WorldWideScience

Sample records for irrigated agricultural systems

  1. System contemplations for precision irrigation in agriculture

    Science.gov (United States)

    Schubert, Martin J. W.

    2017-04-01

    This communication contemplates political, biological and technical aspects for efficient and profitable irrigation in sustainable agriculture. A standard for irrigation components is proposed. The need for many, and three-dimensionally distributed, soil measurement points is explained, thus enabling the control of humidity in selected layers of earth. Combined wireless and wired data transmission is proposed. Energy harvesting and storage together with mechanical sensor construction are discussed.

  2. AgIIS, Agricultural Irrigation Imaging System, design and application

    Science.gov (United States)

    Haberland, Julio Andres

    Remote sensing is a tool that is increasingly used in agriculture for crop management purposes. A ground-based remote sensing data acquisition system was designed, constructed, and implemented to collect high spatial and temporal resolution data in irrigated agriculture. The system was composed of a rail that mounts on a linear move irrigation machine, and a small cart that runs back and forth on the rail. The cart was equipped with a sensors package that measured reflectance in four discrete wavelengths (550 nm, 660 nm, 720 nm, and 810 nm, all 10 nm bandwidth) and an infrared thermometer. A global positioning system and triggers on the rail indicated cart position. The data was postprocessed in order to generate vegetation maps, N and water status maps and other indices relevant for site-specific crop management. A geographic information system (GIS) was used to generate images of the field on any desired day. The system was named AgIIS (A&barbelow;gricultural I&barbelow;rrigation I&barbelow;maging S&barbelow;ystem). This ground based remote sensing acquisition system was developed at the Agricultural and Biosystems Engineering Department at the University of Arizona in conjunction with the U.S. Water Conservation Laboratory in Phoenix, as part of a cooperative study primarily funded by the Idaho National Environmental and Engineering Laboratory. A second phase of the study utilized data acquired with AgIIS during the 1999 cotton growing season to model petiole nitrate (PNO3 -) and total leaf N. A latin square experimental design with optimal and low water and optimal and low N was used to evaluate N status under water and no water stress conditions. Multivariable models were generated with neural networks (NN) and multilinear regression (MLR). Single variable models were generated from chlorophyll meter readings (SPAD) and from the Canopy Chlorophyll Content Index (CCCI). All models were evaluated against observed PNO3- and total leaf N levels. The NN models

  3. Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan

    OpenAIRE

    Muhammad Afzal

    1996-01-01

    Pakistan’s agriculture is almost wholly dependent on irrigation and irrigated land supplies more than 90 percent of agricultural production. Irrigation is central to Pakistan’s economy. Massive investments in irrigation contributed to the development of one of the largest Indus Basin Irrigation System. Despite heavy budgetary inputs in irrigation system, it is facing shortage of resources and suffering from operational problems. The sustainability of irrigated agriculture is threatened due to...

  4. Carbon and water fluxes and footprints in tropical agricultural systems under rainfed and irrigated conditions

    Science.gov (United States)

    Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.

    2017-12-01

    In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.

  5. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    Science.gov (United States)

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  6. Ghana - Agriculture - Irrigation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  7. A California Statewide App to Simulate Fate of Nitrate in Irrigated Agricultural System

    Science.gov (United States)

    Diamantopoulos, E.; Walkinshaw, M.; Harter, T.; O'Geen, A. T.

    2017-12-01

    Groundwater resources are very important for California's economic development and environmental sustainability. Nitrate is by far the most widespread anthropogenic groundwater pollutant in California's mostly alluvial groundwater basins. Major sources are synthetic fertilizer and dairy manure, but also septic systems and urban wastewater effluent. Here, we evaluate agricultural soils in California according to their risk for nitrate leaching. We conducted over 1 million numerical simulations taking into account the effect of climate, crop type, irrigation and fertilization management scenarios across all 4,568 agricultural soil profiles occurring in California. The assessment was done solving 1-D Richards equation and the advection-dispersion equation numerically. This study is focused on the complex water and nitrate dynamics occurring at the shallow vadose zone (rootzone). The results of this study allow the construction of state-wide maps which can be used for the identification of high-risk regions and the design of agricultural nutrient management policy. We investigate how pollution risk can be minimized by adopting simple irrigation and fertilization methods. Furthermore, we show that these methods are more effective for the most permeable soil profiles along with high demanding crops in terms of fertilization amount and irrigation water. We also present how seasonal (winter) climate conditions contribute on nitrate leaching.

  8. Endangered Species and Irrigated Agriculture, Water Resource Competition in Western River Systems

    OpenAIRE

    United States Department of Agriculture, Economic Research Service

    1995-01-01

    This report characterizes several aspects of water allocation tradeoffs between fish species listed under the Federal Endangered Species Act and agriculture in the American West. The geographic intersection between endangered/threatened (E/T) fish and agricultural production reliant on surface water for irrigation is identified. Three findings are: (1) 235 counties, representing 22 percent of the West's counties, contain irrigated production that relies on water from rivers with E/T fish, ...

  9. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    Directory of Open Access Journals (Sweden)

    Emanuel Heinz

    2013-12-01

    Full Text Available We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS for stable water isotope analysis (δ2H and δ18O, a reagentless hyperspectral UV photometer (ProPS for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system’s technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season.

  10. Water Governance and Adaptation to Disturbances in Irrigated Semi-Arid Agricultural Systems

    Science.gov (United States)

    Evans, T. P.; McCord, P. F.; McBride, L.; Gower, D.; Caylor, K. K.

    2013-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial has research focused on household-level agricultural decision-making and adaptation. But equally important are institutional dynamics, or the rules implemented to allocate water resources across different user groups. Previous work has identified design principles for common-pool resource systems that tend to lead to sustained governance regimes. Likewise, past research has addressed the issue of "institutional fit", or locally adapted governance arrangements characterized through governance structure. However, much of the complexity behind institutional dynamics and adaptive capacity lies in the translation of data to information to knowledge, and how this sequence contributes to effective cross-scale water management and decision-making - an arena that has arguably received less attention in the water management literature. We investigate the interplay between governance regimes, data/information and institutional dynamics in irrigation systems in semi-arid regions of Kenya. In particular, we articulate the role of knowledge and data in institutional dynamics at multiple levels of analysis. How do users at different decision-making levels incorporate social and hydrological information in water governance? What data is needed to develop the information and knowledge users need for effective management? While governance structure is certainly a critical component of water management systems - we emphasize the interplay between the data-information-knowledge sequence and institutional dynamics. We present findings from household and manager-level surveys examining irrigation practices and the institutions designed to equitably allocate

  11. Optimization of modern irrigation for biosaline agriculture

    International Nuclear Information System (INIS)

    Shahid, S.A.; Hasbini, B.

    2007-01-01

    Supplementation water is a must to offset the water requirement to produce profitable crops in most arid and semiarid zones, where fresh water resources are insufficient to meet the pressure of irrigated agriculture. This necessitates the use of poor quality water resources. These waters if not properly managed and used can cause serious soil related problems (salinity, sodicity, destruction of soil structure) in addition to decline in crop yields. Biosaline agriculture (using saline water on saline soils to grow salt-tolerant crops) becomes the only option for the farmer when both soil and water resources are saline and the water resource is scarce. In this regards key design considerations must be taken into account when irrigating with salty waters to optimize water uses and to reduce subsequent soil salinity development. Sprinkler irrigation systems are commonly used in irrigation of large-scale irrigational production systems. However they tend to concentrate salts on the leaves of plants. For this reason discharge and degree of overlap between consecutive sprinkler heads, are key design parameters when applying salty waters. Trickle irrigation is the most efficient system and is gaining importance in the GCC countries in the agriculture and landscape irrigation. The objective of this study was to optimize modern irrigation systems through development of design standards for drip (emitters spacing) and sprinkler irrigation systems (single head jet and overlapping) by applying saline water. The effect of emitter spacing (drip) and overlapping (sprinkler) were tested for the formation of salt contours in soil. The leaching ratio (LR) is the overall soil sanity within rhizosphere divided by the average irrigation water salinity. In this study LR is used to evaluate the effectiveness of irrigation systems in developing soil sanity. From the present investigations it is concluded that when using saline water for irrigation, the soil sanity development can be

  12. Simulating the reactive transport of nitrogen species in a regional irrigated agricultural groundwater system

    Science.gov (United States)

    Bailey, R. T.; Gates, T. K.

    2011-12-01

    The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are

  13. Detection of Anthropogenic pressures on western Mediterranean irrigation systems (La Albufera de Valencia agriculture system, eastern Spain)

    Science.gov (United States)

    Pascual-Aguilar, J. A.; Andreu, V.; Picó, Y.

    2012-04-01

    Irrigation systems are considered as one of the major landscapes features in western Mediterranean environments. Both socio-economic and cultural elements are interrelated in their development and preservation. Generally, due to their location in flat lands and close to major urban-industrial zones, irrigation lands are suffering of intense pressures that can alter their agricultural values, environmental quality and, consequently, the sustainability of the systems. To understand the nature of anthropogenic pressures on large Mediterranean water agricultural systems a methodology based on environmental forensics criteria has been developed and applied to La Albufera Natural Park in Valencia (Eastern Spain), a protected area where traditional irrigation systems exists since Muslim times (from 8th to 15th centuries). The study analysed impacts on water and soils, for the first case the fate of emerging contaminants of urban origin (pharmaceuticals and illegal drugs) are analysed. Impact on soils is analysed using the dynamics urban expansion and the loss and fragmentation of soils. The study focused is organised around two major procedures: (1) analysis of 16 water samples to identify the presence of 14 illicit drugs and 17 pharmaceutical compounds by Liquid Chromatography-Mass Spectrometry techniques; (2) spatial analysis with Geographical Information Systems (GIS) integrating different sources and data formats such as water analysis, social, location of sewage water treatment plan and the synchronic comparison of two soil sealing layers -for the years 1991 and 2010. Results show that there is a clear trend in the introduction of pharmaceutical in the irrigation water through previous use of urban consumption and, in many cases, for receiving the effluents of wastewaters treatment plants. Impacts on soils are also important incidence in the fragmentation and disappearance of agricultural land due to soil sealing, even within the protected area of the Natural Park

  14. Identification of Decisive Factors Determining the Continued Use of Rainwater Harvesting Systems for Agriculture Irrigation in Beijing

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2015-12-01

    Full Text Available The success or failure of operating a rainwater harvesting system (RWH depends on both technological and non-technological factors. The importance of non-technological factors in attaining sustainable RWH operation is rarely emphasized. This study aims to assess the contribution of non-technological factors through determining decisive factors involved in the use of RWHs for agriculture irrigation in Beijing. The RWHs for agriculture irrigation in Beijing are not operating as well as expected. If the decisive factors are identified to be non-technological, the significance of non-technological factors will be highlighted. Firstly, 10 impact factors comprising non-technological and technological factors are selected according to both a literature review and interviews with RWH managers. Following this, through an artificial data mining method, rough set analysis, the decisive factors are identified. Results show that two non-technological factors, “doubts about rainwater quality” and “the availability of groundwater” determine whether these systems will continue or cease RWH operation in Beijing. It is, thus, considered necessary to improve public confidence in and motivation on using rainwater for agriculture irrigation, as this is the main obstacle in the sustainable and successful operation of RWHs. Through a case study of RWHs in Beijing, the study verifies the importance of acknowledging non-technological factors to achieve sustainable water management and considers that such factors should receive more attention by decision makers and researchers.

  15. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  16. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  17. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  18. Economic risk assessment of drought impacts on irrigated agriculture

    Science.gov (United States)

    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.

    2017-07-01

    In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.

  19. Flora, life form characteristics, and plan for the promotion of biodiversity in South Korea's Globally Important Agricultural Heritage System, the traditional Gudeuljang irrigated rice terraces in Cheongsando

    Institute of Scientific and Technical Information of China (English)

    Hong Chul PARK; Choong Hyeon OH

    2017-01-01

    The objectives of this study were to analyze the biodiversity of the Traditional Gudeuljang Irrigated Rice Terraces in Cheongsando,South Korea's representative GIAHS (Globally Important Agricultural Heritage System) site,with reference to position and land-use features,and to develop a plan to promote agricultural biodiversity in the region.We confirmed approximately 54,000 m2 of Gudeuljang paddy fields by an on-site survey.Of the Traditional Gudeuljang Irrigated Rice Terraces confirmed by onsite inspection,our survey showed that approximately 24,000 m2 are currently being used as paddy fields,approximately 15,000 m2 are being used as dry fields,and approximately 14,000 m2 are fallow.In terms of other non-agricultural land use,there was grassland,including graveyards;artificial arboreal land,such as orchards,rivers and wetlands,and man-made facilities,such as roads and residences.We also confirmed that the Traditional Gudeuljang Irrigated Rice Terraces had higher plant species diversity than conventional terraced rice paddies,and there was a difference in life form characteristics between the two types.Although the superficial topsoil structure is the same for the Traditional Gudeuljang Irrigated Rice Terraces (TGIRTs) and conventional terraced rice paddies,it is thought that the differences in the subsurface structure of the TGIRTs contribute greatly to species and habitat diversity.However,the TGIRTs in Cheongsando are facing degeneration,due to damage and reduction in agricultural activity.The main cause is the reduction in the number of farming households due to an aging population in Cheongsando.In order to address this problem,we proposed a management plan,related to fallow paddy fields in South Korea,to initiate voluntary activities in the TGIRTs.

  20. Irrigation in the Lower Durance: positive impacts of the agriculture

    International Nuclear Information System (INIS)

    Lacroix, M.; Blavoux, B.

    1995-01-01

    The water of river Durance is used to produce hydroelectricity and as stretch of water for tourism and since the thirteenth century for irrigation. The inherited situation is a well extended network of gravitation irrigation canals. This system is spendthrift of water, the water supplies are roughly 5 times the farming needs. The impact of this irrigation on the alluvial aquifer of the Lower Durance is the generalisation of the highest level of the water table in summer on the plain though the water budget has an average deficit of 550 mm. In addition, the nitrate concentration is maintained to an average of 17 mg/l in groundwater and 5 mg/l in streams by dilution. In fact, the irrigation dictates an average input of water with 25.4 mg/l of NO 3- . The natural isotopic tracing (oxygen 18) allows to say that 50 to 75% of the water of the alluvial aquifer come from irrigation. To improve the knowledge about the efficiency of irrigation, a mathematical groundwater model has been created. As a result, 53% of the water is lost while reaching the agricultural parcels, 19% is infiltrated during watering at the parcel and only 28% are used to satisfy the needs of plants. The realisation of this model has allowed to simulate the impact on groundwater of changes in irrigation practices which would lead to reduce the consummation of water. In the case of Lower Durance, the reduction of irrigation losses would have a strong impact on the quantity and quality of water in the alluvial aquifer. (J.S.). 10 refs., 9 figs., 2 tabs

  1. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    pattern of irrigation systems and networks. The implemented assessment singled out future perspectives of water scarcity risk levels for irrigated agriculture by the administrative extent where individual bodies are in charge of the coordination of public and private irrigation activities (i.e. Reclamation Consortia). Based on the outcomes of the proposed methodology, tailored and knowledge-based adaptation strategies and related actions can be developed, to reduce the risk at both agronomic level (i.e. preferring crops with low vulnerability score, as olive groves) and at structural level (i.e. differentiating the water stocks and supplies and reducing losses and inefficiencies).

  2. Agriculture and wildlife: ecological implications of subsurface irrigation drainage

    Science.gov (United States)

    A. Dennis Lemly

    1994-01-01

    Subsurface agricultural irrigation drainage is a wastewater with the potential to severely impact wetlands and wildlife populations. Widespread poisoning of migratory birds by drainwater contaminants has occurred in the western United States and waterfowl populations are threatened in the Pacific and Central flyways. Irrigated agriculture could produce subsurface...

  3. Wastewater Use in Irrigated Agriculture : Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Wastewater Use in Irrigated Agriculture : Confronting the Livelihood and Environmental Realities. Couverture du livre Wastewater Use in Irrigated Agriculture: Confronting the Livelihood and Environmental Realities. Directeur(s) : Christopher Scott, Naser I. Faruqui et Liqa Raschid. Maison(s) d'édition : CABI, IWMI, CRDI.

  4. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    Science.gov (United States)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  5. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMIS). Thinking along

  6. THE CURRENT SITUATION OF WATER RESOURCES IN IRRIGATED AGRICULTURE OF UZBEKISTAN

    OpenAIRE

    Djalalov, Sandjar

    1998-01-01

    Irrigation in Uzbekistan is of great importance since the country is an arid zone. The use of water in agriculture is described and its relationship as a constraint to economic development discussed. The current technical and organizational characteristics of irrigation systems need study and analysis to identify opportunities for improvements. The characteristics of demand for water at the farm level are described and irrigation and land improvement activities are outlined. Reform of water u...

  7. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  8. Trash-polluted irrigation: characteristics and impact on agriculture

    Science.gov (United States)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  9. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wilcox, Edmund [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goli, Sasank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as

  10. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-06-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  11. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-03-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  12. Socio-economic impacts of irrigated agriculture in Mbarali District of south west Tanzania

    Science.gov (United States)

    Mwakalila, Shadrack

    Irrigation has been found to be central in curbing food scarcity not only in Tanzania but also in many other developing countries. It has been proved that continued reliability on rainfall in agriculture cannot sustain the increase in population. This study examines the impacts of smallholder irrigated agriculture in improving social and economic benefits in Igurusi Ward of Mbarali District which is located in the southern-western part of Tanzania. The study applies the Participatory Rural Appraisal Framework for data collection. The study was confined to five villages in Igurusi ward which are Majenje, Igurusi, Chamoto, Uhambule and Mahango. The study examined critically paddy production for smallholder farmers that practice irrigation and those who cultivates rain-fed paddy. The study examined both existing traditional and modern irrigation systems. It was found that, most of the respondents (79%) practice irrigated agriculture in paddy production while the remaining 21% practice rain-fed agriculture. Forty percent of households that practice irrigated agriculture harvest paddy two seasons per year. The return to labour in paddy production for smallholder farmers who irrigate their paddy fields is about US 2.5/manday which is above the poverty line of US 1.0/day. The smallest return to labour (US $ 0.85/manday) is obtained by an average smallholder farmer who cultivates rain-fed paddy using hand hoe and family labour. The potential implication of the current irrigation systems is that if irrigation is managed properly it may lead to sustainable increases in small farmer’s productivity and income, thus alleviating rural poverty.

  13. Agricultural irrigated land-use inventory for Polk County, Florida, 2016

    Science.gov (United States)

    Marella, Richard L.; Berry, Darbi; Dixon, Joann F.

    2017-08-16

    An accurate inventory of irrigated crop acreage is not available at the level of resolution needed to better estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage was developed for Polk County, Florida, during the 2016 growing season. This cooperative project between the U.S. Geological Survey and the Office of Agricultural Water Policy of the Florida Department of Agriculture and Consumer Services is part of an effort to improve estimates of water use and projections of future demands across all counties in the State. The irrigated areas were delineated by using land-use data provided by the Florida Department of Agriculture and Consumer Services, along with information obtained from the South and Southwest Florida Water Management Districts consumptive water-use permits. Delineations were field verified between April and December 2016. Attribute data such as crop type, primary water source, and type of irrigation system were assigned to the irrigated areas.The results of this inventory and field verification indicate that during the 2016 growing seasons (spring, summer, fall, and winter), an estimated 88,652 acres were irrigated within Polk County. Of the total field-verified crops, 83,995 acres were in citrus; 2,893 acres were in other non-citrus fruit crops (blueberries, grapes, peaches, and strawberries); 621 acres were in row crops (primarily beans and watermelons); 1,117 acres were in nursery (container and tree farms) and sod production; and 26 acres were in field crops including hay and pasture. Of the total inventoried irrigated acreage within Polk County, 98 percent (86,566 acres) was in the Southwest Florida Water Management District, and the remaining 2 percent (2,086 acres) was in the South Florida Water Management District.About 85,788 acres (96.8 percent of the acreage inventoried) were irrigated by a microirrigation system, including drip, bubblers, and

  14. Implications of non-sustainable agricultural water policies for the water-food nexus in large-scale irrigation systems: A remote sensing approach

    Science.gov (United States)

    Al Zayed, Islam Sabry; Elagib, Nadir Ahmed

    2017-12-01

    This study proposes a novel monitoring tool based on Satellite Remote Sensing (SRS) data to examine the status of water distribution and Water Use Efficiency (WUE) under changing water policies in large-scale and complex irrigation schemes. The aim is to improve our understanding of the water-food nexus in such schemes. With a special reference to the Gezira Irrigation Scheme (GeIS) in Sudan during the period 2000-2014, the tool devised herein is well suited for cases where validation data are absent. First, it introduces an index, referred to as the Crop Water Consumption Index (CWCI), to assess the efficiency of water policies. The index is defined as the ratio of actual evapotranspiration (ETa) over agricultural areas to total ETa for the whole scheme where ETa is estimated using the Simplified Surface Energy Balance model (SSEB). Second, the tool uses integrated Normalized Difference Vegetation Index (iNDVI), as a proxy for crop productivity, and ETa to assess the WUE. Third, the tool uses SSEB ETa and NDVI in an attempt to detect wastage of water. Four key results emerged from this research as follows: 1) the WUE has not improved despite the changing agricultural and water policies, 2) the seasonal ETa can be used to detect the drier areas of GeIS, i.e. areas with poor irrigation water supply, 3) the decreasing trends of CWCI, slope of iNDVI-ETa linear regression and iNDVI are indicative of inefficient utilization of irrigation water in the scheme, and 4) it is possible to use SSEB ETa and NDVI to identify channels with spillover problems and detect wastage of rainwater that is not used as a source for irrigation. In conclusion, the innovative tool developed herein has provided important information on the efficiency of a large-scale irrigation scheme to help rationalize laborious water management processes and increase productivity.

  15. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  16. LOW COST SMART SOLAR POWERED AUTOMATIC IRRIGATION SYSTEM

    OpenAIRE

    Hinsermu Alemayehu*, Kena Likassa

    2016-01-01

    In developing countries Photovoltaic energy can find many applications in agriculture, providing electrical energy in various cases, particularly OFF grid and desert area. Today Modern irrigation methods in developing country are needed to fulfill the food demands. Although in these countries Ethiopia, there are many diesel engine operated and rare solar operated water pumps for irrigation; but due to the running cost of diesel and capital cost of photovoltaic irrigation system. So Photovolta...

  17. Quixotic coupling between irrigation system and maize-cowpea ...

    African Journals Online (AJOL)

    A study was conducted at the Research and Experimental Station, Faculty of Agriculture, Ain Shams University at Shalakan, Kalubia Governorate, Egypt, to evaluate the effect of two irrigation systems (trickle and modified furrow irrigation) and five maize (M)-cowpea (C) intercropping patterns (sole M-30, sole M-15, ridge ...

  18. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  19. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  20. Problems of irrigated agriculture in saline groundwater areas: farmers' perceptions

    International Nuclear Information System (INIS)

    Ahmad, S.; Yasin, M.; Ahmad, M.M.; Hussain, Z.; Khan, Z.; Akbar, G.

    2005-01-01

    A research study was conducted using participatory interactive dialogue in the brackish groundwater area of Mona SCARP-II, Bhalwal district Sargodha, Pakistan. The Participatory Rural Appraisal (PRA) was conducted in thirteen villages to identify macro- and micro-level issues related to irrigated agriculture in saline groundwater areas. SCARP tube wells have been abandoned or few have been handed over to farmers' organizations. Groundwater in the Indus basin contributes around 35% to the total water available for agriculture. Water quality of 60% area of the Indus basin is marginal to brackish. Minimum land holding of cultivated land in the elected villages varied from 0.10 to 4 ha. The maximum land holding of cultivated area in selected villages varied for 6 to 50 ha. However, the average size of farm was around 4 ha. The average salt-affected area per household was 17% of the total cultivated area. The salt-affected lands in 8 villages out of 13 were barren, where mainly rice crop is grown during kharif season. About 67% farms had access to conjunctive use of water, as water from both canal and private tube wells is available. In addition, 10% farms were having tube well water only. Therefore, 77% farms are having access to the groundwater. According to the farmers' perceptions, 100% villages have fresh groundwater to a depth of 7.5 m and 62% villages had depth ranging from 15-30 m. Furthermore, in all thirteen selected villages, groundwater quality beyond 30 m depth was brackish. Laboratory analysis confirmed the farmer's perception that groundwater quality is a function of depth. About 92% farmers groups indicated that non-availability and high price of inputs was a major problem. The second major issue was related to the shortage of canal water supplies and 77% villages are facing this problem. Moreover, 31% farmers' groups of selected villages indicated that water logging and salinity are the major concerns affecting agricultural productivity. This figure is

  1. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  2. Impacts of agricultural irrigation on nearby freshwater ecosystems

    DEFF Research Database (Denmark)

    Lorente, Carmen; Causape, Jesus; Glud, Ronnie N.

    2015-01-01

    A small hydrological basin (Lerma, NE Spain), transformed from its natural state (steppe) to rain-fed agriculture and recently to irrigation agriculture, has been monitored across four seasons of an agricultural year. The goal of this study was to assess how and whether agricultural activities....... In this way, PICT can serve to establish causal linkages between pollutants and the observed biological impacts. The periphyton presented significantly different sensitivities against terbuthylazine through the year in accord with the seasonal application of this herbicide in the crops nowadays....... The sensitivity of already banned herbicides, atrazine and simazine does not display a clear seasonality. The different sensitivities to herbicides were in agreement with the expected exposures scenarios, according to the agricultural calendar, but not with the concentrations measured in water, which altogether...

  3. Agriculture and natural resources in a changing world - the role of irrigation

    Science.gov (United States)

    Sauer, T.; Havlík, P.; Schneider, U. A.; Kindermann, G.; Obersteiner, M.

    2009-04-01

    Fertile land and fresh water constitute two of the most fundamental resources for food production. These resources are affected by environmental, political, economic, and technical developments. Regional impacts may transmit to the world through increased trade. With a global forest and agricultural sector model, we quantify the impacts of increased demand for food due to population growth and economic development on potential land and water use. In particular, we investigate producer adaptation regarding crop and irrigation choice, agricultural market adjustments, and changes in the values of land and water. Against the background of resource sustainability and food security topics, this study integrates the spatial and operational heterogeneity of irrigation management into a global land use model. It represents a first large scale assessment of agricultural water use under explicit consideration of alternative irrigation options in their particular biophysical, economic, and technical context, accounting for international trade, motivation-based farming, and quantified aggregated impacts on land scarcity, water scarcity, and food supply. The inclusion of technical and economic aspects of irrigation choice into an integrated land use modeling framework provides new insights into the interdisciplinary trade-offs between determinants of global land use change. Agricultural responses to population and economic growth include considerable increases in irrigated area and agricultural water use, but reductions in the average water intensity. Different irrigation systems are preferred under different exogenous biophysical and socioeconomic conditions. Negligence of these adaptations would bias the burden of development on land and water scarcity. Without technical progress in agriculture, predicted population and income levels for 2030 would require substantial price adjustments for land, water, and food to equilibrate supply and demand.

  4. Water and agriculture in arid systems: a dynamic model of irrigation of Mazarron and Aguilas; Agua y agricultural en sistemas aridos: un modelo dinamico del regadio de Mazarron y Aguilas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, J.; Esteve Selma, M. A.

    2009-07-01

    The intensive use of groundwater resources in the new irrigated lands of Mazarron-Aguilas has led to the over-exploitation of the local aquifer and thus, to seawater intrusion, water salinization and falling off water tables, all of them key processes of desertification. The simulation results show that the unrealistic perceptions about the relationships between irrigated land and water resources constitutes a key factor to explain the highly unsustainable dynamics of irrigated lands in Mazarron and Aguilas and the whole SE Spain. The increase in water resources does not eliminate the problem because the feedback loops and endogenous factors of the system lead to a further increase in irrigated land and continuation of the water deficit, which shows a highly counter-intuitive behaviour. (Author) 3 refs.

  5. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  6. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA

    Science.gov (United States)

    Lauffenburger, Zachary H.; Gurdak, Jason J.; Hobza, Christopher M.; Woodward, Duane; Wolf, Cassandra

    2018-01-01

    Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains

  7. Opportunities for Automated Demand Response in California Agricultural Irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  8. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  9. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  10. Balancing water scarcity and quality for sustainable irrigated agriculture

    Science.gov (United States)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  11. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  13. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  14. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  15. performance evaluation of sprinkler irrigation system at mambilla

    African Journals Online (AJOL)

    HOD

    ratio (DPR), irrigation productivity (IP), labour requirements and water quality. Standard procedure was ... The exchangeable cations analysis of Kakara irrigation ... Keywords: Tea, irrigation System, Performance Evaluation. 1. INTRODUCTION.

  16. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  17. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Science.gov (United States)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  18. Can plastic mulching replace irrigation in dryland agriculture?

    Science.gov (United States)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Increasing water use efficiency (WUE) is a key strategy to maintaining crops yield without over-exploiting the scarce water resource. Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil moisture, evapotranspiration (ET), and WUE has not been compared with traditional irrigation method. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in dryland agriculture. Our results showed that plastic mulching technique resulted in yield increase comparable to irrigated crops but used 24% less water. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), plastic mulching increased WUE and available soil moisture. Higher WUE in plastic-mulched croplands was likely a result of greater proportion of available water being used for transpiration than evaporation. If problems related to production costs and residual plastic pollution could be managed, plastic mulching technology would become a promising strategy for dryland farming in other regions.

  19. Irrigated Agriculture in Morocco: An Agent-Based Model of Adaptation and Decision Making Amid Increasingly Frequent Drought Events

    Science.gov (United States)

    Norton, M.

    2015-12-01

    In the past 100 years, Morocco has undertaken a heavy investment in developing water infrastructure that has led to a dramatic expansion of irrigated agriculture. Irrigated agriculture is the primary user of water in many arid countries, often accounting for 80-90% of total water usage. Irrigation is adopted by farmers not only because it leads to increased production, but also because it improves resilience to an uncertain climate. However, the Mediterranean region as a whole has also seen an increase in the frequency and severity of drought events. These droughts have had a dramatic impact on farmer livelihoods and have led to a number of coping strategies, including the adoption or disadoption of irrigation. In this study, we use a record of the annual extent of irrigated agriculture in Morocco to model the effect of drought on the extent of irrigated agriculture. Using an agent-based socioeconomic model, we seek to answer the following questions: 1) Do farmers expand irrigated agriculture in response to droughts? 2) Do drought events entail the removal of perennial crops like orchards? 3) Can we detect the retreat of irrigated agriculture in the more fragile watersheds of Morocco? Understanding the determinants of irrigated crop expansion and contractions will help us understand how agro-ecological systems transition from 20th century paradigms of expansion of water supply to a 21st century paradigm of water use efficiency. The answers will become important as countries learn how to manage water in new climate regimes characterized by less reliable and available precipitation.

  20. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  1. The future of irrigated agriculture under environmental flow requirements restrictions

    Science.gov (United States)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel; Obersteiner, Michael; Ludwig, Fulco

    2016-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while

  2. Irrigation System through Intelligent Agents Implemented with Arduino Technology

    Directory of Open Access Journals (Sweden)

    Rodolfo SALAZAR

    2013-11-01

    Full Text Available The water has become in recent years a valuable and increasingly scarce. Its proper use in agriculture has demanded incorporate new technologies, mainly in the area of ICT. In this paper we present a smart irrigation system based on multi-agent architecture using fuzzy logic. The architecture incorporates different types of intelligent agents that an autonomous way monitor and are responsible for deciding if required enable / disable the irrigation system. This project proposes a real and innovative solution to the problem of inadequate water use with current irrigation systems employed in agricultural projects. This article presents the different technologies used, their adaptation to the solution of the problem and briefly discusses the first results obtained.

  3. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  4. Integrating irrigation and drainage management to sustain agriculture in northern Iran

    NARCIS (Netherlands)

    Darzi-Naftchali, Abdullah; Ritzema, Henk

    2018-01-01

    In Iran, as in the rest of the world, land and water for agricultural production is under pressure. Integrating irrigation and drainage management may help sustain intensified agriculture in irrigated paddy fields. This study was aimed to investigate the long-term effects of such management

  5. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    Science.gov (United States)

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  6. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    Science.gov (United States)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-09-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  7. Secondary salinisation in the Indus basin of Pakistan: an environmental issue of irrigated agriculture

    International Nuclear Information System (INIS)

    Aslam, M.; Kahlown, M.A.; Prathapar, S.A.; Ashraf, M.

    2005-01-01

    The increasing awareness of environmental issues has created a serious concern about the adverse social and environmental impacts of irrigation and water resources development projects in many developing countries. In Pakistan, development of the Indus Basin Irrigation System (IBIS), which serves 16 million ha, and distributes 172 billion cubic meters of high quality river water per annum, has caused the secondary salinization. An area of about 2 Mha is estimated to be severely salinized. In most of the cases, secondary salinity is caused by shallow saline groundwater and inadequate amounts of irrigation water for leaching salts from root zone. However, intensive use of poor quality groundwater without improving its quality also converts good agricultural lands into salt-affected lands. About 70 to 80 percent of tube wells of the Indus Plain pump sodic water, as a result of which large tracts of irrigated land have become sodic. The secondary salinity has devoured the potential of agricultural lands causing poor yield of crops. The affected lands are either lying barren or give poor yield of crops. As a result of salinization about 28,000 to 40,000 ha of irrigated land are going out of production per year. In response, researchers, policy makers, agency personnel and farmers in Pakistan have continuously devised strategies to mitigate secondary salinization. In this paper, nature and causes of secondary salinization, and review of strategies developed and tested in the IBIS to mitigate salinization are presented. Appropriate combination of strategies for various canal commands, and areas requiring further investigations are identified. (author)

  8. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    Science.gov (United States)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support

  9. African Farmer-led Irrigation Development: re-framing agricultural policy and investment?

    OpenAIRE

    Woodhouse, Philip; Veldwisch, Gert Jan; Venot , Jean-Philippe; Brockington, Daniel; Komakech, Hans; Manjichi , Ângela

    2017-01-01

    The past decade has witnessed an intensifying focus on the development of irrigation in sub-Saharan Africa. It follows a 20-year hiatus in the wake of disappointing irrigation performance during the 1970s and 1980s. Persistent low productivity in African agriculture and vulnerability of African food supplies to increasing instability in international commodity markets are driving pan-African agricultural investment initiatives, such as the Comprehensive Africa Agricultural Development Program...

  10. The Application of Drip Irrigation System on Tomato (Lycopersicum Esculentum Mill)

    OpenAIRE

    Setyaningrum, Diah Ayu

    2014-01-01

    This study aimed to analyze the performance of drip irrigation systems, determine performance of tomato treated under the irrigation systems.Field research was conducted at the Laboratory of Land and Water Resources Engineering; and at the Laboratory ofintegrated field, Faculty of Agriculture, University of Lampung in August 2013 to December 2013.Irrigation systems consisted of main componens: water supplies, Polythilene lateral tube, and emitters. Emitter on every pot, were made of Polythile...

  11. Development of Solar Powered Irrigation System

    International Nuclear Information System (INIS)

    Abdelkerim, A I; Eusuf, M M R Sami; Salami, M J E; Aibinu, A; Eusuf, M A

    2013-01-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors

  12. Impact of different irrigation systems on water quality in peri-urban areas of Gujarat, India

    OpenAIRE

    Vangani, Ruchi; Saxena, Deepak; Gerber, Nikolaus; Mavalankar, Dileep; von Braun, Joachim

    2016-01-01

    The ever-growing population of India, along with the increasing competition for water for productive uses in different sectors - especially irrigated agriculture and related local water systems and drainage - poses a challenge in an effort to improve water quality and sanitation. In rural and peri-urban settings, where agriculture is one of the main sources of livelihood, the type of water use in irrigated agriculture has complex interactions with drinking water and sanitation. In particular,...

  13. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    Science.gov (United States)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  14. Design of Agricultural Cleaner Production Technology System

    OpenAIRE

    Hu, Jun-mei; Wang, Xin-jie

    2009-01-01

    Based on the introduction of agricultural cleaner production, technology system design of planting cleaner production is discussed from five aspects of water-saving irrigation technology, fertilization technology, diseases and insects control technology, straw comprehensive utilization technology and plastic film pollution control technology. Cleaner production technology system of livestock and poultry raise is constructed from the aspects of source control technology, reduction technique in...

  15. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M.; Bielza, J.; Garrido, A.; Iglesias, A.

    2015-07-01

    Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk. (Author)

  16. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Directory of Open Access Journals (Sweden)

    Jorge Ruiz

    2015-12-01

    Full Text Available Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk.

  17. African farmer-led irrigation development: reframing agricultural policy and investment?

    NARCIS (Netherlands)

    Woodhouse, Philip; Veldwisch, G.J.A.; Venot, J.P.J.N.; Brockington, Dan; Komakech, Hans Charles; Manjichi, Angela

    2017-01-01

    The past decade has witnessed an intensifying focus on the development of irrigation in sub-Saharan Africa. It follows a 20-year hiatus in the wake of disappointing irrigation performance during the 1970s and 1980s. Persistent low productivity in African agriculture and vulnerability of African food

  18. An improved delivery system for bladder irrigation.

    Science.gov (United States)

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-10-05

    Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse

  19. Drip irrigation using a PLC based adaptive irrigation system

    OpenAIRE

    Shahidian, S.; Serralheiro, R. P.; Teixeira, J. L.; Santos, F. L.; Oliveira, M. R. G.; Costa, J. L.; Toureiro, C.; Haie, Naim; Machado, R. M.

    2009-01-01

    Most of the water used by man goes to irrigation. A major part of this water is used to irrigate small plots where it is not feasible to implement full-scale Evapotranspiration based irrigation controllers. During the growth season crop water needs do not remain constant and varies depending on the canopy, growth stage and climate conditions such as temperature, wind, relative humidity and solar radiation. Thus, it is necessary to find an economic irrigation controller that can adapt the dail...

  20. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    NARCIS (Netherlands)

    Pardossi, A.; Incrocci, L.; Incrocci, G.; Marlorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J.

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of

  1. Decision support system for surface irrigation design

    OpenAIRE

    Gonçalves, José M.; Pereira, L.S.

    2009-01-01

    The SADREG decision support system was developed to help decision makers in the process of design and selection of farm surface irrigation systems to respond to requirements of modernization of surface irrigation—furrow, basin, and border irrigation. It includes a database, simulation models, user-friendly interfaces, and multicriteria analysis models. SADREG is comprised of two components: design and selection. The first component applies database information, and through several si...

  2. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  3. Helminth eggs as parasitic indicators of fecal contamination in agricultural irrigation water, biosolids, soils and pastures.

    Science.gov (United States)

    Campos, María Claudia; Beltrán, Milena; Fuentes, Nancy; Moreno, Gerardo

    2018-03-15

    A very common practice in agriculture is the disposal of wastewater and biosolids from water treatment systems due to their high nutrient content, which substantially improves crop yields. However, the presence of pathogens of fecal origin creates a sanitary risk to farmers and consumers. To determine the presence and concentration of helminth eggs in irrigation waters, biosolids, agricultural soils, and pastures. Water, biosolids, soil, and pasture samples were collected and analyzed for helminth egg detection, total eggs and viable eggs counts. The behavior of helminth eggs was evaluated in irrigation waters and dairy cattle grassland, where biosolids had been used as an organic amendment. Concentrations between 0.1-3 total helminth eggs/L, and 0.1-1 viable helminth eggs/L were found in water. In biosolids and soil, we found 3-22 total helminth eggs/4 g of dry weight, and 2-12 viable helminth eggs/4 g of dry weight, and in grass, we found <2-9 total helminth eggs/g of fresh weight, and <1-3 viable helminth eggs/g of fresh weight. The presence of helminth eggs in each matrix varied from days to months, which may represent a sanitary risk to farmers as well as to consumers. The presence of helminth eggs in the assessed matrixes confirms the sanitary risk of such practices. Therefore, it is important to control and incorporate regulations related to the use of wastewater and biosolids in agriculture.

  4. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  5. Determination of optimal irrigation rates of agricultural crops under consideration of soil properties and climatic conditions

    Directory of Open Access Journals (Sweden)

    Irakli Kruashvili

    2016-09-01

    Full Text Available In conditions of increasing water shortage, further development of irrigated agriculture production is impossible without improving the methods of cultivation of agricultural crops, primarily irrigation technology. In 2015 the experiment have been conducted on the territory of irrigation farming area of village Tamarisi (Marneuli Municipality, according to which comprehensive study of local climatic and soil conditions were conducted. Received data were used for computation crop water requirements for tomato and melon under the different irrigation treatments. Obtained results have shown the possibility of water use efficiency and obtaining sufficiently high yields of crops that participated in the experiment that became possible in a case of usage of drip irrigation technology in combination with plastic mulch.

  6. Coupled Hydro-Economic Dynamics of Groundwater Irrigated Agriculture in a Hard Rock Region of India

    Science.gov (United States)

    Modi, V.; Fishman, R.; Siegfried, T. U.; Raj, P.; Vasquez, V.; Narula, K.; Lall, U.

    2009-12-01

    We analyze the dynamics of groundwater and irrigated agriculture in a semi-arid, hard rock region of India, which is characterized by low-yield, limited storativity aquifers. Telengana, in western Andhra Pradesh has witnessed a relentless expansion of the total irrigated area. Total crop irrigation water requirements have increased by more than 50 percent over the last 30 years. Nowadays, more than 80 percent of the net irrigated area in the region is irrigated from groundwater. Given limited, period monsoonal recharge to the aquifers, it can be estimated that groundwater irrigation intensity is surpassing sustainable allocation levels by a factor of 3. It is not further surprising that the region is increasingly affected by widespread groundwater depletion, with negative consequences for farmers and the energy sector as well as the natural environment. Using data on water tables, precipitation and agricultural land use, we show how both rainfall and farmers’ choices effect water tables and how these, in turn, re-effect farmers choices and agricultural outcomes in a dynamic relationship that allows us to model the interaction between the natural hydrological and agricultural-social dynamics. We use the model to elucidate and quantify the meaning of groundwater mining in this hard rock environment. In contrast to deep alluvial aquifers, excessive extraction does not lead to sustained long term deepening of the water table, but to increased fluctuations in the supply of groundwater for irrigation and the loss of the buffering capacity. For the farmers, this potentially translates into increasingly perilous agricultural production outcomes during monsoonal failures. Furthermore, the dry season agricultural production that entirely depends on the availability of sufficient amounts of irrigation water is progressively threatened under the current allocation scenario. Alternative management practices to address the aquifer depletion issues are discussed. We show that

  7. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network.

    Science.gov (United States)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L(-1) and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (>200 ng L(-1), on average). The estimated concentration of micropollutants in crops ranged from contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  9. Mechanisms of basin-scale nitrogen load reductions under intensified irrigated agriculture.

    Directory of Open Access Journals (Sweden)

    Rebecka Törnqvist

    Full Text Available Irrigated agriculture can modify the cycling and transport of nitrogen (N, due to associated water diversions, water losses, and changes in transport flow-paths. We investigate dominant processes behind observed long-term changes in dissolved inorganic nitrogen (DIN concentrations and loads of the extensive (465,000 km2 semi-arid Amu Darya River basin (ADRB in Central Asia. We specifically considered a 40-year period (1960-2000 of large irrigation expansion, reduced river water flows, increased fertilizer application and net increase of N input into the soil-water system. Results showed that observed decreases in riverine DIN concentration near the Aral Sea outlet of ADRB primarily were due to increased recirculation of irrigation water, which extends the flow-path lengths and enhances N attenuation. The observed DIN concentrations matched a developed analytical relation between concentration attenuation and recirculation ratio, showing that a fourfold increase in basin-scale recirculation can increase DIN attenuation from 85 to 99%. Such effects have previously only been observed at small scales, in laboratory experiments and at individual agricultural plots. These results imply that increased recirculation can have contributed to observed increases in N attenuation in agriculturally dominated drainage basins in different parts of the world. Additionally, it can be important for basin scale attenuation of other pollutants, including phosphorous, metals and organic matter. A six-fold lower DIN export from ADRB during the period 1981-2000, compared to the period 1960-1980, was due to the combined result of drastic river flow reduction of almost 70%, and decreased DIN concentrations at the basin outlet. Several arid and semi-arid regions around the world are projected to undergo similar reductions in discharge as the ADRB due to climate change and agricultural intensification, and may therefore undergo comparable shifts in DIN export as shown here

  10. Ring Irrigation System (RIS) design through customer preference representation

    OpenAIRE

    Ridwan Infandra I.Z.; Rianmora Suchada; Werawatganon Siwat

    2018-01-01

    In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent ...

  11. A new approach for assessing the future of aquifers supporting irrigated agriculture

    Science.gov (United States)

    Butler, James J.; Whittemore, Donald O.; Wilson, Blake B.; Bohling, Geoffrey C.

    2016-03-01

    Aquifers supporting irrigated agriculture are under stress worldwide as a result of large pumping-induced water deficits. To aid in the formulation of more sustainable management plans for such systems, we have developed a water balance approach for assessing the impact of proposed management actions and the prospects for aquifer sustainability. Application to the High Plains aquifer (HPA) in the state of Kansas in the United States reveals that practically achievable reductions in annual pumping (determining the net inflow (capture) component of the water balance. The HPA is similar to many aquifers supporting critically needed agricultural production, so the presented approach should prove of value far beyond the area of this initial application.

  12. Ring Irrigation System (RIS design through customer preference representation

    Directory of Open Access Journals (Sweden)

    Ridwan Infandra I.Z.

    2018-01-01

    Full Text Available In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent days, analyzing water used or water permeation automatically through the soil moisture has been raised as the interesting topic. Proposed in this research is the ring irrigation system (RIS which is introduced as an alternative channel for emitters that drip water directly onto the soil at the plant’s root zone where the soil conditions before and after watering can be quickly detected by the sensors. This RIS can be used for the potted plant, green house, or other small farm fields. Product design and development (PDD is applied in this research for assisting the designer to understand and create the RIS prototype properly according to the customer’s requirements where the suggested functions obtained will be added and tested.

  13. A rule-based smart automated fertilization and irrigation systems

    Science.gov (United States)

    Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo

    2018-04-01

    Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.

  14. Labour markets for irrigated agriculture in central Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa; Gibbon, Peter

    . This paper examines segmentation in rural markets for agricultural wage workers in Ethiopia, controlling for location, farming systems and observed worker characteristics. Applying an endogenous switching model with simultaneous estimation of wage equations it establishes an informal sector wage premium......Labour market segmentation in developing countries has been considered in a growing literature, some of which suggests an informal sector wage premium. However, such studies have mainly focused on urban labour markets and have not discriminated between the informally self-employed and wage workers...

  15. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chelsea Cervantes

    2010-09-01

    Full Text Available Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the timing of image acquisition and the number of images used. At the regional and global scales, on the other hand, remote sensing has not been fully operational, as methods that work in one place and time are not necessarily transferable to other locations and periods. Thus, at larger scales, more work is required to indentify the best spectral indices, best time periods, and best classification methods under different climatological and cultural environments. Existing studies at regional scales also establish the fact that both remote sensing and national statistical approaches require further refinement with a substantial investment of

  16. Irrigation management in Mediterranean salt affected agriculture: how leaching operates

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2012-03-01

    Full Text Available In the frame of a crop rotation currently applied in a farm of the Apulian Tavoliere (Southern Italy, this paper reports the effect of brackish water irrigation on soil, outlines the corresponding salinity balance, formulates quantitative relations to model salt outflow below the soil root-layer and defines operational criteria to optimize irrigation management at farm level in order to control soil salinity through leaching. The general aim is to contribute to a sustainable use of the available water resources and a proper soil fertility conservation. A three-year trial (2007-2010 was carried out on a farm located close to the coast of the Manfredonia gulf (Mediterranean - Adriatic sea, where irrigation with brackish water is frequently practiced due to seawater intrusion into the groundwater. An especially designed experimental field-unit was set-up: the bottom of three hydraulically insulated plots was covered with a plastic sheet to intercept the percolating water and collect it into tanks by means of drain tubes. Each year a double crop cycle was applied to the soil; a spring-summer crop (tomato, zucchini and pepper, respectively was followed by a fall-winter crop (spinach, broccoli and wheat. Short “fallow” periods (completely bare soil were inserted between two crop cycles. Irrigation or rain completely restored crop water consumptions (with the exception of wheat, considered a rainfed crop and leaching was performed both unintentionally (by rainfalls or intentionally (supplying higher irrigation volumes whenever the soil electrical conductivity exceeded a fixed threshold. The soil electrical conductivity was periodically measured together with volume and electrical conductivity of irrigation and drainage water. All these measures allowed to draw-up the salt-balance of the soil, respectively at the beginning and the end of each crop cycle. Absolute and relative variations in soil salt content were interpreted with respect to absolute

  17. Treated sewagewater use in irrigated agriculture : theoretical design of farming systems in Seil Al Zarqa and the Middle Jordan Valley in Jordan

    NARCIS (Netherlands)

    Duqqah, M.M.

    2002-01-01

    Most of Jordan is arid and water resources are limited. This situation becomes more acute the more Jordan develops. New techniques in agriculture, industry and the domestic sector place an increasing demand upon clean and safe water. Good-quality water is hardly

  18. Status and Causes of Soil Salinization of Irrigated Agricultural Lands in Southern Baja California,Mexico

    International Nuclear Information System (INIS)

    Endo, T.; Yamamoto, S.; Fujiyama, H.; Honna, T.; Larrinaga, J.A.

    2011-01-01

    Selected farmlands in southern Baja California, Mexico, were surveyed to determine the levels and the causes of salinization/sodication in irrigated agricultural soil. The salt dynamics observed in profiles differed from farm to farm. Low EC and high ph levels were observed in the profiles of sandy fields, because the salt composition of these soils can easily change when salts are leached by irrigation water that contains carbonates of sodium. On the other hand, high levels of salinity and sodicity were observed in the soils of clayey fields. Soil salinization/sodication is complexly interrelated with soil characteristics, the amount and composition of salts in the soil, the quantity and quality of irrigation water applied, and the irrigation methods used. Our findings indicate that irrigation water in Baja California should be supplied at a rate that is sufficient to meet crop requirements without exacerbating salt accumulation.

  19. Irrigation and drainage in agriculture: a salinity and environmental perspective

    NARCIS (Netherlands)

    Zee, van der S.E.A.T.M.; Stofberg, S.F.; Yang, X.; Liu, Y.; Islam, M.N.; Hu, Yin Fei

    2017-01-01

    Whereas irrigation and drainage are intended to address the shortage and surplus of soil water, respectively, an important aspect to address is also the management of salinity. Plants have a limited tolerance for soil water salinity, and despite significant gaps in our practical knowledge, an

  20. Infra-red thermography for detecting drought in agricultural crops and scheduling irrigation

    Directory of Open Access Journals (Sweden)

    Petrović Ivana

    2016-01-01

    Full Text Available The use of thermal imaging is a fast growing and potentially important tool in various fields of agriculture. The technology visually identified the rise of temperature in crop canopy which occurs as a result of drought and allows the precise scheduling of crop irrigation. The aim of presenting paper was to demonstrate the application of these techniques on potato plants and to point out on the necessity of irrigation for potato sustainable and economically justified production.

  1. Arsenic accumulation in irrigated agricultural soils in Northern Greece.

    Science.gov (United States)

    Casentini, B; Hug, S J; Nikolaidis, N P

    2011-10-15

    The accumulation of arsenic in soils and food crops due to the use of arsenic contaminated groundwater for irrigation has created worldwide concern. In the Chalkidiki prefecture in Northern Greece, groundwater As reach levels above 1000μg/L within the Nea Triglia geothermal area. While this groundwater is no longer used for drinking, it represents the sole source for irrigation. This paper provides a first assessment of the spatial extent of As accumulation and of As mobility during rainfall and irrigation periods. Arsenic content in sampled soils ranged from 20 to 513mg/kg inside to 5-66mg/kg outside the geothermal area. Around irrigation sprinklers, high As concentrations extended horizontally to distances of at least 1.5m, and to 50cm in depth. During simulated rain events in soil columns (pH=5, 0μg As/L), accumulated As was quite mobile, resulting in porewater As concentrations of 500-1500μg/L and exposing plant roots to high As(V) concentrations. In experiments with irrigation water (pH=7.5, 1500μg As/L), As was strongly retained (50.5-99.5%) by the majority of the soils. Uncontaminated soils (500mg/kg) could not retain any of the added As. Invoked mechanisms affecting As mobility in those soils were adsorption on solid phases such as Fe/Mn-phases and As co-precipitation with Ca. Low As accumulation was found in collected olives (0.3-25μg/kg in flesh and 0.3-5.6μg/kg in pits). However, soil arsenic concentrations are frequently elevated to far above recommended levels and arsenic uptake in faster growing plants has to be assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. irrigated agriculture and poverty reduction in kassena nankana

    African Journals Online (AJOL)

    User

    2010-09-08

    Sep 8, 2010 ... a considerable extent, created a platform for employment and high agricultural output. How- ever, the high agricultural output has not ..... District Agriculture Extension Office, and food crop sellers in the Navrongo Central .... pled project farmers were dissatisfied with their household economic situation and ...

  3. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  4. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  5. Modernisation strategy for National Irrigation Systems in the Philippines

    NARCIS (Netherlands)

    Delos Reyes, Mona Liza Fortunado

    2017-01-01

    The performance of publicly funded canal irrigation systems or more commonly called national irrigation systems (NIS) in the Philippines remained below expectations despite considerable system rehabilitation and improvement efforts. The continued suboptimal performances were attributed to

  6. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    Science.gov (United States)

    Thebo, A. L.; Drechsel, P.; Lambin, E. F.

    2014-11-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range.

  7. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    International Nuclear Information System (INIS)

    Thebo, A L; Drechsel, P; Lambin, E F

    2014-01-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range. (letter)

  8. Climate change, irrigation, and Israeli agriculture. Will warming be harmful?

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Aliza; Lichtman, Ivgenia [Hebrew University of Jerusalem, Jerusalem (Israel); Mendelsohn, Robert [Yale University, New Haven, Connecticut (United States)

    2008-04-15

    This paper utilizes a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. The study finds that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts climate change is strictly beneficial. However, with water included, the model predicts that only modest climate changes are beneficial while drastic climate change in the long run will be harmful. Using the AOGCM Scenarios we show that farm net revenue is expected to increase. Although Israel has a relatively warm climate a mild increase in temperature is beneficial due to the ability to supply international markets with farm product early in the season. (author)

  9. Climate change, irrigation, and Israeli agriculture. Will warming be harmful?

    International Nuclear Information System (INIS)

    Fleischer, Aliza; Lichtman, Ivgenia; Mendelsohn, Robert

    2008-01-01

    This paper utilizes a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. The study finds that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts climate change is strictly beneficial. However, with water included, the model predicts that only modest climate changes are beneficial while drastic climate change in the long run will be harmful. Using the AOGCM Scenarios we show that farm net revenue is expected to increase. Although Israel has a relatively warm climate a mild increase in temperature is beneficial due to the ability to supply international markets with farm product early in the season. (author)

  10. Agriculture and irrigation as potential drivers of urban heat island

    Science.gov (United States)

    Kumar, R.; Buzan, J. R.; Mishra, V.; Kumar, R.; Shindell, D. T.; Huber, M.

    2017-12-01

    More than half the population are urban dwellers and are most vulnerable to global environmental changes. Urban extents are more prone to intense heating as compared to the surroundings rural area. Presently about 33% of India's population lives in the urban area and is expected to rise steeply, so a better understanding of the phenomenon affecting the urban population is very much important. Urban Heat Island (UHI) is a well-known phenomenon which potentially affects energy consumption, spreading of diseases and mortality. In general, almost all (90%) of the major urban area of the country faces UHI at night time in the range (1-5 °C) while 60% of the regions face Urban Cool Island (UCI) in the range of -1 to 6 °C in day time. Our observations and simulations show that vegetation and irrigation in the surrounding non urban directly affects day time Urban Cool Island effects. This is due to the relative cooling by vegetation and irrigated lands in the vicinity of these urban regions. There is a contrasting variation in UHI/UCI intensities in different seasons and in different time of the day. Most of the urban regions face UHI effect in summers whereas this phenomenton reverses in winters. Daytime UCI is more prominent in the months of April and May due to minimum availability of moisture. We observed that apart from vegetation and irrigation, aerosol is also an important factor governing UHI phenomenon.

  11. A comprehensive guide for designing more efficient irrigation systems with respect to application control

    Science.gov (United States)

    Khaddam, Issam; Schuetze, Niels

    2017-04-01

    The worldwide water scarcity problems are expected to aggravate due to the increasing population and the need to produce more food. Irrigated agriculture is considered the highest consumer of fresh water resources with a rate exceeds 70% of global consumption. Consequently, an improvement in the efficiency of all irrigation methods, such as furrow or drip irrigation, becomes more necessary and urgent. Therefore, a more precise knowledge about soil water distribution in the root zone and the water balance components is required. For this purpose and as a part of the SAPHIR project (Saxonian Platform for high Performance Irrigation), a 2D simulation- based study was performed with virtual field conditions. The study investigates the most important design parameters of many irrigation systems, such as irrigation intensity and duration, and shows there influence on the water distribution efficiency. Furthermore, three main soil textures are used to test the impact of the soil hydraulic properties on irrigation effectiveness. A numerous number of irrigation scenarios of each irrigation system was simulated using HYDRUS 2D. Thereafter, the results were digitally calculated, compiled and made available online in the so called "Irrigation Atlases". The irrigation atlases provide graphical results of the soil moisture and pressure head distributions in the root zone. Moreover, they contain detailed information of the water balance for all simulated scenarios. The most studies evaluate the irrigation water demands on local, regional or global scales and for that an efficient water distribution is required. In this context, the irrigation atlases can serve as a valuable tool for the implementation of planned irrigation measures.

  12. Analysis Of The Socioeconomic And Environmental Impacts Of Irrigated Agriculture In The Irrigated Perimeter Of Pau Dos Ferros (Rn

    Directory of Open Access Journals (Sweden)

    José Jobson Garcia de Almeida

    2014-07-01

    Full Text Available The Brazilian Government implemented irrigated perimeters to ameliorate problems of drought and poverty in the Northeast. In this sense, the objective of this work was to analyze the social, economic and environmental impacts generated by the practice of irrigated agriculture in the municipality of Pau dos Ferros-RN, resulting from the impacts caused by the activity. Obtained references on the topic, on-site visits and interviews with producers of the perimeter. It was observed the presence of negative impacts in the area, such as waste, contamination and water salinisation, compaction and soil erosion, deforestation caused by the removal of the native vegetation, high consumption of energy and public health problems.

  13. Performance of arthroscopic irrigation systems assessed with automatic blood detection

    NARCIS (Netherlands)

    Tuijthof, G. J. M.; de Vaal, M. M.; Sierevelt, I. N.; Blankevoort, L.; van der List, M. P. J.

    2011-01-01

    During arthroscopies, bleeding episodes occur as a result of tissue damage. Irrigation systems assist in minimizing these disturbances. The performance of three arthroscopic irrigation systems in clearing bleeding episodes was evaluated objectively. One surgeon performed 99 shoulder arthroscopies

  14. Decreasing Agricultural Irrigation has not reversed Groundwater Depletion in the Yellow River Basin

    Science.gov (United States)

    Kang, Z.; Xie, X.; Zhu, B.

    2017-12-01

    Agricultural irrigation is considered as the major water use sector accounting for over 60% of the global freshwater withdrawals. Especially in the arid and semiarid areas, irrigation from groundwater storage substantially sustain crop growth and food security. China's Yellow River Basin (YRB) is a typical arid and semiarid area with average annual precipitation about 450 mm. In this basin, more than 52 million hm2 of arable land needs irrigation for planting wheat, cotton, paddy rice etc, and groundwater contributes over one-third irrigation water. However, agricultural irrigation remained a certain level or decreased to some degree due to water-saving technologies and returning farmland to forest projects. Then an interesting question arises: has the groundwater storage (GWS) in YRB kept a consistent variation with the agricultural irrigation? In this study, to address this question, we employed multi-source data from ground measurements, remote sensing monitoring and large-scale hydrological modeling. Specifically, groundwater storage variation was identified using Gravity Recovery and Climate Experiment (GRACE) data and ground observations, and groundwater recharge was estimated based on the Variable Infiltration Capacity (VIC) modeling. Results indicated that GWS in YRB still holds a significant depletion with a rate of about -3 mm per year during the past decade, which was consistently demonstrated by the GRACE and the ground observations. Ground water recharge shows negligible upward trends despite climate change. The roles of different sectors contributing to groundwater depletion have changed. Agricultural irrigation accounting for over 60% of groundwater depletion, but its impact decreased. However, the domestic and the industrial purposes play an increasing role in shaping groundwater depletion.

  15. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Science.gov (United States)

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  16. Matching agricultural freshwater supply and demand: using industrial and domestic treated wastewater for sub-irrigation purposes

    Science.gov (United States)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan

    2017-04-01

    Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the

  17. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    Science.gov (United States)

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  18. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  19. Aligning the multiplicities in natural resource governance: a study on the governance of water and land resources in irrigated agriculture

    NARCIS (Netherlands)

    Özerol, Gül

    2013-01-01

    In many countries, irrigated agriculture is crucial for food security and poverty reduction. Despite these socio-economic prospects, irrigation agriculture often leads to negative impacts that threaten environmental sustainability. Particularly in semi-arid and arid regions, the coupled problems of

  20. Automated Irrigation System using Weather Prediction for Efficient Usage of Water Resources

    Science.gov (United States)

    Susmitha, A.; Alakananda, T.; Apoorva, M. L.; Ramesh, T. K.

    2017-08-01

    In agriculture the major problem which farmers face is the water scarcity, so to improve the usage of water one of the irrigation system using drip irrigation which is implemented is “Automated irrigation system with partition facility for effective irrigation of small scale farms” (AISPF). But this method has some drawbacks which can be improved and here we are with a method called “Automated irrigation system using weather prediction for efficient usage of water resources’ (AISWP), it solves the shortcomings of AISPF process. AISWP method helps us to use the available water resources more efficiently by sensing the moisture present in the soil and apart from that it is actually predicting the weather by sensing two parameters temperature and humidity thereby processing the measured values through an algorithm and releasing the water accordingly which is an added feature of AISWP so that water can be efficiently used.

  1. Recent trends/challenges in irrigated agriculture-Why is irrigation important in a discussion of agricultural migration?

    Science.gov (United States)

    United States agriculture contributes 16% of the $9 trillion gross domestic product, 8% of U.S. exports, and 17% of employment while providing food to all citizens, despite the fact that only 2% of the U.S. workforces is on farms. Agricultural productivity has grown by 240% since 1948, while agricul...

  2. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    Science.gov (United States)

    Batukaev, Abdulmalik

    2016-04-01

    The world water strategy is to be changed because the current imitational gravitational frontal isotropic-continual paradigm of irrigation is not sustainable. This paradigm causes excessive consumption of fresh water - global deficit - up to 4-15 times, adverse effects on soils and landscapes. Current methods of irrigation does not control the water spread throughout the soil continuum. The preferable downward fluxes of irrigation water are forming, up to 70% and more of water supply loses into vadose zone. The moisture of irrigated soil is high, soil loses structure in the process of granulometric fractions flotation decomposition, the stomatal apparatus of plant leaf is fully open, transpiration rate is maximal. We propose the Biogeosystem technique - the transcendental, uncommon and non-imitating methods for Sustainable Natural Resources Management. New paradigm of irrigation is based on the intra-soil pulse discrete method of water supply into the soil continuum by injection in small discrete portions. Individual volume of water is supplied as a vertical cylinder of soil preliminary watering. The cylinder position in soil is at depth form 10 to 30 cm. Diameter of cylinder is 1-2 cm. Within 5-10 min after injection the water spreads from the cylinder of preliminary watering into surrounding soil by capillary, film and vapor transfer. Small amount of water is transferred gravitationally to the depth of 35-40 cm. The soil watering cylinder position in soil profile is at depth of 5-50 cm, diameter of the cylinder is 2-4 cm. Lateral distance between next cylinders along the plant raw is 10-15 cm. The soil carcass which is surrounding the cylinder of non-watered soil remains relatively dry and mechanically stable. After water injection the structure of soil in cylinder restores quickly because of no compression from the stable adjoining volume of soil and soil structure memory. The mean soil thermodynamic water potential of watered zone is -0.2 MPa. At this potential

  3. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... Many methods have been described and sensors developed to manage irrigation ... time, and automated irrigation systems based on crop water needs can .... output components, and a software program for decision support.

  4. Performing and updating an inventory of Oregon's expanding irrigated agricultural lands utilizing remote sensing technology

    Science.gov (United States)

    Hall, M. J.

    1981-01-01

    An inventory technique based upon using remote sensing technology, interpreting both high altitude aerial photography and LANDSAT multispectral scanner imagery, is discussed. It is noted that once the final land use inventory maps of irrigated agricultural lands are available and approximately scaled they may be overlaid directly onto either multispectral scanner or return beam vidicon prints, thereby providing an inexpensive updating procedure.

  5. Water as an economic good in irrigated agriculture: theory and practice

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Perry, C.J.

    2004-01-01

    This report describes the results of the Water Valuation and Pricing project, which aims to provide insight into the relevance of economics to typical problems found in irrigated agriculture. It first considers the theoretical basis for the use of economic instruments, then considers their

  6. Scalar alignment and sustainable water governance: The case of irrigated agriculture in Turkey

    NARCIS (Netherlands)

    Özerol, Gül; Bressers, Johannes T.A.

    2015-01-01

    Irrigated agriculture plays a significant role in global food security and poverty reduction. At the same time its negative impacts on water and land resources threaten environmental sustainability. With the objective of improving the understanding on the complexity of governing water resources for

  7. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system

    KAUST Repository

    Lu, Xuefei; Liang, Liyin L.; Wang, Lixin; Jenerette, G. Darrel; McCabe, Matthew; Grantz, David A.

    2016-01-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through

  8. Improvements in irrigation system modelling when using remotely sensed ET for calibration

    Science.gov (United States)

    van Opstal, J. D.; Neale, C. M. U.; Lecina, S.

    2014-10-01

    Irrigation system modelling is often used to aid decision-makers in the agricultural sector. It gives insight on the consequences of potential management and infrastructure changes. However, simulating an irrigation district requires a considerable amount of input data to properly represent the system, which is not easily acquired or available. During the simulation process, several assumptions have to be made and the calibration is usually performed only with flow measurements. The advancement of estimating evapotranspiration (ET) using remote sensing is a welcome asset for irrigation system modelling. Remotely-sensed ET can be used to improve the model accuracy in simulating the water balance and the crop production. This study makes use of the Ador-Simulation irrigation system model, which simulates water flows in irrigation districts in both the canal infrastructure and on-field. ET is estimated using an energy balance model, namely SEBAL, which has been proven to function well for agricultural areas. The seasonal ET by the Ador model and the ET from SEBAL are compared. These results determine sub-command areas, which perform well under current assumptions or, conversely, areas that need re-evaluation of assumptions and a re-run of the model. Using a combined approach of the Ador irrigation system model and remote sensing outputs from SEBAL, gives great insights during the modelling process and can accelerate the process. Additionally cost-savings and time-savings are apparent due to the decrease in input data required for simulating large-scale irrigation areas.

  9. International Journal of Tropical Agriculture and Food Systems

    African Journals Online (AJOL)

    ... and Food Systems (IJOTAFS) publishes high-quality peer reviewed articles, in English, in all areas of agriculture and food production and processing including tree production, pesticide science, post harvest biology and technology, seed science, irrigation, agricultural engineering, water resources management, marine ...

  10. Investigating the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China

    Science.gov (United States)

    Wu, S.; Wei, Y.; Zhao, Y.; Zheng, H.

    2017-12-01

    Human's innovative abilities do not only enable rapid expansion of civilization, but also lead to enormous modifications on the natural environment. Technology, while a key factor embedded in socioeconomic developments, its impacts have been rarely appropriately considered in river basin management. This research aims to examine the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China, and how its characteristics interacted with the river basin environment. It adopts a content analysis approach to collect and summarize quantitative technological information in the Heihe River Basin across a time span of more than 2000 years from the Han Dynasty (206 BC) to 2015. Two Chinese academic research databases: Wan Fang Data and China National Knowledge Infrastructure (CNKI) were chosen as data sources. The results show that irrigated agricultural technologies in Heihe River Basin have shifted from focusing on developing new farming tools and cultivation methods to adapting modernized, water-saving irrigation methods and water diversion infrastructures. In additions, the center of irrigated agricultural technology in the Heihe river basin has moved from downstream to middle stream since the Ming Dynasty (1368AD) as a result of degraded natural environment. The developing trend of technology in the Heihe River Basin thus coincides with the change of societal focus from agricultural production efficiency to the human-water balance and environmental remediation. This research demonstrates that irrigated agricultural technologies had a twisted evolutionary history in the Heihe River Basin, influenced by a diverse range of environmental and socioeconomic factors. It provides insights into the fact that technology exhibits a co-evolutionary characteristic with the social development history in the region, pointing towards the urgent need to maintain the balance between human and environment.

  11. Control system design for concrete irrigation channels

    OpenAIRE

    Strecker, Timm; Aamo, Ole Morten; Cantoni, Michael

    2017-01-01

    Concrete channels find use at the periphery of irrigation networks, for expansion and to replace small earthen channels given the relative ease of maintenance and elimination of seepage losses. In design, it is important to account for control system performance when dimensioning the channel infrastructure. In this paper, the design of a distributed controller is investigated in terms managing water-levels, and thereby the depth profile (i.e., amount of concrete) needed to support peak flow l...

  12. Wastewater Use in Irrigated Agriculture: Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The use of urban wastewater in agriculture is a centuries-old practice that is ... and water quality in Mexico, India, Nepal, Jordan, and the United States over the ... over 18 years experience in the planning and management of environmental ...

  13. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater

    International Nuclear Information System (INIS)

    Grossberger, Amnon; Hadar, Yitzhak; Borch, Thomas; Chefetz, Benny

    2014-01-01

    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t 1/2 ) between 0.2–9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Highlights: • Some pharmaceuticals are highly persistent in arable soils. • Weak acid pharmaceuticals are readily degradable in agricultural soils. • Irrigation with treated wastewater does not enhance degradation of pharmaceuticals. • Degradation of pharmaceuticals in soil is probably occurred via co-metabolism. -- Some pharmaceutical compounds are persistent in arable soils when introduced via irrigation with treated wastewater

  14. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation

    International Nuclear Information System (INIS)

    Chen, Weiping; Lu, Sidan; Peng, Chi; Jiao, Wentao; Wang, Meie

    2013-01-01

    Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties. -- Highlights: •Root zone soil Cd content was elevated by one time under long-term reclaimed water irrigation. •The STEM-profile model can well track the Cd balance in the soil profile. •Reclaimed water irrigation plays a limited role on soil Cd accumulation in Beijing croplands. -- There was a low risk of soil Cd pollution under long-term reclaimed water irrigation

  15. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  16. Automatic aeroponic irrigation system based on Arduino’s platform

    Science.gov (United States)

    Montoya, A. P.; Obando, F. A.; Morales, J. G.; Vargas, G.

    2017-06-01

    The recirculating hydroponic culture techniques, as aeroponics, has several advantages over traditional agriculture, aimed to improve the efficiently and environmental impact of agriculture. These techniques require continuous monitoring and automation for proper operation. In this work was developed an automatic monitored aeroponic-irrigation system based on the Arduino’s free software platform. Analog and digital sensors for measuring the temperature, flow and level of a nutrient solution in a real greenhouse were implemented. In addition, the pH and electric conductivity of nutritive solutions are monitored using the Arduino’s differential configuration. The sensor network, the acquisition and automation system are managed by two Arduinos modules in master-slave configuration, which communicate one each other wireless by Wi-Fi. Further, data are stored in micro SD memories and the information is loaded on a web page in real time. The developed device brings important agronomic information when is tested with an arugula culture (Eruca sativa Mill). The system also could be employ as an early warning system to prevent irrigation malfunctions.

  17. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    OpenAIRE

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-01-01

    The Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamfl...

  18. Soil and water management in spate irrigation systems in Eritrea

    NARCIS (Netherlands)

    Hadera, M.T.

    2001-01-01

    Spate irrigation has been practised over 100 years in the Red Sea coastal zone of Eritrea such as the Sheeb area. Main problem of the spate irrigation system is water shortage caused by irregular rainfall in the highlands of Eritrea and breaching of the irrigation structures by destructive

  19. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    Directory of Open Access Journals (Sweden)

    N. Schütze

    2016-05-01

    Full Text Available Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF can serve as a central decision support tool for both, (i a cost benefit analysis of farm irrigation modernization on a local scale and (ii a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  20. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    International Nuclear Information System (INIS)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M.

    2011-01-01

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L −1 and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L −1 , on average). The estimated concentration of micropollutants in crops ranged from −1 , with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 μg per person and week (Σ 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  1. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Preciado, Diana [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain); Matamoros, Victor, E-mail: victor.matamoros@udg.edu [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Bayona, Josep M. [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain)

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L{sup -1} and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L{sup -1}, on average). The estimated concentration of micropollutants in crops ranged from < 1 to 7677 ng kg{sup -1}, with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 {mu}g per person and week ({Sigma} 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  2. Assessing gaps in irrigated agricultural productivity through satellite earth observations-A case study of the Fergana Valley, Central Asia

    Science.gov (United States)

    Löw, Fabian; Biradar, Chandrashekhar; Fliemann, Elisabeth; Lamers, John P. A.; Conrad, Christopher

    2017-07-01

    Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies

  3. Irrigated agriculture and groundwater resources - towards an integrated vision and sustainable relationship.

    Science.gov (United States)

    Foster, Stephen; Garduño, Héctor

    2013-01-01

    Globally, irrigated agriculture is the largest abstractor, and predominant consumer, of groundwater resources, with large groundwater-dependent agro-economies now having widely evolved especially in Asia. Such use is also causing resource depletion and degradation in more arid and drought-prone regions. In addition crop cultivation practices on irrigated land exert a major influence on groundwater recharge. The interrelationship is such that cross-sector action is required to agree more sustainable land and water management policies, and this paper presents an integrated vision of the challenges in this regard. It is recognised that 'institutional arrangements' are critical to the local implementation of management policies, although the focus here is limited to the conceptual understanding needed for formulation of an integrated policy and some practical interventions required to promote more sustainable groundwater irrigation.

  4. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    International Nuclear Information System (INIS)

    Dahal, B.M.; Fuerhacker, M.; Mentler, A.; Karki, K.B.; Shrestha, R.R.; Blum, W.E.H.

    2008-01-01

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from -1 where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg -1 . The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg -1 ) > onion bulb (0.45 mg As kg -1 ) > cauliflower (0.33 mg As kg -1 ) > rice (0.18 mg As kg -1 ) > brinjal (0.09 mg As kg -1 ) > potato ( -1 ). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water

  5. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    Science.gov (United States)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  6. Water and energy footprint of irrigated agriculture in the Mediterranean region

    International Nuclear Information System (INIS)

    Daccache, A; Ciurana, J S; Knox, J W; Rodriguez Diaz, J A

    2014-01-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m 3 kg −1 ) and energy (CO 2 kg −1 ) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km 3 yr −1 of water abstraction and 1.78 Gt CO 2 emissions yr −1 , with most emissions from sunflower (73 kg CO 2 /t) and cotton (60 kg CO 2 /t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm −3 and emissions of 31 kg CO 2 /t. Irrigation modernization would save around 8 km 3 of water but would correspondingly increase CO 2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km 3 yr −1 (+137%) whilst CO 2 emissions would rise by +270%. The study has major policy implications for understanding the water–energy–food nexus in the region and the trade-offs between strategies to save water, reduce CO 2 emissions and/or intensify food production. (letter)

  7. Water and energy footprint of irrigated agriculture in the Mediterranean region

    Science.gov (United States)

    Daccache, A.; Ciurana, J. S.; Rodriguez Diaz, J. A.; Knox, J. W.

    2014-12-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m3 kg-1) and energy (CO2 kg-1) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km3 yr-1 of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm-3 and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km3 of water but would correspondingly increase CO2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km3 yr-1 (+137%) whilst CO2 emissions would rise by +270%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.

  8. Data Entities and Information System Matrix for Integrated Agriculture Information System (IAIS)

    Science.gov (United States)

    Budi Santoso, Halim; Delima, Rosa

    2018-03-01

    Integrated Agriculture Information System is a system that is developed to process data, information, and knowledge in Agriculture sector. Integrated Agriculture Information System brings valuable information for farmers: (1) Fertilizer price; (2) Agriculture technique and practise; (3) Pest management; (4) Cultivation; (5) Irrigation; (6) Post harvest processing; (7) Innovation in agriculture processing. Integrated Agriculture Information System contains 9 subsystems. To bring an integrated information to the user and stakeholder, it needs an integrated database approach. Thus, researchers describes data entity and its matrix relate to subsystem in Integrated Agriculture Information System (IAIS). As a result, there are 47 data entities as entities in single and integrated database.

  9. Advanced Agriculture system

    Directory of Open Access Journals (Sweden)

    Shrinivas R. Zanwar

    2012-05-01

    Full Text Available This article addresses the advanced system which improves agriculture processes like cultivation on ploughed land, based on robotic platform. We have developed a robotic vehicle having four wheels and steered by DC motor. The advanced autonomous system architecture gives us the opportunity to develop a complete new range of agricultural equipment based on small smart machines. The machine will cultivate the farm by considering particular rows and specific column at fixed distance depending on crop. The obstacle detection problem will also be considered, sensed by infrared sensor. The whole algorithm, calculation, processing, monitoring are designed with motors & sensor interfaced with microcontroller. The result obtained through example activation unit is also presented. The dc motor simulation with feedforward and feedback technique shows precise output. With the help of two examples, a DC motor and a magnetic levitation system, the use of MATLAB and Simulink for modeling, analysis and control is designed.

  10. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  11. The Influence of Groundwater Depletion from Irrigated Agriculture on the Tradeoffs between Ecosystem Services and Economic Returns.

    Science.gov (United States)

    Kovacs, Kent; West, Grant

    2016-01-01

    An irrigated agricultural landscape experiencing groundwater overdraft generates economic returns and a suite of ecosystem services (in particular, groundwater supply, greenhouse gases reduction, and surface water quality). Alternative land cover choices indicate tradeoffs among the value of ecosystem services created and the economic returns. These tradeoffs are explored using efficiency frontiers that determine the least value in ecosystem services that must be given up to generate additional economic returns. Agricultural producers may switch to irrigation with surface water using on-farm reservoirs and tail water recovery systems in response to groundwater overdraft, and this has consequences for the bundle of ecosystem service values and economic returns achievable from the landscape. Planning that accounts for both ecosystem service value and economic returns can achieve more value for society, as does the adoption of reservoirs though lowering the costs of irrigation, increasing groundwater levels, and reducing fuel combustion and associated GHG emissions from groundwater pumping. Sensitivity analyses of per unit value of ecosystem services, crop prices, and the groundwater and water purification model parameters indicate tradeoff among ecosystems service values, such as the use of a high-end social cost of carbon ultimately lowers groundwater supply and water purification value by more than 15%.

  12. The Influence of Groundwater Depletion from Irrigated Agriculture on the Tradeoffs between Ecosystem Services and Economic Returns.

    Directory of Open Access Journals (Sweden)

    Kent Kovacs

    Full Text Available An irrigated agricultural landscape experiencing groundwater overdraft generates economic returns and a suite of ecosystem services (in particular, groundwater supply, greenhouse gases reduction, and surface water quality. Alternative land cover choices indicate tradeoffs among the value of ecosystem services created and the economic returns. These tradeoffs are explored using efficiency frontiers that determine the least value in ecosystem services that must be given up to generate additional economic returns. Agricultural producers may switch to irrigation with surface water using on-farm reservoirs and tail water recovery systems in response to groundwater overdraft, and this has consequences for the bundle of ecosystem service values and economic returns achievable from the landscape. Planning that accounts for both ecosystem service value and economic returns can achieve more value for society, as does the adoption of reservoirs though lowering the costs of irrigation, increasing groundwater levels, and reducing fuel combustion and associated GHG emissions from groundwater pumping. Sensitivity analyses of per unit value of ecosystem services, crop prices, and the groundwater and water purification model parameters indicate tradeoff among ecosystems service values, such as the use of a high-end social cost of carbon ultimately lowers groundwater supply and water purification value by more than 15%.

  13. Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production.

    Science.gov (United States)

    Estrada-Acosta, M; Jiménez, M; Chaidez, C; León-Félix, J; Castro-Del Campo, N

    2014-07-01

    The implementation of good agricultural practices (GAP) from irrigation water to the tomato packaging process enhances the safety of fresh produce and its value throughout the food chain. The aim of the present study was to show that fresh produce farms that apply and enforce GAP could reduce the presence of Salmonella in finished produce. Samples were collected biweekly from six packing houses from the central region of Sinaloa, México, for the isolation of Salmonella spp by the ISO 6579:2002 method, and the isolated strains were serotyped and genotyped by the Kauffmman-White scheme and pulsed field gel electrophoresis (PFGE), respectively. Salmonella strains were detected in 13 (36.1 %) irrigation water samples, while only two tomato samples were positive (5.5 %). Eight different serotypes were identified in irrigation water, and Salmonella Oranienburg (34 %) was the most prevalent; however, only Salmonella Agona and Salmonella Weltevreden were present on tomatoes. Salmonella Oranienburg was the most widely dispersed and variable serotype, with 10 different PFGE profiles. Salmonella Weltevreden was isolated from both types of samples, albeit with distinct genetic profiles, implying that the sources of contamination differ. These results confirm the utility of implementing good agricultural practices to reduce Salmonella contamination in irrigation water and the packaging process.

  14. Introduction: Panda or Hydra? The untold stories of drip irrigation

    NARCIS (Netherlands)

    Kuper, M.; Venot, J.P.; Zwarteveen, M.; Venot, J.P.; Kuper, M.; Zwarteveen, M.

    2017-01-01

    Irrigated areas in the world are witnessing a transformation from open canal systems to more ‘modern’ irrigation methods such as drip irrigation that convey water through closed pipe systems. Initially associated with hi-tech irrigated agriculture, drip irrigation is now being used by a wide range

  15. Projected energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L. D.; Hellickson, M. L.; Schmisseur, W. E.; Shearer, M. N.

    1978-10-01

    A computer model has been developed to predict present and future regional water, energy, labor, and capital requirements of irrigated agricultural production in Idaho, Oregon, and Washington. The energy requirements calculated were on-farm pumping, and total energies. Total energies are the combined energies of on-farm pumping, manufacture, and installation. Irrigation system selections and modifications were based on an economic analysis utilizing the following input parameters: water, energy, labor, and capital costs and requirements; groundwater and surface water pumping lifts; improved application efficiencies; and pumping plant efficiencies. Major conclusions and implications of this analysis indicate that: as water application efficiencies increases additional quantities of water will not become available to other users; an overall increase in water application efficiencies resulted in decreases in gross water applications and increases in overall on-farm pumping and total energy consumptions; more energy will be consumed as pumping and total energies than will be conserved through decreased diversion pumping energy requirements; pump-back and similar technologies have the potential of both increasing application efficiencies and energy conservation; and the interrelationships understood between applying water in quantities greater than required for crop consumptive use and leaching, and late season in-steam flow augmentation and/or aquifer recharge are not well understood, and sound policy decisions concerning agricultural use of water and energy cannot be made until these interrelationships are better understood.

  16. Changes in East Asian Food Consumption: Some Implications for Australian Irrigated Agriculture

    OpenAIRE

    Philip Taylor; Christopher Findlay

    1996-01-01

    This paper reviews the implications of economic growth for food consumption in Asia, the East Asian supply responses and the determinants of Australian competitiveness in meeting Asian demand from production in Australia. Our special interests are to draw out some implications for Australia’s irrigated agriculture and for the organisation of the export business of that sector of the economy. A key question is the scope for increased exports of fresh rather than processed products. Sources of ...

  17. Agroecological Substantiation for the Use of Treated Wastewater for Irrigation of Agricultural Land

    Directory of Open Access Journals (Sweden)

    Yulia Domashenko

    2018-01-01

    Full Text Available The objective of this work is the agroecological substantiation of the use of treated wastewater for irrigation of agricultural land. As the result of the experimental research, it was established that the soil microfloraplays an essential role in strengthening or weakening the biological activity of soil. Therefore, with an irrigation rate of 250 m 3 /ha of wastewater, a 1.5 times increase in the number of microbiota colonies is observed on average both in hog farms and cattle breeding complexes; with a rate of 350 m 3 /ha – a 2-fold increase; with a rate of 450 m 3 /ha – a 3.5–4-fold increase. An increase in nitrifying soil features has also been observed. Thus, if the value on the control in the soil layer from 0 cm to 60 cm is 27.2 mg of nitrate per 1 kg of arid soil, in the version with wastewater irrigation it reaches 46.7 mg. According to the research results, the use of defecate, the waste of sugar production, in the treatment of wastewater of livestock farms does not have a negative agroecological impact on the soil. Therefore, the method of wastewater treatment of pig-breeding complexes and farms can be recommended for use in irrigation reclamation, which includes treatment of wastewater with burnt defecate in the dose of 50–200 mg/dm 3 , with the pH value varying in the range of 7.5–8.5. After settling-out of the obtained mixture in settlers, it is divided into a transparent liquid fraction and the sediment, i.e. an organomineral fertilizer. Afterwards, the fluidbody is fed to irrigation of agricultural land, and its excess is discharged into waterways and reservoirs. The sediment is fed to the vortex layer equipment with mobile ferromagnetic particles or thermolized, where their complete disinfection takes place.

  18. Cooling effect of agricultural irrigation over Xinjiang, Northwest China from 1959 to 2006

    International Nuclear Information System (INIS)

    Han Songjun; Yang Zhiyong

    2013-01-01

    The influences of agricultural irrigation on trends in surface air temperature from 1959 to 2006 over Xinjiang, Northwest China are evaluated using data from 90 meteorological stations. The 90 stations are located in landscapes with markedly different cultivated land uses. The increasing trends in daily average temperature (T a ), maximum temperature (T max ), and minimum temperature (T min ) for May–September (the main growing season) are negatively correlated with cultivated land proportions within 4 km of the meteorological stations, as indicated by year 2000 land use data. The correlations between the trends in T max and cultivated land proportions are the most significant. The trends in T a , T max , and T min for May–September are expected to decrease by −0.018, −0.014, and −0.016 ° C per decade, respectively, along with a 10% increase in cultivated land proportion. As irrigated cultivated land occupies over 90% of total cultivated land, the dependence of temperature trends on cultivated area is attributed to irrigation. The cooling effects on stations with cultivated land proportion larger than 50% are compared to temperature trends in a reference group with cultivated land proportion smaller than 10%. The irrigation expansion from 1959 to 2006 over Xinjiang is found to be associated with cooling of May–September T a , T max , and T min by around −0.15 ° C to −0.10 ° C/decade in the station group with extensive irrigation. Short periods of rapid irrigation expansion co-occurred with the significant cooling of the May–September temperature. (letter)

  19. Effect of different irrigation systems on root growth of maize and cowpea plants in sandy soil

    Directory of Open Access Journals (Sweden)

    Noha A. Mahgoub

    2017-10-01

    Full Text Available A field experiment was conducted at the Experimental Farm, Faculty of Agriculture, Suez Canal University to study the influence of different irrigation systems on root length density and specific root length of maize and cowpea plants cultivated in sandy soil. Three irrigation systems (Surface, drip and sprinkler irrigation were used in this study. The NPK fertilizers were applied as recommended doses for maize and cowpea. Root samples were collected from the soil profile below one plant (maize and cowpea which was irrigated by the three irrigation systems by using an iron box (30 cm× 20 cm which is divided into 24 small boxes each box is (5× 5 × 5 cm. At surface irrigation, root length density of cowpea reached to soil depth 30-40cm with lateral distances 5-10 cm and 15-20 cm. Vertical distribution of root length density of maize was increased with soil depth till 20-25 cm, and then it decreased till soil depth 35-40cm. Under drip irrigation, root length density of cowpea increased horizontally from 0-5cm to 10-15cm then it decreased till soil depth 25-30 cm and below this depth root length density disappeared. For the root length density and specific root length of maize under drip irrigation, the data showed that root length density and specific root length decreased with increasing in soil depth. The root length density of cowpea under sprinkler irrigation at 0-5cm disappeared from horizontal distance at 25-30 cm. The data showed that root length density of maize under sprinkler irrigation was higher at the soil top layers 0-5 cm and 5-10 cm than other layers from 10-40 cm.

  20. Heavy metal input to agricultural soils from irrigation with treated wastewater: Insight from Pb isotopes

    Science.gov (United States)

    Kloppmann, Wolfram; Cary, Lise; Psarras, Georgios; Surdyk, Nicolas; Chartzoulakis, Kostas; Pettenati, Marie; Maton, Laure

    2010-05-01

    A major objective of the EU FP6 project SAFIR was to overcome certain drawbacks of wastewater reuse through the development of a new irrigation technology combining small-scale modular water treatment plants on farm level and improved irrigation hardware, in the aim to lower the risks related to low quality water and to increase water use efficiency. This innovative technology was tested in several hydro-climatic contexts (Crete, Italy, Serbia, China) on experimental irrigated tomato and potato fields. Here we present the heavy metal variations in soil after medium-term (3 irrigation seasons from 2006-2008) use of treated municipal wastewater with a special focus on lead and lead isotope signatures. The experimental site is located in Chania, Crete. A matrix of plots were irrigated, combining different water qualities (secondary, primary treated wastewater, tap water, partially spiked with heavy metals, going through newly developed tertiary treatment systems) with different irrigation strategies (surface and subsurface drip irrigation combined with full irrigation and partial root drying). In order to assess small scale heavy metal distribution around a drip emitter, Pb isotope tracing was used, combined with selective extraction. The sampling for Pb isotope fingerprinting was performed after the 3rd season of ww-irrigation on a lateral profile from a drip irrigator (half distance between drip lines, i.e. 50cm) and three depth intervals (0-10, 10-20, 20-40 cm). These samples were lixiviated through a 3 step selective extraction procedure giving rise to the bio-accessible, mobile and residual fraction: CaCl2/NaNO3 (bio-accessible fraction), DPTA (mobile fraction), total acid attack (residual fraction). Those samples were analysed for trace elements (including heavy metals) and major inorganic compounds by ICP-MS. The extracted fractions were then analysed by Thermal Ionisation Mass Spectrometry (TIMS) for their lead isotope fingerprints (204Pb, 206Pb, 207Pb, 208Pb

  1. Soil Water Balance and Irrigation Strategies in an Agricultural District of Southern Italy

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2010-06-01

    Full Text Available An efficient management of water resources is considered very important for Mediterranean regions of Italy in order to improve the economical and environmental sustainability of the agricultural activity. The purpose of this study is to analyze the components of soil water balance in an important district included in the regions of Basilicata and Puglia and situated in the Jonical coastal area of Southern Italy and mainly cropped with horticultural crops. The study was performed by using the spatially distributed and physically based model SIMODIS in order to individuate the best irrigation management maximizing the water use efficiency and minimizing water losses by deep percolation and soil evaporation. SIMODIS was applied taking in to account the soil spatial variability and localization of cadastral units for two crops, durum wheat and water melon. For water melon recognition in 2007 a remote sensed image, from SPOT5 satellite, at the spatial resolution of 10 m, has been used. In 2008, a multi-temporal data set was available, from SPOT5 satellite to produce a land cover map for the classes water melon and durum wheat. Water melon cultivation was simulated adopting different water supply managements: rainfed and four irrigation strategies based on (i soil water availability and (ii plant water status adopting a threshold daily stress value. For each management, several water management indicators were calculated and mapped in GIS environment. For seasonal irrigation depth, actual evapotranspiration and irrigation efficiency were also determined. The analysis allowed to individuate the areas particularly sensitive to water losses by deep percolation because of their hydraulic functions characterized by low water retention and large values of saturated hydraulic conductivity. For these areas, the irrigation based on plant water status caused very high water losses by drainage. On the contrary, the irrigation scheduled on soil base allowed to

  2. Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment

    Directory of Open Access Journals (Sweden)

    Amal Aldababseh

    2018-03-01

    Full Text Available This research aims at assessing land suitability for large-scale agriculture using multiple spatial datasets which include climate conditions, water potential, soil capabilities, topography and land management. The study case is in the Emirate of Abu Dhabi, in the UAE. The aridity of climate in the region requires accounting for non-renewable sources like desalination and treated sewage effluent (TSE for an accurate and realistic assessment of irrigated agriculture suitability. All datasets were systematically aggregated using an analytical hierarchical process (AHP in a GIS model. A hierarchal structure is built and pairwise comparisons matrices are used to calculate weights of the criteria. All spatial processes were integrated to model land suitability and different types of crops are considered in the analysis. Results show that jojoba and sorghum show the best capabilities to survive under the current conditions, followed by date palm, fruits and forage. Vegetables and cereals proved to be the least preferable options. Introducing desalinated water and TSE enhanced land suitability for irrigated agriculture. These findings have positive implications for national planning, the decision-making process of land alteration for agricultural use and addressing sustainable land management and food security issues.

  3. Size and stochasticity in irrigated social-ecological systems

    Science.gov (United States)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-03-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  4. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Science.gov (United States)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  5. Factors Affecting the Ability of Agriculture to Pay Irrigation-Water Costs

    Energy Technology Data Exchange (ETDEWEB)

    Hagood, M. A. [Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome (Italy)

    1967-11-15

    There are no universally acceptable standard criteria for determining how much agriculture can pay for irrigation water. Justification of cost will depend upon the country's need to develop its soil and water resources for food, for international trade, and for its cumulative effect on other industries in comparison with other possible uses and their over-all contributions to the economy. Social and political conditions often have as much or more influence on development cost decisions than do strictly economic analyses. Many studies indicate that US $0.10/1000 US gal is an upper limit of acceptable costs for developing irrigation water at present economic levels. Under private development and on projects where water users must pay total water costs, methods are available for making feasibility budgets based on present prices. Because of inflation, world food shortage, recessions, future population and other unknown factors, it is hazardous to predict how much farmers or agriculture can pay for irrigation water. Better utilization of water available now offers opportunities for ''developing'' sources at costs much less than those for sources such as sea-water conversion. (author)

  6. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    Full Text Available Introduction: Olive (Olea europaea L. trees are mainly cultivated in the Mediterranean area and are grown for their oil or processed as table olives. Despite the fact that olive is known to be resistant to drought conditions due to its anatomical, physiological, and biochemical adaptations to drought stress, reports indicate that the olive can be adversely affected by drought stress, which has a negative effect on the growth of olive trees. In the absence of adequate supplies of water, the demand for water can be met by using improved irrigation methods or by using reclaimed water (RW. Reports have shown that recycled water has been used successfully for irrigating olive orchards with no negative effects on plant growth.Attention has been paid to reclaimed water as one of the most significant available water resources used in agriculture around large cities in arid and semi-arid regions. On the other hand, irrigation efficiency is low and does not meet the demands of farmers.In order to investigate the possibility of irrigating olive orchards with subsurface leakage irrigation (SLI in application of reclaimed water, an experiment was carried out with the aim of investigating the effect of reclaimed water on photosynthetic indices and morphological properties of olive fruit. Materials and Methods: Research was conducted using a split-plot experimental design with two factors (irrigation system and water quality on the campus of Isfahan University of Technology in Isfahan, Iran, on a sandy-clay soil with a pH of 7.5 and electrical conductivity (EC of 2.48 dSm-1.PVC leaky tubes were used for the SLI system. The SLI system was installed 40 cm from the crown of each tree at a depth of 30 - 40 cm.At the end of the experiment fruit yield, weight per fruit, volume, length and firmness were calculated. A portable gas exchange system (Li-6400., LICOR, Lincoln, NE, USA was used to measure the net rate photosynthesis (A, the internal partial pressure CO2

  7. Intervention processes and irrigation institutions : sustainability of farmer managed irrigation systems in Nepal

    OpenAIRE

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation management practices in irrigation systems in Nepal. In this respect, this study aimed to understand the social, administrative and political processes involved in the social and institutional chang...

  8. Recycled Urban Wastewater for Irrigation of Jatropha curcas L. in Abandoned Agricultural Arid Land

    Directory of Open Access Journals (Sweden)

    María Dorta-Santos

    2014-10-01

    Full Text Available In a global context in which obtaining new energy sources is of paramount importance, the production of biodiesel from plant crops is a potentially viable alternative to the use of fossil fuels. Among the species used to produce the raw material for biodiesel, Jatropha curcas L. (JCL has enjoyed increased popularity in recent years, due partly to its ability to grow in degraded zones and under arid and semi-arid conditions. The present study evaluates the potential for JCL production under irrigation with non-conventional water resources in abandoned agricultural soils of the island of Fuerteventura (Canary Islands, Spain, which is one of the most arid parts of the European Union. JCL growth and productivity are compared during the first 39 months of cultivation in two soil types (clay-loam and sandy-loam and with two irrigation water qualities: recycled urban wastewater (RWW and desalinated brackish water (DBW. The results indicate that JCL growth (in terms of plant height and stem diameter was significantly influenced both by soil type and water quality, with better development observed in the sandy-loam soil under RWW irrigation. Productivity, measured as cumulative seed production, was not affected by soil type but was affected by water quality. Production under RWW irrigation was approximately seven times greater than with DBW (mean ~2142 vs. 322 kg·ha−1. The higher nutrient content, especially P, K and Mg, and lower B content of the RWW were found to be key factors in the greater productivity observed under irrigation with this type of water.

  9. Observations of cloud and rainfall enhancement over irrigated agriculture in an arid environment

    Science.gov (United States)

    Garcia-Carreras, Luis; Marsham, John H.; Spracklen, Dominick V.

    2017-04-01

    The impact of irrigated agriculture on clouds and rainfall remains uncertain, particularly in less studied arid regions. Irrigated crops account for 20% of global cropland area, and non-renewable groundwater accounts for 20% of global irrigation water demand. Quantifying the feedbacks between agriculture and the atmosphere are therefore not only necessary to better understand the climate impacts of land-use change, but are also crucial for predicting long-term water use in water-scarce regions. Here we use high spatial-resolution satellite data to show the impact of irrigated crops in the arid environment of northern Saudi Arabia on cloud cover and rainfall patterns. Land surface temperatures over the crops are 5-10 K lower than their surroundings, linked to evapotranspiration rates of up to 20 mm/ month. Daytime cloud cover is up to 30% higher over the cropland compared to its immediate surroundings, and this enhancement is highly correlated with the seasonal variability in leaf area index. The cloud enhancement is associated with a much more rapid cloud cloud development during the morning. Afternoon rainfall is 85% higher over, and just downwind, of the cropland during the growing season, although rainfall remains very low in absolute terms. The feedback sign we find is the opposite to what has been observed in tropical and semiarid regions, where temperature gradients promote convergence and clouds on the warmer side of land-surface type discontinuities. This suggests that different processes are responsible for the land-atmosphere feedback in very dry environments, where lack of moisture may be a stronger constraint. Increased cloud and rainfall, and associated increases in diffuse radiation and reductions in temperature, can affect vegetation growth thus producing an internal feedback. These effects will therefore need to be taken into account to properly assess the impact of climate change on crop productivity and water use, as well as how global land

  10. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.

    Science.gov (United States)

    Zhang, Xuyang; Goh, Kean S

    2015-11-01

    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Early irrigation systems in southeastern Arizona: the ostracode perspective

    Science.gov (United States)

    Palacios-Fest, Manuel R.; Mabry, Jonathan B.; Nials, Fred; Holmlund, James P.; Miksa, Elizabeth; Davis, Owen K.

    2001-10-01

    For the first time, the Early Agricultural Period (1200 BC-150 AD) canal irrigation in the Santa Cruz River Valley, southeastern Arizona, is documented through ostracode paleoecology. Interpretations based on ostracode paleoecology and taphonomy are supported by anthropological, sedimentological, geomorphological, and palynological information, and were used to determine the environmental history of the northern Tucson Basin during the time span represented by the sequence of canals at Las Capas (site AZ AA:12:753 ASM). We also attempt to elucidate based on archaeological artifacts if the Hohokam or a previous civilization built the canals. Between 3000 and 2400 radiocarbon years BP, at least three episodes of canal operation are defined by ostracode assemblages and pollen records. Modern (mid-late 20th century) canals supported no ostracodes, probably because of temporally brief canal operation from local wells. Three stages of water management are well defined during prehistoric canal operation. Ostracode faunal associations indicate that prehistoric peoples first operated their irrigation systems in a simple, 'opportunistic' mode (diversion of ephemeral flows following storms), and later in a complex, 'functional' mode (carefully timed diversions of perennial flows). The geomorphological reconstruction indicates that these canals had a minimum length of 1.1 km, and were possibly twice as long. The hydraulic reconstruction of these canals suggests that they had similar gradients (0.05-0.1%) to later prehistoric canals in the same valley. Discharges were also respectable. When flowing at bank-full, the largest canal provided an acre-foot of water in about 2.3 h; when flowing half-full (probably a more realistic assumption), it produced an acre-foot of water in about 8.6 h. Palynological records of the oldest canals (here identified as Features 3 and 4; 3000-2500 years BP) indicate they were used temporarily, since riparian vegetation did not grow consistently in

  12. Yield response and economics of shallow subsurface drip irrigation systems

    Science.gov (United States)

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  13. Performance evaluation of sprinkler irrigation system at Mambilla ...

    African Journals Online (AJOL)

    Variation in discharge can also be adjusted via use of uniform laterals, risers, and nozzles. This study further recommends an incorporation of a soil and water laboratory for the company to aid in monitoring the soil and water quality of the irrigation area. Keywords: Tea, irrigation System, Performance Evaluation ...

  14. Performance evaluation of a center pivot variable rate irrigation system

    Science.gov (United States)

    Variable Rate Irrigation (VRI) for center pivots offers potential to match specific application rates to non-uniform soil conditions along the length of the lateral. The benefit of such systems is influenced by the areal extent of these variations and the smallest scale to which the irrigation syste...

  15. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    OpenAIRE

    Yu, Xiangchun; Lin, Qingqing; Zhou, Xuedong; Yang, Zhibin

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province, fresh water resource becomes increasingly insufficient. Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy. This needs modern irrigation method. Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture, and will have directive significance for Hainan Province developi...

  16. A regional field-based assessment of organic C sequestration and GHG balances in irrigated agriculture in Mediterranean semi-arid land

    Science.gov (United States)

    Virto, Inigo; Antón, Rodrigo; Arias, Nerea; Orcaray, Luis; Enrique, Alberto; Bescansa, Paloma

    2016-04-01

    In a context of global change and increasing food demand, agriculture faces the challenge of ensuring food security making a sustainable use of resources, especially arable land and water. This implies in many areas a transition towards agricultural systems with increased and stable productivity and a more efficient use of inputs. The introduction of irrigation is, within this framework, a widespread strategy. However, the C cycle and the net GHG emissions can be significantly affected by irrigation. The net effect of this change needs to be quantified at a regional scale. In the region of Navarra (NE Spain) more than 22,300 ha of rainfed agricultural land have been converted to irrigation in the last years, adding to the previous existing irrigated area of 70,000 ha. In this framework the project Life+ Regadiox (LIFE12 ENV/ES/000426, http://life-regadiox.es/) has the objective of evaluating the net GHG balances and atmospheric CO2 fixation rates of different management strategies in irrigated agriculture in the region. The project involved the identification of areas representative of the different pedocllimatic conditions in the region. This required soil and climate characterizations, and the design of a network of agricultural fields representative of the most common dryland and irrigation managements in these areas. This was done from available public datasets on climate and soil, and from soil pits especially sampled for this study. Two areas were then delimited, mostly based on their degree of aridity. Within each of those areas, fields were selected to allow for comparisons at three levels: (i) dryland vs irrigation, (ii) soil and crop management systems for non-permanent crops, and (iii) soil management strategies for permanent crops (namely olive orchards and vineyards). In a second step, the objective of this work was to quantify net SOC variations and GHG balances corresponding to the different managements identified in the previous step. These

  17. Conjunctive use of groundwater and surface water for irrigated agriculture: Risk aversion

    Science.gov (United States)

    Bredehoeft, John D.; Young, Richard A.

    1983-01-01

    In examining the South Platte system in Colorado where surface water and groundwater are used conjunctively for irrigation, we find the actual installed well capacity is approximately sufficient to irrigate the entire area. This would appear to be an overinvestment in well capacity. In this paper we examine to what extent groundwater is being developed as insurance against periods of low streamflow. Using a simulation model which couples the hydrology of a conjunctive stream aquifer system to a behavioral-economic model which incorporates farmer behavior in such a system, we have investigated the economics of an area patterned after a reach of the South Platte Valley in Colorado. The results suggest that under current economic conditions the most reasonable groundwater pumping capacity is a total capacity capable of irrigating the available acreage with groundwater. Installing sufficient well capacity to irrigate all available acreage has two benefits: (1) this capacity maximizes the expected net benefits and (2) this capacity also minimizes the variation in annual income: it reduces the variance to essentially zero. As pumping capacity is installed in a conjunctive use system, the value of flow forecasts is diminished. Poor forecasts are compensated for by pumping groundwater.

  18. Participatory Rural Appraisal for Diagnostic Analysis of spate irrigation systems in Raya Valley, Ethiopia

    Directory of Open Access Journals (Sweden)

    Giulio Castelli

    2017-05-01

    Full Text Available Spate irrigation is a complex and unique form of water management, which represent the main source of irrigation water in semi-arid river catchments. Water is diverted from seasonal rivers by using diversion structures made by stones, earth and brushwood, located within the river bed. The modernisation of spate irrigation realised in Raya Valley (northern Ethiopia resulted in disappointing performances. One of the main reasons for this failure was the poor consideration of the characteristics of seasonal catchments and local communities’ needs and preferences. Local farmers, who showed a deep knowledge of the river system, were involved only at the level of consultation. The aim of this research was to develop a participatory Diagnostic Analysis (DA for a traditional non-modernised spate irrigation system in Raya Valley, in order to involve local farmers within the development process, and to build a solid knowledge basis for effective improvements. A Participatory Rural Appraisal (PRA of the Harosha spate irrigation system was undertaken. PRA techniques focusing on spatial, temporal, socio-economical and spatiotemporal aspects of the system were performed with local farmers in order to identify and rank main problems and constraints to development. Farmers recognised the need of more resistant diversion structures and gabion walls for the stabilisation of the river bank. The involvement of farmers also helped to highlight that not only irrigation-related problems, but also flood-related problems threaten agricultural production and rural livelihoods. Rather than an irrigation system approach, an approach integrating irrigation development and flood risk mitigation is suggested for framing future development strategies.

  19. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  20. Impact of Potentially Contaminated River Water on Agricultural Irrigated Soils in an Equatorial Climate

    Directory of Open Access Journals (Sweden)

    Juan M. Trujillo-González

    2017-06-01

    Full Text Available Globally, it is estimated that 20 million hectares of arable land are irrigated with water that contains residual contributions from domestic liquids. This potentially poses risks to public health and ecosystems, especially due to heavy metals, which are considered dangerous because of their potential toxicity and persistence in the environment. The Villavicencio region (Colombia is an equatorial area where rainfall (near 3000 mm/year and temperature (average 25.6 °C are high. Soil processes in tropical conditions are fast and react quickly to changing conditions. Soil properties from agricultural fields irrigated with river water polluted by a variety of sources were analysed and compared to non-irrigated control soils. In this study, no physico-chemical alterations were found that gave evidence of a change due to the constant use of river water that contained wastes. This fact may be associated with the climatic factors (temperature and precipitation, which contribute to fast degradation of organic matter and nutrient and contaminants (such as heavy metals leaching, or to dilution of wastes by the river.

  1. Dominant control of agriculture and irrigation on urban heat island in India.

    Science.gov (United States)

    Kumar, Rahul; Mishra, Vimal; Buzan, Jonathan; Kumar, Rohini; Shindell, Drew; Huber, Matthew

    2017-10-25

    As is true in many regions, India experiences surface Urban Heat Island (UHI) effect that is well understood, but the causes of the more recently discovered Urban Cool Island (UCI) effect remain poorly constrained. This raises questions about our fundamental understanding of the drivers of rural-urban environmental gradients and hinders development of effective strategies for mitigation and adaptation to projected heat stress increases in rapidly urbanizing India. Here we show that more than 60% of Indian urban areas are observed to experience a day-time UCI. We use satellite observations and the Community Land Model (CLM) to identify the impact of irrigation and prove for the first time that UCI is caused by lack of vegetation and moisture in non-urban areas relative to cities. In contrast, urban areas in extensively irrigated landscapes generally experience the expected positive UHI effect. At night, UHI warming intensifies, occurring across a majority (90%) of India's urban areas. The magnitude of rural-urban temperature contrasts is largely controlled by agriculture and moisture availability from irrigation, but further analysis of model results indicate an important role for atmospheric aerosols. Thus both land-use decisions and aerosols are important factors governing, modulating, and even reversing the expected urban-rural temperature gradients.

  2. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, B.M. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Environment and Public Health Organization (ENPHO), P.O. Box 4102, Kathmandu (Nepal); Fuerhacker, M. [Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Mentler, A. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Karki, K.B. [Soil Science Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur (Nepal); Shrestha, R.R. [UN Habitat-Nepal, UN House, Pulchwok, P.O. Box 107, Kathmandu (Nepal); Blum, W.E.H. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria)], E-mail: winfried.blum@boku.ac.at

    2008-09-15

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L{sup -1} where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg{sup -1}. The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg{sup -1}) > onion bulb (0.45 mg As kg{sup -1}) > cauliflower (0.33 mg As kg{sup -1}) > rice (0.18 mg As kg{sup -1}) > brinjal (0.09 mg As kg{sup -1}) > potato (<0.01 mg As kg{sup -1}). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water.

  3. Response of potato to drip and gun irrigation systems

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Andersen, Mathias Neumann; Plauborg, Finn

    2015-01-01

    The objective of this study was to evaluate effects of different irrigation and N fertilization regimes by gun irrigation and drip-fertigation on potato production, and subsequently optimize the supply of water and N fertilizer to the growth condition of the specific season and minimize nitrate......-fertigation system (DFdsNds) and two gun irrigation systems (GIdsN120 and GIaN120) to display the differences on growth, yield and water use efficiency of potato. All treatments were irrigated according to model simulated soil water content. For fertilization all treatments received a basic dressing at planting of P......, K, Mg and micronutrients, and in addition 120 kg N/ha in the gun irrigated treatments and 36 kg N/ha in the drip-fertigated. For the latter, portion of 20 kg N/ha was applied whenever plant N concentration approached a critical value as simulated by the Daisy model. As a result differences in soil...

  4. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling

    Science.gov (United States)

    Portmann, Felix T.; Siebert, Stefan; DöLl, Petra

    2010-03-01

    To support global-scale assessments that are sensitive to agricultural land use, we developed the global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000). With a spatial resolution of 5 arc min (about 9.2 km at the equator), MIRCA2000 provides both irrigated and rainfed crop areas of 26 crop classes for each month of the year. The data set covers all major food crops as well as cotton. Other crops are grouped into categories (perennial, annual, and fodder grasses). It represents multicropping systems and maximizes consistency with census-based national and subnational statistics. According to MIRCA2000, 25% of the global harvested areas are irrigated, with a cropping intensity (including fallow land) of 1.12, as compared to 0.84 for the sum of rainfed and irrigated harvested crops. For the dominant crops (rice (1.7 million km2 harvested area), wheat (2.1 million km2), and maize (1.5 million km2)), roughly 60%, 30%, and 20% of the harvested areas are irrigated, respectively, and half of the citrus, sugar cane, and cotton areas. While wheat and maize are the crops with the largest rainfed harvested areas (1.5 million km2 and 1.2 million km2, respectively), rice is clearly the crop with the largest irrigated harvested area (1.0 million km2), followed by wheat (0.7 million km2) and maize (0.3 million km2). Using MIRCA2000, 33% of global crop production and 44% of total cereal production were determined to come from irrigated agriculture.

  5. Natural resource management issues of pakistan's agriculture: the cases of land, labour and irrigation

    International Nuclear Information System (INIS)

    Arifullah, S.A.; Farid, N.

    2009-01-01

    With the objective to understand the optimization behavior of farmers in allocating land, labor and irrigation water, Linear Programming (LP) analytic technique was applied to 13 Kharif and 7 Rabi crops, using national level data from 1990-2005. The crops included in the analysis have been occupying 80 - 85 percent of Pakistan's cropped area for the last three to four decades. The optimization analysis resulted in bringing up three major natural resource management issues of the Pakistan's crop sector to the forefront. First, Basmati rice, mung, fodders of millet and sorghum, onion and IRRI rice were found optimal Kharif crops relative to sugarcane, maize, maize fodder, millet, sorghum, cotton and tomato. For Rabi wheat, potato, gram, rapeseed and berseem proved to be optimal relative to barley and sugarcane, for this period. The results imply that to have an efficient agriculture base Pakistan should either replace the sub-optimal crops with the optimal ones, or the resource management side of such crops should be improved with the help sensitivity analysis. Second, cotton and tomato appeared to be relatively sensitive to labor availability than other crops; they seemed to establish a direct correlation between the optimality status and labor availability. And third, irrigation emerged as a critical input for IRRI rice in Kharif and for potato and gram in Rabi season; for these crops the crop optimality was directly correlated to the number of irrigations applied. In contrast, its opportunity cost is higher than the per unit return in cotton, tomato, wheat and berseem. This signified that irrigation needs to be managed efficiently in the latter four crops; whereas in the former three crops use of extra water would help in optimizing. (author)

  6. Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-01-01

    Full Text Available Traditionally, most irrigation practices in Southern Europe have been based on gravity-fed surface irrigation systems. Currently, these systems remain a relevant typology in the European Union (EU member states of the Mediterranean areas, where it is often the only sustainable method for farmers due to the small size of agricultural holdings, their reduced capacity and readiness to invest and the low ratio between yield profits and irrigation costs. In the last several years, in response to European and national directives, surface irrigation has garnered increasing attention at the political and bureaucratic levels due to frequent criticisms of its postulated low efficiency and high water wastage. However, these systems commonly provide a number of ecosystem services and nature-based solutions that increase the positive externalities in different rural socio-ecological contexts and often have the potential to extend these services and provide solutions that are compatible with economical sustainability. This study aims to discuss the prospects for new practices and for the rehabilitation and modernization of the gravity-fed surface irrigation systems in EU Mediterranean areas to enhance water efficiency, thus gaining both economic advantages and environmental benefits. The difficulties, stimuli for improvements and peculiarities of the irrigation water management of four rural environments located in Italy, Spain and Portugal were analyzed and compared to the current state of the gravity-fed surface irrigation systems with hypothetical future improvements achievable by innovative technologies and practices. In these different case studies, the current gravity-fed surface irrigation systems have an obsolete regulatory structure; water-use efficiency is not a driving criterion for the management of the conveyance and distribution canal network, and farmers are not yet adequately encouraged to adopt more efficient gravity-fed irrigation practices

  7. The Evaluation of Groundwater Suitability for Irrigation and Changes in Agricultural Land of Garmsar basin

    Directory of Open Access Journals (Sweden)

    Leila Bakhshandehmehr

    2017-03-01

    Full Text Available Introduction: In recent years, due to the reduction in surface water, utilization of groundwater has been increased to meet the growing demand of irrigation water. The quality of these water resources is continually changing, due to the geological formations, the amount of utilization, and climatic parameters. In many developing countries, the irrigation water is obtained from poor quality groundwater resources, which in turn, creates unfavorable circumstances for plant growth and reduces the agricultural yield. Providing adequate water resources for agricultural utilization is one of the most important steps needed to achieve the developmental targets of sustainable agriculture. Thus, this necessitates the assessment and evaluation of the quality of irrigation water. There are many proposed methods to determine the suitability of water for different applications, such as Piper, Wilcox, and Schoeller diagrams. Zoning of quality and suitability of irrigation water could represent the prone and critical areas to groundwater exploitation. Garmsar alluvial fan is one of the most sensitive areas in the country where traditional agriculture practices had turned into modern techniques and excessive exploitation of groundwater has caused an intensepressure on aquifers and increased water salinity. The aim of this study is to evaluate the suitability of groundwater for irrigation in a 10-year period (2002-2012 and its changes in this basin. Materials and Methods: Garmsar alluvial fan is located in the North-West of Semnan Province. Semnan is situated in the Southern hillside of the Alborz Mountains, in North of Iran. The study area includes the agricultural land on this alluvial fan and covers over 3750 hectares of this basin. In order to evaluate the quality of groundwater in this area, the electrical conductivity and sodium absorption ratio of 42 sample wells were calculated. The raster maps of these indicators were obtained using Geo

  8. Year-Round Irrigation Schedule for a Tomato–Maize Rotation System in Reservoir-Based Irrigation Schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Ephraim Sekyi-Annan

    2018-05-01

    Full Text Available Improving irrigation management in semi-arid regions of Sub-Saharan Africa is crucial to respond to increasing variability in rainfall and overcome deficits in current irrigation schemes. In small-scale and medium-scale reservoir-based irrigation schemes in the Upper East region of Ghana, we explored options for improving the traditional, dry season irrigation practices and assessed the potential for supplemental irrigation in the rainy season. The AquaCrop model was used to (i assess current water management in the typical tomato-maize rotational system; (ii develop an improved irrigation schedule for dry season cultivation of tomato; and (iii determine the requirement for supplemental irrigation of maize in the rainy season under different climate scenarios. The improved irrigation schedule for dry season tomato cultivation would result in a water saving of 130–1325 mm compared to traditional irrigation practices, accompanied by approximately a 4–14% increase in tomato yield. The supplemental irrigation of maize would require 107–126 mm of water in periods of low rainfall and frequent dry spells, and 88–105 mm in periods of high rainfall and rare dry spells. Therefore, year-round irrigated crop production may be feasible, using water saved during dry season tomato cultivation for supplemental irrigation of maize in the rainy season.

  9. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Science.gov (United States)

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  10. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Directory of Open Access Journals (Sweden)

    Do Guen Yoo

    2015-01-01

    Full Text Available Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6. The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.

  11. Managed aquifer recharge through off-season irrigation in agricultural regions

    Science.gov (United States)

    Niswonger, Richard G.; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-08-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7-13%, increase crop consumptive use by 9-12%, and increase natural vegetation consumption by 20-30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  12. Managed aquifer recharge through off-season irrigation in agricultural regions

    Science.gov (United States)

    Niswonger, Richard; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-01-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7–13%, increase crop consumptive use by 9–12%, and increase natural vegetation consumption by 20–30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  13. Agricultural irrigated land-use inventory for Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama, 2014

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.

    2015-09-18

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate water use or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas for 2014 within Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama. The irrigated areas were delineated using land-use data and orthoimagery that were then field verified between June and November 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results of the 2014 study indicate that an estimated 31,608 acres were irrigated in Jackson County during 2014. This estimate includes 25,733 acres of field crops, 1,534 acres of ornamentals and grasses (including pasture), and 420 acres of orchards. Specific irrigated crops include cotton (11,759 acres), peanuts (9,909 acres), field corn (2,444 acres), and 3,235 acres of various vegetable (row) crops. The vegetable acreage includes 1,714 acres of which 857 acres were planted with both a spring and fall crop on the same field (double cropped). Overall, groundwater was used to irrigate 98.6 percent of the total irrigated acreage in Jackson County during 2014, whereas surface water and wastewater were used to irrigate the remaining 1.4 percent.

  14. Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration's power marketing alternatives

    International Nuclear Information System (INIS)

    Edwards, B.K.; Flaim, S.J.; Howitt, R.E.; Palmer, S.C.

    1995-03-01

    Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation's irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration's Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western's wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western's power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western's Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage

  15. Innovations in Agriculture in Oregon: Farmers Irrigation District Improves Water Quality, Maximizes Water Conservation, and Generates Clean, Renewable Energy

    Science.gov (United States)

    The Hood River Farmers Irrigation District used $36.2 million in CWSRF loans for a multiple-year endeavor to convert the open canal system to a piped, pressurized irrigation system to maximize water conservation and restore reliable water delivery to crops

  16. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils.

    Science.gov (United States)

    Müller, K; Duwig, C; Prado, B; Siebe, C; Hidalgo, C; Etchevers, J

    2012-01-01

    In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.

  17. Concentrations of Mercury, Lead, Chromium, Cadmium, Arsenic and Aluminum in Irrigation Water Wells and Wastewaters Used for Agriculture in Mashhad, Northeastern Iran

    Directory of Open Access Journals (Sweden)

    SR Mousavi

    2013-04-01

    Full Text Available Background: Contamination of water by toxic chemicals has become commonly recognized as an environmental concern. Based on our clinical observation in Mashhad, northeastern Iran, many people might be at risk of exposure to high concentrations of toxic heavy metals in water. Because wastewater effluents as well as water wells have been commonly used for irrigation over the past decades, there has been some concern on the toxic metal exposure of crops and vegetables irrigated with the contaminated water. Objective: To measure the concentrations of mercury, lead, chromium, cadmium, arsenic and aluminium in irrigation water wells and wastewaters used for agriculture in Mashhad, northeastern Iran. Methods: 36 samples were taken from irrigation water wells and a wastewater refinery in North of Mashhad at four times—May 2008, March 2009, and June and July 2010. Atomic absorption spectrometry was used to measure the concentration of toxic metals. Graphite furnace was used for the measurement of lead, chromium, cadmium and aluminum. Mercury and arsenic concentrations were measured by mercury/hydride system. Results: Chromium, cadmium, lead and arsenic concentrations in the samples were within the standard range. The mean±SD concentration of mercury in irrigation wells (1.02±0.40 μg/L exceeded the FAO maximum permissible levels. The aluminum concentration in irrigation water varied significantly from month to month (p=0.03. All wastewater samples contained high mercury concentrations (6.64±2.53 μg/L. Conclusion: For high mercury and aluminum concentrations, the water sources studied should not be used for agricultural use. Regular monitoring of the level of heavy metals in water and employing the necessary environmental interventions in this area are strongly recommended.

  18. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Science.gov (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  19. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    Science.gov (United States)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  20. Development of Bioelectrochemical Systems to Promote Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2015-06-01

    Full Text Available Bioelectrochemical systems (BES are a newly emerged technology for energy-efficient water and wastewater treatment. Much effort as well as significant progress has been made in advancing this technology towards practical applications treating various types of waste. However, BES application for agriculture has not been well explored. Herein, studies of BES related to agriculture are reviewed and the potential applications of BES for promoting sustainable agriculture are discussed. BES may be applied to treat the waste/wastewater from agricultural production, minimizing contaminants, producing bioenergy, and recovering useful nutrients. BES can also be used to supply irrigation water via desalinating brackish water or producing reclaimed water from wastewater. The energy generated in BES can be used as a power source for wireless sensors monitoring the key parameters for agricultural activities. The importance of BES to sustainable agriculture should be recognized, and future development of this technology should identify proper application niches with technological advancement.

  1. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  2. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    The results revealed that the water use efficiency (WUE) and irrigation water use efficiency (IWUE) were typically higher in the AIS than in the conventional irrigation control system (CIS). Under the AIS treatment, the WUE and IWUE values were 1.64 and 1.37 k·gm-3 for wheat, and 7.50 and 6.50 kg·m-3 for tomato crops; ...

  3. Summary of the Georgia Agricultural Water Conservation and Metering Program and evaluation of methods used to collect and analyze irrigation data in the middle and lower Chattahoochee and Flint River basins, 2004-2010

    Science.gov (United States)

    Torak, Lynn J.; Painter, Jaime A.

    2011-01-01

    Since receiving jurisdiction from the State Legislature in June 2003 to implement the Georgia Agricultural Water Conservation and Metering Program, the Georgia Soil and Water Conservation Commission (Commission) by year-end 2010 installed more than 10,000 annually read water meters and nearly 200 daily reporting, satellite-transmitted, telemetry sites on irrigation systems located primarily in southern Georgia. More than 3,000 annually reported meters and 50 telemetry sites were installed during 2010 alone. The Commission monitored rates and volumes of agricultural irrigation supplied by groundwater, surface-water, and well-to-pond sources to inform water managers on the patterns and amounts of such water use and to determine effective and efficient resource utilization. Summary analyses of 4 complete years of irrigation data collected from annually read water meters in the middle and lower Chattahoochee and Flint River basins during 2007-2010 indicated that groundwater-supplied fields received slightly more irrigation depth per acre than surface-water-supplied fields. Year 2007 yielded the largest disparity between irrigation depth supplied by groundwater and surface-water sources as farmers responded to severe-to-exceptional drought conditions with increased irrigation. Groundwater sources (wells and well-to-pond systems) outnumbered surface-water sources by a factor of five; each groundwater source applied a third more irrigation volume than surface water; and, total irrigation volume from groundwater exceeded that of surface water by a factor of 6.7. Metered irrigation volume indicated a pattern of low-to-high water use from northwest to southeast that could point to relations between agricultural water use, water-resource potential and availability, soil type, and crop patterns. Normalizing metered irrigation-volume data by factoring out irrigated acres allowed irrigation water use to be expressed as an irrigation depth and nearly eliminated the disparity

  4. Identification and Prioritization of Management Practices to Reduce Methylmercury Exports from Wetlands and Irrigated Agricultural Lands

    Science.gov (United States)

    McCord, Stephen A.; Heim, Wesley A.

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  5. Contamination of Phthalate Esters (PAEs in Typical Wastewater-Irrigated Agricultural Soils in Hebei, North China.

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    Full Text Available The Wangyang River (WYR basin is a typical wastewater irrigation area in Hebei Province, North China. This study investigated the concentration and distribution of six priority phthalate esters (PAEs in the agricultural soils in this area. Thirty-nine soil samples (0-20 cm were collected along the WYR to assess the PAE residues in soils. Results showed that PAEs are ubiquitous environmental contaminants in the topsoil obtained from the irrigation area. The concentrations of Σ6PAEs range from 0.191 μg g-1 dw to 0.457 μg g-1 dw with an average value of 0.294 μg g-1 dw. Di(2-ethylhexyl phthalate (DEHP and di-n-butyl phthalate (DnBP are the dominant PAE species in the agricultural soils. Among the DEHP concentrations, the highest DEHP concentration was found at the sites close to the villages; this result suggested that dense anthropogenic activities and random garbage disposal in the rural area are possible sources of PAEs. The PAE concentrations were weakly and positively correlated with soil organic carbon and soil enzyme activities; thus, these factors can affect the distribution of PAEs. This study further showed that only dimethyl phthalate (DMP concentrations exceeded the recommended allowable concentrations; no remediation measures are necessary to control the PAEs in the WYR area. However, the PAEs in the topsoil may pose a potential risk to the ecosystem and human health in this area. Therefore, the exacerbating PAE pollution should be addressed.

  6. Farm-based measures for reducing microbiological health risks for consumers from informal wastewater-irrigated agriculture

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay

    2010-01-01

    in developing countries as part of a multiple-barrier approach for health-risk reduction along the farm to fork pathway. Measures discussed include treatment of irrigation water using ponds, filters and wetland systems; water application techniques; irrigation scheduling; and crop selection. In addition...

  7. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    Science.gov (United States)

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-11-01

    SummaryThe Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamflow, total suspended sediment (TSS) losses and phosphorus load calibration and validation were performed using field survey information and water quantity and quality data recorded during 2008 and 2009 years in Del Reguero irrigated watershed in Spain. The goodness of the calibration and validation results was assessed using five statistical measures, including the Nash-Sutcliffe efficiency (NSE). Results indicated that the average annual crop yield and actual evapotranspiration estimations were quite satisfactory. On a monthly basis, the values of NSE were 0.90 (calibration) and 0.80 (validation) indicating that the modified model could reproduce accurately the observed streamflow. The TSS losses were also satisfactorily estimated (NSE = 0.72 and 0.52 for the calibration and validation steps). The monthly temporal patterns and all the statistical parameters indicated that the modified SWAT-IRRIG model adequately predicted the total phosphorus (TP) loading. Therefore, the model could be used to assess the impacts of different best management practices on nonpoint phosphorus losses in irrigated systems.

  8. Linked hydrologic and social systems that support resilience of traditional irrigation communities

    Science.gov (United States)

    Fernald, A.; Guldan, S.; Boykin, K.; Cibils, A.; Gonzales, M.; Hurd, B.; Lopez, S.; Ochoa, C.; Ortiz, M.; Rivera, J.; Rodriguez, S.; Steele, C.

    2015-01-01

    Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity in the face of these stresses, are apparent. Human systems have interacted with hydrologic processes over the last 400 years in river-fed irrigated valleys to create linked systems. In this study, we ask if concurrent data from multiple disciplines could show that human-adapted hydrologic and socioeconomic systems have created conditions for resilience. Various types of resiliencies are evident in the communities. Traditional local knowledge about the hydrosocial cycle of community water management and ability to adopt new water management practices is a key response to disturbances such as low water supply from drought. Livestock producers have retained their irrigated land by adapting: changing from sheep to cattle and securing income from outside their livestock operations. Labor-intensive crops decreased as off-farm employment opportunities became available. Hydrologic resilience of the system can be affected by both human and natural elements. We find, for example, that there are multiple hydrologic benefits of traditional irrigation system water seepage: it recharges the groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. Human decisions to transfer water out of agriculture or change irrigation management, as well as natural changes such as long-term drought or climate change, can result in reduced seepage and the benefits it provides. We have worked with the communities to translate the multidisciplinary dimensions of these systems into a common language of causal loop diagrams, which form the basis for modeling future scenarios to

  9. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  10. Analytical Solution for Optimum Design of Furrow Irrigation Systems

    Science.gov (United States)

    Kiwan, M. E.

    1996-05-01

    An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.

  11. The effect of naturally acidified irrigation water on agricultural volcanic soils. The case of Asembagus, Java, Indonesia

    NARCIS (Netherlands)

    Los, A.M.D.; Vriend, S.P.; Bergen, M.J.; Gaans, R.F.M.

    2008-01-01

    Acid water from the Banyuputih river (pH similar to 3.5) is used for the irrigation of agricultural land in the Asembagus coastal area (East Java, Indonesia), with harmful consequences for rice yields. The river water has an unusual composition which is caused by seepage from the acidic Kawah Ijen

  12. GlobWat – a global water balance model to assess water use in irrigated agriculture (discussion paper)

    NARCIS (Netherlands)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are

  13. Applications of Information and Communication Technology for Improvements of Water and Soil Monitoring and Assessments in Agricultural Areas—A Case Study in the Taoyuan Irrigation District

    Directory of Open Access Journals (Sweden)

    Yu-Pin Lin

    2017-01-01

    Full Text Available In order to guarantee high-quality agricultural products and food safety, efforts must be made to manage and maintain healthy agricultural environments under the myriad of risks that they face. Three central system components of sustainable agricultural management schemes are real-time monitoring, decision-making, and remote access. Information and Communications Technology (ICT systems are a convenient means of providing both these and other functions, such as wireless sensor networking, mobile phone applications, etc., to agricultural management schemes. ICT systems have significantly improved in recent years and have been widely used in many fields, including environmental monitoring and management. Moreover, ICT could benefit agricultural environment management by providing a platform for collaboration between researchers and stakeholders, thereby improving agricultural practices and environments. This article reviews and discusses the way in which ICT can efficiently improve monitoring systems and risk assessments of agricultural environment monitoring, as well as the technological and methodological improvements of ICT systems. Finally, we develop and apply an ICT system, referred to as the agricultural environment protection system—comprised of a cloud, six E-platforms, three mobile devices, automatic monitoring devices, indigenous wireless sensor nodes, and gateways in agricultural networks—to a case study in the Taoyuan irrigation district, which acts as a pilot area in Taiwan. Through the system, we use all available information from the interdisciplinary structured cloud database to classify the focal area into different agricultural environmental risk zones. We also conducted further analysis based on a hierarchical approach in order to classify the agricultural environments in the study area, to allocate additional sampling with resin packages and mobile devices, as well as to assist decision makers and stakeholders. The main

  14. Laser-based agriculture system

    KAUST Repository

    Ooi, Boon S.

    2016-03-31

    A system and method are provided for indoor agriculture using at least one growth chamber illuminated by laser light. In an example embodiment of the agriculture system, a growth chamber is provided having one or more walls defining an interior portion of the growth chamber. The agriculture system may include a removable tray disposed within the interior portion of the growth chamber. The agriculture system also includes a light source, which may be disposed outside the growth chamber. The one or more walls may include at least one aperture. The light source is configured to illuminate at least a part of the interior portion of the growth chamber. In embodiments in which the light source is disposed outside the growth chamber, the light source is configured to transmit the laser light to the interior portion of the growth chamber via the at least one aperture.

  15. Laser-based agriculture system

    KAUST Repository

    Ooi, Boon S.; Wong, Aloysius Tze; Ng, Tien Khee

    2016-01-01

    A system and method are provided for indoor agriculture using at least one growth chamber illuminated by laser light. In an example embodiment of the agriculture system, a growth chamber is provided having one or more walls defining an interior portion of the growth chamber. The agriculture system may include a removable tray disposed within the interior portion of the growth chamber. The agriculture system also includes a light source, which may be disposed outside the growth chamber. The one or more walls may include at least one aperture. The light source is configured to illuminate at least a part of the interior portion of the growth chamber. In embodiments in which the light source is disposed outside the growth chamber, the light source is configured to transmit the laser light to the interior portion of the growth chamber via the at least one aperture.

  16. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería

    Directory of Open Access Journals (Sweden)

    Pedro Garcia-Caparros

    2017-12-01

    Full Text Available The development of intensive horticulture in Almería, with a huge increase in greenhouse surface area, is related to three essential factors: climatic characteristics, groundwater use and mulching sandy soil. The purpose of the present paper is to draw a picture of the integral management of water irrigation in the intensive horticultural systems in the region, by identifying the most significant water resource contributions and alternative water resources. Results indicate that the use of groundwater for the irrigation of horticultural crops in the greenhouses presents a high degree of overexploitation of the aquifers, but due to the continuous search for alternative water resources, such as desalinated and reclaimed water, as well as in-depth knowledge of the integral management of water irrigation through automated fertigation and localized irrigation systems, the current status of the water resources could be sustainable. Moreover, being conscious of the pollution generated by agricultural leachates, the horticultural system of Almería is implementing complementary sustainable systems such as recirculation, cascade cropping systems and phytodepuration for the reuse of the leachate. Considering all these factors, it can be concluded that the intensive horticultural system is on the right path towards respecting the environment and being sustainable in terms of water use.

  17. Converting Surface Irrigation to Pressurized Irrigation Systems and its Effecton Yield of OrangeTrees (Case Study:North of Khouzestan

    Directory of Open Access Journals (Sweden)

    M. Khorramian

    2017-01-01

    Full Text Available Introduction: North of the Khouzestan is one of the most important citrus production center. Usually border irrigation is used to irrigate citrus in this area. This system has generally low application efficiency. Several investigations in other arid region have demonstrated in addition to improved irrigation efficiency with low-volume pressurized irrigation systems, citrus trees have adapted with these new irrigation systems. However limited information exists on the performance of mature orchards converted from border surface irrigation to pressurized irrigation systems. Therefore, the current research was conducted to evaluate the feasibility of converting surface irrigation to pressurized irrigation systems on mature citrus trees in climate conditions of North Khouzestan. Materials and Methods: This study was conducted during three years at Safiabad Agricultural Research Center to evaluate the yield of citrus trees and the quality of fruits for two Marss and Valencia varieties which grow 7 years previously with surface irrigation and converted to pressurized irrigation systems. The treatments consisted of six irrigation methods including Overhead sprinkle irrigation (OHSI, Under tree sprinkle irrigation(UTSI, Trickle irrigation(TI(six 8 L/h Netafim emitters, Microjet irrigation (MI(two 180 microjet were located under canopy near of the trunk at opposite sides of trunk,Bubbler irrigation(BI(a single located under the canopy of each treeandSurface irrigation(SI method.Soil texture was clay loam well drained without salinity(ECe=0.69ds m-1, with 1.25 percent organic carbon. The experimental design was completely randomized design. The trees were irrigated during spring and summer seasons. For calculating irrigation water depth in TI, MI and BI systems, daily evaporation from a class A evaporation pan of the Safiabad weather station (nearby the experimental field was collected, and evapotranspiration of the citrus trees was calculated applying a

  18. Linking hydrology of traditional irrigation canals and socio-economic aspects of agricultural water use around Mt. Kilimanjaro

    Science.gov (United States)

    Kimaro, Jerome; Scharsich, Valeska; Huwe, Bernd; Bogner, Christina

    2017-04-01

    Traditional irrigation network around Mt. Kilimanjaro has been an important resource for both ecosystem functioning and agricultural production. However, a number of irrigation furrows can no longer maintain their discharge throughout the year and their future sustainability is uncertain. The actual efforts to improve the water supply were unsuccessful. We attribute this failure to a lack of information about the actual causes and extent of the problem. We suppose that there is a strong link between the socio-economic aspects like institutional and community management of the furrows and conflicts about water use. Therefore, we conducted a study to determine the relationship between current hydrological patterns and socio-economic aspects of agricultural water use. We measured discharge at 11 locations along an altitudinal gradient on the southern slopes of Mt. Kilimanjaro. Additionally, we conducted focus group discussions with participants from 15 villages and key informants interviews (n = 15). We found that the mean discharge did not differ significantly between dry and rainy seasons (ANOVA, p = 0.17). The overall discharge pattern indicated that furrows located in lower altitude had higher mean monthly discharge rate of 65 l s-1 compared to 11.5 l s-1 at the source area of the canals. This is due to the convergence of canals downstream. 41% of furrows were seasonal, 22% dry and only 37% perennial. Despite of a seemingly better water resource availability downstream, water conflicts are a major challenge across the whole mountain communities. Key informants and group discussions reported poor management of water on the district level. The Rural Moshi and Hai District Councils operate on a top down approach that give less power to the local water management committees. However, the latter have been an important part of the traditional management system for decades. Since 1990, the district authorities are using 65% of springs from the catchment to abstract water

  19. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  20. Simulation-based optimization framework for reuse of agricultural drainage water in irrigation.

    Science.gov (United States)

    Allam, A; Tawfik, A; Yoshimura, C; Fleifle, A

    2016-05-01

    A simulation-based optimization framework for agricultural drainage water (ADW) reuse has been developed through the integration of a water quality model (QUAL2Kw) and a genetic algorithm. This framework was applied to the Gharbia drain in the Nile Delta, Egypt, in summer and winter 2012. First, the water quantity and quality of the drain was simulated using the QUAL2Kw model. Second, uncertainty analysis and sensitivity analysis based on Monte Carlo simulation were performed to assess QUAL2Kw's performance and to identify the most critical variables for determination of water quality, respectively. Finally, a genetic algorithm was applied to maximize the total reuse quantity from seven reuse locations with the condition not to violate the standards for using mixed water in irrigation. The water quality simulations showed that organic matter concentrations are critical management variables in the Gharbia drain. The uncertainty analysis showed the reliability of QUAL2Kw to simulate water quality and quantity along the drain. Furthermore, the sensitivity analysis showed that the 5-day biochemical oxygen demand, chemical oxygen demand, total dissolved solids, total nitrogen and total phosphorous are highly sensitive to point source flow and quality. Additionally, the optimization results revealed that the reuse quantities of ADW can reach 36.3% and 40.4% of the available ADW in the drain during summer and winter, respectively. These quantities meet 30.8% and 29.1% of the drainage basin requirements for fresh irrigation water in the respective seasons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sustainable intensification in agricultural systems

    Science.gov (United States)

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  2. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    OpenAIRE

    Lajara, Rafael; Alberola, Jorge; Pelegr?-Sebasti?, Jos?

    2010-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered...

  3. Applicability of 87Sr/86Sr in examining return flow of irrigation water in highly agricultural watersheds in Japan

    Science.gov (United States)

    Yoshida, T.; Nakano, T.; Shin, K. C.; Tsuchihara, T.; Miyazu, S.; Kubota, T.

    2017-12-01

    Water flows in watersheds containing extensive areas of irrigated paddies are complex because of the substantial volumes involved and the repeated cycles of water diversion from, and return to, streams. For better management of low-flow conditions, numerous studies have attempted to quantify the return flow using the stable isotopes of water; however, the temporal variation in these isotopic compositions due to fractionation during evaporation from water surfaces hinders their application to watersheds with extensive irrigated paddies. In this study, we tested the applicability of the strontium isotopes (87Sr/86Sr, hereafter Sr ratio) for studying hydrological processes in a typical agricultural watershed located on the alluvial fan of the Kinu River, namely the Gogyo River, in central Japan. The Sr ratio of water changes only because of interactions with the porous media it flows through, or because of mixing with water that has different Sr ratios. We sampled water both at a single rice paddy, and on the watershed scale in the irrigated and non-irrigated periods. The soil water under the paddy decreased as sampling depth increased, and the soil water at a depth of 1.5 m showed a similar Sr ratio to the spring. The water sampled in the drainage channel with a concrete lined bottom showed a similar Sr ratio to the irrigation water, whereas that with a soil bottom was plotted between the plots of the irrigation water and shallow aquifer. These results suggest the Sr ratio decreases as it mixes with the soil water through percolation; whereas the Sr ratio will be less likely to change when water drains from paddies via surface pathways. The streamflow samples were plotted linearly on the Sr ratio and 1/Sr plot, indicating that the streamflow was composed of two end-members; the irrigation water and the shallow aquifer. The continuous decline in the Sr ratio along the stream suggests an exfiltration of water from the shallow aquifers. The stream water during the non-irrigated

  4. Study Of Solar PV Sizing Of Water Pumping System For Irrigation Of Asparagus

    Directory of Open Access Journals (Sweden)

    Mya Su Kyi

    2015-08-01

    Full Text Available The motivation for this system come from the countries where economy is depended on agriculture and the climatic conditions lead to lack of rains. The farmers working in the farm lands are dependent on the rains and bore wells. Even if the farm land has a water-pump manual involvement by farmers is required to turn the pump onoff when on earth needed. This paper presents design and calculation analysis of efficient Solar PV water pumping system for irrigation of Asparagus. The study area falls 21-58-30 N Latitude and 96-5-0 E Longitude of Mandalay. The PV system sizing was made in such a way that it was capable of irrigation one acre of Asparagus plot with a daily water requirement of 25mday.

  5. Influence of sustainable irrigation regimes and agricultural practices on the soil CO2 fluxes from olive groves in SE Spain

    Science.gov (United States)

    Marañón-Jiménez, Sara; Serrano-Ortíz, Penelope; Vicente-Vicente, Jose Luis; Chamizo, Sonia; Kowalski, Andrew S.

    2017-04-01

    Olive (Olea europaea) is the dominant agriculture plantation in Spain and its main product, olive oil, is vital to the economy of Mediterranean countries. Given the extensive surface dedicated to olive plantations, olive groves can potentially sequester large amounts of carbon and contribute to mitigate climate change. Their potential for carbon sequestration will, however, largely depend on the management and irrigation practices in the olive grove. Although soil respiration is the main path of C release from the terrestrial ecosystems to the atmosphere and a suitable indicator of soil health and fertility, the interaction of agricultural management practices with irrigation regimes on soil CO2 fluxes have not been assessed yet. Here we investigate the influence of the presence of herbaceous cover, use of artificial fertilizers and their interaction with the irrigation regime on the CO2 emission from the soil to the atmosphere. For this, the three agricultural management treatments were established in replicated plots in an olive grove in the SE of Spain: presence of herbaceous cover ("H"), exclusion of herbaceous cover by using herbicides ("NH"), and exclusion of herbaceous cover along with addition of artificial fertilizers (0.55 kg m-2 year-1 of N, P, K solid fertilizer in the proportion 20:10:10, "NHF"). Within each management treatment, three irrigation regimes were also implemented in a randomized design: no-irrigation ("NO") or rain fed, full irrigation (224 l week-1 per olive tree, "MAX"), and a 50% restriction (112 l week-1 per olive tree, "MED"). Soil respiration was measured every 2-3 weeks at 1, 3, and 5 meters from each olive tree together with soil temperature and soil moisture in order to account for the spatial and seasonal variability over the year. Soil respiration was higher when herbaceous cover was present compared to the herbaceous exclusion, whereas the addition of fertilizer did not exert any significant effect. Although the different

  6. Microbial community of high arsenic groundwater in agricultural irrigation area of Hetao Plain, Inner Mongolia

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-12-01

    Full Text Available Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina Miseq sequencing approach targeting the V4 region of the 16S rRNA gene. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and TOC. Sequencing results revealed that a total of 329-2823 OTUs were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing As-rich aquifers of Hetao Plain and other high As groundwater aquifers including Bangladesh, West Bengal and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate analysis and co-inertia analysis. Other geochemical

  7. Predictors of blood lead levels in agricultural villages practicing wastewater irrigation in Central Mexico.

    Science.gov (United States)

    Cifuentes, E; Villanueva, J; Sanin, L H

    2000-01-01

    To investigate whether the agricultural use of untreated wastewater (i.e. crop irrigation) was associated with elevated blood lead levels in a farming population in the Mezquital Valley and which risk factors, other than exposure to untreated wastewater, were associated with elevated blood lead levels, lead levels were measured in venous blood obtained from 735 individuals. Blood samples were analyzed by atomic absorption spectrophotometry. Food habits and dietary intake were gathered by interview, using a semi-quantitative food-frequency questionnaire. The average blood lead level was 7.8 microg/dL (SD 4.66 microg/dL; range 1.2-36.7 microg/dL). 23% of the study population had blood lead levels exceeding 10 microg/dL. The use of lead-glazed ceramics (LGC) was significantly associated with elevated lead levels (p = workers). p = 0.005, 0.08, and 0.001, respectively. When the analysis was stratified by the use of LGC for food preparation, an inverse relationship between higher daily calcium intake and blood lead level was detected (beta = - 0.040, p = associated with the use of LGC. Calcium intake showed a protective effect, maybe by decreasing absorption of lead in the gastrointestinal tract. No association between occupational exposure to untreated wastewater or crop consumption and blood lead levels was detected. Further environmental and health surveillance is recommended.

  8. Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea

    Directory of Open Access Journals (Sweden)

    Hanseok Jeong

    2016-04-01

    Full Text Available Climate change and the subsequent change in agricultural conditions increase the vulnerability of agricultural water use. Wastewater reuse is a common practice around the globe and is considered as an alternative water resource in a changing agricultural environment. Due to rapid urbanization, indirect wastewater reuse, which is the type of agricultural wastewater reuse that is predominantly practiced, will increase, and this can cause issues of unplanned reuse. Therefore, water quality standards are needed for the safe and sustainable practice of indirect wastewater reuse in agriculture. In this study, irrigation water quality criteria for wastewater reuse were discussed, and the standards and guidelines of various countries and organizations were reviewed to suggest preliminary standards for indirect wastewater reuse in South Korea. The proposed standards adopted a probabilistic consideration of practicality and classified the use of irrigation water into two categories: upland and rice paddy. The standards suggest guidelines for E. coli, electric conductivity (EC, turbidity, suspended solids (SS, biochemical oxygen demand (BOD, pH, odor, and trace elements. Through proposing the standards, this study attempts to combine features of both the conservative and liberal approaches, which in turn could suggest a new and sustainable practice of agricultural wastewater reuse.

  9. Normative structures, collaboration and conflict in irrigation; a case study of the Pillaro North Canal Irrigation System, Ecuadorian Highlands

    Directory of Open Access Journals (Sweden)

    Jaime Hoogesteger

    2015-03-01

    Full Text Available This paper analyzes conflict and collaboration and their relation to normative structures based on a case study of the history and external interventions of the Píllaro North Canal Irrigation System in the Ecuadorian Highlands. It does so by using Ostrom’s framework for analyzing the sustainability of socio-ecological systems together with an analysis of the normative structures that define the governance systems through which the interactions in irrigation systems are mediated. I argue that the external interventions by the state and NGOs imposed a new governance system that undermined the existing normative structures and related organizations, leading to internal conflicts. The case study suggests that a reformulation of irrigation policies and state intervention methodologies in user managed supra-community irrigation systems in the Andes could lead to higher levels of cooperation.

  10. Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa

    Directory of Open Access Journals (Sweden)

    Nelson Mango

    2018-04-01

    Full Text Available This article is concerned with the adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on household income in the Chinyanja Triangle. Chinyanja Triangle is a region that is increasingly experiencing mid-season dry spells and an increase in occurrence of drought, which is attributed largely to climate variability and change. This poses high agricultural production risks, which aggravate poverty and food insecurity. For this region, adoption of small-scale irrigation farming as a climate-smart agriculture practice is very important. Through a binary logistic and ordinary least squares regression, this article determines factors that influence the adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on income among smallholder farmers. The results show that off-farm employment, access to irrigation equipment, access to reliable water sources and awareness of water conservation practices, such as rainwater harvesting, have a significant influence on the adoption of small-scale irrigation farming. On the other hand, the farmer’s age, distance travelled to the nearest market and nature of employment negatively influence the adoption of small-scale irrigation farming decisions. Ordinary least squares regression results showed that the adoption of small-scale irrigation farming as a climate-smart agriculture practice has a significant positive influence on agricultural income. We therefore conclude that to empower smallholder farmers to respond quickly to climate variability and change, practices that will enhance the adoption of small-scale irrigation farming in the Chinyanja Triangle are critical, as this will significantly affect agricultural income. In terms of policy, we recommend that the governments of Zambia, Malawi and Mozambique, which cover the Chinyanja Triangle, formulate policies that will enhance the adoption of sustainable small scale-irrigation

  11. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    Science.gov (United States)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    micrometeorological variables, vegetative status, and soil conditions. In this presentation, we present measured crop water footprints (total crop water consumption as blue and green water), crop water use efficiencies (water used per unit of agricultural production), and crop physiological status (PRI and NDVI index) under drought conditions (2015) and under average rainfall conditions (2016). We will use these data to evaluate the resilience to drought of these crops, which is crucial for the economy of the region. We will also evaluate the impact of agricultural water use for the local water balance and implications of irrigation practices for catchment-scale hydrological processes. Finally, we will explore the feasibility and potential of using CROPWAT 8.0 modelling software to generate estimates of crops water footprint for regional water planning decision-making and farm irrigation planning. The implications of these findings will be discussed in the context of the regional socio-hydrological system that is facing a likely increase in water scarcity due to climate change and demand intensification.

  12. Policy Incentives for Reducing Nitrate Leaching in Agricultural Lands: A Case Study of Irrigation and Drainage Dorudzan

    International Nuclear Information System (INIS)

    Sheikhzeinoddin, A.; Esmaeili, A.; Zibaei, M.

    2016-01-01

    Agricultural activities increasingly use water, fertilizers and pesticides, which may generate negative impacts on environment. Nowadays, nitrogen leaching from agricultural lands is a widespread global problem. Therefore, alternative land management practices such as nutrient management (rate, method and time of application), tillage operations (conservation and no-tillage), and irrigation management are routinely used to reduce non-point source pollution and improve water quality. In fact, a number of studies have illustrated the positive effects of best management practices on water and nutrient losses. The objective of this paper is to develop a bio-economic model and introducing the policy instrument for reducing nitrate from irrigation and drainage Dorudzan. We aim to identify ‘‘win–win’’ opportunities for improving farm profitability and reducing nitrate leaching.

  13. Influence of big power motors for irrigation of electric systems

    International Nuclear Information System (INIS)

    Shimoda, M.; Gialuca, V.; Trombetta, O.R.

    1988-01-01

    The evolution of rural electrification in CPFL - Companhia Paulista de Forca e Luz, Sao Paulo State, Brazil, and the influence of big power motors installation for irrigation in electric system are shown. Considerations about rural market, energy consumption, planning of distribution and transmission line and some calculations are also presented. (author)

  14. Control of soil moisture with radio frequency in a photovoltaic-powered drip irrigation system

    OpenAIRE

    DURSUN, Mahir; ÖZDEN, Semih

    2015-01-01

    Solar-powered irrigation systems are becoming increasingly widespread. However, the initial setup costs of these systems are very high. To reduce these costs, both the energy usage and the prevention of losses from irrigation systems are very important. In this study, a drip irrigation control system of 1000 dwarf cherry trees was controlled using soil moisture sensors in order to prevent excessive water consumption and energy losses in a solar-powered irrigation system. The control sys...

  15. Analysis to develop a program for energy conservation in irrigated agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Cone, B.W.; Brix, V.L.; Eakin, D.E.; Laughlin, B.M.

    1978-09-01

    It is estimated by the FEA that 0.26 quadrillion Btus of energy is annually required to irrigate crops in the USA. The development of a DOE program for energy conservation in irrigation is described. Information is included on: studies of how this energy consumption can be reduced and by how much; engineering and economic studies of irrigation equipment and methods; proposals for improving the efficiency of pumps and prime movers; projects selected for demonstrating irrigation energy conservation; and recommendations for further research. (LCL)

  16. Sustainable intensification in agricultural systems.

    Science.gov (United States)

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-12-01

    Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms 'sustainable' and 'intensification' is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural-environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and incentives necessary for the wider adoption of

  17. Phosphorus distribution in sandy soil profile under drip irrigation system

    International Nuclear Information System (INIS)

    El-Gendy, R.W.; Rizk, M.A.; Abd El Moniem, M.; Abdel-Aziz, H.A.; Fahmi, A.E.

    2009-01-01

    This work aims at to studying the impact of irrigation water applied using drip irrigation system in sandy soil with snap bean on phosphorus distribution. This experiment was carried out in soils and water research department farm, nuclear research center, atomic energy authority, cairo, Egypt. Snap bean was cultivated in sandy soil and irrigated with 50,37.5 and 25 cm water in three water treatments represented 100, 75 and 50% ETc. Phosphorus distribution and direction of soil water movement had been detected in three sites on the dripper line (S1,S2 and S3 at 0,12.5 and 25 cm distance from dripper). Phosphorus fertilizer (super phosphate, 15.5% P 2 O 5 in rate 300 kg/fed)was added before cultivation. Neutron probe was used to detect the water distribution and movement at the three site along soil profile. Soil samples were collected before p-addition, at end developing, mid, and late growth stages to determine residual available phosphorus. The obtained data showed that using 50 cm water for irrigation caused an increase in P-concentration till 75 cm depth in the three sites of 100% etc treatment, and covered P-requirements of snap bean for all growth stages. As for 37.5 and 25 cm irrigation water cannot cover all growth stages for P-requirements of snap bean. It could be concluded that applied irrigation water could drive the residual P-levels till 75 cm depth in the three sites. Yield of the crop had been taken as an indicator as an indicator profile. Yield showed good response according to water quantities and P-transportation within the soil profile

  18. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  19. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    Science.gov (United States)

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains. Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone. However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer. The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in the Ogallala Formation is separated from

  20. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation pot...

  1. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.; Ansari, Mohd Ikram; Harb, Moustapha; Hong, Pei-Ying

    2015-01-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation

  2. Minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge - Towards a water reuse regulatory instrument at EU level Réédition

    OpenAIRE

    ALCALDE SANZ LAURA; GAWLIK BERND

    2017-01-01

    As an input to the design of a Legal Instrument on Water Reuse in Europe, this report recommends minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge based on a risk management approach.

  3. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  4. Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications

    Directory of Open Access Journals (Sweden)

    Nicole L Fahrenfeld

    2013-05-01

    Full Text Available Treated wastewater is increasingly being reused to achieve sustainable water management in arid regions. The objective of this study was to quantify the distribution of antibiotic resistance genes (ARGs in recycled water, particularly after it has passed through the distribution system, and to consider point-of-use implications for soil irrigation. Three separate reclaimed wastewater distribution systems in the western U.S. were examined. Quantitative polymerase chain reaction (qPCR was used to quantify ARGs corresponding to resistance to sulfonamides (sul1, sul2, macrolides (ermF, tetracycline (tet(A, tet(O, glycopeptides (vanA, and methicillin (mecA, in addition to genes present in waterborne pathogens Legionella pneumophila (Lmip, Escherichia coli (gadAB, and Pseudomonas aeruginosa (ecfx, gyrB. In a parallel lab study, the effect of irrigating an agricultural soil with secondary, chlorinated, or dechlorinated wastewater effluent was examined in batch microcosms. A broader range of ARGs were detected after the reclaimed water passed through the distribution systems, highlighting the importance of considering bacterial re-growth and the overall water quality at the point of use. Screening for pathogens with qPCR indicated presence of Lmip and gadAB genes, but not ecfx or gyrB. In the lab study, chlorination was observed to reduce 16S rRNA and sul2 gene copies in the wastewater effluent, while dechlorination had no apparent effect. ARGs levels did not change with time in soil slurries incubated after a single irrigation event with any of the effluents. However, when irrigated repeatedly with secondary wastewater effluent (not chlorinated or dechlorinated, elevated levels of sul1 and sul2 were observed. This study suggests that reclaimed water may be an important reservoir of ARGs, especially at the point of use, and that attention should be directed towards the fate of ARGs in irrigation water and the implications for human health.

  5. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL -1 ) and 13 (553±1050ngL -1 ) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Economic impacts on irrigated agriculture of water conservation programs in drought

    Science.gov (United States)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  7. Decadal Variation of Precipitation in Saudi Arabia induced by Agricultural Irrigation

    Science.gov (United States)

    Lo, M. H.; Wey, H. W.; Wada, Y.; IM, E. S.; Chien, R. Y.; Wu, R. J.

    2017-12-01

    Decadal variation of wet-season precipitation has been found in the arid region of central Saudi Arabia. 1980s has been a rather wet decade compared with the decades before. Previous studies have mentioned that the irrigation moisture may contribute to the precipitation anomalies in Saudi Arabia. In the current study, we show from observational data that the contribution of the variation comes mostly from February to May. As the irrigation is a localized forcing, we therefore use the Weather Research and Forecasting (WRF) Model to simulate the response of the land-atmosphere interaction to the wet soil moisture resulted from additional irrigation moisture supply. Preliminary result shows in the irrigated simulation that precipitation in central Saudi Arabia is enhanced, indicating the possible link between irrigation expansion in the 1980s and the decadal precipitation variation over central Saudi Arabia. We propose it is the anomalous convergence induced by irrigation as well as additional moisture that contribute to the enhanced precipitation over heavily irrigation region in the central Saudi Arabian. In addition, analysis on the daily precipitation from the WRF outputs indicates that positive rainfall anomalies tend to happen when there is rainfall originally; that is, irrigation enhances rainfall but not creates rainfall.

  8. Optimal Design and Operation of Permanent Irrigation Systems

    Science.gov (United States)

    Oron, Gideon; Walker, Wynn R.

    1981-01-01

    Solid-set pressurized irrigation system design and operation are studied with optimization techniques to determine the minimum cost distribution system. The principle of the analysis is to divide the irrigation system into subunits in such a manner that the trade-offs among energy, piping, and equipment costs are selected at the minimum cost point. The optimization procedure involves a nonlinear, mixed integer approach capable of achieving a variety of optimal solutions leading to significant conclusions with regard to the design and operation of the system. Factors investigated include field geometry, the effect of the pressure head, consumptive use rates, a smaller flow rate in the pipe system, and outlet (sprinkler or emitter) discharge.

  9. Study Of Solar PV Sizing Of Water Pumping System For Irrigation Of Asparagus

    OpenAIRE

    Mya Su Kyi; Lu Maw; Hla Myo Tun

    2015-01-01

    The motivation for this system come from the countries where economy is depended on agriculture and the climatic conditions lead to lack of rains. The farmers working in the farm lands are dependent on the rains and bore wells. Even if the farm land has a water-pump manual involvement by farmers is required to turn the pump onoff when on earth needed. This paper presents design and calculation analysis of efficient Solar PV water pumping system for irrigation of Asparagus. The study area fall...

  10. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Science.gov (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  11. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  12. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  13. Design and Management of Irrigation Systems Diseño y Manejo de Sistemas de Riego

    Directory of Open Access Journals (Sweden)

    Eduardo A Holzapfel

    2009-12-01

    Full Text Available Irrigation systems should be a relevant agent to give solutions to the increasing demand of food, and to the development, sustainability and productivity of the agricultural sector. The design, managing, and operation of irrigation systems are crucial factors to achieve an efficient use of the water resources and the success in the production of crops and orchards. The aim of this paper is to analyze knowledge and investigations that enable to identify the principal criteria and processes that allow improving the design and managing of the irrigation systems, based on the basic concept that they facilitate to develop agriculture more efficient and sustainable. The design and managing of irrigation systems must have its base in criteria that are relevant, which implies to take into account agronomic, soil, hydraulic, economic, energetic, and environmental factors. The optimal design and managing of irrigation systems at farm level is a factor of the first importance for a rational use of water, economic development of the agriculture and its environmental sustainability.Los sistemas de riego deberían ser un agente relevante para dar soluciones a la demanda creciente de alimentos, y el desarrollo, sustentabilidad y productividad del sector agrícola. El diseño, manejo, y operación de los sistemas de riego son factores cruciales para lograr un uso eficiente de los recursos hídricos y el éxito en la producción de cultivos y frutales. El objetivo de este artículo fue analizar conocimientos e investigaciones que permitan identificar los principales criterios y procesos para mejorar el diseño y manejo de los sistemas de riego, basados en el concepto básico de desarrollar una agricultura más eficiente y sostenible. El diseño y manejo de los sistemas de riego deben tener su base en criterios que sean relevantes, lo que implica considerar aspectos agronómicos, de suelo, hidráulicos, económicos, energéticos, y ambientales. El diseño y

  14. Simulating Changes in Land-Atmosphere Interactions From Expanding Agriculture and Irrigation in India and the Potential Impacts on the Indian Monsoon.

    Science.gov (United States)

    Douglas, E. M.; Beltran-Przekurat, A.; Niyogi, D.; Pielke, R. A.

    2006-05-01

    With over 57 million hectares under irrigation in 2002, India has the largest irrigated agricultural area on the planet. Between 80 and 90% of India's water use goes to support irrigated agriculture. The Indian monsoon belt is a home to a large part of the world's population and agriculture is the major land-use activity in the region. Previous results showed that annual vapor fluxes in India have increased by 17% (340 km3) over that which would be expected from a natural (non-agricultural) land cover. Two-thirds of this increase was attributed to irrigated agriculture. The largest increases in vapor and latent heat fluxes occurred where both cropland and irrigated lands were the predominant contemporary land cover classes (particularly northwest and north-central India). Our current study builds upon this work by evaluating possible changes in near-surface energy fluxes and regional atmospheric circulation patterns resulting from the expansion of irrigated agriculture on the Indian sub-continent using a regional atmospheric model RAMS. We investigate three separate land- use scenarios: Scenario 1, with a potential (pre-agricultural) land cover, Scenario 2: the potential land-cover overlain by cropland and Scenario 3: potential land-cover overlain by cropland and irrigated area. We will assess the impact of agricultural land-cover conversion and intensive irrigation on water and energy fluxes between the land and the atmosphere and how these flux changes may affect regional weather patterns. The simulation period covers July 16-20, 2002 which allow us to assess potential impacts of land-cover changes on the onset of the Indian Monsoon.

  15. A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India.

    Science.gov (United States)

    Murthy, C S; Yadav, Manoj; Mohammed Ahamed, J; Laxman, B; Prawasi, R; Sesha Sai, M V R; Hooda, R S

    2015-03-01

    Drought is an important global hazard, challenging the sustainable agriculture and food security of nations. Measuring agricultural drought vulnerability is a prerequisite for targeting interventions to improve and sustain the agricultural performance of both irrigated and rain-fed agriculture. In this study, crop-generic agricultural drought vulnerability status is empirically measured through a composite index approach. The study area is Haryana state, India, a prime agriculture state of the country, characterised with low rainfall, high irrigation support and stable cropping pattern. By analysing the multiyear rainfall and crop condition data of kharif crop season (June-October) derived from satellite data and soil water holding capacity and groundwater quality, nine contributing indicators were generated for 120 blocks (sub-district administrative units). Composite indices for exposure, sensitivity and adaptive capacity components were generated after assigning variance-based weightages to the respective input indicators. Agricultural Drought Vulnerability Index (ADVI) was developed through a linear combination of the three component indices. ADVI-based vulnerability categorisation revealed that 51 blocks are with vulnerable to very highly vulnerable status. These blocks are located in the southern and western parts of the state, where groundwater quality is saline and water holding capacity of soils is less. The ADVI map has effectively captured the spatial pattern of agricultural drought vulnerability in the state. Districts with large number of vulnerable blocks showed considerably larger variability of de-trended crop yields. Correlation analysis reveals that crop condition variability, groundwater quality and soil factors are closely associated with ADVI. The vulnerability index is useful to prioritise the blocks for implementation of long-term drought management plans. There is scope for improving the methodology by adding/fine-tuning the indicators and

  16. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    Science.gov (United States)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  17. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    KAUST Repository

    Alsalah, Dhafer

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  18. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  19. Triggering system innovation in agricultural innovation systems

    NARCIS (Netherlands)

    Turner, James A.; Williams, Tracy; Nicholas, Graeme; Foote, Jeff; Rijswijk, Kelly; Barnard, Tim; Beechener, Sam; Horita, Akiko

    2017-01-01

    This article describes a process for stimulating engagement among change agents to develop a shared understanding of systemic problems in the agricultural innovation system (AIS), challenge prevalent institutional logics and identify actions they might undertake to stimulate system innovation.

  20. Hydraulic performance evaluation of pressure compensating (pc) emitters and micro-tubing for drip irrigation system

    International Nuclear Information System (INIS)

    Mangrio, A.G.; Asif, M.; Jahangir, I.

    2013-01-01

    Drip irrigation system is necessary for those areas, where the water scarcity issues are present. The present study was conducted at the field station of Climate Change, Alternate Energy and Water Resources Institute (CAEWRI), National Agricultural Research Center (NARC), Islamabad, during 2013, regarding drip irrigation system. Drip irrigation system depends on uniform emitter application flow. All the emitters were tested and replicated thrice at pressure head (34 to 207Kpa) with an increment of 34 Kpa. The minimum and maximum discharges were 1.32 - 3.52, 3.36 - 5.42, and 43.22 - 100.99 Lph, with an average of 2.42, 4.63 and 73.66 Lph, for Bow Smith, RIS and Micro-tubing, respectively. It indicates that more than 90% of emission uniformity (EU) and uniformity coefficient (CU) for all Emitters, which shows excellent water application with least standard deviation, ranging 0.12 to 2.37, throughout the operating pressure heads in all emitters. An average coefficient of variation (CV) of all emitters were behaving less than 0.07, indicating an excellent class at all operating pressure heads between 34 to 207 Kpa. Moreover, the relationship of discharge and pressure of emitters indicates that discharge increased with the increase of pressure head. The Q-H curve plays key role in the selection of emitters. (author)

  1. Reduced Nitrous Oxide Emissions in Tomato Cropping Systems under Drip Irrigation and Fertigation

    Science.gov (United States)

    Kennedy, T.; Suddick, E. C.; Six, J. W.

    2011-12-01

    In California, agriculture and forestry account for 8% of the total greenhouse gas (GHG) emissions, of which 50% is accounted for by nitrous oxide (N2O). Furrow irrigation and high temperatures in the Central Valley, together with conventional fertilization, are ideal for the production of food, but also N2O. These conditions lead to high N2O fluxes, but also mean there is great potential to reduce N2O emissions by optimizing fertilizer use and irrigation practices. Improving fertilizer use by better synchronizing nitrogen (N) availability and crop demand can reduce N losses and fertilizer costs. Smaller, more frequent fertilizer applications can increase the synchrony between available soil N and crop N uptake. Fertigation allows for more control over how much N is being added and can therefore allow for better synchrony throughout the growing season. In our study, we determined how management practices, such as fertilization, irrigation, tillage and harvest, affect direct N2O emissions in typical tomato cropping systems. We evaluated two contrasting irrigation managements and their associated fertilizer application method, i.e. furrow irrigation and knife injection versus drip irrigation and fertigation. Across two tomato-growing seasons, we found that shifts in fertilizer and irrigation water management directly affect GHG emissions. Seasonal N2O fluxes were 3.4 times lower under drip versus furrow irrigation. In 2010, estimated losses of fertilizer N as N2O were 0.60 ± 0.06 kg N2O-N ha-1 yr-1 in the drip system versus 2.06 ± 0.11 N2O-N kg ha-1 yr-1 in the furrow system, which was equivalent to 0.29% and 0.87% of the added fertilizer, respectively. Carbon dioxide (CO2) emissions were also lower in the drip system (2.21 ± 0.16 Mg CO2-C ha-1 yr-1) than the furrow system (4.65 ± 0.23 Mg CO2-C ha-1 yr-1). Soil mineral N, dissolved organic carbon and soil moisture also varied between the two systems and correlated positively with N2O and CO2 emissions, depending

  2. Web/smart phone based control and feedback systems for irrigation systems

    Science.gov (United States)

    The role of the internet and mobile devices in the control and feedback of irrigation systems is reviewed. This role is placed in the larger context of four distinct components required for irrigation management, including 1. the control panel; 2. remote control; 3. soil, plant, and weather (SPW) se...

  3. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    controllers, centralized and site-specific sensor inputs, leak detection sensors, and the use of harvested water (i.e., rainwater and air condition water ...include ET functionality with soil moisture sensor, and leak detection via flow meter. ESTCP Final Report Smart Water Conservation System 58... leakage . The minimum static pressure was not achieved because tank water levels were less than 10 feet in the selected low profile tank.) Adjust break

  4. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    ht ly M or e W or kl oa d; 5 -M or e W or kl oa d; 6 -S ig ni fic an lty M or...install the water harvesting and pump system was captured from the contractor cost proposal. 7.1.3 Water Cost Water purchased from the Port Hueneme Water...818) 737-2734 KDuke@valleycrest.com Contractor Tom Santoianni 1205 Mill Rd. Bldg. 1430 Public Works, Ventura (805) 982-4075 Tom.Santoianni@navy.mil Energy Manager

  5. An experimental study on the grape orchard: Effects comparison of two irrigation systems

    Directory of Open Access Journals (Sweden)

    Kadbhane Sharad J.

    2017-03-01

    Full Text Available Table grape (Vitis vinifera cultivars is a major cash crop in the Nashik district of India, which requires irrigation water throughout the year as per demand instantly. Canal irrigation is the adopted irrigation systems in the study area, but canal irrigation has got several serious disadvantages, such as mismatching rotation schedules and crop water demands, water allotment system and restrictions on the use of efficient irrigation methods. The storing the canal water in the farm pond instead of directly applying to the field using the free flooding method is alternate solution to overcome the disadvantages of the canal irrigation system. Once the canal water storing in the pond, it increases the possibilities to use the advance irrigation system like drip, subsurface, sprinkler etc. to enhance water use efficiency. The comparative study between the canal water directly applying for the field and canal water storing in the farm pond then use for irrigation, executed through the field experiments carried out on the grape orchard during a period April 2013 to March 2016. Results have been evaluated based on grape yield, water-productivity, berry size, and biomass. Water productivity (kg·m-3 with respect to water delivery to crop through the pond irrigation method was found 37% higher than the canal irrigation method during the study period. Based on the results, this study recommended the use of the farm pond to store the canal water and use it as per crop demand using advance irrigation systems.

  6. Evapotranspiration measurements in rainfed and irrigated cropland illustrate trade-offs in land and water management in Southern Amazonia's agricultural frontier

    Science.gov (United States)

    Lathuilliere, M. J.; Dalmagro, H. J.; Black, T. A.; Arruda, P. H. Z. D.; Hawthorne, I.; Couto, E. G.; Johnson, M. S.

    2017-12-01

    Southern Amazonia, Brazil, is home to a rapidly expanding agricultural frontier in which tropical forest and savanna landscapes have been increasingly replaced by agricultural land since the 1990s. One important impact of deforestation is the reduction in water vapour transferred to the atmosphere via evapotranspiration (ET) from rainfed agriculture landscapes compared to natural vegetation, leading to a reduction in regional precipitation recycling. Here, we discuss land and water management choices for future agricultural production in Southern Amazonia and their potential effects on the atmospheric water cycle. We illustrate these choices by presenting ET measurements on an agricultural landscape by eddy covariance (EC) between September 2015 and February 2017. Measurements were made for two fields adjacent to one micrometeorological EC tower: (1) one rainfed field containing a succession of soybean, maize, brachiara and soybean, and (2) one irrigated field with a succession of soybean, rice, beans, and soybean. Over the time period, total ET in the rainfed and irrigated fields was 1266 ± 294 mm and 1415 ± 180 mm, respectively for a total precipitation of 3099 mm. The main difference in ET between the fields was attributed to the application of 118 mm of surface water irrigated for bean production in the irrigated field between June and September 2016. In the rainfed field, soybean ET was 332 ± 82 mm (2015-2016) and 423 ± 99 mm (2016-2017) for 824 mm and 1124 mm of precipitation, respectively. In the irrigated field, soybean ET was 271 ± 38 mm (2015) and 404 ± 60 mm (2016-2017) with supplemental irrigation added in 2015. Our results illustrate how supplemental irrigation can favour early soybean planting while transferring additional water vapour to the atmosphere at levels similar to natural vegetation. We conclude by discussing our results in the context of future land and water trade-offs for agricultural intensification in Brazil's "arc-of-deforestation".

  7. Go Grey - A Laundry to Landscape Irrigation System

    Science.gov (United States)

    Rajmohan, S.

    2017-12-01

    California residents have dealt with severe drought and high water bills for the few past years[1]. The objective of our project is to use the concept of greywater irrigation to build a low cost, adaptable, and easy to install irrigation system to collect the greywater from the washing machine and use it to water the plants. This system can reduce a household's water usage, extend the life of a septic system, and save time on watering plants by recycling the water from the washing machine. Our simple system requires PVC pipes, a three-way water diverter (valve), a mesh coffee filter, and a water (rain) barrel. The water from the washing machine travels through the three-way valve, which diverts it either to the garden or to the sewer. The PVC pipes lead outside to the garden, where the water barrel is located. The water goes through the mesh coffee filter that is attached on top of the barrel, so that lint and other impurities can be filtered out. The water collected in the barrel will travel through drip irrigation or through a hose to directly water the roots of the plants. This fully functional greywater system was successfully constructed and tested through various trails. We used a Kenmore standard 4.5 cubic feet front load high efficiency washer which uses less water compared to the traditional washers and measured the water collected in water barrel after each wash. Irrespective of the size of the load, the amount of water collected from each wash remained almost the same.. However, we collected enough grey water from each washer load to fill the rain barrel and water the plants in the garden. We were able apply the concept of greywater irrigation successfully to build our own low cost, adaptable, and easy to install greywater system that can be used in any household to water plants in the garden. Our system recycles the water from the washer instead of just wasting it thereby reducing a household's water usage and water bill especially during the time of

  8. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  9. Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate

    NARCIS (Netherlands)

    Trujillo-González, Juan Manuel; Mahecha-Pulido, Juan D.; Torres-Mora, Marco Aurelio; Brevik, Eric C.; Keesstra, Saskia D.; Jiménez-Ballesta, Raimundo

    2017-01-01

    Globally, it is estimated that 20 million hectares of arable land are irrigated with water that contains residual contributions from domestic liquids. This potentially poses risks to public health and ecosystems, especially due to heavy metals, which are considered dangerous because of their

  10. Controls on denitrification potential in nitrate-rich waterways and riparian zones of an irrigated agricultural setting.

    Science.gov (United States)

    Webster, Alex J; Groffman, Peter M; Cadenasso, Mary L

    2018-02-21

    Denitrification, the microbial conversion of NO 3 - to N gases, is an important process contributing to whether lotic and riparian ecosystems act as sinks for excess NO 3 - from agricultural activities. Though agricultural waterways and riparian zones have been a focus of denitrification research for decades, almost none of this research has occurred in the irrigated agricultural settings of arid and semi-arid climates. In this study, we conducted a broad survey of denitrification potential in riparian soils and channel sediment from 79 waterway reaches in the irrigated agricultural landscape of California's Central Valley. With this approach, we sought to capture the wide range of variation that arose from diverse waterway management and fluctuating flow conditions, and use this variation to identify promising management interventions. We explored associations of denitrification potentials with surface water NO 3 - -N, organic matter, flow conditions, vegetation cover, near-channel riparian bank slope, and channel geomorphic features using generalized linear mixed models. We found strong associations of sediment denitrification potentials with reach flow conditions, which we hypothesize was the result of variation in microbial communities' tolerance to dry-wet cycles. Denitrification potentials in riparian soils, in contrast, did not appear affected by flow conditions, but instead were associated with organic matter, vegetation cover, and bank slope in the riparian zone. These results suggest a strong need for further work on how denitrification responds to varying flow conditions and dry-wet cycles in non-perennial lotic ecosystems. Our findings also demonstrate that denitrifier communities respond to key features of waterway management, which can therefore be leveraged to control denitrification through a variety of management actions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. On the waterfront : water distribution, technology and agrarian change in a South Indian canal irrigation system

    OpenAIRE

    Mollinga, P.P.

    1998-01-01

    This book discusses water distribution in the Tungabhadra Left Bank Canal irrigation system in Raichur district, Karnataka, India. The system is located in interior South India, where rainfall is limited (approximately 600 mm annually) and extremely variable. The region suffered from failed harvests and famines in the past. A large scale irrigation system was constructed to solve these problems. The system is operational since 1953 and was completed in 1968. The area to be irrigated ...

  12. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  13. Real-time drought forecasting system for irrigation managment

    Science.gov (United States)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Masseroni, Daniele; Meucci, Stefania; Pala, Francesca; Salerno, Raffaele; Meazza, Giuseppe; Chiesa, Marco; Mancini, Marco

    2013-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in in European areas traditionally rich of water such as the Po Valley. In dry periods, the problem of water shortage can be enhanced by conflictual use of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective on this issue is increasing due to climate change and global warming scenarios which come out from the last IPCC Report. The increased frequency of dry periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system Pre.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction at long range (30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin. The studied area covers 74,000 ha in the middle of the Po Valley, near the city of Lodi. The hydrological ensemble forecasts are based on 20 meteorological members of the non-hydrostatic WRF model with 30 days as lead-time, provided by Epson Meteo Centre, while the hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The hydrological model was validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station. Reliability of the forecasting system and its benefits was assessed on some cases-study occurred in the recent years.

  14. Design and Installation of Irrigation System for the Expansion of Sugar cane- Industries in Ahvaz, IRAN.

    Science.gov (United States)

    Afshari, E.; Afshari, S.

    2005-12-01

    This paper presents achievements of a twelve years ongoing project expansion of sugar cane- industries as a major agricultural development in Ahvaz, IRAN. The entire project is divided in to seven units and each unit provides irrigation water for 30,000 acres of sugar cane farms in Ahwaz. Absou Inc. is one of the consulting firms that is in charge of design and overseeing installation of irrigation system as well as the development of lands for sugar-cane cultivation at one of the units, called Farabi unit .In general, the mission of project is to Pump fresh water from Karoon River and direct it to the sugar cane farm for irrigation. In particular, the task of design and installation include, (1) build a pumping station at Karoon River with capacity of 1271 ft3/sec, (2) transfer water by main channel from Karoon rive to the farm site 19 miles (3) install a secondary pumping stations which direct water from main channel to drainage pipes and provides water for local farms (4) build a secondary channels which carries water with pipe lines with total length of 42 miles and diameter of 16 to 32 inch. (5) install drainage pump stations and collectors (6) level the ground surface and prepare it for irrigation (7) build railroad for carrying sugar canes (23 miles). Thus far, more than 15,000 acres of farm in Farabi unit is under sugar cane cultivation. The presentation will illustrate more details about different aspects of the project including design, installation and construction phases.

  15. Closed chamber globe stabilization and needle capsulorhexis using irrigation hand piece of bimanual irrigation and aspiration system

    Directory of Open Access Journals (Sweden)

    Rai Harminder K

    2005-08-01

    Full Text Available Abstract Background The prerequisites for a good capsulorhexis include a deep, well maintained anterior chamber, globe stabilization and globe manipulation. This helps to achieve a capsulorhexis of optimal size, shape and obtain the best possible position for a red glow under retroillumination. We report the use of irrigation handpiece of bimanual irrigation aspiration system to stabilize the globe, maintain a deep anterior chamber and manipulate the globe to a position of optimal red reflex during needle capsulorhexis in phacoemulsification. Methods Two side ports are made with 20 G MVR 'V' lance knife (Alcon, USA. The irrigation handpiece with irrigation on is introduced into the anterior chamber through one side port and the 26-G cystitome (made from 26-G needle is introduced through the other. The capsolurhexis is completed with the needle. Results Needle capsulorhexis with this technique was used in 30 cases of uncomplicated immature senile cataracts. 10 cases were done under peribulbar anaesthesia and 20 under topical anaesthesia. A complete capsulorhexis was achieved in all cases. Conclusion The irrigating handpiece maintains deep anterior chamber, stabilizes the globe, facilitates pupillary dilatation, and helps in maintaining the eye in the position with optimal red reflex during needle capsulorhexis. This technique is a safe and effective way to perform needle capsulorhexis.

  16. FEATURES OF MINERAL NUTRITION FOR TOMATO PLANTS WITH DRIP IRRIGATION SYSTEM IN OPEN FIELD CONDITION

    Directory of Open Access Journals (Sweden)

    P. M. Akhmetova

    2017-01-01

    Full Text Available Dagestan is the largest region with irrigation system of agriculture in Russia. Irrigated lands provide 70% of total plant production. The field cultivation is carried on arable land in plain region of the republic. The drip irrigation as an ecologically safe technology for watering is regarded as major means for vegetable production farming. This approach maintains the propitious level of water and air in the soil without surface and deep drainage of irrigating water. These irrigated lands are expected to be used first of all for valuable and profitable crops such as tomato that is a leading crop in Dagestan. The experimental work was carried out at OOO ‘Dagagrocomplex’, Aleksandro-Nevskoye, in Tarumovskiy region. The aim of the study was to determinate the optimal dose of mineral fertilizers and the way of their application to improve the productivity without quality loss. The complex analysis of the technology for tomato production under drip irrigation through nontransplanting culture showed its high efficiency, because volume and quality of yield directly depended on soil moisture and precise supporting of mineral nutrition rates. The maximal yield of tomato fruits, 88.7-94.5 t/ha was observed with once mineral fertilizer application at a dose of N180P135K60 with soil humidity 70-80% (field moisture capacity, and also at the dose of N180P135K60 with basic application of N100 in nutrition rate. The result of the study showed that the optimization of two factors, namely soil water rate and mineral nutrition, enabled to produce additionally 39.2 t/ha. It was shown the tight connection between yielding and its quality; when yielding 95 t/ha, the increased contents of dry matter to 7.01%, sugar to 3.8% vitamin C to 18.46% were noticed. The high quality of produced output was supported by pre-watering threshold of moisture at 75-80% (field moisture capacity, when once fertilizer application at a dose of N180P135K60. 

  17. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  18. An analysis of solar energy and irrigation systems in Turkey

    International Nuclear Information System (INIS)

    Senol, Ramazan

    2012-01-01

    Pumping water is considered a common need all around the world. Standalone PV technologies are being increasingly used for midsize pumping applications. PV powered pumping systems offer simplicity, reliability, and low maintenance for irrigation systems. PV powered pump is particularly appropriate for water supply in remote areas where no electricity grid is available. In this paper, the technical and economical feasibility of photovoltaic pumping of water in Turkey has been studied. Here, the study has focused on small and medium-size mobile applications using energy and water-conserving forms of drip irrigation to apple orchard on up to 0.5 ha of land in Eğirdir District. Life cycle cost (LCC) method has been applied to determine the economic life of the PV modules, and the diesel pumping in Turkey taken as 25 years. - Highlights: ► In this paper, a water pumping system with mobile PV power station examined. ► The technical and economical feasibility of photovoltaic pumping in Turkey was studied. ► Here the study focused on small and medium-size mobile applications. ► LCC method applied to determine the economic life of the PV modules, and the diesel pumping in Turkey.

  19. Viewpoint – The Right Irrigation? Policy Directions for Agricultural Water Management in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Bruce Lankford

    2009-10-01

    Full Text Available In July 2009, in the closing moments of the G8 meeting in Italy, President Obama responded to a question from the floor regarding investments in Africa to tackle food security and poverty. His answer (quoted below included the phrase "the right irrigation". This opinion piece reflects on the phrase, places it within a policy debate and suggests that the development community can respond to Obama’s call for the 'right irrigation' in sub‐ Saharan Africa by taking a comprehensive approach that utilises a mixture of technologies, builds on local capabilities, brings sound engineering know‐how, is supported by a range of other services, and acknowledges other water needs within catchments. Cost‐effectiveness and community ownership will be important.

  20. Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers.

    Science.gov (United States)

    Arco-Lázaro, Elena; Pardo, Tania; Clemente, Rafael; Bernal, Ma Pilar

    2018-03-01

    The use of As-rich water for irrigation in agricultural soils may result in As accumulation in soil and crops, with the consequent risk of its entry into the food chain. The effectiveness of three different Fe-based materials (a commercial iron oxide (Bayoxide ® ), lamination slag (a by-product of the hot rolling of steel) and a commercial red mud derivative (ViroBind™)) used as soil amendments to minimise the impact of irrigation with As-rich water in an agricultural soil-plant system was evaluated in a pot experiment. Simultaneously, the influence of organic and inorganic fertilisation (olive oil mill waste compost versus NPK fertiliser) on the effectiveness of iron oxide in As adsorption processes was also assessed. The As adsorption capacity of the amendments was determined in a preliminary batch experiment using sorption isotherms. Then, a pot experiment was carried out in a growth chamber using an agricultural soil (arenosol) from Segovia province (central Spain), amended with the different materials, in which Lactuca sativa (lettuce) was grown for two months. The As adsorption capacity was higher in the commercial iron oxide and in the red mud derivative, which fitted the Freundlich model (no saturation), than in the lamination slag, which fitted the Langmuir model (limited adsorption). All the materials decreased the pore water As concentration compared to the control (by 29-80%), but only iron oxide reduced As availability in the soil, and none of the amendments decreased the As concentration in plant leaves. The combination of iron oxide and compost did not significantly improve plant growth, but increased nutrients (N, K, Ca, Na and Mg) concentrations and availability in the soil and their concentration in the plants, relative to the other treatments and the control. Therefore, this seems to be a viable option to prevent As leaching and improve the plant nutritional status. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Efficiency optimization of a photovoltaic water pumping system for irrigation in Ouargla, Algeria

    Science.gov (United States)

    Louazene, M. L.; Garcia, M. C. Alonso; Korichi, D.

    2017-02-01

    This work is technical study to contribute to the optimization of pumping systems powered by solar energy (clean) and used in the field of agriculture. To achieve our goals, we studied the techniques that must be entered on a photovoltaic system for maximum energy from solar panels. Our scientific contribution in this research is the realization of an efficient photovoltaic pumping system for irrigation needs. To achieve this and extract maximum power from the PV generator, two axes have been optimized: 1. Increase in the uptake of solar radiation by choice an optimum tilt angle of the solar panels, and 2. it is necessary to add an adaptation device, MPPT controller with a DC-DC converter, between the source and the load.

  2. Obstruction and uniformity in drip irrigation systems by applying treated wastewater

    Directory of Open Access Journals (Sweden)

    Patrícia Ferreira da Silva

    Full Text Available ABSTRACT The use of wastewater in agriculture is an alternative to control surface water pollution, and helps to promote the rational use of water. Therefore, the objective of this study was to evaluate the obstruction and uniformity of application of treated wastewater in drip irrigation systems. The study was conducted in a greenhouse at the Universidade Federal de Campina Grande. The treatments were composed by the factorial combination of two factors: three types of water (supply water-ABAST, effluent of a constructed wetland system -WETLAND and upflow of anaerobic reactor effluent followed by constructed wetland system -UASB + WETLAND, and two drip irrigation systems (surface and subsurface, set in a completely randomized design, with four replications. The results indicated that the pH, suspended solids, total iron and coliforms of the WETLAND and UASB + WETLAND treatments represented a severe risk of clogging of drippers; the flow of the emitters increased as the service pressure was increased; values of CUC and CUD in surface and subsurface drip were classified as excellent in ABAST and WETLAND treatments. The degree of clogging reduced as pressure under surface and subsurface drip was increased.

  3. The Impact of Regular and Periodic Irrigation on the Fertility and Productivity of an Ordinary Chernozem of the Azov Irrigation System

    Science.gov (United States)

    Shchedrin, V. N.

    2016-02-01

    The effect of regular and periodic irrigation on the fertility and productivity of an ordinary chernozem cultivated under different conditions within the same cereal-fodder crop rotation is discussed. The investigation object is located in the area of the Azov irrigation system on the second terrace of the Don River in Rostov oblast. Irrigation water for the system is taken from the Veselovsk water reservoir. Its salinity is 1.7-2.1 g/dm3, and the salt composition is sulfate-sodium. The field experiments were performed in 2006-2013 on three experimental plots. Two of them were regularly irrigated; the third plot was periodically irrigated with alternation of 2-year-long periods with and without irrigation. Our study proved that periodic irrigation could be applied in the chernozemic zone. This new irrigation mode contributes to the preservation of the natural soil-forming process and stops the development of unfavorable processes typical of the lands irrigated with water of inadequate quality. In eight years of cultivation of the ordinary chernozem with periodic irrigation, the soil humus content increased by 10% (from 3.80 to 4.15%), and the yield reached 66.0 t/ha of fodder units. This was 9% higher than the yield obtained upon regular irrigation without agroameliorative measures and 12% lower than the yield upon regular irrigation in combination with soil-protective measures. Our data suggest that periodic irrigation is promising for the chernozemic zone, because it ensures lower water loads and preservation of the irrigated chernozems.

  4. A review of sustainable solar irrigation systems for Sub-Saharan Africa

    OpenAIRE

    Mohammed Wazed, S.; Hughes, B.R.; O’Connor, D.; Kaiser Calautit, J.

    2018-01-01

    This investigation focused on the research undertaken on solar photovoltaic (PV) and solar thermal technologies for pumping water generally for irrigation of remote rural farms specifically considering the Sub-Saharan African region. Solar PV systems have been researched extensively for irrigation purposes due to the rise in Oil prices and the upscaling in commercialisation of PV technology. Based on the literature the most effective PV system is presented for the irrigation of a small scare ...

  5. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  6. Crop and Irrigation Management Systems under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Pedro García-Caparrós

    2018-01-01

    Full Text Available Plants of Ruscus aculeatus, known as “butcher’s broom”, Maytenus senegalensis, known as “confetti tree”, and Juncus acutus, known as “spiny rush” were grown in pots with a mixture of sphagnum peat-moss and Perlite in order to determine the effect and evolution over time of three water use systems on plant growth, water saving and nutrient uptake. These were an open system (irrigated with standard nutrient solution and two closed systems (blended-water (drainage water blended with water of low electrical conductivity (EC and sequential reuse of drainage (sequential-reuse water, over a period of 8 weeks. Irrigation with blended- and sequential-reuse-water increased the biomass of all three species at the end of the experiment, compared to the open system. Overall, sequential-reuse-water treatment maximised biomass production. The application of blended- and sequential-reuse-water allowed savings of 17% of water in comparison to the open system. Regarding Cl, NO3− and H2PO4− loads, there was a removal of 5%, 32% and 32%; respectively in the blended-water treatment and 15%, 17% and 17% in the sequential-reuse water treatment compared to the open system. For the cation loads (Na+, K+, Ca2+ and Mg2+ in these water treatments there was a removal of 10%, 32%, 7% and 18% respectively in the blended-water treatment, and 17%, 22%, 17% and 18% respectively in the sequential-reuse treatment, compared to the open system.

  7. EXPERT SYSTEMS - DEVELOPMENT OF AGRICULTURAL INSURANCE TOOL

    Directory of Open Access Journals (Sweden)

    NAN Anca-Petruţa

    2013-07-01

    Full Text Available Because of the fact that specialty agricultural assistance is not always available when the farmers need it, we identified expert systems as a strong instrument with an extended potential in agriculture. This started to grow in scale recently, including all socially-economic activity fields, having the role of collecting data regarding different aspects from human experts with the purpose of assisting the user in the necessary steps for solving problems, at the performance level of the expert, making his acquired knowledge and experience available. We opted for a general presentation of the expert systems as well as their necessity, because, the solution to develop the agricultural system can come from artificial intelligence by implementing the expert systems in the field of agricultural insurance, promoting existing insurance products, farmers finding options in depending on their necessities and possibilities. The objective of this article consists of collecting data about different aspects about specific areas of interest of agricultural insurance, preparing the database, a conceptual presentation of a pilot version which will become constantly richer depending on the answers received from agricultural producers, with the clearest exposure of knowledgebase possible. We can justify picking this theme with the fact that even while agricultural insurance plays a very important role in agricultural development, the registered result got from them are modest, reason why solutions need to be found in the scope of developing the agricultural sector. The importance of this consists in the proposal of an immediate viable solution to correspond with the current necessities of agricultural producers and in the proposal of an innovative solution, namely the implementation of expert system in agricultural insurance as a way of promoting insurance products. Our research, even though it treats the subject at an conceptual level, it wants to undertake an

  8. Computer-Aided Design System Development of Fixed Water Distribution of Pipe Irrigation System

    OpenAIRE

    Zhou , Mingyao; Wang , Susheng; Zhang , Zhen; Chen , Lidong

    2010-01-01

    International audience; It is necessary to research a cheap and simple fixed water distribution device according to the current situation of the technology of low-pressure pipe irrigation. This article proposed a fixed water distribution device with round table based on the analysis of the hydraulic characteristics of low-pressure pipe irrigation systems. The simulation of FLUENT and GAMBIT software conducted that the flow of this structure was steady with a low head loss comparing to other t...

  9. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania.

    Science.gov (United States)

    Ijumba, J N; Mosha, F W; Lindsay, S W

    2002-03-01

    Malaria vector Anopheles and other mosquitoes (Diptera: Culicidae) were monitored for 12 months during 1994-95 in villages of Lower Moshi irrigation area (37 degrees 20' E, 3 degrees 21' S; approximately 700 m a.s.l.) south of Mount Kilimanjaro in northern Tanzania. Adult mosquito populations were sampled fortnightly by five methods: human bait collection indoors (18.00-06.00 hours) and outdoors (18.00-24.00 hours); from daytime resting-sites indoors and outdoors; by CDC light-traps over sleepers. Anopheles densities and rates of survival, anthropophily and malaria infection were compared between three villages representing different agro-ecosystems: irrigated sugarcane plantation; smallholder rice irrigation scheme, and savannah with subsistence crops. Respective study villages were Mvuleni (population 2200), Chekereni (population 3200) and Kisangasangeni (population approximately/= 1000), at least 7 km apart. Anopheles arabiensis Patton was found to be the principal malaria vector throughout the study area, with An. funestus Giles sensu lato of secondary importance in the sugarcane and savannah villages. Irrigated sugarcane cultivation resulted in water pooling, but this did not produce more vectors. Anopheles arabiensis densities averaged four-fold higher in the ricefield village, although their human blood-index was significantly less (48%) than in the sugarcane (68%) or savannah (66%) villages, despite similar proportions of humans and cows (ratio 1:1.1-1.4) as the main hosts at all sites. Parous rates, duration of the gonotrophic cycle and survival rates of An. arabiensis were similar in villages of all three agro-ecosystems. The potential risk of malaria, based on measurements of vectorial capacity of An. arabiensis and An.funestus combined, was four-fold higher in the ricefield village than in the sugarcane or savannah villages nearby. However, the more realistic estimate of malaria risk, based on entomological inoculation rates, indicated that exposure to

  10. Intervention processes and irrigation institutions : sustainability of farmer managed irrigation systems in Nepal

    NARCIS (Netherlands)

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation

  11. IDENTIFICATION OF LEAD AND CADMIUM LEVELS IN WHITE CABBAGE (Brassica rapa L., SOIL, AND IRRIGATION WATER OF URBAN AGRICULTURAL SITES IN THE PHILIPPINES

    Directory of Open Access Journals (Sweden)

    Hardiyanto Hardiyanto

    2016-10-01

    Full Text Available Urban agriculture comprises a variety of farming systems, ranging from subsistence to fully commercialized agriculture. Pollution from automobile exhaust, industrial and commercialactivities may affect humans, crops, soil, and water in and around urban agriculture areas. The research aimed to investigate the level and distribution of lead (Pb and cadmium (Cd in white cabbage (Brassica rapa L., soil, and irrigation water taken from urban sites. The research was conducted in Las Piñas and Parañaque, Metro Manila, Philippines. The field area was divided into three sections based on its distance from the main road (0, 25, and 50 m. Irrigation water was taken from canal (Las Piñas and river (Parañaque. Pb and Cd contents of the extract were measured by Atomic Absorption Spectrophotometry. Combined analysis over locations was used. The relationship between distance from the main road and metal contents was measured by Pearson’s correlation. Based on combined analyses, highly significant difference over locations was only showed on Cd content in white cabbage. Cd content in white cabbage grown in Parañaque was higher than that cultivated in Las Piñas, while Cd content in the soil between both sites was comparable.The average Pb content (1.09 µg g-1 dry weight was highest in the white cabbage grown right beside the main road. A similar trend was also observed in the soil, with the highest concentration being recorded at 26 µg g-1 dry weight. There was a negative relationship between distance from the main road and Pb and Cd contents in white cabbage and the soil. Level of Pb in water taken from the canal and river was similar (0.12 mg l-1, whereaslevels of Cd were 0.0084 and 0.0095 mg l-1, respectively. In general, the concentrations of Pb and Cd in white cabbage and soil as well as irrigation water were still in the acceptable limits. In terms of environmental hazards and polluted city environment, it seems that

  12. Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico.

    Science.gov (United States)

    Ruíz-Huerta, Esther Aurora; de la Garza Varela, Alonso; Gómez-Bernal, Juan Miguel; Castillo, Francisco; Avalos-Borja, Miguel; SenGupta, Bhaskar; Martínez-Villegas, Nadia

    2017-10-05

    Mobility of Arsenic (As) from metallurgical wastes in Matehuala, Mexico has been accounted for ultra-high concentration of As in water (4.8-158mg/L) that is used for recreational purposes as well as cultivation of maize. In this study, we (i) measured As concentrations in soils irrigated with this water, (ii) investigated the geochemical controls of available As, and (iii) measured bioaccumulation of As in maize. Water, soil, and maize plant samples were collected from 3 different plots to determine As in environmental matrices as well as water soluble As in soils. Soil mineralogy was determined by X-ray diffraction analysis. Bioaccumulation of As in maize plants was estimated from the bioconcentration and translocation factors. We recorded As built-up in agricultural soils to the extent of 172mg/kg, and noted that this As is highly soluble in water (30% on average). Maize crops presented high bioaccumulation, up to 2.5 times of bioconcentration and 45% of translocation. Furthermore, we found that water extractable As was higher in soils rich in calcite, while it was lower in soils containing high levels of gypsum, but As bioconcentration showed opposite trend. Results from this study show that irrigation with As rich water represents a significant risk to the population consuming contaminated crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Water Authorities’ Pricing Strategies to Recover Supply Costs in the Absence of Water Metering for Irrigated Agriculture

    Directory of Open Access Journals (Sweden)

    Alban Lika

    2017-11-01

    Full Text Available Most of the irrigated agricultural regions in Europe are supplied by surface irrigation networks managed by local water authorities (WAs. Under such conditions, WAs are not able to fully monitor water usage and farmers have an information advantage vis-a-vis the WA. This results in the water authority suffering ‘pricing failure’ if it decides to apply an incentive pricing strategy (tariffs proportional to the alleged water uses. Indeed, farmers could exploit their information advantage by behaving in an opportunistic manner, withdrawing more water than declared, and ultimately paying less than they should. This situation could also undermine the efficacy and the efficiency of the WA incentive pricing strategies. This paper analyses incentive water pricing schemes under asymmetric information by the means of a Principal-Agent model. The Agency problem between the WA and farmers is addressed by introducing a monitoring strategy that would enable the WA to detect farms action. In doing so, we compare incentive strategies with flat rate water pricing and investigate under what conditions the WA might provide/not provide incentive water pricing in the absence of water metering.

  14. Impacts of agricultural irrigation on nearby freshwater ecosystems: the seasonal influence of triazine herbicides in benthic algal communities.

    Science.gov (United States)

    Lorente, Carmen; Causapé, Jesús; Glud, Ronnie N; Hancke, Kasper; Merchán, Daniel; Muñiz, Selene; Val, Jonatan; Navarro, Enrique

    2015-01-15

    A small hydrological basin (Lerma, NE Spain), transformed from its natural state (steppe) to rain-fed agriculture and recently to irrigation agriculture, has been monitored across four seasons of an agricultural year. The goal of this study was to assess how and whether agricultural activities impacted the nearby freshwater ecosystems via runoff. Specifically, we assessed the toxicity of three triazine herbicides, terbuthylazine, atrazine and simazine on the photosynthetic efficiency and structure of algal benthic biofilms (i.e., phototropic periphyton) in the small creek draining the basin. It was expected that the seasonal runoff of the herbicides in the creek affected the sensitivity of the periphyton in accord with the rationale of the Pollution Induced Community Tolerance (PICT): the exposure of the community to pollutants result in the replacement of sensitive species by more tolerant ones. In this way, PICT can serve to establish causal linkages between pollutants and the observed biological impacts. The periphyton presented significantly different sensitivities against terbuthylazine through the year in accord with the seasonal application of this herbicide in the crops nowadays. The sensitivity of already banned herbicides, atrazine and simazine does not display a clear seasonality. The different sensitivities to herbicides were in agreement with the expected exposures scenarios, according to the agricultural calendar, but not with the concentrations measured in water, which altogether indicates that the use of PICT approach may serve for long-term monitoring purposes. That will provide not only causal links between the occurrence of chemicals and their impacts on natural communities, but also information about the occurrence of chemicals that may escape from traditional sampling methods (water analysis). In addition, the EC50 and EC10 of periphyton for terbuthylazine or simazine are the first to be published and can be used for impact assessments

  15. Reconstructing the Spatio-Temporal Development of Irrigation Systems in Uzbekistan Using Landsat Time Series

    Directory of Open Access Journals (Sweden)

    Thomas Koellner

    2012-12-01

    Full Text Available The expansion of irrigated agriculture during the Soviet Union (SU era made Central Asia a leading cotton production region in the world. However, the successor states of the SU in Central Asia face on-going environmental damages and soil degradation that are endangering the sustainability of agricultural production. With Landsat MSS and TM data from 1972/73, 1977, 1987, 1998, and 2000 the expansion and densification of the irrigated cropland could be reconstructed in the Kashkadarya Province of Uzbekistan, Central Asia. Classification trees were generated by interpreting multitemporal normalized difference vegetation index data and crop phenological knowledge. Assessments based on image-derived validation samples showed good accuracy. Official statistics were found to be of limited use for analyzing the plausibility of the results, because they hardly represent the area that is cropped in the very dry study region. The cropping area increased from 134,800 ha in 1972/73 to 470,000 ha in 2009. Overlaying a historical soil map illustrated that initially sierozems were preferred for irrigated agriculture, but later the less favorable solonchaks and solonetzs were also explored, illustrating the strategy of agricultural expansion in the Aral Sea Basin. Winter wheat cultivation doubled between 1987 and 1998 to approximately 211,000 ha demonstrating its growing relevance for modern Uzbekistan. The spatial-temporal approach used enhances the understanding of natural conditions before irrigation is employed and supports decision-making for investments in irrigation infrastructure and land cultivation throughout the Landsat era.

  16. Using Remote Sensing Technology on the Delimitation of the Conservation Area for the Jianan Irrigation System Cultural Landsccape

    Science.gov (United States)

    Wang, C. H.

    2015-08-01

    In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape's spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape's character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system's conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.

  17. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    Science.gov (United States)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  18. Design and implementation of expert decision system in Yellow River Irrigation

    Science.gov (United States)

    Fuping, Wang; Bingbing, Lei; Jie, Pan

    2018-03-01

    How to make full use of water resources in the Yellow River irrigation is a problem needed to be solved urgently. On account of the different irrigation strategies in various growth stages of wheat, this paper proposes a novel irrigation expert decision system basing on fuzzy control technique. According to the control experience, expert knowledge and MATLAB simulation optimization, we obtain the irrigation fuzzy control table stored in the computer memory. The controlling irrigation is accomplished by reading the data from fuzzy control table. The experimental results show that the expert system can be used in the production of wheat to achieve timely and appropriate irrigation, and ensure that wheat growth cycle is always in the best growth environment.

  19. Effects of biochar, waste water irrigation and fertilization on soil properties in West African urban agriculture.

    Science.gov (United States)

    Häring, Volker; Manka'abusi, Delphine; Akoto-Danso, Edmund K; Werner, Steffen; Atiah, Kofi; Steiner, Christoph; Lompo, Désiré J P; Adiku, Samuel; Buerkert, Andreas; Marschner, Bernd

    2017-09-06

    In large areas of sub-Saharan Africa crop production must cope with low soil fertility. To increase soil fertility, the application of biochar (charred biomass) has been suggested. In urban areas, untreated waste water is widely used for irrigation because it is a nutrient-rich year-round water source. Uncertainty exists regarding the interactions between soil properties, biochar, waste water and fertilization over time. The aims of this study were to determine these interactions in two typical sandy, soil organic carbon (SOC) and nutrient depleted soils under urban vegetable production in Tamale (Ghana) and Ouagadougou (Burkina Faso) over two years. The addition of biochar at 2 kg m -2 made from rice husks and corn cobs initially doubled SOC stocks but SOC losses of 35% occurred thereafter. Both biochar types had no effect on soil pH, phosphorous availability and effective cation exchange capacity (CEC) but rice husk biochar retained nitrogen (N). Irrigation with domestic waste water increased soil pH and exchangeable sodium over time. Inorganic fertilization alone acidified soils, increased available phosphorous and decreased base saturation. Organic fertilization increased SOC, N and CEC. The results from both locations demonstrate that the effects of biochar and waste water were less pronounced than reported elsewhere.

  20. Balancing lake ecological condition and agriculture irrigation needs in the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Omer, A.R.; Killgore, K.J.

    2017-01-01

    The Mississippi Alluvial Valley includes hundreds of floodplain lakes that support unique fish assemblages and high biodiversity. Irrigation practices in the valley have lowered the water table, increasing the cost of pumping water, and necessitating the use of floodplain lakes as a source of water for irrigation. This development has prompted the need to regulate water withdrawals to protect aquatic resources, but it is unknown how much water can be withdrawn from lakes before ecological integrity is compromised. To estimate withdrawal limits, we examined descriptors of lake water quality (i.e., total nitrogen, total phosphorus, turbidity, Secchi visibility, chlorophyll-a) and fish assemblages (species richness, diversity, composition) relative to maximum depth in 59 floodplain lakes. Change-point regression analysis was applied to identify critical depths at which the relationships between depth and lake descriptors exhibited a rapid shift in slope, suggesting possible thresholds. All our water quality and fish assemblage descriptors showed rapid changes relative to depth near 1.2–2.0 m maximum depth. This threshold span may help inform regulatory decisions about water withdrawal limits. Alternatives to explain the triggers of the observed threshold span are considered.

  1. A major challenge for modeling conservation-based water use reductions in aquifers supporting irrigated agriculture: The specific yield quandary

    Science.gov (United States)

    Butler, J. J., Jr.; Whittemore, D. O.; Wilson, B. B.; Bohling, G.

    2017-12-01

    Many large regional aquifers supporting irrigated agriculture are experiencing high rates of water-level decline. The primary means of moderating these rates is to reduce pumping. The key question is what percent pumping reduction will significantly impact decline rates. We have recently developed a water-balance approach to address this question for subareas (100s to 1000s km2 in size) of seasonally pumped aquifers (Butler et al., GRL, 2016). This approach also provides an estimate of specific yield (Sy), which has been difficult to estimate from field data at the scale of modeling analyses. When applied to subareas of the High Plains aquifer in Kansas, this approach reveals that the Sy estimate is much lower (as much as a factor of five or more) than expected for an unconsolidated aquifer. One explanation is that the aquifer is heterogeneous with considerable amounts of fine material, whereas field data, such as drillers' logs, are often biased towards coarser intervals. An additional explanation, which appears to have received little attention, is the impact of entrapped air. In seasonally pumped systems, water levels pass through the same aquifer intervals multiple times, giving ample opportunity for air to be entrapped. This entrapped air imbues the aquifer with a specific yield that is considerably lower than what would be expected from lithology. If unrecognized, a larger-than-actual Sy value is input into the aquifer model. This can lead to the inadvertent use of the same-year recharge assumption, which may not be appropriate for many conditions (e.g., large depths to water), and can also result in artificially low estimates of net inflow for a depleting aquifer. Moreover, failure to recognize this condition can bedevil efforts to model conservation-based water use reductions. In that case, models will leave the range of conditions for which they have been calibrated and can become more vulnerable to parameter errors. Conservation-based water use reductions

  2. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    Science.gov (United States)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in

  3. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  4. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    Science.gov (United States)

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  5. Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios

    International Nuclear Information System (INIS)

    Martin-Gorriz, B.; Soto-García, M.; Martínez-Alvarez, V.

    2014-01-01

    Global warming is leading to a water resources decrease in the Mediterranean basin, where future farming resilience depends on incorporating alternative water sources and improving water-energy use efficiency. This paper assesses water and energy consumption when natural water sources are partially replaced by desalinated sea water. Initially, energy consumption, water supply and GHG (greenhouse gas) emissions were recorded for the current farming practices in SE (southeast) Spain. The results of our study indicate that citrus orchards have the lowest energy consumption and GHG emissions. Annual vegetables were the least energy efficient crops. Subsequently, two alternative water supply scenarios were analysed, in which the reduction of natural water resources associated to climate change was compensated with desalinated sea water. The use of 16.8% of desalinated seawater would increase energy consumption by 32.4% and GHG emissions by 19.6%, whereas for the use of 26.5% of desalinated seawater such increases would amount to 50.0% and 30.3%, respectively. Therefore maintaining irrigated agriculture in water-stressed regions by incorporating high energy demanding non-traditional water sources could negatively contribute to combat global warming. - Highlights: • Water supply, energy consumption and GHG (greenhouse gas) emissions in irrigated agriculture are very connected. • The use of desalinated sea water will increase the energy consumption, and GHG emissions will rise. • The use of non-traditional water resources enhances global warming processes. • Citrus orchards are the less sensitive crop to alternative water supplied scenarios. • Artichoke is the most sensitive crop to alternative water supplied scenarios

  6. Nanoagroparticles emerging trends and future prospect in modern agriculture system.

    Science.gov (United States)

    Baker, Syed; Volova, Tatiana; Prudnikova, Svetlana V; Satish, S; Prasad M N, Nagendra

    2017-07-01

    Increment of technical knowledge has remarkably uplifted logical thinking among scientific communities to shape the theoretical concepts into near product-oriented research. The concept of nanotechnology has overwhelmed almost all forms of lives and has traded its applications in myriad fields. Despite rapid expansion of nanotechnology, sustainable competitions still do exist in the field of agriculture. In current scenario, agriculture is a manifestation demand to provide adequate nutrition for relentless growing global population. It is estimated that nearly one-third of the global crop production is destroyed annually. The loss owes to various stresses such as pest infestation, microbial pathogens, weeds, natural calamities, lack of soil fertility and much more. In order to overcome these limitations, various technological strategies are implemented but a majority of these have their own repercussions. Hence there is a scrawling progress on the evaluation of nanoparticles into agriculture sector which can reform the modern agricultural system. Applications of these nanomaterials can add tremendous value in the current scenario of a global food scarcity. Nanotechnology can address the adverse effects posed by the abundant use of chemical agrochemicals which are reported to cause biomagnification in an ecosystem. Based on these facts and consideration, present review envisages on nanoparticles as nanoherbicides, nanopesticides, onsite detection agro-pathogens and nanoparticles in post harvest management. The review also elucidates on the importance of nanoparticles in soil fertility, irrigation management and its influence on improving crop yield. With scanty reports available on nanotechnology in agriculture system, present review attributes toward developing nanoagroparticles as the future prospect which can give new facelift for existing agriculture system. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.

    Science.gov (United States)

    Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun

    2013-09-01

    To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of fog and rain water collected at Delta Barrage, Egypt as a new resource for irrigated agriculture

    Science.gov (United States)

    Salem, Talaat A.; Omar, Mohie El Din M.; El Gammal, H. A. A.

    2017-11-01

    Alternative clean water resources are needed in Egypt to face the current water shortage and water quality deterioration. Therefore, this research investigates the suitability of harvesting fog and rain water for irrigation using a pilot fog collector for water quantity, water quality, and economic aspects. A pilot fog collector was installed at one location at Delta Barrage, Egypt. Freeze liquid nitrogen was fixed at the back of the fiberglass sheet to increase the condensation rate. The experiment was conducted during the period from November 2015 to February 2016. In general, all physicochemical variables are observed with higher values in the majority of fog than rain water. The fog is assumed to contain higher concentrations of anthropogenic emissions. TDS in both waters collected are less than 700 mg/l at sodium content less than 60%, classifying these waters as good for various plants under most conditions. In addition, SAR calculated values are less than 3.0 in each of fog and rain water, which proves the water suitability for all irrigated agriculture. Al and Fe concentrations were found common in all samples with values less than the permissible limits of the guidelines. These metals originate from soil material, ash and metal surfaces. The sensitive heavy metals (Cd and Pb) were within the permissible limits of the guideline in fog water, indicating this water is suitable for irrigation. On the contrary, rain water that has heavy metals is not permitted in irrigation water as per the Egyptian law. As per WQI, the rain water is classified as good quality while fog is classified as medium quality. Regarding the water quantity, a significant increase in the harvested fog quantity was observed after cooling the collector surface with freeze liquid nitrogen. The current fog collector produced the lowest water quantity among different fog collectors worldwide. However, these comparative results confirmed that quantity is different from one location to another

  9. Brief history of agricultural systems modeling.

    Science.gov (United States)

    Jones, James W; Antle, John M; Basso, Bruno; Boote, Kenneth J; Conant, Richard T; Foster, Ian; Godfray, H Charles J; Herrero, Mario; Howitt, Richard E; Janssen, Sander; Keating, Brian A; Munoz-Carpena, Rafael; Porter, Cheryl H; Rosenzweig, Cynthia; Wheeler, Tim R

    2017-07-01

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be

  10. Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa

    OpenAIRE

    Nelson Mango; Clifton Makate; Lulseged Tamene; Powell Mponela; Gift Ndengu

    2018-01-01

    This article is concerned with the adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on household income in the Chinyanja Triangle. Chinyanja Triangle is a region that is increasingly experiencing mid-season dry spells and an increase in occurrence of drought, which is attributed largely to climate variability and change. This poses high agricultural production risks, which aggravate poverty and food insecurity. For this region, adoption of s...

  11. Gated or ungated : water control in government-built irrigation systems : comparative research in Nepal

    NARCIS (Netherlands)

    Pradhan, T.M.S.

    1996-01-01


    The control, allocation and distribution, of water is the core process of an irrigation system. It is the process by which the available water is divided and distributed to the smaller irrigation units within the system, which in turn is distributed further down to the individual water

  12. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  13. Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates

    Science.gov (United States)

    Wey, Hao-Wei; Lo, Min-Hui; Lee, Shih-Yu; Yu, Jin-Yi; Hsu, Huang-Hsiung

    2015-10-01

    Anthropogenic water management can change surface energy budgets and the water cycle. In this study, we focused on impacts of Asian low-latitude irrigation on regional and global climates during boreal wintertime. A state-of-the-art Earth system model is used to simulate the land-air interaction processes affected by irrigation and the consequent responses in atmospheric circulation. Perturbed experiments show that wet soil moisture anomalies at low latitudes can reduce the surface temperature on a continental scale through atmospheric feedback. The intensity of prevailing monsoon circulation becomes stronger because of larger land-sea thermal contrast. Furthermore, anomalous upper level convergence over South Asia and midlatitude climatic changes indicate tropical-extratropical teleconnections. The wintertime Aleutian low is deepened and an anomalous warm surface temperature is found in North America. Previous studies have noted this warming but left it unexplained, and we provide plausible mechanisms for these remote impacts coming from the irrigation over Asian low-latitude regions.

  14. Using Remote Sensing Technology on the Delimitation of the Conservation Area for the Jianan Irrigation System Cultural Landsccape

    Directory of Open Access Journals (Sweden)

    C. H. Wang

    2015-08-01

    Full Text Available In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape’s spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape’s character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system’s conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.

  15. Sustainable Urban Agriculture in Ghana: What Governance System Works?

    Directory of Open Access Journals (Sweden)

    Eileen Bogweh Nchanji

    2017-11-01

    Full Text Available Urban farming takes advantage of its proximity to market, transport and other urban infrastructure to provide food for the city and sustain the livelihoods of urban and peri-urban dwellers. It is an agricultural activity which employs more than 50% of the local urban population with positive and negative impacts on local and national development. Urban agriculture is an informal activity not supported by law but in practice is regulated to a certain extent by state institutions, traditional rulers, farmers and national and international non-governmental organisations. Tamale’s rapid population growth, exacerbated by the unplanned development system and institutional conflicts, are factors contributing to the present bottlenecks in the urban agricultural system. In this paper, these bottlenecks are conceptualised as problems of governance. These issues will be illustrated using ethnographic data from land sales, crop-livestock competition, waste-water irrigation, and markets. I will explain how conflicts which arise from these different situations are resolved through the interactions of various governance systems. Informal governance arrangements are widespread, but neither they nor formal systems are always successful in resolving governance issues. A participatory governance does not seem possible due to actors’ divergent interests. A governance solution for this sector is not yet apparent, contributing to food and nutritional insecurity.

  16. Circles of live buffer strips in a center pivot to improve multiple ecosystem services and sustainability of irrigated agriculture in the southern great plains

    Science.gov (United States)

    Declining Ogallala Aquifer has threatened sustainability of highly productive irrigated agriculture in the region. The region, known for the dust bowl of thirties, is scared of its return. Lower well outputs and increasing pumping costs have compelled farmers to adapt alternative conservation strate...

  17. Technical Evaluation of Sprinkler Irrigation Systems which were Implemented in Tea Fields of the Guilan Province

    Directory of Open Access Journals (Sweden)

    kourosh majdsalimi

    2016-02-01

    Full Text Available Introduction: Designing and management of sprinkler irrigation systems depend on the situation and location of its implementation and often rely on professional and long-term tests (9. Having a good irrigation system depends on knowledge of the relationship between soil, water, plants, irrigation scheduling, the required amount of irrigation water to the water-holding capacity of soil, climate and plant growth (6.The less use of sprinkler irrigation systems and less performed research projects in the Guilan province, lack of correct design parameters due to shortage of the required parameters for local and regional planning, has led to reliance on charts and tables. Therefore, planning water resources cannot be performed well and with accurate details. According to many researchers (8, the technical evaluation should be a regular and short-term process to review the problems and possible performance of irrigation systems. Merriam and Keller (10 defined the assessment of an irrigation system analysis, based on field measurements in real terms during the normal work of the system. Therefore, to develop these systems over the next few years, it is essential to evaluate the use of irrigation systems and review the performance of existing problems and utilizing the results to improve it. The aim of this study was to assess the current status of implemented irrigation systems in the tea plantations of Guilan and evaluate their performance. Materials and Methods: In this study, six classic sprinkler irrigation systems in tea fields of Guilan province were evaluated during two years. Sprinkler irrigation systems of semi-portable, solid-set and solid-set (hand-move sprinkler were selected randomly. To evaluate this irrigation systems, Christiansen’s uniformity coefficient (CU, distribution uniformity (DU, potential application efficiency of low-quarter (PELQ and application efficiency of low-quarter (AELQ in the form of trial blocks were estimated by

  18. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  19. Environmental marketing within organic agriculture system management

    OpenAIRE

    O. Shkuratov; V. Kyporenko

    2015-01-01

    This paper deals with economic content of environmental marketing in the management system organic agriculture that allows operators of organic market to effectively plan the production of organic agricultural products and ensure the optimal balance between social and economic indicators throughout the life cycle of the product. Structural-logical scheme on the formation of environmentally oriented motivation of organic agricultural products consumer behavior has been grounded.

  20. Mapping Daily Evapotranspiration based on Spatiotemporal Fusion of ASTER and MODIS Images over Irrigated Agricultural Areas in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Huang, C.; LI, Y.

    2017-12-01

    Continuous monitoring of daily evapotranspiration (ET) is crucial for allocating and managing water resources in irrigated agricultural areas in arid regions. In this study, continuous daily ET at a 90-m spatial resolution was estimated using the Surface Energy Balance System (SEBS) by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) images with high temporal resolution and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) images with high spatial resolution. The spatiotemporal characteristics of these sensors were obtained using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The performance of this approach was validated over a heterogeneous oasis-desert region covered by cropland, residential, woodland, water, Gobi desert, sandy desert, desert steppe, and wetland areas using in situ observations from automatic meteorological systems (AMS) and eddy covariance (EC) systems in the middle reaches of the Heihe River Basin in Northwest China. The error introduced during the data fusion process based on STARFM is within an acceptable range for predicted LST at a 90-m spatial resolution. The surface energy fluxes estimated using SEBS based on predicted remotely sensed data that combined the spatiotemporal characteristics of MODIS and ASTER agree well with the surface energy fluxes observed using EC systems for all land cover types, especially for vegetated area with MAP values range from 9% to 15%, which are less than the uncertainty (18%) of the observed in this study area. Time series of daily ET modelled from SEBS were compared to that modelled from PT-JPL (one of Satellite-based Priestley-Taylor ET model) and observations from EC systems. SEBS performed generally better than PT-JPL for vegetated area, especially irrigated cropland with bias, RMSE, and MAP values of 0.29 mm/d, 0.75 mm/d, 13% at maize site, -0.33 mm/d, 0.81 mm/d, and 14% at vegetable sites.

  1. Constraints and potentials of future irrigation water availability on agricultural production under climate change

    NARCIS (Netherlands)

    Elliott, J.; Deryng, D.; Muller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Florke, M.F.; Wada, Y.; Ludwig, F.

    2014-01-01

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement

  2. Economic Feasibility of Irrigated Agricultural Land Use Buffers to Reduce Groundwater Nitrate in Rural Drinking Water Sources

    Directory of Open Access Journals (Sweden)

    Megan M. Mayzelle

    2014-12-01

    Full Text Available Agricultural irrigation leachate is often the largest source for aquifer recharge in semi-arid groundwater basins, but contamination from fertilizers and other agro-chemicals may degrade the quality of groundwater. Affected communities are frequently economically disadvantaged, and water supply alternatives may be too costly. This study aimed to demonstrate that, when addressing these issues, environmental sustainability and market profitability are not incompatible. We investigated the viability of two low impact crops, alfalfa and vineyards, and new recharge basins as an alternative land use in recharge buffer zones around affected communities using an integrated hydrologic, socio-geographic, and economic analysis. In the southern Central Valley, California, study area, alfalfa and vineyards currently constitute 30% of all buffer zone cropland. Economic analyses of alternative land use scenarios indicate a wide range of revenue outcomes. Sector output gains and potential cost saving through land use conversion and resulting flood control result in gains of at least $2.3 billion, as compared to costs of $0.3 to $0.7 billion for treatment options over a 20 year period. Buffer zones would maintain the economic integrity of the region and concur with prevailing policy options. Thus, managed agricultural recharge buffer zones are a potentially attractive option for communities facing financial constraint and needing to diversify their portfolio of policy and infrastructure approaches to meet drinking water quality objectives.

  3. Evaluation of Fluent Software for Simulation and Costruction of a Variable Rate Sprinkler for an Autonomous Irrigation System

    Directory of Open Access Journals (Sweden)

    H Roshan

    2014-09-01

    Full Text Available Water scarcity is today’s world biggest challenge which requires different countries to manage their water resources in the most efficient way. Sprinkler irrigation increases water consumption efficiency due to more uniform distribution of water across the field. Precision farming is based on the site-specific use of inputs according to soil characteristics and plant needs. One of the main inputs for agricultural production is water. Thus, efficient use of water resources based on variable rate irrigation is considered to be a basic approach of precision irrigation. The main purpose of this study was to simulate and fabricate a variable flow sprinkler, applicable in solid set sprinkler irrigation system. The preliminary drawing of the proposed sprinkler, which equipped with a flow and pressure control plunger, was simulated using Fluent software. The actual sprinkler was then fabricated and evaluated in a field. The performance of the sprinkler was evaluated at three pressure levels, three plunger positions (at the points of the least and biggest sprinkler’s cross section for water passage and three diameters of outlet nozzle opening. Results showed that the plunger had the capability of varying outlet flow and pressure in the sprinkler and trends in flow and pressure variation as affected by the plunger position was very complicated. The Fluent model for conditions with fully open of the plunger and half opened was effectively efficient. However, as the plunger closed the water passage more than the half of cross section, the model did not show an acceptable efficiency.

  4. Understanding water delivery performance in a large-scale irrigation system in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2005-01-01

    During a two-year field study the performance of the water delivery was evaluated in a large-scale irrigation system on the north coast of Peru. Flow measurements were carried out along the main canals, along two secondary canals, and in two tertiary blocks in the Chancay-Lambayeque irrigation

  5. Nitrogen management impacts nitrous oxide emissions under varying cotton irrigation systems in the American Desert Southwest

    Science.gov (United States)

    Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...

  6. Bricolage as innovation: opening the black box of drip irrigation systems

    NARCIS (Netherlands)

    Benouniche, M.; Zwarteveen, M.; Kuper, M.

    2014-01-01

    In Morocco, many farmers enthusiastically use drip irrigation. However, few drip irrigation systems conform to engineering standards. In a process they refer to as bricolage, farmers modify and adapt standard designs, thus creating their own technical standards. We document three instances of

  7. Bricolage as innovation: opening the black box of Drip Irrigation Systems

    NARCIS (Netherlands)

    Benouniche, M.; Zwarteveen, M.Z.; Kuper, M.

    2014-01-01

    In Morocco, many farmers enthusiastically use drip irrigation. However, few drip irrigation systems conform to engineering standards. In a process they refer to as bricolage, farmers modify and adapt standard designs, thus creating their own technical standards. We document three instances of

  8. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    Science.gov (United States)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  9. Biogeosystem technique as a method to overcome the Biological and Environmental Hazards of modern Agricultural, Irrigational and Technological Activities

    Science.gov (United States)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Zinchenko, Vladimir; Zarmaev, Ali; Magomadov, Ali; Chernenko, Vladimir; Startsev, Viktor; Bakoev, Serojdin; Dikaev, Zaurbek

    2014-05-01

    Modern challenge for humanity is to replace the paradigm of nature use and overcome environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere. It is utterly reasonable to stop dividing biosphere on shares - the human habitat and the environment. In the 21st century it is an outdated anthropocentrism. Contradicting himself to biosphere Humankind has the problems. The new paradigm of biosphere control by methods of Biogeosystem technique is on agenda of Humankind. Key directions of Biogeosystem technique. Tillage. Single rotary milling 20…30-50…60 sm soil layer optimizes the evolution and environment of soil, creates a favorable conditions for the rhizosphere, increases the biological productivity of biosphere by 30-50% compared to the standard agricultural practices for the period up to 40 years. Recycle material. Recycling of mineral and organic substances in soil layer of 20…30-50…60 sm in rotary milling soil processing provides wastes clean return to biosphere. Direct intrasoil substances synthesis. Environmentally friendly robot wasteless nanotechnology provides direct substances synthesis, including fertilizers, inside the soil. It eliminates the prerequisites of the wastes formation under standard industrial technologies. Selective substance's extraction from soil. Electrochemical robotic nanotechnology provides selective substances extraction from soil. The technology provides recovery, collection and subsequent safe industrial use of extracted substances out of landscape. Saving fresh water. An important task is to save fresh water in biosphere. Irrigation spends water 4-5 times more of biological requirements of plants, leads to degradation of soil and landscape. The intrasoil pulse continuous-discrete paradigm of irrigation is proposed. It provides the soil and landscape conservation, increases the biological productivity, save the fresh water up to 10-20 times. The subsurface soil rotary processing and

  10. Simulating Water Allocation and Cropping Decisions in Yemen’s Abyan Delta Spate Irrigation System

    Directory of Open Access Journals (Sweden)

    Derek Jin-Uk Marchant

    2018-01-01

    Full Text Available Agriculture employs more Yemenis than any other sector and spate irrigation is the largest source of irrigation water. Spate irrigation however is growing increasingly difficult to sustain in many areas due to water scarcity and unclear sharing of water amongst users. In some areas of Yemen, there are no institutionalised water allocation rules which can lead to water related disputes. Here, we propose a proof-of-concept model to evaluate the impacts of different water allocation patterns to assist in devising allocation rules. The integrated model links simple wadi flow, diversion, and soil moisture-yield simulators to a crop decision model to evaluate impacts of different water allocation rules and their possible implications on local agriculture using preliminary literature data. The crop choice model is an agricultural production model of irrigation command areas where the timing, irrigated area and crop mix is decided each month based on current conditions and expected allocations. The model is applied to Yemen’s Abyan Delta, which has the potential to be the most agriculturally productive region in the country. The water allocation scenarios analysed include upstream priority, downstream priority, equal priority (equal sharing of water shortages, and a user-defined mixed priority that gives precedence to different locations based on the season. Once water is distributed according to one of these allocation patterns, the model determines the profit-maximising plant date and crop selection for 18 irrigated command areas. This aims to estimate the impacts different water allocation strategies could have on livelihoods. Initial results show an equal priority allocation is the most equitable and efficient, with 8% more net benefits than an upstream scenario, 10% more net benefits than a downstream scenario, and 25% more net benefits than a mixed priority.

  11. Agro-ecology and irrigation technology : comparative research on farmer-managed irrigation systems in the Mid-hills of Nepal

    NARCIS (Netherlands)

    Parajuli, U.N.

    1999-01-01

    Design and management of irrigation infrastructure in farmer managed irrigation systems (FMISs) are strongly influenced by social and agro-ecological conditions of an area. This thesis analyzes the elements of social and agro-ecological conditions in FMISs in the mid-hills of Nepal and

  12. Valuing Groundwater Services and Water Portfolio in Irrigated Agriculture with a Hedonic Pricing Model

    OpenAIRE

    Mukherjee, Monobina

    2013-01-01

    Water plays a vital role in the processes and functioning of the Earth's ecosystems. Only one percent of the earth's fresh water resources are available for human activity. The gap between water supply and demand is increasing due to population growth, development pressure and climate change. Poor water quality aggravates this imbalance even more. A serious concern that naturally arises is how will agriculture, which consumes 70% of world's freshwater withdrawals, respond to these issues. Thi...

  13. Increased water charges improve efficiency and equity in an irrigation system

    Directory of Open Access Journals (Sweden)

    Andrew Reid. Bell

    2016-09-01

    Full Text Available Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1 farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2 there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to

  14. Water reuse and cost-benefit of pumping at different spatial levels in a rice irrigation system in UPRIIS, Philippines

    Science.gov (United States)

    Hafeez, M. M.; Bouman, B. A. M.; Van de Giesen, N.; Mushtaq, S.; Vlek, P.; Khan, S.

    As agricultural water resources in Asia become increasingly scarce, the irrigation efficiency of rice must be improved. However, in this region there is very limited information available about water use efficiency across spatial levels in irrigation systems. This study quantifies the volume of water reuse and its related cost-benefits at five different spatial levels, ranging from 1500 ha to 18,000 ha, under gravity-fed irrigation system in Upper Pumpanga River Integrated Irrigation System (UPRIIS), Philippines. The major sources of water reuse are considered, namely groundwater pumping, pumping from creeks, combined use and irrigation supplies from check dams. The volume of water available from all four sources of water reuse was quantified through extensive measurements. Production functions were developed to quantify water-yield relationships and to measure the economic value of water reuse. This study was conducted during the dry season of 2001, which existed from 19 November 2000 until 18 May 2001. The water reuse by pumping and check dams was 7% and 22% of the applied surface water at District 1 level. The reuse of surface water through check dams increased linearly with 4.6 Mm 3 per added 1000 ha. Similarly, the total amount of reused water from pumping is equivalent to 30% of the water lost through rice evapotranspiration during the dry season 2001. The results showed that water reuse plays a dominant role in growing a rice crop during the dry season. The result showed no difference in pumping costs between the creek (US0.011/m 3) and shallow pumps (US0.012/m 3). The marginal value of productivity (MVP) of water reuse from creek (US0.044/m 3) was slightly higher than the water reuse through the pumping ground water (US0.039/m 3). Results also indicated that the total volume pumped per ha (m 3/ha) was ranging from 0.39 to 6.93 m 3/ha during the dry season. The results clearly indicate that the quantification of amount of water reuse is very crucial for

  15. The Effect of Irrigation and Nitrogen on Growth Attributes and Chlorophyll Content of Garlic in Line Source Sprinkler Irrigation System

    Directory of Open Access Journals (Sweden)

    rahim motalebifard

    2017-02-01

    Full Text Available Introduction: With 12 million tons production per year, garlic is the fourth important crop in world. In addition to its medical value, it has been used in food industry. The Hamedan province with 1900 ha cultivation area and 38 percent of production is one of the most important garlic area productions in Iran. Few studies on water use and management of garlic exist in the world. Garlic is very sensitive to water deficit especially in tubers initiation and ripening periods. The current research was done because of scarce research on garlic production under water deficit condition in Iran and importance of plant nutrition and nutrients especially nitrogen on garlic production under stressful conditions. Nitrogen is necessary and important element for increasing the yield and quality of garlic. Application of nitrogen increases the growth trend of garlic such as number of leaves, leaf length and plant body. Reports have shown that garlic has high nitrogen requirement, particularly in the early stages of growth. Materials and Methods: This study was conducted for evaluating the combined effects of nitrogen and irrigation on the yield and quality of garlic (Allium sativumL.. The study was performed as a split-block based on randomized complete blocks design with factors of irrigation at four levels (0-3(normal irrigation, 3-6 (slight water deficit, 6-9 (moderate water deficit and 9-12 (sever water deficit meters distance from main line source sprinkler system, nitrogen at four levels (0, 50,100 and 150 kg nitrogen per ha using three replications and line source sprinkler irrigation system. The total water of irrigation levels was measured by boxes that were fixed in meddle of each plot. The statistical analysis of results were performed using themethod described by Hanks (1980. The chlorophyll index was measured using the chlorophyll meter 502 (Minolta, Spain. The chlorophyll a and bwas measured by the method described by Arnon (1946 and Gross (1991

  16. Towards Conservation Agriculture systems in Moldova

    Directory of Open Access Journals (Sweden)

    Boris Boincean

    2016-10-01

    Full Text Available As the world population and food production demands rise, keeping agricultural soils and landscapes healthy and productive are of paramount importance to sustaining local and global food security and the flow of ecosystem services to society. The global population, expected to reach 9.7 billion people by 2050, will put additional pressure on the available land area and resources for agricultural production. Sustainable production intensification for food security is a major challenge to both industrialized and developing countries. The paper focuses on the results from long-term multi-factorial experiments involving tillage practices, crop rotations and fertilization to study the interactions amongst the treatments in the context of sustainable production intensification. The paper discusses the results in relation to reported performance of crops and soil quality in Conservation Agriculture systems that are based on no or minimum soil disturbance (no-till seeding and weeding, maintenance of soil mulch cover with crop biomass and cover crops, and diversified cropping s involving annuals and perennials. Conservation Agriculture also emphasizes the necessity of an agro-ecosystems approach to the management of agricultural land for sustainable production intensification, as well as to the site-specificity of agricultural production. Arguments in favor of avoiding the use of soil tillage are discussed together with agro-ecological principles for sustainable intensification of agriculture. More interdisciplinary systems research is required to support the transformation of agriculture from the conventional tillage agriculture to a more sustainable agriculture based on the principles and practices of Conservation Agriculture, along with other complementary practices of integrated crop, nutrient, water, pest, energy and farm power management.

  17. Structuring properties of irrigation systems : Understanding relations between humans and hydraulics through modeling

    NARCIS (Netherlands)

    Ertsen, M.W.

    2010-01-01

    Irrigation systems were clearly important in ancient times in supplying crops with water. This requires physical distribution facilities and socio-political arrangements to coordinate between actors. Resulting systems are highly diverse, and are being studied extensively within archeology and

  18. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  19. HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain

    Directory of Open Access Journals (Sweden)

    Kangkang He

    2017-07-01

    Full Text Available Freshwater resources in the North China Plain (NCP are near depletion due to the unceasing overexploitation of deep groundwater, by far the most significant source of freshwater in the region. To deal with the deepening freshwater crisis, brackish water (rich but largely unused water in agriculture is increasingly being used in irrigation in the region. However, inappropriate irrigation with brackish water could lead to soil salinization and cropland degradation. To evaluate such negative impacts, the HYDRUS-1D model was used to simulate soil salt transport and accumulation under 15 years of irrigation with brackish water. The irrigation scenarios included brackish water irrigation during the wintering and jointing stages of winter wheat and then freshwater irrigation just before the sowing of summer maize. Freshwater irrigation was done to leach out soil salts, which is particularly vital in dry years. For the littoral region of the plain, HYDRUS-ID was used to simulate the irrigated cropping system stated above for a total period of 15 years. The results showed that it was feasible to use brackish water twice in one year, provided freshwater irrigation was performed before sowing summer maize. Freshwater irrigation, in conjunction with precipitation, leached out soil salts from the 100 cm root-zone depth. The maximum salt accumulation was in the 160–220 cm soil layer, which ensured that root-zone soil was free of restrictive salinity for crop growth. Precipitation was a critical determinant of the rate and depth leaching of soil salt. Heavy rainfall (>100 mm caused significant leaching of soluble salts in the 0–200 cm soil profile. Salt concentration under brackish water irrigation had no significant effect on the variations in the trend of soil salt transport in the soil profile. The variations of soil salinity were mainly affected by hydrological year type, for which the buried depth of soil salt was higher in wet years than in dry years

  20. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements

    KAUST Repository

    Jadoon, Khan Zaib; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; Al-Mashharawi, Samir K.; McCabe, Matthew

    2015-01-01

    -Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water

  1. Desert agricultural terrace systems at EBA Jawa (Jordan) - Layout, water availability and efficiency

    Science.gov (United States)

    Meister, Julia; Krause, Jan; Müller-Neuhof, Bernd; Portillo, Marta; Reimann, Tony; Schütt, Brigitta

    2016-04-01

    Located in the arid basalt desert of northeastern Jordan, the Early Bronze Age (EBA) settlement of Jawa is by far the largest and best preserved archaeological EBA site in the region. Recent surveys in the close vicinity revealed well-preserved remains of three abandoned agricultural terrace systems. In the presented study these archaeological features are documented by detailed mapping and the analysis of the sediment records in a multi-proxy approach. To study the chronology of the terrace systems optically stimulated luminescence (OSL) is used. In order to evaluate the efficiency of the water management techniques and its impact on harvest yields, a crop simulation model (CropSyst) under today's climatic conditions is applied, simulating crop yields with and without (runoff) irrigation. In order to do so, a runoff time series for each agricultural terrace system and its catchment is generated, applying the SCS runoff curve number method (CN) based on rainfall and soil data. Covering a total area of 38 ha, irrigated terrace agriculture was practiced on slopes, small plateaus, and valleys in the close vicinity of Jawa. Floodwater from nearby wadis or runoff from adjacent slopes was collected and diverted via surface canals. The terraced fields were arranged in cascades, allowing effective water exploitation through a system of risers, canals and spillways. The examined terrace profiles show similar stratigraphic sequences of mixed unstratified fine sediments that are composed of small-scale relocated sediments with local origin. The accumulation of these fines is associated with the construction of agricultural terraces, forcing infiltration and storage of the water within the terraces. Two OSL ages of terrace fills indicate that the construction of these terrace systems started as early as 5300 ± 300 a, which fits well to the beginning of the occupation phase of Jawa at around 3.500 calBC, thus making them to the oldest examples of its kind in the Middle East

  2. Structure of Fungal Communities in Sub-Irrigated Agricultural Soil from Cerrado Floodplains

    Directory of Open Access Journals (Sweden)

    Elainy Cristina A. M. Oliveira

    2016-05-01

    Full Text Available This study aimed to evaluate the influence of soybean cultivation on the fungal community structure in a tropical floodplain area. Soil samples were collected from two different soybean cropland sites and a control area under native vegetation. The soil samples were collected at a depth of 0–10 cm soil during the off-season in July 2013. The genetic structure of the soil fungal microbial community was analyzed using the automated ribosomal intergenic spacer analysis (ARISA technique. Among the 26 phylotypes with abundance levels higher than 1% detected in the control area, five were also detected in the area cultivated for five years, and none of them was shared between the control area and the area cultivated for eight years. Analysis of similarity (ANOSIM revealed differences in fungal community structure between the control area and the soybean cropland sites, and also between the soybean cropland sites. ANOSIM results were confirmed by multivariate statistics, which additionally revealed a nutrient-dependent relation for the fungal community structure in agricultural soil managed for eight consecutive years. The results indicated that land use affects soil chemical properties and richness and structure of the soil fungal microbial community in a tropical floodplain agricultural area, and the effects became more evident to the extent that soil was cultivated for soybean for more time.

  3. Ruling by canal: Governance and system-level design characteristics of large scale irrigation infrastructure in India and Uzbekistan

    NARCIS (Netherlands)

    Mollinga, P.; Veldwisch, G.J.A.

    2016-01-01

    This paper explores the relationship between governance regime and large-scale irrigation system design by investigating three cases: 1) protective irrigation design in post-independent South India; 2) canal irrigation system design in Khorezm Province, Uzbekistan, as implemented in the USSR period,

  4. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  5. Distribution of the root system of peach palm under drip irrigation

    Directory of Open Access Journals (Sweden)

    Adriano da Silva Lopes

    2014-07-01

    Full Text Available The incorporation of technologies has resulted in increased productivity and the more rational management of peach palm, with irrigation being an important tool for certain regions. Thus, studies leading to proper crop management are extremely important, such as the estimate of the effective depth of the root system, which is indispensable for proper irrigation management. The objective of this study was to evaluate the effects of different irrigation depths, as applied by drip irrigation, on the distribution of the root system of peach palm. This experiment was conducted in Ilha Solteira, São Paulo State, Brazil, with drip irrigation, with the two systems (flow of 0.0023 m3 h-1 consisting of four irrigation treatments corresponding to 0, 50, 100 and 150% of Class ‘A’ pan evaporation. After five years, an analysis of the Bactris gasipaes root system was performed at a distance of 0.0, 0.5 and 1.0 meters from the trunk, collecting sampling at two depths (0.0 to 0.3 m and 0.3 to 0.6 m via the auger method (volumetric analysis. We concluded that the effective depth of the root system used for irrigation management should be a maximum of 0.3 meters.

  6. Managing adaptively for multifunctionality in agricultural systems

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig R.; Magda, Danièle

    2016-01-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn’t reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to

  7. Managing adaptively for multifunctionality in agricultural systems.

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  8. Development and experiences of photovoltaic water pumping for a drip irrigation in agriculture; Desarrollo y experiencias de sistemas de bombeo fotovoltaico para aplicaciones de riego tecnificado en la agricultura

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Reinhold; Sapiain, Raul; Torres, Ariel; Loose, Dirk [Centro de Energias Renovables, Arica (Chile); Hahn, Andreas [Eschborn (Germany)

    2000-07-01

    The following paper shows results and experiences from a pilot project of photovoltaic water pumping for drip irrigation in agriculture of rural areas. The project participants are local farmers in direct co-operation with the Renewable Energy Centre of the University of Tarapaca and the German Agency for Technical Co-operation, GTZ. Activities focus on the planification, design, implementation and evaluation of four different pilot installations for the small and medium scale agriculture in different locations of the desert area of northern Chile. In the first phase, photovoltaic pumping systems were installed with water storage tanks and a drip irrigation systems were installed with water storage tanks and a drip irrigation system working only by gravity at very low operating pressures. In the second phase, a new system configuration was developed with a direct driven photovoltaic pumping system without water storage tank, the drip irrigation system here is directly connected to the pump with variable water flow and system pressure conditions. Part of the pilot project is a monitoring system, which allows a complete short term and long term evaluation under technical, agricultural and economical aspects. The measured data and obtained experiences shown so far interesting result as for example the high system's reliability, a good performance of the low pressure irrigation, an adequate matching between the solar pump and the drip irrigation in the direct driven system and a simple irrigation management and operation, compared with conventional pumping systems. The project's results could offer a new alternative for photovoltaic pumping systems in the productive agricultural sector of desert rural areas. [Spanish] El presente trabajo muestra los resultados y experiencias obtenidas en un programa piloto de bombeo fotovoltaico para nuevas aplicaciones de riego tecnificado en la agricultura de zonas rurales. En este programa el Centro de Energias Renovables

  9. The effect of four different irrigation systems in the removal of a root canal sealer.

    Science.gov (United States)

    Grischke, J; Müller-Heine, A; Hülsmann, M

    2014-09-01

    The aim of this study was to compare the efficiency of sonic, ultrasonic, and hydrodynamic devices in the removal of a root canal sealer from the surface and from simulated irregularities of root canals. Fifty-three root canals with two standardized grooves in the apical and coronal parts of longitudinally split roots were covered with AH Plus root canal sealer. Compared were the effects of (control) syringe irrigation, (1) CanalBrush, (2) passive ultrasonic irrigation, (3) EndoActivator, and (4) RinsEndo on the removal of the sealer. The specimens were divided into four groups (N = 12) and one control group (N = 5) via randomization. The amount of remaining sealer in the root canal irregularities was evaluated under a microscope using a 4-grade scoring system, whereas the remaining sealer on the root canal surface was evaluated with a 7-grade scoring system. Passive ultrasonic irrigation is more effective than the other tested irrigation systems or syringe irrigation in removing sealer from root canal walls (p irrigation shows a superior effect on sealer removal from the root canal surface during endodontic retreatment. Cleaning of lateral grooves seems not to be possible with one of the techniques investigated. Incomplete removal of root canal sealer during re-treatment may cause treatment failure. Passive Ultrasonic irrigation seems to be the most effective system to remove sealer from a root canal.

  10. Impact of rising groundwater on sustainable irrigated agriculture in the command area of gadeji minor, sindh, pakistan

    International Nuclear Information System (INIS)

    Solangi, G.S.

    2017-01-01

    A study has been conducted in the command area of Gadeji minor, Sindh, Pakistan to compute the amount of net groundwater recharge and its effect on sustainable irrigated agriculture. In this connection, Water budget equation was used and three groundwater recharging components along with one discharging component were computed for both Rabi and Kharif crop seasons for the period (2001-2013). Data shows that groundwater is rising at rapid rate during the Kharif season. The percolation rate through cropped fields is the major recharge component; accounting for 81% in the total mean recharge of 8.42 million m3, moreover the rice area is the major contributor to net groundwater recharge during Kharif season. The contributions of canal seepage and rainfall are estimated to be 16 and 04% respectively for the above period. However, during the Rabi season groundwater is rising at low rate where canal seepage is the major recharging component with an average contribution of 48% in the total mean recharge of 2.32 million m3, the contribution of deep percolation from cropped fields is estimated to be 47% as compared to the rainfall of only 05%. Survey shows non-functionality of most of the tubewells, groundwater withdrawal is not sufficient to fully offset groundwater recharge which has increased water table and caused waterlogging and soil salinity in more than 40% of agricultural land. To overcome this rising water table problem, it is recommended: to change existing cropping pattern (i.e. minimize or no cultivation of rice crop), lining of minor and all its watercourses, adopt salt tolerant crops and increase groundwater withdrawals by operating tube-wells on emergency basis. (author)

  11. Energy for agriculture: a computerized information retrieval system

    Energy Technology Data Exchange (ETDEWEB)

    Stout, B A; Myers, C A [comp.

    1979-12-01

    This bibliography contains 2613 citations to the literature for 1973 through May 1979. Some of the subjects covered include: accounting, agriculture, animal production, conservation, drying, fertilizer, food processing, greenhouses, home, international, irrigation, organic, solar, storage, tillage, and wind. Author and keyword indexes are included. (MHR)

  12. Atmospheric effects of irrigation in monsoon climate: the Indian subcontinent

    NARCIS (Netherlands)

    Tuinenburg, O.A.

    2013-01-01

    During the 20th century, an increasing population increased the demand for food. As a consequence, agricultural activity has expanded and become more intense. A part of this intensification is the use of irrigation systems to water crops. Due to this irrigation, dams and channeling systems,

  13. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    Science.gov (United States)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  14. A catchment-scale irrigation systems model for sugarcane Part 1 ...

    African Journals Online (AJOL)

    2008-03-28

    Mar 28, 2008 ... Keywords: ACRUCane, irrigation systems, water management, crop modelling, hydrology, water ... vide all the necessary decision support information in an inte- .... Root growth is simulated using a methodology described by.

  15. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  16. Optimal design of pressurized irrigation systems. Application cases (Ecuador

    Directory of Open Access Journals (Sweden)

    Carmen Mireya Lapo Pauta

    2013-05-01

    Full Text Available This paper presents research completed with the intention of finding the most economical solution in the design of pressurized irrigation networks, while efficiently meet service delivery. A systematic methodology is proposed that combines two optimization techniques through a “hybrid method” in, which linear programming, nonlinear programming and genetic algorithms are fused. The overall formulations of the problem of optimal dimensioning consist of minimizing an objective function constituted through the associated cost of the pipes that form the network. This methodology was implemented in three networks a fictitious irrigation and two irrigation networks (Tuncarta and Cariyacu located in the cities of Loja and Chimborazo which yielded optimal design  solutions. Finally different scenarios were simulated in both models to obtain an overview of the operation of the hydraulic variables

  17. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils

    OpenAIRE

    Muller, K.; Duwig, Céline; Prado, B.; Siebe, C.; Hidalgo, C.; Etchevers, J.

    2012-01-01

    In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years wi...

  18. A solar energy powered autonomous wireless actuator node for irrigation systems.

    Science.gov (United States)

    Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José

    2011-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The "wEcoValve mote" firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.

  19. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Rafael Lajara

    2010-12-01

    Full Text Available The design of a fully autonomous and wireless actuator node (“wEcoValve mote” based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The “wEcoValve mote” firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.

  20. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes...

  1. Novel approach to evaluate the dynamic variation of wind drift and evaporation losses under moving irrigation systems

    Science.gov (United States)

    Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher

    2015-01-01

    The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...

  2. Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Sotirios Kontogiannis

    2017-11-01

    Full Text Available Modern irrigation systems utilize sensors and actuators, interconnected together as a single entity. In such entities, A.I. algorithms are implemented, which are responsible for the irrigation process. In this paper, the authors present an irrigation Open Watering System (OWS architecture that spatially clusters the irrigation process into autonomous irrigation sections. Authors’ OWS implementation includes a Neuro-Fuzzy decision algorithm called FITRA, which originates from the Greek word for seed. In this paper, the FITRA algorithm is described in detail, as are experimentation results that indicate significant water conservations from the use of the FITRA algorithm. Furthermore, the authors propose a new communication protocol over LoRa radio as an alternative low-energy and long-range OWS clusters communication mechanism. The experimental scenarios confirm that the FITRA algorithm provides more efficient irrigation on clustered areas than existing non-clustered, time scheduled or threshold adaptive algorithms. This is due to the FITRA algorithm’s frequent monitoring of environmental conditions, fuzzy and neural network adaptation as well as adherence to past irrigation preferences.

  3. A compact to revitalise large-scale irrigation systems: A ‘theory of change’ approach

    Directory of Open Access Journals (Sweden)

    Bruce A. Lankford

    2016-02-01

    Full Text Available In countries with transitional economies such as those found in South Asia, large-scale irrigation systems (LSIS with a history of public ownership account for about 115 million ha (Mha or approximately 45% of their total area under irrigation. In terms of the global area of irrigation (320 Mha for all countries, LSIS are estimated at 130 Mha or 40% of irrigated land. These systems can potentially deliver significant local, regional and global benefits in terms of food, water and energy security, employment, economic growth and ecosystem services. For example, primary crop production is conservatively valued at about US$355 billion. However, efforts to enhance these benefits and reform the sector have been costly and outcomes have been underwhelming and short-lived. We propose the application of a 'theory of change' (ToC as a foundation for promoting transformational change in large-scale irrigation centred upon a 'global irrigation compact' that promotes new forms of leadership, partnership and ownership (LPO. The compact argues that LSIS can change by switching away from the current channelling of aid finances controlled by government irrigation agencies. Instead it is for irrigators, closely partnered by private, public and NGO advisory and regulatory services, to develop strong leadership models and to find new compensatory partnerships with cities and other river basin neighbours. The paper summarises key assumptions for change in the LSIS sector including the need to initially test this change via a handful of volunteer systems. Our other key purpose is to demonstrate a ToC template by which large-scale irrigation policy can be better elaborated and discussed.

  4. Groundwater quality in alluvial and prolluvial areas under the influence of irrigated agriculture activities.

    Science.gov (United States)

    Kovacevik, Biljana; Boev, Blazo; Panova, Vesna Zajkova; Mitrev, Sasa

    2016-12-05

    The aim of this study was to investigate the groundwater pollution from alluvial aquifers lying under surface agriculture activities in two geologically different areas: alluvial and prolluvial. The groundwater in investigated areas is neutral to alkaline (pH 7.05-8.45), and the major dissolved ions are bicarbonate and calcium. Groundwater samples from the alluvial area are characterized by nitrate concentration above the national maximum concentration limit (MCL) at 20.5% of samples [mean value (Me) 6.31 mg/L], arsenic concentrations greater than national MCL at 35.6% of investigated samples (Me 12.12 µg/L) and elevated concentrations of iron (Me 202.37 µg/L) and manganese (Me 355.22 µg/L) at 22.7% and 81% of investigated samples, respectively. Groundwater samples from the prolluvial area did not show significantly elevated concentrations of heavy metals, but the concentration of nitrate was considerably higher (Me 65.06 mg/L). Factor analysis positively correlates As with Mn and Fe, suggesting its natural origin. Nitrate was found in positive correlation with SO 4 2- and Ni but in negative with NH 4 + , suggesting its anthropogenic origin and the relationship of these ions in the process of denitrification. The t-test analysis showed a significant difference between nitrate pollution of groundwater from alluvial and prolluvial areas. According to the chemical composition of groundwater, the process of denitrification is considered to be the main reason for the reduced presence of nitrate in the groundwater lying under alluvial deposits represented by chalk and sandstones. Denitrification in groundwater lying under prolluvial deposits represented by magmatic and metamorphic rock formations was not observed.

  5. SUSTAINABLE FARMS: INTEGRATION OF AGRICULTURAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Manolo Muñoz-Espinosa

    2016-08-01

    Full Text Available The inappropriate use of agrochemicals and technologies in farming systems can cause an accelerated deterioration of agricultural and soil pollution. Thus, agriculture and livestock are becoming an environmental problem in the world, which implies the need to assess the efficiency of agricultural production systems related to sustainability. The traditional peasant system is apparently unsustainable, while farm with an integral production approach have better opportunities for development over time as they tend to sustainability. This type of farms incorporate productive alternatives that improve as a whole, the system and the livelihood of the peasants. The trends towards sustainability of farms are mainly due to a better land use. As well as, implementing systems adapted to each soil and production type to ensure profitability and persistence, achieving the highest possible agricultural productivity. The urgency to produce food for a growing population is almost a paradigm that reinforces the imperative for maximum yield per unit area, and creates a vision of the rural world aimed at increasing profit at the expense of the attributes and core values of livelihood in rural areas. It can be concluded that the integrated farming articulate various subsystems, which working together could allow higher sustainability of agricultural production practices, environmentally friendly, safeguarding the food sovereignty of the population and improving the quality of life of farmers

  6. Affordances of agricultural systems analysis tools

    NARCIS (Netherlands)

    Ditzler, Lenora; Klerkx, Laurens; Chan-Dentoni, Jacqueline; Posthumus, Helena; Krupnik, Timothy J.; Ridaura, Santiago López; Andersson, Jens A.; Baudron, Frédéric; Groot, Jeroen C.J.

    2018-01-01

    The increasingly complex challenges facing agricultural systems require problem-solving processes and systems analysis (SA) tools that engage multiple actors across disciplines. In this article, we employ the theory of affordances to unravel what tools may furnish users, and how those affordances

  7. The improvement of the quality of polluted irrigation water through a phytoremediation process in a hydroponic batch culture system

    Science.gov (United States)

    Retnaningdyah, Catur

    2017-11-01

    The objective of this research was to determine the effectiveness of a phytoremediation process using some local hydro macrophytes to reduce fertilizer residue in irrigation water in order to support healthy agriculture and to prevent eutrophication and algae bloom in water. A phytoremediation process was carried out in a hydroponic floating system by using transparent plastic bags of 1 m in diameter and 1 m in height that were placed in collecting ponds before they were used for agricultural activities. Paddy soils were used as substrates in this system. The irrigation water was treated with nutrient enrichment (Urea and SP-36 fertilizers). Then, the system was planted with remediation actors (Azolla sp., Ipomoea aquatica, Limnocharis flava, Marsilea crenata, polyculture of those hydro macrophytes and control). The improvement of the water quality as a result of the phytoremediation process was characterized by a decline in the concentration of some physicochemical parameters, which were measured at 7 days after incubation, as well as an increase in the plankton diversity index value. The results showed that all of the hydro macrophytes used in this research, which was grown in the hydroponic batch culture system for a period of 7 days, were able to significantly improve the irrigation water quality, which was enriched by the synthetic fertilizers Urea and SP36. This was reflected by a significant decrease in the concentration of water TSS, nitrate, BOD, COD and total phosphate and an increase in the value of water DO at 7 days after incubation. Improvement of the water quality is also reflected in the increasing plankton diversity index value as a bioindicator of water pollution indicating a change in the pollution status from moderately polluted to slightly polluted at 7 days after incubation.

  8. quixotic coupling between irrigation system and maize-cowpea

    African Journals Online (AJOL)

    ACSS

    number row-1 and maize grain yield, respectively. The ridge ... Key Words: Furrow irrigation, water use efficiency, Zea mays. RÉSUMÉ ... important in arid and semi-arid regions, with ... as maize) canopy is not able to intercept all the solar radiation during the growth period. ... Intercropping maize and legumes considerably ...

  9. Apical extrusion of debris and irrigant using hand and rotary systems: A comparative study

    Science.gov (United States)

    Ghivari, Sheetal B; Kubasad, Girish C; Chandak, Manoj G; Akarte, NR

    2011-01-01

    Aim: To evaluate and compare the amount of debris and irrigant extruded quantitatively by using two hand and rotary nickel–titanium (Ni–Ti) instrumentation techniques. Materials and Methods: Eighty freshly extracted mandibular premolars having similar canal length and curvature were selected and mounted in a debris collection apparatus. After each instrument change, 1 ml of distilled water was used as an irrigant and the amount of irrigant extruded was measured using the Meyers and Montgomery method. After drying, the debris was weighed using an electronic microbalance to determine its weight. Statistical analysis used: The data was analyzed statistically to determine the mean difference between the groups. The mean weight of the dry debris and irrigant within the group and between the groups was calculated by the one-way ANOVA and multiple comparison (Dunnet D) test. Results: The step-back technique extruded a greater quantity of debris and irrigant in comparison to other hand and rotary Ni–Ti systems. Conclusions: All instrumentation techniques extrude debris and irrigant, it is prudent on the part of the clinician to select the instrumentation technique that extrudes the least amount of debris and irrigant, to prevent a flare-up phenomena. PMID:21814364

  10. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    Science.gov (United States)

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-01-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado’s Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%–450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  11. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    Science.gov (United States)

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-05-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado's Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%-450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  12. Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016

    Directory of Open Access Journals (Sweden)

    Eric W. Chance

    2018-01-01

    Full Text Available Understanding irrigator responses to changes in water availability is critical for building strategies to support effective management of water resources. Using remote sensing data, we examine farmer responses to seasonal changes in water availability in Idaho’s Snake River Plain for the time series 1984–2016. We apply a binary threshold based on the seasonal maximum of the Normalized Difference Moisture Index (NDMI using Landsat 5–8 images to distinguish irrigated from non-irrigated lands. We find that the NDMI of irrigated lands increased over time, consistent with trends in irrigation technology adoption and increased crop productivity. By combining remote sensing data with geospatial data describing water rights for irrigation, we show that the trend in NDMI is not universal, but differs by farm size and water source. Farmers with small farms that rely on surface water are more likely than average to have a large contraction (over −25% in irrigated area over the 33-year period of record. In contrast, those with large farms and access to groundwater are more likely than average to have a large expansion (over +25% in irrigated area over the same period.

  13. Using hydraulic modeling to simulate human interactions with water resources in an Omani irrigation system

    Science.gov (United States)

    Xanthopoulou, Themis; Ertsen, Maurits; Düring, Bleda; Kolen, Jan

    2017-04-01

    In the dry Southern Oman, more than a thousand years ago, a large water system that connected the mountain mass with the coastal region was constructed. Its length (up to 30 km) and the fact that the coastal region has a rich groundwater aquifer create confusion as to why the system was initially built. Nonetheless, it was abandoned a couple of centuries later only to be partially revived by small farming communities in the 17th to 18th century. The focus of our research is one of the irrigation systems that used the water conveyed from the large water system. Not much is known about these small irrigation systems functioning in the Wadi Al Jizzi of the greater Sohar region. There are no written records and we can only make guesses about the way the systems were managed based on ethnographical studies and the traditional Omani techniques. On the other hand, the good preservation state of the canals offers a great opportunity for hydraulic reconstruction of irrigation events. More than that, the material remains suggest and at the same time limit the ways in which humans interacted with the system and the water resources of the region. All irrigation activities and some daily activities had to be realized through the canal system and only if the canal system permits it these actions would have been feasible. We created a conceptual model of irrigation that includes the human agent and feedback mechanisms through hydraulics and then we simulated irrigation events using the Sobek software. Scenarios and sensibility analysis were used to address the unknown aspects of the system. Our research yielded insights about the way the farming community interacted with the larger water system, the levels of co-ordination and co-operation required for successful irrigation and the predisposition of conflict and power relations.

  14. Brackish groundwater membrane system design for sustainable irrigation: Optimal configuration selection using analytic hierarchy process and multi-dimension scaling

    Directory of Open Access Journals (Sweden)

    Beni eLew

    2014-12-01

    Full Text Available The recent high demands for reuse of salty water for irrigation affected membrane producers to assess new potential technologies for undesirable physical, chemical and biological contaminants removal. This paper studies the assembly options by the analytic hierarchy process (AHP model and the multi-dimension scaling (MDS techniques. A specialized form of MDS (CoPlot software enables presentation of the AHP outcomes in a two dimensional space and the optimal model can be visualized clearly. Four types of 8 membranes were selected: (i Nanofiltration low rejection and high flux (ESNA1-LF-LD, 86% rejection, 10,500gpd; (ii Nanofiltration medium rejection and medium flux (ESNA1-LF2-LD, 91% rejection, 8,200gpd; (iii Reverse Osmosis high rejection and high flux (CPA5-MAX, 99.7 rejection, 12,000gpd ; and (iv Reverse Osmosis medium rejection and extreme high flux (ESPA4-MAX, 99.2 rejection, 13,200gpd. The results indicate that: (i Nanofiltration membrane (High flux and Low rejection can produce water for irrigation with valuable levels of nutrient ions and a reduction in the sodium absorption ratio (SAR, minimizing soil salinity; this is an attractive option for agricultural irrigation and is the optimal solution; and (ii implementing the MDS approach with reference to the variables is consequently useful to characterize membrane system design.

  15. Water production for irrigation and drinking needs in remote arid communities using closed-system greenhouse: A review

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2015-06-01

    Full Text Available Water needs for agriculture, food production and drinking are considered one of the most critical challenges facing the world in the present days. This is due mainly to the scarcity and lack of fresh water resources, and the increasing ground water salinity. Most of these countries have a high solar energy potential. This potential can be best developed by solar desalination concepts and methods specifically suited for rural water supply, irrigation. In this paper, a humidification–dehumidification (HD water desalination system with several technologies for irrigation and drinking needs in remote arid areas is introduced from technical and economic point of views. This study has investigated (1 detailed discussion of technical developments, economical and sustainable aspects; (2 benefits of the new design over traditional applications, desalination and other irrigation methods; (3 specific requirements and implementation challenges in remote and cold regions; (4 performance and reliability improvement possible techniques. Recommended researches and projects leading to high efficiency, economical and sustainable applications of some desalination devices driven by solar energy are highlighted.

  16. Implementing the Prepaid Smart Meter System for Irrigated Groundwater Production in Northern China: Status and Problems

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2017-05-01

    Full Text Available To reduce the gap between groundwater demand and supply caused by agricultural groundwater over-exploitation, the Prepaid Smart Meter System (PSMS is being strongly implemented by the Chinese government in northern China. This study reports the analysis and results of PSMS field surveys in six typical provinces in northern China as well as domestic literature reviews. Based on the architecture and implementation policies of the system, the implementation differences between areas and the influencing factors were analyzed, particularly the acknowledgment of farmers, the installation proportion of tube wells, the social benefits. Great achievements have been gained in the implementation, and the management targets have been achieved, including accurately metering overall irrigation groundwater production, assisting in the total amount control and quota management, reducing groundwater exploitation, and improving water use efficiency. However, shortcomings remain in the implementation process, such as single initial investment channels, imperfect policy system construction, a lack of retrieving and analyzing data, and the unbalanced development between areas. Countermeasures and suggestions for these problems are discussed in this article.

  17. Impact of the Invasion of Modern Irrigation Systems in the Oasis of Lahmar, South Western Algeria

    OpenAIRE

    Cherif Rezzoug; Boualem Emini; Saed Hamoudi

    2016-01-01

    For centuries, the oasis dwellers of the Algerian Sahara exploit the groundwater through the use of traditional techniques such as foggaras (traditional technique of irrigation in the Algerian southwest), and wells of chadouf (pendulum wells). In the oasis of Lahmar, in Southwest Algeria, the farmers use foggaras (known by the name of foggaras ain - foggaras of source) to irrigate their fields. Nowadays though, due to the indiscriminate use of modern systems (boreholes and pump...

  18. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    The purpose of an irrigation system is to apply the desired amount of water, at the correct application rate and uniformly to the whole field, at the right time, with the least amount of non-beneficial water consumption (losses), and as economically as possible. We know that irrigated agriculture plays a major role in the ...

  19. Irrigation Management in the Pamirs in Tajikistan: A Man's Domain?

    NARCIS (Netherlands)

    Bossenbroek, L.; Zwarteveen, M.Z.

    2014-01-01

    Families living in Gorno-Badakhshan—situated in the Pamir Mountains in Tajikistan—depend on irrigated agriculture to meet their subsistence needs. Because men predominate, and are most visible in, the operation and management of irrigation systems in this region, water-related activities are often

  20. Simulation-Optimization of the Management of Sensor-Based Deficit Irrigation Systems

    OpenAIRE

    Kloß, Sebastian

    2016-01-01

    Current research concentrates on ways to investigate and improve water productivity (WP), as agriculture is today’s predominant freshwater consumer, averaging at 70% and reaching up to 93% in some regions. A growing world population will require more food and thus more water for cultivation. Regions that are already affected by physical water scarcity and which depend on irrigation for growing crops will face even greater challenges regarding their water supply. Other problems in such regions...

  1. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    Science.gov (United States)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-01-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  2. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    Science.gov (United States)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  3. Economic optimization of photovoltaic water pumping systems for irrigation

    OpenAIRE

    Campana, Pietro Elia; Li, Hailong; Zhang, J.; Liu, J.; Yan, Jinyue

    2015-01-01

    Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availabil...

  4. Agricultural biogas systems. Quality and security

    International Nuclear Information System (INIS)

    Serafimova, K.

    2007-01-01

    This article takes a look at agricultural biogas installations and how improved basic conditions and incentives offered by industry and commerce are showing initial effects. The author is of the opinion that more dynamics in the market are necessary in order to allow contributions to be made to the protection of the climate whilst creating value locally at the same time. The article reviews the current market situation and examines questions which are to be answered in the quality assurance area for agricultural biogas systems in Switzerland. Co-fermentation is proposed as a standard technology. Market development, plant locations and plant management aspects are discussed.

  5. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States); Molla, S. [Texas A& M Univ., College Station, TX (United States)

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  6. Climate change induced transformations of agricultural systems: insights from a global model

    Science.gov (United States)

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  7. Climate change induced transformations of agricultural systems: insights from a global model

    International Nuclear Information System (INIS)

    Leclère, D; Havlík, P; Mosnier, A; Walsh, B; Valin, H; Khabarov, N; Obersteiner, M; Fuss, S; Schmid, E; Herrero, M

    2014-01-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis. (letter)

  8. Fruit yield and root system distribution of 'Tommy Atkins' mango under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Marcelo R. dos Santos

    2014-04-01

    Full Text Available This study aimed to evaluate the fruit yield and the distribution of 'Tommy Atkins' mango root system under different irrigation regimes in the semiarid region of Bahia. The experimental design was completely randomized with five treatments and three replicates: 1 - Irrigation supplying 100% of ETc in phases I, II and III; 2 - Regulated deficit irrigation (RDI supplying 50% of ETc in phase I (beginning of flowering to early fruit growth; 3 - RDI supplying 50% ETc in phase II (start of expansion until the beginning of physiological maturity; 4 - RDI supplying 50% ETc in phase III (physiological mature fruits; 5 - No irrigation during all three phases. The regulated deficit irrigation supplying 50% of the ETc during phase I and II provided larger root length density of 'Tommy Atkins' mango. Regardless of management strategy, the roots were developed in all evaluated soil volume and the highest density is concentrated from 0.50 to 1.50 m distance from the trunk and in 0.20 to 0.90 m depth in the soil, that suggests this region to be the best place for fertilizer application as well for soil water sensor placement. The application of RDI during fruit set does not influence either root distribution or production. Root system and crop production is significantly reduced under no irrigation conditions.

  9. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Science.gov (United States)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  10. The Influential Role of Sociocultural Feedbacks on Community-Managed Irrigation System Behaviors During Times of Water Stress

    Science.gov (United States)

    Gunda, T.; Turner, B. L.; Tidwell, V. C.

    2018-04-01

    Sociohydrological studies use interdisciplinary approaches to explore the complex interactions between physical and social water systems and increase our understanding of emergent and paradoxical system behaviors. The dynamics of community values and social cohesion, however, have received little attention in modeling studies due to quantification challenges. Social structures associated with community-managed irrigation systems around the world, in particular, reflect these communities' experiences with a multitude of natural and social shocks. Using the Valdez acequia (a communally-managed irrigation community in northern New Mexico) as a simulation case study, we evaluate the impact of that community's social structure in governing its responses to water availability stresses posed by climate change. Specifically, a system dynamics model (developed using insights from community stakeholders and multiple disciplines that captures biophysical, socioeconomic, and sociocultural dynamics of acequia systems) was used to generate counterfactual trajectories to explore how the community would behave with streamflow conditions expected under climate change. We found that earlier peak flows, combined with adaptive measures of shifting crop selection, allowed for greater production of higher value crops and fewer people leaving the acequia. The economic benefits were lost, however, if downstream water pressures increased. Even with significant reductions in agricultural profitability, feedbacks associated with community cohesion buffered the community's population and land parcel sizes from more detrimental impacts, indicating the community's resilience under natural and social stresses. Continued exploration of social structures is warranted to better understand these systems' responses to stress and identify possible leverage points for strengthening community resilience.

  11. Analysis of Groundwater Resources Vulnerability from Agricultural Activities in the Large Irrigation District along the Yellow River

    OpenAIRE

    He, Bin; Oki, Taikan; Kanae, Shinjiro; Runkle, Benjamin; Liang, Xu; Zeng, Ayan; Hao, Fanghua

    2008-01-01

    Groundwater forms an important source of water supply in arid and semi-arid region. Optimum conjunctive utilization of surface and groundwater resources has become extremely important to fill the gap between water demand and supply. Hetao Irrigation District (HID) is the largest irrigation district along the Yellow River and its groundwater table is shallow. The project of Water Saving Reconstruction (WSR) has been conducted for the purpose of keeping the Yellow River free from drying up. The...

  12. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    Science.gov (United States)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  13. Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops.

    Science.gov (United States)

    Beneduce, Luciano; Gatta, Giuseppe; Bevilacqua, Antonio; Libutti, Angela; Tarantino, Emanuele; Bellucci, Micol; Troiano, Eleonora; Spano, Giuseppe

    2017-11-02

    In order to evaluate if the reuse of food industry treated wastewater is compatible for irrigation of food crops, without increased health risk, in the present study a cropping system, in which ground water and treated wastewater were used for irrigation of tomato and broccoli, during consecutive crop seasons was monitored. Water, crop environment and final products were monitored for microbial indicators and pathogenic bacteria, by conventional and molecular methods. The microbial quality of the irrigation waters influenced sporadically the presence of microbial indicators in soil. No water sample was found positive for pathogenic bacteria, independently from the source. Salmonella spp. and Listeria monocytogenes were detected in soil samples, independently from the irrigation water source. No pathogen was found to contaminate tomato plants, while Listeria monocytogenes and E. coli O157:H7 were detected on broccoli plant, but when final produce were harvested, no pathogen was detected on edible part. The level of microbial indicators and detection of pathogenic bacteria in field and plant was not dependent upon wastewater used. Our results, suggest that reuse of food industry wastewater for irrigation of agricultural crop can be applied without significant increase of potential health risk related to microbial quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Integrating the pastoral component in agricultural systems

    Directory of Open Access Journals (Sweden)

    Paulo César de Faccio Carvalho

    2018-03-01

    Full Text Available ABSTRACT This paper aims to discuss the impact of the introduction of pastures and grazing animals in agricultural systems. For the purposes of this manuscript, we focus on within-farm integrated crop-livestock systems (ICLS, typical of Southern Brazil. These ICLS are designed to create and enhance the synergisms and emergent properties have arisen from agricultural areas where livestock activities are integrated with crops. We show that the introduction of the crop component will affect less the preceding condition than the introduction of the livestock component. While the introduction of crops in pastoral systems represents increasing diversity of the plant component, the introduction of animals would represent the entry of new flows and interactions within the system. Thus, given the new complexity levels achieved from the introduction of grazing, the probability of arising emergent properties is theoretically much higher. However, grazing management is vital in determining the success or failure of such initiative. The grazing intensity practiced during the pasture phase would affect the canopy structure and the forage availability to animals. In adequate and moderate grazing intensities, it is possible to affirm that livestock combined with crops (ICLS has a potential positive impact. As important as the improvements that grazing animals can generate to the soil-plant components, the economic resilience remarkably increases when pasture rotations are introduced compared with purely agriculture systems, particularly in climate-risk situations. Thus, the integration of the pastoral component can enhance the sustainable intensification of food production, but it modifies simple, pure agricultural systems into more complex and knowledge-demanding production systems.

  15. Spectral entropy as a mean to quantify water stress history for natural vegetation and irrigated agriculture in a water-stressed tropical environment

    Science.gov (United States)

    Kim, Y.; Johnson, M. S.

    2017-12-01

    Spectral entropy (Hs) is an index which can be used to measure the structural complexity of time series data. When a time series is made up of one periodic function, the Hs value becomes smaller, while Hs becomes larger when a time series is composed of several periodic functions. We hypothesized that this characteristic of the Hs could be used to quantify the water stress history of vegetation. For the ideal condition for which sufficient water is supplied to an agricultural crop or natural vegetation, there should be a single distinct phenological cycle represented in a vegetation index time series (e.g., NDVI and EVI). However, time series data for a vegetation area that repeatedly experiences water stress may include several fluctuations that can be observed in addition to the predominant phenological cycle. This is because the process of experiencing water stress and recovering from it generates small fluctuations in phenological characteristics. Consequently, the value of Hs increases when vegetation experiences several water shortages. Therefore, the Hs could be used as an indicator for water stress history. To test this hypothesis, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data for a natural area in comparison to a nearby sugarcane area in seasonally-dry western Costa Rica. In this presentation we will illustrate the use of spectral entropy to evaluate the vegetative responses of natural vegetation (dry tropical forest) and sugarcane under three different irrigation techniques (center pivot irrigation, drip irrigation and flood irrigation). Through this comparative analysis, the utility of Hs as an indicator will be tested. Furthermore, crop response to the different irrigation methods will be discussed in terms of Hs, NDVI and yield.

  16. Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling.

    Science.gov (United States)

    Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel

    2016-09-15

    Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Scheduling of Irrigation and Leaching Requirements

    Directory of Open Access Journals (Sweden)

    Amer Hassan Al-haddad

    2015-03-01

    Full Text Available Iraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigation program as a solution for the scarcity of irrigation water, the increase of irrigation efficiency, lessening the salinity in the projects and preparing an integral irrigation calendar through field measurements of soil physical properties and chemical for project selected and compared to the results of the irrigation scheduling and leaching with what is proposed by the designers. The process is accomplished by using a computer program which was designed by Water Resources Department at the University of Baghdad, with some modification to generalize it and made it applicable to various climatic zone and different soil types. Study area represented by large project located at the Tigris River, and this project was (Al-Amara irrigation project. Sufficient samples of project's soil were collected so as to identify soil physical and chemical properties and the salinity of soil and water as well as identifying the agrarian cycles virtually applied to this project. Finally, a comparison was conducted between the calculated water quantities and the suggested ones by the designers. The research results showed that using this kind of scheduling (previously prepared irrigation and leaching scheduling with its properties

  18. Assessment of agricultural drainage water quality for safe reuse in irrigation applications-a case study in Borg El-Arab, Alexandria

    Directory of Open Access Journals (Sweden)

    Mahmoud Nasr

    2015-03-01

    Full Text Available Objective: To demonstrate the technical feasibility of the reuse of agricultural drainage water for irrigation. Methods: The agricultural drainage water near Banjar El-Sokar, Borg El-Arab City, Alexandria, Egypt was collected. The measured heavy metals in the drainage water were compared with the permissible levels stated in environmental regulations, Law No. 48 of 1982 concerning the protection of the Nile River and waterways from pollution. Results: Heavy metals and trace elements were detected in this agricultural drainage water as following: Al (1.64 mg/L, Ca (175.00 mg/L, Cd (1.87 mg/L, Co (2.23 mg/L, Cu (1.71 mg/L, Fe (1.64 mg/L, K (20.50 mg/L, and Pb (2.81 mg/L. According to allowable limits, item such as Fe is lower than permissible level of 3.00 mg/L, while Pb and Cu are higher than 0.10 mg/L and 1.00 mg/L, respectively. Conclusions: Vegetables irrigated with such drainage water are not safe for human and animal consumption. Accordingly, the study suggests and recommeds remediation of drainage water using physical, chemical and/or biological methods.

  19. The strategies of local farmers' water management and the eco-hydrological effects of irrigation-drainage engineering systems in world heritage of Honghe Hani Rice Terraces

    Science.gov (United States)

    Gao, Xuan

    2017-04-01

    Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally

  20. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environ- mentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling...... of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...... approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a con- sequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available soft- ware that handle different aspects...

  1. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system

    KAUST Repository

    Lu, Xuefei

    2016-08-22

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through evaporation would improve the management of increasingly limited water resources. In this study, we examined the partitioning of evapotranspiration (ET) over a field of forage sorghum (Sorghum bicolor), which was under evaluation as a potential biofuel feedstock, based on isotope measurements of three irrigation cycles at the vegetative stage. This study employed customized transparent chambers coupled with a laser-based isotope analyzer to continuously measure near-surface variations in the stable isotopic composition of evaporation (E, δ), transpiration (T, δ) and ET (δ) to partition the total water flux. Due to the extreme heat and aridity, δ and δ were very similar, which makes this system highly unusual. Contrary to an expectation that the isotopic signatures of T, E, and ET would become increasingly enriched as soils became drier, our results showed an interesting pattern that δ, δ, and δ increased initially as soil water was depleted following irrigation, but decreased with further soil drying in mid to late irrigation cycle. These changes are likely caused by root water transport from deeper to shallower soil layers. Results indicate that about 46% of the irrigated water delivered to the crop was used as transpiration, with 54% lost as direct evaporation. This implies that 28 − 39% of the total source water was used by the crop, considering the typical 60 − 85% efficiency of flood irrigation. The stable isotope technique provided an effective means of determining surface partitioning of irrigation water in this unusually harsh production environment. The results suggest the potential to further minimize unproductive water losses in these production systems.

  2. Modeling Acequia Irrigation Systems Using System Dynamics: Model Development, Evaluation, and Sensitivity Analyses to Investigate Effects of Socio-Economic and Biophysical Feedbacks

    Directory of Open Access Journals (Sweden)

    Benjamin L. Turner

    2016-10-01

    Full Text Available Agriculture-based irrigation communities of northern New Mexico have survived for centuries despite the arid environment in which they reside. These irrigation communities are threatened by regional population growth, urbanization, a changing demographic profile, economic development, climate change, and other factors. Within this context, we investigated the extent to which community resource management practices centering on shared resources (e.g., water for agricultural in the floodplains and grazing resources in the uplands and mutualism (i.e., shared responsibility of local residents to maintaining traditional irrigation policies and upholding cultural and spiritual observances embedded within the community structure influence acequia function. We used a system dynamics modeling approach as an interdisciplinary platform to integrate these systems, specifically the relationship between community structure and resource management. In this paper we describe the background and context of acequia communities in northern New Mexico and the challenges they face. We formulate a Dynamic Hypothesis capturing the endogenous feedbacks driving acequia community vitality. Development of the model centered on major stock-and-flow components, including linkages for hydrology, ecology, community, and economics. Calibration metrics were used for model evaluation, including statistical correlation of observed and predicted values and Theil inequality statistics. Results indicated that the model reproduced trends exhibited by the observed system. Sensitivity analyses of socio-cultural processes identified absentee decisions, cumulative income effect on time in agriculture, and land use preference due to time allocation, community demographic effect, effect of employment on participation, and farm size effect as key determinants of system behavior and response. Sensitivity analyses of biophysical parameters revealed that several key parameters (e.g., acres per

  3. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    Science.gov (United States)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  4. Ruling by canal: Governance and system-level design characteristics of large scale irrigation infrastructure in India and Uzbekistan

    Directory of Open Access Journals (Sweden)

    Peter Mollinga

    2016-06-01

    Full Text Available This paper explores the relationship between governance regime and large-scale irrigation system design by investigating three cases: 1 protective irrigation design in post-independent South India; 2 canal irrigation system design in Khorezm Province, Uzbekistan, as implemented in the USSR period, and 3 canal design by the Madras Irrigation and Canal Company, as part of an experiment to do canal irrigation development in colonial India on commercial terms in the 1850s-1860s. The mutual shaping of irrigation infrastructure design characteristics on the one hand and management requirements and conditions on the other has been documented primarily at lower, within-system levels of the irrigation systems, notably at the level of division structures. Taking a 'social construction of technology' perspective, the paper analyses the relationship between technological structures and management and governance arrangements at irrigation system level. The paper finds qualitative differences in the infrastructural configuration of the three irrigation systems expressing and facilitating particular forms of governance and rule, differences that matter for management and use, and their effects and impacts.

  5. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L

    2006-01-01

    The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.

  6. On the waterfront : water distribution, technology and agrarian change in a South Indian canal irrigation system

    NARCIS (Netherlands)

    Mollinga, P.P.

    1998-01-01

    This book discusses water distribution in the Tungabhadra Left Bank Canal irrigation system in Raichur district, Karnataka, India. The system is located in interior South India, where rainfall is limited (approximately 600 mm annually) and extremely variable. The region suffered from failed

  7. KAJIAN ASET NIRWUJUD DALAM MANAJEMEN SISTEM IRIGASI Study on Intangible Assets in Irrigation System Management

    Directory of Open Access Journals (Sweden)

    Nugroho Tri Waskitho

    2012-05-01

    Full Text Available The research aimed at studying on intangible assets at irrigation system management. The research method consisted oftwo stages. The first stage was data collecting which was done by questionnaire and interview on management of Water Use Associations (WUA in Mejing irrigation system in Bantul, Sapon irrigation system in Kulon Progo, Yogyakarta, and Molek irrigation system in Malang, East Java. The second stage was data analysis which was done using ANFIS (Adaptive Neuro Fuzzy Inference System.The research result indicated that knowledge management falls into four main components: (i learning organization, (ii principle of organization, (iii policy and strategy of organization, and (iv information and communication technology which are integrated for controlling intangible assets in irrigation system. Intangible assets consisted of human capital, structural capital, and relation capital which are integrated for controlling performance of irrigation system. Knowledge management in Mejing and Sapon irrigation systems were in moderate-good condition (3.81 in1-5 scale and in Molek irrigation system was poor (2.37. Intangible assets in Mejing, Sapon, and Molek irrigation systems were in moderate-good condition (3.61. Effectiveness of performance in Sapon, Mejing, and Molek irrigation systems were very good (0.89-0.95 and were very potential to develop. Each irrigation system had different priorities ABSTRAK Tujuan penelitian ini adalah mengkaji kondisi aset nirwujud dalam manajemen sistem irigasi ditinjau dari manajemenpengetahuan. Metode penelitian terdiri dari dua tahap. Tahap pertama adalah pengumpulan data yang dilakukan dengan kuesioner dan wawancara dengan pengurus Perkumpulan Petani Pemakai Air (P3A di Daerah Irigasi (DI Mejing di kabupaten Bantul, dan DI Sapon di kabupaten Kulon Progo, propinsi Daerah Istimewa Yogyakarta, dan DI Molek di kabupaten Malang, Jawa Timur. Tahap kedua adalah analisa data yang dilakukan dengan ANFIS (Adaptive Neuro

  8. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  9. Reduction of solids and nutrient loss from agricultural land by tailwater recovery systems

    Science.gov (United States)

    Omer, A.R.; Miranda, Leandro E.; Moore, M. T.; Krutz, L. J.; Prince Czarnecki, J. M.; Kröger, R.; Baker, B. H.; Hogue, J.; Allen, P. J.

    2018-01-01

    Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of tailwater recovery (TWR) systems, an increasingly important practice, is limited. This study evaluated the ability of TWR systems to retain sediment and nutrients draining from agricultural landscapes. Composite flow-based samples were collected during flow events (precipitation or irrigation) over a two-year period in six TWR systems. Performance was evaluated by comparing concentrations and loads in water entering TWR systems (i.e., runoff or influent) from agricultural fields to water overflow exiting TWR systems (effluent). Tailwater recovery systems did not reduce concentrations of solids and nutrients, but did reduce loads of solids, phosphorus (P), and nitrogen (N) by 43%, 32%, and 44%, respectively. Annual mean load reductions were 1,142 kg solids, 0.7 kg of P, and 3.8 kg of N. Performance of TWR systems was influenced by effluent volume, system fullness, time since the previous event, and capacity of the TWR system. Mechanistically, TWR systems retain runoff on the agricultural landscape, thereby reducing the amount of sediment and nutrients entering downstream waterbodies. System performance can be improved through manipulation of influential parameters.

  10. Assess the potential of solar irrigation systems for sustaining pasture lands in arid regions - A case study in Northwestern China

    International Nuclear Information System (INIS)

    Yu, Yingdong; Liu, Jiahong; Wang, Hao; Liu, Miao

    2011-01-01

    Highlights: → We figured out the appropriate indicators for solar irrigation. → We analyzed the economic benefits of solar irrigation system. → The geographic allocation of grasslands suitable for solar irrigation in Qinghai province is presented. → The appropriate region for solar irrigation is also discussed. → The problems and countermeasures of PV pumping irrigation are considered. - Abstract: The combined impact of global climate change and increasing human activities has led to the severe deterioration of grasslands in China. Using the solar irrigation systems is an effective way for sustaining pasture lands in arid regions. A solar irrigation system is the device that uses the solar cell from the sun's radiation to generate electricity for driving the pump. And photovoltaic pump consists of an array of photovoltaic cells and pumps water from a well or reservoir for irrigation. Although ecologists and organizations constantly work and find ways to conserve grasslands through irrigation systems that use solar energy, issues on water resources are not yet thoroughly discussed. This paper takes into account the main factors in the study of water resources, including precipitation and groundwater, to analyze the feasibility of using a photovoltaic (PV) pumping irrigation. The appropriate area for such a PV pumping irrigation in Qinghai Province is also presented. The results show that the grasslands appropriate for PV pumping cover about 8.145 million ha, accounting for 22.3% of the grasslands in the entire province. Finally, the problems and countermeasures of PV pumping irrigation, including the impact on regional water balance, groundwater level and highland permafrost, are also considered.

  11. Irrigation in endodontic treatment.

    Science.gov (United States)

    Basrani, Bettina

    2011-01-01

    The primary endodontic treatment goal is to optimize root canal disinfection and to prevent reinfection. Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal system. In this review of the literature, various irrigants and the interactions between irrigants are discussed and new delivery systems are introduced.

  12. Re-engineering closing watersheds: The negotiated expansion of a dam-based irrigation system in Bolivia

    NARCIS (Netherlands)

    Rocha Lopez, R.F.; Vincent, L.F.; Rap, E.R.

    2015-01-01

    The expansion of the Totora Khocha dam-based irrigation system in the Pucara watershed is a case of planned re-engineering of a closing watershed. This article shows how, when irrigation systems expand in space and across boundaries to capture new water, they also involve new claims by existing and

  13. Never look a gift horse in the mouth or should you? Upgrading the Hare irrigation system in Southern Ethiopia

    NARCIS (Netherlands)

    Wegerich, K.; Dubale, T.; Bruins, B.

    2008-01-01

    The upgrading of the Hare Irrigation System was a joint undertaking of the governments of Ethiopia and the People's Republic of China. After completion of the primary and the secondary canals, farmers refused to take over responsibility of the system. Existing literature on the Hare Irrigation

  14. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  15. a System Dynamics Approach for Looking at the Human and Environmental Interactions of Community-Based Irrigation Systems in New Mexico

    Science.gov (United States)

    Ochoa, C. G.; Tidwell, V. C.

    2012-12-01

    In the arid southwestern United States community water management systems have adapted to cope with climate variability and with socio-cultural and economic changes that have occurred since the establishment of these systems more than 300 years ago. In New Mexico, the community-based irrigation systems were established by Spanish settlers and have endured climate variability in the form of low levels of precipitation and have prevailed over important socio-political changes including the transfer of territory between Spain and Mexico, and between Mexico and the United States. Because of their inherent nature of integrating land and water use with society involvement these community-based systems have multiple and complex economic, ecological, and cultural interactions. Current urban population growth and more variable climate conditions are adding pressure to the survival of these systems. We are conducting a multi-disciplinary research project that focuses on characterizing these intrinsically complex human and natural interactions in three community-based irrigation systems in northern New Mexico. We are using a system dynamics approach to integrate different hydrological, ecological, socio-cultural and economic aspects of these three irrigation systems. Coupled with intensive field data collection, we are building a system dynamics model that will enable us to simulate important linkages and interactions between environmental and human elements occurring in each of these water management systems. We will test different climate variability and population growth scenarios and the expectation is that we will be able to identify critical tipping points of these systems. Results from this model can be used to inform policy recommendations relevant to the environment and to urban and agricultural land use planning in the arid southwestern United States.

  16. Simulated optimization of crop yield through irrigation system design and operation based on the spatial variability of soil hydrodynamic properties

    International Nuclear Information System (INIS)

    Gurovich, L.; Stern, J.; Ramos, R.

    1983-01-01

    Spatial autocorrelation and kriging techniques were applied to soil infiltrability data from a 20 hectare field, to separate homogeneous irrigation units. Border irrigation systems were designed for each unit and combinations of units by using DESIGN, a computer model based on soil infiltrability and hydraulics of surface water flow, which enables optimal irrigation systems to be designed. Water depths effectively infiltrated at different points along the irrigation run were determined, and the agronomic irrigation efficiency of the unit evaluated. A modification of Hanks' evapotranspiration model, PLANTGRO, was used to evaluate plant growth, relative crop yield and soil-water economy throughout the growing season, at several points along each irrigation unit. The effect of different irrigation designs on total field yield and total water used for irrigation was evaluated by integrating yield values corresponding to each point, volume and inflow time during each irrigation. For relevant data from winter wheat grown in the central area of Chile during 1981, simulation by an interactive and sequentially recurrent use of DESIGN and PLANTGRO models, was carried out. The results obtained indicate that, when a field is separated into homogeneous irrigation units on the basis of the spatial variability of soil infiltrability and the border irrigation systems are designed according to soil characteristics, both a significant yield increase and less water use can be obtained by comparison with other criteria of field zonification for irrigation management. The use of neutrometric determinations to assess soil-water content during the growing season, as a validation of the results obtained in this work, is discussed. (author)

  17. Impact of the Invasion of Modern Irrigation Systems in the Oasis of Lahmar, South Western Algeria

    Directory of Open Access Journals (Sweden)

    Cherif Rezzoug

    2016-06-01

    Full Text Available For centuries, the oasis dwellers of the Algerian Sahara exploit the groundwater through the use of traditional techniques such as foggaras (traditional technique of irrigation in the Algerian southwest, and wells of chadouf (pendulum wells. In the oasis of Lahmar, in Southwest Algeria, the farmers use foggaras (known by the name of foggaras ain - foggaras of source to irrigate their fields. Nowadays though, due to the indiscriminate use of modern systems (boreholes and pumps to procure water for irrigation and urban consumption, over-exploitation and drying off of water sources have been one the rise while traditional techniques are becoming day by day out of service and, what is more, palm groves have almost completely disappeared.

  18. Adubarroz: a brazilian experience for fertilization and liming recommendation of irrigated rice via computational system

    Directory of Open Access Journals (Sweden)

    Felipe de Campos Carmona

    Full Text Available ABSTRACT: Recommendations for fertilizing irrigated rice in southern Brazil have been constantly evolving over years. In this process, the influence of factors such as the development cycle of varieties and sowing period increased. Thus, computational tools that take these and others important aspects into account can potentiate the fertilization response of rice. This study describes the computer program "ADUBARROZ". The software provides recommendations of fertilizer rates and liming requirements of irrigated rice, based on information entered by the user. The system takes various factors that regulate the crop response to fertilization into account. A final report is established with the graphical representation of input management over time.

  19. Final Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin, California

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2010-01-01

    This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and

  20. Detection of Class I and II integrons for the assessment of antibiotic and multidrug resistance among Escherichia coli isolates from agricultural irrigation waters in Bulacan, Philippines.

    Science.gov (United States)

    Paraoan, Cielo Emar M; Rivera, Windell L; Vital, Pierangeli G

    2017-05-04

    Contaminated irrigation water may greatly affect not only the quality of produce but also the people exposed to it. In this study, agricultural irrigation waters in Bulacan, Philippines were assessed and found to be contaminated with Escherichia coli (E. coli) ranging from 0.58 to 4.51 log 10 CFU/mL. A total of 79 isolates of E. coli were confirmed through polymerase chain reaction (PCR) amplifying the uidA gene and were tested for phenotypic resistance using 10 antimicrobials through the Kirby-Bauer disc diffusion method. Forty-six isolates (58.22%) were noted to be multidrug resistant (MDR) with high resistance rate to cephalothin, tetracycline, streptomycin, ampicillin, trimethoprim, nalidixic acid, and chloramphenicol. Moreover, this study also examined the prevalence of Class I and II integrons accounting to 67.39% and 17.39%, respectively, of the MDR E. coli strains using multiplex PCR. The results imply that the agricultural water used in Bulacan is contaminated with the fecal material of man or other animals present in the area, and the presence of MDR bacteria, which pose a potential threat to individuals in these areas, is alarming. In addition, detection of integrons could be a good marker for the identification of MDR isolates. Lastly, this study could develop strategies for the proper management of farming sites leading to the detection of food-borne pathogens and prevention of infectious diseases.

  1. Reforming the Public Agricultural Extension System in China ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Reforming the Public Agricultural Extension System in China : Supporting Rural Innovation. The public agricultural extension system has played a critical role in Chinese agricultural development over the past few decades. There is growing evidence that since the mid-1990s the system has failed to provide new and ...

  2. On the Waterfront. Water Distribution, Technology and Agrarian Change in a South Indian Canal Irrigation System

    NARCIS (Netherlands)

    Mollinga, P.P.

    2003-01-01

    This book analyses the struggle over water in a large-scale irrigation system in Raichur District, Karnataka, South India. It looks at water control as a simultaneously technical, managerial and socio-political process. The triangle of accommodation of different categories of farmers (head-enders

  3. The Middle Eastern Regional Irrigation Management Information Systems project-update

    Science.gov (United States)

    The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...

  4. Grey water treatment in a series anaerobic – Aerobic system for irrigation

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2010-01-01

    This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant

  5. The history of the construction of main state irrigation systems in the postwar period

    Directory of Open Access Journals (Sweden)

    A. N. Chepurda

    2017-03-01

    It was established that the construction of large public irrigation systems in Ukraine started in 1951 stated that hydro construction that unfolded in the south of Ukraine, opened prospects to final elimination of the impact of drought and dry winds, the prospects for an unprecedented economic prosperity of the area.

  6. A low cost microcontroller-based automated irrigation system for two ...

    African Journals Online (AJOL)

    Maintaining soil water level is a necessary and pre-requisite for optimum crops production. Water is the essential elements for proper growth of crops in its optimum level; however its excessiveness should be avoided. Since irrigation is a dominant consumer of water, there must be a system which regulates the level of water ...

  7. Key Challenges and Opportunities for Conjunctive Management of Surface and Groundwater in Mega-Irrigation Systems: Lower Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    Frank van Steenbergen

    2015-11-01

    Full Text Available This paper focuses on the scope of conjunctive management in the Lower Indus part of the Indus Basin Irrigation System (IBIS, and the contribution this could make towards food security and socio-economic development. The total Gross Command Area (GCA of the Lower Indus is 5.92 Mha, with a cultivable command area (CCA of 5.43 Mha, most of which is in Sindh Province. There is a limited use of groundwater in Sindh (about 4.3 Billion Cubic Meter (BCM for two reasons: first, there is a large area where groundwater is saline; and second, there is a high surface irrigation supply to most of the canal commands, e.g., average annual supply to rice command is 1723 mm, close to the annual reference crop evapotranspiration for the area, while there is an additional annual rainfall of about 200 mm. These high irrigation allocations, even in areas where groundwater is fresh, create strong disincentives for farmers to use groundwater. Consequently, areas are waterlogged to the extent of 50% and 70% before and after the monsoon, respectively, which contributes to surface salinity through capillary rise. In Sindh, about 74%–80% of the available groundwater recharge is lost in the form of non-beneficial evaporation. This gives rise to low cropping intensities and yields compared to fresh groundwater areas elsewhere in the IBIS. The drought of 1999–2002 has demonstrated a reduction in waterlogging without any corresponding reduction in crop yields. Therefore, in order to efficiently meet current water requirements of all the sectors, i.e., agriculture, domestic and industrial, an ab initio level of water reallocation and efficient water management, with consideration to groundwater quality and its safe yield, in various areas are recommended. This might systematically reduce the waterlogged areas, support greater cropping intensity than is currently being practiced, and free up water for horizontal expansion, such as in the Thar Desert.

  8. Sensor-Based Model Driven Control Strategy for Precision Irrigation

    Directory of Open Access Journals (Sweden)

    Camilo Lozoya

    2016-01-01

    Full Text Available Improving the efficiency of the agricultural irrigation systems substantially contributes to sustainable water management. This improvement can be achieved through an automated irrigation system that includes a real-time control strategy based on the water, soil, and crop relationship. This paper presents a model driven control strategy applied to an irrigation system, in order to make an efficient use of water for large crop fields, that is, applying the correct amount of water in the correct place at the right moment. The proposed model uses a predictive algorithm that senses soil moisture and weather variables, to determine optimal amount of water required by the crop. This proposed approach is evaluated against a traditional irrigation system based on the empirical definition of time periods and against a basic soil moisture control system. Results indicate that the use of a model predictive control in an irrigation system achieves a higher efficiency and significantly reduce the water consumption.

  9. Agriculture

    International Nuclear Information System (INIS)

    Goetz, B.; Riss, A.; Zethner, G.

    2001-01-01

    This chapter deals with fertilization techniques, bioenergy from agriculture, environmental aspects of a common agriculture policy in the European Union, bio-agriculture, fruit farming in Austria and with environmental indicators in agriculture. In particular renewable energy sources (bio-diesel, biogas) from agriculture are studied in comparison to fossil fuels and other energy sources. (a.n.)

  10. Normative structures, collaboration and conflict in irrigation; a case study of the Píllaro North Canal Irrigation System, Ecuadorian Highlands

    NARCIS (Netherlands)

    Hoogesteger van Dijk, J.D.

    2015-01-01

    This paper analyzes conflict and collaboration and their relation to normative structures based on a case study of the history and external interventions of the Píllaro North Canal Irrigation System in the Ecuadorian Highlands. It does so by using Ostrom’s framework for analyzing the sustainability

  11. Evaluation of the dose to man in relation to the behavior of tritium from irrigation water in agricultural crops

    International Nuclear Information System (INIS)

    Kirchmann, R.; Bruwaene, R. van; Koch, G.; Grauby, A.; Delmas, J.; Athalye, V.

    1977-01-01

    A research program on the transfer of tritium from the irrigation water in the soil-plant environment provides valuable ecological information on the effects of tritium releases from nuclear installations under temperate humide and mediterranean climatic conditions. Field studies are carried out on experimental plots by spraying the crops with irrigation water contaminated with tritium on a single dose, the reference level chosen is 1 nCi/litre. The following crops are investigated: prairie, rye-grass, potato, pea, barley, carrot and sugarbeet as temperate region cultures, and vineyard, olive-tree and orange-tree as mediterranean cultures. Soil and plants samples are collected for radioassay to determine the tritium incorporation in tissue water and organic matter fractions. The tritium activity in these crops after harvest is correlated to the level of radiation dose received through human diet [fr

  12. Using SWAT-MODFLOW to simulate groundwater flow and groundwater-surface water interactions in an intensively irrigated stream-aquifer system

    Science.gov (United States)

    Wei, X.; Bailey, R. T.

    2017-12-01

    Agricultural irrigated watersheds in semi-arid regions face challenges such as waterlogging, high soil salinity, reduced crop yield, and leaching of chemical species due to extreme shallow water tables resulting from long-term intensive irrigation. Hydrologic models can be used to evaluate the impact of land management practices on water yields and groundwater-surface water interactions in such regions. In this study, the newly developed SWAT-MODFLOW, a coupled surface/subsurface hydrologic model, is applied to a 950 km2 watershed in the Lower Arkansas River Valley (southeastern Colorado). The model accounts for the influence of canal diversions, irrigation applications, groundwater pumping, and earth canal seepage losses. The model provides a detailed description of surface and subsurface flow processes, thereby enabling detailed description of watershed processes such as runoff, infiltration, in-streamflow, three-dimensional groundwater flow in a heterogeneous aquifer system with sources and sinks (e.g. pumping, seepage to subsurface drains), and spatially-variable surface and groundwater exchange. The model was calibrated and tested against stream discharge from 5 stream gauges in the Arkansas River and its tributaries, groundwater levels from 70 observation wells, and evapotranspiration (ET) data estimated from satellite (ReSET) data during the 1999 to 2007 period. Since the water-use patterns within the study area are typical of many other irrigated river valleys in the United States and elsewhere, this modeling approach is transferable to other regions.

  13. Effectiveness of various irrigation activation protocols and the self-adjusting file system on smear layer and debris removal.

    Science.gov (United States)

    Çapar, İsmail Davut; Aydinbelge, Hale Ari

    2014-01-01

    The purpose of the present study is to evaluate smear layer generation and residual debris after using self-adjusting file (SAF) or rotary instrumentation and to compare the debris and smear layer removal efficacy of the SAF cleaning/shaping irrigation system against final agitation techniques. One hundred and eight maxillary lateral incisor teeth were randomly divided into nine experimental groups (n = 12), and root canals were prepared using ProTaper Universal rotary files, with the exception of the SAF instrumentation group. During instrumentation, root canals were irrigated with a total of 16 mL of 5% NaOCl. For final irrigation, rotary-instrumented groups were irrigated with 10 mL of 17% EDTA and 10 mL of 5% NaOCl using different irrigation agitation regimens (syringe irrigation with needles, NaviTip FX, manual dynamic irrigation, CanalBrush, EndoActivator, EndoVac, passive ultrasonic irrigation (PUI), and SAF irrigation). In the SAF instrumentation group, root canals were instrumented for 4 min at a rate of 4 mL/min with 5% NaOCl and received a final flush with same as syringe irrigation with needles. The surface of the root dentin was observed using a scanning electron microscope. The SAF instrumentation group generated less smear layer and yielded cleaner canals compared to rotary instrumentation. The EndoActivator, EndoVac, PUI, and SAF irrigation groups increased the efficacy of irrigating solutions on the smear layer and debris removal. The SAF instrumentation yielded cleaner canal walls when compared to rotary instrumentation. None of the techniques completely removed the smear layer from the root canal walls. © 2014 Wiley Periodicals, Inc.

  14. Monitoring and risk assessment of pesticides in irrigation systems in Debra Zeit, Ethiopia.

    Science.gov (United States)

    Teklu, Berhan M; Adriaanse, Paulien I; Van den Brink, Paul J

    2016-10-01

    Since Ethiopia is going through a rapid transformation of its agricultural sector, we assessed the human health and environmental risks due to the past use of organochlorine pesticides (OCPs) as well as the risks of the current pesticide use by farmers. A monitoring programme and risk assessment was carried out for the Wedecha-Belbela irrigation system in the Debra Zeit area. The Wedecha and Belbela rivers and adjacent temporary ponds were sampled and examined for the presence of OCPs between August and October 2014, while data on the current pesticide use by small- and large-scale farmers was collected by interviews. The usage patterns were evaluated for risks of using the river or temporary ponds as source of drinking water and for risks for the aquatic ecosystems in the river and ponds with the aid of the PRIMET_Registration_Ethiopa_1.1 model. The samples were collected in five sampling periods, and results indicate that most of the 18 target OCPs were not detected above the detection limit, while g-chlordane may pose chronic risks when surface water is used as drinking water. Endosulfan and heptachlor pose risks to aquatic organisms at second-tier level, while for heptachlor-epoxide B, g-chlordane and b-BHC only risks could be determined at the first tier due to a lack of data. For all nine pesticides used by small-scale farmers the calculated acute risks to humans were low. Second tier risk assessment for the aquatic ecosystem indicated that lambda-cyhalothrin, endosulfan, profenofos, and diazinon may pose high risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Irrigation pricing policies and its impact on agricultural inputs demand in Tunisia: a DEA-based methodology.

    Science.gov (United States)

    Frija, Aymen; Wossink, Ada; Buysse, Jeroen; Speelman, Stijn; Van Huylenbroeck, Guido

    2011-09-01

    This paper estimates farmers' individual irrigation water demand functions employing the information hidden in individual farmers' technical efficiency. This information is extracted through the development of a new deductive methodology based on inverse Data Envelopment Analysis (DEA) models. The empirical results for Tunisia show that farmers who are more technically efficient have less elastic irrigation water demand functions; these farmers would adjust demand only to a limited extent and they can afford the water price. In contrast, water pricing significantly affects those that are less efficient. These farmers shift towards a different cropping pattern using significantly less water and more land when the price of water increases. Thus, higher water prices would threaten this category's livelihood if their efficiency is not improved. However, if the technical efficiency of these farmers were to improve, then it would be more difficult to reach water saving objectives since their demand will also become highly inelastic. The findings have important implications in view of the objectives of Tunisia water policy which include:full cost recovery, continuity of the irrigation activity, and water saving at the national level. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  16. Limiting nutrient emission from a cut rose closed system by high-flux irrigation and low nutrient concentrations?

    NARCIS (Netherlands)

    Baas, R.; Berg, van der D.

    2004-01-01

    A two-year project was aimed at decreasing nutrient emission from closed nutrient systems by using high irrigation rates in order to allow lower EC levels in the presence of accumulated Na and Cl. Experimental variables were growing media, irrigation frequencies, EC and NaCl concentrations for cut

  17. Environmental action system for the Irrigation District El Juncal

    International Nuclear Information System (INIS)

    Torrente, Armando; Perea, J; Salinas F

    1999-01-01

    This district has a cover of about 3100 hectares in which 260 users are located, the main agriculture activity is rice production followed by corn, sorghum and cotton. The principal environmental impact and menaces were identified by Leopold and Batell Colombus methods it was found that the most important action to develop in the district must be oriented to support the administrative organization of the community and all of those action related to the environmental action in the district. These actions must be affective and objective for the development of environmental and development policies of the district

  18. Mapping organizational linkages in the agricultural innovation system of Azerbaijan

    NARCIS (Netherlands)

    Temel, T.

    2004-01-01

    This study describes the evolving context and organisational linkages in the agricultural innovation system of Azerbaijan and suggests ways to promote effective organisational ties for the development, distribution and use of new or improved information and knowledge related to agriculture.

  19. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    Science.gov (United States)

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  20. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured

  1. Assessing the performance of surface and subsurface drip systems on irrigation water use efficiency of citrus orchards in Spain

    Science.gov (United States)

    Amparo Martinez-Gimeno, Maria; Provenzano, Giuseppe; Bonet, Luis; Intrigliolo, Diego S.; Badal, Eduardo; Ballestrer, Carlos

    2017-04-01

    In Mediterranean countries, water scarcity represents a real environmental concern at present and, according to the current climate change models predictions, the problem will be amplified in the future. In order to deal with this issue, application of strategies aimed to optimize the water resources in agriculture and to increase water use efficiency have become essential. On the one hand, it is important the election of the appropriate irrigation system for each particular case. On the other hand, identify the best management options for that specific irrigation system is crucial to optimize the available water resources without affecting yield. When using water saving strategies, however, it is a must to monitor the soil and/or crop water status in order to know the level of stress reached by the plants and to avoid levels that could lead to detrimental effects on yield. Stem water potential, ψstem, expressing the instantaneous condition of crop water stress, is considered a robust indicator of crop water status. The main objective of this study was to assess the performance of a surface (DI) and subsurface (SDI) drip irrigation system in a citrus orchard with 7 (DI7, SDI7) or 14 emitters (DI14, SDI14) per plant, in terms of irrigation water use efficiency (IWUE) and possible amount of water saving. The experiment was carried out in 2014 and 2015 in Alberique, Spain, (39˚ 7'31" N, 0˚ 33'17" W), in a commercial orchard (Citrus clementina, Hort. ex Tan. 'Arrufatina') in which four different treatments with three replications (12 sub-plots) were prepared according to a complete randomized block design. Irrigation doses and timing were scheduled based on the estimated maximum crop evapotranspiration corrected according to measurements of ψstem and soil water content, and weather forecasts. In order to limit the maximum crop water stress, the thresholds of ψstem were assumed in the range between -0.8 and -1.0 MPa from January to June and between -1.0 and -1

  2. [Responses of antioxidation system of Cynodon dactylon to recirculated landfill leachate irrigation].

    Science.gov (United States)

    Wang, Ruyi; He, Pinjing; Shao, Liming; Zhang, Bin; Li, Guojian

    2005-05-01

    With pot experiment, this paper studied the membrane lipid peroxidation and the variations of antioxidation system in Cynodon dactylon under recirculated landfill leachate irrigation. The results showed that when irrigated with low dilution ratio ( 25%), there existed an obvious negative fect on Cynodon dactylon, i.e., the chlorophyll a/b ratio decreased, while cell membrane permeability and MDA and H2O2 contents increased, which meant that the membrane lipid peroxidation was accelerated. The contents antioxidants AsA, GSH and Car also showed the similar trend, i.e., they increased with increasing leachate dilution ratio when irrigated with low dilution ratio leachate, but decreased under medium or high dilution ratio leachate irrigation. Among three test anti-oxidative enzymes, SOD and POD activities showed a similar change test antioxidants, and POD activity was more sensitive, while CAT activity was on the contrary. The contents test antioxidants and the activities of SOD and POD were negatively and significantly correlated to MDA content, indicating that they might play an important role in preventing Cynodon dactylon from cell membrane lipid peroxdation.

  3. Monitoring of the humus status of soils of the Ingulets irrigation system

    Science.gov (United States)

    Lozovitsii, P. S.

    2012-03-01

    The results of long-term studies (1957-2007) of the changes in the morphology of soil profiles and in the reserves and fractional composition of the humus in the soils of the Ingulets irrigation system are discussed. After 50 years of irrigation, the boundaries of the genetic horizons shifted downward by 15-30 cm. The redistribution of the humus took place: its content decreased to a low level in the plow layer of the irrigated and rainfed soils and significantly increased in the layer of 60-100 cm so that the reserves of humus in the layer of 0-100 cm somewhat increased and corresponded to a moderate level. The distribution of humus in the soil profiles was characterized by the gradual lowering down the soil profile. The concentration of nitrogen in the humus of the irrigated southern chernozems was very low. The degree of humification of the soil organic matter was high. The humus was of the humate type in the upper horizons and of the fulvate-humate type in the lower horizons.

  4. Behavior, balance and distribution of sediments within irrigation systems. Application to Pakistan

    International Nuclear Information System (INIS)

    Vabre, Alexandre

    2000-01-01

    This PhD work is part of a research program between Cemagref, CEA and IWMI. It aims at studying the sediment deposition phenomena in irrigation Systems of Pakistan. Indeed, many Systems are subject to an excessive sediment deposition that widely disturbs their functioning. A pragmatic approach of the problem is chosen, and the sediment deposition description is realized through global methods. This choice is done in order to allow the developed methods and tools to be utilized directly by the irrigation managers. A global numerical modeling method (GSM) is proposed. It lies on classical laws of sediment transport but a new formalism is proposed for the expression of the deposition. It's a relationship between the sediment trapping efficiency of a reach and its sediment transport capacity. Also, criteria are defined for the definition of homogeneous reaches in the system. An outline of GSM is implemented on a sediment deposition data set of an actual System in Pakistan (Jamrao). A measurement campaign using radio-activable tracers is then carried out on this site to complete the GSM working data set Also, such a campaign with it only is a description method of the deposition phenomena in the irrigation System. The strength of the modeling approach laws is then tested on another case study of irrigation System in Pakistan (Chashma). The results are very much encouraging because the GSM model could be calibrated and validated on several actual deposition trends with quite moderate errors for such a tool. Also, the constituted data set from the tracer campaign was found minimum and sufficient to implement the GSM. Moreover, it has been possible to use the GSM for irrigation management applications. A design criterion for stable canals is proposed. And the GSM has allowed to identify an hydraulic operational scenario on an irrigation System that decreases the deposition. The perspectives of this work are to test the GSM approach on other data sets and then to

  5. Increase globe artichoke cropping sustainability using sub-surface drip-irrigation systems in a Mediterranean coastal area for reducing groundwater withdrawal

    Science.gov (United States)

    Mantino, Alberto; Marchina, Chiara; Bonari, Enrico; Fabbrizzi, Alessandro; Rossetto, Rudy

    2017-04-01

    During the last decades in coastal areas of the Mediterranean basin, human growth posed severe stresses on freshwater resources due to increasing demand by agricultural, industrial and civil activities, in particular on groundwater. This in turn led to worsening of water quality, loss/reduction of wetlands, up to soil salinization and abandonment of agricultural areas. Within the EU LIFE REWAT project a number of demonstration measures will take place in the lower Cornia valley (Livorno, Italy), both structural (pilot) and non-structural (education, dissemination and capacity building), aiming at achieving sustainable and participated water management. In particular, the five demonstration actions are related to: (1) set up of a managed aquifer recharge facility, (2) restoration of a Cornia river reach, (3) water saving in the civil water supply sector, (4) water saving in agriculture, (5) reuse of treated wastewater for irrigation purposes. Thus, the REWAT project general objective is to develop a new model of governance for sustainable development of the lower Cornia valley based on the water asset at its core. As per water use in agriculture, the lower Cornia valley is well known for the horticultural production. In this regard, globe artichoke (Cynara cardunculus L. var. scolymus L. (Fiori)) crops, a perennial cool-season vegetable, cover a surface of about 600 ha. In order to increase stability and productivity of the crop, about 2000 - 4000 m3 ha-1 yr-1 of irrigation water is required. Recent studies demonstrated that yield of different crops increases using Sub-surface Drip-Irrigation (SDI) system under high frequency irrigation management enhancing water use efficiency. In the SDI systems, the irrigation water is delivered to the plant root zone, below the soil surface by buried plastic tubes containing embedded emitters located at regular spacing. Within the LIFE REWAT, the specific objectives of the pilot on irrigation efficiency is to (i) demonstrate the

  6. Apical negative pressure irrigation versus syringe irrigation: a systematic review of cleaning and disinfection of the root canal system.

    Science.gov (United States)

    Konstantinidi, E; Psimma, Z; Chávez de Paz, L E; Boutsioukis, C

    2017-11-01

    The aim of this study was to systematically review and critically analyse the published data on the treatment outcome (primary outcome) and on the cleaning and disinfection of root canals (secondary outcomes) achieved by negative pressure irrigation as compared to syringe irrigation. An electronic search was conducted in EMBASE, LILACS, PubMed, SciELO, Scopus and Web of Knowledge using both free-text keywords and controlled vocabulary. Additional studies were sought through hand searching of endodontic journals and of the relevant chapters of endodontic textbooks. No language restriction was imposed. The retrieved studies were screened by two reviewers according to predefined criteria. Included studies were critically appraised and the extracted data were arranged in tables. The electronic search and hand search retrieved 489 titles. One clinical study and 14 in vitro studies were finally included in the review; none of these studies assessed treatment outcome, four studies assessed the antimicrobial effect, seven studies evaluated the removal of pulp tissue remnants, and four studies investigated the removal of hard tissue debris or both hard tissue debris and pulp tissue remnants. Poor standardization and description of the protocols was evident. Inconclusive results were reported about the cleaning and disinfection accomplished by the two irrigation methods. Negative pressure irrigation was more effective under certain conditions when compared to suboptimal syringe irrigation; however, the variability of the protocols hindered quantitative synthesis. There is insufficient evidence to claim general superiority of any one of these methods. The level of the available evidence is low, and the conclusions should be interpreted with caution. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    Science.gov (United States)

    Clark, Michael; Tilman, David

    2017-06-01

    Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.

  8. Evaluation of reservoir operation strategies for irrigation in the Macul Basin, Ecuador

    Directory of Open Access Journals (Sweden)

    Vicente Tinoco

    2016-03-01

    Full Text Available Study focus: An irrigation project is planned in the study basin for developing the agriculture as the main income in the region. The proposed water system comprises three large reservoirs damming the rivers Macul and Maculillo. The river basin planning and operation were investigated by modelling alternative reservoir operation strategies aiming at a sustainable balance between irrigation and river ecology by integrated reservoir/river management. New hydrological insights for the region: After simulation of long-term meteorological series in a model of the integrated water system, covering several historical extreme events, results indicate that the planned irrigation volumes are higher than the available water for a sustainable irrigation strategy. Two lines of action are suggested for reaching the target irrigation demands: design of a deficit irrigation system, and modifications to the reservoir's spillway height. Keywords: Reservoir operation, Conceptual model, Irrigation

  9. Sistema de informação geográfica para mapeamento da renda líquida aplicado no planejamento da agricultura irrigada Algorithm to mapping net income applied in irrigated agriculture planning

    Directory of Open Access Journals (Sweden)

    Wilson A. Silva

    2008-03-01

    Full Text Available O objetivo deste trabalho foi desenvolver um algoritmo na linguagem computacional MATLAB para aplicações em sistemas de informações geográficas, visando ao mapeamento da renda líquida maximizada de cultivos irrigados. O estudo foi desenvolvido para as culturas do maracujá, da cana-de-açúcar, do abacaxi e do mamão, em área de aproximadamente 2.500 ha, localizada no município de Campos dos Goytacazes, norte do Estado do Rio de Janeiro. Os dados de entrada do algoritmo foram informações edafoclimáticas, funções de resposta das culturas à água, dados de localização geográfica da área e índices econômicos referentes ao custo do processo produtivo. Os resultados permitiram concluir que o algoritmo desenvolvido se mostrou eficiente para o mapeamento da renda líquida de cultivos irrigados, sendo capaz de localizar áreas que apresentam maiores retornos econômicos.The objective of this work was to develop an algorithm in MATLAB computational language to be applied in geographical information systems to map net income irrigated crops to plan irrigated agriculture. The study was developed for the crops of passion fruit plant, sugarcane, pineapple and papaya, in an area of approximately 2,500 ha, at Campos dos Goytacazes, located at north of the State of Rio de Janeiro, Brazil. The algorithm input data were: information about soil, climate, crop water response functions, geographical location and economical cost indexes of the productive process. The results allowed concluding that developed algorithm was efficient to map net income of irrigated crops, been able to locate areas that present larger economical net income.

  10. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    Science.gov (United States)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  11. Traditional Irrigation Management in Betmera-Hiwane, Ethiopia: The Main Peculiarities for the Persistence of Irrigation Practices

    Institute of Scientific and Technical Information of China (English)

    Solomon Habtu; Kitamura Yoshinobu

    2006-01-01

    Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C.,while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: the presence of communally constructed local rules, locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.

  12. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  13. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa - A review

    Science.gov (United States)

    Biazin, Birhanu; Sterk, Geert; Temesgen, Melesse; Abdulkedir, Abdu; Stroosnijder, Leo

    Agricultural water scarcity in the predominantly rainfed agricultural system of sub-Saharan Africa (SSA) is more related to the variability of rainfall and excessive non-productive losses, than the total annual precipitation in the growing season. Less than 15% of the terrestrial precipitation takes the form of productive ‘green’ transpiration. Hence, rainwater harvesting and management (RWHM) technologies hold a significant potential for improving rainwater-use efficiency and sustaining rainfed agriculture in the region. This paper outlines the various RWHM techniques being practiced in SSA, and reviews recent research results on the performance of selected practices. So far, micro-catchment and in situ rainwater harvesting techniques are more common than rainwater irrigation techniques from macro-catchment systems. Depending on rainfall patterns and local soil characteristics, appropriate application of in situ and micro-catchment techniques could improve the soil water content of the rooting zone by up to 30%. Up to sixfold crop yields have been obtained through combinations of rainwater harvesting and fertiliser use, as compared to traditional practices. Supplemental irrigation of rainfed agriculture through rainwater harvesting not only reduces the risk of total crop failure due to dry spells, but also substantially improves water and crop productivity. Depending on the type of crop and the seasonal rainfall pattern, the application of RWHM techniques makes net profits more possible, compared to the meagre profit or net loss of existing systems. Implementation of rainwater harvesting may allow cereal-based smallholder farmers to shift to diversified crops, hence improving household food security, dietary status, and economic return. The much needed green revolution and adaptations to climate change in SSA should blend rainwater harvesting ideals with agronomic principles. More efforts are needed to improve the indigenous practices, and to disseminate best

  14. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.

    2017-11-06

    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB and ARGs. This book chapter explores the native resistome of soils and collates information on whether soil perturbation through wastewater reuse can lead to accumulation of ARB and ARGs in agricultural soils. Special emphasis was given to ARGs, particularly the blaNDM gene that confers resistance against carbapenem. The fate and persistence of these emerging ARGs have not been studied in depth; however, this book chapter reviews available information on other ARGs to gain insight into the possibility of horizontal gene transfer events in wastewater-irrigated soils and plant surfaces and tissues. Lastly, this book chapter visits solar irradiation and bacteriophage treatment as intervention options to limit dissemination of emerging contaminant threats.

  15. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.; Hong, Pei-Ying

    2017-01-01

    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB and ARGs. This book chapter explores the native resistome of soils and collates information on whether soil perturbation through wastewater reuse can lead to accumulation of ARB and ARGs in agricultural soils. Special emphasis was given to ARGs, particularly the blaNDM gene that confers resistance against carbapenem. The fate and persistence of these emerging ARGs have not been studied in depth; however, this book chapter reviews available information on other ARGs to gain insight into the possibility of horizontal gene transfer events in wastewater-irrigated soils and plant surfaces and tissues. Lastly, this book chapter visits solar irradiation and bacteriophage treatment as intervention options to limit dissemination of emerging contaminant threats.

  16. Systemic perspectives on scaling agricultural innovations. A review

    NARCIS (Netherlands)

    Wigboldus, Seerp; Klerkx, Laurens; Leeuwis, Cees; Schut, Marc; Muilerman, Sander; Jochemsen, Henk

    2016-01-01

    Agricultural production involves the scaling of agricultural innovations such as disease-resistant and drought-tolerant maize varieties, zero-tillage techniques, permaculture cultivation practices based on perennial crops and automated milking systems. Scaling agricultural innovations should take

  17. Economic Feed Utilization for Dairy Buffalo Under Intensive Agricultural System

    Directory of Open Access Journals (Sweden)

    I. Soliman

    2010-02-01

    Full Text Available The national strategies for the irrigated intensive agricultural system in developing countries should focus upon Producing less expensive milk from dairy buffaloes that, efficiently, utilize the limited expensive produced feed resources. Therefore, planning for the least cost feeds combination is the most recommended approach to keep buffalo milk price at a competitive level and being low enough to make milk available for the major proportion of the low-income households, particularly “Vulnerable Groups”. Estimation of the least cost feed ration combination of the limited expensive feed resources were conducted from a recent farm survey of the dairy buffalo performances and the feed use pattern in Egypt. The estimated average production elasticity of fodder, concentrate feeds mix and straw, implies that their shares in generated buffalo milk income are 41.7%, 35%, and 23.3%, respectively.. The response of the human labor was of negative direction and statistically insignificant. This means that the labor used per dairy buffalo was beyond the economic level, that reflects the excess farm-family labor involved in such activity, because they have almost nil opportunity income of off farm work. The other capital inputs have small positive effect on milk production, The average marginal return from milk per onedollar expenditure reached $.1.08 for fodder, and $ 1.04 for concentrated feed mix, i.e. it is feasible to expand the usage of fodder more than concentrates. The wheat straw has shown uneconomic efficiency. Therefore, it is recommended to limit its level in the ration. The least cost ration reduces feed cost of one ton of buffalo milk equivalent (4% fat by 22%. The less costs of production will strength the competition of domestic supply either against in the international export market or against the dumping policies followed by exporters to the domestic market.

  18. ENHANCEMENT OF THE CREDIT GRANTING SYSTEM OF AGRICULTURAL PRODUCERS

    Directory of Open Access Journals (Sweden)

    Yuliya Evgenievna Klishina

    2015-08-01

    Full Text Available The credit granting system of agricultural enterprises which developed now doesn’t promote development of agricultural production in spite of the facts that are accepted and are financed by the state of the development program of agrarian and industrial complex in various directions. Financial credit relations in the sphere of agrarian and industrial complex are in a stage of formation and have no system nature, in them features of agricultural production are insufficiently considered.In article the directions of development of credit support of agricultural industry, participation of the state in system of agricultural crediting are considered, offers on forming of a three-level credit granting system of agricultural industry which is urged to provide availability of credit resources to all categories of agricultural producers are made.

  19. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    Science.gov (United States)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  20. Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system.

    Science.gov (United States)

    Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas

    2017-03-01

    The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Guidelines on nitrogen management in agricultural systems

    International Nuclear Information System (INIS)

    2008-01-01

    This publication deals with the topic of nitrogen management in agro-ecosystems. Nitrogen (N) is an essential plant nutrient, and N deficiency severely restricts crop yields in most cultivated soils. Therefore, substantial N inputs are required for optimum plant growth and adequate food, feed and fibre production. Developing countries use more than 55 million metric tons (t) of N fertilizers at an estimated value of US $16 billion annually, of which approximately 2 million t are used in Africa, 5 in Latin America and 50 in Asia. It is estimated that adequate production of food (in particular cereals) for present and future populations will not be achieved without external inputs of fertilizer N. However, management practices involving fertilizer N should be efficient in order to optimize crop production while minimizing adverse effects on the environment. Moreover, the use of alternative N sources such as organic residues and biological nitrogen fixation should be increased within the context of integrated soil fertility management to ensure food security in areas of the world where fertilizer N is too expensive or simply not available. At present, legumes such as soybean, common bean, groundnuts, chickpeas, cowpeas, etc., are fixing approximately 11 million t of N in developing countries. This publication covers, concisely and comprehensively, key topics dealing with the utilization of all sources of N in farming systems, in particular to demonstrate to scientists in developing countries how isotopic tracer technologies can be used in research to improve overall N use efficiency in agricultural systems while increasing crop yields in a sustainable manner, i.e. conserving the natural resource base and protecting the environment. It is a timely publication; increasing attention is being paid to N management in food production, energy consumption and environmental protection. The subject matter is covered in four chapters, starting with an introduction to N

  2. Possibilities for conservation and efficiency of irrigation systems in hydropower; Possibilidades de conservacao e eficientizacao hidroenergetica em sistemas de irrigacao

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Augusto Nelson Carvalho; Ricardo, Mateus [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Grupo de Energia], emails: augusto@unifei.edu.br, mateus@unifei.edu.br

    2008-07-01

    This paper presents a literature review on efficiency and conservation of electricity and water in irrigation systems, focusing on the pumping systems used for that purpose. It's made an introduction to the theory about pumping systems and irrigation, which provides the conceptual basis for the understanding of the technologies and best practices on conservation and rational use of water and electricity presented in the paper development. (author)

  3. Grey water treatment in a series anaerobic--aerobic system for irrigation.

    Science.gov (United States)

    Abu Ghunmi, Lina; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2010-01-01

    This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant effluent flow rate and varying liquid volume. Subsequent aerobic step is equipped with mechanical aeration and the system is insulated for sustaining winter conditions. The COD removal achieved by the anaerobic and aerobic units in summer and winter are 45%, 39% and 53%, 64%, respectively. Sludge in the anaerobic and aerobic reactor has a concentration of 168 and 8 mg VSL(-1), respectively. Stability of sludge in the anaerobic and aerobic reactors is 80% and 93%, respectively, based on COD. Aerobic effluent quality, except for pathogens, agrees with the proposed irrigation water quality guidelines for reclaimed water in Jordan.

  4. Identification of criteria and subcriteria for assessment of land suitability for irrigation

    OpenAIRE

    Blagojević, Boško; Srđević, Zorica; Srđević, Bojan

    2014-01-01

    Serbia is a country with a predominantly agriculture-based economy; however, out of the total area only 3% is irrigated. One of the strategic national development goals is to increase irrigated land especially in lowlands and alluviums of major rivers in the country. There are many criteria and subcriteria which are important for a decision on where to build new, sustainable irrigation systems. After the literature review regarding this topic, we propose a set of criteria and subcriteria for ...

  5. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.

    2015-04-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8×102 MPN/100mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10-4 arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5×102, 1.6×102, 4.4×102, 1

  6. Culinary and pressure irrigation water system hydroelectric generation

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Cory [Water Works Engineers, Pleasant Grove City, UT (United States)

    2016-01-29

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reduce pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.

  7. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review.

    Science.gov (United States)

    Christou, Anastasis; Agüera, Ana; Bayona, Josep Maria; Cytryn, Eddie; Fotopoulos, Vasileios; Lambropoulou, Dimitra; Manaia, Célia M; Michael, Costas; Revitt, Mike; Schröder, Peter; Fatta-Kassinos, Despo

    2017-10-15

    The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation. Copyright © 2017 Elsevier

  8. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería

    OpenAIRE

    Pedro Garcia-Caparros; Juana Isabel Contreras; Rafael Baeza; Maria Luz Segura; Maria Teresa Lao

    2017-01-01

    The development of intensive horticulture in Almería, with a huge increase in greenhouse surface area, is related to three essential factors: climatic characteristics, groundwater use and mulching sandy soil. The purpose of the present paper is to draw a picture of the integral management of water irrigation in the intensive horticultural systems in the region, by identifying the most significant water resource contributions and alternative water resources. Results indicate that the use of gr...

  9. Smart Water Conservation System for Irrigated Landscape. ESTCP Cost and Performance Report

    Science.gov (United States)

    2016-10-01

    irrigation practices (timer based and manual watering systems) that are no longer sustainable given the limited water supplies in many U.S. locations and...Areas that have high local water costs or limited water supply options may also benefit from water harvesting. The implementation of smart ET...in potable water use. Smart ET controllers with centralized and site-specific sensor inputs, such as ET gauge, rain, soil moisture, and leak

  10. Irrigation, Planting Date And Intra-Row Spacing Effects On Soybean Grown Under Dry Farming Systems

    OpenAIRE

    Ismail, A. M. A. [احمد محمد علي اسماعيل; Khalifa, F. M.

    1987-01-01

    Two soybean cultivars (Glycine maxima (L) Merr.) differing in maturity period, leaf size and stem height were sown five times at fortnight intervals during the rainy season at four intra—row spacings under supplementary irrigation at one site and under rainfed conditions at another site in the central rainlands of Sudan. Cultivars responded differently to the system of production. Sowing date and moisture availability were the main factors controlling soybean production. The late maturing cul...

  11. Agriculture

    Science.gov (United States)

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  12. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    Science.gov (United States)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing