected implication of the information obtained from this analysis is useful for guiding more appropriate planning and better agricultural management.

  19. Influence of irrigation on wheat crop Influência da irrigação na cultura do trigo

    Directory of Open Access Journals (Sweden)

    Danilton L. Flumignan

    2013-02-01

    Full Text Available The use of irrigation has been increased significantly in wheat crops in Brazil. This study aims to evaluate the effect of irrigation on the productivity, on flour technological quality and on the wheat root system. In a field experiment conducted at IAPAR, in Londrina -state of Paraná (PR, Brazil, the IPR 118 cultivar was grown under sprinkler irrigation (Irrigated Treatment and without irrigation (Non-irrigated Treatment. The productivity was determined by harvesting three samples of 25 m² per treatment. The same samples were used to evaluate the flour technological quality, considering, among other parameters, gluten strength (W. The evaluation of the root system was performed after the harvest, considering a profile of 0 to 45 cm of soil depth, and sampling eight plants per treatment. The profile wall method was used to determine the roots number (RN and the monolith method to determine the root dry mass (RDM. Irrigation increased wheat productivity in three times, while W was reduced in the flour. Nevertheless, the value of W found in the Irrigated Treatment (249 10-4 J was sufficient to keep wheat classification as bread type, the same as IPR 118 cultivar is classified. The measured values of RN and RDM were similar or higher for the Non-irrigated Treatment.O uso da irrigação na triticultura tem aumentado significativamente nos últimos anos no Brasil. Neste trabalho, objetivou-se avaliar a influência da irrigação na produtividade, na qualidade tecnológica da farinha e no sistema radicular do trigo. Em experimento de campo no IAPAR, em Londrina, Paraná, a cultivar IPR 118 foi cultivada sob irrigação por aspersão convencional (Tratamento Irrigado e sem irrigação (Tratamento Sequeiro. A produtividade foi determinada, colhendo-se três amostras de 25 m² por tratamento. Nestas mesmas amostras, procedeu-se à análise da qualidade tecnológica da farinha, sendo avaliada, entre outros parâmetros, a força de glúten (W. A avalia

  20. Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA

    Science.gov (United States)

    The use of irrigation scheduling tools to produce cotton under-surface irrigation in the arid southwesternUSA is minimal. In the State of Arizona, where traditional irrigation scheduling is the norm, producersuse an average of 1460 mm annually to grow a cotton crop. The purpose of this paper was to ...

  1. A Reevaluation of Price Elasticities for Irrigation Water

    Science.gov (United States)

    Howitt, Richard E.; Watson, William D.; Adams, Richard M.

    1980-08-01

    The effectiveness of pricing systems in the allocation of irrigation water is linked with the price elasticity of demand of farmers for water. Using microeconomic theory, it is shown that omission of the elasticity of demand for the crop produced leads to an inelastic bias in the demand for irrigated water. Linear programing approaches omit the product elasticity of demand and are consequently biased, whereas quadratic programing approaches to estimating derived demands for irrigation water include product demand functions. The difference between the resulting estimates are empirically demonstrated for regional derived demand functions estimated from a model of California's agricultural industry.

  2. Hydrological drought index insurance for irrigation districts in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, T.; Bielza, M.; Garrido, A.

    2016-11-01

    Hydrological droughts are a major risk for irrigated agriculture in many regions of the world. The aim of this article is to propose an insurance tool to help irrigators manage the risk of water scarcity in the framework of the Spanish Crop Insurance System (SCIS). Only the United States Insurance System provides this type of coverage, but has very restrictive conditions. To determine the type of insurance scheme that better fits with the SCIS and to the Spanish irrigated agriculture, an expert panel was held with the participation of all stakeholders involved in crop insurance. Following the expert panel conclusions, an hydrological drought index insurance (HDII) addressed to irrigation districts (ID) is proposed. It would compensate water deficits suffered in the whole ID. We detail the conditions that the ID should fulfill to be eligible for HDII. HDII is applied to the Bardenas Irrigation District V (ID-V) in Spain, and the hedging effectiveness of the instrument is analyzed comparing ID-V’s gross margins with and without the insurance contract. Results suggest that the proposed insurance scheme could provide an effective means of reducing farmers’ vulnerability to water shortages and there is no major impediment for it to be included as a new line in the SCIS. This type of insurance can be generalized to any ID fulfilling the conditions mentioned in this paper. (Author)

  3. Monthly Optimal Reservoirs Operation for Multicrop Deficit Irrigation under Fuzzy Stochastic Uncertainties

    Directory of Open Access Journals (Sweden)

    Liudong Zhang

    2014-01-01

    Full Text Available An uncertain monthly reservoirs operation and multicrop deficit irrigation model was proposed under conjunctive use of underground and surface water for water resources optimization management. The objective is to maximize the total crop yield of the entire irrigation districts. Meanwhile, ecological water remained for the downstream demand. Because of the shortage of water resources, the monthly crop water production function was adopted for multiperiod deficit irrigation management. The model reflects the characteristics of water resources repetitive transformation in typical inland rivers irrigation system. The model was used as an example for water resources optimization management in Shiyang River Basin, China. Uncertainties in reservoir management shown as fuzzy probability were treated through chance-constraint parameter for decision makers. Necessity of dominance (ND was used to analyse the advantages of the method. The optimization results including reservoirs real-time operation policy, deficit irrigation management, and the available water resource allocation could be used to provide decision support for local irrigation management. Besides, the strategies obtained could help with the risk analysis of reservoirs operation stochastically.

  4. Assessing gaps in irrigated agricultural productivity through satellite earth observations-A case study of the Fergana Valley, Central Asia

    Science.gov (United States)

    Löw, Fabian; Biradar, Chandrashekhar; Fliemann, Elisabeth; Lamers, John P. A.; Conrad, Christopher

    2017-07-01

    Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies

  5. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    NARCIS (Netherlands)

    Pardossi, A.; Incrocci, L.; Incrocci, G.; Marlorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J.

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of

  6. Remote sensing, GIS and hydrological modelling for irrigation management

    NARCIS (Netherlands)

    Menenti, M.; Azzali, S.; Urso, d' G.

    1996-01-01

    This paper gives an overview of literature and of work done by the authors between 1988 and 1993. It was presented at a NATO expert meeting on sustainability of irrigated agriculture in 1994. The paper deals with crop water requirements and crop waterstress, assessing irrigation performance with

  7. Safe and high quality food production using low quality waters and improved irrigation systems and management

    DEFF Research Database (Denmark)

    Plauborg, Finn; Andersen, Mathias Neumann; Liu, Fulai

    2010-01-01

    uneven irrigation patterns can increase the water use efficiency as well as the quality of vegetable crops. Furthermore, recent innovations in the water treatment and irrigation industry have shown potential for the use of low quality water resources, such as reclaimed water or surface water in peri...

  8. Addressing crop interactions within cropping systems in LCA

    DEFF Research Database (Denmark)

    Goglio, Pietro; Brankatschk, Gerhard; Knudsen, Marie Trydeman

    2018-01-01

    objectives of this discussion article are as follows: (i) to discuss the characteristics of cropping systems which might affect the LCA methodology, (ii) to discuss the advantages and the disadvantages of the current available methods for the life-cycle assessment of cropping systems, and (iii) to offer...... management and emissions, and (3) functional unit issues. The LCA approaches presented are as follows: cropping system, allocation approaches, crop-by-crop approach, and combined approaches. The various approaches are described together with their advantages and disadvantages, applicability...... considers cropping system issues if they are related to multiproduct and nutrient cycling, while the crop-by-crop approach is highly affected by assumptions and considers cropping system issues only if they are related to the analyzed crop. Conclusions Each LCA approach presents advantages and disadvantages...

  9. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    Science.gov (United States)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip

  10. Simulating the reactive transport of nitrogen species in a regional irrigated agricultural groundwater system

    Science.gov (United States)

    Bailey, R. T.; Gates, T. K.

    2011-12-01

    The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are

  11. Economic evaluation of a crop rotation portfolio for irrigated farms in central Chile

    Directory of Open Access Journals (Sweden)

    Jorge González U

    2013-09-01

    Full Text Available The sustainable use of productive resources by agricultural producers in the central valley of Chile should be compatible with economic results so that producers can select an appropriate rotation or succession of annual crops and pasture. The objective of this work was to evaluate the economic behavior of four food crop and supplementary forage rotations using indicators of profitability and profit variability. Productive data were used from a long-term experiment (16 yr in the central valley of Chile under conditions of irrigation. With productive data and information on historic input/output prices, the real net margin per rotation (RNMR and its coefficient of variation (CV were determined. The results indicated that the highest economic benefits and greatest economic stability were obtained with rotations that only included crops, namely sugar beet (Beta vulgaris L. subsp. vulgaris-wheat (Triticum aestivum L.-bean (Phaseolus vulgaris L.-barley (Hordeum vulgare L. (CR2 and corn (Zea mays L.-wheat-bean-barley (CR4. These rotations included crops with low CV of the net margin, such as wheat, barley and beans, with values between 0.31 and 0.34. The rotations with crops and pasture, sugar beet-wheat-red clover (Trifolium pratense L. (2 (CR1 and corn-wheat-red clover (2 (CR3 had lower net margins and more variability of this indicator. Red clover had the highest CV value (1.00. The selection of crops for rotations and their sequence were determining factors in the economic behavior of rotations, affecting the level of RNMR and the degree of inter-annual variability of this indicator. Thus, differences among rotations of 47% in net margin were determined (CR2 vs. CR1, which only differed in the replacement of pasture with red clover (2 by bean-barley. The economic analysis based on the net margin and its variability allow for discriminating among rotations, providing valuable information for producers in deciding which crops to use in rotations.

  12. AgIIS, Agricultural Irrigation Imaging System, design and application

    Science.gov (United States)

    Haberland, Julio Andres

    Remote sensing is a tool that is increasingly used in agriculture for crop management purposes. A ground-based remote sensing data acquisition system was designed, constructed, and implemented to collect high spatial and temporal resolution data in irrigated agriculture. The system was composed of a rail that mounts on a linear move irrigation machine, and a small cart that runs back and forth on the rail. The cart was equipped with a sensors package that measured reflectance in four discrete wavelengths (550 nm, 660 nm, 720 nm, and 810 nm, all 10 nm bandwidth) and an infrared thermometer. A global positioning system and triggers on the rail indicated cart position. The data was postprocessed in order to generate vegetation maps, N and water status maps and other indices relevant for site-specific crop management. A geographic information system (GIS) was used to generate images of the field on any desired day. The system was named AgIIS (A&barbelow;gricultural I&barbelow;rrigation I&barbelow;maging S&barbelow;ystem). This ground based remote sensing acquisition system was developed at the Agricultural and Biosystems Engineering Department at the University of Arizona in conjunction with the U.S. Water Conservation Laboratory in Phoenix, as part of a cooperative study primarily funded by the Idaho National Environmental and Engineering Laboratory. A second phase of the study utilized data acquired with AgIIS during the 1999 cotton growing season to model petiole nitrate (PNO3 -) and total leaf N. A latin square experimental design with optimal and low water and optimal and low N was used to evaluate N status under water and no water stress conditions. Multivariable models were generated with neural networks (NN) and multilinear regression (MLR). Single variable models were generated from chlorophyll meter readings (SPAD) and from the Canopy Chlorophyll Content Index (CCCI). All models were evaluated against observed PNO3- and total leaf N levels. The NN models

  13. Irrigation management in organic greenhouse

    NARCIS (Netherlands)

    Voogt, W.; Balendonck, J.; Berkelmans, R.; Enthoven, N.

    2017-01-01

    Irrigation in protected cultivation is essential due to the absence of natural precipitation. High evapotranspiration, due to higher temperature and prolonged cropping period, requires ample an adequate supply of water. The water supply in a greenhouse is solely carried out by irrigation and thus

  14. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  15. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    the entire fruit and wine industries are dependent on irrigation. Cropping in the Eastern and Northern Cape also relies heavily on irrigation. ..... The soils were described as deep, fine sandy, dominantly red, ..... crops. For example, leaves of deciduous fruit trees (apri- ..... Laboratory Handbook 60, USDA, Washington. 160 pp.

  16. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    Science.gov (United States)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    micrometeorological variables, vegetative status, and soil conditions. In this presentation, we present measured crop water footprints (total crop water consumption as blue and green water), crop water use efficiencies (water used per unit of agricultural production), and crop physiological status (PRI and NDVI index) under drought conditions (2015) and under average rainfall conditions (2016). We will use these data to evaluate the resilience to drought of these crops, which is crucial for the economy of the region. We will also evaluate the impact of agricultural water use for the local water balance and implications of irrigation practices for catchment-scale hydrological processes. Finally, we will explore the feasibility and potential of using CROPWAT 8.0 modelling software to generate estimates of crops water footprint for regional water planning decision-making and farm irrigation planning. The implications of these findings will be discussed in the context of the regional socio-hydrological system that is facing a likely increase in water scarcity due to climate change and demand intensification.

  17. Aerial thermal images to assess irrigation efficiency in 'Vitis vinifera' cv. Albariño

    Science.gov (United States)

    Gonzalez, Xesús Pablo; Fandiño, María; Rey, Benjamín J.; José Cancela, Javier

    2017-04-01

    Canopy temperature was defined as key data to irrigation management and to detect crop water stress (Jackson, 1982). Recently, temperature camera was installed on board in a Unmanned Aerial Vehicle (UAV), thus heterogeneity within field could be determined. Pereira et al. (2012) have defined the conceptual and terminological study of crop water use indicators, mainly water use efficiency (WUE) and water productivity (WP). Actually, it is crucial achieve higher WP and WUE, where crop yield variability between years must be reduced with the smallest irrigation water, but with a correct management of crop water stress during the season. In this study, Albariño cultivar grapevine, priority in Galicia (Spain) in Designation of Origen 'Rías Baixas', was assessed in relation to water productivity index, focus on irrigation treatments aspects, during 2016. Albariño vineyard was planted in 1996 on 110-Richter at a spacing of 3 × 2 m (1667 vines ha-1) (41°57 6 N, 8°49 26 W, elevation 101 m). Vines were trained to a vertical trellis system on a Guyot oriented in the East-West direction. Three irrigation treatments were applied: irrigation from budburst to maturation (T1), from flowering to maturation (T2), and from veraison to maturation (T3), moreover a rain-fed treatment was implemented. All WP index was referred to farm yield level (kg ha-1); where the denominator applied to WP TWUfarm, introduced rainfall and irrigation depth; to WP Irrig, only irrigation depth applied; was used. Moreover, crop water stress index (CWSI) was used to determine homogenize areas within experimental plot, using an UAV with a thermal camera (ThermoMAP, senseFly, SW) to achieve a final map with 14 cm per pixel resolution. During August 11th, at the end of veraison, camera was installed in an 'eBee Ag' UAV (senseFly, SW) with a median flight altitude of 75 m over ground level. Yield per hectare were recorded and total irrigation depth per treatment during the growing season from March to

  18. Integration of wireless sensor networks into automatic irrigation scheduling of a center pivot

    Science.gov (United States)

    A six-span center pivot system was used as a platform for testing two wireless sensor networks (WSN) of infrared thermometers. The cropped field was a semi-circle, divided into six pie shaped sections of which three were irrigated manually and three were irrigated automatically based on the time tem...

  19. Farm-based measures for reducing microbiological health risks for consumers from informal wastewater-irrigated agriculture

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay

    2010-01-01

    in developing countries as part of a multiple-barrier approach for health-risk reduction along the farm to fork pathway. Measures discussed include treatment of irrigation water using ponds, filters and wetland systems; water application techniques; irrigation scheduling; and crop selection. In addition...

  20. FEATURES OF MINERAL NUTRITION FOR TOMATO PLANTS WITH DRIP IRRIGATION SYSTEM IN OPEN FIELD CONDITION

    Directory of Open Access Journals (Sweden)

    P. M. Akhmetova

    2017-01-01

    Full Text Available Dagestan is the largest region with irrigation system of agriculture in Russia. Irrigated lands provide 70% of total plant production. The field cultivation is carried on arable land in plain region of the republic. The drip irrigation as an ecologically safe technology for watering is regarded as major means for vegetable production farming. This approach maintains the propitious level of water and air in the soil without surface and deep drainage of irrigating water. These irrigated lands are expected to be used first of all for valuable and profitable crops such as tomato that is a leading crop in Dagestan. The experimental work was carried out at OOO ‘Dagagrocomplex’, Aleksandro-Nevskoye, in Tarumovskiy region. The aim of the study was to determinate the optimal dose of mineral fertilizers and the way of their application to improve the productivity without quality loss. The complex analysis of the technology for tomato production under drip irrigation through nontransplanting culture showed its high efficiency, because volume and quality of yield directly depended on soil moisture and precise supporting of mineral nutrition rates. The maximal yield of tomato fruits, 88.7-94.5 t/ha was observed with once mineral fertilizer application at a dose of N180P135K60 with soil humidity 70-80% (field moisture capacity, and also at the dose of N180P135K60 with basic application of N100 in nutrition rate. The result of the study showed that the optimization of two factors, namely soil water rate and mineral nutrition, enabled to produce additionally 39.2 t/ha. It was shown the tight connection between yielding and its quality; when yielding 95 t/ha, the increased contents of dry matter to 7.01%, sugar to 3.8% vitamin C to 18.46% were noticed. The high quality of produced output was supported by pre-watering threshold of moisture at 75-80% (field moisture capacity, when once fertilizer application at a dose of N180P135K60. 

  1. Irrigation management in Mediterranean salt affected agriculture: how leaching operates

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2012-03-01

    Full Text Available In the frame of a crop rotation currently applied in a farm of the Apulian Tavoliere (Southern Italy, this paper reports the effect of brackish water irrigation on soil, outlines the corresponding salinity balance, formulates quantitative relations to model salt outflow below the soil root-layer and defines operational criteria to optimize irrigation management at farm level in order to control soil salinity through leaching. The general aim is to contribute to a sustainable use of the available water resources and a proper soil fertility conservation. A three-year trial (2007-2010 was carried out on a farm located close to the coast of the Manfredonia gulf (Mediterranean - Adriatic sea, where irrigation with brackish water is frequently practiced due to seawater intrusion into the groundwater. An especially designed experimental field-unit was set-up: the bottom of three hydraulically insulated plots was covered with a plastic sheet to intercept the percolating water and collect it into tanks by means of drain tubes. Each year a double crop cycle was applied to the soil; a spring-summer crop (tomato, zucchini and pepper, respectively was followed by a fall-winter crop (spinach, broccoli and wheat. Short “fallow” periods (completely bare soil were inserted between two crop cycles. Irrigation or rain completely restored crop water consumptions (with the exception of wheat, considered a rainfed crop and leaching was performed both unintentionally (by rainfalls or intentionally (supplying higher irrigation volumes whenever the soil electrical conductivity exceeded a fixed threshold. The soil electrical conductivity was periodically measured together with volume and electrical conductivity of irrigation and drainage water. All these measures allowed to draw-up the salt-balance of the soil, respectively at the beginning and the end of each crop cycle. Absolute and relative variations in soil salt content were interpreted with respect to absolute

  2. The impacts of climate change on irrigation and crop production in Northeast China and implications for energy use and GHG Emission

    Science.gov (United States)

    Yan, Tingting; Wang, Jinxia; Huang, Jikun; Xie, Wei; Zhu, Tingju

    2018-06-01

    The water-food-energy-GHG nexus under climate change has been gaining increasing attention from both the research and policy communities, especially over the past several years. However, most existing nexus studies are qualitative and explorative in nature. So far, very few studies provide integrated analysis of this nexus across all the four sectors. The purpose of this paper is to examine this nexus by assessing the effects of climate change on agricultural production through the change in water availability, evaluating the adjustment responses and resulting energy consumption and GHG emission, with the Northeast China as a case study. Based on our simulation results, by 2030, climate change is projected to increase water supply and demand gap for irrigation in Northeast China. Due to the increase in water scarcity, irrigated areas will decrease, and the cropping pattern will be adjusted by increasing maize sown areas and decreasing rice sown areas. As a result, the total output of crops and profits will clearly be reduced. Finally, energy consumption and GHG emission from irrigation will be reduced. This study suggests that climate change impact assessment fully consider the nexus among water, food, energy and GHG; however, more studies need to be conducted in the future.

  3. Innovations in Agriculture in Oregon: Farmers Irrigation District Improves Water Quality, Maximizes Water Conservation, and Generates Clean, Renewable Energy

    Science.gov (United States)

    The Hood River Farmers Irrigation District used $36.2 million in CWSRF loans for a multiple-year endeavor to convert the open canal system to a piped, pressurized irrigation system to maximize water conservation and restore reliable water delivery to crops

  4. Impacts of deficit irrigation and altered rooting patterns on soil structure and associated soil properties

    Science.gov (United States)

    A better understanding of belowground systems and overall management impacts on soil health is needed to improve crop production and long-term sustainability under deficit irrigation. This study investigates effects of deficit irrigation on rooting patterns in maize and subsequent impacts on soil pr...

  5. Expanding the Annual Irrigation Maps (AIM) Product to the entire High Plains Aquifer (HPA): Addressing the Challenges of Cotton and Deficit-Irrigated Fields

    Science.gov (United States)

    Rapp, J. R.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    The High Plains Aquifer (HPA) is the most extensively irrigated aquifer in the continental United States and is the largest major aquifer in North America with an area of 500,000 km2. Increased demand for agricultural products has led to expanded irrigation extent, but brought with it declining groundwater levels that have made irrigation unsustainable in some locations. Understanding these irrigation dynamics and mapping irrigated areas through time are essential for future sustainable agricultural practices and hydrological modeling. Map products using remote sensing have only recently been able to track annual dynamics at relatively high spatial resolution (30 m) for a large portion of the northern HPA. However follow-on efforts to expand these maps to the entire HPA have met with difficulty due to the challenge of distinguishing irrigation in crop types that are commonly deficit- or partially-irrigated. Expanding these maps to the full HPA requires addressing unique features of partially irrigated fields and irrigated cotton, a major water user in the southern HPA. Working in Google Earth Engine, we used all available Landsat imagery to generate annual time series of vegetation indices. We combined this information with climate covariables, planting dates, and crop specific training data to algorithmically separate fully irrigated, partially irrigated, and non-irrigated field locations. The classification scheme was then applied to produce annual maps of irrigation across the entire HPA. The extensive use of ancillary data and the "greenness" time series for the algorithmic classification generally increased accuracy relative to previous efforts. High-accuracy, representative map products of irrigation extent capable of detecting crop type and irrigation intensity within aquifers will be an essential tool to monitor the sustainability of global aquifers and to provide a scientific bases for political and economic decisions affecting those aquifers.

  6. Nitrogen replacement value of alfalfa to corn and wheat under irrigated Mediterranean conditions

    OpenAIRE

    Ballesta, A.; Lloveras, J.

    2010-01-01

    In crop rotations that include alfalfa (Medicago sativa L.), agronomic and environmental concerns mean that it is important to determine the N fertilizer contribution of this legume for subsequent crops in order to help to increase the sustainability of cropping systems. To determine the N fertilizer replacement value (FRV) of a 2-yr alfalfa crop on subsequent crops of corn (Zea mays L.) followed by wheat (Triticum aestivum L.) under irrigated Mediterranean conditions, two 4-yr rotations (alf...

  7. Irrigation of steppe soils in the south of Russia: Problems and solutions (Analysis of Irrigation Practices in 1950-1990)

    Science.gov (United States)

    Minashina, N. G.

    2009-07-01

    Experience in irrigation of chernozems in the steppe zone of Russia for a period from 1950 to 1990 is analyzed. By the end of this period and in the subsequent years, the areas under irrigation reduced considerably, and the soil productivity worsened. This was caused by the improper design of irrigation systems, on the one hand, and by the low tolerance of chernozems toward increased moistening upon irrigation, on the other hand. The analysis of the factors and regimes of soil formation under irrigation conditions shows that irrigation-induced changes in the soil hydrology also lead to changes in the soil physicochemical, biochemical, and other properties. In particular, changes in the composition of exchangeable cations lead to the development of solonetzic process. In many areas, irrigation of chernozems was accompanied by the appearance of solonetzic, vertic, saline, and eroded soils. The development of soil degradation processes is described. In general, the deterioration of irrigated chernozems was related to the absence of adequate experience in irrigation of steppe soils, unskilled personnel, improper regime of irrigation, and excessively high rates of watering. In some cases, the poor quality of irrigation water resulted in the development of soil salinization and alkalization. To improve the situation, the training of personnel is necessary; the strategy of continuous irrigation should be replaced by the strategy of supplementary irrigation in the critical periods of crop development.

  8. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia

    Science.gov (United States)

    Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2015-01-01

    Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study. PMID:26858563

  9. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    Science.gov (United States)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  10. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  11. Potential microbial risk factors related to soil amendments and irrigation water of potato crops.

    Science.gov (United States)

    Selma, M V; Allende, A; López-Gálvez, F; Elizaquível, P; Aznar, R; Gil, M I

    2007-12-01

    This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons. The natural microbiota and potentially pathogenic micro-organisms were evaluated in the soil amendment, irrigation water, soil and produce. Uncomposted amendments and residual and creek water samples showed the highest microbial counts. The microbial load of potatoes harvested in spring was similar among the tested farms despite the diverse microbial levels of Listeria spp. and faecal coliforms in the potential risk sources. However, differences in total coliform load of potato were found between farms cultivated in the autumn. Immunochromatographic rapid tests and the BAM's reference method (Bacteriological Analytical Manual; AOAC International) were used to detect Escherichia coli O157:H7 from the potential risk sources and produce. Confirmation of the positive results by polymerase chain reaction procedures showed that the immunochromatographic assay was not reliable as it led to false-positive results. The potentially pathogenic micro-organisms of soil amendment, irrigation water and soil samples changed with the harvest seasons and the use of different agricultural practices. However, the microbial load of the produce was not always influenced by these risk sources. Improvements in environmental sample preparation are needed to avoid interferences in the use of immunochromatographic rapid tests. The potential microbial risk sources of fresh produce should be regularly controlled using reliable detection methods to guarantee their microbial safety.

  12. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  13. Design of an automatic sprinkler irrigation system for the Welsh onion growing, in La Puerta farm (Tota-Boyacá

    Directory of Open Access Journals (Sweden)

    Jorge Armando Pinto-Medina

    2012-12-01

    Full Text Available This paper presents the design for automating sprinkler irrigation system in a Welsh onion growing, which poses the required parameters, establishes the differences, advantages and results related to the traditional irrigation system used in this region (Tota, Boyacá. Starting from the resources owned by the farming unit, calculations of water requests of the plant, taking into account the crop evapotranspiration, the irrigation planning with certain factors on the basis of effective storage of soils. Two different technologies for the design are presented: hard-wired and programmable logic. The hard-wired logic system is developed as an automatic cyclical sequence with four work timed stages; on the other hand, the programmable logic controller PLC used, is the Easy-512-DC of Moller, which is provided with eight digital inputs and four relay outputs, programmed in Ladder according to the sequence of the process.

  14. The Effect of Different Levels of Irrigation and Nitrogen Fertilizer on Yield and Water Use Efficiency of Potato in Subsurface Drip Irrigation

    Directory of Open Access Journals (Sweden)

    Mohammad Jolaini

    2017-06-01

    Full Text Available Introduction: After wheat, rice and corn, potato is the fourth most important food plant in the world. In comparison with other species, potato is very sensitive to water stress because of its shallow root system: approximately 85% of the root length is concentrated in the upper 0.3-0.4 m of the soil. Several studies showed that drip irrigation is an effective method for enhancing potato yield. Fabeiro et al. (2001 concluded that tuber bulking and ripening stages were found to be the most sensitive stages of water stress with drip irrigation. Water deficit occurring in these two growth stages could result in yield reductions. Wang et al. (2006 investigated the effects of drip irrigation frequency on soil wetting pattern and potato yield. The results indicated that potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency while high frequency irrigation enhanced potato tuber growth and water use efficiency (WUE. Though information about irrigation and N management of this crop is often conflicting in the literature, it is accepted generally that production and quality are highly influenced by both N and irrigation amounts and these requirements are related to the cropping technique. Researches revealed that nitrogen fertilizers play a special role in the growth, production and quality of potatoes. Materials and Methods: A factorial experiment in randomized complete block design with three replications was carried out during two growing seasons. Studied factors were irrigation frequency (I1:2 and I2:4 days interval and nitrogen fertilizer levels (applying 100 (N1, 75 (N2 and 50 (N3 % of the recommended amount. Nitrogen fertilizer was applied through irrigation water. In each plot two rows with within-and between-row spacing of 45 and 105 cm and 20 m length. The amount of nitrogen fertilizer for the control treatment was determined by soil analysis (N1. In all treatments, nitrogen fertilizer

  15. Assessing the performance of surface and subsurface drip systems on irrigation water use efficiency of citrus orchards in Spain

    Science.gov (United States)

    Amparo Martinez-Gimeno, Maria; Provenzano, Giuseppe; Bonet, Luis; Intrigliolo, Diego S.; Badal, Eduardo; Ballestrer, Carlos

    2017-04-01

    In Mediterranean countries, water scarcity represents a real environmental concern at present and, according to the current climate change models predictions, the problem will be amplified in the future. In order to deal with this issue, application of strategies aimed to optimize the water resources in agriculture and to increase water use efficiency have become essential. On the one hand, it is important the election of the appropriate irrigation system for each particular case. On the other hand, identify the best management options for that specific irrigation system is crucial to optimize the available water resources without affecting yield. When using water saving strategies, however, it is a must to monitor the soil and/or crop water status in order to know the level of stress reached by the plants and to avoid levels that could lead to detrimental effects on yield. Stem water potential, ψstem, expressing the instantaneous condition of crop water stress, is considered a robust indicator of crop water status. The main objective of this study was to assess the performance of a surface (DI) and subsurface (SDI) drip irrigation system in a citrus orchard with 7 (DI7, SDI7) or 14 emitters (DI14, SDI14) per plant, in terms of irrigation water use efficiency (IWUE) and possible amount of water saving. The experiment was carried out in 2014 and 2015 in Alberique, Spain, (39˚ 7'31" N, 0˚ 33'17" W), in a commercial orchard (Citrus clementina, Hort. ex Tan. 'Arrufatina') in which four different treatments with three replications (12 sub-plots) were prepared according to a complete randomized block design. Irrigation doses and timing were scheduled based on the estimated maximum crop evapotranspiration corrected according to measurements of ψstem and soil water content, and weather forecasts. In order to limit the maximum crop water stress, the thresholds of ψstem were assumed in the range between -0.8 and -1.0 MPa from January to June and between -1.0 and -1

  16. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  17. performance evaluation of sprinkler irrigation system at mambilla

    African Journals Online (AJOL)

    HOD

    ratio (DPR), irrigation productivity (IP), labour requirements and water quality. Standard procedure was ... The exchangeable cations analysis of Kakara irrigation ... Keywords: Tea, irrigation System, Performance Evaluation. 1. INTRODUCTION.

  18. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    Science.gov (United States)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  19. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, nutrient concentrations, and plant nutrition and growth

    Science.gov (United States)

    Liming agents in irrigation water, typically associated with carbonates and bicarbonates of calcium and magnesium, contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient availability imbalan...

  20. How much water do we need for irrigation under Climate Change in the Mediterranean?

    Science.gov (United States)

    Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi

    2014-05-01

    Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.

  1. Yield loss and economic thresholds of yellow nutsedge in irrigated rice as a function of the onset of flood irrigation

    Directory of Open Access Journals (Sweden)

    Nixon da Rosa Westendorff

    2014-03-01

    Full Text Available Yellow nutsedge (Cyperus esculentus is adapted to flooding and reduces yield in irrigated rice. Information on the competitive ability of this weed with the crop and the size of the economic damage caused is lacking. Mathematical models quantify the damage to crops and support control decision-making. This study aimed to determine yield losses and economic thresholds (ET of this weed in the culture according to weed population and time of onset of irrigation of the crop. The field study was conducted in the agricultural year of 2010/2011 in Pelotas/RS to evaluate the competitive ability of BRS Querência in competition with different population levels of yellow nutsedge and two periods of onset of flood irrigation (14 and 21 days after emergence. The hyperbolic model satisfactorily estimated yield losses caused by yellow nutsedge. Population of yellow nutsedge was the variable most fitted to the model. The delay of seven days for the beginning of rice irrigation causes decrease in competitive ability of BRS Querência, and based on the ET calculated to the price paid for rice, it is necessary between two and thirteen plants m-2 weed to justify the control in the first and second period of irrigation, respectively. Increases in yield, price paid for rice and control efficiency of the herbicide, besides reduction of costs of controlling promote reduction of ET of yellow nutsedge in rice crops, justifying the adoption of control measures even at smaller weed population.

  2. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMIS). Thinking along

  3. Assesing the suitability of water for irrigation theoretical and practical approach

    International Nuclear Information System (INIS)

    Hannan, A.; Javad, M.A.; Arif, M.; Rashid, A.

    2006-01-01

    Forced by the surface water shortage and prevalent drought like conditions in the country the farmers have started exploiting groundwater resource. On the other hand, seventy percent of the groundwater being marginal to unfit is a threat to the sustainability of irrigated agriculture. The judicious groundwater exploitation and application has also become imperative in context of ever increasing demographic pressure on soil, crop and water resources. Different classes of irrigation waters established by various research scientists / organizations within the country or abroad are not ultimate under all conditions but these serve as general guidelines. In some cases brackish water requires only minor modification under existing irrigation and ogronomic practices, while in most of the cases it requires major changes regarding type of crops grown, method of water application and the use of soil and water amendments. Therefore, before recommending water for irrigation. Soil characteristics, water management practices, drainage condition of the filed and climatic events must be taken into account as waters generally classified unsuitable for irrigation can be used successfully to grow crops without long term hazardous consequences to crops or soils. This can be attempted simply with the use of improved farming and management practices. Use of brackish water for irrigation may increase the resource base for irrigated agriculture in Pakistan. This article reviews various water classification schemes, salinity-crop yield interrelation with detailed discussion on brackish water application and associated problems. The article also covers a number of management options so as to mitigate the problem and sustain food security in the country. (author)

  4. Assessment of irrigation schemes in Turkey based on management ...

    African Journals Online (AJOL)

    This suggests that the WUAs-operated schemes are not optimally managed, possibly due to factors such as inappropriate crop pattern and intensity, irrigation infrastructure, lack of an effective monitoring and evaluation system, insufficient awareness among managers and farmers, or unstable administrative structure.

  5. Greenhouse Gas Emissions and Global Warming Potential of Traditional and Diversified Tropical Rice Rotation Systems including Impacts of Upland Crop Management Practices i.e. Mulching and Inter-crop Cultivation

    Science.gov (United States)

    Janz, Baldur; Weller, Sebastian; Kraus, David; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-04-01

    Paddy rice cultivation is increasingly challenged by irrigation water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from flooded double-rice systems to the introduction of well-aerated upland crop systems in the dry season. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will increase and soil organic carbon (SOC) stocks will most likely be volatilized in the form of carbon dioxide (CO2). We measured greenhouse gas (GHG) emissions at the International Rice Research Institute (IRRI) in the Philippines to provide a comparative assessment of the global warming potentials (GWP) as well as yield scaled GWPs of different crop rotations and to evaluate mitigation potentials or risks of new management practices i.e. mulching and inter-crop cultivation. New management practices of mulching and intercrop cultivation will also have the potential to change SOC dynamics, thus can play the key role in contributing to the GWP of upland cropping systems. To present, more than three years of continuous measurement data of CH4 and N2O emissions in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation have been collected. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH4 led to a significantly lower (pbalance but also with regard to soil fertility. New upland crop management practices where first implemented during land-preparation for dry season (July) 2015 where i) 6t/ha rice straw

  6. An Assessment of Direct on-Farm Energy Use for High Value Grain Crops Grown under Different Farming Practices in Australia

    Directory of Open Access Journals (Sweden)

    Tek Maraseni

    2015-11-01

    Full Text Available Several studies have quantified the energy consumption associated with crop production in various countries. However, these studies have not compared the energy consumption from a broad range of farming practices currently in practice, such as zero tillage, conventional tillage and irrigated farming systems. This study examines direct on-farm energy use for high value grain crops grown under different farming practices in Australia. Grain farming processes are identified and “typical” farming operation data are collected from several sources, including published and unpublished literature, as well as expert interviews. The direct on-farm energy uses are assessed for 27 scenarios, including three high value grain crops―wheat, barley and sorghum―for three regions (Northern, Southern and Western Australia under three farming conditions with both dryland (both for conventional and zero-tillage and irrigated conditions. It is found that energy requirement for farming operations is directly related to the intensity and frequency of farming operations, which in turn is related to tillage practices, soil types, irrigation systems, local climate, and crop types. Among the three studied regions, Western Australia requires less direct on-farm energy for each crop, mainly due to the easily workable sandy soils and adoption of zero tillage systems. In irrigated crops, irrigation energy remains a major contributor to the total on-farm energy demand, accounting for up to 85% of total energy use.

  7. Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems.

    Science.gov (United States)

    Boreux, Virginie; Kushalappa, Cheppudira G; Vaast, Philippe; Ghazoul, Jaboury

    2013-05-21

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables.

  8. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  9. COEFICIENTE DE CULTURA E RELAÇÕES HÍDRICAS DO CAFEEIRO, CULTIVAR CATUCAÍ, SOB DOIS SISTEMAS DE MANEJO DA IRRIGAÇÃO CROP COEFFICIENT AND WATER RELATIONSHIPS OF COFFEE CATUCAÍ CULTIVAR UNDER TWO SYSTEMS OF IRRIGATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Tiago Roberto Wehr

    2007-10-01

    study was to determine the crop coefficient (kc, diffusion resistance and leaf water potential coffee, Catucaí cultivar, in blooming and grain formation phases, submitted to two irrigation system management. The coffee evapotranspiration was determined by soil water balance, and crop evapotranspiration was assessed by Penman-Monteith (FAO-56 method. The irrigation application times were determined in two management systems: based on the percentage wetted area (P, and based on the location coefficient (Kl. The results allowed to conclude that the irrigation management using the location coefficient provided an increase of the irrigation application time, and, consequently, increasing the irrigation depth and the crop coefficient values, which reached the mean of 1.12. For the management system based on the percentage wetted area, the mean value of the crop coefficient, in the appraised period, was 1.06. The mean diffusion resistance and leaf water potential were lower when the management system was adopted with base in Kl, which provided an increase of the transpiration and, consequently, of kc.

    KEY-WORDS: Evapotranspiration; diffusion resistance; leaf water potential.

  10. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    Science.gov (United States)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  11. Scope for improved eco-efficiency varies among diverse cropping systems.

    Science.gov (United States)

    Carberry, Peter S; Liang, Wei-li; Twomlow, Stephen; Holzworth, Dean P; Dimes, John P; McClelland, Tim; Huth, Neil I; Chen, Fu; Hochman, Zvi; Keating, Brian A

    2013-05-21

    Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.

  12. An investigation into the energy use in relation to yield of traditional crops in central Himalaya, India

    International Nuclear Information System (INIS)

    Chandra, Abhishek; Saradhi, P. Pardha; Rao, K.S.; Saxena, K.G.; Maikhuri, R.K.

    2011-01-01

    Agrobiodiversity and agroecosystem management have changed in central Himalaya due to increasing emphasis on market economy and the motive 'maximization of profit'. Such changes have benefited local people in economic terms, but at the same time increased their vulnerability to environmental and economic risks. The present study addressed the issue of how the ecological functions that are provided by agrobiodiversity translate into tangible benefits for the society. Important characteristics of agrodiversity management are the use of bullocks for draught power, human energy as labour, crop residues as animal feed and animal waste mixed with forest litter as organic input to restore soil fertility levels. The present analysis of resource input-output energy currency in traditional crop production indicated that inputs into different crop systems were significantly higher during kharif season compared to rabi season both under rainfed and irrigated conditions. The maximum input for crop during rabi season (second crop season) was about 31% of that of kharif season (first crop season after fallow) under rainfed conditions. Under irrigated conditions the rabi season input was about 63% of kharif season input. Under rainfed conditions, paddy sole cropping required maximum inputs (231.31 GJ/ha) as compared to mustard sole cropping (11.79 GJ/ha). The present investigation revealed that the total energy inputs and outputs are higher for irrigated agriculture as compared to rainfed system, the difference in inputs is about 5 fold and outputs is about 2 fold. The output-input ratio showed that irrigated systems have higher values as compared to rainfed systems. -- Highlights: → Agriculture continues to be biggest employment provider in the region. → Ecological functions that are provided by agrobiodiversity translate into tangible benefits for the society. → Analysis of resource input-output energy currency in traditional crop production. → Improvements in crop

  13. A rapid appraisal process on an irrigation system in Pakistan; Evaluacion rapida de una zona de riego tipica de Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Carmona, Victor Manuel; Ojeda-Bustamante, Waldo [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico); Contijoch, Manuel [Banco Mundial (Mexico)

    2006-07-15

    This paper presents the results obtained on the implementation of a rapid appraisal process on an irrigation system in the province of Punjab in Pakistan. The purpose of the evaluation was to know the present irrigation service quality and to propose some alternative to improve it. The evaluation results were: the canal inflow is smaller than peak crop water requirement; net aquifer loss; crops are always under stress which is reflected on low crop yields, the secondary canal network has not control structures and was not designed for rotation, insufficient human-human communication between canal operators; the operators have no complementary training course to enhance their capacity; discrepancy between the service the canal is supposed to provide and the real service it offers. The suggested actions to improve the irrigation service were: the irrigation service must be client oriented; the irrigation users should participate to determine the irrigation service characteristics; the difference between actual and stage irrigation service must be eliminated; clear definition on water allocation; implement a modernization program to provide the irrigation service required. The evaluation methodology used can be applied in other countries like Mexico for the analysis of large irrigation systems making an optimal use of time and resources. [Spanish] En el presente trabajo se muestran los resultados obtenidos al aplicar una metodologia de evaluacion rapida de sistemas de riego a una zona de la provincia del Punjab, Pakistan. El objetivo de la evaluacion fue conocer el estado actual del servicio de riego que ofrece la agencia responsable del manejo del riego en un distrito del Punjab y proponer alternativas para mejorarlo. Los principales resultados de esta evaluacion fueron los siguientes: la falta de capacidad de los canales, el abatimiento neto del acuifero; el estres hidrico continuo de los cultivos, que propicia un bajo rendimiento; la red secundaria de canales no

  14. Utilizing on-farm best management practices: Managing Nitrate Leaching Using Evapotranspiration Based Irrigation Methods

    Science.gov (United States)

    Zaragosa, I.; Melton, F. S.; Dexter, J.; Post, K.; Haffa, A.; Kortman, S.; Spellenberg, R.; Cahn, M.

    2017-12-01

    In efforts to provide tools to allow farmers to optimize and quantify water usage and fertilizer applications, University of California Cooperative Extension (UCCE) developed the CropManage irrigation and nitrogen scheduling tool that provides real time evapotranspiration (ETc) based irrigation recommendations and fertilizer recommendations on a per field basis. CropManage incorporates satellite based estimates of fractional cover from web data services from the Satellite Irrigation Management Information Support (SIMS) system developed by NASA Ames Research Center in collaboration with California State University Monterey Bay (CSUMB). In this study, we conducted field trials to quantify the benefits of using these tools to support best management practices (BMPs) for irrigation and nutrient management in strawberries and lettuce in the Salinas Valley, California. We applied two different irrigation treatments based on full replacement (100%) of crop evapotranspiration (ETc), and irrigation at 130% of ETc replacement to approximate irrigation under business as usual irrigation management. Both field studies used a randomized block design with four replicates each. We used CropManage to calculate the 100% and 130% ETc replacement requirements prior to each irrigation event. We collected drainage volume and samples and analyzed them for 8500 to nitrate as (NO3-) concentrations. Experimental results for both strawberries and lettuce showed a significant decrease in the percentage of applied nitrogen leached for the 100% ETc replacement treatment against the 130% ETc replacement treatment. For strawberries, we observed that 24% of applied nitrogen was leached under the 100% ETc replacement treatment, versus 51% of applied nitrogen that was leached under the 130% ETc replacement treatment. For lettuce, we observe that 2% of the applied nitrogen leached bellow the soil profile, versus 6% of the applied nitrogen for the 130%ETc replacement treatment. In both experiments

  15. Assessment of water use and its productivity in the Spanish irrigation district "Río Adaja"

    Science.gov (United States)

    Rodriguez-Sinobas, Leonor; Naroua, Iliassou; Sánchez-Calvo, Raúl

    2015-04-01

    A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District "Río Adaja" that has analyzed the water use efficiency and the water productivity indicators for the main crops during the first three years of operation (2010/2011, 2011/2012 and 2012/2013). A soil water balance model was applied taking into account climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman-Monteith with the application of the dual crop coefficient and by considering the readily available soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP). The results show that the irrigation district applied deficit irrigation in most crops (ARIS<1), and also improved water productivity. This was higher in 2010/2011 which showed the highest effective precipitation Pe. The IWP (€/m3) index varied among crops with the highest values for onion (4.14), potato (2.79), carrot (1.37) and barley (1.21) for the first year and, onion (1.98), potato (1.69), carrot (1.70) and barley (1.16) in the second year. Thus, these crops would be a proper cropping pattern to maximize the gross income in the irrigation district.

  16. A coupled agronomic-economic model to consider allocation of brackish irrigation water

    Science.gov (United States)

    Ben-Gal, Alon; Weikard, Hans-Peter; Shah, Syed Hamid Hussain; van der Zee, Sjoerd E. A. T. M.

    2013-05-01

    In arid and semiarid regions, irrigation water is scarce and often contains high concentrations of salts. To reduce negative effects on crop yields, the irrigated amounts must include water for leaching and therefore exceed evapotranspiration. The leachate (drainage) water returns to water sources such as rivers or groundwater aquifers and increases their level of salinity and the leaching requirement for irrigation water of any sequential user. We develop a conceptual sequential (upstream-downstream) model of irrigation that predicts crop yields and water consumption and tracks the water flow and level of salinity along a river dependent on irrigation management decisions. The model incorporates an agro-physical model of plant response to environmental conditions including feedbacks. For a system with limited water resources, the model examines the impacts of water scarcity, salinity and technically inefficient application on yields for specific crop, soil, and climate conditions. Moving beyond the formulation of a conceptual frame, we apply the model to the irrigation of Capsicum annum on Arava Sandy Loam soil. We show for this case how water application could be distributed between upstream and downstream plots or farms. We identify those situations where it is beneficial to trade water from upstream to downstream farms (assuming that the upstream farm holds the water rights). We find that water trade will improve efficiency except when loss levels are low. We compute the marginal value of water, i.e., the price water would command on a market, for different levels of water scarcity, salinity and levels of water loss.

  17. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Science.gov (United States)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  18. Marketable yield of onion under different irrigation depths, with and without mulch

    Directory of Open Access Journals (Sweden)

    Daniel F. de Carvalho

    Full Text Available ABSTRACT The objectives of this study were to obtain the onion crop coefficients and evaluate the influence of different irrigation depths (0, 22, 45, 75 and 100% of crop evapotranspiration on marketable yield and quality of onion bulbs cultivated with and without mulch of elephant grass. The experiment was carried out in Seropédica, RJ, Brazil, from May to September 2012, in a Red Yellow Argisol. The experimental design was in randomized blocks in split plots, with 10 treatments and seven replicates. Irrigation management was performed through soil water balance using the Time Domain Reflectometry technique, with probes installed horizontally at 7.5 and 22.5 cm depths. The use of mulch allowed the application of smaller irrigation depths, leading to lower crop coefficient (18% in stage II and 3% in stage III in comparison to the crop without mulch. Irrigation depths associated with the use of mulch influenced the evaluated production variables, proving to be an alternative to increase marketable yield and quality of onion bulbs, with lower irrigation depth.

  19. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  20. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    Science.gov (United States)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  1. Technical and Sociological Investigation of Impacts in Using Lignite Mine Drainage for Irrigation - A Case Study

    Science.gov (United States)

    Murugappan, A.; Manoharan, A.; Senthilkumar, G.; Krishnamurthy, J.

    2017-07-01

    Irrigated farming depends on an ample supply of water compatible quality. Presently, a lot of irrigation projects have to depend on inferior quality and not so enviable sources of water supply. In order to prevent troubles during usage of such water supplies of poor quality, there must be meticulous preparation to ensure that the water available with such quality characteristics is put to best use. The effect of water quality upon soil and crops must be better understood in choosing fitting options to manage with impending water quality associated troubles that might decrease soil and crop productivity under existing circumstances of water use. Two tanks (small sized reservoirs) namely, Walajah Tank and Perumal Tank in Cuddalore District, used for irrigation, receive mine drainage water pumped out continuously from the open cast lignite mines of the NLC India Limited, Neyveli, Tamilnadu State. This water has been used by the farmers in the irrigated commands of both Walajah Tank and Perumal Tank for more than three decades. Recently, the beneficiaries had raised fears on the quality of mine drainage waters they had been using for raising crops in the commands of both the tanks. They opined that the coal dust laden mine water used for irrigation had affected the crop yields. This incited us to take up a study to (i) assess the status of quality of surface waters released from the two tanks for irrigation in the respective command areas and (ii) assess the likely impacts of quality of water on soil and on growth and productivity of crops cultivated in the command areas. Further to the technical evaluation of the impacts, a structured questionnaire survey was also conducted among the farmers and the common public in the study area. The findings of the survey confirmed with the outcome of the technical assessment in that the mine drainage had a poor impact in the cultivable command area of Walajah tank system while such impacts were less significant in most parts of

  2. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed

    Science.gov (United States)

    Zwart, Sander J.; Hein, Lars

    2018-01-01

    In recent decades, there have been substantial increases in crop production in sub-Saharan Africa (SSA) as a result of higher yields, increased cropping intensity, expansion of irrigated cropping systems, and rainfed cropland expansion. Yet, to date much of the research focus of the impact of climate change on crop production in the coming decades has been on crop yield responses. In this study, we analyse the impact of climate change on the potential for increasing rainfed cropping intensity through sequential cropping and irrigation expansion in central Benin. Our approach combines hydrological modelling and scenario analysis involving two Representative Concentration Pathways (RCPs), two water-use scenarios for the watershed based on the Shared Socioeconomic Pathways (SSPs), and environmental water requirements leading to sustained streamflow. Our analyses show that in Benin, warmer temperatures will severely limit crop production increases achieved through the expansion of sequential cropping. Depending on the climate change scenario, between 50% and 95% of cultivated areas that can currently support sequential cropping or will need to revert to single cropping. The results also show that the irrigation potential of the watershed will be at least halved by mid-century in all scenario combinations. Given the urgent need to increase crop production to meet the demands of a growing population in SSA, our study outlines challenges and the need for planned development that need to be overcome to improve food security in the coming decades. PMID:29513753

  3. Cotton Water Use Efficiency under Two Different Deficit Irrigation Scheduling Methods

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Baker

    2015-08-01

    Full Text Available Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE of cotton (Gossypium hirsutum L. In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST method with irrigation triggers set at 5.5 (ST_5.5 and 8.5 h (ST_8.5 and the Crop Water Stress Index (CWSI method with irrigation triggers set at 0.3 (CWSI_0.3 and 0.6 (CWSI_0.6. When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW control irrigated at 110% of potential evapotranspiration and a dry land (DL treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ≤ 0.05 peak near 3.6 to 3.7 kg ha−1 mm−1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield.

  4. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.).

    Science.gov (United States)

    Cardeñosa, Vanessa; Girones-Vilaplana, Amadeo; Muriel, José Luis; Moreno, Diego A; Moreno-Rojas, José M

    2016-07-01

    Demand for and availability of blueberries has increased substantially over recent years, driven in part by their health-promoting properties. Three blueberry varieties ('Rocío', V2, and V3) were grown under two cultivation systems (open-field and plastic tunnels) and subjected to two irrigations regimes (100% and 80% of crop evapotranspiration) in two consecutive years (2011-2012). They were evaluated for their phytochemical composition and antioxidant capacity. Genotype influenced the antioxidant capacity and the content of the three groups of phenolics in the blueberries. The antioxidant activity and total flavonols content increased when the blueberries were grown under open-field conditions. Deficit irrigation conditions led to additional positive effects on their phenolics (delphinidn-3-acetilhexoside content was increased under plastic tunnel with deficit irrigation). In conclusion, the amount of phenolic compounds and the antioxidant capacity of blueberries were not negatively affected by water restriction; Moreover, several changes were recorded due to growing system and genotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Estimation Of The Spatial Distribution Of Crop Coefficient (Kc) From Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Abou EI-Magd, I.H.

    2009-01-01

    Single crop coefficient factor (K c ) is an essential component for crop water allocation for efficient irrigation scheduling and irrigation water management. Kc is basically defined as the ratio of actual evapotranspiration and grass/alfalfa reference evapotranspiration and always measured by lysimeter in localized area in the field, which then generalized on the whole irrigated land. The lack of precise information about the crop coefficient particularly in our country together with both small sized fields and heterogeneity of agricultural crops calls for developing a new methodology for computing a real time crop coefficient from remotely sensed data. This paper discusses the methodology developed for obtaining a real time single crop coefficient from Landsat Satellite ETM + 7 imageries. The methodology was applied and optimized on one irrigation field with two different dates and crop cover in the northern Delta of Egypt

  6. Impact of water-fertilizer interaction on yields of crops

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Junejo, M.R.; Ghaffar, A.

    2002-01-01

    Water-fertilizer interaction was studied on wheat and cotton during crop seasons of 1995 to 1998 in the Fordwah Eastern Sadiqia (south), Irrigation and Drainage Project. Irrigation levels applied included 0.75, 1.00 and 1.25 times the evapotranspiration (ET), while fertilizer doses were 75, 100 and 125 percent of recommendations of NPK for district Bahawalnagar. The experiment was conducted at four different locations of the project, where soil was medium textured, free from salinity/alkalinity and sufficiently drained, with water table in the range of 2-3m from the soil surface. Wheat variety Inqalab-91 and cotton variety CLM-109 were sown at their recommended time of sowing, seed rate and management practices. Irrigation was applied in consideration of open-pan evaporation and crop co-efficient for the respective crop, when sum total of the products of pan-evaporation and KC values reached 7.5 cm. Irrigation was applied to all the plots according to treatment allowance, i.e. , with 25 percent cut and addition to .75 and 1.25 Et levels, respectively. The results indicated that irrigation levels had non-significant effect on wheat and cotton yields. The results clearly negate the concept of heavy irrigation, generally exercised by our farming community. Light irrigation as a results of 0.75 Et indication were equally effective: rather, these were economical and efficient under the scarce water availability. Fertilizer had somewhat significant response. Irrigation and fertilizer did not exhibit much significant interaction. In case of wheat, the two inputs were independent, while cotton had significant inter-dependence of the two variables. The experiment gave the conclusion that both wheat and cotton crops should be applied lighter irrigation and NPK fertilizer must be applied in compliance to recommendations, for efficient and economical use of the available crop-production resources. (author)

  7. Water reuse and cost-benefit of pumping at different spatial levels in a rice irrigation system in UPRIIS, Philippines

    Science.gov (United States)

    Hafeez, M. M.; Bouman, B. A. M.; Van de Giesen, N.; Mushtaq, S.; Vlek, P.; Khan, S.

    As agricultural water resources in Asia become increasingly scarce, the irrigation efficiency of rice must be improved. However, in this region there is very limited information available about water use efficiency across spatial levels in irrigation systems. This study quantifies the volume of water reuse and its related cost-benefits at five different spatial levels, ranging from 1500 ha to 18,000 ha, under gravity-fed irrigation system in Upper Pumpanga River Integrated Irrigation System (UPRIIS), Philippines. The major sources of water reuse are considered, namely groundwater pumping, pumping from creeks, combined use and irrigation supplies from check dams. The volume of water available from all four sources of water reuse was quantified through extensive measurements. Production functions were developed to quantify water-yield relationships and to measure the economic value of water reuse. This study was conducted during the dry season of 2001, which existed from 19 November 2000 until 18 May 2001. The water reuse by pumping and check dams was 7% and 22% of the applied surface water at District 1 level. The reuse of surface water through check dams increased linearly with 4.6 Mm 3 per added 1000 ha. Similarly, the total amount of reused water from pumping is equivalent to 30% of the water lost through rice evapotranspiration during the dry season 2001. The results showed that water reuse plays a dominant role in growing a rice crop during the dry season. The result showed no difference in pumping costs between the creek (US0.011/m 3) and shallow pumps (US0.012/m 3). The marginal value of productivity (MVP) of water reuse from creek (US0.044/m 3) was slightly higher than the water reuse through the pumping ground water (US0.039/m 3). Results also indicated that the total volume pumped per ha (m 3/ha) was ranging from 0.39 to 6.93 m 3/ha during the dry season. The results clearly indicate that the quantification of amount of water reuse is very crucial for

  8. IRRIGATION SCHEDULING CALCULATOR (ISC TO IMPROVE WATER MANAGEMENT ON FIELD LEVEL IN EGYPT

    Directory of Open Access Journals (Sweden)

    Samiha Abou El-Fetouh Hamed Ouda

    2017-10-01

    Full Text Available The developed model is MS excel sheet called “Irrigation Scheduling Calculator, ISC”. The model requires to input daily weather data to calculate daily evapotranspiration using Penman-Monteith equation. The model calculates water depletion from the root zone to determine when to irrigate and how much water should be applied. The charge from irrigation pump is used to calculate how many hours should the farmer run the pump to deliver the needed amount of water. ISC model was used to developed irrigation schedule for wheat and maize planted in El-Gharbia governorate. The developed schedules were compared to the actual schedules for both crops. Furthermore, CropSyst model was calibrated for both crops and run using the developed schedules by ISC model. The simulation results indicated that the calculated irrigation amount by ISC model for wheat was lower than actual schedule by 6.0 mm. Furthermore, the simulated wheat productivity by CropSyst was higher than measured grain and biological by 2%. Similarly, the calculated applied irrigation amount by ISC model for maize was lower than actual schedule by 79.0 mm and the productivity was not changed.

  9. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  10. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    Science.gov (United States)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in

  11. The effects of different irrigation levels on flowering and flower ...

    African Journals Online (AJOL)

    Water usage is a vital issue for all agricultural crops as well as for ornamental crops. To obtain high quality flowers, it is essential to supply water when it is required. A problem which is common with cut flower growers are determining when to irrigate and the amount of water to apply. The effect of two irrigation intervals (I1: ...

  12. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, and nutrient concentrations; and plant nutrition and growth

    Science.gov (United States)

    Liming agents (LA) in irrigation water, typically associated with carbonates and bicarbonates of calcium (Ca) and magnesium (Mg), contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient avail...

  13. Effect of Limited Drip Irrigation Regime on Yield and Yield Components of Sesame under Mediterranean Conditions

    Directory of Open Access Journals (Sweden)

    Panayiota PAPASTYLIANOU

    2017-05-01

    Full Text Available Sesame is one of the most important oilseed crops in the world. Irrigation is of great importance to sesame production due to its positive effect on growth parameters. Although sesame has good drought tolerance compared with many other crops, it is particularly susceptible to drought damage during the seedling, flowering and seed filling stages and this can lead to yield loss. The aim of this study was to determine the response of sesame landraces to different irrigation applications during the 2015 growing season. The experiment was set up as a split plot design with three replicates, four main plots (irrigation treatments, designated as 100%, 75% 50% and 0 of the daily crop evapotranspiration and two sub-plots (sesame landraces, Limnos and Evros. Different characteristics such as plant height, number of seeds per capsule, and number of capsules per plant, seed yield, 1000-seed weight and % capsules without seeds, were recorded. The results indicated that all traits except 1000-seed weight were significantly affected by irrigation regimes. Plant height, shattering losses and number of capsules per plant decreased with increasing water shortage. Seed yield and number of seeds per capsule were less affected by irrigation level and showed higher values in the 50% of the daily crop evapotranspiration treatment. Limnos produced higher seed yield and number of seeds per capsule under all irrigation regimes. Evros showed higher plant height and shattering losses than Limnos. The results of this study suggest that sesame landraces can use water efficiently, are locally adapted and associated with traditional farming systems.

  14. Participatory management reforms in irrigation sector of sindh

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2009-01-01

    Pakistan has been making efforts to restructuring the century old irrigation system by involving beneficiaries (water users) at various units of the irrigation system management. The main purposes of reforms are to improve O and M (Operation and Maintenance) of irrigation system, to make balance in expenditure and revenue, to improve crop production through efficient use of water, to maintain affordable drainage system and to adopt PWRM (Participatory Water Resource Management) approach. In these reforms, the Sindh provincial irrigation department was transferred to an autonomous body as SmA (Sindh Irrigation and Drainage Authority). Under SmA, CAWB (Canal Area Water Board) at each canal command area, water users association at watercourse level and Farmer Organizations at each secondary canal (Distributary/ Minor) command area were being formed. So far 335 FOs (Farmers Organizations) have been formed in Sindh. To evaluate the performance of FOs in their day to day activities such as water distribution, O and M of irrigation channels, conflict management and revenue (Abiana) collection, IMI (Institutional Maturity Index) of FOs is conducted. The objective IMI analysis was to assess the maturity of FOs in terms of organizational aspects, conflict resolution, financial aspects, water distribution, operation and maintenance, environmental aspects and capacity building of FOs. The IMI analyses identified the weaker aspects of the FOs and need of focus these aspects for improved performance of FOs through effective social mobilization and capacity building activities. (author)

  15. Field trials show the fertilizer value of nitrogen in irrigation water

    Directory of Open Access Journals (Sweden)

    Mike Cahn

    2017-04-01

    Full Text Available Increased regulatory activity designed to protect groundwater from degradation by nitrate-nitrogen (NO3-N is focusing attention on the efficiency of agricultural use of nitrogen (N. One area drawing scrutiny is the way in which growers consider the NO3-N concentration of irrigation water when determining N fertilizer rates. Four drip-irrigated field studies were conducted in the Salinas Valley evaluating the impact of irrigation water NO3-N concentration and irrigation efficiency on the N uptake efficiency of lettuce and broccoli crops. Irrigation with water NO3-N concentrations from 2 to 45 milligrams per liter were compared with periodic fertigation of N fertilizer. The effect of irrigation efficiency was determined by comparing an efficient (110% to 120% of crop evapotranspiration, ETc and an inefficient (160% to 200% of ETc irrigation treatment. Across these trials, NO3-N from irrigation water was at least as efficiently used as fertilizer N; the uptake efficiency of irrigation water NO3-N averaged approximately 80%, and it was not affected by NO3-N concentration or irrigation efficiency.

  16. Influence of local topography on precision irrigation management

    Science.gov (United States)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  17. Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis

    Science.gov (United States)

    Jiménez-Martínez, Joaquín; Candela, Lucila; Molinero, Jorge; Tamoh, Karim

    2010-12-01

    For semi-arid regions, methods of assessing aquifer recharge usually consider the potential evapotranspiration. Actual evapotranspiration rates can be below potential rates for long periods of time, even in irrigated systems. Accurate estimations of aquifer recharge in semi-arid areas under irrigated agriculture are essential for sustainable water-resources management. A method to estimate aquifer recharge from irrigated farmland has been tested. The water-balance-modelling approach was based on VisualBALAN v. 2.0, a computer code that simulates water balance in the soil, vadose zone and aquifer. The study was carried out in the Campo de Cartagena (SE Spain) in the period 1999-2008 for three different groups of crops: annual row crops (lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus). Computed mean-annual-recharge values (from irrigation+precipitation) during the study period were 397 mm for annual row crops, 201 mm for perennial vegetables and 194 mm for fruit trees: 31.4, 20.7 and 20.5% of the total applied water, respectively. The effects of rainfall events on the final recharge were clearly observed, due to the continuously high water content in soil which facilitated the infiltration process. A sensitivity analysis to assess the reliability and uncertainty of recharge estimations was carried out.

  18. assessment of injection of liquid rhizobial inoculum and traditional inoculation of soybean under furrow and drip irrigation

    International Nuclear Information System (INIS)

    Janat, M.; Kurdali, F.

    2008-01-01

    Soybean in naturally N 2 -fixing legume, but it needs artificial inoculation with appropriate strains of rhizobia when introduced to land not previously cultivated to the crop. As soybean is being introduced to Syria, inoculation with Bradyrhizobium japonicum is essential to ensure effective biological nitrogen fixation by the crop. The question is: what is the most effective mean of inoculation?. As Syria is a water-short country, we examined the possibility of applying the rhizobial inoculant in irrigation system (Biofertigation) in contrast with the conventional seed pelleting application. In a 2 year experiment at a research station near Damascus, we compared seed pelleting of the inoculant under furrow and drip irrigation, with repeated inoculation by injection of a liquid culture rhizobial inoculum through the drip system. Drip irrigation enhanced N 2 fixation by soybean regardless of inoculation technique ad repeated inoculation. Injection of the liquid rhizobial inoculum through drip irrigation system was shown to enhances the acquisition of atmospheric N 2 and improve N 2 fixation by soybean.(author)

  19. Economic impacts on irrigated agriculture of water conservation programs in drought

    Science.gov (United States)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  20. Double row spacing and drip irrigation as technical options in energy sorghum management

    Directory of Open Access Journals (Sweden)

    Neri Roncucci

    2014-02-01

    Full Text Available The effect of two row spacing configurations and four water supply levels was investigated on sweet and fibre sorghum in Central Italy for two consecutive years. Results highlighted the influence of both irrigation and row spatial configuration on crop productivity. Indeed, several studies have pointed out the positive response of sorghum to irrigation in Mediterranean climate, as in this environment water stress represents one of the main limiting factors on crop productivity. On the other hand, few attempts have been made to explore the role of row spacing on energy sorghum productivity. Results outlined an average increase in sorghum dry biomass yield ranging from +23% to +79% at variable rates of water supply as compared to rainfed control. The positive effect of irrigation was also observed on leaf area index and radiation use efficiency. Moreover, we observed a crop yield increase, from 9% to 20%, under double row spacing compared to the standard planting pattern (i.e. single row spacing. Finally, it was confirmed the efficient use of water by sorghum and the great ability of sorghum to increase its biomass yield in response to increasing volumes of water supplied. Therefore, this work suggests how row spacing configuration and drip irrigation could be feasible technical options to increase sorghum biomass yields in Mediterranean environments. These techniques should be experienced by farmers towards a sustainable intensification of current cropping systems.

  1. Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico.

    Science.gov (United States)

    Ruíz-Huerta, Esther Aurora; de la Garza Varela, Alonso; Gómez-Bernal, Juan Miguel; Castillo, Francisco; Avalos-Borja, Miguel; SenGupta, Bhaskar; Martínez-Villegas, Nadia

    2017-10-05

    Mobility of Arsenic (As) from metallurgical wastes in Matehuala, Mexico has been accounted for ultra-high concentration of As in water (4.8-158mg/L) that is used for recreational purposes as well as cultivation of maize. In this study, we (i) measured As concentrations in soils irrigated with this water, (ii) investigated the geochemical controls of available As, and (iii) measured bioaccumulation of As in maize. Water, soil, and maize plant samples were collected from 3 different plots to determine As in environmental matrices as well as water soluble As in soils. Soil mineralogy was determined by X-ray diffraction analysis. Bioaccumulation of As in maize plants was estimated from the bioconcentration and translocation factors. We recorded As built-up in agricultural soils to the extent of 172mg/kg, and noted that this As is highly soluble in water (30% on average). Maize crops presented high bioaccumulation, up to 2.5 times of bioconcentration and 45% of translocation. Furthermore, we found that water extractable As was higher in soils rich in calcite, while it was lower in soils containing high levels of gypsum, but As bioconcentration showed opposite trend. Results from this study show that irrigation with As rich water represents a significant risk to the population consuming contaminated crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ancestral irrigation method by kanis in Bolivia

    Science.gov (United States)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  3. IRRIMET: a web 2.0 advisory service for irrigation water management

    Science.gov (United States)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  4. Matching agricultural freshwater supply and demand: using industrial and domestic treated wastewater for sub-irrigation purposes

    Science.gov (United States)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan

    2017-04-01

    Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the

  5. A 12-Month Study of Food Crops Contaminated by Heavy Metals, Lusaka, Zambia

    Science.gov (United States)

    Holden, J. A.; Malamud, B. D.; Chishala, B. H.; Kapungwe, E.; Volk, J.; Harpp, K. S.

    2009-04-01

    We investigate heavy-metal contamination of irrigation water used for urban agriculture and subsequent contamination of food crops in Chunga, NW Lusaka, the capital of Zambia. Inhabitants of the Chunga area rely on urban agriculture as both a major source of income and food. From August 2004 to July 2005, monthly samples of irrigation water used and edible portions of food crops were taken from a farmer's plot at Chunga. The food crops (cabbage, Chinese cabbage, pumpkin leaves, rape, sweet potato leaves and tomatoes) are grown using irrigation throughout the year. Irrigation water samples and digested food crop samples were analysed using ICP-MS at the Department of Geology, Colgate University, USA for Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, Hg, Tl, Pb, and U. We find heavy-metal concentrations present in both irrigation water and food crop samples. Zambian sample concentrations were compared to Zambian and international legislative and guideline limits for concentrations of heavy metals in industrial effluent, heavy metals in irrigation water and heavy metals in foods. In irrigation water samples recommended national and/or international legislative limits for Al, Cr, Mn, Fe, Cu, Hg, Pb and U were exceeded. Limits for Hg were exceeded by up to 130 times. There were heavy-metal concentrations above recommended limits in food crops for Cr, Fe, Ni, Cu, Zn, Cd, Hg and Pb throughout the different food crops grown and throughout the year. In all 14 samples recommended limits for Cr, Fe and Hg were exceeded. Zambian legislated limits for food crops were exceeded by up to 16 times for Pb and 58 times for Hg. The results of this study show that heavy metal contamination is present in irrigation water used and food crops grown in urban agriculture in Chunga, Lusaka, Zambia. Recommended maximum limits for heavy metals in irrigation water and food are exceeded in some samples indicating there may be a risk to health.

  6. The maximum economic depth of groundwater abstraction for irrigation

    Science.gov (United States)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of

  7. Small-Scale Farmer Initiatives for Irrigating the Arid and Semi-Arid Lands of Kenya

    International Nuclear Information System (INIS)

    Itabari, J.K.; Nguluu, S.N.; Ikombo, B.M.; Wambua, J.M.; Gichangi, E.M.; Maina, J.N.

    1999-01-01

    A survey was undertaken in Machakos , Kitui, Makueni, Mwingi and Baringo districts to Identify the major systems currently being employed with a view to assessing there performance. In Machakos, Kitui, Makueni and Mwingi districts, the main sources of water were small earth dams (micro dams), with water harnessed from run off and nearby uncultivated or grazing lands. In Baringo district, the main source of water was adam constructed across a seasonal river called Wesegess. All micro dams were excavated by their owners using mainly manual labour and skills acquired from neighbours, supplemented by owner's initiates. In the areas in Eastern province, only horticultural crops are irrigated. In Baringo district, grain and horticultural crops than in grain crops underscoring their higher water demand and importance in the household cas flow. The main irrigation system employed in the Eastern province was spot, whereas furrows was widely used in Baringo district. Availability of water within the farm freed labour from fetching water long distances and shortened walking distances for livestock. It also facilitated cultivation of high value crops to improve farmers' household cash economy

  8. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources

    Directory of Open Access Journals (Sweden)

    Zeid A. Al-Othman

    2016-11-01

    Full Text Available We describe a comparative study of the concentration of different metals (e.g., Cd, Pb, As, Ni, Cu, Zn, Mn, and Cr in various parts of wheat plants (e.g., roots, stem, leaves and seeds collected at several locations in Khyber Pukhtoon Khaw, Pakistan. The wheat crop in these areas was irrigated using different irrigation sources, including rain, tube well, river, and canal. In wheat samples, the concentration of metals was analyzed using an atomic absorption spectrophotometer. Among the various parts of the plant, the roots had the highest levels of heavy metals, followed by the vegetative parts. By comparison, the seeds and grains had the lowest levels of heavy metals. The levels of heavy metals in all of the studied areas were not significantly localized to any particular area. The general order for the accumulation of studied metals in wheat was found to be Mn > Zn > Cu > Ni > Cr > As > Pb > Cd.

  9. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass

  10. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  11. Irrigation et paludisme : un couple infernal?

    Directory of Open Access Journals (Sweden)

    Mergeai, G.

    2016-01-01

    Full Text Available Irrigation and Malaria - a Terrible Combination?. Increasing agricultural productivity is a priority in most of the developing countries and using irrigation is one of the most efficient ways of achieving this goal. Almost half a billion people in the world contract malaria every year and approximately one million die as a result. The majority of these victims are farmers or members of their families. In infected areas, malaria continues to have major negative impacts on agricultural productivity. For example, in the Equateur province of the DRC, after access to production means, fevers are considered the second biggest obstacle to the development of agricultural activities. In the Ivory Coast, a study has shown that growers suffering from malaria were about half as productive as their healthy colleagues. The disease often strikes at the start of the rainy season when work begins again in the fields. It reduces the amount of land cultivated and affects the amount of care taken with crops. Agricultural practices influence the risk of contracting malaria. Irrigation, in particular, can encourage the proliferation of vectors of the disease and make it more likely to spread. This tendency can be observed in many locations where irrigated rice production is on the increase. Paradoxically, however, an increased number of mosquitoes does not systematically result in more malaria. In Ethiopia, malaria is more prevalent close to the micro-dams sponsored by the government, whereas, in Tanzania, there is less malaria in irrigated areas. Various theories can be put forward in order to explain this paradox. In particular, increased income due to higher rice yields enables farmers to purchase insecticide-treated mosquito nets. It also allows them to eat better, which strengthens their immune systems. It also appears that the negative impact of irrigation systems is greater in areas, in which immunity levels were low in the population prior to the creation of

  12. Optimization of the cropping pattern in Egypt

    Directory of Open Access Journals (Sweden)

    Sara Osama

    2017-12-01

    Full Text Available Continuous increase of population in Egypt, limited fresh water, poor maintenance and low efficiency of irrigation systems lead to a real burden on the Egyptian natural water resources. Accordingly, for Egypt, land and water resources management is considered an absolutely strategic priority. In this study, a linear optimization model is developed to maximize the net annual return from the three old regions of Egypt. Data for 28 crops in five years from 2008 to 2012 are being analyzed. The spatial variations of crops, irrigation water needs, crop yields and food requirements are incorporated in the model. The results show that there is a significant reduction in the allocated areas for onion, garlic, barley, flax, fenugreek, chickpeas, lentil and lupine since they are considered as non-strategic crops. On the other side, the allocated areas for strategic crops such as wheat, maize, clover, rice, sugar products and cotton remained almost the same to satisfy their actual food requirements. However, crops with high net returns such as tomatoes have increased substantially. The trend for the gross net benefit is decreasing and is expected to reach a lower value in year 2017. Different approaches and scenarios are analyzed. The developed model proposes a change in the cropping pattern in the old lands of Egypt to increase the gross net return without adding further any other expenses. Keywords: Cropping pattern, Linear programming, Net return, Optimization

  13. Coil irrigation in sugar cane (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Jesús Sánchez Gutiérrez

    2016-01-01

    Full Text Available This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the exploitation scheme. The machine´s working parameters were determined to meet the water needs, and increase crop´s overall yields. The evaluations and results achieved have contributed to new proposals for management and operation of coil irrigation, and they are important to increase its efficiency.

  14. Tracking antibiotic resistance genes in soil irrigated with dairy wastewater

    Science.gov (United States)

    In southern Idaho, the application of dairy wastewater to agricultural soils is a widely used practice to irrigate crops and recycle nutrients. In this study, small-scale field plots were irrigated monthly (6 times) with dairy wastewater (100%), wastewater diluted to 50% with irrigation (canal) wate...

  15. New soil water sensors for irrigation management

    Science.gov (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  16. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  17. Irrigation in dose assessments models

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Barkefors, Catarina

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  18. Economic performance of irrigation capacity development to adapt to climate in the American Southwest

    Science.gov (United States)

    Ward, Frank A.; Crawford, Terry L.

    2016-09-01

    Growing demands for food security to feed increasing populations worldwide have intensified the search for improved performance of irrigation, the world's largest water user. These challenges are raised in the face of climate variability and from growing environmental demands. Adaptation measures in irrigated agriculture include fallowing land, shifting cropping patterns, increased groundwater pumping, reservoir storage capacity expansion, and increased production of risk-averse crops. Water users in the Gila Basin headwaters of the U.S. Lower Colorado Basin have faced a long history of high water supply fluctuations producing low-valued defensive cropping patterns. To date, little research grade analysis has investigated economically viable measures for irrigation development to adjust to variable climate. This gap has made it hard to inform water resource policy decisions on workable measures to adapt to climate in the world's dry rural areas. This paper's contribution is to illustrate, formulate, develop, and apply a new methodology to examine the economic performance from irrigation capacity improvements in the Gila Basin of the American Southwest. An integrated empirical optimization model using mathematical programming is developed to forecast cropping patterns and farm income under two scenarios (1) status quo without added storage capacity and (2) with added storage capacity in which existing barriers to development of higher valued crops are dissolved. We find that storage capacity development can lead to a higher valued portfolio of irrigation production systems as well as more sustained and higher valued farm livelihoods. Results show that compared to scenario (1), scenario (2) increases regional farm income by 30%, in which some sub regions secure income gains exceeding 900% compared to base levels. Additional storage is most economically productive when institutional and technical constraints facing irrigated agriculture are dissolved. Along with

  19. What is the Optimal Water Productivity Index for Irrigated Grapevines? Case of 'Godello' and 'Albariño' cultivars

    Science.gov (United States)

    Fandiño, María; Martínez, Emma M.; Rey, Benjamín J.; Cancela, Javier J.

    2015-04-01

    Different studies have tackled the conceptual and terminological study of crop water use indicators, mainly water use efficiency (WUE) and water productivity (WP) (Pereira et al., 2012; Scheierling et al., 2014). The high number of stakeholders, working about agricultural water use (hydrology and hydrogeology, civil and irrigation engineering, agronomy and crop physiology, economics), has hindered the real improvement thereof, from a multidisciplinary perspective. For example, Flexas et al. (2010) reviewed the future improvements in water use efficiency in grapevines, from a physiological approach. In this study, two grapevine cultivars, priority in Galicia (Spain): 'Godello' (DO Valdeorras) and 'Albariño' (DO Rías Baixas, two locations), was assessed in relation to four water productivity index, focus on irrigation systems, agronomy and crop physiology aspects, during a wet year (2012). All WP index was referred to farm yield level (kg ha-1); where the denominator applied to WPTWU, include all components of soil water balance; to WPTWUfarm, introduced rainfall and irrigation depth; to WPIrrig, only irrigation depth applied; and to WPT, crop transpiration was used. In the last index, SIMDualKc model was used to partitioning crop evapotranspiration and cover crop transpiration. Different ranges of values was obtained for both cultivars, WPTWUfarm was higher in cv 'Godello' than in cv 'Albariño', 3.8 and 0.9 kg m-3 respectively. Average value to WPIrrig has showed: 17.6 kg m-3 for cv 'Albariño' and 15.5 kg m-3 for cv 'Godello', due to a reduction of 60% of irrigation depth in DO Rías Baixas. However, for both locations, higher WPIrrig was obtained to drip irrigation system versus subsurface drip irrigation. WPT showed a different tendency, rain-fed 'Godello' and surface drip irrigation 'Albariño' treatments obtained higher values (6.8 and 3.6 kg m-3), with higher WPT to cv 'Godello' for all treatments versus 'Albariño'. Results had showed that water

  20. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    Science.gov (United States)

    Thebo, A. L.; Drechsel, P.; Lambin, E. F.

    2014-11-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range.

  1. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    International Nuclear Information System (INIS)

    Thebo, A L; Drechsel, P; Lambin, E F

    2014-01-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range. (letter)

  2. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Science.gov (United States)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  3. Deficit irrigation of peach trees to reduce water consumption

    Science.gov (United States)

    Lack of water is a major limiting factor for production tree fruits such as peaches in the San Joaquin Valley of California and many other arid- or semi-arid regions in the world. Deficit irrigation can be used in some cropping systems as a water resource management strategy to reduce non-productiv...

  4. Information Technology Supports Integration of Satellite Imagery with Irrigation Management in California's Central Valley

    Science.gov (United States)

    Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...

  5. Modernisation strategy for National Irrigation Systems in the Philippines

    NARCIS (Netherlands)

    Delos Reyes, Mona Liza Fortunado

    2017-01-01

    The performance of publicly funded canal irrigation systems or more commonly called national irrigation systems (NIS) in the Philippines remained below expectations despite considerable system rehabilitation and improvement efforts. The continued suboptimal performances were attributed to

  6. EFFECT OF ALTERNATING WETTING AND DRYING IRRIGATION METHODS ON PHOTOSYNTHESIS AND TEMPERATURE OF RICE AND WEED PLANTS.

    Science.gov (United States)

    Reduced input systems such as alternating wetting and drying (AWD) and furrow irrigation can potentially reduce water costs and limit the release of greenhouse gases in rice production, but also can introduce unwanted crop stresses that compromise crop yield and quality, as well as introducing compl...

  7. Applications of Satellite Data to Support Improvements in Irrigation and Groundwater Management in California

    Science.gov (United States)

    Melton, F. S.; Huntington, J. L.; Johnson, L.; Guzman, A.; Morton, C.; Zaragoza, I.; Dexter, J.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Temesgen, B.; Trezza, R.; Frame, K.; Eching, S.; Grimm, R.; Hall, M.

    2017-12-01

    In agricultural regions around the world, threats to water supplies from drought and groundwater depletion are driving increased demand for tools to advance agricultural water use efficiency and support sustainable groundwater management. Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water resource managers with information that can be used to both optimize ag water use and improve estimates of groundwater withdrawals for irrigation. We describe the development of two remote sensing-based tools for ET mapping in California, including important lessons in terms of system design, partnership development, and transition to operations. For irrigation management, the integration of satellite data and surface sensor networks to provide timely delivery of information on crop water requirements can make irrigation scheduling more practical, convenient, and accurate. Developed through a partnership between NASA and the CA Department of Water Resources, the Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development and crop water requirements at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based interface and web data services. SIMS also provides an API that facilitates integration with other irrigation decision support tools, such as CropManage and IrriQuest. Field trials using these integrated tools have shown that they can be used to sustain yields while improving water use efficiency and nutrient management. For sustainable groundwater management, the combination of satellite-derived estimates of ET and data on surface water deliveries for irrigation can increase the accuracy of estimates of groundwater pumping. We are developing an OpenET platform to facilitate access to ET data from multiple models and accelerate operational

  8. The Influential Role of Sociocultural Feedbacks on Community-Managed Irrigation System Behaviors During Times of Water Stress

    Science.gov (United States)

    Gunda, T.; Turner, B. L.; Tidwell, V. C.

    2018-04-01

    Sociohydrological studies use interdisciplinary approaches to explore the complex interactions between physical and social water systems and increase our understanding of emergent and paradoxical system behaviors. The dynamics of community values and social cohesion, however, have received little attention in modeling studies due to quantification challenges. Social structures associated with community-managed irrigation systems around the world, in particular, reflect these communities' experiences with a multitude of natural and social shocks. Using the Valdez acequia (a communally-managed irrigation community in northern New Mexico) as a simulation case study, we evaluate the impact of that community's social structure in governing its responses to water availability stresses posed by climate change. Specifically, a system dynamics model (developed using insights from community stakeholders and multiple disciplines that captures biophysical, socioeconomic, and sociocultural dynamics of acequia systems) was used to generate counterfactual trajectories to explore how the community would behave with streamflow conditions expected under climate change. We found that earlier peak flows, combined with adaptive measures of shifting crop selection, allowed for greater production of higher value crops and fewer people leaving the acequia. The economic benefits were lost, however, if downstream water pressures increased. Even with significant reductions in agricultural profitability, feedbacks associated with community cohesion buffered the community's population and land parcel sizes from more detrimental impacts, indicating the community's resilience under natural and social stresses. Continued exploration of social structures is warranted to better understand these systems' responses to stress and identify possible leverage points for strengthening community resilience.

  9. Water-Yield Relations of Drip Irrigated Watermelon in Temperate Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2016-08-01

    Full Text Available The objective of the study, conducted in Vojvodina a northern part of the Serbia Republic, was to analyse the effect of drip irrigation on yield, evapotranspiration and water productivity of watermelon (Cirullus lanatus Thunb. grown with plasticulture. Irrigation was scheduled on the basis of water balance method. Daily evapotranspiration was computed using the reference evapotranspiration and crop coefficient. The yield of watermelon in irrigation conditions (37,28 t/ha was significantly higher compared to non irrigated (9,98 t/ha. Water used on evapotranspiration in irrigation conditions was 398 mm and 117 mm on non irrigated variant. The crop yield response factor of 1,04 for the whole growing season reveals that relative yield decrease was nearly equal to the rate of evapotranspiration deficit. The values of irrigation water use efficiency and evapotranspiration water use efficiency were 9,93 kg/m3 and 10,29 kg/m3 respectively. The determined results could be used as a good platform for watermelon growers in the region, in terms of improvement of the optimum utilization of irrigation water.

  10. Performance of cotton crop grown under surface irrigation and drip fertigation. I. seed cotton yield, dry matter production, and lint properties

    International Nuclear Information System (INIS)

    Janat, M.; Somi, G.

    2002-01-01

    reproductive-vegetative plant parts ratio decreased with increasing N input under drip fertigation. Water saving under drip fertigation exceeded 35% of irrigation water relative to surface irrigation of the cotton crop grown under the same conditions. (author)

  11. Salt and N leaching and soil accumulation due to cover cropping practices

    Science.gov (United States)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  12. Greenhouse evaluation of deficit irrigation on the growth of tomato ...

    African Journals Online (AJOL)

    Deficit irrigation is considered to be an important approach for crop cultivation in dry regions where water resources are scarce. Deficit irrigation can be used also to decrease the level of infections by some moisturedependent plant pests and diseases such as root-knot nematode disease. Therefore, deficit irrigation at levels ...

  13. Crop production management practices as a cause for low water ...

    African Journals Online (AJOL)

    Limited knowledge of irrigated crop production among farmers has been identified as one of the constraints to improved crop productivity, but research that investigates the relationship between farmer practices and productivity is lacking. A monitoring study was therefore conducted at the Zanyokwe Irrigation Scheme (ZIS) ...

  14. Key Challenges and Opportunities for Conjunctive Management of Surface and Groundwater in Mega-Irrigation Systems: Lower Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    Frank van Steenbergen

    2015-11-01

    Full Text Available This paper focuses on the scope of conjunctive management in the Lower Indus part of the Indus Basin Irrigation System (IBIS, and the contribution this could make towards food security and socio-economic development. The total Gross Command Area (GCA of the Lower Indus is 5.92 Mha, with a cultivable command area (CCA of 5.43 Mha, most of which is in Sindh Province. There is a limited use of groundwater in Sindh (about 4.3 Billion Cubic Meter (BCM for two reasons: first, there is a large area where groundwater is saline; and second, there is a high surface irrigation supply to most of the canal commands, e.g., average annual supply to rice command is 1723 mm, close to the annual reference crop evapotranspiration for the area, while there is an additional annual rainfall of about 200 mm. These high irrigation allocations, even in areas where groundwater is fresh, create strong disincentives for farmers to use groundwater. Consequently, areas are waterlogged to the extent of 50% and 70% before and after the monsoon, respectively, which contributes to surface salinity through capillary rise. In Sindh, about 74%–80% of the available groundwater recharge is lost in the form of non-beneficial evaporation. This gives rise to low cropping intensities and yields compared to fresh groundwater areas elsewhere in the IBIS. The drought of 1999–2002 has demonstrated a reduction in waterlogging without any corresponding reduction in crop yields. Therefore, in order to efficiently meet current water requirements of all the sectors, i.e., agriculture, domestic and industrial, an ab initio level of water reallocation and efficient water management, with consideration to groundwater quality and its safe yield, in various areas are recommended. This might systematically reduce the waterlogged areas, support greater cropping intensity than is currently being practiced, and free up water for horizontal expansion, such as in the Thar Desert.

  15. estimating water consumptive use for some crops under stress conditions using neutron scattering method

    International Nuclear Information System (INIS)

    Salama, M.A.A.A.

    2011-01-01

    Field experiment was conducted to study the influence of different levels of irrigation water salinity on actual evapotranspiration, water stress coefficient, yield and water use efficiency of both groundnut and wheat crops growing on sandy soil under trickle irrigation system located at 30 o 24 ' N latitude, 31 o 35 ' E longitude while the altitude is 20 m above the sea level.Four irrigation water salinity levels were used for both crops, they are; 2.4 (S 1 ), 2.7 (S 2 ), 3.3 (S 3 ) and 4.4 (S 4 ) dS m -1 , for groundnut and 4.9 (S 1 ), 6.3 (S 2 ), 8.7 (S 3 ) and 13 (S 4 ) dS m -1 , for wheat respectively besides a fresh water (FW) as a control treatment (0.5 dS m -1 ). Cattle manure was added as a soil amendment at a rate of 48 m 3 ha -1 . Neutron moisture meter was used to determine soil moisture content and depletion through the soil depths of 30, 45, 60, 75 and 90cm. Soil moisture content at 15 cm soil depth was determined gravimetrically. The applied irrigation water was 700 mm/season for groundnut and 550 mm/season for wheat based on 100 % of the recommended crop water requirements according to FAO No.33. (1979). The obtained results showed that the actual evapotranspiration (ET a ) and water stress coefficient (K s ) were slightly deceased by increasing the salinity of irrigation water especially under (S 4 ) irrigation salinity treatment for both crops.

  16. Heavy metals accumulation in edible part of vegetables irrigated ...

    African Journals Online (AJOL)

    Hassana Ibrahim Mustapha

    water quality and permissible levels of metals in food and water. It revealed that the heavy .... irrigation with partially treated or untreated sewage. This was reported by .... Reuse of domestic grey water for irrigation of food crops, unpublished ...

  17. Cowpea production as affected by dry spells in no-tillage and conventional crop systems

    Directory of Open Access Journals (Sweden)

    Rômulo Magno Oliveira de Freitas

    2013-12-01

    Full Text Available The objective of this study was to evaluate the effect of different periods of water shortage in no-tillage and conventional crop systems on cowpea yield components and grain yield in the Mossoró-RN region. For this, an experiment was conducted using two tillage systems (conventional and no-tillage subjected to periods of irrigation suspension (2; 6; 10; 14; 18 end 22 days, started at flowering (34 days after sowing. Plants were harvested 70 days after sowing, and the studied variables were: Pods length (CV, number of grains per pod (NGV, number of pods per plant (NPP, the hundred grains weight (PCG and grain yield (kg ha-1. The no-tillage system is more productive than the conventional under both irrigation and water stress treatments. The water stress length affected grain yield and all yield components studied in a negative way, except for the hundred grains weight. Among the systems studied, the no-tillage provides higher values for the yield components, except the hundred grains weight.

  18. Adapting irrigation management to water scarcity: constraints of plant growth, hydraulics and carbon assimilation.

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  19. CHARACTERIZATION OF TOMATO (Lycopersicum esculentum Mill. CROPPING SYSTEM IN THE STATE OF JALISCO, MÉXICO

    Directory of Open Access Journals (Sweden)

    Imelda Rosana Cih Dzul

    2011-05-01

    Full Text Available Cropping systems of tomatoes in the State of Jalisco, Mexico, were characterized variables useful to explain the technical and economic problems of these systems were prioritized. Five producing regions were identified: Sayula, La Cienega, Sierra de Amula, Costa Sur, and Zapotlan El Grande. A stratified random sampling was performed and face to face structured interviews with tomato producers were applied. The questionnaire included sections to record the sociodemographic characteristics, production performance, technology, food safety and production marketing system. The characterization of production systems was performed using the technological variables: Type of protection, cultivated surface, type of irrigation system, wadding (mulch, input use, yield, production costs, market and food safety. Systems were classified in three groups: open field, greenhouse and mesh shade production system, whit two subsystem organic production with mesh shade and greenhouse without mulch. 84% of producers use an open field system, 8% produce in greenhouse, 4% use the mesh shade system and the remaining 4% produce with any combination of the above systems. The main cultivated variety is Saladette. Productivity of each system is determined by the level and type of technology. All producers use drip irrigation systems and 96% use plastic mulching (wadding. 90% of producers allocate its production through a broker and 10% sell directly to wholesale markets; the main broker usually is the person who owns the warehouse. Weather conditions, pests and diseases are the main factors affecting negatively the productivity and yield of the crop, with negative economic impact on farmers.Â

  20. INTEGRATED WATER MANAGEMENT AND DURABILITY OF LANDSCAPE OF PUBLIC IRRIGATED AREAS IN TUNISIA: CASES OF PUBLIC IRRIGATED AREAS OF CHOTT-MARIEM AND MORNAG

    OpenAIRE

    Abdelkarim Hamrita; Amira Boussetta; Rafael Mata Olmo; Mehdi Saqalli; Hichem Rejeb

    2017-01-01

    An important part of the landscape of irrigated areas in Tunisia is the result of morphology, organization and operation of agricultural policies implemented since independence, aimed at optimizing the exploitation of the best soils and natural resources, particularly water and productive crop intensification. The sustainability of the landscape of public irrigated areas has a strong bonding with the resources of irrigation water and their states of management. The scarcity of irrigation wate...

  1. Marginal cost curves for water footprint reduction in irrigated agriculture : Guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    NARCIS (Netherlands)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-01-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce

  2. Development, yield and quality attributes of sugarcane cultivars fertigated by subsurface drip irrigation

    Directory of Open Access Journals (Sweden)

    André L. B. de O. Silva

    2016-06-01

    Full Text Available ABSTRACT The present study aimed to evaluate the development, yield and quality of four sugarcane cultivars fertigated by subsurface drip system. The experiment was carried out in Campinas-SP, Brazil, from January 2012 to November 2013, with the cultivars SP79-1011, IACSP94-2101, IACSP94-2094 and IACSP95-5000 subjected to daily irrigations. The irrigations depths were applied to bring soil moisture to field capacity. Soil moisture was monitored using soil moisture probes. Samples were collected along the crop cycle in order to evaluate crop development and yield, at the end of the first and second ratoons. Stalk height showed good correlation for the estimation of crop yield, with R2 equal to or higher than 0.96. The cultivar IACSP95-5000 showed the highest yield in the first ratoon. In the second ratoon the highest yield was observed in IACSP94-2101, followed by IACSP95-5000 and SP79-1011. Considering the yield results associated with the technological analysis, such as soluble solids content and apparent sucrose, the cultivar IACSP95-5000 excelled the others in the cultivation under subsurface drip irrigation.

  3. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  4. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  5. Decision support system for surface irrigation design

    OpenAIRE

    Gonçalves, José M.; Pereira, L.S.

    2009-01-01

    The SADREG decision support system was developed to help decision makers in the process of design and selection of farm surface irrigation systems to respond to requirements of modernization of surface irrigation—furrow, basin, and border irrigation. It includes a database, simulation models, user-friendly interfaces, and multicriteria analysis models. SADREG is comprised of two components: design and selection. The first component applies database information, and through several si...

  6. Water deficit imposed by partial irrigation at different plant growth stages of common bean

    International Nuclear Information System (INIS)

    Calvache, M.; Reichardt, K.

    1995-01-01

    The purpose of this study was to identify specific growth stages of common bean crop, at which the plant is less sensitive to water stress so that irrigation can be omitted without significant decrease in biological nitrogen fixation and yield. Two field experiments were conducted at a University experiments station, Tumbaco, Pichincha, Ecuador, on a sandy loam soil ( Typic durustoll ). The climate is warm and dry ( mean air temperature 16 degree Celcius and mean relative humidity 74% ) during the cropping season and rainfall of 123 mm was recorded during the cropping period. The treatments consisted of combinations of 7 irrigation regimes ( I1 = all normal watering; I2 = all stres; I3 = traditional practice; I4 = single stress at vegetation; I5 flowering; I6 = yield formation and I7 = ripening stages ) and 2 levels of applied N ( 20 and 80 kg/ ha ). Differential irrigation was started after 3 uniform irrigations for germination and crop establishment. Soil moisture was monitored with a neutron probe down to 0.60 m depth, before and 24 h after each irrigation. Biological Nitrogen Fixation was calculated using the N- 15 metodology in the 20 kg N/ ha treatment. From the yield data, it can be concluded that treatments which had irrigation deficit had lower yield than those that had suplementary irrigation. The flowering stage was the most sensitive to number of pods and grain yield. Biological Nitrogen Fixation was significantly affected by water stress at flowering and formation stages. The crop water use efficiency ( kg/ m 3 ) was the lowest at flowering period and the yield response factor ( Ky ) was higher in treatments I2 ( all stress ) and I5 (stress at flowering ). Comparing with traditional practice by farmers of the region, only treatments I1 and I7 had 13 and 10 % higher crop water use effeciency. 15 tabs., 7 refs. ( Author )

  7. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    Science.gov (United States)

    Senay, G.B.; Budde, Michael; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  8. Analytical Solution for Optimum Design of Furrow Irrigation Systems

    Science.gov (United States)

    Kiwan, M. E.

    1996-05-01

    An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.

  9. Water requirement and irrigation schedule for tomato in northern guinea savanna zone, Nigeria

    Directory of Open Access Journals (Sweden)

    Ibraheem Alhassan

    2015-06-01

    Full Text Available Assessment of water requirement and irrigation schedule for tomato with the support of FAO-CROPWAT simulation model was carried out for Yola, Nigeria with the aim of planning irrigation schedules for tomato and develop recommendations for improve irrigation practices. The climatic data for 2012/2013 and soil properties of the study area were input into the program. Tomato crop properties were updated by the FAO data and three irrigation intervals were tested (7 and 10 days irrigation intervals and irrigation schedule of 10 days interval during initial and development stage and 6 days interval at mid and late season stages of tomato crop. The simulated results analysis for tomato according to the irrigation schedule showed that highest yield reduction of 16.2% was recorded with 10 days irrigation interval treatment and the least of 0.4% with irrigation interval of 10 days at first two growth stages and 6 days at last two stages. FAO-CROPWAT 8.0 can be used in planning proper irrigation schedule for tomato in Yola, Nigeria.

  10. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  11. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Science.gov (United States)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  12. Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H2O2.

    Science.gov (United States)

    Ferro, Giovanna; Polo-López, María I; Martínez-Piernas, Ana B; Fernández-Ibáñez, Pilar; Agüera, Ana; Rizzo, Luigi

    2015-09-15

    The sunlight/H2O2 process has recently been considered as a sustainable alternative option compared to other solar driven advanced oxidation processes (AOPs) in advanced treatment of municipal wastewater (WW) to be reused for crop irrigation. Accordingly, in this study sunlight/H2O2 was used as disinfection/oxidation treatment for urban WW treatment plant effluent in a compound parabolic collector photoreactor to assess subsequent cross-contamination of lettuce and soil by contaminants of emerging concern (CECs) (determined by QuEChERS extraction and LC-QqLIT-MS/MS analysis) and antibiotic resistant (AR) bacteria after irrigation with treated WW. Three CECs (carbamazepine (CBZ), flumequine (FLU), and thiabendazole (TBZ) at 100 μg L(-1)) and two AR bacterial strains (E. coli and E. faecalis, at 10(5) CFU mL(-1)) were spiked in real WW. A detection limit (DL) of 2 CFU mL(-1) was reached after 120 min of solar exposure for AR E. coli, while AR E. faecalis was more resistant to the disinfection process (240 min to reach DL). CBZ and TBZ were poorly removed after 90 min (12% and 50%, respectively) compared to FLU (94%). Lettuce was irrigated with treated WW for 5 weeks. CBZ and TBZ were accumulated in soil up to 472 ng g(-1) and 256 ng g(-1) and up-taken by lettuce up to 109 and 18 ng g(-1), respectively, when 90 min treated WW was used for irrigation; whereas no bacteria contamination was observed when the bacterial density in treated WW was below the DL. A proper treatment time (>90 min) should be guaranteed in order to avoid the transfer of pathogens from disinfected WW to irrigated crops and soil.

  13. Food security, irrigation, climate change, and water scarcity in India

    Science.gov (United States)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  14. Assessing hydrological drought risk for the irrigation sector in future climate scenarios: lessons learned from the Apulia case study (Italy)

    Science.gov (United States)

    Critto, Andrea; Torresan, Silvia; Ronco, Paolo; Zennaro, Federica; Santini, Monia; Trabucco, Antonio; Marcomini, Antonio

    2016-04-01

    affected crops (e.g. fruit trees and vineyards); and finally, the characterization of vulnerability pattern of irrigation systems. Major achievements included the definition of a portfolio of science-driven adaptation strategies to reduce the risk pattern at both agronomic level (preferring crops with low vulnerability score, as olive groves) and at structural level (differentiating the water stocks and supplies and reducing losses and inefficiencies).

  15. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Science.gov (United States)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  16. Airborne pathogens from dairy manure aerial irrigation and the human health risk

    Science.gov (United States)

    Application of liquid dairy manure by traveling gun or center pivot irrigation systems is becoming more common in Wisconsin because it offers several potential benefits: reduced road impacts from hauling, optimal timing for crop nutrient uptake, and reduced risks of manure runoff and groundwater con...

  17. Observation and Modelling of Soil Water Content Towards Improved Performance Indicators of Large Irrigation Schemes

    Science.gov (United States)

    Labbassi, Kamal; Akdim, Nadia; Alfieri, Silvia Maria; Menenti, Massimo

    2014-05-01

    Irrigation performance may be evaluated for different objectives such as equity, adequacy, or effectiveness. We are using two performance indicators: IP2 measures the consistency of the allocation of the irrigation water with gross Crop Water requirements, while IP3 measures the effectiveness of irrigation by evaluating the increase in crop transpiration between the case of no irrigation and the case of different levels of irrigation. To evaluate IP3 we need to calculate the soil water balance for the two cases. We have developed a system based on the hydrological model SWAP (Soil Water atmosphere Plant) to calculate spatial and temporal patterns of crop transpiration T(x, y, t) and of the vertical distribution of soil water content θ(x, y, z, t). On one hand, in the absence of ground measurement of soil water content to validate and evaluate the precision of the estimated one, a possibility would be to use satellite retrievals of top soil water content, such as the data to be provided by SMAP. On the other hand, to calculate IP3 we need root zone rather than top soil water content. In principle, we could use the model SWAP to establish a relationship between the top soil and root zone water content. Such relationship could be a simple empirical one or a data assimilation procedure. In our study area (Doukkala- Morocco) we have assessed the consistency of the water allocation with the actual irrigated area and crop water requirements (CWR) by using a combination of multispectral satellite image time series (i,e RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season). To obtain IP2 (x, y, t) we need to determine ETc (x, y, t). We have applied two (semi)empirical approaches: the first one is the Kc-NDVI method, based on the correlation between the Near Difference Vegetation Index (NDVI) and the value of crop coefficient (kc); the second one is the analytical approach based on the direct application of Penman

  18. Diversity and community structure of cyanobacteria and other microbes in recycling irrigation reservoirs.

    Science.gov (United States)

    Kong, Ping; Richardson, Patricia; Hong, Chuanxue

    2017-01-01

    Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible.

  19. Simple weighing lysimeters for measuring reference and crop evapotranspiration

    Science.gov (United States)

    Knowledge of cotton crop evapotranspiration is important in scheduling irrigations, optimizing crop production, and modeling evapotranspiration and crop growth. The ability to measure, estimate, and predict evapotranspiration and cotton crop water requirements can result in better satisfying the cr...

  20. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    pattern of irrigation systems and networks. The implemented assessment singled out future perspectives of water scarcity risk levels for irrigated agriculture by the administrative extent where individual bodies are in charge of the coordination of public and private irrigation activities (i.e. Reclamation Consortia). Based on the outcomes of the proposed methodology, tailored and knowledge-based adaptation strategies and related actions can be developed, to reduce the risk at both agronomic level (i.e. preferring crops with low vulnerability score, as olive groves) and at structural level (i.e. differentiating the water stocks and supplies and reducing losses and inefficiencies).

  1. Sustainable use of Brackish water for crop production

    International Nuclear Information System (INIS)

    Chaudhry, M.R.; Iqbal, M.; Subhani, K.M.

    2005-01-01

    The good quality surface-water is not sufficient to meet the crop water requirement for potential crop production. To augment the inadequate supplies of good quality water the only alternative is the use of poor quality , ground water. To explore sustainable use of brackish water a study was conducted in Fordwah Eastern Sadiqia South, Bahawalnagar, Punjab during the year 1998-99 to 2000-2001 with the objective to evaluate the impact of different irrigation treatments on physical and chemical properties of soil and crops yield. The experiment was conducted on farmer's field with his collaboration. The initial soil pH was about 8.0 while ECe and SAR ranged between 2.0 to 4.1 dS m/sup -/1 and 7.1 to 15.1 (mmol/sub c/ L/sup -1/)1/2, respectively with sandy loam texture. The brackish water used for irrigation had ECiw, SAR and RSC between 5.6 to 6.7 dS m/sup -/1, 15.1 to 16.4 (mmolc L/sup -1/sup 1/2/ and 1.52 to 1.64 (mmol/sub c/ L/sup -1/.The crops tested were wheat during Rabi and cotton during Kharif season. The treatments tested were: irrigation with canal water (T/sub 1/), canal water during Rabi and drainage water during Kharif (T/sub 2/), drainage water for two years and canal water for one season(T/sub 3/); and drainage water for three years + application of gypsum at the rate of 25% of CWR and thereafter canal water for one season(T 4). Fertilizers were applied at the rate of 120-60-50 N, P/sub 2/O/sub 5/ and K20 kg ha/sup -1/, respectively in the form of urea, diammonium phosphate and sulfate of potash. Crops irrigated with drainage water visualized yield reduction depending upon the share of drainage water in the irrigation delta. Application of gypsum provided reasonable check against salinity build-up with brackish water irrigation besides a nominal boost of 3 and 5% in yield of wheat and cotton, respectively over comparable treatment of year-round brackish water irrigation lacking gypsum application. Drainage water in alternate arrangement of seasonal

  2. Water deficit imposed by deficit irrigation at different plant growth stages of maize

    International Nuclear Information System (INIS)

    Calvache, M.; Reichardt, C.

    1995-01-01

    The purpose of this study was to identify specific growth stages of maize Crop, at which the plant is less sensitive to water stress so that irrigation can be omitted withhout significant decrease yield. The field experiment was conducted at a University experiment station, Tumbaco, Pichincha, Ecuador, during may - october 1993, on a sandy loam soil ( typic durustoll). Soil moisture was monitored with a neutron probe down to 0.70 m depth, before and 24 h after each irrigation. The actual evapotranspiration of the crop was estimated by the water - balance technique. Field water efficiency and crop water use efficiency were calculated by dividing actual grain yield by irrigation and by ETa, respectively. Nitrogen fertilizer use efficiency was calculated using N - 15 methodology in the 75 kg N/ ha treatment. From the yield data, it can be concluded that treatments which had irrigation deficit had lower yield than those that had suplementary irrigation. The flowering and yield formation stages were the most sensitive to moisture stress. Nitrogen fertilization significantly increased the grain yield. The crop water use effeciency was the lowest at the flowering and yield formation of the region, the treatments I1 and I7 had the same crop water use efficiency. The results of N - 15 labelled plots ( F1) showed that soil water deficiency significantly affects nitrogen was derived from fertilizer in treatments I3 and I7 and only 11 - 9% in the treatments I2 and I5 respectively. ( Author)

  3. Intervention processes and irrigation institutions : sustainability of farmer managed irrigation systems in Nepal

    OpenAIRE

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation management practices in irrigation systems in Nepal. In this respect, this study aimed to understand the social, administrative and political processes involved in the social and institutional chang...

  4. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  5. Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.

    Science.gov (United States)

    Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun

    2013-09-01

    To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Design and Management of Irrigation Systems Diseño y Manejo de Sistemas de Riego

    Directory of Open Access Journals (Sweden)

    Eduardo A Holzapfel

    2009-12-01

    Full Text Available Irrigation systems should be a relevant agent to give solutions to the increasing demand of food, and to the development, sustainability and productivity of the agricultural sector. The design, managing, and operation of irrigation systems are crucial factors to achieve an efficient use of the water resources and the success in the production of crops and orchards. The aim of this paper is to analyze knowledge and investigations that enable to identify the principal criteria and processes that allow improving the design and managing of the irrigation systems, based on the basic concept that they facilitate to develop agriculture more efficient and sustainable. The design and managing of irrigation systems must have its base in criteria that are relevant, which implies to take into account agronomic, soil, hydraulic, economic, energetic, and environmental factors. The optimal design and managing of irrigation systems at farm level is a factor of the first importance for a rational use of water, economic development of the agriculture and its environmental sustainability.Los sistemas de riego deberían ser un agente relevante para dar soluciones a la demanda creciente de alimentos, y el desarrollo, sustentabilidad y productividad del sector agrícola. El diseño, manejo, y operación de los sistemas de riego son factores cruciales para lograr un uso eficiente de los recursos hídricos y el éxito en la producción de cultivos y frutales. El objetivo de este artículo fue analizar conocimientos e investigaciones que permitan identificar los principales criterios y procesos para mejorar el diseño y manejo de los sistemas de riego, basados en el concepto básico de desarrollar una agricultura más eficiente y sostenible. El diseño y manejo de los sistemas de riego deben tener su base en criterios que sean relevantes, lo que implica considerar aspectos agronómicos, de suelo, hidráulicos, económicos, energéticos, y ambientales. El diseño y

  7. LOW COST SMART SOLAR POWERED AUTOMATIC IRRIGATION SYSTEM

    OpenAIRE

    Hinsermu Alemayehu*, Kena Likassa

    2016-01-01

    In developing countries Photovoltaic energy can find many applications in agriculture, providing electrical energy in various cases, particularly OFF grid and desert area. Today Modern irrigation methods in developing country are needed to fulfill the food demands. Although in these countries Ethiopia, there are many diesel engine operated and rare solar operated water pumps for irrigation; but due to the running cost of diesel and capital cost of photovoltaic irrigation system. So Photovolta...

  8. Life Cycle Assessment on Carbon Footprint of Winter Wheat-Summer Maize Cropping System Based on Survey Data of Gaomi in Shandong Province, China

    Directory of Open Access Journals (Sweden)

    ZHU Yong-chang

    2017-08-01

    Full Text Available Grain production can generate huge amount of greenhouse gases through raw material production and energy comsumption, nitrogen fertilizer amendment and farming machinery operation. Based questionnaire survey of raw material inputs and management of wheat-maize cropping system in Gaomi, Shandong Province, carbon footprint of grain production was calculated using life cycle assessment methodology. Carbon footprint per unit area of wheat, maize, and winter wheat-summer maize cropping system were 5 183.33, 3 778.09 kg CO2-eq·hm-2 and 8 961.42 kg CO2-eq·hm-2, carbon footprint per unit grain yield were 0.69, 0.40 kg CO2-eq·kg-1 and 0.53 kg CO2-eq·kg-1, carbon footprint per unit net present value were 1.82, 0.40 kg CO2-eq·yuan-1 and 0.44 kg CO2-eq·yuan-1, respectively. Greenhouse gas(GHG emission of winter wheat-summer maize cropping system mainly came from nitrogen fertilizer production(48.30% and nitrogen fertilizer application(12.04%, irrigation electricity consumption(12.94% and machinery oil consumption(11.20%. Optimizing the application of fertilizer, reducing the amount of nitrogen fertilizer and saving water irrigation were important ways to realize the clean production.

  9. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    Full Text Available Introduction: Olive (Olea europaea L. trees are mainly cultivated in the Mediterranean area and are grown for their oil or processed as table olives. Despite the fact that olive is known to be resistant to drought conditions due to its anatomical, physiological, and biochemical adaptations to drought stress, reports indicate that the olive can be adversely affected by drought stress, which has a negative effect on the growth of olive trees. In the absence of adequate supplies of water, the demand for water can be met by using improved irrigation methods or by using reclaimed water (RW. Reports have shown that recycled water has been used successfully for irrigating olive orchards with no negative effects on plant growth.Attention has been paid to reclaimed water as one of the most significant available water resources used in agriculture around large cities in arid and semi-arid regions. On the other hand, irrigation efficiency is low and does not meet the demands of farmers.In order to investigate the possibility of irrigating olive orchards with subsurface leakage irrigation (SLI in application of reclaimed water, an experiment was carried out with the aim of investigating the effect of reclaimed water on photosynthetic indices and morphological properties of olive fruit. Materials and Methods: Research was conducted using a split-plot experimental design with two factors (irrigation system and water quality on the campus of Isfahan University of Technology in Isfahan, Iran, on a sandy-clay soil with a pH of 7.5 and electrical conductivity (EC of 2.48 dSm-1.PVC leaky tubes were used for the SLI system. The SLI system was installed 40 cm from the crown of each tree at a depth of 30 - 40 cm.At the end of the experiment fruit yield, weight per fruit, volume, length and firmness were calculated. A portable gas exchange system (Li-6400., LICOR, Lincoln, NE, USA was used to measure the net rate photosynthesis (A, the internal partial pressure CO2

  10. Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications

    Science.gov (United States)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2011-02-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  11. Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain

    Science.gov (United States)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2010-08-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  12. Field-based estimates of global warming potential in bioenergy systems of Hawaii: Crop choice and deficit irrigation

    Science.gov (United States)

    Replacing fossil fuel with biofuel is environmentally viable only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level bal...

  13. Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience

    Science.gov (United States)

    Garrido, Alberto; Martínez-Santos, Pedro; Llamas, M. Ramón

    2006-03-01

    Over the last decades, groundwater irrigation has become commonplace in many arid and semiarid regions worldwide, including Spain. This is largely a consequence of the advances in drilling and pumping technologies, and of the development of Hydrogeology. Compared with traditional surface water irrigation systems, groundwater irrigation offers more reliable supplies, lesser vulnerability to droughts, and ready accessibility for individual users. Economic forces influence the groundwater irrigation sector and its development. In Spain's Mediterranean regions, abstraction costs often amount to a very small fraction of the value of crops. In the inner areas, groundwater irrigation supports a more stable flow of farm income than rainfed agriculture. The social (jobs/m3) and economic (€/m3) value of groundwater irrigation generally exceeds that of surface water irrigation systems. However, poor groundwater management and legal controversies are currently at the base of Spain's social disputes over water. A thorough and transparent assessment of the relative socio-economic value of groundwater in relation to surface water irrigation might contribute to mitigate or avoid potential future conflicts. Enforcement of the European Union's Water Framework Directive may deliver better groundwater governance and a more sustainable use.

  14. The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium quinoa Willd.) productivity

    DEFF Research Database (Denmark)

    Hirich, Abdelaziz; Choukr-Allah, Redouane; Jacobsen, Sven-Erik

    2014-01-01

    One of the most important factors that limits crop production is the availability of water. Deficit irrigation is the most important irrigation strategy to increase water use efficiency and crop water productivity. Organic amendment combined with deficit irrigation can be practical solution to co...

  15. A New Soil Water and Bulk Electrical Conductivity Sensor Technology for Irrigation and Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Evett, Steve; Schwartz, Robert; Casanova, Joaquin [Soil and Water Management Research Unit, Conservation and Production Research Laboratory, USDA-ARS, Bushland, Texas (United States); Anderson, Scott [Acclima, Inc., 2260 East Commercial Street, Meridian, Idaho 83642 (United States)

    2014-01-15

    Existing soil water content sensing systems based on electromagnetic (EM) properties of soils often over estimate and sometimes underestimate water content in saline and salt-affected soils due to severe interference from the soil bulk electrical conductivity (BEC), which varies strongly with temperature and which can vary greatly throughout an irrigation season and across a field. Many soil water sensors, especially those based on capacitance measurements, have been shown to be unsuitable in salt-affected or clayey soils (Evett et al., 2012a). The ability to measure both soil water content and BEC can be helpful for the management of irrigation and leaching regimes. Neutron probe is capable of accurately sensing water content in salt-affected soils but has the disadvantages of being: (1) labour-intensive, (2) not able to be left unattended in the field, (3) subject to onerous regulations, and (4) not able to sense salinity. The Waveguide-On-Access-Tube (WOAT) system based on time domain reflectometry (TDR) principles, recently developed by Evett et al. (2012) is a new promising technology. This system can be installed at below 3 m in 20-cm sensor segments to cover as much of the crop root zone as needed for irrigation management. It can also be installed to measure the complete soil profile from the surface to below the root zone, allowing the measurement of crop water use and water use efficiency - knowledge of which is key for irrigation and farm management, and for the development of new drought tolerant and water efficient crop varieties and hybrids, as well as watershed and environmental management.

  16. Improving efficiencies of irrigation and nitrogen uptake in wheat

    International Nuclear Information System (INIS)

    Bazza, M.

    2000-01-01

    Three years of field studies and lysimeter experiments on irrigated wheat had the objective of finding ways of managing irrigation and N fertilization to minimize losses and reduce contamination of groundwater. Applied N had significant positive effects on crop-water consumptive use. The highest N losses occurred during early growth. Irrigation had little effect on N loss when it was practiced efficiently. Under the prevailing conditions, it is recommended that no N be applied to wheat at planting, in order to limit N losses by leaching caused by the high precipitation that usually occurs during early development when crop-N requirements are small. No more than 120 kg N ha -1 should be applied in total to minimize groundwater pollution and maximize N-uptake efficiency and economic returns. Also, for economic and environmental reasons, irrigation should be limited to 80% of the total requirement and to depths of 40 to 60 mm. (author)

  17. Normative structures, collaboration and conflict in irrigation; a case study of the Pillaro North Canal Irrigation System, Ecuadorian Highlands

    Directory of Open Access Journals (Sweden)

    Jaime Hoogesteger

    2015-03-01

    Full Text Available This paper analyzes conflict and collaboration and their relation to normative structures based on a case study of the history and external interventions of the Píllaro North Canal Irrigation System in the Ecuadorian Highlands. It does so by using Ostrom’s framework for analyzing the sustainability of socio-ecological systems together with an analysis of the normative structures that define the governance systems through which the interactions in irrigation systems are mediated. I argue that the external interventions by the state and NGOs imposed a new governance system that undermined the existing normative structures and related organizations, leading to internal conflicts. The case study suggests that a reformulation of irrigation policies and state intervention methodologies in user managed supra-community irrigation systems in the Andes could lead to higher levels of cooperation.

  18. Natural resource management issues of pakistan's agriculture: the cases of land, labour and irrigation

    International Nuclear Information System (INIS)

    Arifullah, S.A.; Farid, N.

    2009-01-01

    With the objective to understand the optimization behavior of farmers in allocating land, labor and irrigation water, Linear Programming (LP) analytic technique was applied to 13 Kharif and 7 Rabi crops, using national level data from 1990-2005. The crops included in the analysis have been occupying 80 - 85 percent of Pakistan's cropped area for the last three to four decades. The optimization analysis resulted in bringing up three major natural resource management issues of the Pakistan's crop sector to the forefront. First, Basmati rice, mung, fodders of millet and sorghum, onion and IRRI rice were found optimal Kharif crops relative to sugarcane, maize, maize fodder, millet, sorghum, cotton and tomato. For Rabi wheat, potato, gram, rapeseed and berseem proved to be optimal relative to barley and sugarcane, for this period. The results imply that to have an efficient agriculture base Pakistan should either replace the sub-optimal crops with the optimal ones, or the resource management side of such crops should be improved with the help sensitivity analysis. Second, cotton and tomato appeared to be relatively sensitive to labor availability than other crops; they seemed to establish a direct correlation between the optimality status and labor availability. And third, irrigation emerged as a critical input for IRRI rice in Kharif and for potato and gram in Rabi season; for these crops the crop optimality was directly correlated to the number of irrigations applied. In contrast, its opportunity cost is higher than the per unit return in cotton, tomato, wheat and berseem. This signified that irrigation needs to be managed efficiently in the latter four crops; whereas in the former three crops use of extra water would help in optimizing. (author)

  19. Mapping Irrigation Potential in the Upper East Region of Ghana

    Science.gov (United States)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  20. Converting Surface Irrigation to Pressurized Irrigation Systems and its Effecton Yield of OrangeTrees (Case Study:North of Khouzestan

    Directory of Open Access Journals (Sweden)

    M. Khorramian

    2017-01-01

    Full Text Available Introduction: North of the Khouzestan is one of the most important citrus production center. Usually border irrigation is used to irrigate citrus in this area. This system has generally low application efficiency. Several investigations in other arid region have demonstrated in addition to improved irrigation efficiency with low-volume pressurized irrigation systems, citrus trees have adapted with these new irrigation systems. However limited information exists on the performance of mature orchards converted from border surface irrigation to pressurized irrigation systems. Therefore, the current research was conducted to evaluate the feasibility of converting surface irrigation to pressurized irrigation systems on mature citrus trees in climate conditions of North Khouzestan. Materials and Methods: This study was conducted during three years at Safiabad Agricultural Research Center to evaluate the yield of citrus trees and the quality of fruits for two Marss and Valencia varieties which grow 7 years previously with surface irrigation and converted to pressurized irrigation systems. The treatments consisted of six irrigation methods including Overhead sprinkle irrigation (OHSI, Under tree sprinkle irrigation(UTSI, Trickle irrigation(TI(six 8 L/h Netafim emitters, Microjet irrigation (MI(two 180 microjet were located under canopy near of the trunk at opposite sides of trunk,Bubbler irrigation(BI(a single located under the canopy of each treeandSurface irrigation(SI method.Soil texture was clay loam well drained without salinity(ECe=0.69ds m-1, with 1.25 percent organic carbon. The experimental design was completely randomized design. The trees were irrigated during spring and summer seasons. For calculating irrigation water depth in TI, MI and BI systems, daily evaporation from a class A evaporation pan of the Safiabad weather station (nearby the experimental field was collected, and evapotranspiration of the citrus trees was calculated applying a